Светодиодная лампа википедия: Что такое светодиодная лампа?

Что такое светодиодная лампа?

Светодиодная лампа представляет собой источник света, выполненный в форм-факторе какой-либо обычной лампы накаливания (или люминесцентной).

Это позволяет легко включить светодиодную лампу в электрическую цепь – нужно всего лишь удалить лампу накаливания и на её место поставить светодиодную (с подходящими характеристиками по напряжению).

Схематическое изображение лампы накаливания и светодиодной

Хотя внешне светодиодные лампы очень похожи на лампы накаливания, в них используется совершенно иной принцип свечения: светодиодные лампы светятся в результате движения электронов в полупроводниковом материале.

Светодиод (один или несколько), установленный в лампе, выполняет функцию спирали в лампе накаливания – генерирует свет. Но при этом светодиоды лишены основных недостатков ламп накаливания – светодиоды крайне редко перегорают и их срок службы практически не зависит от количества включений-выключений лампы. Срок службы светодиодов достигает 50 тысяч часов, что в десятки раз превышает срок службы обычной лампы.

Светодиодные лампы изготавливаются из абсолютно безопасных материалов и могут быть использованы в любой комнате Вашего дома.

Экономия электроэнергии на светодиодных лампах

За последние 10 лет технологи производства светодиодов шагнули далеко вперёд. Светодиоды стали более яркими и более дешевыми, у них существенно вырос индекс цветопередачи. Наступило время, когда светодиодные лампы можно использовать в качестве основного освещения дома, в офисе, на производстве и в уличных фонарях.

Современные светодиоды отличаются очень высокой светоотдачей (количество света в расчёте на один ватт мощности). По этому показателю они в 5-10 раз превосходят лампы накаливания, соответственно, для получения того же количества света, как и от лампы накаливания, достаточно светодиодной лампы в 5-10 раз меньшей мощности. Это приводит к существенной экономии расходов на электроэнергию.

Средний срок окупаемости светодиодной лампы (с учётом экономии на платежах за электроэнергию и расходов на замену перегоревших ламп накаливания) составляет от 6 месяцев до двух лет.

Защита природы

Светодиодные лампы, в отличие от люминесцентных, не содержат в себе никаких вредных веществ и, поэтому, не требуют каких-либо особых условий утилизации. Они могут быть полностью переработаны.

Ввиду существенно меньшего энергопотребления использование светодиодных ламп уменьшает выбросы CO2 в атмосферу.

Светодиодные лампы ТАУРЭЙ

Ассортимент производимых нами светодиодных ламп ТАУРЭЙ огромен. У нас есть лампы практически под любой светильник.

Мощности ламп варьируются от 3 до 15 ватт (ламп на цоколе G4 - от 0.5 до 4 ватт, промышленные лампы Е27/Е40 - до 80 ватт). Лампы выполнены со всеми наиболее распространёнными цоколями: E14 (миньон), E27 ("обычный толстый цоколь"), GU5.3 ("две ножки", иногда неправильно называется MR16), GU10 ("две толстые ножки, поворотный"), G4 ("две очень маленькие ножки", иногда неправильно называется MR11).

Светодиодные лампы ТАУРЭЙ

Каждый тип наших ламп имеет два варианта температуры света - с теплым светом (2800-3200К) для жилых помещений (в-основном) и с холодным светом (6000К) преимущественно для рабочих и офисных помещений.

Лампы специального (промышленного) назначения мы производим, как правило, с нейтральным белым светом.

Лампы под напряжение 12 вольт мы выпускаем трёх видов: в форме MR16 и маленькие пальчиковые лампочки с цоколем G4 для использования в качестве замены галогеновых светильников.

Третий вид наших низковольтных ламп - светодиодные лампы ТАУРЭЙ с цоколем Е27 и Е14 для электросетей от 12 до 80 вольт.

Светодиодные лампы Е27 на 12 вольтСветодиодные лампы Е27 на 36 вольтСветодиодные лампы Е14 на 12, 24, 36, 48 вольтЗамена ДРЛ: мощные промышленные светодиодные лампы Е40/Е27

Во всех прочих лампах используется продвинутый блок питания, который делает возможным использовать лампы при любом напряжении от 85 до 265 вольт. При этом, независимо от напряжения питающей сети - 110, 127 или 220 вольт, уровень яркости лампы остаётся одним и тем же. Большинство наших бытовых светодиодных ламп будут штатно работать в электросетях 110 и 127 вольт, причём как переменного, так и постоянного тока.

В светодиодных лампах ТАУРЭЙ установлены либо High Power светодиоды, либо крайне эффективные SMD светодиоды, отличающиеся очень высокой светоотдачей – до 100 люмен на ватт и выше. Это делает светодиодные лампы ТАУРЭЙ исключительно эффективным источником света.

Качество

Каждая лампа ТАУРЭЙ непосредственно перед упаковкой проходит непрерывное 12-и часовое тестирование на специальном оборудовании, где проверяется работа лампы в пограничных условиях: повышенные температура и влажность, механические вибрации и многократные включения-выключения. При малейшем отклонении в нормальной работе лампы она снимается со стенда. В продажу попадают только лампы, полностью прошедшие этот стресс-тест.

Вся продукция сертифицирована. Копии сертификатов Вы можете найти в разделе Гарантия

У Вас есть вопрос? Спросите консультанта.

Позвоните нам.
Или кликните здесь и задайте свой вопрос - подробный ответ Вы получите очень быстро.
Мы всегда стараемся помочь.Каталог продукции

Светодиодные лампы, что это такое? Подробный ответ

Лампы, в которых функцию источника света выполняют светодиоды (или led, от англ.

light-emitting diode), называются светодиодными. Они предназначены для замены всех устаревших типов ламп, применяемых в освещении в настоящее время. Благодаря использованию безопасных компонентов, светодиодные лампы востребованы во всех сферах освещения: бытовом, производственном, уличном, аварийном.

Как она выглядит

Классическая светодиодная лампа (иногда их называют светодиодный светильник), подобно лампе накаливания, имеет грушевидную форму. Чаще всего её цокольная часть выполнена из белого металлопластика, а колба представляет собой матовую полусферу из пластика. Данный тип LED-ламп выпускается с цоколями Е14 и Е27, которые наиболее востребованы среди населения.

Светодиодная лампочка может иметь любую форму и изготавливаться под любой стандартный цоколь. Например:
  • GU5.3 – для потолочных светильников направленного свечения;
  • G4 – для люстр и декоративных светильников;
  • G13 – для замены линейных люминесцентных ламп.

Более 90% выпускаемых сегодня светодиодных ламп собраны на SMD-светодиодах, которые имеют миниатюрные размеры и при этом обладают высокой светоотдачей. Кроме них в продаже можно увидеть так называемые филаментные лампы, внешне очень напоминающие обычную лампочку накаливания (ЛН). Ещё реже встречаются лампочки, в которых источник света выполнен в виде COB-матрицы, залитой слоем люминофора. Тем не менее в будущем планируется, что именно они перехватят инициативу в сфере производства LED-ламп.

Из чего состоит светодиодная лампа

Условно любую светодиодную лампу можно представить в виде составных частей: блока со светодиодами, радиатора, светорассеивающего колпака, блока драйвера и цоколя. Источник света SMD-светодиоды – располагаются на плате из текстолита, которая через термопасту (теплопроводный клей) соединяется с радиатором. У большинства светодиодных ламп на 220 В функцию радиатора выполняет корпус. Он выполнен из алюминия, покрытого тонким слоем белого пластика. Внутри корпуса расположена плата драйвера, предназначенная для преобразования переменного напряжения сети 220 вольт в постоянное напряжение. Величина выходного напряжения зависит от количества и схемы включения установленных светодиодов. Драйвер соединяется с цоколем проводами или через разъём. Для того чтобы свет от лампочки равномерно распределялся во все стороны, светодиоды накрывают рассеивающей колбой, которая также служит защитой от механических повреждений.

Линейные светодиодные лампы типа Т8 устроены аналогичным образом. Просто они имеют другую форму и размер составных частей. В дешёвых светодиодных лампах с цоколем типа Е14 и Е27 блок драйвера может отсутствовать. Вместо него в центре платы со светодиодами запаян примитивный бестрансформаторный блок питания, не имеющий стабилизации по току и напряжению. Аналогичным образом собраны многие миниатюрные LED-лампы, так как внутри их корпуса недостаточно места для монтажа драйвера.

Основные достоинства и недостатки

Постоянно растущий спрос на светодиодные лампы свидетельствует об их явном превосходстве над остальными источниками искусственного света. Действительно, если взглянуть на их технические характеристики, то станет понятно, что люминесцентные и спиральные лампы проигрывают светодиодным практически по всем показателям. И это при том что светодиодные технологии продолжают совершенствоваться и ещё не достигли своего пика. Преимуществ у светодиодных ламп действительно много:

  1. Относительная световая отдача уже достигает 30% (теоретический максимум для светодиодов – 40%). Для люминесцентных источников света этот показатель равен 15%, а для ЛН не превышает 3%.
  2. Низкое энергопотребление (в 7–9 раз меньше, чем ЛН).
  3. Срок службы от 10 тыс. часов и выше. Заявленный срок службы ЛН – 1 тыс. часов.
  4. Стойкость к механическим повреждениям и вибрации.
  5. Мгновенное включение. Причем количество переключений не влияет на работу светодиодов.
  6. Отсутствие вредных веществ, что позволяет их безопасно эксплуатировать и утилизировать.
  7. Возможность производства лампочек разной мощности и с любым оттенком света (холодным, нейтральным, тёплым). А в «умных» светодиодных лампах цвет света и его яркость можно задавать дистанционно с помощью смартфона.
  8. Во время работы рассеиватель практически не нагревается, а температура цоколя не превышает 85 °C.

Стоит признать, что LED-лампы не идеальны, а значит, им присущи определённые недостатки:

  1. Сравнительно высокая стоимость. Даже с учётом того, что за последние 2 года цены на них снизились более чем в 2 раза и сравнялись с ценами на КЛЛ, многие люди по привычке продолжают покупать «прожорливые» ЛН. Убедиться в том, что покупка светодиодной лампы, с экономической точки зрения, полностью оправдана можно путем проведения несложных расчётов, которые сведены в отдельную статью.
  2. Вредное мерцание, невидимое невооруженным глазом и приводящее к общей усталости и головным болям. Данный недостаток присущ дешёвым светодиодным лампам, драйвер которых не имеет стабилизации по току.
  3. Необходимость в понижающем преобразователе, вследствие чего возрастает стоимость изделия и снижается его надёжность.
  4. Светодиодные лампы, подключенные через выключатель с подсветкой и находясь в выключенном состоянии, могут мерцать или слабо светиться. Проблема решается заменой выключателя или доработкой схемы подключения.
  5. Высокий процент брака, особенно среди дешёвых LED-ламп. Данный недостаток объясняется ускоренными темпами производства светодиодной продукции и отсутствием должного технического контроля на всех стадиях изготовления.

Как производители светодиодных ламп обманывают покупателей

Популярность светодиодного освещения растёт. Количество российских производителей светодиодных ламп приближается к сотне. К сожалению, некоторые из них не стесняются обманывать покупателя, за одно дискредитируя других производителей. Ведь покупатель неудачно купив одни лампы, потом побоится покупать другие.

Вот две лампы «Экономка». Судя по картинкам, покупатель должен понять, что они потребляют 5 Вт, а светят, как 60-ваттные лампы накаливания.


Обман начинается уже в информации, приведённой на упаковке. На обеих лампах мелким шрифтом указано: «Световой поток: 340 лм».

Вот только 340 люмен это не 60 Вт эквивалента, а лишь 40. Но это ещё не весь обман. Тестируем обе лампы.

Вместо обещанных 5 Вт мощность у «свечки» 4 Вт, а у «шарика» только 3.9 Вт. Световой поток — 283 и 231 Лм. Эти лампочки светят, как 25-ваттные лампы накаливания, а производитель обещал эквивалент 60 Вт.

Ещё один пример — две лампы «Космос». Производитель обещает эквивалент 75 Вт у 7-ваттного шарика и 60 Вт у 5-ваттной свечки.

Уже неправдоподобно, не правда ли? Смотрим очень мелкий шрифт на обратной стороне коробки.

Свечка — 340 Лм (на самом деле это эквивалент 40 Вт), шарик — 540 Лм (эквивалент 60 Вт). Соврали уже на коробке. Измеряем.

Мощность свечки 3. 8 Вт вместо 5 Вт. Мощность шарика 5 Вт вместо 7 Вт. Световой поток у свечки всего 242 Лм, у шарика — 422 Лм. Обещали, что лампочки будут светить, как 75 Вт и 60 Вт, а на самом деле светят, как 45 Вт и 25 Вт.

Иногда, производители обманывают по-другому. Вот лампа Старт. На упаковке указано 7 Вт, эквивалент 60 Вт, 560 Лм.

560 Лм действительно соответствует эквиваленту 60 Вт (видимо поэтому производитель и поместил эту надпись на лицевую часть коробки и написал её крупным шрифтом). Измеряем.

Упс. Вместо 7 Вт только 5.6 Вт, а вместо 560 Лм только 332 Лм. Лампочка, которая по уверениям производителя должна светить, как 60-ваттная лампа накаливания, светит, как 40-ваттная.

К сожалению, в России никак не контролируются светодиодные лампы, поступающие в продажу. По ГОСТ Р 54815-2011 измеренный начальный световой поток светодиодной лампы должен быть не менее 90% номинального светового потока. Но на ГОСТ многие просто плюют.

Враньё с мощностью и яркостью это ещё не всё. В продаже можно встретить большое количество ламп с сильной видимой пульсацией света (это может приводить к усталости), а также лампы с низким индексом цветопередачи (CRI), приводящим к тому, что цвета предметов, освещаемых такими лампами, выглядят неестественно.

Мне известны только пять брендов, которые никогда не врут с мощностью и световым потоком. И все они не российские. Это Ikea, Osram, Philips, Thomson и Diall (собственный бренд магазинов Castorama).

Большинство ламп российских брендов Navigator, Наносвет, Лисма, Gauss, X-Flash имеют мощность и световой поток, соответствующий заявленным и только некоторые модели ламп этих производителей светят слабее, чем обещано. Это просто объяснить — лампы (а Лисма светодиодные нити для производства ламп) они заказывают в Китае, а китайские производители сначала поставляют лампы, соответствующие предсерийным образцам, а потом начинают экономить и обманывают своих партнёров и нас, потребителей. Оборудование для тестирования ламп стоит дорого, тесты в лабораториях тоже недёшевы вот и выходит, что иногда производители узнают о том, сколько на самом деле света дают их лампы, от меня.

Прежде, чем покупать светодиодные лампы изучайте результаты их тестирования на lamptest.ru. Даже если там нет конкретной модели, которую вы хотите купить, составить общее мнение о производителе можно по другим моделям. Часто у производителя лампы вполне хорошие, но нужно вводить «поправку на яркость», покупая лампы с запасом по яркости. Например у тех же брендов Экономка, Космос и Старт многие лампы вполне приличные.

Не дайте себя обмануть!

Филаментные лампы. Принцип работы, особенности, преимущества и недостатки

Что такое филаментная лампа и почему она лучше? Чем она отличается от ламп накаливания и светодиодных ламп? В этой статье вы найдете ответы на эти вопросы. Мы подробно расскажем о принципе работы, особенностях, преимуществах и недостатках филаментных ламп.

Филаментные лампы: что это?

Что же такое филаментная лампа? Это светодиодная лампа особого типа, которая внешне очень напоминает лампу накаливания (ЛН). Она имеет такую же прозрачную стеклянную колбу, но внутри расположена не вольфрамовая нить, а светодиоды особой конструкции, по виду напоминающие нити. Отсюда и произошло название этого типа ламп – «filament», которое с английского языка переводится как «нить».

В выключенном состоянии филаментную лампу легко отличить от ЛН по форме и характерному жёлтому цвету светодиодных нитей, но во включенном состоянии отличия становятся не столь очевидны. Несмотря на большое внешнее сходство, по параметрам филаментная лампа намного лучше ламп накаливания и эффективнее обычных светодиодных ламп.

Конструкция филаментной лампы

В конструкции филаментных ламп применяются отработанные и проверенные годами элементы ламп накаливания в сочетании с современными светодиодными технологиями. Основные части филаментной лампы показаны на рисунке ниже.

Конструкция филаментной лампы

 

Филаментные лампы MAXUS

Все филаментные лампы MAXUS

Колба

Стеклянная герметичная прозрачная колба может иметь различную форму. В декоративных сериях ламп может применяться стекло со специальным напылением, чтобы создать более мягкий и тёплый оттенок свечения. Колба заполнена инертным газом, как правило, гелием, который быстро переносит выделяемое светодиодами тепло к стенкам колбы. Тепло равномерно распределяется по всей поверхности колбы и рассеивается в окружающую среду. Так как площадь колбы во много раз больше площади светодиодных нитей, она не нагревается выше 50-60°С.

Светодиодный филамент

Филаментная нить производится по технологии Chip-on-Glass (COG), применяемой при изготовлении дисплеев для мобильных устройств. Она представляет собой подложку из сапфирового стекла, на которой цепочкой расположены кристаллы светодиодов. Благодаря прозрачной подложке свет от светодиодов распространяется во все стороны. На концах подложки закреплены контакты для подачи электропитания и закрепления нити в лампе. Снаружи нить покрывают специальным веществом – люминофором, который и задаёт требуемый цвет свечения (цветовую температуру) нити. Для декоративных серий ламп изготавливают нити различной формы, например, в виде дуг или спиралей.

Стеклянная ножка

Этот важный элемент конструкции является опорой для крепления филаментных нитей. Также в ножке проложены проводники, через которые подводится электропитание к светодиодам.

Цоколь

Служит для закрепления лампы в электрическом патроне и подвода к ней электропитания. Самые распространённые типы цоколей – E27 и E14. Цоколь филаментной лампы – единственное место, где может быть размещён драйвер питания светодиодов.

Драйвер

Драйвер светодиодной лампы представляет собой специальную электронную схему, собранную на печатной плате. Основная функция драйвера – обеспечить правильный режим работы светодиодов при изменении внешних факторов, таких как напряжение питания и температура окружающей среды. Современные схемы светодиодных драйверов способны работать в очень широком диапазоне напряжений сети, имеют различные виды защит и высокий КПД, гарантируют отсутствие мерцания и пульсаций света. Как правило, основой схемы драйвера является специализированная микросхема, обеспечивающая его высокие показатели.

Интересно знать. Цветовую температуру филаментной лампы можно приблизительно определить по оттенку цвета нитей. Если нити имеют лимонный оттенок, то такая лампа будет создавать дневной (белый) свет, а лампа с нитями насыщенного жёлтого или оранжевого цвета – более тёплый (жёлтый). Форма, длина и количество филаментных нитей влияют на качество освещения. Чем больше цепочек и чем они длиннее, тем больше светодиодов на них можно разместить и тем ярче будет лампа. От расположения нитей зависит также и равномерность освещения.

Совет. Качество люминофора напрямую влияет на качество света. Производители недорогих брендов могут экономить на люминофоре. Дешёвый люминофор быстро теряет свои свойства в процессе эксплуатации (деградирует), что отрицательно сказывается на качестве света – появляется неприятный и вредный для глаз синий оттенок. По этой причине, нужно правильно подходить к выбору производителя ламп.

Особенности и преимущества филаментных ламп

Филаментные лампы имеют ряд преимуществ не только перед ЛН, но и перед обычными светодиодными лампами:

  • Ввиду того, что вся поверхность лампы представляет собой прозрачную колбу, а также из-за особенной конструкции филаментной нити, лампа обеспечивает очень широкий угол рассеивания света – практически 360 градусов. Она способна равномерно освещать окружающее пространство, чего трудно добиться в обычных светодиодных лампах;
  • В обычных светодиодных лампах для увеличения угла рассеивания применяют колбы (оптические системы) из специальных полупрозрачных материалов, которые поглощают часть света. Колба филаментной лампы полностью прозрачна, что приводит к увеличению энергоэффективности лампы;
  • Во время работы светодиоды могут нагреваться до высоких температур, и именно температура является препятствием к дальнейшему увеличению их светоотдачи. Особенности конструкции филаментной нити способствуют равномерному распределению тепла между всеми кристаллами светодиодов и эффективному отведению тепла от всей поверхности нити. При этом, за счёт газа, заполняющего колбу, тепло быстро переносится к ее стенкам и рассеивается в окружающую среду, а из-за большой площади поверхности колба не нагревается до высокой температуры. Эффективное отведение тепла от светодиодов позволяет подводить к ним большую мощность без риска выхода из строя, что также способствует повышению энергоэффективности лампы и увеличению ее срока службы.

Таким образом, основным преимуществом филаментных ламп является их высокая эффективность, но на этом их преимущества не заканчиваются. Эти источники света одинаково хорошо подходят для освещения домов, магазинов, кафе, учебных и общественных заведений. Благодаря широкому углу рассеивания света, филаментные лампы можно применять для общего и местного освещения интерьеров. Филамент отлично сочетается с хрустальными светильниками и люстрами, открытыми и прозрачными плафонами, бра в форме фонарей и другими моделями в классическом и старинном стилях. Стеклянная колба не нагревается до высоких температур, поэтому филаментные лампы можно устанавливать возле натяжных или гипсокартонных потолков и других поверхностей, которые не допускают сильного нагрева.

Сравнение ламп разных типов

ЛАМПА НАКАЛИВАНИЯ (ЛН) КОМПАКТНАЯ ЛЮМИНЕСЦЕНТНАЯ ЛАМПА ОБЫЧНАЯ СВЕТОДИОДНАЯ ЛАМПА ФИЛАМЕНТНАЯ ЛАМПА
Свет комфортный для глаз; угол освещения – 360° некомфортный для глаз; угол освещения – 360°

менее комфортный для глаз; угол освещения – 180…270°

комфортный для глаз; угол освещения – 360°

Здоровье безопасна – не содержит ртуть небезопасна – содержит ртуть безопасна – не содержит ртуть безопасна – не содержит ртуть
Стоимость низкая средняя выше средней высокая, но быстрая окупаемость
Электроэнергия

высокое потребление электроэнергии

в 5 раз меньше, чем ЛН в 7 раз меньше, чем ЛН в 10 раз меньше, чем ЛН
Срок службы небольшой срок службы (1000 часов) средний срок службы большой срок службы большой срок службы

Декоративные модели с прозрачной стеклянной колбой подойдут для оформления залов кофеен, баров и ресторанов

Филаментная лампа в форме свечи — отличный выбор для хрустальной люстры

Виды филаментных ламп

Существует несколько видов филаментных ламп для различных областей применения. В зависимости от этого внешний вид лампы и конструкция ее нитей выглядят по-разному. Прямая нить используется для максимально яркого освещения дома, офиса либо улицы. Нить в виде спирали применяется в декоративных лампах для создания мягкого света, уютной и приглушенной атмосферы в спальнях, кафе, барах и ресторанах. Специальное напыление внутри колбы делает филаментную лампочку уникальной, а ее свечение – особенным.

Применение филаментных ламп в декоративных целях позволяет создать неповторимый интерьер

Форма, размеры и внешний вид филаментных ламп настолько разнообразны, что позволяют удовлетворить практически любые потребности и подобрать лучший вариант.

Модели с прозрачной колбой стильно смотрятся не только в классических или винтажных, но и в современных интерьерах

Лампы филамент в форме свечи с теплым светом создадут уют в гостиной

Чтобы получить уверенность в том, что вы покупаете качественные и долговечные филаментные лампы, дающие комфортный свет, заходите в магазин Maxus!

Мы предлагаем модели, которые прошли тестирование и одобрены офтальмологами как безопасные для зрения. Лампы имеют ресурс работы до 30 000 часов и отлично адаптированы к нашим электросетям. Мы уверены в качестве своей продукции и предоставляем трёхлетнюю гарантию на филаментные лампы MAXUS!

Покупайте лампы в брендовом магазине «Максус», потому что у нас:

  • работают приветливые консультанты, которые ответят на любые вопросы и помогут подобрать правильную модель;
  • есть бесплатная услуга расчета освещения;
  • созданы условия для удобных покупок: доставка по всей Украине и разные способы платежа.

Чтобы покупать лампы и светильники по выгодным ценам, следите за нашим блогом, подписывайтесь на страничку в ФБ и участвуйте в акциях и выгодных предложениях!

Выбирайте качественный и современный свет с MAXUS!

1.2.1 — Официальная Minecraft Wiki

1.2.1 — обновление, добавившее формат карт Anvil, осады зомби и новые структуры, такие как джунгли, деревянные мосты под заброшенными шахтами и колодцы. Также были добавлены новые блоки и предметы: зелье опыта, лампа, огненный шар и потрескавшийся каменный кирпич и новые мобы: железные големы и оцелоты.

Основное[править | править код]

  • Миры, созданные до 1.2, должны быть преобразованы.

Игровой процесс[править | править код]

Осада зомби

Генерация мира[править | править код]

Джунгли
  • Очень плотный, но довольно редкий биом с большим количеством огромных деревьев, достигающих в высоту 31 блок и имеющие стволы толщиной 2x2 блока. Большую часть джунглей покрывает листва.
Колодец
  • С небольшим шансом генерируется в пустынях.
Заброшенная шахта
  • Теперь генерируется с мостами

Блоки и предметы[править | править код]

Зелье опыта
  • Используется для пополнения очков опыта.
  • Доступен только в творческом режиме.
Потрескавшийся каменный кирпич
  • Доступен только в творческом режиме.
Огненный шар
  • При использовании поджигает блоки.
  • Могут быть выпущены из раздатчиков.
  • Также заменяет огниво.
Лампа
Древесина джунглей
  • Новый тип древесины, добываемый с деревьев джунглей.
  • Имеет слегка замшелую коричневую текстуру коры.
Саженец дерева джунглей
  • Добывается с листвы джунглей.
  • Используется для выращивания деревьев джунглей.
Листва джунглей
  • Генерируется на деревьях джунглей.

Мобы[править | править код]

Железный голем
  • Спаунится в деревнях NPC.
  • Защищает жителей деревни от зомби и других враждебных мобов.
  • Могут быть созданы путём размещения 4 железных блоков и 1 тыквы в определённом порядке.
Оцелот
  • Можно приручить с помощью рыбы.
    • Прирученные оцелоты (кошки) отпугивают криперов и телепортируются к игроку.

Основное[править | править код]

Anvil (формат карт)
  • Новый формат карт.
  • Увеличивает высоту мира до 256 блоков.

Игровой процесс[править | править код]

F3 экран отладки
  • Новая легенда:
    • lc: самая большая высота.
    • b: показывает, в каком биоме вы находитесь.
    • bl: яркость блока.
    • sl: яркость неба.
    • rl: яркость предметов.

Блоки и предметы[править | править код]

Раздатчик
  • Изменена текстура.
Дёрн
  • Размещение блока на траве заменяет траву.
Лестница
  • При крафте получаются 3 лестницы вместо 2.
Лава
  • Лава имеет слабый рокочущий звук.
Дубовый саженец
  • Изменена текстура.
Плиты и Ступени
  • При размещении на нижней стороне блока, переворачиваются.
  • При крафте плиты получается 6 штук вместо 3.
Лианы
  • По лианам можно взбираться наверх.

Мобы[править | править код]

Деревенские жители

  • У них появляются дети, если один из домов в деревне пустой.
Волк
  • Прирученных волков можно кормить костями.
Зомби
  • Могут выламывать деревянные двери на уровне сложности «Сложный» или в Хардкорном режиме.
  • Существует небольшой шанс, что зомби при смерти дропнут железный слиток, железные инструменты или железный меч.
  • Если они загораются при дневном свете, то стремятся найти укрытие или водоём.
  • Нападают на деревенских жителей.
Скелет
  • Есть редкий шанс выпадения лука или зачарованного лука.
  • Когда загораются на солнце, стремятся найти укрытие или водоём.
Снежный голем
  • Теперь тают и умирают в Нижнем мире.
  • Выстраиваются в один ряд для атаки мобов.
Зомби-свиночеловек
  • Есть небольшая вероятность выпадения золотого шлема, золотого слитка, золотого меча или зачарованного золотого меча.
  • Плавают в воде быстрее.

3 ошибки исправлено

  • Двери лучше взаимодействуют с красным камнем.
  • Фоновые звуки работают в многопользовательской игре.
  • Спаунеры мобов теперь отображают правильного моба (вместо свиньи).

Устройство светодиода принцип работы светодиода преимущества

Светодиод: устройство, принцип работы, преимущества

Интерес к светодиодам растет быстрее, чем территория их применения в светотехнике. Производители и потребители, продавцы и покупатели - все как будто замерли на старте, боясь отстать от других. И только дизайнеры уже вовсю пользуются уникальными возможностями светодиодов. Давно прошло то время, когда светодиоды были интересны одним лишь ученым. Теперь светодиодная тема у всех на слуху. Говорят, за ними будущее.

Светодиоды излучают не только уникальный по своим характеристикам свет, но и завидный оптимизм по поводу своего места на рынке светотехники. Особенно активно экспансия LED разворачивается в области интерьерного оформления и светодизайна.

Настоящая публикация не случайно построена в форме вопросов и ответов (FAQ, frequently asked questions - часто задаваемые вопросы). Именно так заинтересованный человек подходит к новому для него объекту, с тем чтобы «пощупать» его с разных сторон и уж потом решить: нужен - не нужен. А мне задавать правильные вопросы и находить на них верные ответы помогал профессор МГУ Александр Эммануилович Юнович, один из ведущих российских специалистов по светодиодам.

1. Что такое светодиод?

Светодиод - это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Кстати, по-английски светодиод называется light emitting diode, или LED.

2. Из чего состоит светодиод?

Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации.

Рис. 1. Конструкция светодиода Luxeon фирмы Lumileds lighting.

3. Как работает светодиод?

Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую - донорскими.

Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.

Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

4. Означает ли это, что чем больший ток проходит через светодиод, тем он светит ярче?

Разумеется, да. Ведь чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехода диод перегреется и выйдет из строя.

5. Чем хорош светодиод?

В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и, теоретически, это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы достигает 100 тысяч часов, что в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод - низковольтный электроприбор, а стало быть, безопасный.

6. Чем плох светодиод?

Только одним - ценой. Пока что цена одного люмена, излученного светодиодом, в 100 раз выше, чем галогенной лампой. Но специалисты утверждают, что в ближайшие 2-3 года этот показатель будет снижен в 10 раз.

7. Когда светодиоды начали применяться для освещения?

Первоначально светодиоды применялись исключительно для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые светодиоды, а также увеличить их яркость, а точнее светоотдачу, то есть отношение светового потока к потребляемой энергии.

В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо - не существовало светодиодов синего, сине-зеленого и белого цвета.

К концу 80-х годов в СССР выпускалось более 100 млн светодиодов в год, а мировое производство составляло несколько десятков миллиардов.

8. От чего зависит цвет светодиода?

Исключительно от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника, и от легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

9. Какие трудности пришлось преодолеть ученым, чтобы изготовить голубой светодиод?

Голубые светодиоды можно сделать на основе полупроводников с большой шириной запрещенной зоны - карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. (Помните таблицу Менделеева?)

У светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и служили недолго. Оставалась надежда на нитриды.

Нитрид галлия GaN плавится при 2000 °С, при этом равновесное давление паров азота составляет 40 атмосфер; ясно, что растить такие кристаллы непросто. Аналогичные соединения - нитрилы алюминия и индия - тоже полупроводники. Их соединения образуют тройные твердые растворы с шириной запрещенной зоны, зависящей от состава, который можно подобрать так, чтобы генерировать свет нужной длины волны, в том числе и синий. Но... проблему не удавалось решить до конца 80-х годов.

Первым, еще в 70-х, голубой светодиод на основе пленок нитрида галлия на сапфировой подложке удалось получить профессору Жаку Панкову (Якову Исаевичу Панчечникову) из фирмы IBM (США). Квантовый выход был достаточен для практических применений, однако руководство сказало: «Ну, это ж на сапфире - дорого и не так уж ярко, к тому же p-n-переход нехорош. ..» - и работы Панкова не поддержали.

Между тем группа Сапарина и Чукичева из МГУ обнаружила, что под действием электронного пучка GaN с примесью цинка становится ярким люминофором, и даже запатентовала устройство оптической памяти. Но тогда загадочное явление объяснить не удалось.

Это сделали японцы - профессор И. Акасаки и доктор X. Амано из университета Нагоя. Обработав пленку GaN с примесью магния электронным пучком со сканированием, они получили ярко люминесцирующий слой р-типа с высокой концентрацией дырок. Однако разработчики светодиодов не обратили должного внимания на их публикации.

Лишь в 1989 году доктор Ш. Накамура из фирмы Nichia Chemical, исследуя пленки нитридов элементов III группы, сумел воспользоваться результатами профессора Акасаки. Он так подобрал легирование (Мд, Zn) и термообработку, заменив ею электронное сканирование, что смог получить эффективно инжектирующие слои р-типа в GaN-гетероструктурах. Вот как был получен голубой светодиод.

Фирма Nichia запатентовала ключевые этапы технологии и к концу 1997 года выпускала уже 10-20 млн голубых и зеленых светодиодов в месяц, а в январе 1998 года приступила к выпуску белых светодиодов.

10. Что такое квантовый выход светодиода?

Квантовый выход - это число излученных квантов света на одну рекомбинировавшую электроннодырочную пару. Различают внутренний и внешний квантовый выход. Внутренний - в самом p-n-переходе, внешний - для прибора в целом (ведь свет может теряться «по дороге» - поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим теплоотводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а для синих - 35%.

Внешний квантовый выход - одна из основных характеристик эффективности светодиода.

11. Как получить белый свет с использованием светодиодов?

Существует три способа получения белого света от светодиодов. Первый - смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И, наконец, в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

12. Какой из трех способов лучше?

У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения - суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.

Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих - люминофор тоже стареет, причем быстрее, чем сам светодиод. Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы - у них разные области применения.

13. Каковы электрические и оптические характеристики светодиодов?

Светодиод - низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше - от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

14. Как реагирует светодиод на повышение температуры?

Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй - световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

15. Почему нужно стабилизировать ток через светодиод?

Как видно из рисунка 2, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

Рис. 2. Зависимость силы тока от напряжения питания светодиода.

16. Для чего светодиоду требуется конвертор?

Конвертор (в англоязычной терминологии driver) для светодиода - то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.

17. Можно ли регулировать яркость светодиода?

Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания - этого-то как раз делать нельзя, - а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

18. Чем определяется срок службы светодиода?

Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20-50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

19. «Портится» ли цвет светодиода с течением времени?

Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.

20. Не вреден ли светодиод для человеческого глаза?

Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо - доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют.

Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально. Проблемой заинтересовался академик Михаил Аркадьевич Островский - крупный специалист в области цветного зрения. Тема, за решение которой он взялся, называется так: «Психофизическое восприятие светодиодного освещения системой зрения человека».

21. Когда и как сверхъяркие светодиоды появились в России?

Об этом лучше всех расскажет профессор Юнович.

Люминесценцию карбида кремния впервые наблюдал Олег Владимирович Лосев в Нижегородской радиотехнической лаборатории в 1923 г. и показал, что она возникает вблизи p-n-перехода. Первая научная статья о кристаллах нитрида галлия была опубликована профессором МГУ Г.С. Ждановым в 30-х гг. Люминесценцию в гетероструктурах на основе арсенида галлия впервые исследовали в лаборатории Ж.И. Алферова в 60-х гг. и показали, что можно создать структуры с внутренним квантовым выходом близким к 100%. Разработки структур и светодиодов на основе нитрида галлия велись в ленинградских Политехническом и Электротехническом институтах, в Калуге, в Зеленограде в 70-х гг., но они тогда не привели к созданию эффективных голубых светодиодов.

В 1995 году я прочел первые статьи Накамуры и понял, что «голубая проблема» в принципе решена. Тогда же я получил грант соросовского фонда. В декабре на эти деньги я смог поехать на конференцию в США, и там профессор Жак Панков познакомил меня с Ш. Накамурой. Я забросил наживку: мол, хочу приобщить студентов Московского университета к передовым достижениям в области голубых светодиодов и рассказать им о столь замечательном изобретении. Рыбка клюнула, и в феврале я получил от д-ра Ш. Накамуры из Японии бандеролью 10 светодиодов от фиолетового до зеленого. Все потом оказалось просто - фирма Nichia Chemical начинала выпуск светодиодов на рынок и была заинтересована в научной рекламе. В лаборатории МГУ мы их досконально исследовали, сняли все характеристики и получили новые научные результаты. Д-р Ш. Накамура дал любезное согласие на совместную публикацию наших первых статей.

Одновременно специалисты из группы Бориса Ферапонтовича Тринчука в Зеленограде продемонстрировали образцы зеленых светодиодов начальникам из ГАИ и получили положительный отзыв. Все дело в том, что эта группа сделала опытный образец светодиодного светофора, но у них не было хороших зеленых светодиодов. Светофоры с новыми сверхъяркими зелеными светодиодами намного превосходили светофоры с лампами, и московское правительство сделало заказ на 1000 светодиодных светофоров к 850-летию Москвы. Такое везение!

Как раз тогда у нас гостила киргизская скрипачка Райкан Карагулова - выпускница Московской консерватории, ученица моей жены, которая работала в Японии первым концертмейстером симфонического оркестра в Осаке. Выяснилось, что место ее работы находится неподалеку от фирмы Nichia Chemical! Б.Ф. Тринчук дал ей тысячу долларов и попросил купить на них и прислать на мой адрес 200 зеленых светодиодов. Из них были изготовлены первые светофоры из той юбилейной тысячи. Москва стала первым в мире городом с массовым применением светодиодных светофоров.

Наши ученые и инженеры в НИИ «Сапфир» пытались повторить достижение японцев и изготовить структуры на основе нитридов для голубых и зеленых светодиодов на старой эпитаксиальной установке, которую пришлось модернизировать, чтобы достичь более высоких температур и давлений. Но инициатива заглохла из-за отсутствия денег и интереса руководства.

22. Какие на сегодняшний день существуют технологии изготовления светодиодов и светодиодных модулей?

Что касается выращивания кристаллов, то основная технология - металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок - в р-области.

Рис. 3. Схематическое представления светодиода.

За один процесс, который длится несколько часов, можно вырастить структуры на 6-12 подложках диаметром 50-75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5-2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это технология, требующая высокой культуры.

Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к n- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24 x 0,24 до 1 x 1 мм2/.

Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый светодиод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости светодиода определяется этими этапами высокой технологии.

Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details - поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке.

Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора - в этом случае она делается из металла. Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются светодиодные сборки на круглом массивном радиаторе.

Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.

23. Кто в мире сегодня производит светодиоды?

Чтобы делать качественные светодиоды в нужном количестве, понадобилось слияние двух отраслей - электронной и светотехнической. Все западные гиганты, производящие светодиоды для светотехники по полному циклу, начиная с производства чипов и заканчивая различными светодиодными модулями и сборками, а также светильниками на их основе, идут по этому пути. General Electric заключила союз с производителем полупроводниковых приборов Emcore, создав компанию GEL Core. Philips Lighting совместно с Agilent, дочерней компанией Hewlett-Packard, создали предприятие LumiLeds. Osram объединяет усилия с полупроводниковыми предприятиями своей материнской компании Siemens. Как заметил Макаранд Чипалкатти, менеджер по маркетингу из подразделения Opto Semiconductors компании Osram Sylvania, специализирующемуся на устройствах LED, производители светотехники сами уничтожают свой бизнес. Но если сегодня не «наступить на горло собственной песне», то завтра придут другие и сделают это куда более жестко.

Впрочем, существуют компании, специализирующиеся только на производстве чипов. Это предприятия радиоэлектронной промышленности, и они не занимаются светотехникой. К их числу относится Nichia Corporation.

24. Каковы основные производители светодиодных модулей и сборок и представленные ими модельные ряды?

Чипы и отдельные светодиоды производят компании Nichia Corporation, Сгее, LumiLeds Lighting, Opto Technology, Osram Opto Semiconductors, GEL Core. Массовое производство структур и чипов для светодиодов ведут тайваньские фирмы Lite-On, Taiwan Oasis и др.

В России светодиоды производят компании Корвет Лайт, Светлана Оптоэлектроника, Оптэл, Оптоника. По конструкции и технологическому исполнению наши светодиоды не уступают зарубежным, специалисты перечисленных компаний имеют соответствующие патенты. В Москве и Санкт-Петербурге есть возможность выращивать собственные чипы - например, эпитаксиальная установка имеется в Санкт-Петербургском физтехе, - но для промышленного производства необходимо крупное финансирование, и пока наши компании используют зарубежные чипы.

25. Где сегодня целесообразно применять светодиоды?

Светодиоды находят применение практически во всех областях светотехники, за исключением освещения производственных площадей, да и там могут использоваться в аварийном освещении. Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию, и где высоки требования по электробезопасности.

26. Возможности и применение

Изобретение первых светодиодов - полупроводниковых диодов в эпоксидной оболочке, выделяющих монохроматический свет при подключении к электротоку - относится к 1960-м годам. Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов, а также высокие затраты на их производство ограничивали их массовое применение в качестве источников света. Поэтому светодиоды в основном использовали в наружных электронных табло, ими оборудовали системы регулирования дорожного движения, применяли в оптоволоконных системах передачи данных и медицинском оборудовании.

Появление сверх ярких, а также синих (в середине 1990-х годов) и белых диодов (в начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание многих производителей к данным источникам света. Светодиоды стали использовать в качестве индикаторов режимов работы электронных устройств, в подсветке жидкокристаллических экранов различных приборов, в том числе - мобильных телефонов и пр. Впоследствии применение светодиодов основных цветов (красного, синего и зеленого) позволило получать цвета вывесок фактически любых оттенков, а также конструировать из них дисплеи с выводом полноцветной графики и анимации.

Светодиоды, за счет их малой потребности в электроэнергии, - оптимальный выбор декоративного освещения в местах, где существуют проблемы с энергетикой.

Срок службы светодиодов, превышающий в 6-8 раз долговечность люминесцентных ламп, относительная простота в работе с ними на этапе сборки изделий, отсутствие необходимости в регулярном обслуживании и их антивандальные качества делают эти источники света конкурентоспособными с более традиционными газоразрядными, люминесцентными лампами и лампами накаливания. Одним из немногих и существенных аспектов, за счет которого неон удерживает свои позиции в сегменте подсветки вывесок, является пока еще более высокая стоимость светодиодов.

27. Преимущества

Экономично...

Одним из достоинств светодиодов является их долговечность. Данные источники света обладают ресурсом использования 100 000 часов, а ведь это 10-12 лет непрерывной работы. Для сравнения - максимальный срок работы неоновых и люминесцентных ламп составляет 10 тыс. часов.

За это же время в световом модуле, использующем люминесцентные лампы, их нужно будет сменить 8-10 раз, а лампы накаливания придется заново «вкручивать» от 30 до 40 раз. Использование светодиодных модулей позволяет снизить затраты на электроэнергию до 87%!

Удобно...

Светодиодный модуль - многокомпонентная структура с неприхотливой схемой подключения. В цепочке, скажем, из полусотни светодиодов один-два неисправных не только не выводят рекламный фрагмент из строя, но даже не влияют на суммарное световое излучение. Гигантский ресурс работы светодиодов практически решает проблемы, связанные с необходимостью их замены. Кроме того, светоизлучающие диоды способны надежно функционировать в самом широком диапазоне рабочих температур.

Надежно...

Есть надежность совершенно особого рода - та, от которой порою зависят человеческие жизни. Применение светодиодов в устройствах отображения информации (дорожные знаки, светофоры, информационные табло и т.д.) ведет к значительному увеличению расстояния их восприятия человеческим глазом. Неслучайно во многих крупных городах развитых стран уже нет обычных светофоров, а светодиодные схемы используются в воздушных и надводных навигационных системах.

Другим аспектом, благодаря которому светодиодам некоторыми заказчиками отдается предпочтение, являются их прочность и антивандальные качества. В отличие от стеклянных трубок данные источники света изготовлены из пластика. За счет этого их нелегко вывести из строя посредством механических повреждений. Характерное напряжение, необходимое для работы одного светодиода, - 3-4 вольта. Поэтому в условиях, когда требуется соблюдение повышенных мер безопасности или нет возможности использовать высокие напряжения, светодиоды являются оптимальным выбором. Рабочее напряжение светодиодных модулей, как упоминалось ранее, составляет 10-12 В. Очевидно, что при низком напряжении не требуется применять провода большого сечения с сильной изоляцией. Это также облегчает подключение светодиодов к электросети. У газоразрядных трубок, в отличие от светодиодов, есть порог срабатывания: чтобы источник света загорелся, в начале необходимо подать на разряд необходимое напряжение. Светодиоды же начинают излучать свет сразу при подключении к электросети, и их яркость легко регулировать наращиванием или снижением напряжения практически сразу после включения. Одним из важных преимуществ светодиодов является устойчивость к воздействию низких температур. Известно, что на морозе внутри газоразрядных источников света происходит вымерзание ртути, и это приводит к снижению яркости свечения. При отрицательных температурах также возникают проблемы с включением неона. Светодиоды лишены этих минусов.

Красиво...

Если бы LED-технологии не изобрели светотехники, их бы создали дизайнеры. Светодиоды, в отличие от ламп с неоном, имеют практически неограниченные возможности для «игры» со спектрами, цепочки которых можно выстроить таким образом, чтобы световые акценты точно работали на образ. Плавные, почти незаметные для глаза световые переходы от пика к пику в плане выразительности, конечно, уступают живописи, но оставляют далеко позади другие источники света. Изощренная цветодинамика, характерная для светодиодных модулей, способна удовлетворить требования самого требовательного дизайнера. Интересно, что игра со спектрами имеет и экологическое значение. Ведь кривые чувствительности, скажем, растений и человеческого глаза не совпадают: те спектры, которые комфортны для нашего глаза, часто дискомфортны для растений, и наоборот. Зональное использование различных светодиодных «цепочек» в тех интерьерах, где одновременно пребывают и растения, и человек, снимают эту проблему.

Представительно...

Светодиодные модули необычайно компактны. Различные сувениры, миниатюрные стенды и компактные табло, украшенные светодиодной символикой компании, смотрятся на удивление выразительно и необычно. Доля рынка светотехнических изделий, занимаемая светодиодами, составляет ничтожную долю. В развитых странах, особенно в крупных городах и столицах, она медленно, но верно возрастает. Своеобразным символом этой нежной и неизбежной революции стало гигантское 500-метровое полотно из светодиодов, непрерывно протянувшееся над главной улицей Лас-Вегаса.

Какие бывают лампы

Лампы накаливания

Обычные лампочки, которые всем нам знакомы, и их главное преимущество – приятный цвет света, который они излучают. Цвета объектов, как правило, выглядят точнее под лампой этого типа. Лампочки накаливания тратят много электричества, так как производят и много тепла.

Лампы накаливания производят 8-12 люменов света на 1 Вт потребленной энергии. Чем мощнее лампа накаливания тем больше люменов света она производит на единицу потребленной мощности. Например, одна 100 Вт лампа дает практически ровно столько же света (1360 Люменов), сколько и две 60 Вт лампы (1420 люменов).

Неудобство этих ламп состоит в том, что эти лампочки неэффективны по современным стандартам и имеют относительно короткий срок службы (около 1000 часов). Лампы накаливания доступны в разнообразных формах и размерах и имеют целый ряд различных цоколей.

Матовая или прозрачная?

    Основной принцип выбора между матовыми и прозрачными лампами следующий:
  • Если у светильника прозрачные плафоны, используйте прозрачные лампочки
  • Если у светильника матовые плафоны, используйте матовые лампочки
  • В детской комнате используйте матовые лампочки. Малыши любят смотреть на светильник, а эти лампы дают более комфортный для детского глаза свет
  • В хрустальных светильниках , светильниках с большим количеством подвесок, кристаллов и других преломляющих свет деталей используйте прозрачные лампочки, так как яркая открытая спираль прозрачной лампы накаливания дает необходимую игру света

 

Рефлекторные лампы

Рефлекторные лампы накаливания имеют посеребренную поверхность - это их единственное отличие от обычных ламп накаливания. Отражающая поверхность направляет свет в определенном направлении. Такие лампы обычно предназначены для светильников направленного света – спотов. Самые распространенные типы этих ламп R50, R63, PAR38.

 

Галогенные лампочки

Галогенные лампочки - лампочки с нитью накаливания, содержащие галогенный газ. Дают, как и лампы накаливания, очень привлекательный свет, который напоминает солнечный. Но они несколько эффективнее, чем лампы накаливания, так как производят на 20% больше света на потребляемую мощность и работают дольше, около 2000 часов.

Главным преимуществом галогенной лампы является ее маленький размер. Появление этой лампы позволило дизайнерам создать новые дизайны светильников и плафонов. Галогенная лампа типа GU10, с встроенным отражателем является самой распространенной лампой для встраиваемых светильников. И используется во многих светильниках направленного света (споты).

Появление мощных линейных галогенных ламп типа R7S, мощностью 300Вт, позволило создать класс торшеров, которые дают мягкое, приятное отраженное от потолка освещение, и освещают всю комнату. Основные типы галогенных ламп: G9, G4, R7S, GU10. Каждый тип выпускается в нескольких мощностях.

 

Люминесцентные лампы

Они же - энергосберегающие лампочки. Cодержат газ в трубке и не имеют нити. Они повсюду используются уже в течение многих лет и лучше известны как длинные белые трубы, которые обычно встречаются на потолках общественных заведений.

Новейшие технологии уменьшили размер и улучшили эффективность лампочек. Появились Компактные люминесцентные лампы, которые сейчас и называются в широком обиходе Энергосберегающие. Сейчас доступны множество различных форм и вариантов мощности лампочек.

Термин «Энергосберегающие» нужно относить и к другим типам ламп с низким энергопотреблением, таким как светодиодным.

Преимущества компактных люминесцентных ламп – низкое энергопотребление за счет выделения малого количества тепла - потребляют 20% энергии обычной лампочки, при таком же излучаемом световом потоке. Долгий срок службы, до 8000 часов.

Компактные люминесцентные лампы производят 50-60 люменов на Вт, в пять раз больше света на единицу потребленной мощности, чем лампы накаливания. Они идеальны для использования там, где свет должен быть включен в течение долгого времени. У многих ведущих производителей ламп доступны "теплые белые" лампы, с улучшенным цветом света. Цвет, цветовое впечатление, которые создает при работе люминесцентная лампа характеризуется параметром Цветовая температура. Единица измерения Кельвин.

    Для люминесцентных ламп цветовая температура разделена на такие основные категории:
  • Ниже 3300 К – белый, теплый свет
  • 3300-5000 К нейтральный свет
  • Свыше 5000 К «холодный» свет

Информация о цветовой температуре люминесцентных ламп размещается на их упаковке .

 

К минусам этого типа ламп нужно отнести их высокую стоимость и не такой приятный, как у ламп накаливания, свет. Также, практически со всеми энергосберегающими люминесцентными лампами нельзя использовать диммер (реостат мощности). Лишь несколько ведущих мировых производителей ламп, в частности Philips, имеют в ассортименте несколько артикулов люминесцентных ламп, которые могут работать с диммерами.

 

За счет малого выделения тепла, энергосберегающие лампы можно использовать (если они подходят по размеру к плафону) для увеличения количества света от светильников. Например, люстра, рассчитанная на 5 x 40 Вт ламп накаливания = 200 Вт. Хотим от нее больше света. Более мощные лампы накаливания использовать не можем, так как имеем ограничение по мощности лампы в патроне. (От более мощной лампы патрон может оплавиться). Но если в этой люстре использовать пять энергосберегающих ламп, каждая мощностью 20 Вт, то за счет того, что 20Вт энергосберегающая лампа дает света как 100Вт лампа накаливания, такая люстра будет давать света как люстра с 5*100Вт накаливания.

 

На популярной волне движения к снижению энергопотребления, современные производители уделяют сейчас большое внимание разработке и производству серий светильников, предназначенных специально к работе с энергосберегающими лампами и продающихся в комплекте сразу с такими лампами.

 

Светодиодные лампочки

 

Светодиодные лампы изготавливаются на базе светодиода.
Светодиод, это полупроводник, который преобразовывает электрический ток в свет. Основой светодиода является полупроводниковый кристалл. При прохождении электрического тока через этот кристалл возникает световое излучение. Цвет излучения может быть различным– зависит от состава кристалла. В светодиодах для бытового освещения используется полупроводниковый кристалл из нитрида галлия, этот кристалл дает синий цвет. Для получения белого света на кристалл наносится люминофор. Люминофор - сложная химическая субстанция, которая возбуждается светом кристалла и дает собственное излучение желтого света. При этом люминофор поглощает только часть света от полупроводникового кристалла, а часть пропускает. В результате смешения синего света от нитрида галлия, прошедшего через люминофор, и желтого света от люминофора, получается белый свет.

 

Светодиодные источники света имеют огромные преимущества перед всеми другими лампами:

  • Экономичность. Светодиоды преобразуют в световое излучение до 80% полученной электроэнергии. Световая отдача лучших современных светодиодов достигла 160 люмен на ватт мощности. Это почти в два раза больше, чем у энергосберегающих люминесцентных ламп и почти в двадцать раз больше, чем у лампочек накаливания.
  • Долгий срок службы - 50 тысяч часов и более. Это обеспечит работу светодиодной лампы порядка 20 лет без замены, при ее использовании 8 часов в сутки.
  • Высокая механическая прочность – в отличие от всех ламп, изготавливающихся из стекла, светодиод устойчив к внешним воздействиям.
  • Количество включений/выключений не оказывает никакого влияния на срок службы светодиода.
  • Малоразмерность, компактность – в отличие от обычных ламп, которым конструктивно необходима колба – светодиод представляет собой просто небольшую пластину. Малоразмерность светодиода открывает возможности по созданию новых типов светильников. Возможно, что расширяющееся применение светодиодов в бытовом освещении может изменить сам подход ко всем формам и видам светильников. Сейчас же, большая часть светодиодов для бытового освещения помещается внутрь ламп с привычными формами и со стандартным цоколем.

Распространение светодиодных ламп сдерживается только, пока еще, высокой ценой. Но цены на светодиоды снижаются каждый год и в ближайшем будущем, как предсказывают многие, все освещение в быту будет создаваться с помощью светодиодов.

Настольные лампы - Restarters Wiki

Неисправные настольные лампы, настольные лампы и торшеры, которые часто становятся дорогим товаром, обычно довольно легко отремонтировать, и запасные части доступны. Тем не менее, владельцев часто смущает широкий спектр доступных ламп.

Сводка

Мы часто видим настольные лампы и тому подобное на Restart Party. Часто они довольно старые - может быть, владелец имеет их много лет и имеет к ним личную привязанность, или, может быть, они просто приглянулись им в магазине секонд-хенд.Другие относительно новые и только что перестали работать. Некоторые из них могут иметь изношенные провода и могут быть совершенно опасными. Какой бы ни была история, у них есть хороший шанс дать им новую жизнь.

На отдельной странице рассказывается о нескольких различных типах лампочек, а также об их разнообразных формах, размерах и основаниях.

Безопасность

Настоятельно рекомендуется провести испытание на электробезопасность, включая визуальный осмотр, как до, так и после ремонта, особенно для старых деталей.
Как и в случае с любым другим устройством, работающим от сети, перед началом работы рекомендуется поставить вилку на скамейку перед собой, чтобы вы могли быть уверены, что не забыли ее отключить.

Диагностика

Первой и самой важной задачей является осмотр электрики. Изношенный провод, треснувшая вилка или треснувший или неисправный переключатель необходимо заменить. Проверить предохранитель мультиметром в диапазоне низкого сопротивления.

Если в лампе используется лампа накаливания, проверьте это также с помощью мультиметра.Неисправную лампу с низким энергопотреблением (компактную люминесцентную или светодиодную) можно точно определить только путем замены.

Если в лампе используется лампа сетевого напряжения (любого типа), проверьте целостность цепи между вилкой и патроном лампы с помощью мультиметра в диапазоне низкого сопротивления. Для этого прикоснитесь к одному щупу на одном из штырьков вилки (но не на большом штыре заземления) и посмотрите, можно ли получить нулевое показание, прикоснувшись другим щупом к одному из контактов держателя лампы. Переключатель может быть выключен. Попробуйте это в другом положении переключателя.Теперь повторите с щупом на другом штыре вилки. Если в любом случае вы не можете получить нулевое показание, значит, обрыв провода или неисправен переключатель.

Лампы, в которых используются галогенные лампы низкого напряжения или светодиодные лампы, имеют трансформатор или электронный эквивалент в основании. Это сложнее проверить, но вы все равно сможете проверить целостность цепи между вилкой и трансформатором, а также между другой стороной трансформатора и лампой. Убедитесь в отсутствии признаков перегрева, вздутия или утечки электролитического конденсатора.

Некоторые такие лампы имеют сенсорное управление для включения / выключения или уменьшения яркости. Их тоже сложнее диагностировать, помимо простых проверок целостности и визуального осмотра на предмет очевидных неисправностей.

Ремонт

В Интернете доступен широкий ассортимент запасных частей для ламп, в том числе латунные или пластмассовые патроны и фитинги, выключатели, а также декоративные или тканевые гибкие детали для аутентичной реставрации старинной лампы. Просто выполните поиск в Интернете по запросу "детали лампы" или "арматура лампы".

Попасть внутрь настольной лампы с декоративным основанием, например из глазурованного фарфора, иногда бывает непросто.Фарфоровая основа может иметь бумажное или войлочное дно, чтобы не поцарапать полированную поверхность, и вам может потребоваться удалить это, чтобы попасть внутрь. Иногда может потребоваться открутить верх. Возможно, вам придется вытащить провод из вилки в основание, чтобы он не перекрутился в процессе.

Возможно, потребуется замена патрона лампы. Это может быть пластик или латунь, со встроенным переключателем или без него. Другие латунные фитинги, такие как резьбовые трубки и подходящие к ним гайки, также могут потребовать замены.

Латунный патрон лампы должен иметь винтовой зажим для подключения заземляющего провода. Очень важно, чтобы это было подключено, иначе неисправность может быть смертельной.

Почему синий светодиод должен освещать вашу жизнь (и получил Нобелевскую премию)

Что вы думаете, когда слышите фразу «зеленые технологии»? На ум приходят солнечные батареи, ветряные турбины и электромобили? А как насчет светодиодов (LED)? В отличие от многих дорогостоящих зеленых технологий, светодиоды доступны большинству людей, которые хотят помочь окружающей среде и сэкономить деньги.Использование светодиода для 50 000 часов домашнего освещения белым светом (то есть светодиодных ламп для использования в лампах, потолочных светильниках и т. Д.) Стоит всего около 86 долларов по сравнению с 352 долларами для ламп накаливания []. Несмотря на то, что некоторые светодиоды были коммерчески доступны с 1962 года, светодиоды белого света стали доступны только с 2006 года []. Самым важным из многих достижений, необходимых для вывода на рынок светодиодов, излучающих белый свет, было изобретение первого ярко-синего светодиода в 1993 году []. За это изобретение 7 октября Исаму Акасаки, Хироши Амано и Сюдзи Накамура получили Нобелевскую премию по физике 2014 года.

Что такое светодиод и как он работает?

Рис. 1 ~ Добавление электричества к полупроводниковому кристаллу дает свет за счет связывания электронов с атомами.

Светоизлучающие диоды (светодиоды) - это компоненты электрических цепей, излучающие свет. Светодиоды изготавливаются из небольших полупроводниковых кристаллов, материалов, способных проводить электричество. Хотя они проводят лучше, чем некоторые материалы, такие как стекло, полупроводники проводят менее эффективно, чем металлы, такие как алюминий или олово.Когда электричество проходит через светодиоды, электроны, маленькие отрицательно заряженные частицы в атомах внутри полупроводника, могут набирать достаточно энергии, чтобы перемещаться между несколькими атомами вместо того, чтобы быть привязанными к определенному (рис. 1). Однако это состояние нестабильно, и в конце концов электрон снова свяжется с одним атомом. Когда это происходит, энергия выделяется в виде фотонов, элементарных частиц света. Количество выделяемой энергии определяется свойствами материала полупроводника и, в свою очередь, определяет цвет излучаемого света [3, 4].

Однако изобрести светодиод не так просто, как пропустить электричество через кусок определенного полупроводника. Во-первых, атомы полупроводника должны быть организованы в повторяющееся расположение или кристаллическую решетку. Если расположение где-либо в куске полупроводника нарушено, светодиод не будет работать должным образом. Процесс изготовления тонких кусочков полупроводника, также известных как «чипы», в которых формируется кристаллическая решетка, называется «выращивание кристаллов», и для каждого нового полупроводника этот процесс должен определяться с нуля.Когда можно будет сделать чистые микросхемы, следующая задача - изготовить одни микросхемы, чтобы иметь избыток свободных, перемещающихся электронов, а другие - иметь избыток атомов, потерявших электрон. Для создания этих условий в полупроводник контролируемым образом вводятся атомы других элементов [3, 4]. Этот процесс называется «допинг». Опять же, соответствующие условия для успешного легирования полупроводника необходимо заново определять для каждого материала [3, 4, 5].

Почему изобретение синего светодиода имело такое значение?

Изобретение синего светодиода имело важное значение как потому, что это был технический триумф, так и потому, что он сделал возможным большое количество новых приложений.Это было огромным техническим достижением, потому что необходимые свойства для создания синего света не могли быть достигнуты с помощью полупроводника, подобного тем, которые уже используются для светодиодов. Еще в 1950-х годах нитрид галлия (GaN) был идентифицирован как полупроводник с подходящими свойствами для получения синего света, но быстро стало ясно, что создание чипов для использования в светодиодах является сложной задачей []. Фактически, к началу 1970-х годов большинство ученых прекратили работу по созданию светодиодов из GaN []. Однако в начале 1970-х годов были разработаны новые методы выращивания кристаллов, и начиная с 1974 года Исаму Акасаки, а затем Хироши Амано, а также другие проводили исследования, чтобы определить, как использовать эти новые методы для изготовления кристаллов GaN.Проблема не была решена до 1986 года, и ученым все еще предстояло определить, как успешно легировать кристаллы GaN для практического использования []. Наконец, это было достигнуто в конце 1980-х [].

Изобретение первого ярко-синего светодиода позволило использовать светодиоды для получения белого света. В то время как синий и красный свет имеют длины волн, которые находятся в пределах очень специфических спектров, у белого света они имеют очень широкий спектр, что делает его желательным для практических целей. Несмотря на то, что существует несколько методов получения белого света с помощью синих светодиодов, наиболее часто используется тот, который сочетает в себе синий светодиод и флуоресцентный материал [].Флуоресцентные материалы излучают свет определенной длины волны после того, как их освещают светом другой длины волны. Флуоресцентный материал, используемый для изготовления белого светодиода, излучает свет различных цветов, когда он освещается синим светом синего светодиода []. Белый свет образуется, когда синий свет светодиода сочетается со светом других цветов, излучаемым флуоресцентным материалом.

Каким будет будущее светодиодов и освещения?

Безусловно, наиболее важным применением синих светодиодов было эффективное производство белого света.Рынок эффективного белого освещения существует в таких странах, как Соединенные Штаты, где 21% электроэнергии, потребляемой в 2012 году в коммерческом секторе, приходилось на освещение []. Аналогичным образом, в странах, где многие люди зависят от солнечных панелей для получения электричества, желательно эффективное белое освещение от синих светодиодов, поскольку оно позволяет им в полной мере использовать ограниченное количество электроэнергии []. Однако белое освещение - не единственное применение синих светодиодов. Синие светодиоды также присутствуют на экранах многих мобильных телефонов, телевизоров и планшетов.

К сожалению, использование светодиодных ламп в жилых помещениях остается довольно низким, вероятно, потому, что даже несмотря на значительную экономию энергии за счет использования светодиодов, первоначальная стоимость светодиодной лампы в 25 раз превышает стоимость лампы накаливания []. Однако эта неутешительная статистика, вероятно, изменится; Фактически, Министерство энергетики США прогнозирует, что к 2020 году 37,6% освещения жилых помещений будет производиться за счет светодиодов, а в 2030 году - 72,3% []. Благодаря постоянным исследованиям и обучению потребителей, мы можем с нетерпением ждать светлого будущего, освещенного светодиодами.

Элизабет «Эви» Ван Италли - аспирант программы PhD по системной биологии.

Ссылки

[] http://eartheasy.com/live_led_bulbs_comparison.html

[] http://www.osram.com/osram_com/news-and-knowledge/led-home/professional-knowledge/led-basics/led-history/index.jsp

[] Страница в Википедии о светодиодах: https://en.wikipedia.org/wiki/Light-emitting_diode

[] Страница в Википедии о полупроводниках: https: //en.wikipedia.org / wiki / Полупроводник

[]

[] Страница Википедии о Phosphor: http://en.wikipedia.org/wiki/Phosphor

[] http://www.eia.gov/tools/faqs/faq.cfm?id=99&t=3

[] Отчет Министерства энергетики США о потенциале энергосбережения твердотельного освещения в системах общего освещения: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/ssl_energy-savings-report_jan-2012 .pdf

№ 3035: Светодиоды

Сегодня достаем светодиод.Университет Хьюстона представляет серию статей о машинах, которые заставляют нашу цивилизацию работать, и людях, чья изобретательность создала их.

Обычно мы не особо задумываемся об искусственном освещении. Щелкните выключателем и - вуаля , лампа загорится. Но за кулисами все меняется.

Электрическое освещение стало популярным в 1879 году, когда команда Томаса Эдисона создала первую коммерчески успешную лампочку.Он был основан на нагревании проволочной нити накаливанием до тех пор, пока она не загорится. Лампа накаливания невероятно неэффективна. Только пять процентов энергии уходит на свет. Остальное превращается в тепло.


Горит лампа накаливания Фото: Wikimedia Commons

Первые люминесцентные лампы появились в 1936 году. Флуоресцентные лампы работают, возбуждая атомы газа в закрытой трубке. Они намного более энергоэффективны, чем лампы накаливания, и потребляют примерно на 75 процентов меньше энергии.Но у люминесцентных ламп есть хорошо известные недостатки. Они могут гудеть, свет может вызывать головную боль, и они содержат ртуть.


Люминесцентная лампа Фото: Wikimedia Commons

Новейшие технологии представлены в виде светоизлучающих диодов, или для краткости светодиодов. Светодиоды - это простые полупроводники, которые испускают свет при питании от электричества. Первые светодиоды появились в качестве небольших световых индикаторов на лабораторном оборудовании в 1960-х годах.Большинство из нас впервые сталкивались с ними на числовых дисплеях часов и калькуляторов в виде квадратных красных чисел.


Альтаир 8800 в Музее истории компьютеров Фото: Wikimedia Commons


Цифровой будильник базовой конструкции без радиоприемника. Фото: Wikimedia Commons

Светодиоды

представляют особый интерес, потому что они настолько энергоэффективны и долговечны.Светодиодная лампа потребляет на 80 процентов меньше энергии, чем лампы накаливания Эдисона, и прослужит в 25 раз дольше. Проблема, конечно, в том, что они дороже. И в этом ключевой вопрос: что могут сделать инженеры, чтобы снизить цену?

Вопросы особенно интересны, потому что светодиодная технология представляет собой широкий спектр возможностей и проблем. Светодиоды, как правило, довольно маленькие, начиная с доли дюйма и двигаясь вниз. Таким образом, размер и расположение светодиодов в лампочке так же важны, как и яркость каждого компонента.Свет от светодиодов является направленным, как у фонарика, что заставляет инженеров задуматься, как создать более рассеянный свет.


60 светодиодных прожекторов мощностью 3 Вт, эквивалентных галогеновым лампам мощностью 25 Вт. Фото: Wikimedia Commons

Цвет - еще одна проблема. Светодиоды, излучающие красный и зеленый свет, были разработаны рано. Но синие светодиоды были неуловимы. Без синего цвета невозможно смешать, чтобы получить белый свет. Наконец, в начале 1990-х Исаму Акасаки, Хироши Амано и Сюдзи Накамура нашли ответ.Их работа оказалась настолько важной, что они получили Нобелевскую премию по физике 2014 года. Комитет по присуждению премии не только назвал эту работу революционной, но и написал: «Лампы накаливания освещали ХХ век; 21 век озарится светодиодными лампами.


Светодиоды R, G и B Фото: Wikimedia Commons


Светодиоды в разных корпусах. Фото: Wikimedia Commons

Это еще предстоит выяснить. Хотя, учитывая характер проблем, с которыми мы сталкиваемся, я должен согласиться.Как любил говорить Томас Эдисон, самый верный способ добиться успеха - это попробовать еще раз.

Я Энди Бойд из Хьюстонского университета, где интересовался тем, как работают изобретательные умы.

(Музыкальная тема)

Об одном из многих связанных эпизодов см. ЛАМПОЧКА.

В электронике диод - это любое устройство, которое позволяет току проходить в одном направлении лучше, чем в другом. Не все диоды излучают свет, и не все диоды, светоизлучающие или другие, сделаны с использованием полупроводников.Тем не менее, большинство дискуссий, связанных с современными светодиодами, сосредоточено на полупроводниках. Для краткости в эссе светодиоды описываются как простые полупроводники, которые испускают свет при питании от электричества.

Благодарю доктора Бадри Ройзама с факультета электротехники и вычислительной техники Хьюстонского университета за то, что обратил мое внимание на эту тему.

Дж. Латсон. Как Эдисон изобрел лампочку и множество мифов о себе. Time, 21 октября 2014 года.См. Также: http://time.com/3517011/thomas-edison/. По состоянию на 15 декабря 2015 г.

История люминесцентных ламп. С веб-сайта: http://inventors.about.com/library/inventors/bl_fluorescent.htm. По состоянию на 15 декабря 2015 г.

Сравнение энергоэффективных лампочек с традиционными лампами накаливания. С веб-сайта energy.gov: http://energy.gov/energysaver/how-energy-efficient-light-bulbs-compare-traditional-incandescents. По состоянию на 15 декабря 2015 г.

Светодиодная лампа.С веб-сайта Википедии: https://en.wikipedia.org/wiki/LED_lamp. По состоянию на 15 декабря 2015 г.

Новый свет, озаряющий мир. С веб-сайта Нобелевской премии: http://www.nobelprize.org/nobel_prizes/physics/laureates/2014/press.html. По состоянию на 15 декабря 2015 г.

Эта серия впервые вышла в эфир 17 декабря 2015 г.

светодиодных приложений | Fabrico, подразделение EIS, Inc.

Преобразование теплопроводных материалов для решения проблем, связанных с производительностью светодиодов

Светодиоды

(светоизлучающие диоды) являются последней разработкой в ​​индустрии освещения.Светодиодные фонари, ставшие популярными благодаря своей эффективности, разнообразию цветов и длительному сроку службы, идеально подходят для множества применений, включая ночное освещение, художественное освещение и наружное освещение. Эти фонари также широко используются в электронной и автомобильной промышленности, а также для вывесок и многих других целей.

Обеспечивая эффективное преобразование энергии и увеличивая срок службы, эти лампы помогают сэкономить деньги на замене ламп и потреблении электроэнергии. Светодиодные лампы предназначены для преобразования электрической энергии в свет через микрочип, который затем освещает крошечные источники света, излучающие видимый свет.Этот процесс потребляет до 90% меньше энергии, чем традиционные лампы накаливания и люминесцентные лампы.

Светодиодные фонари - это источники направленного света. Это означает, что лампы излучают свет в определенных направлениях, в отличие от ламп накаливания и люминесцентных ламп, которые излучают свет во всех направлениях. Указанное направленное освещение и электрическое преобразование микрочипа помогают повысить эффективность и качество света.

Преобразование теплопроводных материалов для решения проблем, связанных с производительностью светодиодов

Светодиоды

предоставляют инженерам-разработчикам широкий спектр преимуществ:

  • Высокая энергоэффективность: светодиодные лампы более эффективны, чем стандартные люминесцентные лампы и лампы накаливания.Светодиодные лампы потребляют меньше энергии и более эффективно преобразуют эту энергию в свет, чем традиционные люминесцентные лампы и лампы накаливания.
  • Обеспечивают долгий срок службы: светодиодные лампы рассчитаны на срок службы до 6 раз дольше, чем другие типы освещения. Это помогает сэкономить деньги и не тратить деньги на замену лампочек. Светодиодные фонари также не изнашиваются из-за быстрого и повторяющегося включения и выключения, как это могут быть другие типы лампочек.
  • Работа при низких температурах: В то время как другие типы фонарей требуют более высокого напряжения для работы при низких температурах, светодиодные фонари остаются работоспособными и надежными в более холодных местах.Это делает их идеальными для освещения холодильников и складских помещений.
  • Доступен в широкой цветовой гамме: Светодиодные лампы выпускаются с более теплым или более холодным освещением, обеспечивая идеальный оттенок света для любого помещения.
  • Управляемость: Светодиодные лампы - это полупроводниковые устройства, яркость которых можно регулировать с помощью контроллеров. Светодиодные фонари обеспечивают возможность непрерывного затемнения, в то время как другие типы освещения могут обеспечивать только ступенчатое затемнение.
  • Мгновенное включение: Некоторым другим типам ламп требуется время, чтобы достичь полной яркости.Светодиодные фонари, с другой стороны, включаются на полную мощность, как только переключатель щелкает.
  • Прочный и долговечный: За счет отказа от стеклянных корпусов светодиодные фонари могут похвастаться повышенной прочностью и устойчивостью к поломке. Светодиодные фонари обычно устанавливаются на печатных платах и ​​соединяются припаянными выводами. Это увеличивает устойчивость светодиодных фонарей к вибрации и другим видам помех.
  • Нет УФ-излучения / очень мало инфракрасного: Светодиодное освещение помогает защитить ковры, произведения искусства, оконные покрытия и окрашенные поверхности от любого потенциального повреждения инфракрасным или УФ-излучением.
  • Малый размер обеспечивает гибкость конструкции: светодиодные лампы выпускаются в широком диапазоне размеров, что обеспечивает большую свободу при проектировании.

Все преимущества светодиодов связаны с одной проблемой - они нагреваются. Диоды высокой яркости, особенно в светодиодных кластерах, могут вызвать значительные тепловые проблемы, которые повлияют на характеристики светодиодов.

Светодиодные диоды

состоят из полупроводникового материала кристалла, пропитанного или легированного примесями для образования p-n-перехода. Свет проецируется вверх в светодиоде и нагревается вниз в основание.По мере повышения температуры внутри светодиода световой поток уменьшается. Правильное управление температурой при проектировании модулей для светодиодов, будь то на печатной плате или внутри корпуса, требует оценки материалов и методов рассеивания тепла. Fabrico может порекомендовать подходящие материалы и конструкции для обеспечения необходимой теплопроводности и электроизоляции.

Материалы с термическими помехами (TIM) являются жизненно важными компонентами всех светодиодных ламп. TIM помогают сохранить светодиодные фонари и работать с максимальной мощностью, управляя теплом, выделяемым лампами.Fabrico комбинирует и адаптирует эти материалы в соответствии с индивидуальными потребностями любого применения светодиодов.

TIM находятся между светодиодом и радиатором. Там они обеспечивают высокую теплопроводность для эффективной передачи тепла, излучаемого от источника света, к радиатору. Это достигается за счет вытеснения воздуха внутри светодиода. Без TIM тепло не передается эффективно, и производительность светодиодов страдает.

Предлагаемые материалы и клеи могут включать:

  • Проводящие клеи и смазки: включая материалы с фазовым переходом, клеи и смазки, которые находятся между теплогенераторами и радиатором, чувствительные к давлению ленты, которые крепятся к радиаторам, термоткани и ленты, обеспечивающие теплопроводность, и силиконовые губчатые материалы для поглощения тепла .Электропроводящие клеи и смазки от ведущих поставщиков, таких как 3M, DuPont, Von Roll и Saint-Gobain.
  • Ленты: Клейкие ленты доступны для множества применений, включая склеивание, соединение, маркировку и покрытие для использования в таких отраслях, как электротехника, автомобилестроение, производство и многое другое. Эти ленты устраняют необходимость в механических крепежах, экономя как материалы, так и технологические затраты. Предлагается широкий выбор лент, в том числе изолента, лента для гашения вибраций, лента из пенопласта, переносная лента и многое другое.
  • Керамические и наполненные металлом эластомерные заполнители зазоров : заполнители зазоров помогают создавать пути для эффективной теплопередачи между тепловыделяющими механизмами, радиаторами, распределителями тепла и другими охлаждающими устройствами. Интерфейсная площадка 3M 5595 обеспечивает отличную теплопроводность.
  • Ткани с покрытием: специальные переработанные ткани с покрытием доступны в большом количестве вариантов на Fabrico. Ламинированные, прорезанные или высеченные ткани с покрытием предлагаются для таких применений, как изоляция, защита поверхности, химическая стойкость и терморегулирование.Ткани могут быть ламинированы с помощью чувствительных к давлению клеев, токопроводящих клеев и могут быть высечены для соответствия требованиям экранирования EMI / RFI и структурным требованиям. Специальные переработанные тканевые материалы с покрытием доступны от ведущих поставщиков DuPont, Isovolta, Saint-Gobain и Von Roll.
  • Материалы с фазовым переходом: Материалы с фазовым переходом (PCM) - это материалы, которые плавятся и затвердевают при определенных температурах, но при этом могут вызывать повреждение и выделять большое количество энергии.PCM, например 3M 8926-02 и Nitto-Denko TR-5925.

Помимо терморегулирующих материалов, требующихся разнообразных преобразованных материалов, которые имеют решающее значение для рабочих характеристик, надежности и безопасности светодиодного освещения. Материалы, используемые для электробезопасности и пожарной безопасности, имеют решающее значение для работы светодиодов, поскольку устраняют риск поражения электрическим током и возгорания, вызванный выделяющимся теплом.

После того, как были выбраны лучшие материалы, Fabrico также предоставляет готовый компонент терморегулирования после высечки.

Интегрированные светодиодные светильники с прямым подключением идеально подходят для повышения рентабельности освещения. Огнезащитные изделия (FRB) используются в дополнение к радиаторам и материалам термоинтерфейса на уровне корпуса и корпуса светильника. FRB - это тонкие изоляционные устройства из неорганических материалов. Эти изоляционные материалы FRB обеспечивают чрезвычайно высокую огнестойкость и термостойкость в таких областях, как:

  • Светильники осветительные общего назначения (в том числе светодиодные)
  • Электрические и гибридные электромобили
  • Приборы
  • Электрооборудование

Наряду с отличной термостойкостью и огнестойкостью, FRB обеспечивают дуговое и путевое сопротивление, электрическую прочность, гибкость и возможность преобразования.

Fabrico также предлагает решения по экранированию EMI / RFI для снижения магнитных или радиочастотных помех. Хотя светодиоды работают с постоянным током, существуют элементы управления освещением и схемы регулирования яркости с утроением высоких частот. Управление EMI ​​/ RFI может принимать несколько различных форм, например:

Правильный выбор электрической изоляции, экранирования EMI / RFI и огнестойкой барьерной защиты имеет важное значение для правильного управления температурным режимом и выбора материала, чтобы сделать ваши светодиодные фонари максимально функциональными и эффективными.Чтобы получить более подробную информацию по этим темам, посетите наш веб-семинар.

Свяжитесь с нами для получения дополнительной информации о продуктах или услугах Fabrico.

Преимущества и недостатки светодиодных фонарей

Светодиодное освещение для домовладельцев Далласа

LED (светоизлучающие диоды) - это последнее и самое захватывающее технологическое достижение в индустрии освещения. Светодиоды - это маленькие твердые лампочки, которые чрезвычайно энергоэффективны и долговечны.Светодиоды работают иначе, чем традиционные лампы накаливания. Это делает светодиоды более прочными и долговечными, чем традиционные лампы накаливания.

Преимущества светодиодного освещения.

Преимущества и недостатки светодиода

Преимущество

  • Энергоэффективность - светодиоды теперь способны выдавать 135 люмен / ватт

  • Длительный срок службы - 50 000 часов или более при правильной конструкции

  • Rugged - светодиоды также называются «твердотельным освещением (SSL), поскольку они сделаны из твердого материала без нити накала, трубки или лампы, которые могли бы сломаться.

  • Без периода прогрева - светодиод загорается мгновенно - в наносекундах

  • Не подвержен влиянию низких температур - светодиоды «любят» низкие температуры и включаются даже при минусовой погоде

  • Направленный - С помощью светодиодов вы можете направить свет туда, куда хотите, при этом свет не будет потрачен впустую

  • Превосходная цветопередача - светодиоды не размывают цвета, как другие источники света, такие как флуоресцентные, что делает их идеальными для дисплеев и розничной торговли

  • Экологичность - светодиоды не содержат ртути и других опасных веществ

  • Управляемый - Светодиоды можно регулировать по яркости и цвету

Недостаток

  • Опасность синего цвета: Есть опасения, что синие светодиоды и холодно-белые светодиоды теперь могут превышать безопасные пределы так называемой опасности синего света, как это определено в спецификациях безопасности для глаз, таких как ANSI / IESNA RP-27.1-05: Рекомендуемая практика фотобиологической безопасности для ламп и ламповых систем.
  • Качество света: Большинство светодиодов холодного белого цвета имеют спектр, который значительно отличается от излучения черного тела, такого как солнце или лампа накаливания. Пик на 460 нм и падение на 500 нм могут привести к тому, что цвет объектов будет восприниматься иначе при холодном белом светодиодном освещении, чем при солнечном свете или источниках накаливания, из-за метамерии, когда красные поверхности особенно плохо воспроизводятся типичным холодным белым на основе люминофора. Светодиоды.Однако характеристики цветопередачи обычных люминесцентных ламп часто хуже, чем у современных белых светодиодов.
  • Температурная зависимость: Характеристики светодиода во многом зависят от температуры окружающей среды в рабочей среде. Перегрузка светодиода при высоких температурах окружающей среды может привести к перегреву корпуса светодиода, что в конечном итоге приведет к отказу устройства. Для обеспечения долгого срока службы требуется соответствующий теплоотвод. Это особенно важно при рассмотрении автомобильных, медицинских и военных приложений, где устройство должно работать в широком диапазоне температур и иметь низкий уровень отказов.
  • Загрязнение синим цветом: Поскольку холодно-белые светодиоды (т. Е. Светодиоды с высокой цветовой температурой) излучают пропорционально больше синего света, чем обычные внешние источники света, такие как натриевые лампы высокого давления, сильная зависимость рэлеевского рассеяния от длины волны означает, что холодно-белый свет Светодиоды могут вызывать большее световое загрязнение, чем другие источники света. Международная ассоциация темного неба не рекомендует использовать источники белого света с коррелированной цветовой температурой выше 3000 К.
  • Чувствительность по напряжению: на светодиоды должны подаваться напряжение выше порогового значения и ток ниже номинального.Это могут быть последовательные резисторы или источники питания с регулируемым током.
  • Высокая начальная цена: светодиоды в настоящее время более дорогие (цена за люмен) на основе начальных капитальных затрат, чем большинство традиционных технологий освещения. Дополнительные расходы частично связаны с относительно низким световым потоком и необходимостью схемы привода и источников питания.
  • Местный источник света: Светодиоды не соответствуют «точечному источнику» света, а скорее соответствуют ламбертовскому распределению.Поэтому светодиоды сложно использовать в приложениях, требующих сферического светового поля. Светодиоды не могут обеспечить расхождение ниже нескольких градусов. Это контрастирует с лазерами, которые могут создавать лучи с расходимостью 0,2 градуса или менее

Преимущества светодиодного освещения

Светодиоды

чрезвычайно энергоэффективны и потребляют на до 90% меньше энергии, чем лампы накаливания. Поскольку светодиоды используют только часть энергии лампы накаливания, затраты на электроэнергию резко снижаются.Кроме того, деньги и энергия экономятся на расходах на техническое обслуживание и замену благодаря длительному сроку службы светодиодов. Срок службы светодиодов составляет до 60 000 часов по сравнению с 1 500 часами для ламп накаливания. Позвоните нам по телефону (214) 238-8353 для обслуживания и ремонта на дому.

Для получения дополнительных статей и информации посетите https://www.berkeys.com/category/electrical/

светодиодов из Дубая: королевские огни, которые нельзя купить

У

[Клайв] был интересный видеоролик о светодиодных светильниках Philips.Вы не можете купить их, если не живете в Дубае. Очевидно, вдохновленный правителем Дубая шейхом Мохаммадом бин Рашидом Аль Мактумом, который хотел более эффективных и долговечных ламп. Секрет? В обычной светодиодной лампе используется светодиодная «нить» по 1 Вт каждая. Лампы в Дубае работают примерно на четверть от этого, что означает, что им нужно больше светодиодов, чтобы получать такое же количество света, но они должны прослужить дольше и работать более эффективно.

Изучив яркость и цвет разных ламп, [Клайв] рвет одну и находит внутри несколько сюрпризов.Каждый из светодиодов имеет напряжение более 200 В, а схема драйвера состоит из множества пар компонентов, возможно, для того, чтобы сохранить небольшой размер для высоких напряжений, хотя это могло бы повысить надежность, [Клайв] не был уверен.

Уменьшив мощность, [Клайв] смог подсчитать, что каждая светодиодная лента содержит 21 светодиод. Он также отмечает некоторые странности в конструкции, связанные с надежностью и простотой изготовления. Мы не уверены, как это соотносится с конструкцией обычных лампочек.Схема включает в себя мостовой выпрямитель и линейный регулятор тока с использованием полевого МОП-транзистора.

Лампы стоят немного дороже, но если учесть вероятный долгий срок службы, их общая стоимость с течением времени должна быть разумной. В целом интересно, что хороший дизайн возник благодаря тому, что составляет государственное регулирование. Конечно, есть цена: в обмен на разработку лампочек Philips имеет исключительное право производить и продавать лампочки в течение следующих нескольких лет. К концу 2021 года они планируют продать 10 миллионов ламп, хотя в настоящее время они доступны только в Дубае.

Когда мы в последний раз заглядывали в Дубай, их полиция летала на квадрокоптерах. Если вы хотите разобрать более обычную лампочку, мы тоже это уже рассматривали.

Keystone Technologies - легкий доступ к свету


Это юридическое соглашение («соглашение») между вами (или организацией, от имени которой вы лицензируете изображения («вы» или «ваш») и Keystone Technologies. Путем загрузки изображений («изображения») из keystonetech.com или любой другой из наших платформ, обслуживающих наши изображения («Сервис»), вы соглашаетесь соблюдать это соглашение, а также нашу Политику конфиденциальности и Условия использования. Если вы не согласны, не загружайте и не используйте эти изображения.

Нам может потребоваться время от времени изменять это соглашение, и вы соглашаетесь соблюдать обязательства в отношении будущих версий.

Пожалуйста, не разглашайте свой пароль. Они предназначены только для вашего использования.

1. Право собственности: Все изображения защищены U.S. Закон об авторском праве и международные договоры об авторском праве. Мы оставляем за собой все права, не предоставленные в этом соглашении.

2. Лицензия: В соответствии с условиями этого соглашения Keystone Technologies предоставляет вам неисключительное, непередаваемое, бессрочное право на использование и воспроизведение этих изображений в любых коммерческих, художественных или редакционных целях, не запрещенных в других странах. это соглашение.

3. Ограничения:
Вы НЕ можете:
1. Распространять или использовать любое изображение способом, который конкурирует с Keystone Technologies.В частности, вы не можете сублицензировать, перепродавать, назначать, передавать, передавать, делиться или предоставлять доступ к изображениям или каким-либо правам на изображения, кроме тех, которые разрешены в этом соглашении.
2. Используйте изображение для представления любых продуктов или услуг, не принадлежащих Keystone Technologies.
3. Добавьте изображение в любой логотип, товарный знак, фирменный стиль или знак обслуживания.
4. Использовать изображение любым незаконным способом или любым способом, который разумный человек может счесть оскорбительным или который может навредить репутации любого лица или собственности, отраженного на изображении.
5. Ложно представить, что вы являетесь первоначальным создателем изображения.
6. Используйте изображение в любом сервисе, претендующем на получение прав на изображение.
7. Нарушать права на товарный знак или интеллектуальную собственность какой-либо стороны или использовать изображение для вводящей в заблуждение рекламы.
8. Удалите или измените любую информацию об управлении авторскими правами Keystone Technologies (например, логотип Keystone) из любого места, где она есть или встроена в изображение.

4. Возможность передачи; Производные работы: Конечным пользователем работы, которую вы создаете с изображением, должен быть вы сами или ваш работодатель, клиент или заказчик.Только вам разрешено использовать отдельные изображения (вы не можете продавать, сдавать в аренду, одалживать и т. Д. Третьим лицам). Вы можете передавать файлы, содержащие изображения, клиентам, поставщикам или интернет-провайдерам для целей, предусмотренных настоящим соглашением. Вы соглашаетесь принять разумные меры для защиты изображений от извлечения или кражи. Вы незамедлительно уведомите нас о любом неправильном использовании изображений. Если вы передаете изображения, как указано выше, принимающие стороны должны согласиться защищать изображения в соответствии с требованиями настоящего соглашения. Даже при использовании в производной работе наши изображения по-прежнему принадлежат Keystone Technologies.

5. Обзор и записи: С разумным уведомлением вы предоставите Keystone Technologies образцы использования изображений. Вы должны вести учет всего использования изображений, включая подробную информацию об использовании клиентом. Keystone Technologies может периодически запрашивать и проверять такие записи. Если будет обнаружено, что изображения использовались вне рамок данного соглашения, вы удалите изображения по желанию Keystone Technologies.

6. Заявления и гарантии: Мы заявляем и гарантируем, что изображения, предоставленные для загрузки, без изменений и используемые в полном соответствии с настоящим соглашением, не будут нарушать никакие авторские права, права на товарные знаки или другие права интеллектуальной собственности, а также права третьих лиц на неприкосновенность частной жизни. или гласность.

ИЗОБРАЖЕНИЯ

ПРЕДОСТАВЛЯЮТСЯ «КАК ЕСТЬ», БЕЗ КАКИХ-ЛИБО ГАРАНТИЙ, ЯВНЫХ ИЛИ ПОДРАЗУМЕВАЕМЫХ, ВКЛЮЧАЯ, НО НЕ ОГРАНИЧИВАЯСЬ ​​ПОДРАЗУМЕВАЕМЫМИ ГАРАНТИЯМИ ОТСУТСТВИЯ ПРАВ, КОММЕРЧЕСКОЙ ЦЕННОСТИ ИЛИ ПРИГОДНОСТИ ДЛЯ КОНКРЕТНОЙ ЦЕЛИ.

7. Ваше возмещение убытков: Вы соглашаетесь возмещать, защищать и удерживать Keystone Technologies, ее аффилированных лиц, участников, аффилированных лиц, лицензиаров и их соответствующих директоров, должностных лиц, сотрудников, акционеров, партнеров и агентов (совместно именуемые «Keystone Technologies» Стороны ») безвредны по любым претензиям, ответственности, убыткам, убыткам, затратам и расходам (включая разумные судебные издержки на адвокатской и клиентской основе), понесенных любой Стороной Keystone Technologies в результате или в связи с (i) любое нарушение или предполагаемое нарушение вами или кем-либо, действующим от вашего имени, любого из условий настоящего соглашения, включая, помимо прочего, любое использование нашего веб-сайта или любого изображения, кроме случаев, прямо разрешенных в этом соглашении; (ii) любое сочетание изображения с любым другим контентом или текстом, а также любые модификации или производные работы на основе изображения.

8. Ограничение ответственности: Keystone Technologies не несет ответственности по настоящему соглашению в той мере, в какой это связано с изменением изображений, использованием в любых производных работах, контекстом, в котором используется изображение, или вашим (или третьим сторона действует от вашего имени), нарушение данного соглашения, халатность или умышленное нарушение.

В САМОЙ ПОЛНОЙ СТЕПЕНИ, РАЗРЕШЕННОЙ ЗАКОНОДАТЕЛЬСТВОМ, НИ KEYSTONE TECHNOLOGIES, НИ КАКИЕ-ЛИБО ИЗ ЕГО СОТРУДНИКОВ ИЛИ ПОСТАВЩИКОВ НЕ НЕСЕТ ОТВЕТСТВЕННОСТИ ЗА ЛЮБЫЕ ОБЩИЕ, КАЧЕСТВЕННЫЕ, СПЕЦИАЛЬНЫЕ, ИЛИ КОСВЕННЫЕ ИЛИ КОСВЕННЫЕ УСЛУГИ ЛЮБЫЕ ДРУГИЕ УБЫТКИ, ЗАТРАТЫ ИЛИ УБЫТКИ, ВЫЗВАННЫЕ ВАМИ ИСПОЛЬЗОВАНИЕМ ИЗОБРАЖЕНИЙ, ВЕБ-САЙТА, ​​НАРУШЕНИЯ ДАННОГО СОГЛАШЕНИЯ КОМПАНИИ KEYSTONE TECHNOLOGIES ИЛИ ИНАЧЕ, ЕСЛИ ЯВНО НЕ ПРЕДУСМОТРЕНО, ДАЖЕ ЕСЛИ KEYSTONE TECHNOLOGIES ПРЕДНАЗНАЧЕНА УБЫТКИ, ИЗДЕРЖКИ ИЛИ УБЫТКИ.

9. Прекращение действия: Настоящее соглашение действует до тех пор, пока у вас есть учетная запись, если оно не будет прекращено, как указано ниже. Вы можете прекратить действие любой лицензии, предоставленной в соответствии с этим соглашением, уничтожив изображения и любые производные от них работы, а также любые копии или архивы вышеупомянутых или сопроводительных материалов (если применимо), и прекратив использовать изображения для любых целей. Лицензии, предоставленные в соответствии с этим соглашением, также прекращают действие без уведомления Keystone Technologies, если в какой-либо момент вы не соблюдаете какое-либо из условий этого соглашения.Keystone Technologies может расторгнуть настоящее соглашение, а также вашу учетную запись и все ваши лицензии с уведомлением вас или без него, если вы не соблюдаете условия этого соглашения. После прекращения действия вашей лицензии вы должны немедленно прекратить использование изображений для любых целей; уничтожать или удалять все производные работы с изображениями, а также копии и архивы изображений или сопутствующих материалов; и, если потребуется, подтвердите Keystone Technologies в письменной форме, что вы выполнили эти требования.ВЫШЕУЮЩЕЕ ПРЕКРАЩЕНИЕ ДОПОЛНИТЕЛЬНО ДОПОЛНИТЕЛЬНО ДРУГИЕ ЗАКОННЫЕ И / ИЛИ КАПИТАЛЬНЫЕ ПРАВА Keystone Technologies. Keystone Technologies НЕ НЕСЕТ ОБЯЗАТЕЛЬСТВ ПО ВОЗВРАТУ КАКИХ-ЛИБО ПЛАТЕЖНЫХ КОМИССИЙ В СЛУЧАЕ ПРЕКРАЩЕНИЯ ВАШЕЙ ЛИЦЕНЗИИ ИЛИ УЧЕТНОЙ ЗАПИСИ ПО ПРИЧИНЕ ВАШЕГО НАРУШЕНИЯ.

10. Сохранение прав после прекращения действия: Следующие положения и условия остаются в силе после прекращения или истечения срока действия настоящего соглашения: условия, применимые к лицензиям на изображения, предоставленным по настоящему Соглашению, остаются в силе в отношении оставшихся лицензий при условии, что настоящее соглашение не прекращается как результат вашего нарушения, и что вы всегда будете соблюдать его условия.

11. Удаление изображений с keystonetech.com: Keystone Technologies оставляет за собой право удалять изображения с keystonetech.com, отозвать любую лицензию на любые изображения по уважительной причине и выбрать замену такого изображения альтернативным изображением. После уведомления об отзыве лицензии на любое изображение вы должны немедленно прекратить использование таких изображений, принять все разумные меры для прекращения использования замененных изображений и проинформировать об этом всех конечных пользователей и клиентов.

12. Разное: Настоящее соглашение представляет собой полное соглашение сторон в отношении предмета настоящего Соглашения. Стороны соглашаются, что любое существенное нарушение Раздела 3 («Ограничения») нанесет непоправимый ущерб Keystone Technologies, и что судебный запрет в суде компетентной юрисдикции будет уместен для предотвращения первоначального или продолжающегося нарушения такого Раздела в дополнение к любому Компания Keystone Technologies может иметь право на другие льготы. Если нам не удается обеспечить соблюдение каких-либо частей этого соглашения, это не означает, что от таких частей отказываются.Это соглашение не может быть передано вами без нашего письменного разрешения, и любая такая предполагаемая передача без разрешения является недействительной. Если какая-либо часть этого соглашения будет признана незаконной или не имеющей исковой силы, эта часть должна быть изменена, чтобы отразить наиболее полное юридически исполнимое намерение сторон (или, если это невозможно, удалить), не влияя на действительность или исковую силу остальной части. Любые судебные иски или судебные разбирательства, касающиеся наших отношений с вами или настоящего соглашения, должны подаваться в суды штата Пенсильвания в графстве Монтгомери или Соединенных Штатов Америки в Восточном округе Пенсильвании, и все стороны соглашаются с исключительная юрисдикция этих судов, отказавшись от каких-либо возражений против уместности или удобства таких мест.Конвенция Организации Объединенных Наций о договорах международной купли-продажи товаров не применяется к настоящему соглашению и не влияет на него иным образом. Действительность, толкование и приведение в исполнение настоящего соглашения, вопросы, возникающие из настоящего соглашения или связанные с ним или их заключением, исполнением или нарушением, а также связанные с этим вопросы, регулируются внутренним законодательством штата Пенсильвания (без ссылки на доктрину выбора права.

0 comments on “Светодиодная лампа википедия: Что такое светодиодная лампа?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *