Бесколлекторный двигатель принцип работы: Бесколлекторный двигатель постоянного тока: принцип работы, устройство, виды

Бесколлекторный двигатель постоянного тока: принцип работы, устройство, виды

Главная проблема коллекторных двигателей – это как раз-таки наличие коллекторного узла. Щётки стираются, а ламели изнашиваются, от слоя графитовой пыли между ними происходят замыкания, возникает искрение. Этих проблем нет в асинхронных машинах, но работать от постоянного тока они не могут. Бесколлекторный двигатель постоянного тока лишен обозначенных выше недостатков. О том, что это такое, как работает и где используются двигатели БДПТ мы и поговорим в этой статье.

Определение

Бесколлекторным называют электродвигатель постоянного тока, ток в обмотках которого переключает специальное устройство-коммутатор — он носит название «драйвер» или «инвертор» и эти обмотки всегда расположены на статоре. Коммутатор состоит из 6 транзисторов, они и подают ток в ту или иную обмотку, в зависимости от положения ротора.

В отечественной литературе такие двигатели называют «вентильными» (потому что полупроводниковые ключи называют «вентилями»), и есть разделение таких электромашин на два вида по форме противо—ЭДС.

В зарубежной литературе такое различие сохраняется, один из них называют аналогично русскому «BLDC» (brushless direct current drive или motor), что в дословном переводе звучит как «бесщёточный двигатель постоянного тока» в их обмотках возникает трапецеидальная ЭДС. Вентильные же электродвигатели с синусоидальной ЭДС называют PMSM (Permanent magnet synchronous machine), что переводится как «синхронный электродвигатель с возбуждением постоянными магнитами».

Устройство и принцип действия

Коллектор в КДПТ служит узлом переключения тока в обмотках якоря. В бесколлекторном электродвигателе постоянного тока (БДПТ) эту роль выполняют не щетки с ламелями, а коммутатор она полупроводниковых ключах — транзисторах. Транзисторы переключают обмотки статора, создавая вращающееся магнитное поле, которое взаимодействует с полем магнитов ротора. А при протекании тока через проводник, который находится в магнитном поле, на него действует сила Ампера, за счет действия этой силы и образуется крутящий момент на валу электрических машин. На этом и основан принцип работы любого электродвигателя.

Теперь же разберемся в том, как устроен бесколлекторный двигатель. На статоре БДПТ обычно расположены 3 обмотки, по аналогии с электродвигателями переменного тока их часто называют трехфазными. Отчасти это верно: бесколлекторные двигатели работают от источника постоянного тока (чаще от аккумуляторов), но контроллер включает ток обмотках поочерёдно. Однако при этом не совсем верно говорить, что по обмоткам протекает переменный ток. Конечная форма питающего обмотки напряжения формируется прямоугольными импульсами управления транзисторами.

Трёхфазный бесколлекторный двигатель может быть трёхпроводными или четырёхпроводным, где четвертый провод — отвод от средней точки (если обмотки соединены по схеме звезды).

Обмотки или, говоря простым словами, катушки медного провода укладываются в зубы сердечника статора. В зависимости от конструкции и назначения привода на статоре может быть разное количество зубцов. Встречаются разные варианты распределения обмоток фаз по зубцам ротора, что иллюстрирует следующий рисунок.

Обмотки каждого из зубов в пределах одной фазы могут соединяться последовательно или параллельно, в зависимости от поставленных конструктору задач по мощности и моменту проектируемого привода, а сами же обмотки фаз соединяются между собой по схеме звезды или треугольника, подобно асинхронным или синхронным трёхфазными электродвигателям переменного тока.

В статоре могут устанавливаться датчики положения ротора. Часто используются датчики холла, они дают сигнал контроллеру, когда на них воздействует магнитное поле магнитов ротора. Это нужно для того чтобы контроллер «знал», в каком положении находится ротор и подавал питание на соответствующие обмотки. Это нужно для повышения эффективности и стабильности работы, а если кратко, — чтобы выжать из двигателя всю возможную мощность. Датчиков обычно устанавливается 3 штуки. Но наличие датчиков усложняет устройство бесколлекторного электродвигателя, к ним нужно проводить дополнительные провода для питания и линии данных.

В БДПТ для возбуждения используются постоянные магниты, установленные на роторе, а статор — это якорь. Напомним, что в коллекторных машинах наоборот (ротор — это якорь), а для возбуждения в КД используются как постоянные магниты, так и электромагниты (обмотки).

Магниты устанавливаются с чередованием полюсов, и соответственно их количество определяет количество пар полюсов. Но это не значит, что сколько магнитов, то столько же и пар полюсов. Несколько магнитов могут формировать один полюс. От числа полюсов, как в случае и с асинхронным двигателем (и другими) зависит число оборотов в минуту. То есть от одного контроллера на одинаковых настройках бесколлекторные двигатели с разным числом пар полюсов будут вращаться с разной скоростью.

Виды БДПТ

Теперь давайте разберемся, какими бывают бесколлекторные двигатели на постоянных магнитах. Их классифицируют по форме противо-ЭДС, конструкции, а также по наличию датчиков положения ротора. Итак, два основных типа отличающихся формой противо-ЭДС, которая наводится в обмотках при вращении ротора:

  • BLDC — в них трапецеидальная противо-ЭДС;
  • PMSM — противо-ЭДС синусоидальная.

В идеальном случае для них нужны разные источники питания (контроллеры), но на практике они взаимозаменяемы. Но если использовать контроллер с прямоугольными или трапецеидальным выходным напряжением с PMSM-двигателем, то будут слышны характерные звуки, похожие на стук во время вращения.

А по конструкции бесколлекторные двигатели постоянного тока бывают:

  • С внутренним ротором. Это более привычное представление электродвигателя, когда статор — это корпус, а вращается вал, расположенный в нём. Часто их называют английским словом «Inrunner». Такой вариант обычно применяют для высокооборотистых электродвигателей
  • С внешним ротором. Здесь вращается внешняя часть двигателя с закреплённым на ней валом, в англоязычных источниках его называют «outrunner». Эту схему устройства используют, когда нужен высокий момент.

Выбирают конструкцию в зависимости от того для чего нужен бесколлекторный двигатель в конкретном применении.

Современная промышленность выпускает бесколлекторные двигатели как с датчиками положения ротора, так и без них. Дело в том, что существует множество способов управления БДПТ, для некоторых из них нужны датчики положения, другие определяют положения по ЭДС в обмотках, третьи и вовсе просто подают питание на нужные фазы и электродвигатель самостоятельно синхронизируется с таким питанием и входит в рабочий режим.

Основные характеристики бесколлекторных двигателей постоянного тока:

  1. Режим работы — длительный или кратковременный.
  2. Максимальное рабочее напряжение.
  3. Максимальный рабочий ток.
  4. Максимальная мощность.
  5. Максимальные обороты, часто указывают не обороты, а KV — об/в, то есть количество оборотов на 1 вольт приложенного напряжения (без нагрузки на валу). Чтобы получить максимальные обороты — умножьте это число на максимальное напряжение.
  6. Сопротивление обмотки (чем оно меньше, тем выше КПД), обычно составляет сотые и тысячные доли Ома.
  7. Угол опережения фазы (timing) — время, через которое ток в обмотке достигнет своего максимума, это связано с её индуктивностью и законами коммутации (ток в индуктивности не может измениться мгновенно.

Схема подключения

Как было сказано выше, для работы бесколлекторного двигателя нужен специальный контроллер. На алиэкспресс можно найти как комплекты из двигателя и контроллера, так и по отдельности. Контроллер также называют ESC Motor или Electric Speed Controller. Выбирают их по силе тока, отдаваемого в нагрузку.

Обычно подключение электродвигателя к контроллеру не вызывает затруднений и понятно даже для чайников. Главное, что нужно знать — для смены направления вращения нужно изменить подключение любых двух фаз, собственно также, как и в трёхфазных асинхронных или синхронных электродвигателях.

В сети есть и ряд технических решений и схем как сложных, так и для чайников, которые вы можете увидеть ниже.

В этом видеоролике автор рассказывает, как подружить БК моторчик с «ардуиной».

А в этом ролике вы узнаете о различных способах подключения к разным регуляторам и как его можно сделать своими руками. Автор демонстрирует это на примере моторчика от HDD, и пары мощных экземпляров — inrunner и outrunner.

Кстати схему из видео для повторения также прикладываем:

Где применяются бесколлекторные двигатели

Сфера применения таких электродвигателей досрочно широка. Они используются как для привода мелких механизмов: в дисководах CD, DVD-приводах, жёстких дисках, так и в мощных устройствах: аккумуляторе и сетевом электроинструменте (с питанием порядка 12В), радиоуправляемых моделях (например, квадрокоптерах), станках ЧПУ для привода рабочего органа (обычно моторчики с номинальным напряжением 24В или 48В).

Широкое применение БДПТ нашли в электротранспорте, почти все современные мотор-колеса электросамокатов, велосипедов, мотоциклов и автомобилей — это бесколлекторные двигатели. К слову, номинальное напряжение электродвигателей для транспорта лежит в широком пределе, например, мотор-колесо для велосипеда зачастую работает от 36В или от 48В, за редким исключением и больше, а в автомобилях, например, на Toyota Prius порядка 120В, а на Nissan Leaf – доходит до 400, при том что заряжается от сети 220В (это реализуется с помощью встроенного преобразователя).

На самом деле область применения бесколлекторных электродвигателей очень обширна, отсутствие коллекторного узла позволяет его применять опасных местах, а также в местах с повышенной влажностью, без опасений замыканий, искрения или возгорания из-за дефектов в щеточном узле. Благодаря высокому КПД и хорошим массогабаритным показателям они нашли применение и в космической промышленности.

Преимущества и недостатки

Бесколлекторным двигателям постоянного тока, как и другим видам электромашин, присущи определенные достоинства и недостатки.

Преимущества у БДПТ заключаются в следующем:

  • Благодаря возбуждению мощными постоянными магнитами (неодимовыми, например) превосходят по моменту и мощности и имеют меньшие габариты, чем асинхронные двигатели. Чем пользуется большинство производителей электротранспорта — от самокатов до автомобилей.
  • Нет искрящего щеточно-коллекторного узла, который требует регулярного обслуживания.
  • При использовании качественного контроллера в отличие от того же КД не выдают помехи в питающую сеть, что особенно важно в радиоуправляемых устройствах и транспорте с развитым электронным оборудованием в бортовой сети.
  • КПД более 80, чаще и 90%.
  • Высокая скорость вращения, в отдельных случаях до 100000 об/мин.

Но есть и существенный минус: бесколлекторный двигатель без контроллера — просто кусок железа с медной обмоткой. Он никак не сможет работать. Контроллеры стоят недешево и чаще всего их приходится заказывать в интернет-магазинах или с алиэкспресс. Из-за этого использовать БК-моторы в моделях и устройствах домашнего производства не всегда возможно.

Теперь вы знаете, что такое бесколлекторный двигатель постоянного тока, как он работает и где применяется. Надеемся, наша статья помогла вам разобраться во всех вопросах!

Материалы по теме:

Бесколлекторные двигатели постоянного тока. Устройство бесколлекторного двигателя. — Avislab

Общее устройство (Inrunner, Outrunner)

Бесколлекторный двигатель постоянного тока состоит из ротора с постоянными магнитами и статора с обмотками. Различают два типа двигателей: Inrunner, у которых магниты ротора находятся внутри статора с обмотками, и Outrunner, у которых магниты расположены снаружи и вращаются вокруг неподвижного статора с обмотками.

Схему Inrunner обычно применяют для высокооборотистых двигателей с небольшим количеством полюсов. Outrunner при необходимости получить высокомоментный двигатель со сравнительно небольшими оборотами. Конструктивно Inrunners проще из за того, что неподвижный статор может служить корпусом. К нему могут быть смонтированы крепежные приспособления. В случае Outrunners вращается вся внешняя часть. Крепеж двигателя осуществляется за неподвижную ось либо детали статора. В случае мотор-колеса крепление осуществляется за неподвижную ось статора, провода заводятся к статору через полую ось.

Магниты и полюса

Количество полюсов на роторе четное. Форма применяемых магнитов обычно прямоугольная. Цилиндрические магниты применяются реже. Устанавливаются они с чередованием полюсов.

Количество магнитов не всегда соответствует количеству полюсов. Несколько магнитов могут формировать один полюс:

В этом случае 8 магнитов формируют 4 полюса. Размер магнитов зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу.

Магниты на роторе закрепляются с помощью специального клея. Реже встречаются конструкции с держателем магнитов. Материал ротора может быть магнитопроводящим (стальным), немагнитопроводящим (алюминиевые сплавы, пластики и т.п.), комбинированным.

Обмотки и зубья

Обмотка трехфазного бесколлекторного двигателя выполняется медным проводом. Провод может быть одножильным или состоять из нескольких изолированных жил. Статор выполняется из нескольких сложенных вместе листов магнитопроводящей стали.

Количество зубьев статора должно делиться на количество фаз. т.е. для трехфазного бесколлекторного двигателя количество зубьев статора должно делиться на 3. Количество зубьев статора может быть как больше так и меньше количества полюсов на роторе. Например существуют моторы со схемами: 9 зубьев/12 магнитов; 51 зуб/46 магнитов.

Двигателя с 3-х зубым статором применяют крайне редко. Поскольку в каждый момент времени работает только две фазы (при включении звездой), магнитные силы воздействуют на ротор не равномерно по всей окружности (см. рис.).

Силы, воздействующие на ротор, стараются его перекосить, что приводит к увеличению вибраций. Для устранения этого эффекта статор делают с большим количеством зубьев, а обмотку распределяют по зубьям всей окружности статора как можно равномернее.

В этом случае магнитные силы, воздействующие на ротор, компенсируют друг друга. Дисбаланса не возникает.

Варианты распределения обмоток фаз по зубьям статора

Вариант обмотки на 9 зубов

Вариант обмотки на 12 зубов

В приведенных схемах число зубов выбрано таким образом, чтобы оно делилось не только на 3. Например, при 36 зубьях приходится 12 зубьев на одну фазу. 12 зубьев можно распределить так:

6 групп по 2 зуба

4 группы по 3 зуба

3 группы по 4 зуба

2 группы по 6 зубьев

Наиболее предпочтительна схема 6 групп по 2 зуба.

Существует двигатель с 51 зубом на статоре! 17 зубов на одну фазу. 17 — это простое число, оно нацело делится только на 1 и на само себя. Как же распределить обмотку по зубьям? Увы, но я не смог найти в литературе примеров и методик, которые помогли бы решить эту задачу. Оказалось, что обмотка распределялась следующим образом:

Рассмотрим реальную схему обмотки.

Обратите внимание, что обмотка имеет разные направления намотки на разных зубьях. Разные направления намотки обозначаются прописными и заглавными буквами. Детально о проектировании обмоток можно прочитать в литературе, предложенной в конце статьи.

Классическая обмотка выполняется одним проводом для одной фазы. Т.е. все обмотки на зубьях одной фазы соединены последовательно.

Обмотки зубьев могут соединяться и параллельно.

Так же могут быть комбинированные включения

Параллельное и комбинированное включение позволяет уменьшить индуктивность обмотки, что приводит к увеличению тока статора (следовательно и мощности) и скорости вращения двигателя.

Обороты электрические и реальные

Если ротор двигателя имеет два полюса, то при одном полном обороте магнитного поля на статоре, ротор совершает один полный оборот. При 4 полюсах, чтобы повернуть вал двигателя на один полный оборот потребуется два оборота магнитного поля на статоре. Чем больше количество полюсов ротора, тем больше потребуется электрических оборотов для вращения вала двигателя на один оборот. Например, имеем 42 магнита на роторе. Для того чтобы провернуть ротор на один оборот, потребуется 42/2=21 электрический оборот. Это свойство можно использовать как своеобразный редуктор. Подобрав необходимое количество полюсов, можно получить двигатель с желаемыми скоростными характеристиками. Кроме того, понимание этого процесса будет нам необходимо в будущем, при выборе параметров регулятора.

Датчики положения

Устройство двигателей без датчиков отличается от двигателей с датчиками только отсутствием последних. Других принципиальных отличий нет. Наиболее распространены датчики положения, работающие на основе эффекта Холла. Датчики реагируют на магнитное поле, их располагают, как правило, на статоре таким образом, чтобы на них воздействовали магниты ротора. Угол между датчиками должен быть 120 градусов.

Имеется в виду «электрических» градусов. Т.е. для многополюсного двигателя физическое расположение датчиков может быть таким:

 

Иногда датчики располагают снаружи двигателя. Вот один из примеров расположения датчиков. На самом деле это был двигатель без датчиков. Таким простым способом его оснастили датчиками холла.

На некоторых двигателях датчики устанавливают на специальном устройстве, которое позволяет перемещать датчики в определенных пределах. С помощью такого устройства устанавливается угол опережения (timing). Однако, если двигатель требует реверса (вращения в обратную сторону) потребуется второй комплект датчиков, настроенных на обратный ход. Поскольку timing не имеет решающего значения при старте и низких оборотах, можно установить датчики в нулевую точку, а угол опережения корректировать программно, когда двигатель начнет вращаться.

Основные характеристики двигателя

Каждый двигатель рассчитывается под определенные требования и имеет следующие основные характеристики:
  • Режим работы на который рассчитан двигатель: длительный или кратковременный. Длительный режим работы подразумевает, что двигатель может работать часами. Такие двигатели рассчитываются таким образом, чтобы теплоотдача в окружающую среду была выше тепловыделения самого двигателя. В этом случае он не будет разогреваться. Пример: вентиляция, привод эскалатора или конвейера. Кратковременный — подразумевает, что двигатель будет включаться на короткий период, за который не успеет разогреться до максимальной температуры, после чего следует длительный период, за время которого двигатель успевает остыть.  Пример: привод лифта, электробритвы, фены.
  • Сопротивление обмотки двигателя. Сопротивление обмотки двигателя влияет на КПД двигателя. Чем меньше сопротивление, тем выше КПД. Измерив сопротивление, можно выяснить наличие межвиткового замыкания в обмотке. Сопротивление обмотки двигателя составляет тысячные доли Ома. Для его измерения требуется специальный прибор или специальная методика измерения.
  • Максимальное рабочее напряжение. Максимальное напряжение, которое способна выдержать обмотка статора. Максимальное напряжение взаимосвязано со следующим параметром.
  • Максимальные обороты. Иногда указывают не максимальные обороты, а Kv — количество оборотов двигателя на один вольт без нагрузки на валу. Умножив этот показатель на максимальное напряжение, получим максимальные обороты двигателя без нагрузки на валу.
  • Максимальный ток. Максимально допустимый ток обмотки. Как правило, указывается и время, в течение которого двигатель может выдержать указанный ток. Ограничение максимального тока связано с возможным перегревом обмотки. Поэтому при низких температурах окружающей среды реальное время работы с максимальным током будет больше, а в жару двигатель сгорит раньше.
  • Максимальная мощность двигателя. Напрямую связана с предыдущим параметром. Это пиковая мощность, которую двигатель может развить на небольшой период времени, обычно — несколько секунд. При длительной работе на максимальной мощности неизбежен перегрев двигателя и выход его из строя.
  • Номинальная мощность. Мощность, которую двигатель может развивать на протяжении всего времени включения.
  • Угол опережения фазы (timing). Обмотка статора имеет некоторую индуктивность, которая затормаживает рост тока в обмотке. Ток достигнет максимума через некоторое время. Для того, чтобы компенсировать эту задержку переключение фаз выполняют с некоторым опережением. Аналогично зажиганию в двигателе внутреннего сгорания, где выставляется угол опережения зажигания с учетом времени воспламенения топлива.
Так же следует обратить внимание на то, что при номинальной нагрузке Вы не получите максимальных оборотов на валу двигателя. Kv указывается для не загруженного двигателя. При питании двигателя от батарей следует учесть «проседание» питающего напряжения под нагрузкой, что в свою очередь также снизит максимальные обороты двигателя.

Звезда и Треугольник

Обмотки бесколлекторного двигателя соединяют по схеме звезда или треугольник (дельта).

При включении звездой ток протекает через две обмотки. Результирующее сопротивление равно сумме сопротивлений двух обмоток R=R1+R2. Соответственно максимально возможный ток, протекаемый через обмотки I=U/(R1+R2). Потребляемая мощность P=U*I Предположим, что напряжение 10 В, а сопротивление обмотки 1 ОМ. Тогда ток I=10/(1+1)=5А. Потребляемая мощность P=10*5=50 Вт.

При включении треугольником ток протекает через все обмотки. Результирующее сопротивление обмоток R=(R1*(R2+R3))/(R1+R2+R3). Соответственно, максимально возможный ток, протекаемый через обмотки I=U/((R1*(R2+R3))/(R1+R2+R3)

При таком же напряжении и сопротивлении обмоток получаем ток I=10/((1*(1+1))/(1+1+1))=15А. Потребляемая мощность P=10*15=150 Вт.

При включении треугольником вырастают и обороты двигателя. Обмотки двигателя соединенные треугольником греются больше, чем при включении звездой.

Очевидно, что простым переключением обмотки с звезды в треугольник можно получить двигатель с совершенно другими характеристиками.

В высокомоментных двигателях с длительным режимом включения целесообразно применять звезду. В двигателях, работающих в кратковременном режиме, требующих более высоких оборотов, целесообразно применять треугольник.

Иногда в электротранспорте старт и разгон выполняется при включении обмоток звездой (так как это включение обеспечивает высокий момент на валу, но меньшие обороты), после разгона выполняется переключение в треугольник (обороты выше, момент меньше). Это позволяет увеличить диапазон оборотов двигателя, сохранив стартовые характеристики.

В следующей статье будет рассмотрен алгоритм управления бесколлекторными двигателями.

Литература

Design and Prototyping Methods for Brushless Motors and Motor Control by Shane W. Colton

Вентильные электрические двигатели и приводы на их основе Овчинников И.Е.

Статьи по бесколлекторным моторам:

Бесколлекторные двигатели постоянного тока. Что это такое? — Avislab

Этой статьёй я начинаю цикл публикаций о бесколлекторных двигателях постоянного тока. Доступным языком  опишу общие сведения, устройство, алгоритмы управления бесколлекторным двигателем. Будут рассмотрены разные типы двигателей, приведены примеры подбора параметров регуляторов. Опишу устройство и алгоритм работы регулятора,  методику выбора силовых ключей и основных параметров регулятора. Логическим завершением публикаций будет схема регулятора.

Бесколлекторные двигатели получили широкое распространение благодаря развитию электроники и, в том числе, благодаря появлению недорогих силовых транзисторных ключей. Также немаловажную роль сыграло появление мощных неодимовых магнитов.

Однако не стоит считать бесколлекторный двигатель новинкой. Идея бесколлекторного двигателя появилась на заре электричества. Но, в силу неготовности технологий, ждала своего времени до 1962 года, когда появился первый коммерческий бесколлекторный двигатель постоянного тока. Т.е. уже более полувека существуют различные серийные реализации этого типа электропривода!

Немного терминологии

Бесколлекторные двигатели постоянного тока называют так же вентильными, в зарубежной литературе BLDCM (BrushLes Direct Current Motor) или PMSM (Permanent Magnet Synchronous Motor).

Конструктивно бесколлекторный двигатель состоит из ротора с постоянными магнитами и статора с обмотками. Обращаю Ваше внимание на то, что в коллекторном двигателе наоборот, обмотки находятся на роторе. Поэтому, далее в тексте ротор — магниты, статор — обмотки.

Для управления двигателем применяется электронный регулятор. В зарубежной литературе Speed Controller или ESC (Electronic speed control).

Что такое бесколлекторный двигатель?

Обычно люди, сталкиваясь с чем-то новым, ищут аналогии. Иногда приходится слышать фразы «ну это как синхронник», или еще хуже «он похож на шаговик». Поскольку большинство бесколлекторных двигателей трехфазные, это еще больше путает, что приводит к неправильному мнению о том, что регулятор «кормит» двигатель переменным 3-x фазным током. Все вышесказанное соответствует действительности только отчасти. Дело в том, что синхронными можно назвать все двигатели кроме асинхронных. Все двигатели постоянного тока являются синхронными с самосинхронизацией, но их принцип действия отличается от синхронных двигателей переменного тока, у которых самосинхронизация отсутствует. Как шаговый бесколлекторный двигатель тоже, наверное, сможет работать. Но тут такое дело: кирпич он тоже может летать… правда, недалеко, ибо для этого не предназначен. В качестве шагового двигателя больше подойдет вентильный реактивный двигатель.

Попробуем разобраться, что собой представляет бесколлекторный двигатель постоянного тока (Brushles Direct Current Motor). В самой этой фразе уже кроется ответ — это двигатель постоянного тока без коллектора. Функции коллектора выполняет электроника.

Преимущества и недостатки

Из конструкции двигателя удаляется довольно сложный, требующий обслуживания тяжелый и искрящий узел — коллектор. Конструкция двигателя существенно упрощается. Двигатель получается легче и компактнее. Значительно уменьшаются потери на коммутацию, поскольку контакты коллектора и щетки заменяются электронными ключами. В итоге получаем электродвигатель с наилучшими показателями КПД и показателем мощности на килограмм собственного веса, с наиболее широким диапазоном изменения скорости вращения. На практике бесколлекторные двигатели греются меньше, чем их коллекторные братья. Переносят большую нагрузку по моменту. Применение мощных неодимовых магнитов сделали бесколлекторные двигатели еще более компактными. Конструкция бесколлекторного двигателя позволяет эксплуатировать его в воде и агресивных средах (разумеется, только двигатель, регулятор мочить будет очень дорого). Бесколлекторные двигатели практически не создают радиопомех.

Единственным недостатком считают сложный дорогостоящий электронный блок управления (регулятор или ESC). Однако, если вы хотите управлять оборотами двигателя, без электроники никак не обойтись. Если вам не надо управлять оборотами бесколлекторного двигателя, без электронного блока управления все равно не обойтись. Бесколлекторный двигатель без электроники — просто железка. Нет возможности подать на него напряжение и добиться нормального вращения как у других двигателей.

Что происходит в регуляторе бесколлекторного двигателя?

Для того чтобы понять, что происходит в электронике регулятора, управляющего бесколлекторным двигателем, вернемся немного назад и сначала разберемся как работает коллекторный двигатель. Из школьного курса физики помним, как магнитное поле действует на рамку с током. Рамка с током вращается в магнитном поле. При этом она не вращается постоянно, а поворачивается до определенного положения. Для того чтобы происходило непрерывное вращение, нужно переключать направление тока в рамке в зависимости от положения рамки. В нашем случае рамка с током — это обмотка двигателя, а переключением занимается коллектор — устройство со щетками и контактами. Устройство простейшего двигателя смотри на рисунке.

То же самое делает и электроника, управляющая бесколлекторным двигателем — в нужные моменты подключает постоянное напряжение на нужные обмотки статора.

Датчики положения, двигатели без датчиков

Из вышесказанного важно уяснить, что подавать напряжение на обмотки двигателя нужно в зависимости от положения ротора. Поэтому электроника должна уметь определять положение ротора двигателя. Для этого применяются датчики положения. Они могут быть различного типа, оптические, магнитные и т.д. В настоящее время очень распространены дискретные датчики на основе эффекта Холла (например SS41). В трехфазном бесколлекторном двигателе используется 3 датчика. Благодаря таким датчикам электронный блок управления всегда знает, в каком положении находится ротор и на какие обмотки подавать напряжение в каждый момент времени. Позже будет рассмотрен алгоритм управления трехфазным бесколлекторным двигателем.

Существуют бесколлекторные двигатели, которые не имеют датчиков. В таких двигателях положение ротора определяется путем измерения напряжения на незадействованной в данный момент времени обмотке. Эти методы также будут рассмотрены позднее. Следует обратить внимание на существенный момент: этот способ актуален только при вращении двигателя. Когда двигатель не вращается или вращается очень медленно, такой метод не работает.

В каких случаях применяют бесколлекорные двигатели с датчиками, а в каких — без датчиков? В чем их отличие?

Двигатели с датчиками положения более предпочтительны с технической точки зрения. Алгоритм управления такими двигателями значительно проще. Однако есть и свои минусы: требуется обеспечить питание датчиков и прокладку проводов от датчиков в двигателе к управляющей электронике; в случае выхода со строя одного из датчиков, двигатель прекращает работу, а замена датчиков, как правило, требует разборки двигателя.

В тех случаях, когда конструктивно невозможно разместить датчики в корпусе двигателя, используют двигатели без датчиков. Конструктивно такие двигатели практически не отличаются от двигателей с датчиками. А вот электронный блок должен уметь управлять двигателем без датчиков. При этом блок управления должен соответствовать характеристикам конкретной модели двигателя.

Если двигатель должен стартовать с существенной нагрузкой на валу двигателя (электротранспорт, подъёмные механизмы и т.п.) — применяют двигатели с датчиками. Если двигатель стартует без нагрузки на валу (вентиляция, воздушный винт, применяется центробежная муфта сцепления и т.п.), можно применять двигатели без датчиков. Запомните: двигатель без датчиков положения должен стартовать без нагрузки на валу. Если это условие не соблюдается, следует использовать двигатель с датчиками. Кроме того, в момент старта двигателя без датчиков возможны вращательные колебания оси двигателя в разные стороны. Если это критично для Вашей системы, применяйте двигатель с датчиками.

Три фазы

Трехфазные бесколлекторные двигатели приобрели наибольшее распространение. Но они могут быть и одно, двух, трех и более фазными. Чем больше фаз, тем более плавное вращение магнитного поля, но и сложнее система управления двигателем. 3-х фазная система наиболее оптимальна по соотношению эффективность/сложность, поэтому и получила столь широкое распространение. Далее будет рассматриваться только трехфазная схема, как наиболее распространенная.  Фактически фазы — это обмотки двигателя. Поэтому если сказать «трехобмоточный», думаю, это тоже будет правильно. Три обмотки соединяются по схеме «звезда» или «треугольник». Трехфазный бесколлекторный двигатель имеет три провода — выводы обмоток, см. рисунок.

Двигатели с датчиками имеют дополнительных 5 проводов (2-питание датчиков положения, и 3 сигналы от датчиков).

В трехфазной системе в каждый момент времени напряжение подается на две из трех обмоток. Таким образом, есть 6 вариантов подачи постоянного напряжения на обмотки двигателя, как показано на рисунке ниже.

Это позволяет создать вращающееся магнитное поле, которое будет проворачиваться «шагами» на 60 градусов при каждом переключении. Но не будем забегать наперед. В следующей статье будут рассмотрены устройство бесколлекторного двигателя, варианты расположения магнитов, обмоток, датчиков и т.д., а позже будут рассмотрены алгоритмы управления бесколлекторными двигателями.

Бесколлекторные моторы «на пальцах» Что такое бесколлекторные моторы и как управлять бесколлекторными моторами:

Статьи по бесколлекторным моторам:

Бесколлекторный двигатель: принцип работы

Синхронный электродвигатель, принцип действия которого основан на частотном регулировании и самосинхронизации получил название бесколлекторного двигателя. В данной конструкции, вектор магнитного поля статора управляется относительно положения ротора. Бесколлекторный двигатель был создан для того, чтобы улучшить свойства стандартных коллекторных электродвигателей постоянного тока. Он органично соединил в себе самые лучшие качества двигателей постоянного тока и бесконтактных электродвигателей.

Основные отличия от обычных двигателей

Бесколлекторный двигатель нередко используются в радиоуправляемых моделях летательных аппаратов. Их выдающиеся характеристики и живучесть получили широкую популярность, благодаря отсутствию трущихся деталей в виде щеток, которые осуществляют передачу тока.

Для того, чтобы более полно представить разницу, нужно вспомнить, что в стандартном коллекторном электродвигателе происходит вращение ротора с обмотками внутри статора, основой которого служат постоянные магниты. Коммутация обмоток производится с помощью коллектора, в зависимости от положения ротора. В электродвигателе переменного тока, наоборот, ротор с магнитом вращается внутри статора с обмотками. Примерно такую же конструкцию имеет асинхронный двигатель.

В отличие от стандартных двигателей, в бесколлекторном в качестве подвижной части выступает статор, в котором размещены постоянные магниты, а роль неподвижной части играет ротор с трехфазными обмотками.

Принцип работы бесколлекторного электродвигателя

Вращение двигателя осуществляется путем смены направления магнитного поля в обмотках ротора в определенной последовательности. В этом случае, постоянные магниты взаимодействуют с магнитными полями ротора и приводят в движение подвижный статор. В основе этого движения лежит основное свойство магнитов, когда одноименные полюса отталкиваются, а разноименные – притягиваются.

Управление магнитными полями в обмотках ротора и их сменой, происходит с помощью контроллера. Он представляет собой достаточно сложное устройство, способное коммутировать высокие токи с большой скоростью. Контроллер обязательно имеет в своей схеме бесколлекторный электродвигатель, что в значительной степени удорожает его использование.

В бесколлекторных электродвигателях отсутствуют какие-либо вращающиеся контакты и любые контакты, способные переключаться. В этом состоит их главное преимущество перед обычными электродвигателями, поскольку все потери от трения сведены к минимуму.

Бесколлекторный электродвигатель принцип работы – Tokzamer

Современные бесколлекторные двигатели постоянного тока

Благодаря существенному прогрессу в области полупроводниковой электроники и в технологии создания мощных неодимовых магнитов, широкое распространение получили сегодня бесколлекторные двигатели постоянного тока. Они применяются в стиральных машинах, пылесосах, вентиляторах, дронах и т. д.

И хотя идея касательно принципа работы бесколлекторного двигателя высказывалась еще в начале 19 века, она ждала своего часа до начала полупроводниковой эры, когда технологии стали готовы к практической реализации этой интересной и эффективной концепции, позволившей бесколлекторным двигателям постоянного тока шагать так широко, как это происходит сегодня.

В англоязычной версии двигатели данного типа именуются BLDC motor – Brushless Direct Current Motor — бесщеточный двигатель постоянного тока. Ротор двигателя содержит постоянные магниты, а рабочие обмотки располагаются на статоре, то есть устройство BLDC двигателя полностью противоположно тому, как это имеет место в классическом коллекторном двигателе. Управляется BLDC двигатель электронным регулятором, который называют ESC — Electronic speed controller — электронный регулятор хода.

Электронный регулятор хода и высокий КПД

Электронный регулятор хода позволяет плавно варьировать электрическую мощность, подаваемую на бесколлекторный электродвигатель. В отличие от ранних, более простых версий резистивных регуляторов хода, которые просто ограничивали мощность путем включения в цепь последовательно с двигателем активной нагрузки, превращающей избыточную мощность в тепло, электронный регулятор хода позволяет получить значительно более высокий КПД, не расходуя подводимую электрическую энергию на бесполезный нагрев.

Бесколлекторный двигатель постоянного тока можно классифицировать как самосинхронизируемый синхронный двигатель, в котором полностью исключен искрящий узел, требующий регулярного обслуживания — коллектор. Функцию коллектора несет на себе электроника, благодаря чему вся конструкция изделия сильно упрощается и становится компактнее.

Щетки заменены, по сути, на электронные ключи, потери в которых сильно меньше чем были бы при механической коммутации. Мощные неодимовые магниты на роторе позволяют добиться большего момента на валу. И греется такой двигатель меньше нежели его коллекторный предшественник.

В итоге КПД двигателя получается наилучшим, а показатели мощности на килограмм веса — выше, плюс достаточно широкий диапазон регулировки скорости вращения ротора и практически полное отсутствие генерируемых радиопомех. Конструктивно двигатели данного типа легко адаптируются для эксплуатации в воде и в агрессивных средах.

Электронный блок управления — очень важная и дорогостоящая часть бесколлекторного двигателя постоянного тока, без которой, однако, никак не обойтись. От данного блока двигатель получает питание, параметры которого одновременно влияют и на скорость, и на мощность, которую двигатель будет в состоянии развить под нагрузкой.

Даже если скорость вращения регулировать не нужно, все равно электронный блок управления необходим, ведь он несет на себе не только функцию управления, но также имеет силовую составляющую. Можно сказать, что ESC – это аналог частотного регулятора для асинхронных двигателей переменного тока, специально предназначенный для питания и управления бесколлекторным двигателем постоянного тока.

Управление двигателем BLDC

Чтобы понять как происходит управление BLDC двигателем, сначала вспомним как работает коллекторный двигатель. В его основе принцип вращения рамки с током в магнитном поле.

Каждый раз, когда рамка с током повернулась и нашла положение равновесия, коммутатор (щетки прижатые к коллектору) изменяет направление тока через рамку, и рамка движется дальше. Этот процесс повторяется при движении рамки от полюса к полюсу. Только вот в коллекторном двигателе таких рамок много и магнитных полюсов несколько пар, поэтому коллекторно-щеточный узел содержит не два контакта, а много.

Электронный блок управления бесколлекторным двигателем делает то же самое. Он изменяет полярность магнитного поля как только ротор необходимо провернуть дальше из положения равновесия. Только управляющее напряжение подается не на ротор, а на обмотки статора, и делается это при помощи полупроводниковых ключей в нужные моменты времени (фазы ротора).

Очевидно, что ток на обмотки статора бесколлекторного двигателя необходимо подавать в правильные моменты времени, то есть тогда, когда ротор находится в определенном известном положении. Для этого применяется один из следующих методов. Первый — на основе датчика положения ротора, второй — путем измерения ЭДС на одной из обмоток, которая в данный момент не получает питание.

Датчики бывают разными, магнитными и оптическими, наиболее популярны магнитные датчики на основе эффекта Холла. Второй способ (на основе измерения ЭДС) хотя и эффективен, однако он не позволяет осуществлять точное управление на низких скоростях и при старте. А вот датчики Холла обеспечивают возможность более точного управления во всех режимах. В трехфазных BLDC двигателях таких датчиков три штуки.

Двигатели без датчиков положения ротора применимы в тех случаях, когда старт двигателя происходит без нагрузки на валу (вентилятор, пропеллер и т. п.). Если же старт происходит под нагрузкой, необходим двигатель с датчиками положения ротора. В том и в другом варианте есть свои плюсы и минусы.

Решение с датчиком оборачивается более удобным управлением, но при выходе из строя хотя бы одного из датчиков, двигатель придется разбирать, к тому же датчики требуют отдельных проводов. В варианте без датчика нет надобности в специальных проводах, но во время старта ротор будет раскачиваться туда-сюда. Если это недопустимо, необходимо ставить в систему датчики.

Ротор и статор, количество фаз

Ротор BLDC двигателя может быть наружным или внутренним, а статор, соответственно, внутренним или наружным. Статор изготавливают из магнитопроводящего материала, с количеством зубцов, которое нацело делится на количество фаз. Ротор может быть изготовлен необязательно из магнитопроводящего материала, но обязательно с жестко зафиксированными на нем магнитами.

Чем сильнее магниты — тем выше доступный вращающий момент. Количество зубцов статора не обязательно должно быть равно количеству магнитов на роторе. Минимальное количество зубцов равно количеству фаз управления.

Большинство современных бесколлекторных двигателей постоянного тока — трехфазные, просто в силу простоты такой конструкции и способа управления ею. Как и в асинхронных двигателях переменного тока, обмотки трех фаз соединяются здесь на статор «треугольником» либо «звездой».

Такие двигатели без датчиков положения ротора имеют 3 питающих провода, а двигатели с датчиками — 8 проводов: дополнительные два провода — для питания датчиков и три — сигнальные выводы датчиков.

Обмотка статора выполняется изолированным медным проводом так, чтобы сформировать магнитные полюса необходимого количества фаз, равномерно распределенные по окружности ротора. Количество отдельно стоящих полюсов на статоре для каждой фазы выбирается исходя из требуемой скорости вращения двигателя (и вращающего момента).

Низкооборотные двигатели с наружным ротором делают с большим количеством полюсов (и соответственно зубцов) на каждую фазу, чтобы получить вращение с угловой частотой значительно меньше частоты управляющего тока. Но даже в высокооборотных трехфазных двигателях обычно не применяют количество зубцов меньше 9.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Что такое бесколлекторный двигатель постоянного тока и его принцип работы

Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.

Общие сведения, устройство, сфера применения

Одна из причин проявления интереса к БД — это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.

Рис. 2. Устройство бесколлекторного двигателя

Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.

Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).

Рис. 3. Конструкция с внешним якорем (outrunner)

Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).

Бесколлекторный двигатель в компьютерном дисководе

Принцип работы

В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.

Фазы работы бесколлекторного привода

Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.

Отличия коллекторного и бесколлекторного двигателя

Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.

Рис. 5. А – коллекторный двигатель, В – бесколлекторный

Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.

Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.

Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.

Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.

Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.

Как запустить бесколлекторный двигатель?

Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.

Рис. 6. Контроллеры бесколлекторных двигателей для моделизма

Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:

  • Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
  • Максимальная величина штатного напряжения для продолжительной работы.
  • Сопротивление внутренних цепей контроллера.
  • Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
  • Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.

Обратим внимание, что первые три характеристики определяют мощность БД.

Управление бесколлекторным двигателем

Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.

Трёхфазный бесколлекторный электродвигатель постоянного тока

Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).

Рисунок 7. Диаграммы напряжений БД

Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:

  1. На катушки «А» подается положительный импульс, в то время как на «В» — отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
  2. Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
  3. На «С» — положительный, «А» — отрицательный.
  4. Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
  5. Положительный импульс повторно подается на «В», и отрицательный на «С».
  6. Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.

В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.

Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем

Преимущества и недостатки

Электрический бесколлекторный двигатель имеет много достоинств, а именно:

  • Срок службы значительно дольше, чем у обычных коллекторных аналогов.
  • Высокий КПД.
  • Быстрый набор максимальной скорости вращения.
  • Он более мощный, чем КД.
  • Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
  • Не требуется дополнительное охлаждение.
  • Простая эксплуатация.

Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.

Бесщеточный двигатель принцип работы

Как устроен бесщеточный двигатель

Работа бесщеточного электродвигателя основывается на электрических приводах, создающих магнитное вращающееся поле.

В настоящее время существует несколько типов устройств, имеющих различные характеристики.

С развитием технологий и использованием новых материалов, отличающихся высокой коэрцитивной силой и достаточным уровнем магнитного насыщения, стало возможным получение сильного магнитного поля и, как следствие, вентильных конструкций нового вида, в которых отсутствует обмотка на роторных элементах или стартере.

Обширное распространение переключателей полупроводникового типа с высокой мощностью и приемлемой стоимостью ускорило создание подобных конструкций, облегчило исполнение и избавило от множества сложностей с коммутацией.

Использование

Бесщеточный двигатель постоянного тока с постоянными магнитами встречается в основном в устройствах с мощностью в пределах 5 кВт.

В более мощной аппаратуре их применение нерационально.

Магниты в двигателях данного типа отличаются особой чувствительностью к высоким температурам и сильным полям.

Двигатели активно используются в электрических мотоциклах, автомобильных приводах благодаря отсутствию трения в коллекторе.

Описание и принцип работы

Бесщеточный (бесколлекторный) двигатель постоянного тока очень похож на двигатель постоянного тока с постоянными магнитами, но не имеет щеток для замены или износа из-за искрения коммутатора.

Поэтому в роторе выделяется мало тепла, что увеличивает срок службы двигателей.

Конструкция бесщеточного двигателя устраняет необходимость в щетках благодаря более сложной схеме привода, в которой магнитное поле ротора является постоянным магнитом, который всегда синхронизирован с полем статора, что позволяет более точно контролировать скорость и крутящий момент.

Управление бесщеточными двигателями постоянного тока очень отличается от обычного щеточного двигателя постоянного тока тем, что этот тип двигателя включает в себя некоторые средства для определения углового положения роторов (или магнитных полюсов), необходимые для получения сигналов обратной связи, необходимых для управления переключением полупроводников. Появление процессорной техники и силовых транзисторов позволило конструкторам отказаться от узла механической коммутации и изменить роль ротора и статора в электромоторе постоянного тока.

Принцип работы БДКП

В бесколлекторном электродвигателе роль механического коммутатора выполняет электронный преобразователь. Это позволяет осуществить «вывернутая наизнанку» схема БДКП — его обмотки расположены на статоре, что исключает необходимость в коллекторе.

Иными словами, основное принципиальное различие между классическим двигателем и БДКП в том, что вместо стационарных магнитов и вращающихся катушек последний состоит из неподвижных обмоток и вращающихся магнитов. Несмотря на то что сама коммутация в нём происходит похожим образом, её физическая реализация в бесщёточных приводах гораздо более сложна.

Как работает коллекторная машина

Чтобы произвести запуск коллекторного двигателя, потребуется подать напряжение на обмотку возбуждения, которая расположена непосредственно на якоре. При этом образуется постоянное магнитное поле, которое взаимодействует с магнитами на статоре, в результате чего проворачиваются якорь и коллектор, закрепленный на нём. При этом подается питание на следующую обмотку, происходит повтор цикла.

Как осуществляется управление

Электронный блок управления позволяет провести коммутацию обмоток привода. Для определения момента переключения при помощи драйвера отслеживается положение ротора по датчику Холла, установленном на приводе.

В том случае, если нет таких устройств, необходимо считывать обратное напряжение.

Оно генерируется в катушках статора, не подключенных на данный момент времени.

Контроллер — это аппаратно-программный комплекс, он позволяет отслеживать все изменения и максимально точно задавать порядок коммутации.

Трехфазные бесколлекторные электродвигатели

Очень много бесколлекторных электродвигателей для авиамоделей выполняется под питание постоянным током.

Но существуют и трехфазные экземпляры, в которых устанавливаются преобразователи.

Они позволяют из постоянного напряжения сделать трехфазные импульсы.

Работа происходит следующим образом:

  1. На катушку «А» поступают импульсы с положительным значением. На катушку «В» — с отрицательным значением. В результате этого якорь начнет двигаться. Датчики фиксируют смещение и подаётся сигнал на контроллер для осуществления следующей коммутации.
  2. Происходит отключение катушки «А», при этом импульс положительного значения поступает на обмотку «С». Коммутация обмотки «В» не претерпевает изменений.
  3. На катушку «С» попадается положительный импульс, а отрицательный поступает на «А».
  4. Затем вступает в работу пара «А» и «В». На них и подаются положительные отрицательные значения импульсов соответственно.
  5. Затем положительный импульс опять поступает на катушку «В», а отрицательный на «С».
  6. На последнем этапе происходит включение катушки «А», на которую поступает положительный импульс, и отрицательный идет к С.

И после этого происходит повтор всего цикла.

Преимущества использования

Изготовить своими руками бесколлекторный электродвигатель сложно, а реализовать микроконтроллерное управление практически невозможно. Поэтому лучше всего использовать готовые промышленные образцы.

Но обязательно учитывайте достоинства, которые получает привод при использовании бесколлекторных электродвигателей:

  1. Существенно больший ресурс, нежели у коллекторных машин.
  2. Высокий уровень КПД.
  3. Мощность выше, нежели у коллекторных моторов.
  4. Скорость вращения набирается намного быстрее.
  5. Во время работы не образуются искры, поэтому их можно использовать в условиях с высокой пожарной опасностью.
  6. Очень простая эксплуатация привода.
  7. При работе не нужно использовать дополнительные компоненты для охлаждения.

«Бесколлекторные двигатели» ЛикБез и проектирование

Принцип работы электрического двигателя:
В основу работы любой электрической машины положено явление электромагнитной индукции. Поэтому если в магнитное поле поместить рамку с током, то на неё подействует сила Ампера, которая создаст вращательный момент. Рамка начнет поворачиваться и остановится в положении отсутствия момента, создаваемого силой Ампера.

Устройство электрического двигателя:
Любой электрический двигатель состоит из неподвижной части — Статора и подвижной части — Ротора. Для того чтобы началось вращение, нужно по очереди менять направление тока. Эту функцию и выполняет Коллектор (щетки).

Бесколлекторный двигатель — это двигатель ПОСТОЯННОГО ТОКА без коллектора, в котором функции коллектора выполняет электроника. (Если у двигателя три провода, это не значит что он работает от трехфазного переменного тока! А работает он от «порций» коротких импульсов постоянного тока, и не хочу вас шокировать, но те же двигатели которые используются в кулерах, тоже бесколлекторные, хоть они и имеют всего два провода питания постоянного тока)

Устройство бесколлекторного двигателя:
Inrunner
(произносится как «инраннер»). Двигатель имеет расположенные по внутренней поверхности корпуса обмотки, и вращающийся внутри магнитный ротор.

Outrunner
(произносится как «аутраннер»). Двигатель имеет неподвижные обмотки (внутри) вокруг которых вращается корпус с помещенным на его внутреннюю стенку постоянными магнитами.

Принцип работы:
Для того чтобы бесколлекторный двигатель начал вращаться, напряжение на обмотки двигателя надо подавать синхронно. Синхронизация может быть организованна с использованием внешних датчиков (оптические или датчики холла), так и на основе противоЭДС (бездатчиковый), которая возникает в двигателе при его вращении.

Бездатчиковое управление:
Существуют бесколлекторные двигатели без каких либо датчиков положения. В таких двигателях определение положения ротора выполняется путем измерения ЭДС на свободной фазе. Мы помним, что в каждый момент времени к одной из фаз (А) подключен «+» к другой (В) «-» питания, одна из фаз остается свободной. Вращаясь, двигатель наводит ЭДС (т.е. в следствии закона электромагнитной индукции в катушке образуется индукционный ток) в свободной обмотке. По мере вращения напряжение на свободной фазе (С) изменяется. Измеряя напряжение на свободной фазе, можно определить момент переключения к следующему положению ротора.

Что бы измерить это напряжение изпользуется метод «виртуальной точки». Суть заключается в том, что, зная сопротивление всех обмоток и начальное напряжение, можно виртуально «переложить провод» в место соединения всех обмоток:

Регулятор скорости бесколлекторного двигателя:
Бесколлекторный двигатель без электроники — просто железка, т.к. при отсутствии регулятора, мы не можем просто подключить напряжение на него, чтоб он просто начал нормальное вращение. Регулятор скорости — это довольно сложная система радиокомпонентов, т.к. она должна:
1) Определять начальное положение ротора для запуска электродвигателя
2) Управлять электродвигателем на низких скоростях
3) Разгонять электродвигатель до номинальной (заданной) скорости вращения
4) Поддерживать максимальный момент вращения

Принципиальная схема регулятора скорости (вентильная):

Бесколлекторные двигатели были придуманы на заре появления электричества, однако систему управления к ним никто не мог сделать. И только с развитием электроники: с появлением мощных полупроводниковых транзисторов и микроконтроллеров, бесколлекторные двигатели стали применятся в быту (первое промышленное использование в 60-х годах).

Достоинства и недостатки бесколлекторных двигателей:

Достоинства:
-Частота вращения изменяется в широком диапазоне
-Возможность использования во взрывоопасной и агрессивной среде
-Большая перегрузочная способность по моменту
-Высокие энергетические показатели (КПД более 90 %)
-Большой срок службы, высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов

Недостатки:
-Относительно сложная система управления двигателем
-Высокая стоимость двигателя, обусловленная использованием дорогостоящих материалов в конструкции ротора (магниты, подшипники, валы)
Разобравшись с теорией, перейдем к практике: спроектируем и сделаем двигатель для пилотажной модели МХ-2.

Список материалов и оборудования:
1) Проволока (взятая из старых трансформаторов)
2) Магниты (купленные в интернете)
3) Статор (барашек)
4) Вал
5) Подшипники
6) Дюралюминий
7) Термоусадка
8) Доспуп к неограниченному техническому хламу
9) Доступ к инструментам
10) Прямые руки 🙂

Ход работы:
1) С самого начала решаем:

Для чего делаем двигатель?
На что он должен быть рассчитан?
В чем мы ограничены?

В моем случае: я делаю двигатель для самолета, значит пускай он будет внешнего вращения; рассчитан он должен на то, что он должен выдать 1400 грамм тяги при трех-баночном аккумуляторе; ограничен я в весе и в размере. Однако с чего же начать? Ответ на этот вопрос прост: с самой трудной детали, т.е. с такой детали, которую легче просто найти, а все остальное подгонять под неё. Я так и поступил. После многих неудачных попыток сделать статор из листовой мягкой стали, мне стало понятно, что лучше найти её. Нашел я её в старой видеоголовке от видеорекоудора.

2) Обмотка трехфазного бесколлекторного двигателя выполняется изолированным медным проводом, от сечения которого зависит значение силы тока, а значит и мощность двигателя. Незабываем что, чем толще проволока, тем больше оборотов, но слабее крутящий момент. Подбор сечения:

1А — 0.05мм; 15А — 0.33мм; 40А — 0.7мм

3А — 0.11мм; 20А — 0.4мм; 50А — 0.8мм

10А — 0.25мм; 30А — 0.55мм; 60А — 0.95мм

3) Начинаем наматывать на полюса проволоку. Чем больше витков (13) намотано на зуб, тем большее магнитное поле. Чем сильнее поле, тем больший крутящий момент и меньшее количество оборотов. Для получения высоких оборотов, необходимо мотать меньшее количество витков. Но вместе с этим падает и крутящий момент. Для компенсации момента, обычно на мотор подают более высокое напряжение.

4) Дальше выбираем способ соединения обмотки: звездой или треугольником. Соединение звездой дает больший крутящий момент, но меньшее количество оборотов, чем соединение треугольником в 1.73 раз. (впоследствии было выбрано соединение треугольник)

5) Выбираем магниты. Количество полюсов на роторе должно быть четным (14). Форма применяемых магнитов обычно прямоугольная. Размер магнитов зависит от геометрии двигателя и характеристик мотора. Чем сильнее применяемые магниты, тем выше момент силы, развиваемый двигателем на валу. Также чем больше количество полюсов, тем больше момент, но меньше оборотов. Магниты на роторе закрепляются с помощью специального термоклея.

Испытания данного двигателя я проводил на созданной мной витномоторной установке, которая позволяет измерить тягу, мощность и обороты двигателя.

Чтобы увидеть отличия соединений «звезда» и «треугольник» я соединял по разному обмотки:

В итоге получился двигатель соответствующий характеристикам самолета, масса которого 1400 грамм.

Характеристики полученного двигателя:
Потребляемый ток: 34.1А
Ток холостого хода: 2.1А
Сопротивление обмоток: 0.02 Ом
Количество полюсов: 14
Обороты: 8400 об/мин

Видеоотчет испытания двигателя на самолете. Мягкой посадки 😀

Расчет КПД двигателя:

Очень хороший показатель. Хотя можно было еще выше добиться.

Выводы:
1) У бесколлекторных двигателей высокая эффективность и КПД
2) Бесколлекторные двигатели компактны
3) Бесколлекторные двигатели можно использовать во взрывоопасных средах
4) Соединение звездой дает больший крутящий момент, но меньшее количество оборотов в 1.73 раза, чем соединение треугольником.

Таким образом, изготовить собственный бесколлекторный мотор для пилотажной модели самолета- задача выполнимая

Если у вас есть вопросы или вам что-то не понятно, задавайте мне вопросы в комметариях этой статьи. Удачи всем)

Бесколлекторный двигатель постоянного тока

Бесколлкторные двигатели постоянного тока (бдпт) являются разновидностью синхронных двигателей с постоянными магнитами, которые питаются от цепи постоянного тока через инвертор, управляемый контроллером с обратной связью. Контроллер подаёт на фазы двигателя напряжения и токи, необходимые для создания требуемого момента и работы с нужной скоростью. Такой контроллер заменяет щёточно-коллекторный узел, используемый в коллекторных двигателях постоянного тока. Бесколлекторные двигатели могут работать как с напряжениями на обмотках в форме чистой синусоиды, так и кусочно-ступенчатой формы (например, при блочной коммутации).

Появились бесколлекторные двигатели постоянного тока как попытка избавить коллекторные двигатели постоянного тока с постоянными магнитами от их слабого места – щёточно-коллекторного узла. Этот узел, представляющий собой вращающийся электрический контакт, является слабым местом у коллекторных двигателей с точки зрения надёжности и в ряде случаев ограничивает их параметры.

Принцип работы и устройство бесколлекторного двигателя

Как и остальные двигатели, бесколлекторный двигатель состоит из двух основных частей – ротора (подвижная часть) и статора (неподвижная часть). На статоре располагается трёхфазная обмотка. Ротор несёт на себе постоянный магнит, который может иметь одну или несколько пар полюсов. Когда к обмотке статора приложена трёхфазная система напряжений, то обмотка создаёт вращающееся магнитное поле. Оно взаимодействует с постоянным магнитом на роторе и приводит его в движение. По мере того как ротор поворачивается, вектор его магнитного поля проворачивается по направлению к магнитному полю статора. Управляющая электроника отслеживает направление, которое имеет магнитное поле ротора и изменяет напряжения, приложенные к обмотке статора, таким образом чтобы магнитное поле, создаваемое обмотками статора, повернулось, опережая магнитное поле ротора. Для определения направления магнитного поля ротора используется датчик положения ротора, поскольку магнит, создающий это поле жёстко закреплён на роторе. Напряжения на обмотках бесколлекторного двигателя можно формировать различными способами: простое переключение обмоток через каждые 60° поворота ротора или формирование напряжений синусоидальной формы при помощи широтно-импульсной модуляции.

Варианты конструкции двигателя

Обмотка двигателя может иметь различную конструкцию. Обмотка классической конструкции наматывается на стальной сердечник. Другой вариант конструкции обмотки – это обмотка без стального сердечника. Проводники этой обмотки равномерно распределяются вдоль окружности статора. Характеристики обмотки получаются различными, что отражается и на характеристиках двигателя. Кроме того, обмотки могут быть выполнены на различное число фаз и с различным количеством пар полюсов.

Бесколлекторные двигатели также могут иметь конструкции, различающиеся по взаимному расположению ротора и статора. Наиболее распространена конструкция, когда ротор охватывается статором снаружи – двигатели с внутренним ротором. Но также возможна, и встречается на практике конструкция в которой ротор расположен снаружи статора – двигатели с внешним ротором. Третий вариант – статор расположен параллельно ротору и оба располагаются перпендикулярно оси вращения двигателя. Такие двигатели называют двигателями аксиальной конструкции.

Датчик положения, который измеряет угловое положение ротора двигателя — это важная часть приводной системы, построенной на бесколлекторном двигателе. Этот датчик может быть самым разным как по типу, так и по принципу действия. Традиционно используемый для этой цели тип датчиков – датчики Холла с логическим выходом, устанавливаемые на каждую фазу двигателя. Выходные сигналы этих датчиков позволяют определить положение ротора с точностью до 60° — достаточной реализации самых простых способов управления обмотками. Для реализации способов управления двигателем, предполагающих формирование на обмотках двигателя системы синусоидальных напряжений при помощи ШИМ необходим более точный датчик, например, энкодер. Инкрементные энкодеры, очень широко используемые в современном электроприводе, могут обеспечить достаточно информации о положении ротора только при использовании их вместе с датчиками Холла. Если бесколлекторный двигатель оснащён абсолютным датчиком положения – абсолютным энкодером или резольвером (СКВТ), то датчики Холла становятся не нужны, так как любой из этих датчиков обеспечивает полную информацию о положении ротора.

Можно управлять бесколлекторным двигателем, и не используя датчика положения ротора – бездатчиковая коммутация. В этом случае информация о положении ротора восстанавливается на основании показаний других датчиков, например, датчиков фазных токов двигателя или датчиков напряжения. Такой способ управления часто влечёт за собой ряд недостатков (ограниченный диапазон скоростей, высокая чувствительность к параметрам двигателя, специальная процедура старта), что ограничивает его распространение.

Преимущества и недостатки

Высокая надёжность вследствие отсутствия коллектора. Это основное отличие бесколлекторных двигателей от коллекторных. Щёточно-коллекторный узел, является подвижным электрическим контактом и сам по себе имеет невысокую надёжность и устойчивость к влиянию различных воздействий со стороны окружающей среды.

Отсутствие необходимости обслуживания коллекторного узла . Является особенно актуальным для двигателей среднего и крупного габарита. Для микроэлектродвигателей, проведение ремонта экономически оправдано далеко не во всех случаях, поэтому для них этот пункт не является актуальным.

Сложная схема управления. Прямое следствие переноса функции переключения токов обмотки во внешний коммутатор. Если в простейшем случае для управления коллекторным двигателем необходимо иметь только источник питания, то для бесколлекторного двигателя такой подход не работает – контроллер нужен даже для решения самых простых задач управления движением. Однако, когда речь идёт о решении для сложных случаев (например, задачи позиционирования), то контроллер становится необходим для всех типов двигателей.

Высокая скорость вращения. В коллекторных двигателях скорость перемещения щётки по коллектору ограничена, хотя и различна для различных конструкций этих двух деталей и различных используемых материалов. Предельная скорость перемещения щёток по коллектору сильно ограничивает скорость вращения коллекторных двигателей. Бесколлекторные двигатели не имеют такого ограничения, что позволяет выполнять их для работы на скоростях до нескольких сотен тысяч оборотов в минуту – цифра недостижимая для коллекторных двигателей.

Большая удельная мощность. Возможность достичь большой удельной мощности является следствием высокой скорости вращения, доступной для бесколлекторного двигателя.

Хороший отвод тепла от обмотки. Обмотка бесколлекторных двигателей неподвижно закреплена на статоре и есть возможность обеспечить хороший тепловой контакт её с корпусом, который передаёт тепло, выделяемое в двигателе, в окружающую среду. У коллекторного двигателя обмотка установлена на роторе, и её тепловой контакт с корпусом гораздо хуже, чем у бесколлекторного двигателя.

Больше проводов для подключения. Когда двигатель расположен близко от контроллера, то это конечно не повод для огорчения. Однако если условия окружающей среды, в которых работает двигатель очень сложны, то вынесение управляющей электроники на значительное расстояние (десятки и сотни метров) от двигателя является подчас единственным доступным вариантом для разработчиков системы. В таких условиях каждая дополнительная цепь для подключения двигателя, будет требовать дополнительных жил в кабеле, увеличивая его размеры и массу.

Уменьшение электромагнитных помех, исходящих от двигателя . Щёточно-коллекторный контакт создаёт при работе достаточно сильные помехи. Частота этих помех зависит от частоты вращения двигателя, что осложняет борьбу с ними. У бесколлекторного двигателя единственным источником помех является ШИМ силовых ключей, частота которого обычно постоянна.

Присутствие сложных электронных компонентов. Электронные компоненты (датчики Холла, например) более остальных составных частей двигателя уязвимы для действия жёстких условий со стороны внешней среды, будь то высокая температура, низкая температура или ионизирующие излучения. Коллекторные двигатели не содержат электроники и у них подобная уязвимость отсутствует.

Где применяются бесколлекторные двигатели

К настоящему времени бесколлекторные двигатели получили широкое распространение, как благодаря своей высокой надёжности, высокой удельной мощности и возможности работать на высокой скорости, так и из-за быстрого развития полупроводниковой техники, сделавшей доступными мощные и компактные контроллеры для управления этими двигателями.

Бесколлекторные двигатели широко применяются в тех системах где их характеристики дают им преимущество перед двигателями других типов. Например, там, где требуется скорость вращения несколько десятков тысяч оборотов в минуту. Если от изделия требуется большой срок службы, а ремонт невозможен или ограничен из-за особенностей эксплуатации изделия, то и тогда бесколлекторный двигатель будет хорошим выбором.

Что такое бесколлекторный двигатель постоянного тока, как он устроен и работает

Определение

Бесколлекторным называют электродвигатель постоянного тока, ток в обмотках которого переключает специальное устройство-коммутатор — он носит название «драйвер» или «инвертор» и эти обмотки всегда расположены на статоре. Коммутатор состоит из 6 транзисторов, они и подают ток в ту или иную обмотку, в зависимости от положения ротора.

В отечественной литературе такие двигатели называют «вентильными» (потому что полупроводниковые ключи называют «вентилями»), и есть разделение таких электромашин на два вида по форме противо—ЭДС. В зарубежной литературе такое различие сохраняется, один из них называют аналогично русскому «BLDC» (brushless direct current drive или motor), что в дословном переводе звучит как «бесщёточный двигатель постоянного тока» в их обмотках возникает трапецеидальная ЭДС. Вентильные же электродвигатели с синусоидальной ЭДС называют PMSM (Permanent magnet synchronous machine), что переводится как «синхронный электродвигатель с возбуждением постоянными магнитами».

Устройство и принцип действия

Коллектор в КДПТ служит узлом переключения тока в обмотках якоря. В бесколлекторном электродвигателе постоянного тока (БДПТ) эту роль выполняют не щетки с ламелями, а коммутатор она полупроводниковых ключах — транзисторах. Транзисторы переключают обмотки статора, создавая вращающееся магнитное поле, которое взаимодействует с полем магнитов ротора. А при протекании тока через проводник, который находится в магнитном поле, на него действует сила Ампера, за счет действия этой силы и образуется крутящий момент на валу электрических машин. На этом и основан принцип работы любого электродвигателя.

Теперь же разберемся в том, как устроен бесколлекторный двигатель. На статоре БДПТ обычно расположены 3 обмотки, по аналогии с электродвигателями переменного тока их часто называют трехфазными. Отчасти это верно: бесколлекторные двигатели работают от источника постоянного тока (чаще от аккумуляторов), но контроллер включает ток обмотках поочерёдно. Однако при этом не совсем верно говорить, что по обмоткам протекает переменный ток. Конечная форма питающего обмотки напряжения формируется прямоугольными импульсами управления транзисторами.

Трёхфазный бесколлекторный двигатель может быть трёхпроводными или четырёхпроводным, где четвертый провод — отвод от средней точки (если обмотки соединены по схеме звезды).

Обмотки или, говоря простым словами, катушки медного провода укладываются в зубы сердечника статора. В зависимости от конструкции и назначения привода на статоре может быть разное количество зубцов. Встречаются разные варианты распределения обмоток фаз по зубцам ротора, что иллюстрирует следующий рисунок.

Обмотки каждого из зубов в пределах одной фазы могут соединяться последовательно или параллельно, в зависимости от поставленных конструктору задач по мощности и моменту проектируемого привода, а сами же обмотки фаз соединяются между собой по схеме звезды или треугольника, подобно асинхронным или синхронным трёхфазными электродвигателям переменного тока.

В статоре могут устанавливаться датчики положения ротора. Часто используются датчики холла, они дают сигнал контроллеру, когда на них воздействует магнитное поле магнитов ротора. Это нужно для того чтобы контроллер «знал», в каком положении находится ротор и подавал питание на соответствующие обмотки. Это нужно для повышения эффективности и стабильности работы, а если кратко, — чтобы выжать из двигателя всю возможную мощность. Датчиков обычно устанавливается 3 штуки. Но наличие датчиков усложняет устройство бесколлекторного электродвигателя, к ним нужно проводить дополнительные провода для питания и линии данных.

В БДПТ для возбуждения используются постоянные магниты, установленные на роторе, а статор — это якорь. Напомним, что в коллекторных машинах наоборот (ротор — это якорь), а для возбуждения в КД используются как постоянные магниты, так и электромагниты (обмотки).

Магниты устанавливаются с чередованием полюсов, и соответственно их количество определяет количество пар полюсов. Но это не значит, что сколько магнитов, то столько же и пар полюсов. Несколько магнитов могут формировать один полюс. От числа полюсов, как в случае и с асинхронным двигателем (и другими) зависит число оборотов в минуту. То есть от одного контроллера на одинаковых настройках бесколлекторные двигатели с разным числом пар полюсов будут вращаться с разной скоростью.

Виды БДПТ

Теперь давайте разберемся, какими бывают бесколлекторные двигатели на постоянных магнитах. Их классифицируют по форме противо-ЭДС, конструкции, а также по наличию датчиков положения ротора. Итак, два основных типа отличающихся формой противо-ЭДС, которая наводится в обмотках при вращении ротора:

  • BLDC — в них трапецеидальная противо-ЭДС;
  • PMSM — противо-ЭДС синусоидальная.

В идеальном случае для них нужны разные источники питания (контроллеры), но на практике они взаимозаменяемы. Но если использовать контроллер с прямоугольными или трапецеидальным выходным напряжением с PMSM-двигателем, то будут слышны характерные звуки, похожие на стук во время вращения.

А по конструкции бесколлекторные двигатели постоянного тока бывают:

  • С внутренним ротором. Это более привычное представление электродвигателя, когда статор — это корпус, а вращается вал, расположенный в нём. Часто их называют английским словом «Inrunner». Такой вариант обычно применяют для высокооборотистых электродвигателей
  • С внешним ротором. Здесь вращается внешняя часть двигателя с закреплённым на ней валом, в англоязычных источниках его называют «outrunner». Эту схему устройства используют, когда нужен высокий момент.

Выбирают конструкцию в зависимости от того для чего нужен бесколлекторный двигатель в конкретном применении.

Современная промышленность выпускает бесколлекторные двигатели как с датчиками положения ротора, так и без них. Дело в том, что существует множество способов управления БДПТ, для некоторых из них нужны датчики положения, другие определяют положения по ЭДС в обмотках, третьи и вовсе просто подают питание на нужные фазы и электродвигатель самостоятельно синхронизируется с таким питанием и входит в рабочий режим.

Основные характеристики бесколлекторных двигателей постоянного тока:

  1. Режим работы — длительный или кратковременный.
  2. Максимальное рабочее напряжение.
  3. Максимальный рабочий ток.
  4. Максимальная мощность.
  5. Максимальные обороты, часто указывают не обороты, а KV — об/в, то есть количество оборотов на 1 вольт приложенного напряжения (без нагрузки на валу). Чтобы получить максимальные обороты — умножьте это число на максимальное напряжение.
  6. Сопротивление обмотки (чем оно меньше, тем выше КПД), обычно составляет сотые и тысячные доли Ома.
  7. Угол опережения фазы (timing) — время, через которое ток в обмотке достигнет своего максимума, это связано с её индуктивностью и законами коммутации (ток в индуктивности не может измениться мгновенно.

Схема подключения

Как было сказано выше, для работы бесколлекторного двигателя нужен специальный контроллер. На алиэкспресс можно найти как комплекты из двигателя и контроллера, так и по отдельности. Контроллер также называют ESC Motor или Electric Speed Controller. Выбирают их по силе тока, отдаваемого в нагрузку.

Обычно подключение электродвигателя к контроллеру не вызывает затруднений и понятно даже для чайников. Главное, что нужно знать — для смены направления вращения нужно изменить подключение любых двух фаз, собственно также, как и в трёхфазных асинхронных или синхронных электродвигателях.

В сети есть и ряд технических решений и схем как сложных, так и для чайников, которые вы можете увидеть ниже.

В этом видеоролике автор рассказывает, как подружить БК моторчик с «ардуиной».

А в этом ролике вы узнаете о различных способах подключения к разным регуляторам и как его можно сделать своими руками. Автор демонстрирует это на примере моторчика от HDD, и пары мощных экземпляров — inrunner и outrunner.

Кстати схему из видео для повторения также прикладываем:

Где применяются бесколлекторные двигатели

Сфера применения таких электродвигателей досрочно широка. Они используются как для привода мелких механизмов: в дисководах CD, DVD-приводах, жёстких дисках, так и в мощных устройствах: аккумуляторе и сетевом электроинструменте (с питанием порядка 12В), радиоуправляемых моделях (например, квадрокоптерах), станках ЧПУ для привода рабочего органа (обычно моторчики с номинальным напряжением 24В или 48В).

Широкое применение БДПТ нашли в электротранспорте, почти все современные мотор-колеса электросамокатов, велосипедов, мотоциклов и автомобилей — это бесколлекторные двигатели. К слову, номинальное напряжение электродвигателей для транспорта лежит в широком пределе, например, мотор-колесо для велосипеда зачастую работает от 36В или от 48В, за редким исключением и больше, а в автомобилях, например, на Toyota Prius порядка 120В, а на Nissan Leaf – доходит до 400, при том что заряжается от сети 220В (это реализуется с помощью встроенного преобразователя).

На самом деле область применения бесколлекторных электродвигателей очень обширна, отсутствие коллекторного узла позволяет его применять опасных местах, а также в местах с повышенной влажностью, без опасений замыканий, искрения или возгорания из-за дефектов в щеточном узле. Благодаря высокому КПД и хорошим массогабаритным показателям они нашли применение и в космической промышленности.

Преимущества и недостатки

Бесколлекторным двигателям постоянного тока, как и другим видам электромашин, присущи определенные достоинства и недостатки.

Преимущества у БДПТ заключаются в следующем:

  • Благодаря возбуждению мощными постоянными магнитами (неодимовыми, например) превосходят по моменту и мощности и имеют меньшие габариты, чем асинхронные двигатели. Чем пользуется большинство производителей электротранспорта — от самокатов до автомобилей.
  • Нет искрящего щеточно-коллекторного узла, который требует регулярного обслуживания.
  • При использовании качественного контроллера в отличие от того же КД не выдают помехи в питающую сеть, что особенно важно в радиоуправляемых устройствах и транспорте с развитым электронным оборудованием в бортовой сети.
  • КПД более 80, чаще и 90%.
  • Высокая скорость вращения, в отдельных случаях до 100000 об/мин.

Но есть и существенный минус: бесколлекторный двигатель без контроллера — просто кусок железа с медной обмоткой. Он никак не сможет работать. Контроллеры стоят недешево и чаще всего их приходится заказывать в интернет-магазинах или с алиэкспресс. Из-за этого использовать БК-моторы в моделях и устройствах домашнего производства не всегда возможно.

Теперь вы знаете, что такое бесколлекторный двигатель постоянного тока, как он работает и где применяется. Надеемся, наша статья помогла вам разобраться во всех вопросах!

Бесколлекторные двигатели | Поставки бесколлекторных двигателей по России

Главная / Каталог / Бесколлекторные двигатели

Бесколлекторный электродвигатель (вентильный электродвигатель) — это синхронный двигатель, основанный на принципе частотного регулирования с самосинхронизацией, суть которого заключается в управлении вектором магнитного поля статора в зависимости от положения ротора. Данный тип двигателей был создан с целью улучшения свойств коллекторных электродвигателей постоянного тока.
Бесколлекторный двигатель объединяет в себе лучшие качества бесконтактных двигателей и двигателей постоянного тока.

Устройство, принцип работы бесколлекторного двигателя

Бесколлекторные двигатели (BLDC — brushless DC motors) или, как их еще называют, вентильные двигатели или шпиндельные двигатели, обладают высокой динамикой и точностью позиционирования, большой перегрузочной способностью двигателя к моменту, а также высоким КПД двигателя – более 90%. Благодаря отсутствию трущихся частей в бесколлекторном двигателе возможно его применения во взрывоопасной и агрессивной среде.

Бесколлекторные двигатели состоят из статора традиционной обмотки, в зависимости от способа укладки витков он бывает BLDC – для двигателей имеющих обратную электродвижущую силу и PMSM – для двигателей питающихся синусоидальным током, ротора в котором используются магниты постоянного тока и датчика положения ротора.

Датчик положения ротора, встроенный в корпус двигателя, вырабатывает сигналы управления моментами времени и последовательностью коммутации токов в обмотках статора. Все поставляемые нами бесколлекторные электродвигатели имеют по три встроенных датчика Хола (Honeywell), расположенных под углом 120 градусов друг к другу.

Все бесколлекторные двигатели мы поставляем вместе с блоками управления, производимыми на том же заводе, что и сами двигатели (Fulling Motor, Китай), что гарантирует идеальную «совместимость» блоков управления и двигателей. Некоторые наши клиенты (как правило, использующие бесколлекторные двигатели в массовой серийной продукции с большими объемами выпуска) предпочитают разрабатывать устройства управления бесколлекторным двигателем самостоятельно. При этом они имеют возможность наиболее полно учесть нюансы рабочих режимов двигателей, и максимально снизить цену (себестоимость) блока управления бесколлекторным двигателем. 

Бесколлекторные двигатели не имеют недостатков, присущих асинхронным двигателям (потребление реактивной мощности, потери в роторе) и синхронным двигателям (пульсация частоты вращения, выпадение из синхронизма).

Как и у коллекторных двигателей момент бесколлекторных двигателей прямо пропорционален току, а скорость зависит от напряжения питания и нагружающего момента.
Но бесколлекторные двигатели имеют преимущество по сравнению с коллекторными — это отсутствие трущихся и истираемых частей, переключающихся контактов и т.п. и, как следствие, высокий ресурс.

Основные достоинства бесколлекторных (вентильных) двигателей:

  • высокое быстродействие и динамика, точность позиционирования
  • линейность нагрузочных характеристик
  • широкий диапазон изменения частоты вращения
  • большая перегрузочная способность по моменту
  • высокий срок службы (ресурс электродвигателя ограничен, по большому счету, только сроком службы подшипников)
  • высокая надёжность и повышенный ресурс работы за счёт отсутствия скользящих электрических контактов
  • низкий перегрев электродвигателя, при работе в режимах с возможными перегрузками
  • существенно более низкий уровень электромагнитных шумов по сравнению с коллекторными моторами

Области применения бесколлекторных двигателей

С силу своих достоинств бесколлекторные двигатели получили широкое распространение  во многих отраслях промышленности. Незаменимыми оказываются они в медицинской технике — низкий уровень электромагнитных излучений, низкий уровень шума и высокий ресурс определили лидирующую роль бесколлекторного привода во многих узлах медицинской аппаратуры. Также бесколлекторные электродвигатели традиционно используются для работы в опасных средах. Отсутствие трущихся частей, способных вызвать искру, позволяет применять бесколлекторные двигатели в нефтегазовой промышленности, например, в качестве трубозапорных приводов для нефте- и газопроводов.

Как работает бесколлекторный мотор — HPI Racing

HPI предлагает для всех типов радиоуправляемых электроавтомоделей великолепную бесколлекторную систему  Flux Brushless System! Бесколлекторная система Flux идеально подходит для шоссейных автомоделей, моделей багги и внедорожников в масштабе 1/10 и позволяет разогнать эти машины до скорости почти 100 километров в час!

 

Flux Brushless System состоит из электронного регулятора скорости и бесколлекторного двигателя. 

Бесколлекторный двигатель — это лучший выбор почти для всех электроавтомоделей в масштабе 1/10. С таким мотором ваша модель станет сверхбыстрой на трассе и сможет развивать бешенную скорость! Со стандартным никель-металлогидридным аккумулятором, состоящим из 6-и элементов, или с 2S LiPo (7,4 вольт) аккумулятором вы можете получить до 60 км/ч даже со стандартным редуктором! Мощность бесколлекторного мотора Flux эквивалентна высокофорсированным коллекторным  9 – 10 витковым  двигателям, работающих от шести элементных NiMH батарей, а это огромная мощность!

Особенности бесколлекторных двигателей Flux:

  1. Мощный, высокоскоростной бесколлекторныый мотор – эквивалент  коллекторного  9,5 виткового двигателя.
  2. Отлично сочетание огромной мощности и необычайной эффективности.
  3. Такой же размер, как у стандартного мотора  540-го типа.
  4. Необслуживаемая конструкция.
  5. Внешние контакты для легкой перепайки проводов.
  6. Крупногабаритные шарикоподшипники.
  7. Высокий крутящий момент, термостойкий неодимовый ротор.
  8. Специальная конструкция статора обеспечивает плавное линейное увеличение крутящего момента.
  9. Простой и удобный монтаж через 4 точки.
  10.  Ресурс в разы больше, чем в сопоставимых коллекторных моторах.
  11. Легко заменяемые подшипники и ротор.
  12. Совместим с любым бездатчиковым регулятором скорости для бесколлекторных двигателей.

 

Электронный регулятор скорости — «мозг» системы Flux. Регулятор скорости серии Fluxимеет разъемы для подключения мотора, разъем типа Dean для подключения и трехжильный кабель с разъемом для соединения с приемником, так что вы сможете легко установить регулятор в любом удобном месте на вашей модели. Регулятор способен работать с бесколлекторными двигателями разных размеров и мощности, а так же совместим как с NiMH аккумуляторами, так и LiPo батареями, что позволяет получить максимальную мощность от вашей системы Flux Brushless System! Регулятор Flux — небольшой по размеру, но огромный по допустимой мощности! На сайте HPI вы можете получить рекомендации по программированию регулятора скорости с помощью компьютера!

Особенности регулятора скорости Flux:

  1. Программируемый электронный регулятор скорости с функцией заднего хода для бесколлекторных  / коллекторных электродвигателей.
  2. Отсечка при низком напряжении для LiPo аккумуляторов**
  3. Эффективный алюминиевый радиатор.
  4. Пропорциональный тормоз с контролем усилия.
  5. Огромная рабочая мощность (70A * непрерывно / 380A в пике).
  6. Плавный старт бездатчиковых двигателей (патенты находятся на рассмотрении)
  7. Dean’s разъем для подключения батареи.
  8. Надежный выключатель.
  9. Просто программируется.
  10. Возможность легко настроить параметры с помощью кабеля HPI link (в комплект не входит).
  11. Работает с бесколлекторными и стандартными коллекторными двигателями.

 Система Flux Brushless System, разработанная HPI, предназначена для любителей и спортсменов, которые хотят иметь мощную, универсальную и доступную бесколлекторную систему. Двигатели Flux чрезвычайно мощные, очень надежные и эффективные, а это самой легкий путь к победе! У бездатчиковых двигателей HPI гораздо меньше проводов, которые можно повредить во время гонки, и это избавляет вас от лишних забот. Вы можете приобрести двигатель в комплекте с регулятором скорости или купить их по отдельности!

Перспективы модернизации

 Владельцы Flux Motiv могут обновлять параметры регулятора с помощью компьютера и бесплатного программного обеспечения! Программисты постоянно делают обновления программного обеспечения Flux Motive и вы можете загружать их, используя набор HPI PC USB programming kit. Этот комплект позволяет подключить регулятор скорости прямо к компьютеру, работающему под Windows, и сохранить настройки профиля, внести изменения в настройки, обновить прошивку и многое другое!

 

Давайте сначала узнаем, как работает коллекторный двигатель.

Чтобы узнать, почему бесколлекторные двигатели настолько эффективны и имеют высокую мощность, необходимо знать, как работает стандартный коллекторный мотор.

Обычные коллекторные  электродвигатели, которые вы можете найти в машинахSprint 2 или E-Firestorm  имеют всего два провода  (положительный и отрицательный), которыми двигатель подключается к регулятору скорости. Внутри корпуса двигателя можно увидеть два изогнутых постоянных магнита, а по центру установлен вал с якорем, на котором намотаны обмотки из медной проволоки. С одной стороны вала якоря устанавливается моторная шестерня, с другой стороны вала расположен так называемый коллектор из медных пластин, через который с помощью угольных щеток ток подается к обмоткам якоря.

Две угольные щетки постоянно скользят по вращающемуся медному коллектору. Как вы можете видеть на рисунке выше, напряжение по проводам через щетки и коллектор поступает к обмоткам якоря, возникает электромагнитное поле, которое взаимодействует с постоянными магнитами статора и заставляет якорь вращаться.

 

Как начинает вращаться стандартный коллекторный двигатель.
Когда на обмотки якоря поочередно поступает постоянный электрический ток, в  них возникает электромагнитное поле, которое с одной стороны имеет «северный» а с другой «южный» полюс. Поскольку «северный» полюс любого магнита автоматически отталкиваются от «северного»  полюса другого магнита, электромагнитное поле одной из обмоток якоря, взаимодействуя с полюсами постоянных магнитов статора, заставляет якорь вращаться. Через коллектор и щетки ток поступает на следующую обмотку якоря, что заставляет якорь вместе с валом мотора продолжать вращение, и так до тех пор, пока  к мотору подается напряжение. Как правило, якорь коллекторного мотора имеет три обмотки (три полюса) — это не позволяет двигателю застревать в одном положении.

 

Недостатки стандартных коллекторных двигателей
Недостатки коллекторных двигателей выявляются, когда нужно получить огромное количество оборотов от них. Поскольку щетки должны постоянно находиться в контакте с коллектором, в месте их соприкосновения возникает трение, которое значительно увеличивается, особенно на высоких оборотах. Любой дефект коллектора приводит к значительному износу щеток и нарушению контакта, что в свою очередь снижает эффективность мотора.  Именно поэтому серьезные гонщики протачивают и полируют коллектор двигателя и меняют щетки почти после каждого заезда. Коллекторный узел  стандартного мотора так же является источником радиопомех и требует особого внимания и обслуживания.

 

Теперь посмотрим, как работает бесколлекторный двигатель.
Основной особенностью конструкции бесколлекторного двигателя является то, что он по принципу работы похож на коллекторный мотор, но все устроено как бы  «наизнанку», и в нем отсутствуют коллектор и щетки. Постоянные магниты, которые в коллекторном моторе установлены на неподвижном статоре, у бесколлекторного мотора расположены вокруг вала, и этот узел называется ротор. Проволочные обмотки бесколлекторного мотора размещены вокруг ротора и имеют несколько различных магнитных полюсов. Датчиковые бесколлекторные моторы имеют на роторе сенсор, который посылает сигналы о положении ротора в процессор электронного регулятора скорости.

Почему бесколлекторный двигатель эффективней, чем коллекторный мотор
Из-за отсутствия коллектора и щеток в бесколлекторном моторе нет изнашивающихся деталей, кроме шарикоподшипников ротора, а это автоматически делает его более эффективным и надежным. Наличие сенсора контроля вращения ротора также значительно повышает эффективность. У коллекторных двигателей не возникает искрения щеток, что резко снижает возникновение помех, а отсутствие узлов с повышенным трением благоприятно сказывается на температуре работающего мотора, что так же повышает его эффективность.

Существуют ли недостатки у бесколлекторных двигателей?
Единственный возможный недостаток бесколлекторной системы – это несколько более высокая стоимость, однако каждый, кто испытал высокую мощность бесколлекторной системы, почувствовал прелесть отсутствия необходимости периодической замены щеток, пружин, коллекторов и якорей, тот быстро оценит общую экономию и не вернется к коллекторным моторам … никогда!

Действительно ли бесколлекторный двигатель не требует «никакого обслуживания?
Да! Они таковы, экономят время, поэтому гонщики всего мира теперь с удовольствием могут передохнуть между заездами. Вам больше не придется после каждой гонки демонтировать двигатель, разбирать его, шлифовать коллектор, менять щетки, вновь собирать и заново устанавливать … отсутствие этих забот — это огромное удовольствие!

Единственное, что вам возможно потребуется делать, это содержать двигатель в чистоте, и при необходимости менять подшипники. Эти процедуры выполняются редко, так что их нельзя классифицировать как регулярное техническое обслуживание.

Почему без датчика?
Помимо базовых размеров и различных параметров, бесколлекторные двигатели могут подразделяться по типу: с датчиком и без датчика. Двигатель с датчиком используют очень маленький сенсор на роторе и кроме трех толстых кабелей, по которому мотор получает питание, имеют дополнительный шлейф из тонких проводов, которые соединяют двигатель с регулятором скорости. Дополнительные провода передают информацию с датчика о положении ротора сотни раз в секунду. Эта информация обрабатывается электронным регулятором скорости, что позволяет мотору работать плавно и эффективно, насколько это возможно. Такие моторы используют профессиональные гонщики, однако такие двигатели намного дороже и сложнее в использовании.

Бездатчиковая бесколлекторная система, как можно догадаться, не имеет датчиков и дополнительных проводов, а ротор таких двигателей вращается без точной регистрации его положения и оборотов регулятором скорости. Это позволяет сделать двигатель и регулятор скорости проще в изготовлении, проще в установке и в целом дешевле. Бездатчиковые системы способны обеспечить такую же мощность, как датчиковые, просто с чуть-чуть меньшей точностью, а это идеальное решение для любителей и начинающих спортсменов.

В HPI пришли к выводу, что нашим клиентам не нужна точность, которая доступна для датчиковых систем, для них важнее надежность, и мы решили использовать популярную бездатчиковую систему для комплектов серии Flux.

Мы надеемся, что данная статья объяснит все, что вам нужно знать о системе HPI Flux Brushless.

Что такое бесщеточный двигатель постоянного тока (BLDC)? Строительство и работа

Конструкция, работа и применение BLDC (бесщеточный двигатель постоянного тока)

Бесколлекторные двигатели постоянного тока (BLDC) были в центре внимания многих производителей двигателей, поскольку эти двигатели все чаще используются во многих приложениях, особенно в области технологий управления двигателями. Двигатели BLDC превосходят щеточные двигатели постоянного тока во многих отношениях, таких как способность работать на высоких скоростях, высокая эффективность и лучшее рассеивание тепла.

Они являются неотъемлемой частью современной приводной техники, чаще всего используемой для привода приводов, станков, электрических двигателей, робототехники, компьютерной периферии, а также для производства электроэнергии. С развитием бездатчиковой технологии, помимо цифрового управления, эти двигатели стали настолько эффективными с точки зрения общей стоимости системы, размеров и надежности.

Что такое бесщеточный двигатель постоянного тока (BLDC)?

Бесщеточный двигатель постоянного тока (известный как BLDC) представляет собой синхронный электродвигатель с постоянными магнитами , который приводится в действие электричеством постоянного тока (DC) и реализует систему коммутации с электронным управлением (коммутация — это процесс создания крутящего момента в двигателе путем изменения фазные токи через него в соответствующие моменты времени) вместо системы механической коммутации.Двигатели BLDC также называют двигателями с трапециевидными постоянными магнитами.

В отличие от обычного двигателя постоянного тока щеточного типа, в котором щетки механически контактируют с коммутатором на роторе, образуя электрический путь между источником постоянного тока и обмотками якоря ротора, в бесконтактном двигателе постоянного тока используется электрическая коммутация с ротором с постоянными магнитами и статором с последовательность катушек. В этом двигателе вращается постоянный магнит (или полюса поля) и закреплены проводники с током.

Обмотки якоря переключаются электронным способом с помощью транзисторов или кремниевых выпрямителей при правильном положении ротора таким образом, что поле якоря находится в пространственной квадратуре с полюсами поля ротора. Следовательно, сила, действующая на ротор, заставляет его вращаться. Датчики Холла или энкодеры чаще всего используются для определения положения ротора и располагаются вокруг статора. Обратная связь о положении ротора от датчика помогает определить, когда следует переключать ток якоря.

Это электронное коммутационное устройство устраняет коллекторное устройство и щетки в двигателе постоянного тока и, следовательно, достигается более надежная и менее шумная работа. Благодаря отсутствию щеток двигатели BLDC способны работать на высоких скоростях. КПД двигателей постоянного тока BLDC обычно составляет от 85 до 90 процентов, тогда как эффективность двигателей постоянного тока коллекторного типа составляет от 75 до 80 процентов. Доступны самые разные двигатели BLDC, начиная от малого диапазона мощности и заканчивая дробной мощностью, интегральной мощностью и большими диапазонами мощности.

Конструкция двигателя BLDC Двигатели

BLDC могут иметь различные физические конфигурации. В зависимости от обмоток статора они могут быть сконфигурированы как однофазные, двухфазные или трехфазные двигатели. Однако чаще всего используются трехфазные двигатели BLDC с ротором на постоянных магнитах.

Конструкция этого двигателя во многом похожа на трехфазный асинхронный двигатель, а также на обычный двигатель постоянного тока. Этот двигатель имеет части статора и ротора, как и все другие двигатели.

Статор электродвигателя постоянного тока, состоящий из стальных пластин, несущих обмотки. Эти обмотки размещены в пазах, прорезанных в осевом направлении по внутренней периферии статора. Эти обмотки могут быть расположены либо звездой, либо треугольником. Однако большинство двигателей BLDC имеют трехфазный статор, соединенный звездой.

Каждая обмотка состоит из множества соединенных между собой катушек, при этом одна или несколько катушек размещаются в каждом слоте. Для образования четного числа полюсов каждая из этих обмоток распределяется по периферии статора.

Статор должен быть выбран с правильным номинальным напряжением в зависимости от мощности источника питания. Для робототехники, автомобилей и небольших исполнительных механизмов предпочтительны двигатели BLDC с напряжением 48 В или менее. Для промышленных применений и систем автоматизации используются двигатели с номинальным напряжением 100 В и выше.

Ротор

Двигатель BLDC включает в себя постоянный магнит в роторе. Количество полюсов в роторе может варьироваться от 2 до 8 пар полюсов с чередованием южных и северных полюсов в зависимости от требований применения.Для достижения максимального крутящего момента в двигателе плотность потока материала должна быть высокой. Для создания необходимой плотности магнитного поля необходим соответствующий магнитный материал для ротора.

Ферритовые магниты

недороги, однако имеют низкую магнитную индукцию для данного объема. Магниты из редкоземельных сплавов обычно используются для новых конструкций. Некоторыми из этих сплавов являются самарий-кобальт (SmCo), неодим (Nd) и феррит и бор (NdFeB). Ротор может иметь различные конфигурации сердечника, такие как круглый сердечник с постоянным магнитом на периферии, круглый сердечник с прямоугольными магнитами и т. д.

Датчики Холла Датчик Холла

предоставляет информацию для синхронизации возбуждения якоря статора с положением ротора. Поскольку коммутация двигателя BLDC управляется электронным способом, обмотки статора должны быть запитаны последовательно, чтобы двигатель вращался. Перед включением определенной обмотки статора необходимо подтвердить положение ротора. Таким образом, датчик Холла, встроенный в статор, определяет положение ротора.

Большинство двигателей BLDC оснащены тремя датчиками Холла, встроенными в статор.Каждый датчик генерирует сигналы Low и High всякий раз, когда полюса ротора проходят рядом с ним. Точная последовательность коммутации обмотки статора может быть определена на основе комбинации отклика этих трех датчиков.

Принцип работы и работа двигателя постоянного тока BLDC Двигатель

BLDC работает по тому же принципу, что и обычный двигатель постоянного тока, то есть по закону силы Лоренца, который гласит, что всякий раз, когда проводник с током помещается в магнитное поле, на него действует сила.Вследствие силы реакции магнит будет испытывать равную и противоположную силу. В случае двигателя BLDC проводник с током неподвижен, а постоянный магнит движется.

Когда катушки статора электрически переключаются источником питания, он становится электромагнитом и начинает создавать однородное поле в воздушном зазоре. Хотя источником питания является постоянный ток, коммутация заставляет генерировать сигнал переменного напряжения трапециевидной формы. За счет силы взаимодействия статора электромагнита и ротора с постоянными магнитами ротор продолжает вращаться.

Рассмотрим рисунок ниже, на котором статор двигателя возбуждается в зависимости от различных состояний переключения. При переключении обмоток как высокого и низкого сигналов соответствующие обмотки запитываются как северный и южный полюса. Ротор с постоянными магнитами с северным и южным полюсами совпадает с полюсами статора, заставляя двигатель вращаться.

Обратите внимание, что двигатель создает крутящий момент из-за развития сил притяжения (при выравнивании север-юг или юг-север) и сил отталкивания (при выравнивании север-север или юг-юг).Таким образом, двигатель движется по часовой стрелке.

Здесь может возникнуть вопрос, откуда мы знаем, какая катушка статора должна быть под напряжением и когда это делать. Это потому что; непрерывное вращение двигателя зависит от последовательности переключения катушек. Как обсуждалось выше, датчики Холла передают информацию о положении вала в электронный блок управления.

На основе этого сигнала от датчика контроллер принимает решение о включении определенных катушек. Датчики Холла генерируют сигналы низкого и высокого уровня всякий раз, когда полюса ротора проходят рядом с ним.Эти сигналы определяют положение вала.

Бесщеточный двигатель постоянного тока

Как описано выше, схема электронного контроллера подает питание на соответствующую обмотку двигателя, поворачивая транзистор или другие полупроводниковые переключатели для непрерывного вращения двигателя. На приведенном ниже рисунке показана простая схема привода двигателя BLDC , которая состоит из моста MOSFET (также называемого инверторным мостом), электронного контроллера, датчика Холла и двигателя BLDC.

Здесь датчики Холла используются для обратной связи по положению и скорости.Электронный контроллер может быть блоком микроконтроллера или микропроцессором, или процессором DSP, или блоком FPGA, или любым другим контроллером. Этот контроллер получает эти сигналы, обрабатывает их и отправляет управляющие сигналы в схему драйвера MOSFET.

В дополнение к переключению номинальной скорости двигателя дополнительная электронная схема изменяет скорость двигателя в зависимости от требуемого применения. Эти блоки управления скоростью обычно реализуются с ПИД-контроллерами для точного управления.Также возможно обеспечить работу двигателя в четырех квадрантах, сохраняя при этом хороший КПД при изменении скорости с использованием современных приводов.

Сопутствующие электрические приводы Статьи

Преимущества двигателя BLDC Двигатель BLDC

имеет несколько преимуществ по сравнению с обычными двигателями постоянного тока, некоторые из них

.
  • У него нет механического коммутатора и связанных с ним проблем
  • Высокая эффективность благодаря использованию ротора с постоянными магнитами
  • Высокая скорость работы даже в загруженном и ненагруженном состоянии за счет отсутствия щеток, ограничивающих скорость
  • Меньшая геометрия двигателя и меньший вес, чем у щеточных двигателей постоянного тока и асинхронных двигателей переменного тока
  • Долгий срок службы, поскольку коллекторная система не требует осмотра и обслуживания
  • Более высокая динамическая характеристика благодаря малой инерции и несущим обмоткам в статоре
  • Меньше электромагнитных помех
  • Тихая работа (или низкий уровень шума) из-за отсутствия щеток
Недостатки бесщеточного двигателя
  • Эти двигатели дорогие
  • Электронный контроллер требует управления этим двигателем, это дорого
  • Недостаточная доступность многих интегрированных электронных решений для управления, особенно для крошечных двигателей BLDC
  • Требуется сложная схема привода
  • Необходимость дополнительных датчиков

Вы также можете прочитать: Подключение трехфазного двигателя звезда/треугольник (Y-Δ) назад/вперед с таймером питания и схема управления

Применение бесщеточных двигателей постоянного тока (BLDC)

Бесщеточные двигатели постоянного тока (BLDC) используются для широкого круга требований, таких как переменные нагрузки, постоянные нагрузки и позиционирование в областях промышленного управления, автомобилестроения, авиации, систем автоматизации, медицинского оборудования и т. д.Некоторые конкретные применения двигателей BLDC:

.
  • Компьютерные жесткие диски и проигрыватели DVD/CD
  • Электромобили, гибридные автомобили и электрические велосипеды
  • Промышленные роботы, станки с ЧПУ и простые системы с ременным приводом
  • Стиральные машины, компрессоры и сушилки
  • Вентиляторы, насосы и воздуходувки

Похожие сообщения

Подробное описание принципа работы и применения бесщеточного двигателя постоянного тока

Здравствуйте, в этом уроке мы узнаем о бесколлекторных двигателях, также известных как бесколлекторные двигатели постоянного тока или бесщеточные двигатели постоянного тока.Мы увидим работу и применение бесколлекторного двигателя постоянного тока.

Что такое бесщеточный двигатель постоянного тока?

Бесщеточные электродвигатели постоянного тока, также известные как двигатели с электронной коммутацией (ECM, EC-двигатели).

Первичный КПД является наиболее важной характеристикой двигателей BLDC. Потому что ротор является единственным носителем магнитов и не требует никакой энергии. то есть без соединений, без коммутатора и без щеток. Вместо них в двигателе используется схема управления. Чтобы определить, где находится ротор в определенное время, двигатели BLDC используют вместе с контроллерами, поворотными энкодерами или датчиком Холла.

Конструкция бесщеточного двигателя постоянного тока

В этом двигателе постоянные магниты прикреплены к ротору. Токоведущие проводники или обмотки якоря расположены на статоре. Они используют электрическую коммутацию для преобразования электрической энергии в механическую.

Основное конструктивное различие между щеточными и бесщеточными двигателями заключается в замене механического коммутатора на электрическую схему переключателя. BLDC Motor — это тип синхронного двигателя в том смысле, что магнитное поле, создаваемое статором и ротором, вращается с одинаковой частотой.

 

Бесщеточный двигатель не имеет токоведущих коллекторов. Поле внутри бесколлекторного двигателя переключается через усилитель, который запускается коммутационным устройством наподобие оптического энкодера.

Компоновка бесщеточного двигателя постоянного тока может различаться в зависимости от того, находится ли он в стиле «Out runner» или «Inrunner».

  • Outrunner – Магнит возбуждения представляет собой барабанный ротор, который вращается вокруг статора. Этот тип предпочтителен для приложений, требующих высокого крутящего момента и не требующих высоких оборотов.

  • В направляющей Статор представляет собой неподвижный барабан, в котором вращается магнит возбуждения. Этот двигатель известен тем, что производит меньший крутящий момент, чем двигатель с внешним бегунком, но способен вращаться на очень высоких оборотах.

ОБЯЗАТЕЛЬНО ПРОЧИТАЙТЕ СООБЩЕНИЯ В БЛОГЕ О ДВИГАТЕЛЯХ ПОСТОЯННОГО ТОКА

Принцип работы бесщеточного двигателя постоянного тока

Двигатель

BLDC работает по принципу, аналогичному коллекторному двигателю постоянного тока . Закон силы Лоренца, который гласит, что всякий раз, когда проводник с током помещается в магнитное поле, на него действует сила.Вследствие силы реакции магнит будет испытывать равную и противоположную силу. В двигателе BLDC проводник с током неподвижен, а постоянный магнит движется.

Когда катушки статора получают питание от источника, он становится электромагнитом и начинает создавать однородное поле в воздушном зазоре. Хотя источником питания является постоянный ток, коммутация заставляет генерировать сигнал переменного напряжения трапециевидной формы. За счет силы взаимодействия статора электромагнита и ротора с постоянными магнитами ротор продолжает вращаться.

При переключении обмоток в качестве сигналов High и Low соответствующая обмотка запитывается как северный и южный полюса. Ротор с постоянными магнитами с северным и южным полюсами совпадает с полюсами статора, что заставляет двигатель вращаться.

Преимущества бесщеточного двигателя постоянного тока

  • Меньший объем технического обслуживания из-за отсутствия щеток
  • Уменьшенный размер с гораздо лучшими тепловыми характеристиками
  • Более высокий диапазон скоростей и более низкий уровень электрического шума.
  • У него нет механического коммутатора и связанных с ним проблем
  • Высокая эффективность и высокое соотношение выходной мощности и размера благодаря использованию ротора с постоянными магнитами
  • Высокая скорость работы даже в загруженном и ненагруженном состоянии за счет отсутствия щеток, ограничивающих скорость
  • Меньшая геометрия двигателя и меньший вес, чем у щеточных двигателей постоянного тока и асинхронных двигателей переменного тока.
  • Долгий срок службы, поскольку коллекторная система не требует осмотра и обслуживания
  • Более высокая динамическая характеристика благодаря малой инерции и несущим обмоткам в статоре
  • Меньше электромагнитных помех
  • Низкий уровень шума благодаря отсутствию щеток

Ограничения бесщеточного двигателя постоянного тока

  • Эти двигатели дорогие
  • Электронный контроллер требует управления этим двигателем, это дорого
  • Требуется сложная схема привода
  • Необходимость дополнительных датчиков

Применение бесщеточного двигателя постоянного тока

Бесщеточные двигатели постоянного тока

(BLDC) используются для самых разных требований, таких как переменные нагрузки, постоянные нагрузки и позиционирование в областях промышленного управления, автомобилестроения, авиации, систем автоматизации, медицинского оборудования и т. д.

  • Компьютерные жесткие диски и проигрыватели DVD/CD
  • Электромобили, гибридные автомобили и электрические велосипеды
  • Промышленные роботы, станки с ЧПУ и простые системы с ременным приводом
  • Стиральные машины, компрессоры и сушилки
  • Вентиляторы, насосы и воздуходувки.

Надеюсь, эта статья поможет вам понять принцип работы и области применения бесщеточного двигателя постоянного тока. Мы в Robu.in надеемся, что вам было интересно, и вы вернетесь к нашим образовательным блогам.

 

Что это такое и как они работают?

Что такое бесщеточный двигатель?

Бесщеточный двигатель постоянного тока (также известный как двигатель BLDC или двигатель BL ) представляет собой двигатель постоянного тока с электронной коммутацией, не имеющий щеток. Контроллер подает импульсы тока на обмотки двигателя, которые регулируют скорость и крутящий момент синхронного двигателя.

Эти типы двигателей очень эффективны при создании большого крутящего момента в широком диапазоне скоростей.В бесщеточных двигателях постоянные магниты вращаются вокруг неподвижного якоря и решают проблему подключения тока к якорю. Коммутация с электроникой имеет большие возможности и гибкость. Они известны плавной работой и удержанием крутящего момента в неподвижном состоянии.

Как работает бесщеточный двигатель

Прежде чем объяснять работу бесщеточного двигателя постоянного тока, лучше понять принцип работы коллекторного двигателя. В щеточных двигателях снаружи расположены постоянные магниты, а внутри вращающийся якорь с электромагнитом.Эти электромагниты создают магнитное поле в якоре при включении питания и помогают вращать якорь.

Щетки меняют полярность полюса, чтобы поддерживать вращение якоря. Основной принцип работы коллекторного двигателя постоянного тока и бесщеточного двигателя постоянного тока одинаков, т. е. внутренняя обратная связь по положению вала.

Бесщеточный двигатель постоянного тока состоит всего из двух основных частей: ротора и статора. Ротор является вращающейся частью и имеет магниты ротора, тогда как статор является неподвижной частью и содержит обмотки статора.В BLDC постоянные магниты прикреплены к ротору и перемещают электромагниты к статору. Транзисторы высокой мощности используются для активации электромагнитов для поворотов вала. Контроллер выполняет распределение мощности с помощью твердотельной схемы.

Типы бесщеточных двигателей постоянного тока

По сути, бесщеточные двигатели постоянного тока бывают двух типов: двигатель с внешним ротором и двигатель с внутренним ротором . Основное различие между ними заключается только в конструкции, принципы их работы одинаковы.

Конструкция с внутренним ротором

В конструкции с внутренним ротором ротор расположен в центре двигателя, а обмотка статора окружает ротор. Поскольку ротор расположен в сердечнике, магниты ротора не изолируют тепло внутри, и тепло легко рассеивается. По этой причине двигатель с внутренним ротором создает большой крутящий момент и правильно используется.

Внешний ротор

Внешний ротор окружает обмотку, расположенную в сердечнике двигателя.Магниты в роторе удерживают тепло двигателя внутри и не позволяют ему рассеиваться. Электродвигатель такого типа работает при более низком номинальном токе и имеет низкий крутящий момент.

Преимущества бесщеточного двигателя постоянного тока

Преимущества бесщеточного двигателя постоянного тока:

  1. Бесщеточные двигатели более эффективны, поскольку их скорость определяется частотой подачи тока, а не напряжением.
  2. Поскольку щетки отсутствуют, потери механической энергии на трение меньше, что повышает эффективность.
  3. Двигатель постоянного тока BLDC может работать на высокой скорости при любых условиях.
  4. Отсутствие искрения и гораздо меньше шума во время работы.
  5. На статоре можно использовать больше электромагнитов для более точного управления.
  6. Двигатели BLDC легко ускоряются и замедляются, так как они имеют низкую инерцию ротора.
  7. Это высокопроизводительный двигатель, обеспечивающий большой крутящий момент на кубический дюйм в широком диапазоне скоростей.
  8. Двигатели BLDC не имеют щеток, что делает их более надежными, увеличивает срок службы и не требует технического обслуживания.
  9. От коллектора не исходят ионизирующие искры, а также уменьшаются электромагнитные помехи.
  10. Такие двигатели охлаждаются за счет теплопроводности, и для внутреннего охлаждения не требуется поток воздуха.

Недостатки бесщеточных двигателей постоянного тока

Недостатки бесщеточных двигателей постоянного тока:

  1. Бесщеточные двигатели постоянного тока стоят дороже, чем щеточные двигатели постоянного тока.
  2. На двигатель BLDC может подаваться ограниченная высокая мощность, в противном случае слишком сильный нагрев ослабляет магниты и может быть повреждена изоляция обмотки.

Основы бесщеточных двигателей постоянного тока (BLDC Motors)

В этом уроке мы узнаем о бесщеточных двигателях, также известных как бесщеточные двигатели постоянного тока или бесщеточные двигатели постоянного тока. Мы увидим, что такое двигатель BLDC, принцип его работы, как правильно управлять бесколлекторным двигателем постоянного тока, а также несколько приложений.

Введение

Бесколлекторные двигатели постоянного тока серии

или бесщеточные двигатели постоянного тока внесли значительный вклад в развитие современных приводных технологий. Их быстрый рост популярности привел к расширению спектра применения в области бытовой техники, автомобильной промышленности, промышленной автоматизации, химической и медицинской, аэрокосмической и приборостроительной промышленности.

Несмотря на то, что они долгое время использовались для приводов и производства электроэнергии, субкиловаттный диапазон, в котором доминировали щеточные двигатели постоянного тока, всегда был серой зоной. Но современная силовая электроника и микропроцессорная технология позволили небольшим бесщеточным двигателям постоянного тока процветать как с точки зрения цены, так и с точки зрения производительности.

Что такое двигатель BLDC?

Бесщеточный двигатель постоянного тока аналогичен щеточному двигателю постоянного тока, но, как следует из названия, в бесщеточном двигателе постоянного тока не используются щетки для коммутации, а они коммутируются электронным способом.В обычных щеточных двигателях постоянного тока щетки используются для передачи мощности на ротор, когда они вращаются в фиксированном магнитном поле.

Как упоминалось ранее, в двигателе BLDC использовалась электронная коммутация, что исключало механически рвущиеся щетки.

Конструкция двигателя BLDC

Основное конструктивное различие между щеточными и бесщеточными двигателями заключается в замене механического коммутатора на электрическую схему переключателя. Имея это в виду, двигатель BLDC является типом синхронного двигателя в том смысле, что магнитное поле, создаваемое статором и ротором, вращается с одинаковой частотой.

Бесщеточные двигатели

доступны в трех конфигурациях: однофазные, двухфазные и трехфазные. Из них трехфазный BLDC является наиболее распространенным.

На следующем изображении показано поперечное сечение двигателя BLDC.

Как вы можете видеть на изображении, BLDC Motor состоит из двух основных частей: статора и ротора.

Статор

Структура статора бесконтактного двигателя постоянного тока аналогична конструкции асинхронного двигателя. Он состоит из штабелированных стальных пластин с аксиально прорезанными пазами для намотки.Обмотка BLDC немного отличается от обмотки традиционного асинхронного двигателя.

Как правило, большинство двигателей BLDC состоят из трех обмоток статора, соединенных звездой или звездой (без нейтральной точки). Кроме того, в зависимости от соединений катушек обмотки статора подразделяются на трапециевидные и синусоидальные двигатели.

В трапециевидном двигателе как управляющий ток, так и противо-ЭДС имеют форму трапеции (синусоидальная форма в случае синусоидальных двигателей).Обычно двигатели с номинальным напряжением 48 В (или менее) используются в автомобилестроении и робототехнике (гибридные автомобили и роботизированные руки).

Ротор

Роторная часть двигателя BLDC состоит из постоянных магнитов (обычно магнитов из редкоземельных сплавов, таких как неодим (Nd), самарий-кобальт (SmCo) и сплав неодима, феррита и бора (NdFeB)).

В зависимости от применения количество полюсов может варьироваться от двух до восьми, при этом северный (N) и южный (S) полюса размещаются попеременно. На следующем изображении показаны три различных расположения полюсов.В первом случае магниты размещены на внешней периферии ротора.

Вторая конфигурация называется ротором с магнитными вставками, где прямоугольные постоянные магниты встроены в сердечник ротора. В третьем случае магниты вставлены в железный сердечник ротора.

Датчики положения (датчики Холла)

Поскольку в бесщеточном двигателе постоянного тока нет щеток, коммутация управляется электронным способом. Чтобы двигатель вращался, обмотки статора должны быть запитаны в определенной последовательности, а положение ротора (т.е. северный и южный полюса ротора) должны быть известны для точного возбуждения определенного набора обмоток статора.

Датчик положения, который обычно представляет собой датчик Холла (работающий по принципу эффекта Холла), обычно используется для определения положения ротора и преобразования его в электрический сигнал. В большинстве двигателей BLDC используются три датчика Холла, встроенные в статор, для определения положения ротора.

Выходной сигнал датчика Холла будет ВЫСОКИМ или НИЗКИМ в зависимости от того, проходит ли рядом с ним северный или южный полюс ротора.Комбинируя результаты трех датчиков, можно определить точную последовательность подачи питания.

Читать о КАК ИСПОЛЬЗОВАТЬ ДАТЧИК ХОЛЛА С ARDUINO?

Принцип работы

Рассмотрим следующую схему трех обмоток статора, обозначенных A, B и C. Для лучшего понимания заменим ротор одним магнитом.

Мы знаем, что когда ток проходит через катушку, создается магнитное поле и ориентация силовых линий i.е. полюса генерируемого магнита будут зависеть от направления тока, протекающего через катушку.

Используя этот принцип, если мы подаем ток на катушку А, чтобы она создавала магнитное поле и притягивала магнит ротора. Положение магнита ротора немного сместится по часовой стрелке и совпадет с A.

Если мы теперь пропустим ток через катушки B и C одну за другой (в таком порядке), магнит ротора будет вращаться по часовой стрелке.

Для повышения эффективности мы можем намотать противоположные катушки, используя одну катушку, чтобы получить двойное притяжение.Еще больше повышая эффективность, мы можем запитать две катушки одновременно, чтобы одна катушка притягивала магнит, а другая катушка отталкивала его. В это время третий будет простаивать.

Для полного оборота магнита ротора на 360 0 применимы шесть возможных комбинаций катушек A, B и C, которые показаны на следующей временной диаграмме.

Основываясь на приведенной выше диаграмме, мы можем подтвердить, что в любое время одна фаза является положительной, одна фаза отрицательной, а третья фаза простаивает (или плавает).Итак, на основе входных сигналов от датчиков Холла у нас есть два переключателя фаз в соответствии с приведенной выше схемой.

Управление бесщеточными двигателями постоянного тока

Если статор и ротор являются неотъемлемыми частями двигателя BLDC, которые являются его неотъемлемой частью, то приводная электроника не менее важна. Блок-схема типичной системы управления бесщеточным двигателем постоянного тока или системы привода показана на следующем рисунке.

Эта схема привода часто известна как система электронного регулятора скорости или просто ESC.Одна из распространенных настроек называется схемой полного моста. Он состоит из MCU с выходами PWM, шести МОП-транзисторов для трех фаз обмоток статора, обратной связи от датчиков Холла и некоторых компонентов, связанных с питанием.

MCU можно запрограммировать на соответствующее переключение МОП-транзисторов на основе данных от датчиков Холла.

Преимущества двигателей BLDC

Поскольку двигатели BLDC коммутируются электронным способом, у них есть несколько преимуществ по сравнению с традиционными щеточными двигателями постоянного тока.Некоторые из них:

  • Без износа (из-за отсутствия щеток)
  • Высокая эффективность
  • Лучшее соотношение скорости и крутящего момента
  • Долгий срок службы
  • Менее шумная или бесшумная работа
  • Значительно более высокие обороты

Применение бесщеточных двигателей постоянного тока

Ниже перечислены некоторые области применения двигателей постоянного тока BLDC:

  • Односкоростные приложения
  • Применения с регулируемой скоростью
  • Управление положением
  • Применение с низким уровнем шума
  • Высокоскоростные приложения

Введение в бесщеточные двигатели постоянного тока

Бесщеточные двигатели постоянного тока

широко используются в промышленности по всему миру.На самом базовом уровне есть щеточные и бесщеточные двигатели, а также двигатели постоянного и переменного тока. Бесщеточные двигатели постоянного тока, как вы понимаете, не содержат щеток и используют постоянный ток.

Эти двигатели обладают многими особыми преимуществами по сравнению с другими типами электродвигателей, но, помимо основ, что такое бесщеточный двигатель постоянного тока? Как это работает и для чего используется?

Как работает бесщеточный двигатель постоянного тока

Часто бывает полезно сначала объяснить, как работает щеточный двигатель постоянного тока, поскольку они использовались в течение некоторого времени до того, как стали доступны бесщеточные двигатели постоянного тока.Коллекторный двигатель постоянного тока имеет постоянные магниты снаружи своей конструкции с вращающимся якорем внутри. Постоянные магниты, неподвижные снаружи, называются статором. Якорь, который вращается и содержит электромагнит, называется ротором.

В щеточном двигателе постоянного тока ротор вращается на 180 градусов, когда на якорь подается электрический ток. Чтобы двигаться дальше, полюса электромагнита должны поменяться местами. Щетки, когда ротор вращается, вступают в контакт со статором, переворачивая магнитное поле и позволяя ротору вращаться на полные 360 градусов.

Бесщеточный двигатель постоянного тока, по сути, вывернут наизнанку, что устраняет необходимость в щетках для переворачивания электромагнитного поля. В бесщеточных двигателях постоянного тока постоянные магниты находятся на роторе, а электромагниты — на статоре. Затем компьютер заряжает электромагниты в статоре, чтобы ротор повернулся на полные 360 градусов.

Для чего используются бесщеточные двигатели постоянного тока?

Бесщеточные двигатели постоянного тока

обычно имеют КПД 85–90 %, тогда как щеточные двигатели обычно имеют КПД только 75–80 %.Щетки со временем изнашиваются, иногда вызывая опасное искрообразование, что ограничивает срок службы щеточного двигателя. Бесщеточные двигатели постоянного тока тихие, легкие и имеют гораздо более длительный срок службы. Поскольку компьютеры контролируют электрический ток, бесщеточные двигатели постоянного тока могут обеспечить гораздо более точное управление движением.

Из-за всех этих преимуществ бесщеточные двигатели постоянного тока часто используются в современных устройствах, где требуется низкий уровень шума и малое тепловыделение, особенно в устройствах, работающих в непрерывном режиме. Это могут быть стиральные машины, кондиционеры и другая бытовая электроника.Они могут быть даже основным источником питания для сервисных роботов, что потребует очень тщательного контроля силы из соображений безопасности.

Бесщеточные двигатели постоянного тока

обладают рядом явных преимуществ по сравнению с другими типами электродвигателей, поэтому они используются во многих предметах домашнего обихода и могут стать основным фактором роста сервисных роботов внутри и за пределами промышленного сектора.

Если вы считаете, что эта технология может принести пользу вашему приложению, просмотрите список поставщиков и интеграторов бесколлекторных двигателей постоянного тока.

 

Что такое бесщеточные двигатели постоянного тока

Понимание принципа и применения высокоэффективных двигателей: 1 из 3

Двигатель преобразует подаваемую электрическую энергию в механическую. Широко используются различные типы двигателей. Среди них бесщеточные двигатели постоянного тока (BLDC) отличаются высокой эффективностью и отличной управляемостью и широко используются во многих приложениях. Двигатель BLDC имеет преимущества по энергосбережению по сравнению с другими типами двигателей.

Двигатели — это машины подачи энергии

Когда инженеры сталкиваются с проблемой разработки электрического оборудования для выполнения механических задач, они могут подумать о том, как электрические сигналы преобразуются в энергию.Таким образом, актуаторы и двигатели входят в число устройств, преобразующих электрические сигналы в движение. Двигатели обменивают электрическую энергию на механическую.

Самый простой тип двигателя — коллекторный двигатель постоянного тока. В этом типе двигателя электрический ток проходит через катушки, расположенные внутри постоянного магнитного поля. Ток создает магнитные поля в катушках; это заставляет узел катушки вращаться, поскольку каждая катушка отталкивается от аналогичного полюса и притягивается к противоположному полюсу фиксированного поля.Чтобы поддерживать вращение, необходимо постоянно менять направление тока, чтобы полярность катушек постоянно менялась, заставляя катушки продолжать «гоняться» за разными фиксированными полюсами. Питание к катушкам подается через неподвижные токопроводящие щетки, соприкасающиеся с вращающимся коммутатором; именно вращение коммутатора вызывает изменение направления тока через катушки. Коллектор и щетки являются ключевыми компонентами, отличающими щеточный двигатель постоянного тока от двигателей других типов. Рисунок 1 иллюстрирует общий принцип коллекторного двигателя.

Рисунок 1: Работа коллекторного двигателя постоянного тока.

Неподвижные щетки подают электроэнергию на вращающийся коллектор. Когда коммутатор вращается, он постоянно меняет направление тока в катушках, меняя полярность катушек, чтобы катушки продолжали вращаться вправо. Коллектор вращается, потому что он прикреплен к ротору, на котором установлены катушки.

Распространенные типы двигателей

Двигатели

различаются по типу питания (переменного или постоянного тока) и способу создания вращения (рис. 2).Ниже мы кратко рассмотрим особенности и использование каждого типа.

Рисунок 2: Различные типы двигателей

Коллекторные двигатели постоянного тока, отличающиеся простой конструкцией и легким управлением, широко используются для открывания и закрывания дисковых лотков. В автомобилях они часто используются для складывания, выдвижения и позиционирования боковых окон с электроприводом. Низкая стоимость этих двигателей делает их пригодными для многих применений. Однако одним недостатком является то, что щетки и коллекторы имеют тенденцию к относительно быстрому износу в результате их постоянного контакта, что требует частой замены и периодического обслуживания.

Шаговый двигатель управляется импульсами; он поворачивается на определенный угол (шаг) с каждым импульсом. Поскольку вращение точно контролируется количеством полученных импульсов, эти двигатели широко используются для регулировки положения. Их часто используют, например, для управления подачей бумаги в факсимильные аппараты и принтеры, поскольку эти устройства подают бумагу фиксированными шагами, которые легко коррелируют со счетом импульсов. Паузой также можно легко управлять, так как вращение двигателя мгновенно останавливается при прерывании импульсного сигнала.

У синхронных двигателей вращение синхронно частоте питающего тока. Эти двигатели часто используются для привода вращающихся противней в микроволновых печах; редукторы в моторном блоке могут быть использованы для получения соответствующих скоростей вращения для разогрева пищи. У асинхронных двигателей скорость вращения также зависит от частоты; но движение не синхронно. В прошлом эти двигатели часто использовались в электрических вентиляторах и стиральных машинах.

Широко используются различные типы двигателей.На этом занятии мы рассмотрим преимущества и области применения бесколлекторных двигателей постоянного тока.

Почему двигатели BLDC вращаются?

Как следует из названия, в бесщеточных двигателях постоянного тока щетки не используются. В щеточных двигателях щетки подают ток через коммутатор в обмотки ротора. Так как же бесщеточный двигатель пропускает ток к обмоткам ротора? Это не так, потому что катушки не расположены на роторе. Вместо этого ротор представляет собой постоянный магнит; катушки не вращаются, а фиксируются на статоре.Поскольку катушки не двигаются, нет необходимости в щетках и коммутаторе. (См. рис. 3.)

В коллекторном двигателе вращение достигается за счет управления магнитными полями, создаваемыми катушками на роторе, в то время как магнитное поле, создаваемое неподвижными магнитами, остается постоянным. Чтобы изменить скорость вращения, вы меняете напряжение на катушках. В двигателе BLDC вращается постоянный магнит; вращение достигается за счет изменения направления магнитных полей, создаваемых окружающими стационарными катушками.Чтобы управлять вращением, вы регулируете величину и направление тока в этих катушках.

Рис. 3: Двигатель BLDC.

Поскольку ротор представляет собой постоянный магнит, ему не требуется ток, что устраняет необходимость в щетках и коллекторе. Ток неподвижных катушек контролируется извне.

Преимущества двигателей BLDC

Двигатель BLDC с тремя катушками на статоре будет иметь шесть электрических проводов (по два на каждую катушку), отходящих от этих катушек.В большинстве реализаций три из этих проводов будут соединены внутри, а три оставшихся провода отходят от корпуса двигателя (в отличие от двух проводов, отходящих от щеточного двигателя, описанного ранее). Электропроводка в корпусе двигателя BLDC сложнее, чем простое соединение положительных и отрицательных клемм силового элемента; мы более подробно рассмотрим, как работают эти двигатели, во второй части этой серии. Ниже мы завершаем рассмотрение преимуществ двигателей BLDC.

Одним из больших преимуществ является эффективность, поскольку эти двигатели могут непрерывно работать при максимальной вращающей силе (крутящем моменте).Коллекторные двигатели, напротив, достигают максимального крутящего момента только в определенных точках вращения. Чтобы щеточный двигатель обеспечивал такой же крутящий момент, как и бесщеточная модель, в нем должны использоваться более крупные магниты. Вот почему даже небольшие двигатели BLDC могут обеспечивать значительную мощность.

Второе большое преимущество, связанное с первым, — управляемость. Двигатели BLDC можно контролировать с помощью механизмов обратной связи, чтобы точно обеспечить желаемый крутящий момент и скорость вращения. Точное управление, в свою очередь, снижает потребление энергии и выделение тепла, а в случаях, когда двигатели питаются от батареи, продлевает срок службы батареи.

Двигатели

BLDC также отличаются высокой надежностью и низким уровнем электрического шума благодаря отсутствию щеток. В щеточных двигателях щетки и коллектор изнашиваются в результате постоянного подвижного контакта, а также вызывают искрение в месте контакта. Электрический шум, в частности, является результатом сильных искр, которые имеют тенденцию возникать в местах, где щетки проходят через зазоры в коллекторе. Вот почему двигатели BLDC часто считаются предпочтительными в приложениях, где важно избежать электрических помех.

Идеальное применение для двигателей BLDC

Мы убедились, что двигатели BLDC обладают высокой эффективностью и управляемостью, а также имеют длительный срок службы. Так чем же они хороши? Из-за их эффективности и долговечности они широко используются в устройствах, которые работают непрерывно. Они уже давно используются в стиральных машинах, кондиционерах и другой бытовой электронике; а в последнее время они появляются в вентиляторах, где их высокая эффективность способствовала значительному снижению энергопотребления.

Они также используются для привода вакуумных машин. В одном случае изменение программы управления привело к значительному скачку скорости вращения — пример превосходной управляемости, обеспечиваемой этими двигателями.

Двигатели

BLDC также используются для вращения жестких дисков, где их долговечность обеспечивает надежную работу дисков в течение длительного времени, а их энергоэффективность способствует снижению энергопотребления в области, где это становится все более важным.

На пути к более широкому использованию в будущем

Мы можем ожидать, что двигатели BLDC будут использоваться в более широком диапазоне приложений в будущем.Например, они, вероятно, будут широко использоваться для управления сервисными роботами — небольшими роботами, которые предоставляют услуги в других областях, помимо производства. Можно подумать, что шаговые двигатели больше подходят для такого типа приложений, где можно использовать импульсы для точного управления позиционированием. Но двигатели BLDC лучше подходят для управления силой. А с помощью шагового двигателя удержание положения такой конструкции, как рука робота, потребует относительно большого и непрерывного тока. Для двигателя BLDC все, что требуется, — это ток, пропорциональный внешней силе, что обеспечивает более энергоэффективное управление.Двигатели BLDC также могут заменять простые щеточные двигатели постоянного тока в тележках для гольфа и мобильных тележках. В дополнение к более высокой эффективности двигатели BLDC также могут обеспечивать более точное управление, что, в свою очередь, может еще больше продлить срок службы батареи.

Двигатели BLDC

также идеально подходят для дронов. Их способность обеспечивать точное управление делает их особенно подходящими для многороторных дронов, где положение дрона контролируется путем точного управления скоростью вращения каждого ротора.

На этом занятии мы увидели, как двигатели BLDC обеспечивают превосходную эффективность, управляемость и долговечность.Но тщательный и надлежащий контроль необходим для полного использования потенциала этих двигателей. На следующем занятии мы рассмотрим, как работают эти двигатели.

Список модулей

  1. Что такое бесщеточные двигатели постоянного тока
  2. Управление бесступенчатыми двигателями постоянного тока
  3. Решения Renesas для управления двигателем BLDC

Бесколлекторный двигатель постоянного тока | Принцип работы двигателя BLDC

Привет, друзья, в этой статье я предоставляю вам базовую информацию о бесколлекторном двигателе постоянного тока i.е. BLDC двигатель. С помощью этой информации вы можете легко понять принцип работы двигателя постоянного тока BLDC .

В отличие от обычного двигателя постоянного тока, бесщеточный двигатель постоянного тока имеет конструкцию «наизнанку», то есть полюса возбуждения вращаются, а якорь неподвижен. Полюса возбуждения состоят из постоянных магнитов, установленных внутри стального цилиндра, а якорь намотан на многослойной железной конструкции с прорезями. Катушки якоря переключаются транзисторами или кремниевыми выпрямителями (вместо коммутатора) при правильном положении ротора, чтобы поддерживать поле якоря в пространственной квадратуре с полюсами поля.

 
Терминология для описания бесщеточных двигателей постоянного тока еще не стандартизирована. Их называют даже разными именами, такими как «бесколлекторный двигатель постоянного тока», «электронно-коммутируемый двигатель постоянного тока», «самосинхронная машина» и другие.
 
Каждый тип двигателя описывается либо количеством фаз обмотки статора, импульсами тока, подводимыми к обмоткам транзисторами или тринисторами, либо количеством полюсов ротора. Следующая классификация бесщеточных двигателей постоянного тока также полезна для понимания принципа работы двигателя BLDC :
 

.

Однофазный одноимпульсный бесщеточный двигатель постоянного тока

 
Статор этого двигателя имеет только однофазную обмотку, которая питается от транзистора один раз за электрический оборот.Выходной крутящий момент такого двигателя совершенно недостаточен, потому что в лучшем случае он может создавать положительный крутящий момент только выше 180 электрических градусов. Оставшееся угловое вращение должно преодолеваться инерцией ротора или силами вспомогательных моментов. (см. рис. а)
 

Однофазный двухимпульсный бесщеточный двигатель постоянного тока

 
Статор этого двигателя также имеет только однофазную обмотку, но получает два импульса, то есть его обмотка питается двумя импульсами тока противоположных направлений.Таким образом, результирующее распределение крутящего момента является более благоприятным, чем у одноимпульсного двигателя.
 
Непрерывный электромагнитный крутящий момент не достигается. Есть еще небольшие области без крутящего момента, которые необходимо шунтировать с помощью стабильных вспомогательных средств. Преимуществом этого двигателя является его простая конструкция, обеспечивающая высокий коэффициент использования материала якоря. (см. рис. б)

 

Двухфазный, двухимпульсный бесщеточный двигатель постоянного тока

 
Статор такого двигателя имеет две фазные обмотки, которые поочередно запитываются двумя импульсами тока.Следовательно, создаваемый крутящий момент в основном такой же, как у однофазного двухимпульсного двигателя. Тем не менее, обмотка будет использована только на 50 процентов.
 
Преимущество этого двигателя заключается в его простой управляющей электронике. Промежутки электромагнитного момента должны быть шунтированы подходящими вспомогательными средствами, как и в случае с однофазным двигателем. (см. рис. в)
 

Трехфазный трехимпульсный бесщеточный двигатель постоянного тока

 
Этот двигатель имеет статор с трехфазной обмоткой, которая смещена в пространстве на 120 o электрическую.Каждая фазная обмотка возбуждается одним импульсом, т. е. за электрический оборот; на статор циклически подаются три импульса тока.
 
Тот факт, что требуется всего три силовых транзистора или тринистора, является основным преимуществом этой конструкции двигателя. Недостатком является относительно низкий коэффициент использования обмотки (в среднем около 33%), а также необходимость трех датчиков положения. (см. рис. г)
 

Четырехфазный четырехимпульсный бесщеточный двигатель постоянного тока

 
Статор этого двигателя намотан четырехфазными обмотками, смещенными в пространстве на 90° электрических.Фазные обмотки запитываются циклически четырьмя импульсами тока. Это приводит к крутящему моменту без зазоров и использованию обмотки до 50 процентов. Однако затраты на электронику в два раза выше, чем у двухимпульсной конструкции. (см. рис. e)
 

 
Статор этого двигателя намотан трехфазными обмотками, которые могут быть соединены как в треугольник, так и в звезду. Как правило, нейтральная точка не используется. Обмотки возбуждаются шестью импульсами шестью силовыми транзисторами или тринисторами в циклической последовательности.
 
Такой двигатель не только обеспечивает равномерный выходной крутящий момент, но и обеспечивает оптимальное использование обмотки. Его недостатком является относительно высокая стоимость датчиков положения и управляющей электроники.

Это приводит к наиболее распространенному бесщеточному двигателю постоянного тока — комбинации трехфазного синхронного двигателя с постоянными магнитами, трехфазного полупроводникового инвертора и датчика положения ротора, что приводит к системе, обеспечивающей линейную характеристику крутящего момента скорости, как в обычном двигателе постоянного тока с постоянными магнитами. мотор.
 
На рисунке схематически представлен трехфазный 6-пульсный бесщеточный двигатель постоянного тока, использующий транзисторный инвертор в качестве преобразователя постоянного тока в переменный. Там, где существуют требования к высокой мощности, вместо транзисторов используются тиристоры.
 
Другие характеристики, такие как стоимость компонентов, надежность компонентов и простота схемы инвертора (связанная с необходимостью схемы коммутации для отключения тиристоров, функция, не нужная для транзисторов), имеют важное значение, когда тиристоры и транзисторы с сопоставимыми возможностями управления мощностью доступный.
 
Неотъемлемой частью бесщеточного двигателя постоянного тока является датчик положения ротора. Хотя существует несколько методов определения углового положения, наиболее часто используемыми являются датчики на эффекте Холла и электрооптические датчики.
 

Преимущества бесщеточного двигателя постоянного тока

 
Бесщеточные двигатели постоянного тока имеют ряд преимуществ по сравнению с обычными двигателями постоянного тока или двигателями переменного тока, такими как:

  • отсутствие механического коммутатора и связанных с ним проблем,
  • высокая эффективность,
  • высокоскоростная работа,
  • меньше проблем, вызванных радиочастотными и электромагнитными помехами и
  • долгая жизнь.

 

Применение бесщеточных двигателей постоянного тока

 

  • В более мощных приложениях, включая тяговые, бесщеточные двигатели быстро заменяют обычные двигатели постоянного тока.
  • Типичное применение малой мощности — вентиляторы постоянного тока для охлаждения электронного оборудования.
  • Еще одно важное применение — шпиндельные приводы для дисковых запоминающих устройств.
  • Другие применения в фонографах и ленточных накопителях.
  • Бесколлекторные двигатели постоянного тока мощностью в доли лошадиных сил использовались в различных типах приводов в современных самолетах и ​​спутниковых системах.
  • Бесщеточные двигатели постоянного тока
  • мощностью 1 л.с. были разработаны для силовых установок и прецизионных сервосистем.

Спасибо, что прочитали о «Принципе работы двигателя BLDC».
 

Двигатели постоянного тока | Все сообщения

 

.

0 comments on “Бесколлекторный двигатель принцип работы: Бесколлекторный двигатель постоянного тока: принцип работы, устройство, виды

Добавить комментарий

Ваш адрес email не будет опубликован.