Физика для чайников с нуля электричество: Электротехника для чайников |

Электротехника для чайников |

Видео версия статьи:

Начнем пожалуй с понятия электричества. Электрический ток – это упорядоченное движение заряженных частиц под действием электрического поля. В качестве частиц могут выступать свободные электроны металла, если ток течет по металлическому проводу, или ионы, если ток течет в газе или жидкости.
Есть ещё ток в полупроводниках, но это отдельная тема для разговора. Как пример можно привести высоковольтный трансформатор из микроволновки – сначала электроны бегут по проводам, затем ионы движутся между проводами, соответственно сначала ток идет через металл, а потом через воздух. Вещество называются проводником или полупроводником, если в нём есть частицы, способные переносить электрический заряд. Если таких частиц нет, то такое вещество называется диэлектриком, оно не проводит электричество. Заряженные частицы несут на себе электрический заряд, который измеряется обозначается q в кулонах.
Единица измерения силы тока называется Ампер и обозначается буковой I, ток величиной в 1 Ампер образуется при прохождении через точку электрической цепи заряда величиной 1 Кулон за 1 секунду, то есть грубо говоря сила тока измеряется в кулонах секунду. И по сути сила тока это количество электричества, протекающего за единицу времени через поперечное сечение проводника. Чем больше заряженных частиц бежит по проводу, тем соответственно больше ток.
Чтобы заставить заряженные частицы перемещаться от одного полюса к другому необходимо создать между полюсами разность потенциалов или – Напряжение. Напряжение измеряется в вольтах и обозначается буквой V или U. Чтобы получить напряжение величиной 1 Вольт нужно передать между полюсами заряд в 1 Кл, совершив при этом работу в 1 Дж. Согласен, немного непонятно.
Для наглядности представим резервуар с водой расположенный на некоторой высоте. Из резервуара выходит труба. Вода под действием силы тяжести вытекает через трубу. Пусть вода – это электрический заряд, высота водяного столба – это напряжение, а скорость потока воды – это электрический ток. Точнее не скорость потока, а количество вытекающей за секунду воды. Вы понимаете, что чем выше уровень воды, тем больше будет давление внизу А чем выше давление внизу, тем больше воды вытечет через трубу, потому что скорость будет выше.. Аналогично чем выше напряжение, тем больший ток будет течь в цепи.
Зависимость между всеми тремя рассмотренными величинами в цепи постоянного  тока определяет закон ома, который выражается вот такой формулой, и звучит как сила тока в цепи прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению. Чем больше сопротивление, тем меньше ток, и наоборот.
Добавлю ещё пару слов про сопротивление. Его можно измерить, а можно посчитать. Допустим у нас есть проводник, имеющий известную длину и площадь поперечного сечения. Квадратный, круглый, неважно. Разные вещества имеют разное удельное сопротивление, и для нашего воображаемого проводника существует вот такая формула, определяющая зависимость между длиной, площадью поперечного сечения и удельным сопротивлением. Удельное сопротивление веществ можно найти в интернете в виде таблиц. Можно опять же провести аналогию с водой: вода течёт по трубе, пусть труба имеет удельную шершавость. Логично предположить, что чем длиннее и уже труба, тем меньше воды будет по ней протекать за единицу времени. Видите, как всё просто? Формулу даже запоминать не нужно, достаточно представить себе трубу с водой.
Что касается измерения сопротивления, то нужен прибор, омметр. В наше время более популярны универсальные приборы – мультиметры, они измеряют и сопротивление, и ток, и напряжение, и ещё кучу всего. Давайте проведём эксперимент. Я возьму отрезок нихромовой проволоки известной длины и площади сечения, найду удельное сопротивление на сайте где я её купил  и посчитаю сопротивление. Теперь этот же кусочек измерю при помощи прибора. Для такого маленького сопротивления мне придется вычесть сопротивление щупов моего прибора, которое равно 0.8 Ом. Вот так вот!
Шкала мультиметра разбита по размерам измеряемых величин, это сделано для более высокой точности измерения. Если я хочу измерить резистор с номиналом 100 кОм, я ставлю рукоятку на большее ближайшее сопротивление. В моём случае это 200 килоом. Если хочу измерить 1 килоом, то ставлю на 2 ком. Это справедливо для измерения остальных величин. То есть на шкале отложены пределы измерения, в который нужно попасть.
Давайте продолжим развлекаться с мультиметром и попробуем измерить остальные изученные величины. Возьму несколько разных источников постоянного тока. Пусть это будет блок питания на 12 вольт, юсб порт и трансформатор, который в своей молодости сделал мой дед. Напряжение на этих источниках мы можем измерить прямо сейчас, подключив вольтметр параллельно, то есть непосредственно к плюсу и к минусу источников. С напряжением всё понятно, его можно взять и измерить. А вот чтобы измерить силу тока, нужно создать электрическую цепь, по которой будет протекать ток. В электрической цепи обязательно должен быть потребитель, или нагрузка. Давайте подключим потребитель к каждому источнику. Кусочек светодиодной ленты, моторчик и резистор на (160 ом).
Давайте измерим ток, протекающий в цепях. Для этого переключаю мультиметр в режим измерения силы тока и переключаю щуп во вход для тока. Амперметр подключается в цепь последовательно измеряемому объекту. Вот схема, её тоже следует помнить и не путать с подключением вольтметра. Кстати существует такая штуковина как токовые клещи. Они позволяют измерять силу тока в цепи без подключения непосредственно к цепи. То есть не нужно отсоединять провода, просто накидываешь их на провод и они измеряют. Ну ладно, вернёмся к нашему обычному амперметру.
Итак, я измерил все токи. Теперь мы знаем, какой ток потребляется в каждой цепи. Здесь у нас светятся светодиоды, здесь крутится моторчик а здесь…. Так стоять, а че делает резистор? Он не поёт нам песни, не освещает комнату и не вращает никакой механизм. Так на что он тратит целых 90 миллиампер? Так не пойдёт, давайте разбираться. Слышь ты! Ау, он горячий! Так вот куда расходуется энергия! А можно ли как-то посчитать, что здесь за энергия? Оказывается – можно. Закон, описывающий тепловое действие электрического тока был открыт в 19 веке двумя учеными, джеймсом джоулем и эмилием ленцем. Закон назвали закон джоуля ленца. Он выражается вот такой формулой, и численно показывает, сколько джоулей энергии выделяется в проводнике, в котором течёт ток, за единицу времени. Из этого закона можно найти мощность, которая выделяется на этом проводнике, мощность обозначается английской буквой Р и измеряется в ваттах. Я нашёл вот такую очень крутую табличку, которая связывает все изученные нами на этот момент величины.
Таким образом у меня на столе электрическая мощность идёт на освещение, на совершение механической работы и на нагрев окружающего воздуха. Кстати именно на этом принципе работают различные нагреватели, электрочайники, фены, паяльники и прочее. Там везде стоит тоненькая спираль, которая нагревается под действием тока.
Этот момент стоит учитывать при подведении проводов к нагрузке, то есть прокладка проводки к розеткам по квартире тоже входит в это понятие. Если вы возьмете для подведения к розетке слишком тонкий провод и подключите в эту розетку компьютер, чайник и микроволновку, то провод может нагреться вплоть до возникновения пожара. Поэтому есть вот такая табличка, которая связывает площадь поперечного сечения проводов с максимальной мощностью, которая по этим проводам будет идти. Если вздумаете тянуть провода – не забудьте об этом.
Также в рамках этого выпуска хотелось бы напомнить особенности параллельного и последовательного соединения потребителей тока. При последовательном соединении сила тока одинакова на всех потребителях, напряжение разделилось на части, а общее сопротивление потребителей представляет собой сумму всех сопротивлений. При параллельном соединении напряжение на всех потребителях одинаково, сила тока разделилась, а общее сопротивление вычисляется вот по такой формуле.
Из этого вытекает один очень интересный момент, который можно использовать для измерения силы тока. Допустим нужно измерить силу тока в цепи около 2 ампер. Амперметр с этой задачей не справляется, поэтому можно использовать закон ома в чистом виде. Знаем, что сила тока одинакова при последовательном соединении. Возьмём резистор с очень маленьким сопротивлением и вставим его последовательно нагрузке. Измерим на нём напряжение. Теперь, пользуясь законом ома, найдём силу тока. Как видите, она совпадает с расчётом ленты. Здесь главное помнить, что этот добавочный резистор должен быть как можно меньшего сопротивления, чтобы оказывать минимальное влияние на измерения.
Есть ещё один очень важный момент, о котором нужно знать. Все источники имеют максимальный отдаваемый ток, если этот ток превысить – источник может нагреться, выйти из строя, а в худшем случае ещё и загореться. Самый благоприятный исход это когда источник имеет защиту от перегрузки по току, в таком случае он просто отключит ток. Как мы помним из закона ома, чем меньше сопротивление, тем выше ток. То есть если взять в качестве нагрузки кусок провода, то есть замкнуть источник самого на себя, то сила тока в цепи подскочит до огромных значений, это называется короткое замыкание. Если вы помните начало выпуска, то можете провести аналогию с водой. Если подставить нулевое сопротивление в закон ома то мы получим бесконечно большой ток. На практике такое конечно не происходит, потому что источник имеет внутреннее сопротивление, которое подключено последовательно. Этот закон называется закон ома для полной цепи. Таким образом ток короткого замыкания зависит от величины внутреннего сопротивления источника.
Сейчас давайте вернёмся к максимальному току, который может выдать источник. Как я уже говорил, силу тока в цепи определяет нагрузка. Многие писали мне вк и задавали примерно вот такой вопрос, я его слегка утрирую: саня, у меня есть блок питания на 12 вольт и 50 ампер. Если я подключу к нему маленький кусочек светодиодной ленты, она не сгорит? Нет, конечно же она не сгорит. 50 ампер – это максимальный ток, который способен выдать источник. Если ты подключишь к нему кусочек ленты, она возьмёт свои ну допустим 100 миллиампер, и все. Ток в цепи будет равен 100 миллиампер, и никто никуда не будет гореть. Другое дело, если возьмёшь километр светодиодной ленты и подключишь его к этому блоку питания, то ток там будет выше допустимого, и блок питания скорее всего перегреется и выйдет из строя. Запомните, именно потребитель определяет величину тока в цепи. Этот блок может выдать максимум 2 ампера, и когда я закорачиваю его на болтик, с болтиком ничего не происходит. А вот блоку питания это не нравится, он работает в экстремальных условиях. А вот если взять источник, способный выдать десятки ампер, такая ситуация не понравится уже болтику.
Давайте для примера произведём расчёт блока питания, который потребуется для питания известного отрезка светодиодной ленты. Итак, закупили мы у китайцев катушку светодиодной ленты и хотим запитать три метра этой самой ленты. Для начала идём на страницу товара и пытаемся найти, сколько ватт потребляет один метр ленты. Эту информацию я найти не смог, поэтому есть вот такая табличка. Смотрим, что у нас за лента. Диоды 5050, 60 штук на метр. И видим, что мощность составляет 14 ватт на метр. Я хочу 3 метра, значит мощность будет 42 ватта. Блок питания желательно брать с запасом на 30% по мощности, чтобы он не работал в критическом режиме. В итоге получаем 55 ватт. Ближайший подходящий блок питания будет на 60 ватт. Из формулы мощности выражаем силу тока и находим её, зная, что светодиоды работают при напряжении 12 вольт. Выходит, нам нужен блок с током 5 ампер. Заходим, например, на али, находим, покупаем.
Очень важно знать потребляемый ток при изготовлении всяких USB самоделок. Максимальный ток, который можно взять от USB, составляет 500 миллиампер, и его лучше не превышать.
И напоследок коротенько о технике безопасности. Здесь вы можете видеть, до каких значений электричество считается неопасным для жизни человека.

Изучение электричества с нуля — Инженер ПТО

Предлагаем небольшой материал по теме: «Электричество для начинающих». Он даст первоначальное представление о терминах и явлениях, связанных с движением электронов в металлах.

Особенности термина

Электричество представляет собой энергию маленьких заряженных частиц, движущихся в проводниках в определенном направлении.

При постоянном токе не наблюдается изменения его величины, а также направления движения за определенный промежуток времени. Если в качестве источника тока выбирается гальванический элемент (батарейка), в таком случае заряд движется упорядоченно: от отрицательного полюса к положительному концу. Процесс продолжается до тех пор, пока он полностью не исчезнет.

Переменный ток периодически изменяет величину, а также направление движения.

Схема передачи переменного тока

Попробуем понять, что такое фаза в электричестве. Это слово слышали все, но далеко не всем понятен его истинный смысл. Не будем углубляться в детали и подробности, выберем только тот материал, который необходим домашнему мастеру.

Трехфазная сеть является способом передачи электрического тока, при котором по трем разным проводам протекает ток, а по одному идет его возврат. Например, в электрической цепи есть два провода.

По первому проводу к потребителю, например, к чайнику, идет ток. Второй провод используется для его возвращения. При размыкании такой цепи, прохождения электрического заряда внутри проводника не будет. Данная схема описывает однофазную цепь. Что такое фаза в электричестве? Фазой считают провод, по которому протекает электрический ток. Нулевым называют провод, по которому осуществляется возврат. В трехфазной цепи присутствует сразу три фазных провода.

Электрический щиток в квартире необходим для распределения электрического тока по всем помещениям. Трехфазные сети считают экономически целесообразными, поскольку для них не нужны два нулевых провода. При подходе к потребителю, идет разделение тока на три фазы, причем в каждой есть по нолю. Заземлитель, который используется в однофазной сети, не несет рабочей нагрузки.

Он является предохранителем.

К примеру, при возникновении короткого замыкания появляется угроза удара током, пожара. Для предотвращения такой ситуации, величина тока не должна превышать безопасный уровень, избыток уходит в землю.

Пособие «Школа для электрика» поможет начинающих мастерам справляться с некоторыми поломками бытовых приборов. Например, если возникли проблемы при функционировании электрического двигателя стиральной машины, ток будет попадать на внешний металлический корпус.

При отсутствии заземления заряд будет распределяться по машине. При прикосновении к ней руками, в роли заземлителя выступит человек, получив удар электрическим током. При наличии провода заземления такой ситуации не возникнет.

Особенности электротехники

Пособие «Электричество для чайников» пользуется популярностью у тех, кто далек от физики, но планирует использовать эту науку в практических целях.

Датой появления электротехники считают начало девятнадцатого века. Именно в это время был создан первый источник тока. Открытия, сделанные в области магнетизма и электричества, сумели обогатить науку новыми понятиями и фактами, обладающими важным практическим значением.

Пособие «Школа для электрика» предполагает знакомство с основными терминами, касающимися электричества.

Советы начинающим

Во многих сборниках по физике есть сложные электрические схемы, а также разнообразные непонятные термины. Для того чтобы новички могли разобраться во всех тонкостях данного раздела физики, было разработано специальное пособие «Электричество для чайников». Экскурсию в мир электрона необходимо начинать с рассмотрения теоретических законов и понятий. Наглядные примеры, исторические факты, используемые в книге «Электричество для чайников», помогут начинающим электрикам усваивать знания. Для проверки успеваемости можно использовать задания, тесты, упражнения, связанные с электричеством.

Если вы понимаете, что у вас недостаточно теоретических знаний для того, чтобы самостоятельно справиться с подключением электрической проводки, обратитесь к справочникам для «чайников».

Безопасность и практика

Для начала нужно внимательно изучить раздел, касающийся техники безопасности. В таком случае во время работ, связанных с электричеством, не будет возникать чрезвычайных ситуаций, опасных для здоровья.

Для того чтобы на практике реализовать теоретические знания, полученные после самостоятельного изучения основ электротехники, можно начать со старой бытовой техники. До начала ремонта обязательно ознакомьтесь с инструкцией, прилагаемой к прибору. Не забывайте, что с электричеством шутить не нужно.

Электрический ток связан с передвижением электронов в проводниках. Если вещество не способно проводить ток, его называют диэлектриком (изолятором).

Для движения свободных электронов от одного полюса к другому между ними должна существовать определенная разность потенциалов.

Интенсивность тока, проходящего через проводник, связана с количеством электронов, проходящих через поперечное сечение проводника.

На скорость прохождения тока влияет материал, длина, площадь сечения проводника. При увеличении длины провода, увеличивается его сопротивление.

Заключение

Электричество является важным и сложным разделом физики. Пособие «Электричество для чайников» рассматривает основные величины, характеризующие эффективность работы электрических двигателей. Единицами измерения напряжения являются вольты, ток определяется в амперах.

У любого источника электрической энергии существует определенная мощность. Она подразумевает количество электричества, вырабатываемое прибором за определенный промежуток времени. Потребители энергии (холодильники, стиральные машины, чайники, утюги) также имеют мощность, расходуя электричество во время работы. При желании можно провести математические расчеты, определить примерную плату за каждый бытовой прибор.

Существует множество понятий, которые нельзя увидеть собственными глазами и потрогать руками. Наиболее ярким примером служит электротехника, состоящая из сложных схем и малопонятной терминологии. Поэтому очень многие просто отступают перед трудностями предстоящего изучения этой научно-технической дисциплины.

Получить знания в этой области помогут основы электротехники для начинающих, изложенные доступным языком. Подкрепленные историческими фактами и наглядными примерами, они становятся увлекательными и понятными даже для тех, кто впервые столкнулся с незнакомыми понятиями. Постепенно продвигаясь от простого к сложному, вполне возможно изучить представленные материалы и использовать их в практической деятельности.

Понятия и свойства электрического тока

Электрические законы и формулы требуются не только для проведения каких-либо расчетов. Они нужны и тем, кто на практике выполняет операции, связанные с электричеством. Зная основы электротехники можно логическим путем установить причину неисправности и очень быстро ее устранить.

Суть электрического тока заключается в движении заряженных частиц, переносящих электрический заряд от одной до другой точки. Однако при беспорядочном тепловом движении заряженных частиц, по примеру свободных электронов в металлах, переноса заряда не происходит.

Перемещение электрического заряда через поперечное сечение проводника происходит лишь при условии участия ионов или электронов в упорядоченном движении.

Электрический ток всегда протекает в определенном направлении. О его наличии свидетельствуют специфические признаки:

  • Нагревание проводника, по которому протекает ток.
  • Изменение химического состава проводника под действием тока.
  • Оказание силового воздействия на соседние токи, намагниченные тела и соседние токи.

Электрический ток может быть постоянным и переменным. В первом случае все его параметры остаются неизменными, а во втором – периодически происходит изменение полярности от положительной к отрицательной. В каждом полупериоде изменяется направление потока электронов. Скорость таких периодических изменений представляет собой частоту, измеряемую в герцах

Основные токовые величины

При возникновении в цепи электрического тока, происходит постоянный перенос заряда через поперечное сечение проводника.

Величина заряда, перенесенная за определенную единицу времени, называется силой тока, измеряемой в амперах.

Для того чтобы создать и поддерживать движение заряженных частиц, необходимо воздействие силы, приложенной к ним в определенном направлении. В случае прекращения такого действия, прекращается и течение электрического тока. Такая сила получила название электрического поля, еще она известна как напряженность электрического поля. Именно она вызывает разность потенциалов или напряжение на концах проводника и дает толчок движению заряженных частиц. Для измерения этой величины применяется специальная единица – вольт. Существует определенная зависимость между основными величинами, отраженная в законе Ома, который будет рассмотрен подробно.

Важнейшей характеристикой проводника, непосредственно связанной с электрическим током, является сопротивление, измеряемое в омах. Данная величина является своеобразным противодействием проводника течению в нем электрического тока. В результате воздействия сопротивления происходит нагрев проводника. С увеличением длины проводника и уменьшением его сечения, значение сопротивления увеличивается. Величина в 1 Ом возникает, когда разность потенциалов в проводнике составляет 1 В, а сила тока – 1 А.

Закон Ома

Данный закон относится к основным положениям и понятиям электротехники. Он наиболее точно отражает зависимость между такими величинами, как сила тока, напряжение, сопротивление и мощность. Определения этих величин уже были рассмотрены, теперь нужно установить степень их взаимодействия и влияния друг на друга.

Для того чтобы вычислить ту или иную величину, необходимо воспользоваться следующими формулами:

  1. Сила тока: I = U/R (ампер).
  2. Напряжение: U = I x R (вольт).
  3. Сопротивление: R = U/I (ом).

Зависимость этих величин, для лучшего понимания сути процессов, часто сравнивается с гидравлическими характеристиками. Например, внизу бака, наполненного водой, устанавливается клапан с примыкающей к нему трубой. При открытии клапана вода начинает течь, поскольку существует разница между высоким давлением в начале трубы и низким – на ее конце. Точно такая же ситуация возникает на концах проводника в виде разности потенциалов – напряжения, под действием которого электроны двигаются по проводнику. Таким образом, по аналогии, напряжение представляет собой своеобразное электрическое давление.

Силу тока можно сравнить с расходом воды, то есть ее количеством, протекающим через сечение трубы за установленный период времени. При уменьшении диаметра трубы уменьшится и поток воды в связи с увеличением сопротивления. Этот ограниченный поток можно сравнить с электрическим сопротивлением проводника, удерживающим поток электронов в определенных рамках. Взаимодействие тока, напряжения и сопротивления аналогично гидравлическим характеристикам: с изменением одного параметра, происходит изменение всех остальных.

Энергия и мощность в электротехнике

В электротехнике существуют еще и такие понятия, как энергия и мощность, связанные с законом Ома. Сама энергия существует в механической, тепловой, ядерной и электрической форме. В соответствии с законом сохранения энергии, ее невозможно уничтожить или создать. Она может лишь преобразовываться из одной формы в другую. Например, в аудиосистемах осуществляется преобразование электроэнергии в звук и теплоту.

Любые электрические приборы потребляют определенное количество энергии на протяжении установленного промежутка времени. Эта величина индивидуальна для каждого прибора и представляет собой мощность, то есть объем энергии, который может потребить тот или иной прибор. Этот параметр вычисляется по формуле P = I x U, единицей измерения служит ватт. Он означает перемещение одного ампера одним вольтом через сопротивление в один ом.

Таким образом, основы электротехники для начинающих помогут на первых порах разобраться с основными понятиями и терминами. После этого будет значительно легче использовать полученные знания на практике.

Электрика для чайников: основы электроники

 

Игры с конденсаторами

 

Закон Ома


 

Закон Джоуля — Ленца и правила Кирхгофа

Введение в физику твердого тела
Индийский технологический институт Канпур через NPTEL
Курс посвящен ознакомлению студентов и аспирантов с концепциями физики конденсированного состояния.

Экспериментальная физика I
Индийский технологический институт, Харагпур через NPTEL
Этот курс поможет вам понять принцип работы многих распространенных устройств через их применение в различных экспериментах с конкретными целями.

Физика плазмы: Введение
Федеральная политехническая школа Лозанны через edX
Изучите основы плазмы, одного из фундаментальных состояний материи и различных типов моделей, используемых для его описания, включая жидкие и кинетические.

От атомов к звездам: как физика объясняет наш мир
Национальный исследовательский ядерный университет МИФИ via edX
Исследуйте Вселенную через физику от мельчайших микрочастиц до необъятных галактик.

Введение в физику — Часть 1: Механика и волны
Сеульский национальный университет via edX
Поймите физику из повседневного опыта. Этот курс охватывает основы механики Ньютона, включая колебания и волновые явления.

Думай как физик
через сеть Canvas
Изучите природные силы, такие как плавучесть, волны и то, как гравитация заставляет все это происходить. Этот онлайн-курс Real Science Labs дает студентам практический лабораторный опыт, когда они исследуют силы природного мира.

Квантовая физика

Квантовая механика: одномерное рассеяние и центральные потенциалы
Массачусетский технологический институт через edX
Узнайте о рассеянии в одномерных потенциалах, угловом моменте, центральных потенциалах и атоме водорода.
★★★★★ (11 оценок)

Открытие бозона Хиггса
Эдинбургский университет через FutureLearn
Стоит ли нам волноваться по поводу бозона Хиггса? Узнайте больше о физике элементарных частиц и понимании Вселенной.
★★★★ ☆ (7 оценок)

Квантовая механика для ученых и инженеров
Стэнфордский университет через Stanford OpenEdx
Этот курс направлен на обучение квантовой механике всех, кто имеет достаточное понимание физических наук или инженерии на уровне колледжа. Этот курс представляет собой существенное введение в квантовую механику и способы ее использования. Он специально разработан, чтобы быть доступным не только для физиков, но также для студентов и технических специалистов с широким спектром научных и инженерных специальностей.
★★★★★ (4 отзыва)

Квантовая механика: волновые функции, операторы и ожидаемые значения
Массачусетский технологический институт через edX
Узнайте о волновых функциях и их вероятностной интерпретации, уравнении Шредингера и свойствах квантовых наблюдаемых.
★★★★★ (2 отзыва)

Топология в конденсированных средах: связывание квантовых узлов
Делфтский технологический университет через edX
Получите простой практический обзор топологических изоляторов, майоранов и других топологических явлений.
★★★★★ (1 отзыв)

Квантовая механика для ученых и инженеров 2
Стэнфордский университет через Stanford OpenEdx
Этот курс охватывает ключевые темы использования квантовой механики во многих современных приложениях в науке и технике, знакомит с основными передовыми концепциями, такими как спин, идентичные частицы, квантовая механика света, основы квантовой информации и интерпретация квантовой механики и охватывает основные способы написания и использования квантовой механики в современной практике.

Приложения квантовой механики
Массачусетский технологический институт via edX
Этот курс посвящен основным методам, необходимым для практических приложений и исследований в области квантовой механики. Мы вводим различные методы приближения, чтобы понять системы, не имеющие аналитических решений.

Квантовая механика: квантовая физика в одномерных потенциалах
Массачусетский технологический институт через edX
Узнайте, как решить уравнение Шредингера для частицы, движущейся в одномерном потенциале, подходящее для физических приложений.

Введение в уравнение Шредингера и квантовый перенос
Университет Пердью через edX
Представляет метод неравновесной функции Грина (NEGF), широко используемый для описания квантовых эффектов в устройствах нанометрового уровня, а также его приложения в устройствах спинтроники.

Квантовая механика I
Индийский технологический институт в Бомбее через NPTEL
Этот курс представляет собой курс первого уровня в обозначении бюстгальтера Дирака, который заложит основу для прохождения курсов продвинутого уровня.

Астрофизика

От Большого взрыва до темной энергии
Токийский университет через Coursera
★★★★ ☆ (15 оценок)

Astrophysics: The Violent Universe
Австралийский национальный университет via edX
Исследуйте самые смертоносные места во Вселенной, от черных дыр до сверхновых.
★ ★ ★ ★ ★ (5 оценок)

Относительность и астрофизика
Корнельский университет через edX
Изучите мощные и интригующие связи между астрономией и теорией относительности Эйнштейна.
★★★★ ☆ (5 оценок)

Введение в общую теорию относительности
Высшая школа экономики через Coursera
Общая теория относительности или теория релятивистской гравитации описывает черные дыры, гравитационные волны и расширяющуюся Вселенную. Цель курса — познакомить вас с этой теорией.

Физика плазмы: приложения
Федеральная политехническая школа Лозанны через edX
Узнайте о приложениях плазмы от ядерного синтеза, приводящего в действие солнце, создания интегральных схем и выработки электроэнергии.

Космические лучи, темная материя и тайны Вселенной
Университет Васэда via edX
Присоединяйтесь к нам в уникальном исследовании одной из самых глубоких загадок Вселенной: космических лучей

Астрофизические вестники Эйнштейна
через World Science U
Команда Габриэлы Гонсалес в LIGO использует наземные эксперименты для поиска гравитационных волн, создаваемых черными дырами. В этом мастер-классе узнайте, как они проводят эти поиски и какие тайны они надеются разгадать о нашей Вселенной.

Информационный парадокс черной дыры
via World Science U
В 1970-х годах Стивен Хокинг осознал серьезный конфликт, связанный с квантовой природой черных дыр. Теоретик струн Самир Матур много лет работал над этой еще нерешенной проблемой и нашел радикальное решение так называемого информационного парадокса.

Изучение искривленной Вселенной
через World Science U
14 сентября 2015 года детекторы гравитационных волн LIGO впервые подтвердили обнаружение гравитационной волны.Присоединяйтесь к физику Нергис Мавалвала, который отправит вас в невероятное путешествие от скромного начала LIGO до его революционного открытия.

Новые идеи о темной материи
via World Science U
Присоединяйтесь к Джастину Хури, который познакомит вас с физикой элементарных частиц и космологией темной материи в поисках ответов на одну из самых больших загадок физики.

100 лет гравитационных волн
via World Science U
Известный физик Рай Вайс известен прежде всего как один из первых создателей гравитационно-волновой обсерватории с лазерным интерферометром (LIGO).Присоединяйтесь к нему, когда он исследует историю этого удивительного проекта и технологии, которые сделали его реальностью.

Физика элементарных частиц

Физика элементарных частиц: введение
Женевский университет через Coursera
Этот курс познакомит вас с субатомной физикой, то есть физикой ядер и частиц.
★★★★ ☆ (1 отзыв)

Составляющие природы
через World Science U
С открытием частицы Хиггса в 2013 году Стандартная модель стала ближе к завершенной теории.В этом мастер-классе Мария Спиропулу, профессор физики Калифорнийского технологического института, исследует надежность Стандартной модели и смотрит на будущее физики элементарных частиц.
★★★★★ (1 отзыв)

Решение проблем больших адронных коллайдеров с помощью машинного обучения
Высшая школа экономики через Coursera
Задания этого курса дадут вам возможность применить свои навыки в поисках новой физики с использованием передовых методов анализа данных.По окончании курса вы гораздо лучше поймете принципы экспериментальной физики и машинного обучения.

Методы анализа поверхности
Национальный исследовательский ядерный университет МИФИ через Coursera
Этот курс описывает наиболее широко используемые методы анализа в современной науке о поверхности. В нем представлены сильные и слабые стороны каждого метода, чтобы вы могли выбрать тот, который предоставит вам необходимую информацию.Он также рассматривает то, что каждый метод не может дать вам, а также то, как интерпретировать результаты, полученные от каждого метода.

Теоретическая физика

Эффективная теория поля
Массачусетский технологический институт via edX
8.EFTx — это курс для выпускников по теории эффективного поля (EFT), который обеспечивает фундаментальную основу для описания физических систем с помощью квантовой теории поля. Для студентов-интернатов он указан как 8.851.

Теория распыления
Индийский технологический институт Мадрас через NPTEL
Цель этого курса — дать обзор физики распыления жидкости, образования и распространения брызг.

Прошлое и будущее объединения
via World Science U
На протяжении всей истории физики ученые работали над объединением многих различных областей во всеобъемлющее описание Вселенной. Теоретик струн Робберт Дейкграаф, директор и профессор Леона Леви из Института перспективных исследований, обсуждает связь между очень большим и бесконечно малым.

Фундаментальные уроки теории струн
через World Science U
Кумрун Вафа вместе со всемирно известным теоретиком струн Эндрю Строминджером разработали новый способ вычисления энтропии черной дыры на языке теории струн.Следуйте за Вафой, поскольку он проведет вас через некоторые из самых невероятных вещей, которые мы узнали с момента зарождения теории струн.

Механика и движение

Статистическая механика: алгоритмы и вычисления
École normale supérieure через Coursera
В этом курсе вы изучите много современной физики (классической и квантовой) с помощью базовых компьютерных программ, которые вы загрузите, обобщите или напишете с нуля , обсудите, а затем подайте заявку. Присоединяйтесь, если вам интересно (но не обязательно хорошо осведомлены) об алгоритмах и о глубоком понимании науки, которое вы можете получить с помощью алгоритмического подхода.
★★★★★ (3 отзыва)

Механика ReView
Массачусетский технологический институт через edX
Механика ReView — это вводный курс механики на уровне Массачусетского технологического института, в котором особое внимание уделяется стратегическому подходу к решению проблем. Он охватывает те же темы учебной программы, что и курс Advanced Placement Mechanics-C .
★★★★★ (1 отзыв)

Механика: кинематика и динамика
Массачусетский технологический институт via edX
Узнайте о кинематике и динамике в этом курсе физики, основанном на вычислениях.
★★★★★ (1 отзыв)

Кинематика: описание движений космических аппаратов
Университет Колорадо в Боулдере через Coursera
Этот курс кинематики охватывает четыре основные темы: введение в кинематику частиц, глубокое погружение в кинематику твердого тела в двух частях. Курс заканчивается рассмотрением определения статического положения с использованием современных алгоритмов для прогнозирования и выполнения относительной ориентации тел в пространстве.
★★★ ☆☆ (1 отзыв)

Механика: движение, силы, энергия и гравитация, от частиц к планетам
Университет Нового Южного Уэльса через Coursera
Этот курс по запросу рекомендуется для старшеклассников и начинающих университетов, а также для всех, кто интересуется базовыми знаниями. физика.В курсе используются мультимедийные учебные материалы для представления материала: видеоролики с ключевыми экспериментами, анимациями и рабочими примерами задач, все с дружелюбным рассказчиком.
★★★★ ☆ (1 отзыв)

Механика: простое гармоническое движение
Массачусетский технологический институт через edX
Узнайте, как решить и понять простое гармоническое движение на этом уроке физики, основанном на исчислении.

Механика: динамика вращения
Массачусетский технологический институт via edX
Узнайте о динамике вращения, твердых телах и моменте инерции в этом курсе физики, основанном на расчетах.

Механика: импульс и энергия
Массачусетский технологический институт via edX
Узнайте об импульсе и энергии в этом курсе физики, основанном на вычислениях.

Введение в механику, часть 1
Rice University via edX
Изучите физику движения вещей с помощью этого основанного на исчислении курса механики.

Кинетика: изучение движения космического корабля
Университет Колорадо в Боулдере через Coursera
После этого курса вы сможете… * Вывести из базовой формулировки углового момента уравнения вращения, а также прогнозировать и определять равновесия движения без крутящего момента и связанные с ними устойчивости * Разработайте уравнения движения для твердого тела с несколькими вращающимися компонентами, выведите и примените крутящий момент градиента силы тяжести * Примените условия статической устойчивости конфигурации с двумя вертушками и спрогнозируйте изменения по мере появления устройств обмена импульсом * Получите уравнения движения для системы, в которых присутствуют различные устройства обмена импульсом.

Управление нелинейным пространственным движением космического корабля
Университет Колорадо в Боулдере через Coursera
Этот курс обучает вас навыкам, необходимым для программирования конкретной ориентации и достижения точных целей прицеливания для космического корабля, движущегося в трехмерном пространстве. После этого курса вы сможете… * различать ряд понятий нелинейной устойчивости * применять прямой метод Ляпунова для доказательства стабильности и сходимости ряда динамических систем * разрабатывать показатели ошибок скорости и ориентации для 3-осевого управления ориентацией с использованием Теория Ляпунова * Анализ сходимости управления твердым телом с немоделированным моментом.

Как движется материал, часть 1: линейное движение
Колледж Харви Мадда через edX
Основанное на исчислении введение в механику Ньютона, в котором упор делается на решение проблем.

Как движется материал, часть 2: Угловое движение
Колледж Харви Мадда через edX
Основанное на исчислении введение в механику Ньютона с упором на решение проблем.

Как движется материал, часть 3: Волновое движение
Колледж Харви Мадда через edX
Основанное на исчислении введение в механику Ньютона с упором на решение проблем.

Электромагнетизм, лазеры и фотоны

3.15x: электрические, оптические и магнитные материалы и устройства
Массачусетский технологический институт через edX
В 3.15x мы исследуем электрические, оптические и магнитные свойства материалов и узнаем, как электронные устройства предназначены для использования эти свойства.
Перейти к классу

Электронные материалы и устройства
Массачусетский технологический институт via edX
Узнайте, как электронные устройства, такие как диоды и транзисторы, предназначены для использования электрических свойств материалов.
★★★★ ☆ (3 отзыва)

Электричество и магнетизм, часть 1
Университет Райса через edX
PHYS 102.1x служит вводным курсом по заряду, электрическому полю, электрическому потенциалу, току, сопротивлению и цепям постоянного тока с резисторами и конденсаторами.
★★★★★ (2 отзыва)

Электричество и магнетизм: электростатика
Массачусетский технологический институт через edX
Из этого вводного курса физики узнайте, как заряды взаимодействуют друг с другом и создают электрические поля и электрические потенциалы.

Электричество и магнетизм: магнитные поля и силы
Массачусетский технологический институт через edX
В этом вводном курсе физики узнайте, как заряды создаются и перемещаются в магнитных полях и как анализировать простые цепи постоянного тока.

Электричество и магнетизм: уравнения Максвелла
Массачусетский технологический институт через edX
В этой заключительной части 8.02 мы рассмотрим закон Фарадея, схемы с индукторами, уравнения Максвелла и электромагнитное излучение.Этот вводный курс физики электромагнетизма потребует использования математического анализа.

Electricity & Magnetism, Part 2
Rice University via edX
PHYS 102.2x служит введением в магнитное поле, как оно создается токами и магнитными материалами, индукцией и индукторами, а также цепями переменного тока.

Введение в фотонику
Индийский технологический институт Мадрас через NPTEL
Вводный курс по фотонике, ведущий к более продвинутым курсам, таким как лазеры, оптическая связь, оптические датчики и интегральные схемы фотоники.

Лазер: основы и приложения
Индийский технологический институт Канпур через NPTEL
Этот курс предназначен для студентов, которым необходимо понять основные принципы работы лазеров и их основные свойства. Этот курс дает студентам полное представление об основах лазеров: их уникальных свойствах, принципах работы и областях применения.

Основные шаги в магнитном резонансе
Федеральная политехническая школа Лозанны через edX
МООК, чтобы открыть для себя основные концепции и широкий спектр интересных приложений магнитного резонанса в физике, химии и биологии

Физика кремниевых солнечных элементов
École Polytechnique через Coursera
Первый МООК «Фотоэлектрическая солнечная энергия» представляет собой общую презентацию технологий солнечной фотоэлектрической энергии в глобальном энергетическом контексте без подробных деталей.В частности, описание работы солнечных элементов ограничено идеальным случаем. В отличие от этого второй MOOC позволяет глубоко понять свойства солнечных элементов на основе кристаллических полупроводников.

Начало работы в крио-EM
Калифорнийский технологический институт через Coursera
Этот класс охватывает фундаментальные принципы, лежащие в основе криоэлектронной микроскопии (крио-ЭМ), начиная с базовой анатомии электронных микроскопов, введения в преобразования Фурье, и принципы формирования имиджа.Основываясь на этом фундаменте, класс затем охватывает вопросы подготовки образцов, стратегии сбора данных и основные рабочие процессы обработки изображений для всех трех основных методов современной крио-ЭМ: томографии, анализа отдельных частиц и двумерной кристаллографии.

Краткий курс по сверхпроводимости
Индийский технологический институт Гувахати через NPTEL
Курс посвящен основам сверхпроводимости, включая эффект Мейснера, электродинамический отклик, сверхпроводники типа I и типа II и т. Д.

Плазмоника: от основ до современных приложений
Университет ИТМО via edX
Плазмоника — это недавно появившаяся и быстрорастущая отрасль оптики. Изучите основы, а также последние достижения и современные приложения.

Термодинамика

Статистическая молекулярная термодинамика
Университет Миннесоты через Coursera
Этот вводный курс физической химии исследует связи между молекулярными свойствами и поведением макроскопических химических систем.
★★★★ ☆ (4 отзыва)

Введение в термодинамику: передача энергии отсюда сюда в другое место или форму. Понимание того, как работают энергетические системы, является ключом к пониманию того, как удовлетворить все эти потребности во всем мире. Поскольку потребности в энергии только растут, этот курс также закладывает основу для многих успешных профессиональных карьер.
★★★★ ☆ (3 отзыва)

Термодинамика
Индийский технологический институт Бомбей via edX
Введение в основные концепции и приложения термодинамики в машиностроении.
★★★★★ (3 отзыва)

Основы явлений переноса
Технологический университет Делфта via edX
Изучите основы для работы над широким спектром инженерных проблем, касающихся передачи тепла, массы и количества движения.Изучите примеры повседневных процессов дома, в лаборатории и на производстве.
★★★★ ☆ (1 отзыв)

Кондуктивная и конвекционная теплопередача
Индийский технологический институт, Харагпур через NPTEL
Это вводный курс по кондуктивной и конвекционной теплопередаче. Тема теплопередачи имеет широкую область применения и имеет первостепенное значение практически во всех областях инженерных и биологических систем. В курсе подчеркиваются основные концепции режимов теплопередачи и конвекции, а также перечислены законы и основные уравнения, относящиеся к скоростям теплопередачи, на основе основополагающих принципов.

Оптика

Атомная и оптическая физика I — Часть 2: Структура атома и атомы во внешнем поле
Массачусетский технологический институт через edX
Вторая часть курса современной атомной и оптической физики: структура атомов и их поведение в статических электромагнитных полях.
★★★★ ☆ (1 отзыв)

Атомная и оптическая физика I — Часть 1: Резонанс
Массачусетский технологический институт via edX
Первая часть курса современной атомной и оптической физики: физика резонансов, центральная тема в атомной физике.

Атомная и оптическая физика I — Часть 3: Взаимодействие атома и света 1 — Матричные элементы и квантованное поле
Массачусетский технологический институт через edX
Третья часть курса современной атомной и оптической физики: физика взаимодействия атомы с электромагнитным полем.

Атомная и оптическая физика I — Часть 4: Взаимодействие атома и света 2: Уширение линий и двухфотонные переходы
Массачусетский технологический институт через edX
Четвертая часть курса современной атомной и оптической физики: физика формы линий и двухфотонные переходы.

Атомная и оптическая физика I — Часть 5: Когерентность
Массачусетский технологический институт через edX
Пятая часть курса современной атомной и оптической физики: физика атомной когерентности.

Атомная и оптическая физика: атомно-фотонные взаимодействия
Массачусетский технологический институт через edX
Узнайте, как использовать квантовую электродинамику для описания физики взаимодействия между атомами и фотонами.

Атомная и оптическая физика: ультрахолодные атомы и физика многих тел
Массачусетский технологический институт через edX
Узнайте об ультрахолодных атомах, конденсате Бозе-Эйнштейна и приложениях в физике твердого тела и квантовой информатике.

Атомная и оптическая физика: оптические уравнения Блоха и динамика открытых систем
Массачусетский технологический институт через edX
Узнайте об оптических уравнениях Блоха и их решениях с приложениями для динамики открытых систем.

Атомная и оптическая физика: световые силы и лазерное охлаждение
Массачусетский технологический институт через edX
Узнайте о силах света, лазерном охлаждении и создании оптических ловушек для атомов.

Волны и оптика
via edX
Этот курс охватывает физику волн на струнах, электромагнитных волн, геометрической оптики, интерференции, дифракции и формирования изображений.

Звуки и акустика

Физический синтез звука для игр и интерактивных систем
Стэнфордский университет через Каденце

Этот курс знакомит с основами цифровой обработки сигналов и вычислительной акустики на основе физики колебаний реальных объектов и систем.Предоставляемое бесплатное программное обеспечение с открытым исходным кодом позволит любому использовать физические модели в своих произведениях искусства, звуке игр или фильмов или любых других приложениях.
★★★★★ (10 оценок)

Введение в акустику (часть 2)
Корейский продвинутый институт науки и технологий через Coursera
Учащиеся могли изучить основные концепции акустики из «Введение в акустику (часть 1)». применить к реальной ситуации и разработать собственное акустическое приложение.Учащиеся будут анализировать явления излучения, рассеяния и дифракции с помощью уравнения Кирхгофа – Гельмгольца. Затем учащиеся спроектируют свою собственную комнату реверберации или воздуховоды, отвечающие установленным ими условиям.
★★ ☆☆☆ (1 отзыв)

Основы волн и вибраций
École Polytechnique via Coursera
Волны повсюду. На воде, конечно, но также и в воздухе, когда вы слышите самолет, и, конечно, под ногами во время землетрясения.Вибрации тоже есть повсюду: в вашем байке, когда вы наезжаете на кочку, в вашей гитаре, когда вы играете, и, конечно же, в вашем смартфоне. Вы можете догадаться, что за всем этим есть что-то общее. В этом и состоит цель этого курса!

Лекции Ричарда Фейнмана

Лекции посланника Ричарда Фейнмана (1964)
В этих лекциях посланника «Характер физического закона», первоначально прочитанных в Корнельском университете и записанных Би-би-си 9-19 ноября 1964 года, физик Ричард Фейнман предлагает обзор избранных физических законов. законов и объединяет их общие черты в один общий принцип инвариантности.С 1945 по 1950 год Фейнман преподавал теоретическую физику в Корнелльском университете. Затем он стал профессором Калифорнийского технологического института и был назван одним из лауреатов Нобелевской премии по физике 1965 года.

Лекции Фейнмана по физике
Лекции Фейнмана по физике были основаны на двухлетнем вводном курсе физики, который Ричард Фейнман преподавал в Калтехе с 1961 по 1963 год; он был опубликован в трех томах в период с 1963 по 1965 год и почти два десятилетия использовался в Калифорнийском технологическом институте в качестве вводного учебника физики .

OpenCourseWare Physics курсы

Курсы OpenCourseWare — это записи аудиторных лекций, размещенные в Интернете.

MIT

Физика энергии
Курс предназначен для второкурсников, младших и старших курсов Массачусетского технологического института, которые хотят понять фундаментальные законы и физические процессы, которые управляют источниками, извлечением, передачей, хранением, деградацией и конечным использованием энергии.

Физика II: Электричество и магнетизм
Этот курс для новичков представляет собой второй семестр вводного курса физики.Основное внимание уделяется электричеству и магнетизму. Предмет преподается в формате TEAL (активное обучение с поддержкой технологий), в котором используется взаимодействие в малых группах и современные технологии. TEAL / Studio Project в Массачусетском технологическом институте — это новый подход к физическому образованию, разработанный, чтобы помочь студентам лучше понять интуицию и концептуальные модели физических явлений.

Квантовая физика I
Этот курс охватывает экспериментальные основы квантовой физики. Он знакомит с волновой механикой, уравнением Шредингера в одномерном и трёхмерным уравнением Шредингера.
Это первый курс по квантовой физике для студентов, за которым следуют 8.05 Quantum Physics II и 8.06 Quantum Physics III .

Теория струн
Это курс продолжительностью один семестр, посвященный дуальности калибровки и гравитации (часто называемой AdS / CFT) и ее приложениям.

Исследование черных дыр: общая теория относительности и астрофизика
Изучение физических эффектов в окрестностях черной дыры как основа для понимания общей теории относительности, астрофизики и элементов космологии.Дополнение к текущим достижениям в теории и наблюдениях. Энергия и импульс в плоском пространстве-времени; метрика; искривление пространства-времени вблизи вращающихся и невращающихся центров притяжения; траектории и орбиты частиц и света; элементарные модели Космоса.

Йель

Основы физики I
Этот курс представляет собой подробное введение в принципы и методы физики для студентов, имеющих хорошую подготовку по физике и математике.Особое внимание уделяется решению проблем и количественному мышлению. Этот курс охватывает механику Ньютона, специальную теорию относительности, гравитацию, термодинамику и волны.

Основы физики II
Это продолжение курса Основы физики I (PHYS 200), вводного курса по принципам и методам физики для студентов, имеющих хорошую физико-математическую подготовку. Этот курс охватывает электричество, магнетизм, оптику и квантовую механику.

UC Irvine

Общая теория относительности и гравитации Эйнштейна
Этот курс обозначен как Физика 255: Общая теория относительности в каталоге курсов UCI.Введение в теорию гравитации Эйнштейна. Тензорный анализ, уравнения поля Эйнштейна, астрономические проверки теории Эйнштейна, гравитационные волны.

Классическая физика
Этот курс покажет вам, как применять простые физические модели к движению объектов. UCI Physics 7C охватывает следующие темы: сила, энергия, импульс, вращение и гравитация.

Открытый, Мичиган

Лекции по физике сплошных сред
Идея этих лекций по физике сплошных сред возникла из короткой серии лекций по физике материалов в Мичиганском университете летом 2013 года.Эти беседы были нацелены на аспирантов, докторантов и коллег по факультетам. Из этой группы пришло предположение, что несколько полный набор лекций по континуальным аспектам физики материалов был бы полезен.

Введение в методы конечных элементов
Мы надеемся, что эти лекции по методам конечных элементов дополнят серию по физике сплошной среды и станут отправной точкой, с которой опытный исследователь или продвинутый аспирант сможет приступить к работе в области (континуума) вычислений. физика.

Как работает статическое электричество?

Ответ

Нарушение баланса между отрицательными и положительными зарядами в объектах.

Две девочки «наэлектризованы» во время эксперимента в Центре науки о свободе «Camp-in», 5 февраля 2002 г. «История Америки», Библиотека Конгресса.

Вы когда-нибудь шли через комнату, чтобы погладить свою собаку, но вместо этого получали шок? Возможно, вы сняли шляпу в засушливый зимний день и испытали на себе «волосы дыбом»! Или, может быть, вы прилепили воздушный шарик к стене после того, как потерлись им о свою одежду?

Почему это происходит? Это волшебство? Нет, это не волшебство; это статическое электричество!

Прежде чем понять статическое электричество, нам сначала нужно понять основы атомов и магнетизма.

Молодой человек сидит рядом с машиной для электростатического воздействия Хольца, Колледж Дикинсона, 1889 год. Каталог эстампов и фотографий, Библиотека Конгресса.

Все физические объекты состоят из атомов. Внутри атома находятся протоны, электроны и нейтроны. Протоны заряжены положительно, электроны заряжены отрицательно, а нейтроны нейтральны.

Следовательно, все состоит из зарядов. Противоположные заряды притягиваются друг к другу (от отрицательного к положительному).Одинаковые заряды отталкиваются друг от друга (от положительного к положительному или от отрицательного к отрицательному). В большинстве случаев положительный и отрицательный заряды уравновешиваются в объекте, что делает его нейтральным.

Статическое электричество является результатом дисбаланса между отрицательными и положительными зарядами в объекте. Эти заряды могут накапливаться на поверхности объекта, пока не найдут способ высвободиться или разрядиться. Один из способов разрядить их — через цепь.

Группа молодых женщин, изучающих статическое электричество в обычной школе, Вашингтон, округ Колумбия.К. Фрэнсис Бенджамин Джонстон, фотограф, около 1899 г. Отдел эстампов и фотографий, Библиотека Конгресса

При трении некоторых материалов друг о друга могут передаваться отрицательные заряды или электроны. Например, если вы потереть обувь о ковер, ваше тело собирает лишние электроны. Электроны цепляются за ваше тело до тех пор, пока их не освободят. Когда вы дотрагиваетесь до своего пушистого друга, вы испытываете шок. Не волнуйтесь, это только избыточные электроны, которые вы передаете своему ничего не подозревающему питомцу.

А как насчет того опыта «пробуждения волос»? Когда вы снимаете шляпу, электроны переходят от шляпы к волосам, создавая интересную прическу! Помните, объекты с одинаковым зарядом отталкиваются друг от друга. Поскольку у них одинаковый заряд, у вас волосы встанут дыбом. Ваши волосы просто пытаются уйти как можно дальше друг от друга!

Морской пехотинец использует жезл статического разряда для снятия избыточного статического электричества перед тем, как прикрепить гаубицу M777 к вертолету CH-53E Super Stallion во время комплексной тренировки с перегрузкой в ​​базовом лагере морской пехоты Пендлтон, 12 апреля 2017 года.Капрал Фрэнк Кордова, фотограф. Галерея изображений Министерства обороны США

Когда вы трут воздушный шар о свою одежду, и он прилипает к стене, вы добавляете избыток электронов (отрицательные заряды) на поверхность воздушного шара. Стена теперь заряжена более положительно, чем воздушный шар. Когда они соприкасаются, воздушный шар будет прилипать из-за правила притяжения противоположностей (от положительного к отрицательному).

Дополнительные сведения о статическом электричестве и экспериментах см. В разделах «Интернет-ресурсы» и «Дополнительная литература».

ВМС США выпускают пороховые фляги из латуни для предотвращения случайного воспламенения пороха из-за искр или статического электричества. Поле битвы в Уилсон-Крик, 2010 г. Служба национальных парков США, NP Gallery

Опубликовано: 19.11.2019. Автор: Справочная секция по науке, Библиотека Конгресса

Квантовая физика | New Scientist

Что такое квантовая физика? Проще говоря, это физика, которая объясняет, как все работает: лучшее описание природы частиц, из которых состоит материя, и сил, с которыми они взаимодействуют.

Квантовая физика лежит в основе того, как работают атомы, и почему химия и биология работают именно так. Вы, я и столб ворот — по крайней мере, на каком-то уровне мы все танцуем под квантовую мелодию. Если вы хотите объяснить, как электроны движутся через компьютерный чип, как фотоны света превращаются в электрический ток в солнечной панели или усиливаются в лазере, или даже просто, как солнце продолжает гореть, вам нужно будет использовать квантовую физику. .

Здесь начинаются трудности, а для физиков — самое интересное.Начнем с того, что единой квантовой теории не существует. Существует квантовая механика, основная математическая структура, лежащая в основе всего этого, которая была впервые разработана в 1920-х годах Нильсом Бором, Вернером Гейзенбергом, Эрвином Шредингером и другими. Он характеризует простые вещи, такие как изменение положения или импульса отдельной частицы или группы из нескольких частиц с течением времени.

Но чтобы понять, как все работает в реальном мире, квантовая механика должна быть объединена с другими элементами физики — главным образом, специальной теорией относительности Альберта Эйнштейна, которая объясняет, что происходит, когда вещи движутся очень быстро, — чтобы создать то, что известно как квантовая теории поля.

Три разные квантовые теории поля имеют дело с тремя из четырех фундаментальных сил, посредством которых взаимодействует материя: электромагнетизм, который объясняет, как атомы держатся вместе; сильное ядерное взаимодействие, которое объясняет стабильность ядра в сердце атома; и слабое ядерное взаимодействие, которое объясняет, почему некоторые атомы подвергаются радиоактивному распаду.

За последние пять десятилетий или около того эти три теории были объединены в ветхую коалицию, известную как «стандартная модель» физики элементарных частиц.Несмотря на все впечатление, что эта модель слегка скреплена липкой лентой, это наиболее точно проверенная картина основной работы материи из когда-либо созданных. Его коронная слава пришла в 2012 году с открытием бозона Хиггса, частицы, придающей всем другим фундаментальным частицам их массу, существование которой было предсказано на основе квантовых теорий поля еще в 1964 году.

Обычные квантовые теории поля хорошо работают при описании результатов экспериментов на ускорителях высокоэнергетических частиц, таких как Большой адронный коллайдер ЦЕРНа, где был открыт Хиггс, который исследует материю в ее мельчайших масштабах.Но если вы хотите понять, как все работает во многих менее эзотерических ситуациях — как электроны движутся или не движутся через твердый материал и, таким образом, превращают материал в металл, изолятор или полупроводник, например, — все становится еще сложнее.

Миллиарды и миллиарды взаимодействий в этой многолюдной среде требуют разработки «эффективных теорий поля», которые затушевывают некоторые кровавые детали. Трудность построения таких теорий состоит в том, почему многие важные вопросы физики твердого тела остаются нерешенными — например, почему при низких температурах некоторые материалы являются сверхпроводниками, пропускающими ток без электрического сопротивления, и почему мы не можем заставить этот трюк работать при комнатной температуре. .

Но за всеми этими практическими проблемами кроется огромная квантовая загадка. На базовом уровне квантовая физика предсказывает очень странные вещи о том, как работает материя, которые полностью расходятся с тем, как вещи работают в реальном мире. Квантовые частицы могут вести себя как частицы, расположенные в одном месте; или они могут действовать как волны, распространяясь по всему пространству или сразу в нескольких местах. Как они выглядят, кажется, зависит от того, как мы их измеряем, и до того, как мы измерим, кажется, что они вообще не имеют определенных свойств, что приводит нас к фундаментальной загадке о природе базовой реальности.

Эта нечеткость приводит к очевидным парадоксам, таким как кошка Шредингера, в которой благодаря неопределенному квантовому процессу кошка остается мертвой и живой одновременно. Но это не все. Квантовые частицы также, кажется, могут мгновенно влиять друг на друга, даже когда они находятся далеко друг от друга. Это действительно сбивающее с толку явление известно как запутанность, или, как сказал Эйнштейн (великий критик квантовой теории), «жуткое действие на расстоянии». Такие квантовые возможности совершенно чужды нам, но они являются основой новых технологий, таких как сверхзащищенная квантовая криптография и сверхмощные квантовые вычисления.

Но что все это значит, никто не знает. Некоторые люди думают, что мы должны просто согласиться с тем, что квантовая физика объясняет материальный мир в терминах, которые мы не можем сопоставить с нашим опытом в более широком «классическом» мире. Другие думают, что должна быть какая-то лучшая, более интуитивная теория, которую нам еще предстоит открыть.

При этом в комнате несколько слонов. Для начала, существует четвертая фундаментальная сила природы, которую пока что квантовая теория не смогла объяснить.Гравитация остается территорией общей теории относительности Эйнштейна, строго неквантовой теории, которая даже не касается частиц. Десятки лет интенсивные попытки подвести гравитацию под квантовый зонтик и таким образом объяснить всю фундаментальную физику в рамках одной «теории всего» ни к чему не привели.

Между тем космологические измерения показывают, что более 95 процентов Вселенной состоит из темной материи и темной энергии, материалов, для которых у нас в настоящее время нет объяснения в рамках стандартной модели, и загадок, таких как степень роли квантовой физики в беспорядке.

0 comments on “Физика для чайников с нуля электричество: Электротехника для чайников |

Добавить комментарий

Ваш адрес email не будет опубликован.