Что такое заземление, или просто о простом / Хабр
Добого времени суток, читатели.
Давно читаю ресурс, хорошая штука. Решил привнести и я немного ясности в нашу жизнь, а именно — в простую, казалось бы, вещь — заземление.
Навеяно статьей, но после прочтения комментариев у меня закрались сомнения — а всем ли понятно о сути заземления? Захотел добавить кое-что от себя, простыми словами, безо всяких ПУЭ. Ведь заземление — это защита, а стало быть — важно.
Итак:
Заземление — 2 вида по функционированию
1.
Электропроводяшие части корпуса оборудования (шкафы, etc.) соединены с нулем. Это, как правильно подсказывают, называется «занулением». Работает таким образом: корпус оборудования соединен с нулем и при попадании фазы на корпус происходит КЗ и вышибает автомат. Никто не пострадал.
2.
Если есть контур заземления, то электропроводящие части корпуса оборудования и etc., к которым может прикоснуться человек (и любой читатель этого топика), соединены с этим контуром. Как работает? Ток не «утекает» и не «впитывается» в землю, не утекает в среднюю точку обмоток трансформатора, с ним мало чего происходит. При пробое на корпус все, в т.ч. и контур здания становится под тем же напряжением, что и корпус. Контур соединен и с землей (той, по которой ходим), а значит, человека не ударит током — в цепи уравнены потенциалы. Все становится под фазой.
Почему не довольствоваться одними лишь автоматами? Да потому, что время срабатывания не равно нулю у любого суперавтомата. Земля действует быстрее любого УЗО!
Про молниезащиту
Немаловажную роль в этом играет заземление (не буду писать слово «грамотно выполненное по всем ГОСТ» — топик рассчитан на простое понимание основы заземления, а не на изучение нормативов). Здесь цепь выглядит по-другому: в облаках скапливается потенциал по отношению к земле и при достижении определенной величины он разрядится (а вот здесь — да, ток уходит в землю, выравнивая потенциалы неба и земли, ибо такая цепь). Через проводящие материалы. Здесь важно, чтобы не через людей и оборудование. Делают молниеотводы, и их подключают к контуру. Толстыми железяками, чтобы уменьшить сопротивление, чтобы максимум тока потекло через наименьшее сопротивление. Но все равно — на протяженные провода и кабели ток наведется — и не мало вольт. Ток с вольтами могут пожечь все. Здесь помогают УЗИПы. Там стоят разрядники, которые при срабатывании на возросшее напряжение/ток замыкают все жилы кабеля на землю.
Такой вот краткий топик основ.
З.Ы. Здесь есть отличные иллюстрации
Явления при стекании тока в землю : Механика и Техника
Цитата:
Это и имелось ввиду мною. Разве импеданс не будет зависеть от длины пути тока (как в формуле для расчета сопротивления проводника)?
Будет естественно.
Цитата:
А релейная защита не должна в таком случае срабатывать?
Только если на подстанции стоит дифавтомат. Если честно, я таковых на силовых подстанциях не встречал, хотя и не работал с ними (подстанциями) особо.

Цитата:
И что касается червяков, соседей и шахтеров — речь идет о шаговом напряжении или еще о каких-то явлениях от которых они охреневают?
О шаговом напряжении.
Цитата:
То есть шаговое напряжение, а точнее распределение потенциалов на поверхности земли зависит именно от падения напряжения на импедансе почвы?
Конечно. Собственно, как и любое напряжение — разница потенциалов двух точек. А потенциалы на поверхности земли вокруг упавшего провода изменяются — можно даже построить эквипотенциальные линии — они будут иметь сложные замкнутые контуры, «выпячиваясь» в сторону направления на подстанцию.
Важно учитывать, что это падение напряжения будет только при условии протекания тока, если тока нет — потенциал везде будет равен потенциалу упавшего провода.
Цитата:
В сетях с изолированной нейтралью замыкание на землю является безопасным пока, стоя на земле, не дотронешься до «здоровой» фазы?
Так точно.

В специальных случаях (не на гражданских объектах), допускается не землить ноль, в частности для того, чтобы сохранить работоспособность комплекса при попадании одной фазы на землю. Но это «не земление» должно быть хорошо обосновано.
P.S. Фактически, заземление нуля подразумевает, что тряхнет в любом случае, если схватиться за фазу, только напряжение будет в раз меньше линейного, если схватиться за фазу, стоя на земле. Заземленный ноль позволяет диагностировать КЗ фазы на землю с помощью относительно простых автоматических выключателей и отключить сеть, а также позволяет применить дифавтоматы для защиты человека и противопожарной.
В случае с изолированной нейтралью можно хвататься за фазу, стоя на земле, без последствий. Однако попадание одной фазы на землю не диагностируется, и схватившийся за другую фазу человек при уже попавшей другой фазе на землю получает полное линейное напряжение. КЗ возможно диагностировать только при попадании двух и более фаз (или нуля и фазы) на землю, дифавтоматы при такой схеме неприменимы.
Конечно, я имею ввиду по диагностированию КЗ на землю случай, когда например фаза падает на стально пол, явно соединенный с нулем, или на корпус прибора. Если фаза падет на почву, то сопротивление почвы в общем случае слишком велико для срабатывания защитного автомата.
Что такое «фаза», «ноль» и «земля», и зачем они нужны.
Сегодня решил попробовать разобраться с тем, что такое «фаза», «ноль» и «земля».Небольшой поиск в Гугле по этому поводу выявил, что в основном люди в интернете отвечают на этот вопрос каждый по-своему, где-то неполно, где-то с ошибками.
Я решил разобраться в этом вопросе досконально, в результате чего появилась эта статья.
Достаточно длинная, но в ней всё объяснено, в том числе, что такое фаза, ноль, земля, как это всё появилось и зачем всё это нужно.
Если очень кратко, то фаза и ноль — для электричества, а земля — только для заземления корпусов электроприборов, во имя спасения жизни человека в случае утечки электрического тока на корпус электроприбора.
Если начать с самого начала: откуда берётся электричество?
Все электростанции построены на одном и том же принципе: если магнит вращать внутри катушки (создавая тем самым периодическое «переменное» магнитное поле), то в катушке возникает «переменный» электрический ток (и, соответственно, «переменное» напряжение).
Этот величайший по своему значению эффект называется в физике «ЭлектроДвижущей Силой индукции», она же «ЭДС индукции», была открыта в середине XIX века.
«Переменное» напряжение — это когда берётся обычное «постоянное» напряжение (как от батарейки), и изгибается по синусу, и оно поэтому то положительное, то отрицательное, то снова положительное, то снова отрицательное.
Напряжение на катушке является «переменным» по своей природе (никто его специально не изгибает) — просто потому что таковы законы физики (электричество из магнитного поля можно получить только тогда, когда магнитное поле «переменное», и поэтому получаемое на катушке напряжение тоже всегда будет «переменным»).

Итак, значит, где-то в дебрях электростанции вращается магнит (для примера — обычный, а в реальности — «электромагнит»), называемый «ротором», а вокруг него, на «статоре», закреплены три катушки (равномерно «размазаны» по поверхности статора).
Вращается этот магнит, не человеком, не рабом, и не огромным сказочным големом на цепи, а, например, потоком воды на мощной ГидроЭлектроСтанции (на рисунке магнит стоит на оси турбины в «Генераторе»).
Поскольку в таком случае (случае вращения магнита на роторе) магнитный поток, проходящий через катушки (неподвижные на статоре), периодически меняется во времени, то в катушках на статоре создаётся «переменное» напряжение.Такая схема называется «трёхфазным генератором»: потому что есть три электрических цепи, в каждой из которых (одинаковое) напряжение сдвинуто по фазе.

(на рисунке выше «N-S» — это обозначение магнита: «N» — северный полюс магнита, «S» — южный; также на этом рисунке вы видите те самые три катушки, которые для упрощения понимания маленькие и стоят отдельно друг от друга, но в реальности они по ширине занимают треть окружности и плотно прилегают друг к другу на кольце статора, так как в таком случае получается больший КПД генератора электроэнергии) Можно было бы с одной такой катушки оба конца проводки просто взять и вести к дому, а там от них чайник запитать.
Но можно сэкономить на проводах: зачем тащить в дом два провода, если можно один конец катушки просто тут же заземлить (воткнуть в землю), а от второго конца вести провод в дом (этот провод назовём «фазой»).
В доме этот провод подсоединяется, например, к одному штырьку вилки чайника, а другой штырёк вилки чайника — заземляется (грубо говоря, просто втыкается в землю).
Получим то же самое электричество: одна дырка в розетке будет называться «фазой», а вторая дырка в розетке будет называться «землёй».

Теперь, раз уж у нас три катушки, сделаем так: скажем, «левые» концы катушек соединим вместе и прямо тут же заземлим (воткнём в землю).
А оставшиеся три провода (получается, это будут «правые» концы катушек) по отдельности потянем к потребителю.
Вот мы и получили «трёхфазный ток», идущий от генератора «трёхфазного тока».
Это «трёхфазное» напряжение идёт по проводам Линии ЭлектроПередач (ЛЭП) к нам во двор, в дворовую подстанцию (домик такой стоит, рядом с детской площадкой, со знаком «осторожно, высокое напряжение»).
И не только «к нам во двор» — по всей огромной России тянули наши предки эти ЛЭПы во времена ударных пятилеток коммунизма (а это огого какая гигантская работа: тянули электричество, прокладывали дороги, осушали болота, заводы строили по всей стране, поднимали целину — это не в офисах под кондиционерами сидеть).