Микросхемы преобразователи напряжения схемы: Обзор микросхем для импульсных повышающе-понижающих преобразователей напряжения с одной индуктивностью — Компоненты и технологии

Обзор микросхем для импульсных повышающе-понижающих преобразователей напряжения с одной индуктивностью - Компоненты и технологии

При создании стабилизированных источников питания для аппаратуры
с питанием от батарей очень часто
встречаются ситуации, когда выходное напряжение проектируемого источника может быть
как больше, так и меньше входного напряжения. Например: разрабатывается стабилизированный преобразователь напряжения для
питания цифровых устройств с выходным напряжением 3 В, который должен работать от
литиевых батарей. Такой преобразователь надо рассчитывать на диапазон входных напряжений примерно от 2 до 3,7 В [1]. Таким образом, в начале жизненного цикла батареи
преобразователь должен будет работать как
понижающий, а после уменьшения напряжения батареи ниже 3 В— как повышающий.

В этой статье будет рассмотрен относительно недавно появившийся и бурно развивающийся класс микросхем, предназначенный
для построения повышающе-понижающих
преобразователей напряжения с одной индуктивностью. В таких преобразователях топология изменяется автоматически путем изменения алгоритма работы силовых ключей.

Существуют различные способы построения повышающе-понижающих преобразователей. Очевидный способ — это последовательное включение повышающего и понижающего преобразователей. При этом выходное
напряжение первого преобразователя должно лежать за пределами изменения напряжения на входе, а требуемое выходное напряжение будет формироваться на выходе второго
преобразователя. Очевидными же недостатками такой схемы являются сложность, большое количество деталей (в том числе два контроллера), высокая стоимость и пониженный
КПД. Кроме того, при последовательном соединении импульсных стабилизаторов необходимо принимать меры по исключению
прохождения сквозных токов через два включенных основных элемента, то есть необходимо определенным образом синхронизировать работу двух стабилизаторов [2].

Другая разновидность повышающе-понижающих преобразователей — это преобразователи с топологией SEPIC (Single Ended
Primary Inductance Converter). Упрощенная
схема такого преобразователя показана на

рис. 1. Эти преобразователи распространены
достаточно широко, в последнее время появляется большое количество литературы по
их расчету и применению. Для такой схемы
необходим только один контроллер. Но, как
видно на рисунке, в топологии SEPIC используются две индуктивности, что ведет к увеличению габаритов и стоимости устройства.
Эти индуктивности могут быть намного
больше и дороже, чем используемые в схеме
полупроводниковые компоненты.

Рис. 1. Упрощенная схема преобразователя SEPIC

В настоящее время благодаря прогрессу
в области развития полупроводниковых технологий появилась возможность разместить
на одном небольшом кристалле несколько
силовых ключей с достаточно сложной схемой управления. Такая микросхема может автоматически определять знак разности между выходным и входным напряжениями
и в соответствии с ним работать или как повышающий, или как понижающий преобразователь. Для понимания принципа работы
таких устройств рассмотрим по отдельности
работу повышающего и понижающего преобразователей.

Рис. 2. Упрощенная схема повышающего (boost)
преобразователя

На рис. 2 показана упрощенная схема повышающего (boost) преобразователя. Когда
ключ Sw замкнут, через индуктивность L1 течет ток от источника питания Vin, в ней запасается энергия. Диод D1 отключает выход схемы от Sw, и выходное напряжение поддерживается за счет заряда, накопленного
в выходном конденсаторе Cout. Когда ключ
Sw размыкается, ток через L1 продолжает
течь, так как в силу фундаментальных
свойств индуктивности он не может измениться мгновенно. Но теперь этот ток течет
через открывшийся диод D1 и заряжает конденсатор Cout. Для уменьшения потерь из-за
падения напряжения на диоде D1 вместо последнего можно использовать мощный полевой транзистор (ПТ), открывая и закрывая
его в противофазе с ключом Sw.

Обратим внимание на то, что правый по
схеме вывод индуктивности подключен к точке соединения двух ключей: Sw и D1. При этом
один из ключей подключает индуктивность
к «земле», а второй — к выходу стабилизатора.

Рис. 3. Упрощенная схема понижающего (buck)
преобразователя

В понижающем (buck) преобразователе, упрощенная схема которого показана на рис. 3,
также есть два ключевых элемента — транзистор и диод, причем диод тоже можно заменить полевым транзистором (так называемое
синхронное выпрямление). Когда ключ Sw замкнут, ток через него и индуктивность L1 течет в нагрузку, подключенную к точке Vout,
а также заряжает выходной конденсатор Cout.
Когда Sw размыкается, ток через L1 не может
измениться мгновенно, и, следовательно, он
продолжает течь через нагрузку и диод D1.

Теперь обратим внимание на то, что в этой
схеме левый вывод индуктивности, аналогично, подключен к точке соединения двух
ключей: Sw и D1. При этом один из ключей
подключает индуктивность к «земле», а второй — к входу стабилизатора.

А теперь рассмотрим упрощенную схему
силовой части повышающе-понижающего
преобразователя с одной индуктивностью
LM3668 фирмы National Semiconductor [3],
показанную на рис. 4.

Рис. 4. Упрощенная схема силовой части
повышающе-понижающего преобразователя
с одной индуктивностью

Очевидно, что если зафиксировать состояние двух ключей из четырех и переключать
два оставшихся, то мы получим или повышающий, или понижающий преобразователь. В таблице 1 показаны состояния ключей для обоих режимов.

Таблица 1. Состояния ключей в разных режимах

Режим Всегда замкнут Всегда разомкнут Переключаются
Понижающий Ключ P2 Ключ N2 Ключи P1 и N1
Повышающий Ключ P1 Ключ N1 Ключи N2 и P2

Когда входное напряжение преобразователя больше выходного, ключ P2 всегда замкнут, N2 всегда разомкнут, а ключи P1 и N1
управляют выходным напряжением. Этот режим показан на рис. 5.

Рис. 5. Упрощенная схема работы LM3668

в понижающем режиме

Если же входное напряжение преобразователя меньше выходного, то ключ P1 всегда замкнут, N1 всегда разомкнут, а ключи N2 и P2
управляют выходным напряжением. Работа
схемы в этом режиме показана на рис. 6.

Рис. 6. Упрощенная схема работы LM3668
в повышающем режиме

Переключения между повышающим и понижающим режимом происходят без пауз,
с минимальными переходными процессами. На рис. 7 показаны временные диаграммы таких переключений для случая, когда
устройство работает с широтно-импульсной модуляцией, входное напряжение равно 3,05 В, выходное напряжение равно 3,0 В
и ток нагрузки скачкообразно изменяется
от 0 до 500 мА [3].

Рис. 7. Переходные процессы в преобразователе на LM3668 между повышением и понижением напряжения
при скачкообразном изменении тока нагрузки

В последнее время ведущие производители полупроводниковых компонентов уделяют большое внимание повышающе-понижающим преобразователям с одной индуктивностью. Это вызвано не только малыми
габаритами и низкой стоимостью таких устройств, но и их высоким КПД. Так, например, фирма Linear Technology утверждает [4],

что решения на базе ее нового преобразователя LTC3534 в большинстве случаев позволяют продлить срок службы батарей на 25%
по сравнению с решениями на основе топологии SEPIC.

Сегодня (статья написана в марте 2009 года) наибольшее количество разнообразных
моделей микросхем для повышающе-понижающих преобразователей с одной индуктивностью предлагает Linear Technology (таблица 2). На сайте фирмы также представлено
множество руководящих материалов по разным областям применения таких преобразователей, в том числе достаточно оригинальных. Например, в [5] предлагается использовать устройство LTC3531 для получения
чистого напряжения +5 В из зашумленного
напряжения питания шины USB. Поэтому мы
начнем знакомство с ассортиментом повышающе-понижающих преобразователей, выпускаемых промышленностью, с изделий
этой фирмы.

Таблица 2. Основные характеристики микросхем для построения повышающе»понижающих преобразователей

Тип Фирма Vin min, В Vin max, В Vout min, В Vout max, В Vout fixed, В Iout max, A Fsw, кГц Макс. КПД, % Внешняя
синхронизация
Диапазон рабочих
температур, °C
Корпус Площадь
корпуса, мм
Примерная цена,
$ за 1000 шт.
Особенности Примечание
LT3433 LT 4,0 60,0 3,3 20 0,45 200 82 Нет –40…+125 16TSSOP 5×6 3,75 Burst Mode, Soft Start Преобразователь
LTC3440 LT 2,5 5,5 2,5 5,5 0,6 300–2000 96 Есть 0…+70 10DFN, 10MSOP 3×3; 3×5 2,84 Output Disconnect, Burst Mode Преобразователь
LTC3441 LT 2,4 5,5 2,4 5,25 1,2 1000 95 Есть 0…+70 12DFN 4×3 3,55 Output Disconnect, Burst Mode,
Soft Start
Преобразователь
LTC3442 LT 2,4 5,5 2,4 5,25 1,2 300–2000 95 Нет 0…+85 12DFN 4×3 3,95 Output Disconnect, Burst Mode,
Soft Start
Преобразователь
LTC3443 LT 2,4 5,5 2,4 5,25 1,2 600 96 Есть 0…+70 12DFN 4×3 3,55 Output Disconnect, Burst Mode Преобразователь
LTC3444 LT 2,75 5,5 0,5 5 0,4 1500 93 Нет 0…+85 8DFN 3×3 2,4 Output Disconnect, Soft Start Преобразователь
LTC3520 LT 2,2 5,5 2,2 5,25 1 100–2000 95 Нет 0…+85 24QFN 4×4 3,5 Burst Mode, Soft Start,
Sequencing, LDO
Преобразователь,
+понижающий
LTC3522 LT 2,4 5,5 2,2 5,25 0,4 1000 95 Нет 0…+85 16DFN 3×3 2,5 Burst Mode,
Power Good, Soft Start
Преобразователь,
+понижающий
LTC3530 LT 1,8 5,5 1,8 5,25 0,6 300–2000 96 Нет 0…+85 10DFN,
10MSOP
3×3; 3×5 2,75 Output Disconnect, Burst Mode,
Soft Start
Преобразователь
LTC3531 LT 1,8 5,5 2 5 3,3; 3,0 0,2 ? 90 Нет 0…+70 6TSOT, 8DFN 3×3; 3×3 2 Output Disconnect, Burst Mode Преобразователь
LTC3532 LT 2,4 5,5 2,4 5,25 0,3 300–2000 95 Нет 0…+85 10DFN,
10MSOP
3×3; 3×5 2,35 Output Disconnect, Burst Mode,
Soft Start
Преобразователь
LTC3533 LT 1,8 5,5 1,8 5,25 2 300–2000 96 Нет 0…+85 14DFN 3×4 3,55 Output Disconnect, Soft Start,
Burst Mode
Преобразователь
LTC3534 LT 2,4 7 1,8 7 0,5 1000 94 Нет 0…+85 16DFN, 16GN 5×3; 5×6 3,15 Burst Mode, Output Disconnect,
Soft Start
Преобразователь
LTC3538 LT 2,4 5,5 1,8 5,25 0,8 1000 95 Нет 0…+85 8DFN 2×3 2,6 Output Disconnect, Burst Mode,
Soft Start
Преобразователь
LTC3780 LT 4 36 0,8 30 5 200–400 98 Есть –40…+125 24SSOP,
32QFN
8×8; 5×5 5,35 Burst Mode, Output Disconnect,
PLL, Soft Start
Контроллер
LTC3785 LT 2,7 10 2,7 10 10 100–1000 96 Нет 0…+85 24QFN 4×4 3,56 Burst Mode, No Rsense,
Output Disconnect, Soft Start
Контроллер
LTC3785-1 LT 2,7 10 2,7 10 10 100–1000 96 Нет 0…+85 24QFN 4×4 3,56 No Rsense, Output Disconnect,
Soft Start, Burst Mode, Power Good
Контроллер
LTM4605 LT 4,5 20 0,8 16 5 (12 buck) 200–400 98 Есть –40…+85 LGA 15×15 20,68 Power Good, PLL Микромодуль
LTM4607 LT 4,5 36 0,8 24 5 (10 buck) 200–400 98 Есть –40…+85 LGA 15×15 21,55 Power Good, PLL Микромодуль
LTM4609 LT 4,5 36 0,8 34 4 (10 buck) 200–400 98 Есть –40…+85 LGA 15×15 24,8   Микромодуль
 
MAX8625 MD 2,5 5,5 1,25 4 3,3 0,8 1000 92   –40…+85 14TDFN 3×3 2,45 Output Disconnect Преобразователь
 
LM3668 NS 2,5 5,5 2,8/3,0/4,5 3,3/3,4/5,0   1,0 1600–2700   Есть –40…+85 12LLP 3×3 2,25 Automatic PFM»PWM
Mode or Forced PWM Mode
Преобразователь
LM5118 NS 3,0 75,0 1,23 70 ? 50–600 95 Есть –40…+125 20TSSOP 6,4×6,5 2,92 Programmable soft»start Контроллер
 
TPS63000 TI 1,8 5,5 1,2 5,5 1,2 1500 96 Есть –40…+85 10QFN 3×3 2,15 Output Disconnect Преобразователь
TPS63001 TI 1,8 5,5 3,3 1,2 1500 96 Есть –40…+85 10QFN 3×3 2,15 Output Disconnect Преобразователь
TPS63002 TI 1,8 5,5 5 1,2 1500 96 Есть –40…+85 10QFN 3×3 2,15 Output Disconnect Преобразователь
TPS63010 TI 2 5,5 1,2 5,5   1,2 2400 96 Есть –40…+85 20WCSP 2,14×1,93 1,5 Output Disconnect Преобразователь
TPS63011 TI 2 5,5 2,8/3,3 1,2 2400 96 Есть –40…+85 20WCSP 2,14×1,93 1,85 Output Disconnect Преобразователь
TPS63012 TI 2 5,5 2,9/3,4 1,2 2400 96 Есть –40…+85 20WCSP 2,14×1,93 1,85 Output Disconnect Преобразователь
TPS63030 TI 1,8 5,5 1,2 5,5 0,8 2200–260 96 Есть –40…+85 10QFN 2,5×2,5 1,45 Output Disconnect Преобразователь
TPS63031 TI 1,8 5,5 3,3 0,8 2200–260 96 Есть –40…+85 10QFN 2,5×2,5 1,45 Output Disconnect Преобразователь
TPS55065-Q1 TI 1,5 40 5 0,5 440 82 Нет –40…+125 20HTSSOP 6,4×6,5 1,55 Управление временем нарастания Преобразователь
TPIC74100-Q1 TI 1,5 40 5 1 440 82 Нет –40…+125 20HTSSOP 6,4×6,5 1,7 Управление временем нарастания Преобразователь
Примечание. В таблице приняты следующие обозначения:
преобразователь —микросхема со встроенными силовыми ключами; контроллер — микросхема без встроенных силовых ключей;
микромодуль — устройство, которое содержит в одном корпусе микросхему контроллера, силовые ключи и сопутствующие компоненты;
LT — Linear Technology; MD — Maxim»Dallas; NS — National Semiconductor; TI — Texas Instruments.
Цены взяты с сайтов производителей и указаны на время написания статьи, март 2009 года.

Большинство микросхем повышающе-понижающих преобразователей, выпускаемых
Linear Technology, содержат встроенные силовые ключи. Это позволяет создавать на их
основе источники питания с исключительно
малыми габаритами. На рис. 8 приведена рекламная фотография из [6], на которой изображен источник питания с тремя выходными напряжениями на микросхеме LTC3520.
Эта микросхема, так же как и похожая на нее
LTC3522, помимо повышающе-понижающего преобразователя, содержит понижающий
импульсный преобразователь и линейный
стабилизатор с низким падением напряжения (LDO). Собранный на ней источник питается от литий-ионной батареи и формирует выходные напряжения 3,3, 1,8 и 1,5 В.

Рис. 8. Внешний вид малогабаритного источника
питания с тремя выходами на микросхеме LTC3520

У преобразователей со встроенными силовыми ключами максимальные токи нагрузки составляют порядка 1 А или менее.
Для получения больших токов можно использовать контроллеры с внешними силовыми ключами на дискретных транзисторах. Фирма Linear Tehcnology предлагает три
модели контроллеров повышающе-понижающих преобразователей, рассчитанных
на выходные токи 5 А (LTC3780) или 10 А
(LTC3785, LTC3785-1). Последние могут работать на частоте до 1 МГц, что позволяет
создавать на их основе источники питания
с особо малыми габаритами.

И, с точки зрения получения максимальных
выходных токов, промежуточное положение
между преобразователями и контроллерами
у фирмы Linear Tehcnology занимают микромодули (μModule). В относительно небольших
корпусах LGA размером 15×15×2,8 мм смонтированы микросхема контроллера, силовые
ключи и сопутствующие компоненты. На их
основе путем добавления индуктивностей
и небольшого числа внешних компонентов
можно разрабатывать малогабаритные и мощные высококачественные источники питания.

В качестве особенностей, присущих повышающе-понижающим преобразователям от
Linear Tehcnology, можно упомянуть:

  • Burst Mode — пульсирующий режим.
    Он предназначен для повышения КПД
    при малых токах нагрузки. В данном режиме прекращается широтно-импульсная модуляция и стабилизатор начинает формировать редкие пакеты импульсов. При этом
    значительно сокращаются потери на переключение. Недостатком пульсирующего режима является увеличение пульсаций выходного напряжения. Во многих моделях
    преобразователей для применений, чувствительных к помехам, предусмотрено принудительное отключение пульсирующего
    режима. Временные диаграммы пульсирующего режима показаны на рис. 9 [7].
  • Output Disconnect — отключение выхода
    микросхемы в режиме пониженного энергопотребления (Shutdown).
  • Плавный старт (Soft Start).

Рис. 9. Временные диаграммы пульсирующего режима

К недостаткам рассмотренных преобразователей от Linear Technology можно отнести
следующее. Во-первых, у большинства микросхем нет версий, способных полноценно
работать в индустриальном диапазоне температур, от –40 до +85 °C. Вместо него фирма
предлагает так называемый расширенный
(extended) температурный диапазон. Это означает, что гарантируется работа с заявленными параметрами в диапазоне температур
от 0 до +85 °C (или даже до +70 °C). А на параметры при отрицательных температурах
следует полагаться исходя из свойств проекта и статистических данных (Specifications over
the –40 до 85 °C operating temperature range are
assured by design, characterization and correlation
with statistical process controls [например, 7]).
И, во-вторых, цены на микросхемы от Linear
Technology относительно высоки.

Другой авторитетный производитель микросхем повышающе-понижающих преобразователей — это фирма Texas Instruments (таблица 2). Ассортимент ее изделий несколько
меньше, среди них нет контроллеров и модулей, которые позволяют получать выходные
токи до нескольких ампер. Но по параметрам
ее микросхемы не уступают своим аналогам
от Linear Technology. Заметим, что все рассматриваемые микросхемы от Texas Instruments
могут работать в индустриальном диапазоне
температур, а некоторые даже в автомобильном, от –40 до +125 °C. Микросхемы с расширенным диапазоном входных напряжений,
предназначенные для автомобильных источников питания, TPS55065-Q1 и TPIC74100-Q1,
имеют такие особенности, как регулировка
времени нарастания управляющих импульсов и частотная модуляция, позволяющие значительно уменьшить уровень помех. У всех
остальных рассматриваемых преобразователей от Texas Instruments для улучшения электромагнитной совместимости предусмотрена
возможность внешней синхронизации.

У микросхем от Texas Instruments для работы при малой нагрузке предусмотрен переход в режим, подобный пульсирующему
режиму у Linear Technology, а также возможно его принудительное отключение.

Еще одна интересная особенность есть
у микросхем с фиксированным выходным
напряжением — TPS63011 и TPS63012.
Путем подачи специального управляющего
сигнала можно переключать значение выходного напряжения между 2,8 и 3,3 В и 2,9 и 3,4 В
соответственно.

Кроме Linear Technology и Texas Instruments,
несколько моделей микросхем для построения повышающе-понижающих преобразователей напряжения с одной индуктивностью
выпускают фирмы National Semiconductor
и Maxim-Dallas. Основные параметры их изделий также приведены в таблице 2.

Литература

  1. Литиевые батарейки.
    www.powerinfo.ru/battery-li.php
  2. Николайчук О. Повышающе-понижающий импульсный стабилизатор напряжения // Схемотехника. 2001. № 10.
  3. LM3668. 1A, High Efficiency Dual Mode Single Inductor
    Buck-Boost DC/DC Converter. www.national.com
  4. 7V, 500mA Synchronous Buck-Boost DC/DC
    Converter Provides Extended Battery Run Time in
    Handheld Applications. www.linear.com
  5. Wells E. Tiny Buck-Boost Converter for Low Current
    Applications. www.linear.com
  6. Canield J. Complete 3-Rail Power Supply in a 4R4mm
    QFN Package. www.linear.com
  7. LTC3520. Synchronous 1A Buck-Boost and 600mA
    Buck Converters. www.linear.com

Подборка схем импульсных преобразователей напряжения DC-DC

Преобразователь DC-DC это устройство, призванное из напряжения одного уровня получить одно или несколько напряжений другого уровня. Иногда это бывает совершенно необходимо в нашей практике, например если мы конструируем устройство с низковольтным питанием от Li-Ion аккумулятора а в схеме этого устройства есть операционные усилители, требующие питания от двухполярного источника ∓15В. Или другой пример. Предположим нам нужно питать устройство на микроконтроллере с номинальным напряжением 5 вольт от литий ионного аккумулятора. В этом и подобных случаях на разработчику приходится использовать преобразователи постоянного напряжения.

В этой статье речь пойдет об импульсных преобразователях, имеющих очевидные преимущества, главное из которых — высокий КПД. Импульсные преобразователи нпаряжения — это очень широкий класс устройств. Они могут быть стабилизированные или нестабилизированные, с гальванической развязкой входа от выхода или без таковой. также преобразователи можно разделить на повышающие, понижающие и инвертирующие (например преобразователь, который, питаясь от напряжения +5В дает на выходе напряжение -5В)

Сейчас производители электронных компонентов выпускают большой ряд специальных микросхем для использования в приложениях DC-DC. Преобразователи, собранные на таких чипах имеют стабильные характеристики и высокую надежность. тем не менее импульсный преобразователь можно собрать и на обычных дискретных транзисторах. В этой статье приводятся несколько очень простых схем, которые можно использовать для решения несложных конструкторских задач.

Очень распространенная микросхема MAX232 служит для преобразования интерфейса UART в сигналы стандарта интерфейса RS232. В составе этой микросхемы уже есть встроенные преобразователи напряжения, которые мы можем использовать в своих корыстных целях.

Схема 1. Необычное использование микросхемы MAX232

схема двухполярного преобразователя DC-DC на микросхеме MAX232

такой преобразователь может обеспечить напряжение ∓9В при небольшом токе 5..8 мА. Такой преобразователь можно использовать для питания одного — двух операционных усилителей. основное преимущество — это простота. Целесообразно применять эту схему если что-то нужно сделать быстро, а под рукой нет ничего кроме микросхемы MAX232

Схема 2. Простой нестабилизированный преобразователь на двух транзисторах

Трансформатор T1 — самодельный. Его можно намотать на ферритовом кольце из материала 2000НМ размером 10х6х4. первичная обмотка состоит из 20 витков с отводом от середины. Вторичная — 140 витков также с отводом от середины. Диаметр провода — не менее 0.2 мм. Транзисторы можно заменить на BC546 или другие. если к преобразователю не подключена нагрузка, он практически не потребляет ток от источника питания. В этом одно из его преимуществ (кроме простоты).

Схема 3. Простой нестабилизированный преобразователь — мультивибратор

Следующая практическая схема — это двухтактный преобразователь на четырех транзисторах. сердцем схемы является обычный мультивибратор на двух транзисторах VT1 и VT2

Драйверами для обмоток импульсного трансформатора служат транзисторы VT3 и VT4. Ко вторичной обмотке импульсного трансформатора подключен однополупериодный выпрямитель на диоде VD3. Пульсации выходного напряжения сглаживаются конденсатором C3. Выходное напряжение этого преобразователя можно менять в широких пределах изменением числа витков вторичной обмотки трансформатора.

Схема 4. Стабилизированный преобразователь на двух транзисторах

Интересная схема, позволяющая питать от низковольтного источника (например от одного щелочного элемента 1. 5 В.) например, небольшое устройство на микроконтроллере, требующем питания 5 В. Схема пытается поддерживать на выходе постоянное напряжение около 4.7 В. Сигнал обратной связи снимается с резистора R2 и подается на базу первого транзистора VT1. трансформатор Т1 можно намотать на ферритовом кольце диаметром 7 мм. Обе обмотки одинаковые, по 20 витков провода диаметром 0.3 мм. Можно намотать обмотки в два провода. При подключении необходимо учитывать начало и конец обмоток. Если ошибиться, то преобразователь не заработает. В этом случае поменяйте местам провода одной из обмоток. Катушка L1 — любой дроссель с индуктивностью в районе 10 мкГн. Дроссель можно использовать промышленный или намотать самому. Измерить индуктивность можно с помощью вот этого недорогого прибора. Дроссель совместно с конденсатором C3 сглаживает пульсации выходного напряжения.

Схема 4. Стабилизированный 3 В. → 12 В. DC-DC преобразователь на MAX734

Этот довольно качественный и удобный преобразователь построен на основе специализированной микросхемы от компании MAXIM. Можно применить для получения напряжения +12 вольт в устройстве, работающем от единственного источника питания с напряжением от 3 до 5 вольт. Дроссель L1 можно намотать на небольшом ферритовом кольце или на маленьком ферритовом стержне. Индуктивность катушек удобно измерять вот этим приборчиком. Схема обеспечивает на выходе ток 120 мА. Микросхему MAX734 можно заказать здесь

Схема 5. Очень простой преобразователь на специализированном чипе

Еще один DC-DC преобразователь с использованием микросхемы от MAXIM. Главное преимущество — исключительная простота и неприхотливость этой схемы. В устройстве всего 4 детали, включая микросхему МАХ631. Главное и очевидное предназначение такого преобразователя — питание схемы, рассчитанной на 5 В. от источника с более низким напряжением 3.2 вольта. Например от одного Li-Ion аккумулятора.

Схема 6. Стабилизированный DC-DC преобразователь с двухполярным выходом ∓12 В

Эта очень полезная схема может пригодиться если в вашей конструкции есть только один источник питания 4. .5 вольт, но вам необходимо использовать компоненты, требующие двухполярного питания. например операционные усилители (ОУ). Сердцем преобразователя является микросхема LM2587-12. Импульсный трансформатор можно реализовать на ферритовом кольце или на броневом сердечнике. Индуктивность первичной обмотки должна быть около 22 мкГ (измерить можно этим прибором), а отношение чисел витков первичной обмотки к вторичным = 1:2.5. То есть, например, индуктивность 22 мкГ на сердечнике который есть у вас в наличии получается при числе витков 50. Тогда число витков каждой из вторичных обмоток буде 2.5 * 50 = 125

Готовый DC-DC преобразователь на LM2587-12 можно заказать по ссылке

Схема 7. Стабилизированный DC-DC преобразователь на два разных напряжения

Если в вашей конструкции есть цифровые микросхемы с напряжением питания как 5 так и 3.3 В то может пригодиться этот преобразователь. Схема работает от напряжения в районе 3 В и позволяет получить на выходе напряжения 3. 3 и 5 В. Ток нагрузки по каждому выходу может достигать 150 мА. Как видим из схемы, в устройстве применяются 2 микросхемы MCP1252 от компании MICROCHIP

Схема 8. DC-DC преобразователь на два разных напряжения на микросхемах компании YCL Elektronics

DC-DC преобразователи на разные напряжения можно собрать на чипах, которые выпускает компания YCL Elektronics. В данном случает это микросхемы DC-102R в канале минус 5 В и DC-203R в канале +12 В. По выходу -5 В ток нагрузки может достигать 360 мА. По выходу +12 В ток меньше — 150 мА.

Схема 9. DC-DC повышающий преобразователь на MAX1724EZK33

Этот DC-DC преобразователь на микросхеме MAX1724EZK33 от фирмы MAXIM может работать от очень низкого входного напряжения 1.2 В. Например от одного никель — кадмиевого аккумулятора. На выходе получаем стабилизированное напряжение +3.3 В при токе до 150 мА. Работоспособность сохраняется при снижении входного напряжения примерно до 0. 9 В. Если вы ходите получить на выходе напряжение +5В то используйте аналогичную микросхему MAX1724EZK50

Схема 10. Импульсный регулируемый стабилизатор на напряжение +2.8 — +5 В

Это понижающий импульсный стабилизатор. работает он от входного напряжения 12.6 В (стандартное напряжение автомобильного аккумулятора). на выходе получаем стабилизированное напряжение от 2.8 до 5 вольт при токе до 500 мА. Стабилизатор собран на микросхеме TL497. Эту недорогую но полезную микросхему можно заказать в Китае. Очевидно, что главное назначение такого стабилизатора — обеспечение питания и зарядки пятивольтовых гаджетов от бортовой сети автомобиля напряжением 12.6 в. Подстроечным резистором R3 можно регулировать выходное напряжение а от номинала резистора R1 зависит порог срабатывания внутренней сземы ограничения тока короткого замыкания. Ток КЗ задается формулой:
Iкз(А)= 0,5/R1(Ом)

Схема 11. Импульсный инвертор постоянного напряжения

Простейшая схема, которую вы можете использовать если в вашей конструкции кроме напряжения питания +5 В нужно еще отрицательное напряжение -5 В. Собрано устройство на микросхеме ICL7660. Ток по цепи -5 В может достигать 20 мА

Схема 12. Нестабилизированный двухступенчатый DC-DC преобразователь напряжения

Схема 13. Импульсный стабилизированный повышающий DC-DC преобразователь напряжения

Это стандартная схема включения MAX1674, взятая из даташита микросхемы. Преобразователь может работать от низкого напряжения питания — вплоть до 1 вольта. На выходе имеем стабильное напряжение +5В при токе до 200 мА. КПД преобразователя составляет 94%. Купить микросхему можно недорого в Китае

принципы работы и уникальные решения Maxim Integrated

17 декабря 2019

Александр Русу (г. Одесса)

Общий КПД импульсного преобразователя в электронных приборах малой мощности с автономным питанием снижается в основном за счет тока утечки схемы управления. Свести этот ток практически к нулю помогут интегральные DC/DC из новой серии nanoPower производства Maxim Integrated.

На сегодняшний день найти или изготовить самостоятельно высококачественный преобразователь постоянного напряжения мощностью от нескольких ватт до нескольких киловатт не представляет особой сложности. Однако питание оборудования, потребляемая мощность которого измеряется микроваттами, уже является серьезной технической проблемой, ведь при таких уровнях потребления увеличивается относительная величина «накладных расходов» в виде затрат энергии на работу схемы управления, что приводит к ощутимому снижению КПД преобразователя в целом. Кроме этого, практически во всех современных устройствах, питающихся от батарей, активно используются энергосберегающие режимы, в которых все неиспользуемые в данный момент системы отключаются от источника энергии. А это еще больше ужесточает требования к узлам питания, ведь теперь они должны иметь еще и минимально возможный ток утечки в выключенном состоянии.

При этом количество устройств с батарейным питанием с каждым годом постоянно увеличивается, а требования к ним ужесточаются. Поэтому большинство ведущих производителей электронных компонентов регулярно предлагают инженерам новые решения в этой области.

Не осталась в стороне и компания Maxim Integrated, которая не так давно представила линейку микросхем nanoPower, отличающихся сверхмалым энергопотреблением. На сегодняшний день в этой линейке присутствуют малопотребляющие операционные усилители, компараторы, датчики температуры и другие узлы, активно использующиеся в самых разнообразных радиотехнических устройствах. Конечно же, Maxim Integrated не оставил без внимания и сектор DC/DC преобразователей напряжения, разработав в рамках данного направления целые семейства специализированных микросхем с ультрамалым энергопотреблением.

Сравнение линейного и импульсного способов преобразования

Самой популярной схемой преобразователей постоянного напряжения можно назвать понижающую, ведь в реальной аппаратуре задача уменьшения напряжения возникает намного чаще, чем увеличения или изменения его полярности. Но уменьшить входное напряжение можно двумя способами: импульсным и линейным. Поскольку каждый из способов имеет свои достоинства и недостатки, а значит – и свои области применения, то разработчику необходимо их изучить.

Фундаментальную разницу между линейным и импульсным способами уменьшения напряжения можно понять из рисунка 1. Линейный стабилизатор работает по принципу резистивного делителя напряжения. Его регулирующий элемент (транзистор VT1) функционирует в активном режиме, обеспечивая такое падение напряжения между выводами коллектора и эмиттера, чтобы выходное напряжение VOUT на нагрузке RLOAD находилось в заданных пределах. Поскольку через транзистор VT1 протекает весь ток нагрузки IOUT, КПД данной схемы будет напрямую зависеть от разницы напряжений между входом и выходом (формула 1):

$$\eta =\frac{P_{OUT}}{P_{IN}}=\frac{I_{OUT}\times V_{OUT}}{I_{OUT}\times V_{IN}}=\frac{V_{OUT}}{V_{IN}},\qquad{\mathrm{(}}{1}{\mathrm{)}}$$

где РIN и POUT – соответственно, входная и выходная мощности преобразователя.

Рис. 1. Сравнение линейного и импульсного способов уменьшения напряжения

И теперь становится очевидным главный недостаток линейных стабилизаторов – чем больше разница напряжений между входом и выходом, тем меньше его КПД, причем практически вся «лишняя» мощность выделяется на регулирующем элементе VT1, что требует установки его на радиатор, размеры которого порой превосходят размеры всех остальных элементов устройства.

До недавнего времени линейные стабилизаторы строились на основе биполярных кремниевых транзисторов, у большинства из которых падение напряжения между коллектором и эмиттером физически не могло быть меньше 1 В. Для стабилизаторов с относительно высоким выходным напряжением (более 5 B) такое падение напряжения было еще вполне приемлемым, однако в современных микроконтроллерных устройствах напряжение питания которых может быть меньше 1 В, использование биполярных транзисторов в таком режиме недопустимо.

В свое время это привело к созданию линейных стабилизаторов, использующих в качестве регулирующих элементов полевые транзисторы, которые, как известно, лишены такого ограничения. Эти стабилизаторы в русскоязычной литературе получили название «стабилизаторы с низким падением напряжения», или LDO-стабилизаторы/регуляторы (Low-Drop Out Regulator). Поскольку при малой разнице напряжений между входом и выходом КПД LDO-стабилизаторов не уступает импульсным преобразователям, а их масса, габариты и уровень электромагнитных помех при этом намного меньше, они до сих пор активно используются в современной технике.

В импульсных преобразователях активный режим полупроводниковых компонентов не используется принципиально. В рассматриваемом примере (рисунок 1) транзистор VT1 работает в ключевом режиме, периодически подключая нагрузку RLOAD к источнику питания на время tON. Это означает, что выделение мощности на силовых полупроводниковых компонентах теоретически может быть сколько угодно малым и не зависит от соотношения напряжений между входом и выходом, что является главным преимуществом данных схем. К сожалению, от такого способа преобразования появляется и главный недостаток – пульсирующий характер выходного напряжения с высоким содержанием высокочастотных гармоник.

Поскольку использовать подобное напряжение для питания потребителей в большинстве случаев не представляется возможным, то на выходе импульсных преобразователей необходимо устанавливать фильтры, уменьшающие пульсации выходного напряжения. Причем в этих фильтрах должны обязательно использоваться реактивные элементы, способные накапливать энергию (активный фильтр на полупроводниковых транзисторах для этой цели не подойдет). А это означает, что импульсный преобразователь просто физически не может быть миниатюрным, ведь энергетическая емкость реактивных компонентов прямо пропорциональна массе и объему использованного в них магнитного или диэлектрического материала.

Если сравнить достоинства и недостатки линейных и импульсных преобразователей (таблица 1), то окажется, что они взаимно компенсируют друг друга. Поэтому на практике очень часто используются гибридные системы: импульсный преобразователь формирует некоторое промежуточное напряжение невысокой стабильности с относительно высоким уровнем пульсаций, а окончательная точная регулировка уже осуществляется с помощью линейных LDO-стабилизаторов.

Таблица 1. Сравнение импульсного и линейного способов преобразования

Метод Импульсный Линейный
Соотношение входного и выходного напряжений Любое Выходное напряжение не может быть больше входного
Точность стабилизации выходного напряжения Из-за того что энергия преобразуется «порциями», точность выходного напряжения зависит от характера переходных процессов и метода стабилизации Теоретически не ограничена. Практически определяется уровнем шумов и стабильностью характеристик используемых компонентов
Уровень пульсаций выходного напряжения Высокий. При использовании некоторых методов управления (гистерезисных) принципиально не может быть низким Теоретически может быть сколь угодно малым. Практически ограничен быстродействием используемых компонентов
Уровень электромагнитных помех Высокий из-за высоких скоростей изменения напряжений и токов Теоретически может быть сколь угодно малым
КПД Высокий Определяется разностью напряжений между входом и выходом
Масса и габариты Зависят от частоты преобразования. Обычно больше, чем у линейных преобразователей Зависят от уровня рассеиваемой мощности. При малых мощностях могут быть микроскопическими
Сложность схемы Сложная Относительно простая
Стоимость Относительно высокая Низкая
Основная сфера применения Преобразователи с высоким соотношением входного и выходного напряжений, преобразователи рода тока, многоканальные преобразователи и прочие Стабилизаторы для узлов, требующих прецизионного выходного напряжения с низким уровнем пульсаций и электромагнитных помех

В современном оборудовании линейные преобразователи в основном используются для питания маломощных узлов, требующих высококачественного выходного напряжения с низким уровнем пульсаций, а также в приложениях, чувствительных к уровню электромагнитных помех, а импульсные – во всех остальных случаях (по возможности).

Однако у линейных преобразователей есть один серьезный недостаток, который в ряде случаев делает их использование невозможным – выходное напряжение линейного преобразователя принципиально не может быть больше входного. А это означает, что в случаях, когда напряжение необходимо увеличить или изменить его полярность, импульсный способ преобразования является практически безальтернативным. 

Принцип работы импульсных преобразователей

На сегодняшний день существует множество импульсных преобразователей постоянного напряжения, отличающихся количеством и типом реактивных компонентов, алгоритмами преобразования и прочими характеристиками. Однако наиболее простыми, а следовательно, и наиболее популярными являются всего четыре схемы: понижающая, повышающая, инвертирующая и обратноходовая (рисунок 2). Эти преобразователи используют одинаковый принцип работы, имеют идентичное количество компонентов и отличаются лишь способом коммутации накопительного дросселя L1, от режима работы которого и зависят все характеристики схемы.

Рис. 2. Схемы наиболее популярных преобразователей

Преобразование электрической энергии происходит в два этапа. На первом этапе ключ S1 замыкается, и к дросселю L1 прикладывается некоторое напряжение VL1, под действием которого за время tON его ток возрастает на величину dI1 (формула 2, рисунок 3):

$$dI_{1}=\frac{V_{L1}}{L_{1}}\times t_{ON},\qquad{\mathrm{(}}{2}{\mathrm{)}}$$

где L1 – индуктивность обмотки, активной на первом этапе. 2\times L_{1}}{2}\qquad{\mathrm{(}}{3}{\mathrm{)}}$$

Рис. 3. Диаграммы напряжения и тока дросселя различных преобразователей

Поскольку на первом этапе энергия в дросселе увеличивается, то его очень часто называют этапом накопления или заряда дросселя.

После размыкания ключа S1 на выводах всех обмоток дросселя формируется ЭДС самоиндукции, полярность которой противоположна полярности, присутствовавшей на первом этапе, это означает, что дроссель L1 теперь становится не потребителем, а источником электрической энергии. Изменение полярности напряжения на обмотках приводит к открытию диода VD1, который и обеспечивает путь протекания тока на втором этапе, называемом этапом возврата, или разряда дросселя.

Поскольку количество энергии в дросселе в момент коммутации ключей не изменяется, то ток в его активной обмотке сразу после размыкания ключа S1 также будет максимальным, однако его величина IMAX2 может измениться, ведь он теперь может протекать уже по другому количеству витков (формула 4):

$$E=\frac{I_{MAX2}^2\times L_{2}}{2},\qquad{\mathrm{(}}{4}{\mathrm{)}}$$

где L2 – индуктивность обмотки, активной на втором этапе. 2\times A_{L},\qquad{\mathrm{(}}{6}{\mathrm{)}}$$

где AL – конструктивный параметр магнитопровода.

После открытия диода напряжение на обмотке дросселя фиксируется на уровне VL2, под действием которого ток дросселя за время tOFF уменьшится на величину dI2 (формула 7):

$$dI_{2}=\frac{V_{L2}}{L_{2}}\times t_{OFF}\qquad{\mathrm{(}}{7}{\mathrm{)}}$$

В квазиустановившемся режиме, когда отсутствуют какие-либо переходные процессы как в цепях питания, так и в цепях нагрузки, дроссель на втором этапе преобразования должен отдать всю энергию, накопленную на первом интервале. Это означает, что к моменту начала следующего цикла его ток должен быть таким же, как и в начале предыдущего. Для схем с однообмоточным дросселем dI1 = -dI2, но в общем случае (для обратноходового преобразователя) изменения токов обмоток определяются Законом полного тока (формула 8):

$$dI_{1}\times N_{1}=-dI_{2}\times N_{2}\qquad{\mathrm{(}}{8}{\mathrm{)}}$$

Подставляя в формулу 8 соотношения 2 и 7, с учетом 6, можно получить основное уравнение 9, связывающее величины напряжений на выводах обмоток дросселя с отношением длительностей основных этапов преобразования:

$$\frac{V_{L1}}{N_{1}}\times t_{ON}=-\frac{V_{L2}}{N_{2}}\times t_{OFF}\qquad{\mathrm{(}}{9}{\mathrm{)}}$$

Формула 9 является основой для получения регулировочной характеристики преобразователя – зависимости выходного напряжения от относительной длительности первого этапа преобразования D = tON/(tON + tOFF). Однако для того чтобы получить эти зависимости, далее необходимо рассматривать каждую схему в отдельности.

Понижающий преобразователь

Понижающий преобразователь (Step-Down Converter, Buck Converter) обычно имеет только одну обмотку, поэтому N1 = N2. На первом этапе преобразования к дросселю приложена разница входного и выходного напряжений (VL1 = VIN – VOUT), а на втором – только выходное напряжение (VL2 = VOUT), как показано на рисунке 4. Подставляя эти значения в формулу 9, получим формулу 10:

$$\left(V_{IN}-V_{OUT} \right)\times t_{ON}=-V_{OUT}\times t_{OFF}\qquad{\mathrm{(}}{10}{\mathrm{)}}$$

Следовательно (формула 11):

$$V_{OUT}=V_{IN}\times \frac{t_{ON}}{t_{ON}+t_{OFF}}=V_{IN}\times D\qquad{\mathrm{(}}{11}{\mathrm{)}}$$

Рис. 4. Принцип работы понижающего преобразователя

Из формулы 11 видно, что выходное напряжение VOUT понижающего преобразователя не может превышать входное VIN, иначе левая часть уравнения станет отрицательной, к дросселю на обоих этапах преобразования будет приложено однополярное напряжение, и схема работать не будет.  

Повышающий преобразователь

Повышающий преобразователь (Step-Up Converter, Boost Converter) также обычно строится на основе однообмоточного дросселя (N1 = N2). На первом этапе преобразования, когда ключ S1 замкнут, к обмотке дросселя приложено полное напряжение питания (VL1 = VIN), а вот на втором есть разница между входным и выходным напряжениями (VL1 = VOUT – VIN), как показано на рисунке 5. Подставляя эти значения в формулу 9, получим формулу 12:

$$V_{IN}\times t_{ON}=-\left(V_{OUT}-V_{IN} \right)\times t_{OFF}\qquad{\mathrm{(}}{12}{\mathrm{)}}$$

Из формулы 12 теперь можно получить уравнение для регулировочной характеристики (формула 13):

$$V_{OUT}=V_{IN}\times \frac{t_{ON}+t_{OFF}}{t_{OFF}}=V_{IN}\times \frac{1}{1-D}\qquad{\mathrm{(}}{13}{\mathrm{)}}$$

Рис. 5. Принцип работы повышающего преобразователя

Как и в понижающем преобразователе, формула 13 накладывает ограничения на соотношение напряжений VIN и VOUT. При VOUT < VIN правая часть формулы 13 изменит свой знак, и дроссель перестанет отдавать энергию. Поэтому повышающий преобразователь может только увеличивать входное напряжение.

Инвертирующий и обратноходовой преобразователи

И в инвертирующем (Inverting Converter), и в обратноходовом (Flyback Converter) преобразователях к обмоткам дросселя на первом этапе прикладывается полное входное (VL1 = VIN), а на втором – полное выходное напряжение (VL2 = VOUT), как показано на рисунок 6. Поэтому базовое уравнение для определения их регулировочных характеристик одинаково (формула 14):

$$\frac{V_{IN}}{N_{1}}\times t_{ON}=-\frac{V_{OUT}}{N_{2}}\times t_{OFF}\qquad{\mathrm{(}}{14}{\mathrm{)}}$$

Рис. 6. Принцип работы инвертирующего и обратноходового преобразователей

Но, поскольку инвертирующие преобразователи обычно строятся на основе однообмоточных дросселей, для которых N1 = N2, то их регулировочная характеристика при работе во всех режимах, кроме разрывного, несколько проще (формула 15):

$$V_{OUT}=-V_{IN}\times \frac{t_{ON}}{t_{OFF}}=-V_{IN}\times \frac{D}{1-D}\qquad{\mathrm{(}}{15}{\mathrm{)}}$$

Ключевой особенностью обратноходового преобразователя является возможность обеспечения гальванической развязки между входом и выходом. В этом случае обмотки дросселя могут иметь разное количество витков (формула 16):

$$V_{OUT}=-V_{IN}\times \frac{t_{ON}}{t_{OFF}}\times \frac{N_{2}}{N_{1}}=-V_{IN}\times \frac{D}{1-D}\times \frac{N_{2}}{N_{1}}\qquad{\mathrm{(}}{16}{\mathrm{)}}$$

Для инвертирующего преобразователя, вход и выход которого имеют один общий провод, выходное напряжение VOUT по абсолютному значению может быть как больше, так и меньше входного VIN. Однако оно обязательно должно иметь обратную полярность, ведь ни продолжительность первого tON, ни второго tOFF этапов преобразования не могут быть отрицательными. Для обратноходового преобразователя обеспечение двухполярного напряжения на обмотке осуществляется правильной фазировкой обмоток и включением диода VD1. Если это правило будет нарушено, то обратноходовой преобразователь работать не будет (фактически он превратится в прямоходовой, который имеет несколько иной принцип работы).

При использовании в понижающей, повышающей и инвертирующей схемах дросселя с одной обмоткой наибольшая эффективность преобразователя будет в диапазоне 0,1 ≤ VIN…VOUT ≤ 10. Если же входное напряжение отличается от входного больше чем в 10 раз, тогда, в соответствии с формулой 9, длительность одного из этапов преобразования (tON или tOFF) будет значительно меньше другого (рисунок 7).

Рис. 7. Зависимости соотношения напряжения на входе и выходе преобразователей (VOUT/VIN) от соотношения длительностей первого и второго этапов (tON/tOFF)

При этом становится сложно как регулировать выходное напряжение, так и фильтровать его, поскольку при малых длительностях tON или tOFF увеличиваются пульсации токов, что в конечном итоге приводит к катастрофическому уменьшению КПД, вплоть до физической невозможности реализации данного режима (необходимая длительность tON или tOFF может оказаться меньше чем время включения/выключения полупроводникового компонента). Поэтому при большой разнице напряжений между входом и выходом используют автотрансформаторное включение дросселей, при котором транзистор или диод подключаются к части обмотки (рисунок 8). В этом случае N1 ≠ N2 и формулы 10…15 придется выводить заново из базового соотношения формулы 9.

Рис. 8. Понижающий преобразователь с автотрансформаторным включением дросселя, работающий при большой разнице напряжений (VIN >>VOUT)

Особенности преобразователей nanoPower

Как видно из принципа работы, максимальное значение КПД импульсных преобразователей теоретически не ограничено. Но на практике всегда будут потери из-за неидеальности элементной базы, поэтому реальное значение КПД силовой части у наилучших представителей импульсных преобразователей находится на уровне 98…99%.

Однако при расчете КПД преобразователя в целом следует учитывать также и затраты энергии на работу схемы управления. Если рассмотреть структурные схемы контроллеров, реализующих два наиболее популярных на сегодняшний день метода управления – по напряжению (рисунок 9) и по току (рисунок 10), – то можно увидеть, что для обеспечения выходного напряжения необходимого качества требуется достаточно большое количество узлов. И хоть на сегодняшний день технологии изготовления полупроводниковых микросхем находится на очень высоком уровне, тем не менее, когда мощность силовой части преобразователя ничтожно мала, ток потребления узлов управления может оказаться соизмеримым с током нагрузок.

Рис. 9. Контроллер преобразователя с методом управления по напряжению

Рис. 10. Контроллер преобразователя с методом управления по току

У контроллеров преобразователей постоянного напряжения можно выделить три основных тока, на которые следует обращать внимание при выборе: ток, потребляемый от входной IQINT, выходной IQOUT цепи в активном режиме и ток утечки ISDT, потребляемый микросхемой в выключенном состоянии (рисунок 11). Эти токи, по возможности, должны быть минимальными, ведь чем они меньше – тем выше КПД преобразователя.

Рис. 11. Пути протекания токов IQINT, IQOUT и ISDT микросхемы MAX17222

Из этих параметров наиболее важным для устройств с батарейным питанием является ток утечки ISDT. И связано это с их спецификой работы, ведь как показывает практика, большую часть времени они находятся либо в спящем (дежурном), либо в выключенном состоянии. Поскольку физически отключить схему управления преобразователя от источника питания в большинстве случаев не представляется возможным, ток утечки ISDT будет напрямую влиять на время автономной работы.

В интегральных преобразователях постоянного напряжения nanoPower основной технологией уменьшения токов IQINT, IQOUT и ISDT является тщательная проработка схемотехники внутренних узлов контроллера и процессов изготовления интегральных компонентов. Из других методов уменьшения собственного энергопотребления можно также выделить отключение резистивного делителя выходного напряжения, используемого в цепи обратной связи. Все это позволило добиться впечатляющих значений собственного энергопотребления этих узлов. Так, например, для микросхем повышающих преобразователей MAX17220/21/22/23/24/25 ток, потребляемый от цепей нагрузки (IQOUT), не превышает 300 нА, а токи, потребляемые от источника питания (IQINT, ISDT) равны всего 0,5 нА.

Кроме этого, повышающие преобразователи имеют одну специфическую особенность, на которую также необходимо обращать внимание. При использовании в качестве верхнего ключа полупроводниковых диодов или n-канальных MOSFET становится невозможным полное отключение выходного напряжения – при остановке преобразователя на его выходе присутствует напряжение питания, которое приводит к увеличению энергопотребления. Поэтому в микросхемах nanoPower реализована также технология True Shutdown, блокирующая появление напряжения на выходе преобразователей при их отключении.

На сегодняшний день в линейку малопотребляющих преобразователей nanoPower входят микросхемы для наиболее популярных схем преобразователей: понижающего и повышающего типов (таблица 2). Линейка повышающих преобразователей MAX17220…25 (рисунок 12) позволяет обеспечить нагрузку выходным напряжением 1,8…5 В, устанавливаемым путем выбора внешнего резистора RSEL с шагом 0,1 В. Входное напряжение при этом может находиться в диапазоне 0,4…5,5 В.

Высокая степень интеграции позволила использовать для микросхем MAX17220…25 миниатюрные шестивыводные корпуса WLP и µDFN и обойтись минимальным количеством внешних компонентов. Как видно из рисунка 12, кроме обязательных внешних реактивных элементов – конденсаторов CIN, COUT и накопительного дросселя, которые, во-первых технологически сложно изготовить в интегральном исполнении, а во-вторых, их параметры зависят от конкретного приложения, для работы микросхем требуется единственный внешний прецизионный (с точностью 1%) резистор RSEL, отвечающий за величину выходного напряжения.

Таблица 2. Характеристики микросхем nanoPower

Наименование Ток, потребляемый от выходных цепей IQOUT, нА Ток, потребляемый в выключенном состоянии ISDT, нА Максимальный ток накопительного дросселя, мА Выходной ток, мА Корпус Отладочная плата
MAX38640A 330 5 250 160 WLP/6 MAX38640EVKIT
MAX17220 300 0,5 225 205 WLP/6, µDFN/6 MAX17222EVKIT, MAX17220EVKIT
MAX17222 300 0,5 500 200 WLP/6 MAX17222EVKIT
MAX17223 300 0,5 500 205 WLP/6, µDFN/6 MAX17222EVKIT, MAX17220EVKIT
MAX17224 300 0,5 1000 205 WLP/6, µDFN/6 MAX17222EVKIT, MAX17220EVKIT
MAX17225 300 0,5 1000 205 WLP/6, µDFN/6 MAX17222EVKIT, MAX17220EVKIT

Рис. 12. Структурная схема микросхем MAX17220…25

В микросхемах MAX17220…25 реализован метод управления по току, поэтому величина индуктивности накопительного дросселя во многом определяет величину рабочей частоты преобразователя. Для большинства приложений на основе данных микросхем можно использовать малогабаритные дроссели в корпусе 0603 индуктивностью 2,2 мкГн с максимальным током 225 мА, 500 мА или 1 А. Все это позволяет реализовывать ультракомпактные повышающие преобразователи, занимающие на печатной плате площадь, не превышающую 6,75 мм2.

Аналогичными характеристиками обладают и микросхемы понижающих преобразователей MAX38640/41/42/43 (рисунок 13), позволяющие понижать входное напряжение 1,8…5,5 В до величины 0,7…3,3 В (микросхемы с суффиксом А) или до 0,5… 5,0 В (с суффиксом B). Так же, как и в рассмотренных выше повышающих преобразователях, для установки выходного напряжения MAX38640…43 используется единственный прецизионный резистор RSEL, а сами микросхемы требуют всего четырех внешних компонентов.

Рис. 13. Структурная схема микросхем MAX38640…43

Для ускорения выхода продуктов на рынок компания Maxim Integrated предлагает разработчикам максимальную поддержку, не ограничивающуюся только предоставлением всей необходимой технической документации. Так, например, на официальном сайте компании присутствуют математические модели, с помощью которых можно изучить электрические процессы разрабатываемых схем в специализированных средах разработки: автономной EE-Sim® OASIS Simulation Tool на основе ядра SIMPLIS® и онлайновой EE-Sim Design And SimulationTool. Обе среды ориентированы на разработку импульсных источников питания и позволяют на основе предлагаемых шаблонов собрать виртуальный аналог разрабатываемой схемы менее чем за 5 минут.

Кроме этого, для оценки реальных возможностей микросхем nanoPower компания Maxim Integrated предлагает специализированные отладочные платы. Так, например, для микросхем MAX17220…25 доступна отладочная плата MAX17222EVKIT (рисунок 14), состоящая из двух независимых частей, содержащих одну и ту же микросхему MAX17222, но изготовленную в разных корпусах: µDFN и WLP. В каталогах Maxim Integrated присутствует также аналогичная отладочная плата MAX17220EVKIT с установленными микросхемами MAX17220 (в двух вариантах корпусов) и MAX38640EVKIT с установленной микросхемой MAX38640A в корпусе WLP.

Рис. 14. Внешний вид отладочной платы MAX17222EVKIT

Заключение

Питание от батарей является далеко не тривиальной задачей, ведь для обеспечения максимально возможного времени автономной работы необходима тщательная проработка не только силовой части, но и узлов управления. Однако, как показывает практика, эти задачи целиком и полностью ложатся на плечи производителей электронных компонентов, ведь, как видно из материалов данной статьи, конечным разработчикам остается лишь адаптировать готовые решения под конкретное приложение.

Дополнительные материалы:

Статьи:

  1. Технология Maxim Integrated nanoPower: когда малый IQ имеет преимущества
  2. Контроль в спящем режиме: повышение КПД батарейного питания с помощью DC/DC MAX17225 nanoPower
  3. Один дроссель для всей системы: многоканальные преобразователи Maxim с технологиями SIMO и nanoPower
  4. Измерение мощности в режиме реального времени с помощью ИС регистратора потребляемой мощности
  5. Увеличение времени работы портативной электроники с помощью преобразователя на основе SIMO
  6. Борцы SIMO: особенности применения SIMO-преобразователей Maxim
  7. Выбор SIMO PMIC-преобразователя для проекта портативного устройства
  8. Увеличение энергоэффективности портативных устройств при помощи SIMO PMIC-преобразователей

Новости

  1. MAX17222 — длинная жизнь для маленьких вещей
  2. MAX38640/1/2/3 – понижающие конвертеры семейства NanoPower с ультранизким током потребления
  3. MAX17270 – преобразователь NanoPower SIMO PMIC для IoT с ультранизким потреблением

 

•••

Наши информационные каналы

Интегральные DC/DC-преобразователи напряжения компании Monolithic Power Systems

Введение

В последние годы производители электронных компонентов все чаще используют контрактное производство полупроводниковых приборов. В таких компаниях работают высококлассные специалисты — разработчики и схемотехники, а производство готовых изделий размещается на лучших мировых фабриках, оснащенных самым современным оборудованием. Это связано с очевидными преимуществами, которые получает компания-разработчик:

  • резкое снижение накладных расходов, связанных с содержанием собственного высокотехнологичного производства;
  • возможность выбора лучших контрактных производителей для обеспечения высокого качества изделий;
  • сосредоточение усилий на разработке новых изделий и технологий;
  • гарантия длительного жизненного цикла приборов;
  • высокая динамика производства, как следствие — низкие сроки поставки продукции конечным потребителям;
  • относительно низкая численность сотрудников и одновременно высокий профессиональный уровень.

Все это дает возможность значительно снизить себестоимость изделий и, как следствие, цену для конечного потребителя, обеспечивая при этом высокое качество и передовые схемотехнические решения.

Ярким примером такой компании является Monolithic Power Systems (MPS). MPS была образована в 1997 году в Санта Клара (США). В настоящее время компания насчитывает около 100 человек, среди ее инвесторов — Bank of America, Investar, Aser Venture. Являясь держателем 18 патентов в области технологий BiCMOS и DMOS, компания специализируется на разработке и контрактном производстве силовых интегральных схем для источников питания постоянного тока, твердотельных источников света, драйверов люминесцентных ламп с холодным катодом и аудиоусилителей класса D. В перспективе MPS планирует разработку интегральных контроллеров сетевых источников питания. Передовые технологические решения позволяют интегрировать на одном кристалле цифровые схемы управления, прецизионные аналоговые компоненты и силовые транзисторы и достичь высокой плотности мощности при сверхмалых размерах интегральных схем.

В данной статье будет рассмотрена линейка интегральных схем для источников питания постоянного тока.

 

Понижающие DC-DC преобразователи напряжения

Все микросхемы этой группы имеют интегрированные мощные ключи и упакованы в малогабаритные корпуса для поверхностного монтажа. Кроме того, конверторы имеют цепь компенсации усилителя сигнала ошибки, специально адаптированную для применения недорогих танталовых конденсаторов на выходе преобразователя напряжения.

Понижающие DC-DC преобразователи напряжения делятся на две группы: преобразователи напряжения с синхронным выпрямлением и с внешним диодом Шоттки.

Понижающие DC-DC преобразователи напряжения с синхронным выпрямлением

Номенклатура и краткие электрические характеристики микросхем первой группы приведены в таблице 1.

По уровню выходной мощности семейство преобразователей напряжения первой группы открывает микросхема MP2104. Она выпускается в трех модификациях: с регулируемым выходным напряжением (MP2104DJ), с фиксированным выходным напряжением 1,5 В (MP2104DJ-1. 5) и с фиксированным выходным напряжением 1,8 В (MP2104DJ-1.8). Микросхема упакована в миниатюрный корпус SOT23-5 и обеспечивает ток нагрузки до 600 мА. Схема включения и типовой КПД преобразователя напряжения на базе MP2104DJ-1.8 показаны на рис. 1, структурная схема — на рис. 2.

Микросхема оптимизирована для построения преобразователей напряжения с питанием от одной Li-Ion-батареи, где высокая эффективность и малые габариты имеют принципиальное значение. Контроллер построен по схеме ШИМ-регулятора с постоянной частотой преобразования (1,7 МГц), ограничением тока внутри циклов и компенсацией крутизны наклона пилообразного напряжения. В преобразователе напряжения реализована функция защиты от короткого замыкания (КЗ) в нагрузке. В режиме КЗ частота преобразования уменьшается для предотвращения увеличения тока через p-канальный ключевой транзистор сверх величины тока ограничения. Ток ограничения при этом также уменьшается, что приводит к ограничению тока КЗ до безопасной величины. После устранения КЗ все режимы автоматически возвращаются в исходное состояние, как только напряжение ОС возрастет до уровня более 0,6 В.

В микросхеме имеется тепловая защита, отключающая контроллер при увеличении температуры кристалла свыше 145 °С.

Контроллеры с фиксированным выходным напряжением имеют встроенный прецизионный делитель на входе усилителя сигнала ошибки (УСО) (рис. 2). В контроллере с регулируемым выходным напряжением вход УСО выведен напрямую на вывод FB, а установка требуемого напряжения осуществляется внешним делителем.

На рис. 3 показан фрагмент печатной платы с преобразователем напряжения на базе MP2104DJ. Благодаря высокой частоте преобразования площадь компонентов на плате не превышает 1 см2

Рис. 3. Фрагмент печатной платы с преобразователем напряжения на базе MP2104DJ

Модификацией предыдущей микросхемы является контроллер MP2105DJ. Он тоже имеет типовой КПД до 95% и аналогичную MP2104DJ структурную схему, но благодаря более мощным ключевым транзисторам обеспечивает выходной ток до 800 мА.

Контроллер MP2109DQ является сдвоенной версией MP2105DJ. На одном кристалле размещены два независимых канала, полностью идентичных по структуре MP2104 (рис. 2). Схема включения MP2109DQ и типовой КПД преобразователя напряжения показаны на рис. 4. Микросхема обеспечивает в каждом канале ток нагрузки до 800 мА и упакована в миниатюрный корпус для поверхностного монтажа QFN10 (3Ч3 мм), что в сочетании с высокой частотой преобразования (1,2 МГц) позволяет минимизировать площадь на печатной плате (рис. 5).

Рис. 5. Оценочная плата преобразователя напряжения MP2109DQ

Линейку преобразователей напряжения повышенной мощности открывает микросхема MP1567. Она выпускается в двух вариантах корпусов для поверхностного монтажа — MSOP10 и QFN10. Схема включения и типовой КПД преобразователя напряжения на базе MP1567 показаны на рис. 6, структурная схема — на рис. 7.

Микросхема имеет два встроенных силовых транзистора с сопротивлением канала 180 мОм (n-MOSFET) и 220 мОм (p-MOSFET), что позволяет обеспечить ток нагрузки до 1,2 А. В отличие от менее мощных серий, MP1567 обеспечивает режим ограничения тока в обоих ключах в каждом цикле преобразования. Поскольку для управления верхним транзистором требуется напряжение, превышающее уровень входного, в микросхеме имеется бустерная схема питания драйвера с внутренним диодом и внешним накопительным конденсатором (C7 на рис. 7).

В контроллере предусмотрена схема плавного запуска, длительность tss которого устанавливается с помощью конденсатора C5:

С5 = 2,22ЧTSS.

В микросхеме имеется тепловая защита, отключающая контроллер при увеличении температуры кристалла свыше 160 °С, и функция отключения при пониженном входном напряжении.

Контроллер MP2106 является более мощной и высоковольтной версией MP1567. Схема включения и типовой КПД преобразователя напряжения на базе MP2106 показаны на рис. 8, его структурная схема аналогична приведенной на рис. 7. В отличие от MP1567, в данном контроллере увеличено входное напряжение до 13,5 В, а ток нагрузки — до 1,5 А.

Микросхемы MP2305 и MP1570 являются самыми мощными представителями синхронных понижающих преобразователей напряжения. Они имеют входное напряжение до 23 В и обеспечивают ток нагрузки до 2 и 3 А соответственно. Высокое входное напряжение и широкий температурный диапазон позволяет использовать эти приборы в автомобильной электронике.

Микросхемы полностью совместимы по номерам выводов и типу корпуса (SOIC-8), структурные схемы у них идентичны. Отличие их заключается в том, что у MP2305 силовые транзисторы имеют несколько меньшие площади и у корпуса отсутствует теплоотводящее основание (Power Pad), в результате чего стоимость ее на 20% ниже, чем у MP1570.

Схема включения и типовой КПД преобразователя напряжения на базе MP1570 показаны на рис. 9, структурная схема — на рис. 10.

Микросхемы имеют два встроенных силовых транзистора с сопротивлением каналов 100 мОм (MP1570) и 130 мОм (MP2305), функцию плавного запуска с программируемой длительностью, тепловую защиту, отключающую контроллер при увеличении температуры кристалла свыше 160 °С и опцию отключения при пониженном входном напряжении.

Понижающие DC-DC преобразователи напряжения с внешним диодом Шоттки

Номенклатура и краткие электрические характеристики микросхем этой группы приведены в таблице 2. Их отличают повышенные ток нагрузки и максимальное входное напряжение. Это было достигнуто путем  перераспределения  используемой площади кристалла: были увеличены размеры основного ключевого транзистора, а функции выпрямителя возложены на внешний диод Шоттки. Принцип построения данных контроллеров рассмотрим на примере микросхемы MP1591. Cхема включения и типовой КПД преобразователя напряжения на ее базе показаны на рис. 11, структурная схема — на рис. 12. Контроллер построен по схеме ШИМ с постоянной частотой преобразования (330 кГц), ограничением тока внутри циклов и компенсацией крутизны наклона пилообразного напряжения. Встроенный силовой транзистор M1 (рис. 12) имеет сопротивление канала 120 мОм, что позволяет обеспечить ток нагрузки до 2 А. Поскольку для управления верхним транзистором требуется напряжение, превышающее уровень входного, в микросхеме имеется бустерная схема питания драйвера с внутренним диодом и внешним накопительным конденсатором. Транзистор M2 с сопротивлением канала 10 Ом не является силовым, он обеспечивает заряд накопительного конденсатора в паузе, когда M1 закрыт.

Микросхема MP1593 (рис. 13) является более мощной версией MP1591, ее структурная схема аналогична приведенной на рис. 12. В отличие от MP1591, силовой транзистор в этом контроллере имеет сопротивление в открытом состоянии 100 мОм и обеспечивает ток нагрузки до 3 А, частота преобразования увеличена до 385 кГц и введена функция плавного запуска. Контроллер MP1593 совместим по выводам с MP1591. Обе микросхемы имеют тепловую защиту, отключающую контроллер при увеличении температуры кристалла свыше 160 °С, функцию отключения при пониженном входном напряжении и защиту от КЗ нагрузки.

Контроллеры MP2354 и MP2355 — это новые версии MP1591 и MP1593 соответственно. Они обеспечивают приблизительно такие же параметры (табл. 2) и сервисные функции, однако производятся по усовершенствованной технологии, позволившей снизить стоимость готовых микросхем на 15%.

Для применений, в которых требуется минимизация площади печатной платы, специально разработаны контроллеры MP2351 и MP2361 (рис. 14). Они выпускаются в миниатюрных корпусах для поверхностного монтажа MSOP10 и QFN10. Микросхемы обеспечивают ток нагрузки до 2 А при входном напряжении до 23 В. Частота преобразования увеличена до 1,4 МГц, что позволяет значительно снизить габариты дросселя и конденсатора фильтра. Контроллеры отличаются напряжением обратной связи (0,92 В у MP2361 и 1,23 В у MP2351), а также наличием у MP2361 функции плавного запуска. В остальном контроллеры идентичны и совместимы по выводам.

Контроллер MP2364 является сдвоенной версией MP2361. На одном кристалле размещены два независимых канала, полностью идентичные по структуре MP2361. Схема включения MP2364 и типовой КПД преобразователя напряжения показаны на рис. 15. Микросхема обеспечивает в каждом канале ток нагрузки до 1,5 А и упакована в миниатюрный корпус для поверхностного монтажа TSSOP20, что в сочетании с высокой частотой преобразования (1,4 МГц) позволяет минимизировать площадь на печатной плате (рис. 16).

Рис. 16. Оценочная плата преобразователя напряжения МР2364

 

Повышающие DC-DC преобразователи напряжения

Контроллеры этой группы построены по схеме бустерных преобразователей напряжения с интегрированным силовым транзистором и внешним диодом Шоттки. Так же как и рассмотренные выше повышающие преобразователи напряжения, все конверторы имеют встроенную цепь компенсации усилителя сигнала ошибки, специально адаптированную для применения недорогих танталовых конденсаторов на выходе преобразователя. Номенклатура и краткие электрические характеристики микросхем этой группы приведены в таблице 3.

Контроллеры MP1517 и MP1527 — самые мощные в этой группе. Каждый из них имеет интегрированный ключевой транзистор с сопротивлением канала 150 мОм и обеспечивает ток нагрузки до 3 А (рекомендуемое значение — до 1,5 А). Схема включения и типовой КПД преобразователя напряжения на базе MP1517 показаны на рис. 17, структурная схема — на рис. 18. Контроллеры построены по схеме ШИМ с регулировкой по току и фиксированной частотой преобразования (1,1 МГц у MP1517 и 1,3 МГц у MP1527). Микросхемы имеют защиту от низкого входного напряжения, обрыва нагрузки и перегрева кристалла свыше 160 °С, а также функцию плавного запуска. Низкое напряжение ОС MP1517 (0,7 В) позволяет использовать его в качестве мощного драйвера светодиодов и светодиодных ламп без дополнительного усилителя тока. Микросхема MP1527 имеет дополнительный двунаправленный вывод FAULT («Авария»). Если в системе используется несколько преобразователей напряжения MP1527, то имеется возможность соединить все выводы FAULT для одновременного выключения всех контроллеров в случае возникновения аварийной ситуации хотя бы в одном из них. Контроллеры упакованы в миниатюрные корпуса для автоматизированного монтажа QFN16 (4×4 мм), MP1527 также выпускается в корпусе TSSOP14.

Рис. 18. Структурная схема преобразователя напряжения МР1517

Самый маломощный контроллер в рассматриваемой группе — MP1522 в корпусе для поверхностного монтажа SOT23-5 (рис. 19). В нем использована схемотехника преобразователя напряжения с постоянным пиковым током дросселя и переменной частотой коммутации. Он имеет интегрированный ключевой транзистор с сопротивлением канала 500 мОм и обеспечивает ток нагрузки до 0,3 А.

Рис. 19. МР1522 в корпусе для поверхностного монтажа SOT23-5

Для применений, требующих постоянной частоты коммутации, альтернативой MP1522 служит микросхема MP1541 (рисунок 20), также выпускающаяся в корпусе SOT23-5. Она позволяет реализовывать надежные, миниатюрные и недорогие преобразователи напряжения с током нагрузки до 550 мА.

В линейке повышающих преобразователей MPS есть две специализированные микросхемы для питания TFT-панелей — MP1530 и MP1531 (рис. 21). Микросхемы идентичны по структуре и характеристикам и отличаются только частотами преобразования (1,4 МГц у MP1530 и 250 кГц у MP1531). Каждая из них содержит повышающий преобразователь напряжения и два линейных регулятора с положительным и отрицательным выходным напряжением, питающихся от схем с накачкой заряда. Ток нагрузки основного канала может достигать 500 мА, линейных регуляторов — до 10 мА.

Помимо своего основного назначения микросхемы могут применяться и для построения источников питания других устройств, содержащих, например, цифровые микросхемы (выход +5 В) и операционные усилители (выходы ±5…±15 В).

Завершает группу повышающих преобразователей напряжения новая микросхема MP1542, разработанная в начале 2005 года. Ее схема включения показана на рис. 22. Контроллер имеет интегрированный ключевой транзистор с сопротивлением канала 180 мОм и обеспечивает ток нагрузки до 2 А. Частота преобразования может выбираться из значений 0,7 МГц или 1,3 МГц с помощью вывода FSEL. Микросхема имеет защиту от низкого входного напряжения, КЗ нагрузки и перегрева кристалла свыше 160 °С, а также функцию плавного запуска, выпускается в миниатюрном корпусе MSOP8.

Рис. 22. Схема включения МР1542

 

Эффективные решения для серийного производства электронной техники

При выборе элементной базы для серийно выпускаемых изделий, особенно при жестком ограничении себестоимости, на первое место выходят два фактора — цена компонента и, по возможности, отсутствие необходимости настройки и регулировки узла, в котором он используется. Оба эти фактора в той или иной степени влияют на себестоимость конечного продукта. Для мелких партий уникальных и оттого дорогих приборов их влияние незначительно, а вот для массовых изделий они могут быть определяющими.

Продукция компании MPS как нельзя лучше удовлетворяет указанным критериям. Более того, MPS позиционируется на мировом рынке как производитель и поставщик микросхем для крупных производителей OEM и ODM.

Как было отмечено в начале статьи, MPS пользуется услугами контрактного производства микросхем крупнейших мировых фабрик. Это позволяет заметно снизить себестоимость и цену микросхем по сравнению с конкурентными продуктами. В таблице 4 приведено сравнение цен на некоторые контроллеры MPS с аналогами, причем цены на продукцию MPS даны со склада в Москве с учетом всех налогов и сборов, в то время как информация о ценах аналогов была взята с сайтов производителей без учета расходов на доставку. В среднем, даже при небольших партиях изделий, стоимость продукции MPS для конечного потребителя оказывается на 50-60% ниже аналогичных предложений других известных производителей.

В своих разработках автор применяет микросхемы MPS более года, за это время они вошли в состав нескольких серийных изделий. Из опыта работы с контроллерами MPS хочется особо отметить следующие моменты:

  • Высокая стабильность и повторяемость характеристик микросхем: независимо от партии основные характеристики близки к типовым значениям, заявленным в документации.
  • Высокая устойчивость УСО и схемы обратной связи в целом: контроллеры нечувствительны к номиналам и к типу применяемых конденсаторов, внешние цепи компенсации не требуют подстройки.
  • Высокая эффективность: при правильном выборе параметров дросселя удается получить КПД значительно выше, чем типовые значения, приводимые в документации. Например, в преобразователе напряжения на базе MP1517 мощностью 22,5 Вт (15, 1,5) перегрев контроллера составляет менее 15 °С.
  • Готовое изделие не требует никакой регулировки, что позволяет использовать при серийном производстве простой тест на включение.

В заключение хотелось бы отметить, что компания MPS обеспечивает серьезную техническую поддержку во всех регионах, где имеются ее представительства. Для всех микросхем имеются отладочные платы, позволяющие сократить время разработки.

Схемы Источников питания - Паятель.Ру

КАТЕГОРИИ СХЕМ

СПРАВОЧНИК

ИНТЕРЕСНЫЕ СХЕМЫ


Микросхема МАХ5025-МАХ5028 - Преобразователь напряжения DC/DC
 

Микросхемы предназначены для схем повышающих DC/DC преобразователей и источников питания. Микросхемы МАХ5025, МАХ5026 вырабатывают регулируемое напряжение от величины Vcc+1V до 36V. Микросхемы МАХ5027, МАХ5028 вырабатывают фиксированное нерегулируемое напряжение 30V.
Подробнее...

Аналог оптосимистора на мощных тринисторах
 

Простой вариант аналога оптосимистора на сильноточных тринисторах, который способен коммутировать ток нагрузки до 320 А. В качестве примера на рисунке приводится один из возможных вариантов реализации такого узла. На месте силовых коммутирующих элементов используются импульсные тринисторы VS1, VS2 большой мощности типа Т123-320.
Подробнее...

DC/DC преобразователь напряжения
 

Микросхема МАХ618 выпускается фирмой MAXIM, предназначена для схем повышающих DC/DC преобразователей напряжения и источников питания. Входное напряжение может быть от 3 до 28V, выходное напряжение можно установить от 4 до 28V независимо от величины входного. Установка выходного напряжения производится выбором соотношения сопротивлений резисторов делителя выходного напряжения так, чтобы напряжение на контролирующем входе FB было 1,5V при номинальном выходном напряжении.
Подробнее...

Схема двухполярного преобразователя напряжения 6-20V
 

Многие приборы и устройства, сделанные на операционных усилителях требуют двухполярного источника питания с относительной большой разностью потенциалов. Это накладывает существенные ограничения на использование такой аппаратуры в полевых условиях, либо требуется применять другие схемные решения, часто в ущерб качеству. Здесь приводится описание несложного двухполярного преобразователя, позволяющего от батарейного источника напряжением 6V получить стабильное двухполярное напряжение ±20V, при токе нагрузки до 50mА по каждому полюсу. КПД преобразователя более 60%.
Подробнее...

САМЫЕ ПОПУЛЯРНЫЕ СХЕМЫ

ТЕГИ


Схемы стабилизаторов и преобразователей напряжения, самодельные инверторы


Схема универсального двухполярного стабилизатора напряжения (+-5В, 6В, 9В, 12В, 15В)

Принципиальная схема универсального двухполярного стабилизатора напряжения (+-5В, 6В, 9В, 12В, 15В) на микросхемах серий 78xx, 79xx.

1 1066 5

Инвертор напряжения 12V - 220V (30W) на микросхеме CD4047 и транзисторах MJ3001

Вопрос питания потребителей, рассчитанных на работу от электросети-220V от автомобильного источника питания на страницах радиожурналов поднималась неоднократно. Здесь приводится описание одного из таких устройств, вырабатывающего нестабильное переменное напряжение 220V при питании от источника ...

1 860 0

Преобразователь для получения анодного напряжения +310В из +12В для питания радиоламп (UC3843)

Для того чтобы запитать ламповую аппаратуру в автомобиле обычно используют преобразователь постоянного тока напряжением 12V в переменный ток напряжением 220V. Здесь предлагается немного другой вариант. Ведь, фактически переменным током аппаратура не питается. Ей нужно ток накала, который может ...

1 913 1

Схема стабилизатора напряжения для питания трансивера (12В, 30А)

Описывается стабилизатор напряжения, который предназначен для питания полупроводникового трансивера от 11-16В при токах до 30А. Напряжение на его выходе можно регулировать в интервале + 11...16В, а максимальный выходной ток у него - 30 А. Стабилизатор выполнен на мощном полевом транзисторе VT1 ...

1 819 0

Преобразователь напряжения 12V для питания ноутбука от 18-19V (UC3843)

Принципиальная схема несложного преобразователя напряжения для ноутбука, построен на микросхеме UC3843 и транзисторе IRF530N. Обычно напряжение питания ноутбука находится в пределах 18-19V. Это не очень удобно, потому что при выходе из строя собственного блока питания или при работе в полевых ...

1 554 1

Мощный блок питания на микросхеме LM317 и транзисторе КТ818 (2-30V)

Cхема мощного блока питания на микросхеме LM317 и транзисторе КТ818, позволяет получить на выходе напряжение от 2 до 30 Вольт при токе до 5А. Позволит питать различные самодельные устройства, заряжать аккумуляторы и аккумуляторные батареи.

7 8817 7

Схема преобразователя напряжения из +9В в +400В (К176ИЕ12, BS170)

Старая отечественная микросхема К176ИЕ12 выпускалась для работы в качестве задающего генератора в цифровых электронных часах. Она генерирует импульсы частотой 1 Гц, 2 Гц, периодом в одну минуту, а так же импульсы для опроса четырехразрядного динамического индикатора. Но на основе этой микросхемы ...

3 1024 0

Схема простого самодельного инвертора напряжения, из аккумулятора на 12В в 220В

Обзор и принципиальная схема самодельного простого и мощного инвертора напряжения с +12В на 220 Вольт переменки.

Не изобретая велосипед, взял за основу стандартную схему на основе микросхемы К561ТМ2. Схема широко известна во всевозможных комбинациях в паре с биполярными транзисторами.

2 2607 0

Двуполярный DC-DC преобразователь напряжения +5В в +-20В для питания от батарей

Принципиальная схема самодельного DC-DC преобразователя напряжения для получения +-20В из +5В, можно использовать в батарейной радиоаппаратуре. Многие приборы и устройства, сделанные на операционных усилителях требуют двуполярного источника питания с относительной большой разностью потенциалов ...

4 1718 1

Автогенерация двух последовательно включенных транзисторов, схема преобразователя напряжения

Такой автогенератор изобретен 25.12.84 г. и описан в авторском свидетельстве СССР№1368950. Н02М 7/538, G05F1/08 под названием "Преобразователь напряжения В.Ю. Солонина". В нем впервые реализована автоматическая (с помощью автогенерации) передача электричества порциями через ...

0 1338 0

1 2  3  4  5  ... 24 

Радиодетали, электронные блоки и игрушки из китая:

DC/DC преобразователи — виды, принципы работы, схемы

Принцип работы DC/DC преобразователей импульсного типа основан на явлении самоиндукции. При прерывании тока, идущего через катушку индуктивности, в магнитном поле, которое индуцировано вокруг нее, возникает ЭДС, а на ее клеммах — напряжение обратной полярности. Управляя током и временем переключения схемы, можно выполнять регулировку напряжения самоиндукции.

Импульсный конвертор DC/DC представляет собой электронную схему, которая содержит катушку индуктивности. Она циклически подключается к источнику электропитания и отключается от него. Поскольку катушка нуждается в циклической зарядке, схема также должна включать конденсатор, выполняющий фильтрацию электросигнала и поддерживающий величину выходного напряжения. В качестве регулировочного элемента, управляющего временем пропускания электрического тока, выступает транзистор или тиристор.

Преобразователи применяются для построения источников питания в вычислительной технике, телекоммуникационной аппаратуре, автоматизированных системах управления, мобильных устройствах. Они обеспечивают изменение выходного постоянного напряжения в большую или меньшую сторону относительно входного напряжения.

Существует несколько типов преобразователей DC/DC. Выбор модели зависит от того, для чего нужен источник питания и каковы должны быть его характеристики. Основными рабочими параметрами импульсных преобразователей являются:

  • выходное напряжение. Оно может быть фиксированным и регулируемым в определенном диапазоне;
  • входное напряжение;
  • выходной ток. Он определяет, насколько мощную нагрузку можно питать от источника. Расчет мощности конвертора осуществляется по формуле Р = U*I, где U — Напряжение, а I — сила электротока;
  • стабилизация напряжения;
  • величина пульсаций;
  • КПД.

Также при выборе нужно уделять внимание наличию систем защиты от перегрузок, перегрева и КЗ, наличию гальванической развязки, которая исключает возможность подачи опасного входного напряжения на выходные контакты.

По назначению устройства бывают:

  • понижающими;
  • повышающими;
  • инвертирующими.

Понижающие преобразователи (регуляторы I типа)

Используются для нагрузок, которым для работы необходимо большие токи и малые напряжения. Фундаментальная схема DC/DC конвертора этого типа состоит из катушки индуктивности, конденсатора, ключевого транзистора, диода. Переключение сигнала осуществляется посредством транзистора, который управляется с помощью широтно-импульсной модуляции. Время открывания и закрывания ключа задается рабочим циклом. Когда транзистор открыт, электроток свободно протекает через катушку, конденсатор, сопротивление. Выполняется накопление энергии в конденсаторе и дросселе, а увеличение тока осуществляется постепенно, а не дискретно. Диод остается в запертом положении.

Когда напряжение достигнет заданного значения, транзистор запирается. Ток начинает течь по контуру с открытым диодом благодаря ЭДС самоиндукции. Значение электротока медленно уменьшается.

Повышающие преобразователи (регуляторы II типа)

Они применяются для электропитания потребителей, которым необходимо напряжение, большее, чем напряжение источника энергии. Принцип работы DC/DC преобразователя повышающего типа аналогичен понижающему конвертору. Устройство состоит из тех же элементов, но имеет другую схему подключения. Открывание и закрывание транзистора также осуществляется с помощью настроек ШИМ.

Открытый ключ обеспечивает протекание тока через транзистор и дроссель. При этом катушка запасает электроэнергию, а закрытый диод не позволяет разряжаться выходному конденсатору, питающему нагрузочное сопротивление. Как только напряжение падает ниже заданного уровня, происходит закрывание транзистора. В результате диод открывается и начинается подзарядка конденсатора. Входное напряжение суммируется с энергией, которая генерируется на катушке. Благодаря этому выходной сигнал становится выше, чем исходный. После достижения верхней границы напряжения, ключ снова закрывается, и цикл начинается заново.

Инвертирующие преобразователи (регуляторы III типа)

Предназначены для получения напряжения обратной полярности. При этом выходной сигнал может быть как ниже входного, так и выше. Микросхемы ДС/ДС преобразователей напряжения инвертирующего типа содержат тот же набор базовых элементов, что и вышеописанные устройства I и II типов, но их соединение выполнено в другой последовательности. К источнику питания последовательно подключаются транзистор, диод, сопротивление нагрузки с конденсатором. Индуктивный накопитель энергии подсоединяется между коммутирующим элементом и диодом.

При замыкании ключа энергия запасается в катушке. Диод при этом закрыт и не дает электротоку протекать к нагрузке. При отключении транзистора ЭДС индуктивного накопителя прикладывается к участку цепи с диодом, сопротивлением и конденсатором. Диод выпрямителя пропускает только импульсы напряжения с отрицательным знаком, поэтому на выходе формируется инверсное напряжение, знак которого противоположен знаку источника.

Приведенные выше варианты представляют собой упрощенные схемы конверторов постоянного напряжения. Подавляющее большинство современных преобразователей отличается намного более сложным устройством. Например, они оснащены гальванической развязкой, которая обеспечивает изоляция входной электроцепи от выходной. Их широко используют в источниках питания с IGBT-транзисторами, программируемых логических контроллерах. За счет гальванической развязки достигается высокий уровень безопасности и помехоустойчивости.

При этом схема DC/DC конвертора может быть регулируемой, нерегулируемой и полурегулируемой.

Руководство по выбору микросхем преобразователя постоянного тока

Микросхемы преобразователя постоянного тока в постоянный ток

обеспечивают на выходе стабилизированное постоянное напряжение от другого нерегулируемого входного напряжения. Они используются в приложениях для управления питанием и включают в себя несколько технологий преобразования.

Понижающие или понижающие преобразователи преобразуют более высокое входное напряжение постоянного тока в более низкое выходное напряжение постоянного тока той же полярности. Используя транзистор в качестве переключателя, понижающие преобразователи попеременно подключают и отключают входное напряжение на катушку индуктивности.

Повышающие или повышающие преобразователи преобразуют более низкое входное напряжение постоянного тока в более высокое выходное напряжение постоянного тока той же полярности. Пониженно-повышающие преобразователи могут использоваться как для повышающих, так и для понижающих преобразований, а также для реверсирования или инвертирования полярности напряжения.

Преобразователи

CUK используют емкостную передачу энергии, создавая плавный ток на обеих сторонах преобразователя. Преобразователи накачки заряда подходят для повышения или инвертирования напряжения в маломощных приложениях.

В отличие от большинства других микросхем преобразователя постоянного тока, насосы заряда накапливают энергию в конденсаторе, а не в катушке индуктивности. Обратные преобразователи похожи на повышающие понижающие преобразователи, но в них используется трансформатор для хранения энергии и обеспечения изоляции между входом и выходом. Эти устройства имеют две отдельные фазы для хранения и доставки энергии. Прямые преобразователи похожи на обратноходовые преобразователи, но используют трансформаторы более традиционным способом, передавая энергию от входа к выходу за один шаг.

Важные характеристики

  • Выходное напряжение

  • Входное напряжение

  • Выходной ток

  • Ток покоя

  • Частота переключения

  • Эффективность

  • Рабочая температура

Как выходное регулируемое напряжение (V out ), так и входное напряжение (V IN ) являются минимальным и максимальным значениями в непрерывном режиме (DC).Выходной ток (I OUT ) & nbsp; измеряется при определенных условиях. Ток покоя, измеряемый в амперах (А) в состоянии холостого хода, никогда не достигает нагрузки. Вместо этого он течет от батареи для питания самого регулятора.

Эффективность, отношение выходной мощности к входной, измеряет способность микросхем преобразователя постоянного тока преобразовывать входную энергию в выходную. Например, КПД 100% означает, что вся входная энергия передается на выход.

Характеристики

Чипы преобразователя постоянного тока в постоянный ток

доступны с множеством функций. Некоторые устройства имеют более одного выхода или канала. У других есть внутренняя схема для контроля количества производимого тока или флаг ошибки для контроля выходов, которые падают ниже номинального значения.

Защита от обратного напряжения предотвращает повреждение в приложениях, где пользователи могут случайно изменить полярность батареи. Защита от теплового отключения отключает микросхемы преобразователя постоянного тока в постоянный, когда температура превышает заданный предел.Контакты отключения (запрета) используются для отключения выходов регулятора.

Для коммутации преобразователи иногда используют металлооксидные силиконовые полевые транзисторы (MOSFET) вместо диодов. Синхронное выпрямление означает, что полевые МОП-транзисторы включаются и выключаются в нужное время для эффективного стробирования или выпрямления выходного сигнала.

Упаковка

  • Двухрядные корпуса (DIP) могут быть изготовлены из керамики (CIP) или пластика (PDIP).

  • Квадратные плоские корпуса (QFP) содержат большое количество тонких, гибких проводов в форме крыла чайки. SC-70, один из самых маленьких доступных корпусов ИС, хорошо подходит для приложений, где пространство чрезвычайно ограничено.

  • Малый контур (SO) Пакеты доступны с 8, 14 или 20 контактами.

  • Контур транзистора (TO) общедоступны.

TO-92 - это одинарный линейный корпус, используемый для маломощных устройств.TO-220 подходит для продуктов большой мощности, среднего тока и с быстрым переключением. TO-263 - это версия корпуса TO-220 для поверхностного монтажа. Другие пакеты ИС для микросхем преобразователя постоянного тока включают в себя термоусадочный корпус с малым контуром (SSOP), интегральную схему с малым контуром (SOIC), небольшой контурный корпус (SOP) и небольшой J-вывод (SOJ).

Стандарты

SMD 5962-00526 - Микросхема, гибридная, линейная, 5-вольтная, одноканальная, преобразователь dc-dc.

SMD 5962-11226 - Микросхема, гибридная, линейная, одноканальная, преобразователь dc-dc.

SMD 5962-98529 - Микросхема, гибридная, линейная, 15-вольтная, двухканальная, преобразователь dc-dc.

Список литературы

Кредит изображения:

Toshiba America, Inc. | Fuji Electric Corp. of America


Цепи преобразователя напряжения постоянного тока | Журнал Nuts & Volts


ВВЕДЕНИЕ

Во многих современных электронных схемах с батарейным питанием требуется источник постоянного тока, который имеет либо большее значение напряжения, чем напряжение основной батареи, либо имеет обратную полярность; схема, которая питается от шестивольтовой батареи, может, например, включать в себя один каскад операционного усилителя, которому требуются линии питания +12 В и -6 В. В таких случаях требуемые напряжения могут генерироваться через одну или несколько специальных схем преобразователя постоянного напряжения.

Большинство электронных преобразователей напряжения постоянного тока работают по тому или иному из четырех основных способов и используют генератор с питанием от постоянного тока для управления либо простой схемой «умножитель напряжения» на основе диода-конденсатора, либо сетью повышающего трансформатора и выпрямителя, либо «летающей». конденсаторный преобразователь напряжения или диодно-управляемый зарядный насос, который производит желаемое конечное выходное напряжение постоянного тока или напряжения.

В этой статье объясняются принципы работы и приводятся практические примеры каждого из этих четырех основных типов схем.

ЦЕПИ МНОЖИТЕЛЯ НАПРЯЖЕНИЯ ПОСТОЯННОГО ТОКА

ОСНОВНЫЕ ПРИНЦИПЫ
Обычные типы схем преобразователя напряжения постоянного тока с «умножителями напряжения» основаны на простой двухсекционной выпрямительной сети типа диод-конденсатор, которая была первоначально разработана еще в 1930-х годах для использования в дорогостоящих цепях переменного тока. -Приложения преобразования напряжения постоянного тока, которые до сих пор широко используются.

Чтобы понять основную работу и терминологию этой схемы (которая иногда может сбивать с толку), необходимо начать с рассмотрения простой схемы преобразования мощности переменного тока в постоянный, а именно:

Самая простая схема преобразования мощности переменного тока в постоянный - это основной тип полуволнового выпрямления, показанный на рис. 1 , который изображает схему, в которой используется трансформатор со значением вторичного напряжения 250 В (действующее значение).

РИСУНОК 1. Основные детали простого блока питания постоянного тока с однополупериодным выпрямлением на 250 В.


Здесь напряжение переменного тока, приложенное к входу выпрямителя D1, попеременно колеблется выше и ниже значения 0 В, повышаясь до положительного значения V пик (Vpk) + 353 В в положительном полупериоде и падая до отрицательного значения V пик значение -353В в отрицательном полупериоде.

D1 смещен в прямом направлении в течение каждого положительного полупериода и, таким образом, заряжает конденсатор C1 до пикового значения (без учета прямого падения напряжения D1) + 353 В, но смещается в обратном направлении в течение каждого отрицательного полупериода, что, таким образом, не имеет практического эффекта. на цепи.

Эта схема вырабатывает положительное выходное напряжение, но ее можно заставить генерировать отрицательное выходное напряжение, просто поменяв полярность D1 и C1 на обратную.

Действительно важно отметить в схеме полуволнового выпрямителя Рисунок 1 то, что D1 и C1 действуют вместе как детектор пикового напряжения, который заставляет схему выдавать выходной сигнал, равный положительному значению пика вторичного напряжения T1. .

То же самое основное действие происходит во всех обычных схемах двухполупериодного выпрямителя, которые также дают выходной сигнал, равный пиковому значению вторичного напряжения трансформатора.

В начале 1930-х инженеры нуждались в дешевом, надежном и безопасном способе генерации дорогостоящего маломощного постоянного напряжения из недорогих нелетальных трансформаторов, и для этого разработали простую двухсекционную схему «умножителя напряжения». работа. На рис. 2 показана такая схема, возбуждаемая от вторичной обмотки трансформатора на 250 В.

РИСУНОК 2. Основные детали схемы умножителя напряжения с «удвоением напряжения» с приводом от трансформатора.


Здесь секция C1-D1 действует как диодный фиксатор, который при питании от нормального входа переменного тока, который колеблется симметрично относительно значения 0 В, формирует выходной сигнал идентичной формы, но его пиковая отрицательная точка привязана к «Опорное» значение 0 В, как показано на диаграмме.

Пиковое выходное значение этой формы сигнала равно размаху (V pp ) входного напряжения переменного тока и подается непосредственно на вход простой секции детектора пикового напряжения D2-C2, которая, таким образом, производит Выходное напряжение постоянного тока равно значению V pp (а не пиковому значению) входного переменного напряжения.

Таким образом, эта схема дает вдвое большее выходное напряжение, чем обычная полуволновая или двухполупериодная схема выпрямителя, и поэтому известна как умножитель напряжения с «удвоением напряжения».

Схема может быть создана для генерации отрицательного (а не положительного) выходного напряжения путем простого изменения полярности C1-D1 и D2-C2.

Один очень важный момент, который следует отметить в отношении базовой схемы Рис. 2 , заключается в том, что ее выходное напряжение фактически равно V pp плюс общее `` опорное '' напряжение (V ref ) D1-C2, которое в этом конкретном примере равно 0V. Таким образом, если эта схема модифицируется так, что V ref каким-то образом повышается до (скажем) + 1000 В, выход 706 В C2 будет добавлен к выходу V ref , чтобы получить окончательное выходное напряжение 1706 В, и поэтому на.

Сердце схемы Рис. 2 - это фактическая сеть удвоителя напряжения C1-D1-D2-C2. Рисунок 3 (a) показывает обычную схему этой сети, а Рисунок 3 (b) показывает ее перерисовку как «стандартную» секцию умножителя напряжения с удвоением напряжения.

РИСУНОК 3. (a) Обычная схема удвоителя напряжения и (b) схема, перерисованная в «стандартной» форме.


Основной особенностью удвоителя напряжения является то, что несколько «удвоителей» можно легко соединить между собой для получения различных значений умножения напряжения, и такие схемы лучше всего рисовать, используя стандартное представление , рис. 3 (b), .

На рис. 4 , например, показаны три из этих ступеней «удвоителя», соединенных между собой, чтобы обеспечить секступлер по напряжению, при котором конечное выходное напряжение в шесть раз превышает пиковое значение исходного входного напряжения 250 В (действующее значение).

РИСУНОК 4. Три «удвоителя» соединены между собой для увеличения напряжения в 6 раз.


Здесь каждая секция удвоителя генерирует отдельный выход (через свой конденсатор C2, C4 или C6) 706 В, но выход первого удвоителя действует как точка V ref второго удвоителя, а выход второго удвоителя действует как точка V ref третьего удвоителя, в результате чего три отдельных выходных напряжения складываются вместе, давая окончательный выход постоянного тока + 2118 В от входа 250 В переменного тока.

Обратите внимание на схему , рис. 4, , что входной конденсатор каждой секции питается непосредственно от входного переменного напряжения и требует абсолютного минимального номинального напряжения, равного выходному напряжению этой секции относительно земли, например, для C5 требуется минимальный номинал. 2118В.

В середине 1930-х годов была разработана модифицированная версия умножителя напряжения для преодоления этого препятствия. Известный как умножитель напряжения Кокрофта-Уолтона, он использует стандартные каскады удвоителя напряжения, соединенные между собой так, как показано на рис. 5 .

РИСУНОК 5. Эта трехступенчатая схема Кокрофта-Уолтона дает умножение напряжения в 6 раз.


Эта схема аналогична схеме , рис. 4 , за исключением того, что на вход каждого удвоителя (кроме первого) подается напряжение от «фиксированной» точки переменного напряжения предыдущего удвоителя.

Следовательно, требование «минимального номинального напряжения» каждого компонента, используемого в каждой ступени удвоения, равно размаху исходного входного напряжения переменного тока.

Недостатком умножителя напряжения Кокрофта-Уолтона является то, что его выходной импеданс довольно высок (он пропорционален сумме импедансов различных входных конденсаторов), и поэтому он может обеспечивать только небольшие выходные токи.

На практике этот тип умножителя напряжения был первоначально разработан просто для генерации очень высокого (примерно до 30 кВ) напряжения ускорителя на конечном аноде электронно-лучевых трубок, что требует очень небольшого тока возбуждения.

Обратите внимание, что 10-ступенчатая схема этого типа - при возбуждении от входа 500 В переменного тока - генерирует выход постоянного тока более 14 кВ, но компоненты, используемые на каждой ступени, имеют минимальные требования к номинальному напряжению менее 1,5 кВ.

ПРАКТИЧЕСКИЕ СХЕМЫ
Напряжение постоянного тока можно легко преобразовать в одно из более высоких значений или обратной полярности, используя источник постоянного тока для питания автономного генератора прямоугольных импульсов от 1 кГц до 30 кГц, выход которого подается на умножитель напряжения одного из уже описаны основные типы, которые, таким образом, обеспечивают желаемое «преобразованное» выходное напряжение постоянного тока. На рис. 6 показана практическая демонстрационная схема этого типа.

РИСУНОК 6. Базовая демонстрационная схема «удвоителя напряжения».


Схема Рис. 6 использует микросхему «таймера» типа 555 (которая может обеспечивать довольно высокие выходные токи) в качестве автономного генератора прямоугольных импульсов, который работает на частоте около 3 кГц (определяется значениями R1-R2-C2), и непосредственно управляет каскадом «удвоителя» C3-D1-D2-C4, который (в идеале) производит выход постоянного тока, равный размаху выходного сигнала прямоугольной формы, который (в идеале) равен значению Vcc.

На практике величина размаха прямоугольной волны немного меньше Vcc, и «удвоитель» теряет еще 1,2 В при падении напряжения в D1 и D2, в результате чего фактический выход (при очень небольшой нагрузке) примерно на 1,6 В меньше, чем Vcc, например, 8,4 В при питании 10 В. Схема может использовать любой источник питания в диапазоне от 5 до 15 В.

Рисунок 7 показывает гораздо более полезную версию базовой схемы Рисунок 6 «удвоитель напряжения».

РИСУНОК 7. Схема удвоения постоянного напряжения.


В этой версии «удвоитель» C3-D1-D2-C4 подключен к положительной (а не 0 В) линии питания, и его выходное напряжение, таким образом, добавляется к выходному напряжению линии питания, что дает выходное напряжение постоянного тока. (при небольшой нагрузке) почти в два раза больше Vcc.

На практике схема прототипа дает выходной сигнал почти 19 В при использовании источника питания 10 В.

Рисунок 8 показывает схему Рисунок 7 , модифицированную для использования с каскадной парой каскадов «удвоителя», в конфигурации, которая известна (поскольку она генерирует выход постоянного тока в четыре раза больше, чем базовое пиковое входное напряжение переменного тока) как учетверитель напряжения.

РИСУНОК 8. Каскадная схема «удвоителя напряжения».


Здесь выход нового каскада «удвоителя» C5-D3-D4-C6 (который на пару вольт меньше Vcc) добавляется к выходному сигналу базовой схемы (рис. 7) , что дает выходное напряжение постоянного тока. (при небольшой нагрузке) почти в три раза больше Vcc.

На практике схема прототипа дает выходной сигнал 27 В при использовании источника питания 10 В.

На рисунке 9 показан особенно полезный тип схемы умножителя напряжения, который генерирует отрицательное выходное напряжение, которое (в идеале) почти равно по амплитуде, но противоположно полярности полярности линии питания ИС, таким образом обеспечивая выход с раздельным питанием от несимметричный вход.

РИСУНОК 9. Генератор отрицательного напряжения постоянного тока.


Схема аналогична схеме на Рис. 6 , но имеет обратную полярность «удвоителя» D1-D2-C4, так что его выходное напряжение является отрицательным по отношению к линии 0 В.

На практике схема прототипа дает выходной сигнал -8,4 В при использовании источника питания 10 В. (Примечание: два из этих «удвоителей» каскадных соединений дают выходное напряжение -17,5 В при использовании источника питания 10 В.)

ЦЕПЬ ВЫСОКОВОЛЬТНОГО ГЕНЕРАТОРА

Метод «умножителя напряжения» для получения увеличенных значений выходного напряжения постоянного тока обычно рентабелен только тогда, когда требуются коэффициенты умножения менее шести.

В случаях, когда требуются очень большие коэффициенты повышения (например, когда сотни вольт должны генерироваться через источник питания от 6 до 12 В), часто лучше использовать выход низковольтного генератора или генератора прямоугольных импульсов. для управления повышающим трансформатором напряжения, который затем обеспечивает необходимое высокое напряжение (в форме переменного тока) на его вторичной (выходной) обмотке; это переменное напряжение может быть легко преобразовано обратно в постоянное через простую сеть выпрямитель-фильтр. На рисунке 10 показана практическая схема маломощного генератора высокого напряжения этого типа.

РИСУНОК 10. Преобразователь постоянного тока с 9 В на 300 В.


Схема Рис. 10 действует как преобразователь постоянного тока в постоянный, который генерирует выходное напряжение 300 В постоянного тока от источника питания 9 В постоянного тока.

Здесь Q1 и связанная с ним схема действуют как LC-генератор Хартли, с низковольтной первичной обмоткой сетевого трансформатора T1 от 9В-0-9В до 250В (или трансформатора с аналогичным соотношением витков), образующей L-часть. генератора, который настраивается через C2.

Напряжение питания повышается примерно до 350 В пикового значения на вторичной обмотке T1, выпрямляется полуволной и сглаживается через D1-C3. Без постоянной нагрузки на C3 конденсатор может служить мощным, но нелетальным «поясом».

При постоянной нагрузке на выходе выход падает примерно до 300 В при токе нагрузки в несколько миллиампер.

ПРЕОБРАЗОВАТЕЛИ НАПРЯЖЕНИЯ ПОСТОЯННОГО ТОКА

«ЛЕТУЩИЙ КОНДЕНСАТОР»

Одним из очень эффективных способов получения хорошего преобразования низкого напряжения в отрицательное является использование так называемого метода «летающего конденсатора», который используется в популярной специальной микросхеме преобразователя напряжения ICL7660 (и ее SI7660, LMC7660 и т. Д.)., эквиваленты) и несколькими аналогичными устройствами.

ICL7660 размещен в восьмиконтактном корпусе DIL, как показано на Рис. 11 (a) , и предназначен для питания от несимметричного источника постоянного тока, который подключается между контактами 8 (V +) и 3 (GND или 0 В), и для генерации отрицательного выходного сигнала с равным значением на выводе 5 (-Vout), т. Е. При питании от источника питания + 5 В он генерирует выходной сигнал -5 В на выводе 5, таким образом удваивая напряжение питания (т. Е. 10 В ) доступен между контактами 8 и 5.

РИСУНОК 11. (a) Схема и обозначения контактов и (b) упрощенная базовая схема использования ИС преобразователя напряжения ICL7660.


Таким образом, ИС может использоваться как генератор отрицательного напряжения или как удвоитель напряжения.

ICL7660 может использоваться с любым источником питания постоянного тока от + 1,5 В до 10 В, потребляет типичный ток покоя 170 мкА при 10 В и имеет типичную эффективность преобразования напряжения + ve в отрицательное значение 99,9%, когда его вывод 5 не нагружен.

Когда выход ИС загружен, он действует (при 10 В) как источник напряжения с выходным сопротивлением около 70R и может обеспечивать максимальные выходные токи около 40 мА; выходной импеданс обратно пропорционален напряжению питания и обычно составляет около 330R при 2.5В.

ICL7660 использует метод «летающего конденсатора» для преобразования напряжения, который проиллюстрирован на рис. 11 (b) . В ИС находится КМОП-генератор прямоугольных сигналов, который работает на базовой частоте около 10 кГц и имеет симметричный выход половинной частоты (доступный на выводе 2), который многократно переключает встроенный двухполюсный переключатель КМОП S1, который подключен к «летающий» внешний конденсатор С1.

Действие схемы таково, что при переключении S1 в высокий уровень C1 подключается непосредственно между землей и линиями V + (как показано на схеме) и, таким образом, заряжается до полного положительного значения напряжения питания.

Однако в следующем тактовом цикле S1 переключается на низкий уровень, и при этом условии C1 подключен - с обратной полярностью - непосредственно через внешний выходной конденсатор C2, таким образом генерируя выходное напряжение V- на C2. Эта последовательность переключения повторяется непрерывно на половине частоты тактового генератора.

Обратите внимание, что, поскольку ICL7660 использует CMOS, а не биполярные полупроводниковые переключатели в своей схеме «преобразования», IC работает с очень высокой эффективностью преобразования.

ICL7660 - простое в использовании устройство, но ни один из его выводов не должен быть подключен к напряжению выше V + или ниже GND (0 В).

Если ИС должна использоваться с источниками питания в диапазоне от 1,5 В до 3,5 В, вывод 6 «LV» (который управляет внутренним регулятором напряжения) должен быть заземлен; при значениях напряжения питания более 3,5 В контакт 6 должен оставаться разомкнутым. При значениях напряжения питания более 6,5 В защитный диод должен быть подключен последовательно с выходным контактом 5.

Схемы Рисунки 12 с по 20 показывают выбор практических конструкций, в которых применяются эти правила.

ЦЕПИ

ICL7660

Основное применение ICL7660 - это простой генератор отрицательного напряжения или удвоитель напряжения. На рисунках 12 с по 14 показаны три простые схемы этого типа; в каждом случае C1 - «летающий» конденсатор, а C2 - сглаживающий / накопительный конденсатор, и каждый имеет значение 10 мкФ.

Преобразователь напряжения Рис. 12 предназначен для использования с источниками питания от 1,5 В до 3,5 В и требует использования только двух внешних компонентов.

РИСУНОК 12. Генератор отрицательного напряжения постоянного тока или удвоитель напряжения с питанием от 1,5 до 3,5 В.


Схема Рис. 13 Схема аналогична, но предназначена для использования с источниками питания в диапазоне от 3,5 В до 6,5 В и поэтому имеет заземленный контакт 6.

РИСУНОК 13. Генератор отрицательного напряжения постоянного тока или удвоитель напряжения с питанием от 3,5 до 6,5 В.


Наконец, схема Figure 14 предназначена для использования с источниками питания в диапазоне 6.5–10 В, и, следовательно, диод D1 подключен последовательно с выходным контактом 5, чтобы защитить его от чрезмерного обратного смещения от C2 при отключении источников питания.

РИСУНОК 14. Генератор отрицательного напряжения постоянного тока или удвоитель напряжения с питанием от 6,5 до 10 В.


Наличие этого диода снижает доступное выходное напряжение на Vdf, прямое падение напряжения на диоде; чтобы это падение напряжения не превышало минимальных значений, D1 должен быть германиевым или шоттки.

Полезной особенностью ICL7660 является то, что количество этих микросхем (до 10) можно каскадировать, чтобы получить коэффициенты преобразования напряжения больше единицы. Таким образом, если три каскада соединены каскадом, они дают конечное отрицательное выходное напряжение -3 В постоянного тока и т. Д. На рисунке 15 показаны соединения для каскадного соединения двух из этих каскадов; любые дополнительные каскады должны быть подключены так же, как правая ИС на этой схеме.

РИСУНОК 15. Каскадные ИС для повышенного отрицательного выходного напряжения.


Уже отмечалось, что одиночная микросхема ICL7660 может использоваться в качестве высокоэффективного удвоителя напряжения, который может, например, генерировать выходное напряжение 10 В с центральным отводом при питании от несимметричного входа 5 В.

На рисунке 16 показано, как две из этих микросхем могут быть подключены каскадом для генерации выходного сигнала 12 В с центральным отводом, когда схема питается от несимметричного источника 3 В (например, от двух последовательно соединенных ячеек 1,5 В).

РИСУНОК 16. Каскадные ИС, обеспечивающие выходное напряжение 12 В с центральным отводом от источника питания 3 В.


Здесь IC1 используется как основной удвоитель напряжения, питаемый от источника 3 В, подключенного между контактами 3 и 8, а его выход 6 В (между контактами 5 и 8) используется для питания IC2 через контакты 3 и 8, а также IC2. таким образом генерирует выход (между контактами 5 и 8) 12 В при очень небольшой нагрузке. Этот выход 12 В имеет импеданс источника около 500R и падает примерно на 0,5 В при увеличении тока нагрузки на мА (большая часть этого падения напряжения отражается от выхода -ve IC1, который работает при уровне тока, в два раза превышающем Выход IC2, как описано ниже).

Важно отметить, что ток источника питания (батареи), потребляемый любой схемой умножителя напряжения, неизбежно по крайней мере в n раз больше, чем нагруженный выходной ток схемы, где n - значение «умножителя» схемы. Таким образом, если удвоитель напряжения питается от источника питания 5 В и генерирует выходной сигнал 10 В x 10 мА (= 100 мВт), из этого следует, что ток питания должен быть не менее 20 мА (= 100 мВт / 5 В).

Выходной импеданс схемы также пропорционален значению n .

В некоторых приложениях пользователь может захотеть уменьшить частоту генератора ICL7660 IC; один из способов сделать это - подключить конденсатор Cx между контактами 7 и 8, как на рис. 17 ; Рисунок 18 показывает взаимосвязь между значениями Cx и частоты; таким образом, значение Cx, равное 100 пФ, снижает частоту в 10 раз, с 10 кГц до 1 кГц; Чтобы компенсировать это снижение частоты 10: 1 и сохранить эффективность схемы, значения C1 и C2 должны быть увеличены в аналогичном коэффициенте (примерно до 100 мкФ каждое).

РИСУНОК 17. Способ понижения частоты генератора.


РИСУНОК 18. График зависимости Cx от частоты генератора.


Другой способ уменьшить частоту генератора - использовать вывод 7 для перегрузки генератора через внешние часы, как показано на рис. 19 .

РИСУНОК 19. Внешняя синхронизация ICL7660.


Тактовый сигнал должен подаваться на контакт 7 через резистор серии 1K0 (R1) и должен полностью переключаться между двумя значениями шины питания; На схеме КМОП-затвор подключен как инвертирующий буферный каскад, чтобы обеспечить такое переключение.

ЦЕПИ ДИОДНОГО НАСОСА

До сих пор в этой статье были описаны три из четырех наиболее широко используемых типов схем преобразования постоянного напряжения.

Четвертый тип преобразователя иногда называют схемой «диодно-управляемой накачки заряда», а Рисунок 20 показывает пример одного из этих «насосов», используемых вместе с ICL7660 IC для создания преобразователя, дающего положительный ток. выходное напряжение почти вдвое превышает исходное значение напряжения питания.

РИСУНОК 20. Удвоитель напряжения типа диодной накачки.


Насос состоит из D1-C1-D2-C2 и приводится в действие прямоугольным выходом с низким импедансом на выводе 2 ИС. Действие схемы очень простое, а именно:

Когда вывод 2 на выходе ICL7660 переключается на низкий уровень, он подключает нижний конец C1 к линии 0 В, поэтому C1 заряжается почти до полного значения Vcc через диод D1 с прямым смещением. Когда выход вывода 2 снова переключается на высокий уровень, он подтягивает нижний конец C1 до Vcc, таким образом увеличивая верхний конец C1 до почти удвоенного значения Vcc, таким образом, смещая D1 в обратном направлении и D2 в прямом направлении, и заставляя C1 перейти в сбросить свой избыточный заряд в C2, который, таким образом, заряжается почти вдвое по сравнению с величиной Vcc.

Этот процесс повторяется непрерывно, при этом C1 автоматически заменяет любые токи заряда, которые отводятся от C2 внешней схемой нагрузки. На практике диоды D1 и D2 уменьшают доступное выходное напряжение на величину, равную их совокупному прямому падению напряжения, поэтому в идеале они должны быть германиевыми с низкими потерями или диодами Шоттки.

Этот тип схемы «подкачки заряда» намного более мощный, чем обычная схема конденсаторно-диодного удвоителя напряжения, и может легко обеспечивать выходной ток в 10 миллиампер.

Наконец, чтобы завершить этот взгляд на схемы преобразователя напряжения постоянного тока, Рисунки 21, 23, показывают три полезных варианта базовой схемы «накачки заряда».

Рисунок 21 показывает, как схема накачки заряда Рисунок 20 может быть объединена со стандартной схемой генератора отрицательного напряжения ICL7660 Рисунок 13 или 14 для создания комбинированного умножителя положительного напряжения и преобразователя отрицательного напряжения, который обеспечивает двойные шины выходного напряжения от несимметричного входного источника.

РИСУНОК 21. Комбинированный удвоитель напряжения + ve и преобразователь напряжения + ve.


На рисунке 22 показано, как два из двух диодно-управляемых насосов заряда типа Рисунок 20 могут быть включены в каскад для повышения напряжения, что дает положительное выходное напряжение, значение без нагрузки которого равно трехкратному напряжению Vcc, за вычетом величина последовательно включенного диода падает. Обычно схема дает на выходе около 27 В при питании от источника 10 В.

РИСУНОК 22. Зарядный насос типа повышения напряжения.


Дополнительные каскады D3-C3-D4-C4 можно подключать каскадом, подключив нижний конец каждого конденсатора с нечетным номером к контакту 2 ИС, а нижний конец каждого конденсатора с четным номером - к линии 0 В; каждая новая ступень увеличивает доступное выходное напряжение на Vcc минус два падения напряжения на диоде.

Наконец, На рис. 23 показана схема генератора отрицательного напряжения с диодной накачкой заряда, в которой полярности диодов и конденсаторов просто меняются местами и привязаны к линии 0 В.

РИСУНОК 23. Генератор отрицательного напряжения с диодной накачкой заряда.


Эта схема (при использовании обычных кремниевых диодов) дает типичное выходное напряжение без нагрузки всего -8,8 В при питании от источника 10 В, но дает гораздо лучшее регулирование напряжения, чем обычная схема генератора отрицательного напряжения ICL7660. NV

интегральная схема | Типы, использование и функции

Интегральная схема (ИС) , также называемая микроэлектронной схемой , микрочипом или микросхемой , сборкой электронных компонентов, изготовленных как единый блок, в котором миниатюрные активные устройства (например,ж., транзисторы и диоды) и пассивные устройства (например, конденсаторы и резисторы) и их межсоединения построены на тонкой подложке из полупроводникового материала (обычно кремния). Таким образом, полученная схема представляет собой небольшую монолитную «микросхему», размер которой может составлять всего несколько квадратных сантиметров или всего несколько квадратных миллиметров. Отдельные компоненты схемы обычно имеют микроскопические размеры.

интегральная схема

Типичная интегральная схема, изображенная на ногте.

Charles Falco / Photo Researchers

Интегральные схемы возникли в результате изобретения транзистора в 1947 году Уильямом Б.Шокли и его команда из Bell Laboratories американской телефонной и телеграфной компании. Команда Шокли (включая Джона Бардина и Уолтера Х. Браттейна) обнаружила, что при определенных обстоятельствах электроны будут образовывать барьер на поверхности определенных кристаллов, и они научились управлять потоком электричества через кристалл, манипулируя этим барьером. Управление потоком электронов через кристалл позволило команде создать устройство, которое могло бы выполнять определенные электрические операции, такие как усиление сигнала, которые ранее выполнялись с помощью электронных ламп.Они назвали это устройство транзистором, от комбинации слов transfer и resistor . Изучение методов создания электронных устройств с использованием твердых материалов стало известно как твердотельная электроника. Твердотельные устройства оказались намного прочнее, с ними проще работать, они более надежны, намного меньше и дешевле электронных ламп. Используя те же принципы и материалы, инженеры вскоре научились создавать другие электрические компоненты, такие как резисторы и конденсаторы.Теперь, когда электрические устройства можно было сделать такими маленькими, самой большой частью цепи была неудобная проводка между устройствами.

транзистор

Первый транзистор, изобретенный американскими физиками Джоном Бардином, Уолтером Х. Браттейном и Уильямом Б. Шокли.

© Windell Oskay, www.evilmadscientist.com (CC BY 2.0)

В 1958 году Джек Килби из Texas Instruments, Inc. и Роберт Нойс из Fairchild Semiconductor Corporation независимо друг от друга придумали способ дальнейшего уменьшения размера схемы.Они прокладывали очень тонкие дорожки из металла (обычно алюминия или меди) непосредственно на том же куске материала, что и их устройства. Эти маленькие дорожки действовали как провода. С помощью этого метода вся схема может быть «интегрирована» на едином куске твердого материала и, таким образом, создана интегральная схема (ИС). ИС могут содержать сотни тысяч отдельных транзисторов на цельном куске материала размером с горошину. Работать с таким количеством электронных ламп было бы нереально неудобно и дорого. Изобретение интегральной схемы сделало возможными технологии информационной эпохи.Микросхемы в настоящее время широко используются во всех сферах жизни, от автомобилей до тостеров и аттракционов.

Базовые типы ИС

Аналоговые или линейные схемы обычно используют только несколько компонентов и, таким образом, являются одними из самых простых типов ИС. Как правило, аналоговые схемы подключаются к устройствам, которые собирают сигналы из окружающей среды или отправляют сигналы обратно в окружающую среду. Например, микрофон преобразует колеблющиеся вокальные звуки в электрический сигнал переменного напряжения. Затем аналоговая схема модифицирует сигнал некоторым полезным способом - например, усиливает его или фильтрует нежелательный шум.Такой сигнал затем может быть возвращен в громкоговоритель, который будет воспроизводить тона, первоначально улавливаемые микрофоном. Другое типичное использование аналоговой схемы - управление каким-либо устройством в ответ на постоянные изменения в окружающей среде. Например, датчик температуры отправляет изменяющийся сигнал на термостат, который можно запрограммировать на включение и выключение кондиционера, обогревателя или духовки после того, как сигнал достигнет определенного значения.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

Цифровая схема, с другой стороны, предназначена для приема только напряжений определенных заданных значений. Схема, использующая только два состояния, называется двоичной схемой. При проектировании схемы с двоичными величинами, «вкл.» И «выкл.», Представляющими 1 и 0 (т. Е. Истина и ложь), используется логика булевой алгебры. (Арифметика также выполняется в двоичной системе счисления с использованием булевой алгебры.) Эти базовые элементы объединены в конструкции ИС для цифровых компьютеров и связанных устройств для выполнения желаемых функций.

логическая схема

Различные комбинации логических схем.

Encyclopædia Britannica, Inc.

Международная конференция по микросхемам и преобразованию данных ICMDC в январе 2023 года в Лондоне

Цели и задачи Международной научной конференции

Международная научно-исследовательская конференция - это федеративная организация, цель которой - объединить значительное количество разнообразных научных мероприятий для презентации. в рамках программы конференции.События будут проходить в течение определенного периода времени во время конференции в зависимости от количества и продолжительности презентаций. Благодаря своему высокому качеству, он представляет собой исключительную ценность для студентов, ученых и отраслевых исследователей.

ICMDC 2023: 17. Международная конференция по микросхемам и преобразованию данных стремится собрать вместе ведущих академических ученых, исследователей и ученых-исследователей для обмена и обмена своим опытом и результатами исследований по всем аспектам Микросхемы и преобразование данных.Он также предоставляет ведущую междисциплинарную платформу для исследователей, практиков и преподавателей, чтобы представить и обсудить самые последние инновации, тенденции и проблемы, а также встречающиеся практические проблемы и решения, принятые в области микросхем и преобразования данных

Призыв к взносам

Будущим авторам предлагается внести свой вклад и помочь в формировании конференции путем представления своих научных резюме, статей и электронных постеров.Кроме того, высококачественные исследовательские материалы, описывающие оригинальные и неопубликованные результаты концептуальных, конструктивных, эмпирических, экспериментальных или Сердечно приглашаем для презентации на конференции теоретические работы во всех областях микросхем и преобразования данных. Конференция приглашает участников в виде тезисов, докладов и электронных плакатов, посвященных темам и темам конференции, включая рисунки, таблицы и ссылки на новые исследовательские материалы.

Руководство для авторов

Пожалуйста, убедитесь, что ваша работа соответствует строгим правилам конференции по приему научных работ.Загружаемые версии контрольного списка для Полнотекстовые статьи и Реферативные статьи.

Пожалуйста, обратитесь к Правила подачи статей, Правила подачи тезисов и Информация об авторе перед подачей статьи.

Материалы конференции

Все представленные на конференцию доклады будут подвергнуты слепому рецензированию тремя компетентными рецензентами. Рецензируемые материалы конференций индексируются в Open Science Index, Google Scholar, Семантический ученый, Зенедо, OpenAIRE, БАЗА, WorldCAT, Шерпа / RoMEO, и другие индексные базы данных.Индикаторы импакт-фактора.

Специальные выпуски журнала

ICMDC 2023 объединилась с выпуском специального журнала на Микросхемы и преобразование данных. Ряд выбранных высокоэффективных полнотекстовых статей также будет рассмотрен для специальных выпусков журнала. Все представленные статьи будут рассмотрены в этом специальном выпуске журнала. Отбор докладов будет проводиться в процессе рецензирования, а также на этапе презентации на конференции.Представленные статьи не должны рассматриваться другими журналами или публикациями. Окончательное решение о выборе статьи будет принято на основании отчетов о коллегиальном обзоре, подготовленных приглашенными редакторами и главным редактором совместно. Избранные полнотекстовые статьи будут бесплатно опубликованы в Интернете.

Возможности для спонсоров и участников конференции

Конференция предлагает возможность стать спонсором конференции или экспонентом. Чтобы принять участие в качестве спонсора или экспонента, загрузите и заполните Форма заявки на спонсорство конференции.

Избранные статьи

  1. Исследование несмещенной характеристики доплеровской частоты в зависимости от геометрии антенной решетки
    Сомайе Комейлиан
  2. Гибридная антенная решетка с элементами Bowtie для радаров сверхвысокого разрешения и 3D-сканирования
    Somayeh Komeylian
  3. Эффективность системы заземления в вертикальной конфигурации
    С. Юнус, А.Суратман, Н. Мохамад Нор, М. Осман
  4. Интеграция истории болезни пациента, созданной с помощью носимых устройств и устройств Интернета вещей, в обмен медицинской информацией
    Далвин Д. Хилл, Эктор М. Кастро Гарсия
  5. Обзор передовых систем цифровой обработки сигналов
    Роза Дастрес, Мохсен Соори
  6. Применение теории Боуэна к надзору за практиками
    Джефф А.Тайзингер, Дон П. Тайзингер
  7. Переосмысление системы управления обучением как «третьего» пространства
    Кристина Ван Вингерден
  8. Подход на основе самоорганизации для проектирования встроенных систем реального времени
    С. С. Бендиб, Л. В. Мусс, С. Калла
  9. Экосистема государственных (больших) данных: определение, классификация участников и их роли
    Сайед Ифтихар Хуссейн Шах, Василис Перистерас, Иоаннис Магнисалис
  10. Учет человеческого фактора в истребителях нового поколения для повышения боевой эффективности
    Читра Раджагопал, Индра Део Кумар, Ручи Джоши, Биной ​​Бхаргаван
  11. Увеличение пропускной способности распределительных сетей с использованием фидеров постоянного тока
    Аким Борбуев, Франсиско де Леон
  12. Сравнительное исследование глобальных энергосистем и глобальных трубопроводов ископаемой энергии с использованием технологии ГИС
    Вэньхао Ван, Синьчжи Сюй, Лимин Фэн, Вей Конг
  13. Многоцелевой оптимальный дизайн каскадной системы управления для класса неразрывных механических систем
    Юекун Чен, Юсеф Сардахи, Салам Хаджар, Кристофер Грир
  14. Мультиантенная система с двойной поляризацией для массовой сотовой связи MIMO
    Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Raed A.Абд-Альхамид, Питер С. Экселл
  15. Непрерывная аналитика в режиме реального времени для прогнозирования нестабильности в работе групп быстрого реагирования при неотложной помощи
    Эшвин Белль, Брайс Бенсон, Марк Саламанго, Фади Ислим, Родни Дэниелс, Кевин Уорд

Микросхемы
Моделирование и имитация
Электроника для обработки сигналов и других приложений
Схемы и электроника для преобразования данных
Схемы и системы управления и робототехники
Полупроводники и схемы сверхпроводимости
Схемные модели
Схемы в энергетике
Цифровая архитектура и системы
Электрические и электронные измерения
Схемы электромагнитных полей
Нечеткая логика и проектирование схем
Моделирование схем и научные вычисления с приложениями в науке и технике
Схемы для управления питанием в цифровых приложениях
Обработка сигналов
Дизайн и структура фильтров
Микропроцессоры и микрокомпьютеры
Компьютеризированная обработка сигналов
Сигнальное и системное моделирование
Улучшение речи и снижение шума

Срок подачи тезисов / полнотекстовых статей 13 февраля 2022 г.
Уведомление о принятии / отклонении 27 февраля 2022 г.
Заключительный доклад (готовый к съемке) Срок подачи и ранней регистрации 21 декабря 2022 г.
Даты конференции 21-22 января 2023 г.
Раджив Дутта Университет Шобхита, IN
Бхаратираджа Чоккалингам SRM Институт науки и технологий, IN
Али Саррафи Ник Islamic Azad Unversity, IR
Firas Al-Laban Катарский университет, QA
Андреа Гельмини Университет Южного Уэльса, Великобритания
Чедза Камбаша AKG SECURITIES, Великобритания
Абдельфатех Керруш Эдинбургский университет Напьера, Великобритания
Моджан Омидвар Лондонский университет королевы Марии, GB
Амер Шебани Университет Хаддерсфилда, Великобритания
Константинос Цавдаридис Университет Лидса, Великобритания
Аммар Аль-Бази Университет Ковентри, Великобритания
Adamantini Loukodimou Университет Лестера, Великобритания
Омар Али Ахмед Шаэби Центр ядерных исследований Таджура, Великобритания
Халед Гохер Университет Линкольна, Великобритания
Сумейра Якар Университет Эксетера, Великобритания
Ayodeji Sowale Университет Крэнфилда, Великобритания
Учечукву Авада Университет Сент-Эндрюс, Великобритания
Абдулла Альрашиди Исследование производительности фиксированных, одноосных и двухосных фотоэлектрических систем в Кувейте, GB
Линь Ван Лондонский университет королевы Марии, GB
Thamo Sutharssan Колледж Дерби, Великобритания
Деря Баран Имперский колледж Лондона, GB
Хунъин Мэн Лондонский университет Брунеля, GB
Мо Адда Портсмутский университет, Великобритания
Джаянта Мондол Университет Ульцера, Великобритания
Сукхвиндер Сингх Университет Рединга, Великобритания
Омар Али Ахмед Шаэби Центр ядерных исследований Таджура, Великобритания
Cosmin Lazar Unilever UK, GB
Елена Ирина Neaga NEAGA Университет Лафборо, Великобритания
Вэй Цзе Манчестерский университет, Великобритания
Цинган Мэн Университет Лафборо, Великобритания
Тип участия Стоимость билетов за раннюю регистрацию Стоимость регистрационного билета
Регистрация докладчика / докладчика, не являющегося студентом, € 450 500 €
Студенческое выступление / Регистрация докладчика € 350 400 €
Регистрация слушателя € 250 300 €
Дополнительная публикация статьи € 100

Все материалы и услуги конференции будут доставлены участникам в цифровом виде с помощью онлайн-системы управления конференциями.Регистрация на конференцию включает следующие цифровые материалы и услуги:

  • е-сертификаты [для авторов: свидетельство о посещении и представление; для слушателей: свидетельство о посещении; для кафедр: свидетельство о посещаемости и благодарность; для докладчиков: Сертификат на лучшую презентацию (в случае предоставления на основе оценки)]
  • электронная программа
  • электронная книга
  • Электронный значок
  • э-квитанция
  • электронная презентация

Типы презентаций:

  • Физическая презентация - это устная конференц-презентация, сделанная с использованием цифровых технологий, включая встроенные цифровые элементы (тексты, таблицы, графики или видео) для совместного использования PowerPoint.
  • Цифровая презентация - это презентация цифровой конференц-связи, созданная с использованием цифровых технологий, включая встроенные цифровые элементы (тексты, таблицы, графики или видео) для совместного использования PowerPoint.

Ранняя регистрация

Early Bird Регистрация действительна до 2022-12-21 23:59:59

Обработка кредитных карт онлайн

Автору доступна онлайн-оплата и слушатели-делегаты.
Участники конференции могут произвести оплату кредитной картой онлайн для оплаты регистрационных взносов на конференцию.

Monolith amp

Загадочный монолитный корпус стал международным.Металлический монолит, появившийся в Румынии, исчез - после сообщений и судьбы загадочной 10-футовой металлической конструкции найдены ... 05 декабря 2020 г. · Тайна монолита раскрыта. Мир с удивлением наблюдал, когда в прошлом месяце в пустыне Юты на юге штата Юта чиновниками, занимавшимися подсчетом овец, был обнаружен металлический монолит. пример 9077 Письмо начальнику
Volkswagen epc отзыв
Фильтр Boto3

Как убрать картинки с zillow

Курс героя бота Discord Reddit

Тюнинг lt1 с тюнером hp 9 Dec0003

3ds checkpoint коды сбой

Volvo Truck code sa 16 dtc p24f600

10 сентября 2019 · Monolith by Monoprice Liquid Gold Balanced Headphone Amplifier and DAC by Alex Cavalli Discussion in 'Усилители для наушников / Amp) Units 'запущен jexby, 10 сен 2019.Страница 1 из 3 1 2 3 Далее
Человек найден мертвым в tifton ga
Форма повторной проверки поставщика BBS Highmark

Митсубиси мини-раздельный гудящий шум

Sip ringback

Не удалось запустить netplan wpa wlan0 service unit netplan wpa wlan0 service not found

SISTEMA MONOLITH M1 - новый стереоусилитель со встроенной запатентованной системой цифро-аналогового преобразования ... «Система MONOLITH M1 - это устройство с внутренней стереосистемой, которое можно просто подключить к динамикам. для воспроизведения звука вашего цифрового источника (компьютер, телефон, планшет и т. д.) с точностью и чистотой, которая оставит вас недоверчивым ...
Начало запроса источника данных Kendo
One piece rose Как использовать коды

Hk vp9sk оптоволоконные прицелы

Гималайская каменная соляная лампа цена отзыва

Navien

12 сентября 2018 г. · Привет, ребята, у меня есть система объемного звучания Klipsch Reference Premier 5.1.4 на базе Denon AVR X6400H. Я планирую добавить усилитель мощности для управления моими фронтами 280F и буду признателен за любые советы / плюсы и минусы этих трех усилителей мощности, которые я искал, чтобы они соответствовали моей системе.Комбинации усилителей - дайте мне знать, какие, по вашему мнению, будут лучше всего, или предложите дополнительные предложения. Комбинации, представленные ниже, находятся примерно в том же ценовом диапазоне. (A) Опция Monoprice - класс AB Два монолита 7 x 200 Вт (300 Вт на 4 Ом) (B) Опция Emotiva - класс H, AB Три моноблока HC-1 для L / C / R (300 Вт на 8 Ом, 600 Вт на 4) XPA Gen 3 4x260w (8ohm)
Stellaris best empire build 2020
Ford ranger без искры от катушки

Flyjsim 727 трещина

Однородная или неоднородная смесь бронзы

Массачусетс

3 августа 2019 г. · Предложение HD о паре коронных усилителей, вероятно, будет самым экономичным.У Monolith прямо сейчас есть 3-канальный усилитель за 879 долларов (думал, что они больше, цена со скидкой?), Но ваша лучшая цена начинается с 5-канального усилителя, если вы посмотрите на него, как всего 200 долларов за каждый дополнительный канал.

Fsect4.PDF

% PDF-1.6 % 3 0 obj > эндобдж 105 0 объект [/ CalGray>] эндобдж 106 0 объект [/ CalRGB>] эндобдж 107 0 объект > поток application / pdf

  • Неизвестно
  • Fsect4.PDF
  • Среда, 29 июля 1998 г. 1:01:09 PMAcrobat PDFWriter 3.0 для Windows Microsoft Word 2012-06-12T12: 48: 12-04: 002012-06-12T12: 48: 12-04: 00uuid: 57a21a6c-d787-4a74-b8c2 -8c4e46d02a7auuid: 4b87336f-6f39-4491-86ec-995b34114f63 конечный поток эндобдж 108 0 объект > эндобдж 104 0 объект > эндобдж 5 0 obj > эндобдж 44 0 объект > эндобдж 65 0 объект > эндобдж 84 0 объект > эндобдж 83 0 объект > / Тип / Страница >> эндобдж 88 0 объект > / ProcSet 2 0 R >> / Тип / Страница >> эндобдж 91 0 объект > / ProcSet 2 0 R >> / Тип / Страница >> эндобдж 92 0 объект > поток ѐ`.q] р + 9

    ЦЕПЬ ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТА НА НАПРЯЖЕНИЕ Схема

    Преобразователь частоты в напряжение - это электронное устройство, которое преобразует синусоидальную входную частоту в пропорциональный ток или выходное напряжение. Базовая схема включает операционные усилители и RC-цепи (цепи резисторных конденсаторов). Операционные усилители используются для обработки сигналов. И RC-сети используются для удаления частотно-зависимой пульсации. На схеме ниже показана принципиальная схема преобразователя частоты в напряжение с использованием сетей ОУ и RC:

    Входная частота этого преобразователя может находиться в диапазоне 0-10 кГц.А выходное напряжение может находиться в диапазоне от 0 до -10 В.

    Блок-схема преобразователя F-V

    На приведенной выше блок-схеме показан преобразователь частоты в напряжение. Схема заряжает конденсатор до определенного уровня. В него включен интегратор, и конденсатор разряжается в этот интегратор или в цепь нижних частот. Это происходит для всех циклов входного сигнала. Прецизионный переключатель и моностабильный мультивибратор генерируют импульс определенной амплитуды и периода, который подается в сеть усреднения.Следовательно, мы получаем на выходе постоянное напряжение.

    СХЕМА F-V С ИСПОЛЬЗОВАНИЕМ LM331

    Это принципиальная схема преобразователя частоты в напряжение, использующего LM331.

    Photo Credit circuittoday

    Эта ИС в основном представляет собой преобразователь напряжения в частоту, но может использоваться как преобразователь частоты в напряжение. Его приложения также включают аналого-цифровое преобразование и долгосрочную интеграцию.

    Преобразователь БС РАБОЧИЙ

    В этой схеме lm331 используется для преобразования частоты в напряжение.Напряжение на выходе пропорционально частоте на входе. Это 8-контактная ИС. Источник подключен к выводу 8 и подает 15 В постоянного тока. Контакты 3 и 4 подключены к земле. Входная частота задается на контакте 6, а выходное напряжение снимается с контакта 1. Входная частота дифференцируется с помощью резистора R7 и конденсатора C3, а затем результирующая последовательность импульсов поступает на контакт 6. Схема таймера запускается встроенной схемой. -в схеме компаратора в ИС, когда отрицательный фронт импульсной последовательности появляется на выводе 6.

    Ток, вытекающий из вывода 6, пропорционален значениям конденсатора C1 и резистора R1 (которые также известны как компоненты синхронизации) и входной частоте. Таким образом, мы получаем выходное напряжение на резисторе R4, которое пропорционально входной частоте. В этой цепи используется 15 В постоянного тока, но рабочее напряжение IC может быть от 5 до 30 вольт постоянного тока. Величина резистора R3 зависит от напряжения питания.

    ПРИМЕНЕНИЕ ПРЕОБРАЗОВАТЕЛЕЙ F-V

    Эти преобразователи используются в широком диапазоне приложений, таких как связь, управление мощностью, измерительные и измерительные системы и т. Д.

    Мы подробно обсудим следующие приложения:

    1. Преобразователь частоты в напряжение в тахометрах.
    2. Измерение разности частот.
    ПРЕОБРАЗОВАТЕЛЬ F / V И ЦИФРОВОЙ ТАХОМЕТР

    Цифровой тахометр - это электронное устройство, измеряющее скорость вращения колеса. Они отображают скорость вращения в виде напряжения, поэтому в них требуется преобразователь частоты в напряжение. На схеме ниже показан цифровой тахометр.

    Цифровой тахометр

    Частота возникновения некоторых событий может быть измерена измерителем скорости. Он считает события за определенный период времени, а затем делит количество событий на общее время, и, следовательно, мы получаем коэффициент. Это теория работы простого тахометра.

    Мы используем микросхему LM2907 для этой схемы тахометра. Это 8-контактная ИС. На вывод 1 подаем частотный сигнал на вход зарядовой накачки. На выводе 2 напряжение будет между двумя значениями: (V CC ) - V BE и ¾ (V CC ) - V BE .

    На схеме ниже показана конфигурация микросхемы LM2907:

    .

    Конденсаторы C1 и C2 и резистор R1 имеют определенные значения в соответствии с требованиями схемы. Эти значения можно изучить в техническом паспорте LM2907.

    Интерфейс LM2907

    Входной сигнал подается на вывод 1, а на вывод 11 подается опорное напряжение. На контакты 8 и 9 подается постоянное напряжение. Инвертирующий вход операционного усилителя соединен с выходом эмиттера.На выводе 5 мы получаем напряжение с низким импедансом, которое пропорционально заданной входной частоте. С вывода 5 и вывода 10 мы получаем выходной сигнал 67 Гц / В. Этот вывод отправляется на АЦП, а затем DSP может его прочитать.

    ИЗМЕРЕНИЕ РАЗНИЦЫ ЧАСТОТ

    TC9400 - это ИС преобразователя частоты в напряжение и напряжения в частоту. Его основные схемы подключения включают три резистора, два конденсатора и опорное напряжение. Мы можем использовать две микросхемы TC9400 и работать с ними в режиме преобразования частоты в напряжение, чтобы получить измерения разности частот.

    0 comments on “Микросхемы преобразователи напряжения схемы: Обзор микросхем для импульсных повышающе-понижающих преобразователей напряжения с одной индуктивностью — Компоненты и технологии

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *