Энергия конденсатора это: Энергия конденсатора, теория и примеры

Энергия конденсатора, теория и примеры

Определение и общие сведения о энергии конденсатора

В том случае, если обкладки заряженного конденсатора замыкают при помощи проводника, то в проводнике появляется электрический ток, и через некоторое время конденсатор разряжается. При прохождении тока по проводнику выделяется некоторое количество теплоты, следовательно, конденсатор, обладающий зарядом, имеет энергию.

Определим энергию заряженного конденсатора. Будем считать, что конденсатор заряжают и этот процесс происходит очень медленно. Мгновенное значение напряжения между его обкладками обозначим как u. Так как процесс зарядки считаем квазистатическим, между обкладками увеличивается бесконечно медленно. Тогда потенциал каждой обкладки в каждый момент времени можно считать одинаковым в любом месте обкладки. При увеличении заряда обкладки на величину dq, совершается внешняя работа (работа источника) равная :

   

Используем формулу, которая связывает заряд, емкость и напряжение, получим:

   

В том случае, если емкость не зависит от напряжения электрического поля, то работа идет на увеличение энергии конденсатора (dW). Проинтегрируем выражение (2), учитывая, что напряжение изменяется от 0 до величины U, имеем:

   

Применяя формулу:

   

выражение для энергии поля конденсатора можно преобразовать к виду:

   

Именно благодаря своей способности запасать энергию, конденсаторы имеют большое значение в радиотехнике и электронике.

Энергия поля плоского конденсатора

Напряжение между обкладками плоского конденсатора может быть найдено как:

   

где d — расстояние между пластинами конденсатора. Учитывая, что для плоского конденсатора емкость определена выражением:

   

имеем:

   

где – объем конденсатора; E – напряженность электрического поля в конденсаторе. Объемная плотность энергии (w) может быть найдена как:

   

Примеры решения задач

Формула расчета энергии конденсаторов, как зарядить плоский конденсатор

Конденсаторы являются неотъемлемой частью электрических схем. В большинстве случаев оперируют такими понятиями, как емкость и рабочее напряжение. Эти параметры являются основополагающими.

Конденсаторы различных типов

В некоторых случаях для более полного понимания работы упомянутого элемента необходимо иметь представление, что означает энергия заряженного конденсатора, как она вычисляется и от чего зависит.

Определение понятия энергии

Наиболее просто вести рассуждения применительно к плоскому конденсатору. В основе его конструкции лежат две металлических обкладки, разделенные тонким слоем диэлектрика.

Плоский конденсатор

Если подключить емкость к источнику напряжения, то нужно обратить внимание на следующее:

  • На разделение зарядов по обкладкам электрическим полем затрачивается определенная работа. В соответствии с законом сохранения энергии, эта работа равняется энергии заряженного конденсатора;
  • Разноименно заряженные обкладки притягиваются друг к другу. Энергия заряженного конденсатора в этом случае равняется работе, затраченной на сближение пластин друг к другу вплотную.

Данные соображения позволяют сделать вывод, что формулу энергии заряженного конденсатора можно получить несколькими способами.

Вывод формулы

Энергия заряженного плоского конденсатора наиболее просто определяется, исходя из работы по сближению обкладок.

Рассмотрим силу притяжения единичного заряда одной из обкладок к противоположной:

F=q0E.

В данном выражении q0 – величина заряда, E – напряженность поля обкладки.

Поскольку напряженность электрического поля определяется из выражения:

E=q/(2ε0S), где:

  • q – величина заряда,
  • ε0 – электрическая постоянная,
  • S – площадь обкладок,

формулу силы притяжения можно записать как:

F=q0 q/(2ε0S).

Для всех зарядов сила взаимодействия между обкладками, соответственно, составляет:

F=q2/(2ε0S).

Работа по сближению пластин равняется произведению силы взаимодействия на пройденное расстояние. Таким образом, энергия заряженного конденсатора определяется выражением:

W=A=Fd.

Важно! В приведенном выражении должна быть разница в положениях пластин. Записывая только одну величину d, подразумеваем, что конечным результатом будет полное сближение, то есть d2=0.

С учетом предыдущих выражений можно записать:

W=d q2/(2ε0S).

Известно, что емкость плоского конденсатора определяется из такого выражения:

C=d/(ε0S).

В результате энергия определяется как:

W=q2/(2С).

Полученное выражение неудобно тем, что вызывает определенные затруднения определения заряда на обкладках. К счастью, заряд, емкость и напряжение имеют строгую взаимосвязь:

q = С U.

Теперь выражение принимает полностью понятный вид:

W=CU2/2.

Полученное выражение справедливо для конденсаторов любых типов, не только плоских, и позволяет без затруднений в любой момент времени определять накопленную энергию. Емкость обозначается на корпусе и является величиной постоянной. В крайнем случае ее несложно измерять, используя специальные приборы. Напряжение измеряется вольтметром с необходимой точностью. К тому же очень просто зарядить конденсатор не полностью (меньшим напряжением), снизив, таким образом, запасенную энергию.

Для чего необходимо знать энергию

В большинстве случаев применения емкостей в электрических цепях понятие энергии не употребляется. Особенно это относится к время,- и частотозадающим цепям, фильтрам. Но есть области, где необходимо использовать накопители энергии. Наиболее яркий пример –фотографические вспышки. В накопительном конденсаторе энергия источника питания накапливается сравнительно медленно – несколько секунд, но разряд происходит практически мгновенно через электроды импульсной лампы.

Конденсатор, подобно аккумулятору, служит для накопления электрического заряда, но между этими элементами есть много различий. Емкость аккумулятора несравненно выше, чем у конденсатора, но последний способен отдать ее практически мгновенно. Лишь недавно, с появлением ионисторов, это различие несколько сгладилось.

Ионистор

Какова же ориентировочная величина энергии? Можно для примера вычислить ее для уже упомянутой фотовспышки. Пускай, напряжение питания составляет 300 В, а емкость накопительного конденсатора – 1000 мкФ. При полном заряде величина энергии составит 45 Дж. Это довольно большая величина. Прикосновение к выводам заряженного элемента может привести к несчастному случаю.

Конденсатор фотовспышки

Важно! Принудительный разряд путем закорачивания выводов металлическими предметами чреват выходом устройства из строя. Накопленная энергия конденсатора способна за долю секунды расплавить выводы внутри элемента и вывести его из строя.

Видео

Оцените статью:

Энергия заряженного конденсатора. Формула

Для того, чтобы правильно представлять работу конденсатора, необходимо точно знать о поведении в электрическом поле проводников и диэлектриков. Именно их свойства являются основой работы этих специальных устройств. Одним из показателей работы служит энергия заряженного конденсатора, формула которой достаточно точно описывает этот процесс. Кроме того, нужно знать, что вообще представляет собой обычный стандартный конденсатор.

Устройство и принцип работы конденсатора

Название конденсатора имеет латинские корни, означающие сгущение или уплотнение. Он имеет два полюса и обладает емкостью с переменным или постоянным значением. Отличительной чертой конденсатора является его незначительная проводимость. Это устройство выполняет основную функцию, связанную с накоплением определенного заряда и электрической энергии.

Конденсатор относится к категории пассивных электронных компонентов. Типовая конструкция включает в себя два электрода в виде пластин, разделяемых с помощью диэлектрика. Его толщина значительно меньше, чем у пластин, которые называются обкладками. В конденсаторах, применяемых на практике, пластины и электроды состоят из множества слоев. Как правило, происходит их чередование в виде лент, сворачиваемых в форму параллелепипеда или цилиндра.

При постоянном токе, зарядка и перезарядка производится при включении конденсатора в цепь. После отключения, ток через него уже не проходит. В цепях переменным током, колебания проводятся при циклической перезарядке, а замыкание осуществляется с помощью тока смещения.

Значение энергии конденсатора

Прежде всего, необходимо рассмотреть такое понятие, как электрическая емкость. В обычном проводнике этот параметр почти не используется. Более всего он подходит к заряженному конденсатору, который, по своей сути, также является проводником или даже системой проводников. В зависимости от емкости, определяется и энергия заряженного конденсатора, формула которой отражает ее величину.

Практически каждый конденсатор после его заряда, начинает обладать энергией. Достаточно подключить лампочку, чтобы увидеть, как она загорится на короткое время. Это показывает наличие определенных запасов энергии, выделение которой происходит во время разрядки. Она возникает, как потенциальная энергия, с которой взаимодействуют между собой обкладки конденсатора. Эти обкладки имеют разноименные заряды, способные притягиваться между собой.

Значение энергии зависит от величины заряда, напряжения в сети и других факторов. Чем больше емкость у конденсатора, тем более высокой энергией он обладает.

Энергия конденсатора

Господа, всем приветище! Сегодня речь пойдет про

энергию конденсаторов. Внимание, сейчас будет спойлер: конденсатор может накапливать в себе энергию. Причем иногда очень большую. Что? Это не спойлер, это и так было всем очевидно? Здорово если так! Тогда поехали в этом более подробно разбираться!

В прошлой статье мы пришли к выводу, что заряженный конденсатор, отсоединенный от источника напряжения, может сам в течении некоторого времени (пока не разрядится) давать некоторый ток. Например, через какой-то резистор. По закону Джоуля-Ленца если через резистор течет ток, то на нем выделяется тепло. Тепло – значит, энергия. И берется эта самая энергия из конденсатора – больше, собственно, неоткуда. Значит, в конденсаторе может хранится некоторая энергия. Итак, физика процессов более-менее понятна, поэтому теперь давайте поговорим, как это все описать математически. Потому что одно дело все описать на словах – это круто, замечательно, это должно быть, но в жизни часто надо что-то рассчитать и тут уже обычных слов не достаточно.

Для начала давайте вспомним определение работы из механики. Работа A силы F это произведение этой самой силы F на вектор перемещения s.

Полагаю, что механику вы изучали когда-то и это знаете . Страшные значки векторов нужны только в случае, если направление силы не совпадает с перемещением: вроде случая, когда сила тянет строго прямо, а перемещение идет под каким-то углом к силе. Такое бывает, например, когда груз перемещается по наклонной плоскости. Если же направление силы и перемещения совпадают, то можно смело отбросить вектора и просто перемножать силу на длину пути, получая таким образом работу:

Вспомним теперь статью про закон Кулона. Мы там получили замечательную формулу, которую сейчас самое время вспомнить:

То есть, если у нас есть электрическое поле с напряженностью Е и мы в него помещаем некоторый заряд q, то на этот заряд будет действовать сила F, которую можно рассчитать по этой формуле.

Нам никто не мешает подставить эту формулу в чуть выше написанную формулу для работы. И таким образом найти работу, которую совершает поле при перемещении в нем заряда q на расстояние s. Будем полагать, что мы перемещаем наш заряд q точно по направлению силовых линий поля.  Это позволяет использовать формулу работы без векторов:

Теперь, господа, внимание. Напоминаю одну важную штуку из той же механики. Есть такой особый класс сил, которые называются потенциальные. Если говорить упрощенным языком, то для них верно утверждение, что если эта сила на каком-то отрезке пути совершила работу А, то это значит, что в начале этого пути у тела, над которым совершалась работа, энергия была на это самое А больше, чем в конце. То есть на сколько поработали, на столько и изменилась потенциальная энергия. Работа потенциальных сил не зависит от траектрии и определяется только начальной и конечной точкой. А на замнкнутом пути она вообще равна нулю. Как раз-таки сила электрического поля относится к этому классу сил.

Вот мы помещаем наш зарядик q в поле. Он под действием этого поля перемещается на некоторое расстояние от точки С до точки D. Пусть для определенности в точке D энергия заряда будет равна 0. При этом перемещении поле совершает работу А. Из этого следует, что в начале пути (в точке C) наш зарядик обладал некоторой энергией W=A. То есть, мы можем записать

Теперь самое время рисовать картинки. Взглянем на рисунок 1. Это немного упрощенная иллюстрация физики процессов плоского конденсатора. Более полное мы рассматривали это в прошлый раз.

Рисунок 1 – Плоский конденсатор

Давайте теперь чуть-чуть искривим свое сознание и глянем на наш конденсатор по-другому, чем раньше. Давайте предположим, что у нас за основу взята, например, синяя пластина. Она создает некоторое поле с некоторой напряженностью. Безусловно, и красная пластина тоже создает поле, но в данный момент это не интересно.

Давайте смотреть на красную пластину, как на некоторый заряд +q, расположенный в поле синей пластины. И сейчас мы попробуем применить все вышеописанное к красной пластине как будто это и не пластина вовсе, а просто некоторый заряд +q. Вот так вот хитро. Почему, собственно, нет? Возможно, вы скажите – как же так, раньше мы везде исходили из того, что заряды у нас точечные, а тут – целая большая пластина. Она как-то на точку не совсем тянет. Спокойствие, господа. Никто нам не мешает разбить красную пластину на огромную кучу маленьких частичек, каждую из которых можно считать точечным зарядом Δq. Тогда уже можно без проблем применять все вышеописанное. И если мы выполним все расчеты сил, напряженностей, энергий и прочего для вот таких вот отдельных Δq и потом сложим результаты между собой, то получится, что мы зря так переусердствовали – результат будет ровно таким же, как если бы мы просто при расчетах брали заряд +q. Кто хочет – может проверить, я только за . Однако мы будем сразу работать по упрощенной схеме. Хотелось бы только отметить, что это верно для случая, когда поле у нас однородно и заряды по всем пластинам распределены равномерно. В действительности это не всегда так, однако такое упрощение позволяет существенно облегчить все расчеты и избежать всяких градиентов и интегралов без существенного вреда для практики.

Итак, вернемся к рисунку 1. На нем показано, что между обкладками конденсатора существует поле с некоторой напряженностью Е. Но мы договорились сейчас разделить роли обкладок – синяя у нас источник поля, а красная – заряд в поле. Какое же поле создает одна синяя обкладка отдельно от красной? Какова его напряженность? Очевидно, что она в два раза меньше общей напряженности. Почема это так? Да потому, что если забыть про нашу абстракцию (типа красная пластина – и не пластина вовсе, а просто заряд), то в результирующую напряженность Е вносят одинаковый вклад обе обкладки – и красная, и синяя: каждая по Е/2. В результате суммы этих Е/2 как раз и получается та самая Е, которая у нас на картинке. Таким образом (отбрасывая вектора), можно записать

Теперь посчитаем, если можно так выразиться, потенциальную энергию красной обкладки в поле синей обкладки. Заряд мы знаем, напряженность мы знаем, расстояние между обкладками тоже знаем. Поэтому смело записываем

Идем дальше. На деле же никто не мешает поменять местами красную и синюю обкладки. Давайте рассуждать наоборот. Будем рассматривать теперь красную обкладку как источник поля, а синюю – как некоторый заряд –q в этом поле. Думаю, даже без проведения расчета будет очевидно, что результат будет точно такой же. То есть энергия красной пластины в поле синей пластины равна энергии синей пластины в поле красной пластины. И, как вы возможно уже догадались, это и есть

энергия конденсатора. Да, вот по этой самой формуле можно произвести расчет энергии заряженного конденсатора:

Слышу, как мне уже кричат: стоп, стоп, опять ты втираешь мне какую-то дичь! Ну ладно, расстояние между пластинами я еще как-то смогу измерить. Но меня почему-то опять заставляют считать заряд, что не понятно как сделать, да еще и напряженность надо знать, а чем я ее померяю?! Мультиметр вроде как не умеет это делать! Все верно, господа, сейчас мы займемся преобразованиями, которые позволят вам измерить энергию конденсатора всего лишь с применением обыкновенного мультиметра.

Давайте сперва избавимся от напряженности. Для этого вспомним замечательную формулу, которая связывает напряженность с напряжение:

Да, напряжение между двумя точками в поле равно произведению напряженности этого поля на расстояние между этими двумя точками. Итак, подставляя это полезнейшее выражение в формулу для энергии, получаем

Уже легче, напряженность ушла. Но остался еще заряд, который не понятно как мерить. Что бы от него избавиться, давайте вспомним формулу емкости конденсатора из предыдущей статьи:

Да, для тех, кто забыл, напоминаю, что емкость определяется как отношение этого злополучного заряда, накопленного конденсатором, к напряжению на конденсаторе. Давайте из этой формулы выразим заряд q и подставим его в формулу энергии конденсатора. Получаем

Вот это уже дельная формула, для энергии заряженного конденсатора! Если нам нужно узнать, какая энергия запасена в конденсаторе с емкостью С, заряженного до напряжения U, мы вполне можем это сделать по вот этой вот формуле. Емкость С обычно пишется на самом конденсаторе или на его упаковке, а напряжение всегда можно измерить мультиметром. Из формулы видно, что энергии в конденсаторе тем больше, чем больше емкость самого конденсатора и напряжение на нем. Причем энергия растет прямо пропорционально квадрату напряжения. Это важно помнить. Увеличение напряжения гораздо быстрее приведет к росту энергии, запасенной в конденсаторе, чем увеличение его емкости.

Для особых любителей зарядов можно из формулы определения емкости выразить не заряд, а напряжение и подставить его в формулу для энергии конденсатора. Таким образом, получаем еще одну формулу энергии

Используется эта формула довольно редко, а на практике вообще не припомню, что б по ней что-то считал, но раз она есть, то путь тут тоже будет для полноты картины. Самая ходовая формула – это средняя.

Давайте для интереса произведем некоторые расчеты. Пусть у нас есть вот такой вот конденсатор

Рисунок 2 – Конденсатор

И давайте мы его зарядим до напряжения, скажем, 8000 В. Какая энергия будет запасена в таком конденсаторе? Как мы видим из фотографии, емкость данного конденсатора составляет 130 мкФ. Теперь легко выполнить расчет энергии:

Много это или мало? Безусловно, не мало! Даже очень не мало! Скажем так, разрешенная энергия электрошокеров составляет какие-то там смешные единицы джоулей, а тут их тысячи! Принимая во внимание высокое напряжение (8кВ) можно смело утверждать, что для человека контакт с таким заряженным конденсатором скорее всего закончится очень и очень печально. Следует соблюдать особую осторожность при больших напряжениях и энергиях! У нас был случай, когда произошло короткое замыкание нескольких таких вот конденсаторов, соединенных параллельно и заряженных до нескольких киловольт. Господа, это было зрелище не для слабонервных! Бабахнуло так, что у меня потом в ушах пол дня звенело! А на стенах лаборатории осела медь от расплавленных проводов! Спешу успокоить, никто не пострадал, но это стало хорошим поводом дополнительно подумать над способами отвода такой гигантской энергии в случае нештатных ситуаций.

Кроме того, господа, важно всегда помнить, что конденсаторы блоков питания приборов тоже не могут мгновенно разрядиться после отключения прибора от сети, хотя там, безусловно, должно быть какие-то цепи, предназначенные для их разряда. Но должны быть, это не значит, что они там точно есть . Поэтому в любом случае после отключения любого прибора от сети, прежде чем лезть к нему внутрь, лучше подождать пару минут для разряда всех кондеров. И потом, после снятия крышки, прежде чем лапками хвататься за все подряд, следует сначала померить напряжение на силовых накопительных конденсаторах и при необходимости выполнить их принудительный разряд каким-нибудь резистором. Можно, конечно, просто отверткой замкнуть их выводы, если емкости не слишком большие, но такое делать крайне не рекомендуется!

Итак, господа, сегодня мы познакомились с различными методами расчета энергии, запасенной в конденсаторе, а также обсудили, как эти расчеты можно выполнять на практике. На этом потихоньку закругляемся. Всем вам удачи, и до новых встреч!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.


Энергия поля конденсатора — Основы электроники

Вся энергия заряженного конденсатора сосредотачивается в электрическом поле между его пластинами. Энергию, накоп­ленную в конденсаторе, можно определить следующим обра­зом. Представим себе, что мы заряжаем конденсатор не сра­зу, а постепенно, перенося электрические заряды с одной его пластины на другую.

При перенесении первого заряда работа, произведенная нами, будет небольшой. На перенесение второго заряда мы затратим больше энергии, так как в результате перенесения первого заряда между пластинами конденсатора будет уже существовать разность потенциалов, которую нам придется преодолевать, третий, четвертый и вообще каждый последую­щий заряд будет переносить все труднее и труднее, т. е. на перенесение их придется затрачивать все больше и больше энергии. Пусть мы перенесем таким образом некоторое коли­чество электричества, которое мы обозначим буквой Q.

Вся энергия, затраченная нами при заряде конденсатора, сосредоточится в электрическом поле между его пластинами. Напряжение между пластинами конденсатора в конце заряда мы обозначим буквой U.

Как мы уже заметили, разность потенциалов в процессе за­ряда не остается постоянной, а постепенно увеличивается от нуля — в начале заряда — до своего конечного значения U.

Для упрощения вычисления энергии допустим, что мы пе­ренесли весь электрический заряд Q с одной пластины кон­денсатора на другую не маленькими порциями, а сразу. Но при этом мы должны считать, что напряжение между пласти­нами конденсатора было не ноль, как в начале заряда, и не U, как в конце заряда, а равнялось среднему значению между нулем и U, т. е. половине U. Таким образом, энергия, запа­сенная в электрическом поле конденсатора, будет равна поло­вине напряжения U, умноженной на общее количество пере­несенного электричества Q.

Полученный результат мы можем записать в виде сле­дующей математической формулы:

W = UQ/2                                                                  (1)

Если напряжение в этой формуле будет выражено в воль­тах, а количество электричества — в кулонах, то энергия W получится в джоулях. Если мы вспомним, что заряд, накоп­ленный на конденсаторе, равен Q = CU, то формулу (1) можно будет записать окончательно в следующем виде:

W = CU2/2                                                                  (2)

Выражение (2) говорит нам о том, что энергия, со­средоточенная в поле конденсатора, равна по­ловине произведения емкости конденсатора на квадрат напряжения между его пласти­нами.

Этот вывод имеет очень важное значение при изучении раздела радиотехники о колебательных контурах.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий

Электроемкость. Энергия электрического поля | Физика

1. Электроемкость

В курсе физики основной школы вы уже познакомились с конденсатором – устройством, предназначенным для накопления электрических зарядов.
Например, плоский конденсатор (рис. 54.1) состоит из двух параллельных пластин, расстояние между которыми намного меньше их размеров. Эти пластины называют обкладками конденсатора.

Между обкладками конденсатора находится диэлектрик. Им может быть, например, воздух. Но чаще пространство межу обкладками заполняют жидким или твердым диэлектриком.

Если сообщить обкладкам конденсатора равные по модулю, но противоположные по знаку электрические заряды, то поле, созданное этими зарядами, будет сосредоточено практически полностью между обкладками (см. рис. 51.6).

Зарядом конденсатора называют модуль заряда любой из го обкладок (напомним, что разноименные заряды на обкладках конденсатора равны по модулю).

Если увеличить заряды обкладок конденсатора, скажем, 3 раза, то при этом напряженность поля между обкладками увеличится также в 3 раза. Значит, в 3 раза увеличится и работа поля по перемещению заряда с одной обкладки на другую. Следовательно, напряжение между обкладками увеличится тоже в 3 раза.

Это рассуждение показывает, что напряжение между обкладками конденсатора прямо пропорционально заряду конденсатора. Поэтому отношение заряда q конденсатора к напряжению U между его обкладками не зависит ни от заряда, и от напряжения. Следовательно, это отношение является характеристикой самого конденсатора.

Отношение заряда конденсатора к напряжению между его обкладками называют электроемкостью:

C = q/U. (1)

Единица электроемкости. Единицей электроемкости является 1 фарад (Ф). Эта единица названа в честь английского ученого Майкла Фарадея.

1Ф = 1 Кл / 1 В.

Если конденсатор имеет электроемкость 1 Ф, то при заряде 1 Кл напряжение между его обкладками равно 1 В. Это очень большая электроемкость, поэтому для практических целей используют такие единицы электроемкости как микрофарад (10-6 Ф) и пикофарад (1 пФ = 10-12 Ф).

? 1. Чему равен заряд конденсатора, если его электроемкость равна 5 мкФ, а напряжение между его обкладками 200 В?

? 2. Как изменится электроемкость конденсатора, если:
а) заряд конденсатора увеличить в 2 раза?
б) напряжение между обкладками конденсатора уменьшить в 3 раза?

От чего зависит электроемкость плоского конденсатора?

Поставим опыт
Соединим одну из обкладок школьного демонстрационного конденсатора с корпусом электрометра, а другую – с его стержнем (рис. 54.2, а).

Зарядим конденсатор и начнем сближать обкладки. Мы увидим, что показания электрометра уменьшаются (рис. 54.2, б). Это означает, что разность потенциалов (напряжение) между обкладками уменьшается.

Поскольку заряд обкладок остается при этом неизменным, из формулы C = q/U следует, что при уменьшении расстояния между обкладками электроемкость конденсатора увеличивается.

Если при неизменном расстоянии между пластинами конденсатора внести между ними диэлектрик (например, лист органического стекла), то разность потенциалов между пластинами уменьшится. Это указывает на то, что емкость конденсатора увеличилась.

Изменяя площадь пластин конденсатора, мы увидим, что при увеличении площади пластин емкость конденсатора увеличивается.

Более точные опыты и расчеты показывают, что электроемкость плоского конденсатора выражается формулой

C = (εε0S)/d, (2)

где S – площадь одной из обкладок, d – расстояние между ими, ε – диэлектрическая проницаемость диэлектрика, заполняющего пространство между ними, ε0 = 8,85 * 10-12 Кл2 / (Н * м2) (так называемая электрическая постоянная).

? 3. Как изменится электроемкость конденсатора, если:
а) площадь его обкладок увеличить в 3 раза?
б) расстояние между обкладками уменьшить в 2 раза?
в) заполнить пространство между обкладками диэлектриком с диэлектрической проницаемостью ε = 4?

Соотношение между напряжением на конденсаторе и напряженностью поля между его обкладками. В пространстве между обкладками плоского конденсатора электрическое поле можно считать практически однородным. Поэтому если расстояние между ними обозначить d, получим следующее соотношение (см. § 53):

E = U/d.

? 4. Чему равен заряд плоского конденсатора, если его электроемкость 20 пФ, напряженность поля между обкладками 50 кВ/м, а расстояние между обкладками равно 5 мм?

? 5. Расстояние между обкладками плоского конденсатора увеличили в 3 раза при неизменном заряде. Как изменились напряжение между обкладками и напряженность поля?

2. Энергия заряженного конденсатора

Поставим опыт
Замкнем обкладки заряженного конденсатора через лампочку накаливания. Мы увидим, что при разрядке конденсатора лампочка вспыхнет. Это означает, что заряженный конденсатор обладает энергией.

Предположим, что мы раздвигаем обкладки заряженного конденсатора, начальное расстояние между которыми практически равно нулю. Раздвигая пластины, мы совершаем положительную работу, потому что разноименно заряженные обкладки притягиваются. При этом согласно закону сохранения энергии потенциальная энергия конденсатора возрастает. Расчет показывает, что она увеличивается на

Wp = qU/2, (3)

где q – модуль заряда обкладки (заряд конденсатора), U – напряжение между его пластинами. Это и есть энергия заряженного конденсатора.

Множитель ½ в формуле (3) обусловлен тем, что, раздвигая пластины конденсатора, мы перемещаем каждую из них в поле, созданном зарядом одной (другой) пластины. А напряженность поля, создаваемого одной обкладкой, в 2 раза меньше модуля напряженности поля между обкладками.

? 6. Докажите, что энергия заряженного конденсатора выражается также формулами

Wp = q2/2C, (4)
Wp = CU2/2. (5)

Подсказка. Воспользуйтесь формулой C = q/U.

Из формулы (4) следует, что энергия заряженного конденсатора обратно пропорциональна его электроемкости, а из формулы (5) следует, что она, наоборот, прямо пропорциональна электроемкости. Не противоречат ли эти формулы одна другой?

Чтобы ответить на этот вопрос, рассмотрим, как изменяется энергия конденсатора при изменении его электроемкости. Конденсаторы, электроемкость которых можно изменять, широко используются, особенно в радиотехнике: например, с их помощью настраивают радиоприемник на волну той или иной радиостанции (подробнее мы расскажем об этом в курсе физики 11-го класса). Такие конденсаторы называют конденсаторами переменной емкости.

Например, в описанном выше опыте (см. рис. 54.2) электроемкость конденсатора увеличивалась при сближении его пластин.

Исследуя зависимость энергии конденсатора от его электроемкости, очень важно учитывать, какая величина остается неизменной при изменении электроемкости: заряд конденсатора или напряжение между его пластинами.

? 7. Электроемкость конденсатора увеличивают в 3 раза при неизменном заряде.
а) Найдите изменение энергии конденсатора, используя формулу (4).
б) Как изменилось напряжение между обкладками конденсатора?
в) Найдите изменение энергии конденсатора, используя формулу (5).

? 8. Электроемкость конденсатора увеличивают в 3 раза при неизменном напряжении между обкладками.
а) Найдите изменение энергии конденсатора, используя формулу (5).
б) Как изменился заряд конденсатора?
в) Найдите изменение энергии конденсатора, используя формулу (4).

Таким образом, мы видим, что противоречия между формулами (4) и (5) нет: обе эти формулы дают одинаковое значение энергии конденсатора, если принять во внимание, что заряд конденсатора и напряжение между его обкладками связаны соотношением C = q/U.

3. Энергия электрического поля

Потенциальную энергию зарядов в электрическом поле важно рассматривать также как энергию электрического поля. При перемещении зарядов друг относительно друга энергия созданного этими зарядами электрического поля изменяется.

Например, раздвигая заряженные обкладки конденсатора, мы совершаем положительную работу, потому что обкладки притягиваются друг к другу. Согласно закону сохранения энергии совершенная работа равна увеличению энергии электрического поля. Увеличивая расстояние между пластинами, мы увеличиваем объем пространства, занятый электрическим полем: на рисунке 54.3, а, б занятая электрическим поем область пространства для наглядности выделена светлым.

Расчеты показывают, что для однородного поля энергия электрического поля в заданной области пространства пропорциональна объему этой области и квадрату напряженности поля.

Дополнительные вопросы и задания

9. Все размеры воздушного конденсатора уменьшили в 2 раза и затем заполнили пространство между его обкладками диэлектриком.
а) Как изменилась электроемкость конденсатора вследствие уменьшения его размеров?
б) Чему равна диэлектрическая проницаемость диэлектрика, если после заполнения им пространства между обкладками значение электроемкости конденсатора стало равно первоначальному?

10. Маленький заряженный шарик подвешен на нити между вертикально расположенными пластинами воздушного конденсатора. Масса шарика 0,2 г, заряд 30 нКл, расстояние между пластинами 5 см. Нить отклонена на угол 30º от вертикали.
а) Изобразите на чертеже все силы, действующие на шарик.
б) Чему равна сила, действующая на шарик в электростатическом поле?
в) Чему равна напряженность поля между пластинами конденсатора?
г) Чему равна разность потенциалов между пластинами конденсатора?

11. Пространство между пластинами плоского конденсатора заполнено диэлектриком, диэлектрическая проницаемость которого равна 7. Заряды пластин конденсатора остаются неизменными. Как изменится при удалении диэлектрика:
а) электроемкость конденсатора?
б) разность потенциалов между его пластинами?
в) энергия конденсатора?

12. Пространство между пластинами воздушного конденсатора заполняют диэлектриком с диэлектрической проницаемостью ε и уменьшают расстояние между пластинами в 2 раза. При этом разность потенциалов между пластинами поддерживают неизменной.
а) Как изменяется электроемкость конденсатора?
б) Как изменяется заряд конденсатора?
в) Как изменяется энергия конденсатора?

Электрическая емкость проводника. Конденсатор. Емкость плоского конденсатора. Соединение конденсаторов. Энергия, накопленная в конденсаторе. Энергия электрического поля. Плотность энергии электрического поля. Потенциаль

Электроемкостью (емкостью) C уединенного изолированного проводника называется физическая величина, равная отношению изменения заряда проводника q к изменению его потенциала f: C = Dq/Df.

Электроемкость уединенного проводника зависит только от его формы и размеров, а также от окружающей его диэлектрической среды (e). Единица измерения емкости в системе СИ называется Фарадой. Фарада (Ф) — это емкость такого уединенного проводника, потенциал которого повышается на 1 Вольт при сообщении ему заряда в 1 Кулон. 1 Ф = 1 Кл/1 В.

Конденсатором называют систему двух разноименно заряженных проводников, разделенных диэлектриком (например, воздухом). Свойство конденсаторов накапливать и сохранять электрические заряды и связанное с ними электрическое поле характеризуется величиной, называемой электроемкостью конденсатора. Электроемкость конденсатора равна отношению заряда одной из пластин Q к напряжению между ними U: C = Q/U.

В зависимости от формы обкладок, конденсаторы бывают плоскими, сферическими и цилиндрическими. Формулы для расчета емкостей этих конденсаторов приведены в таблице.

Соединение конденсаторов в батареи. На практике конденсаторы часто соединяют в батареи — последовательно или параллельно.

При параллельном соединении напряжение на всех обкладках одинаковое U1 = U2 = U3 = U = e, а емкость батареи равняется сумме емкостей отдельных конденсаторов C = C1 + C2 + C3.

При последовательном соединении заряд на обкладках всех конденсаторов одинаков Q1 = Q2 = Q3, а напряжение батареи равняется сумме напряжений отдельных конденсаторов U = U1 + U2 + U3.

Емкость всей системы последовательно соединенных конденсаторов рассчитывается из соотношения: 1/C = U/Q = 1/C1 + 1/C2 + 1/C3.

Емкость батареи последовательно соединенных конденсаторов всегда меньше, чем емкость каждого из этих конденсаторов в отдельности. Энергия электростатического поля. Энергия заряженного плоского конденсатора Eк равна работе A, которая была затрачена при его зарядке, или совершается при его разрядке. A = CU2/2 = Q2/2С = QU/2 = Eк. Поскольку напряжение на конденсаторе может быть рассчитано из соотношения: U = E*d, где E — напряженность поля между обкладками конденсатора, d — расстояние между пластинами конденсатора, то энергия заряженного конденсатора равна: Eк = CU2/2 = ee0S/2d*E2*d2 = ee0S*d*E2/2 = ee0V*E2/2, где V — объем пространства между обкладками конденсатора. Энергия заряженного конденсатора сосредоточена в его электрическом поле.

Тип конденсатора

Формула для расчета емкости

Примечания

Схематическое изображение

Плоский конденсатор

S — площадь пластины; d — расстояние между пластинами.

Сферический конденсатор

C = 4pee0R1R2/(R2 — R1)

R2 и R1 — радиусы внешней и внутренней обкладок.

Цилиндрический конденсатор

C = 2pee0h/ln(R2/R1)

h — высота цилиндров.

Как и любая система заряженных тел, конденсатор обладает энергией. Вычислить энергию заряженного плоского конденсатора с однородным полем внутри него несложно. Энергия заряженного конденсатора. Для того чтобы зарядить конденсатор, нужно совершить работу по разделению положительных и отрицательных зарядов. Согласно закону сохранения энергии эта работа равна энергии конденсатора. В том, что заряженный конденсатор обладает энергией, можно убедиться, если разрядить его через цепь, содержащую лампу накаливания, рассчитанную на напряжение в несколько вольт (рис.14.37 ). При разрядке конденсатора лампа вспыхивает. Энергия конденсатора превращается в тепло и энергию света.

Выведем формулу для энергии плоского конденсатора. Напряженность поля, созданного зарядом одной из пластин, равна Е/2 , где Е -напряженность поля в конденсаторе.2. Применение конденсаторов . Зависимость электроемкости конденсатора от расстояния между его пластинами используется при создании одного из типов клавиатур компьютера. На тыльной стороне каждой клавиши располагается одна пластина конденсатора, а на плате, расположенной под клавишами, — другая. Нажатие клавиши изменяет емкость конденсатора. Электронная схема, подключенная к этому конденсатору, преобразует сигнал в соответствующий код, передаваемый в компьютер. Энергия конденсатора обычно не очень велика — не более сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому заряженные конденсаторы не могут заменить, например, аккумуляторы в качестве источников электрической энергии. Но это совсем не означает, что конденсаторы как накопители энергии не получили практического применения. Они имеют одно важное свойство: конденсаторы могут накапливать энергию более или менее длительное время, а при разрядке через цепь с малым сопротивлением они отдают энергию почти мгновенно. Именно это свойство широко используют на практике. Лампа-вспышка, применяемая в фотографии , питается электрическим током разряда конденсатора, заряжаемого предварительно специальной батареей. Возбуждение квантовых источников света — лазеров осуществляется с помощью газоразрядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроемкости. Однако основное применение конденсаторы находят в радиотехнике. Энергия конденсатора пропорциональна его электроемкости и квадрату напряжения между пластинами. Вся эта энергия сосредоточена в электрическом поле. Энергия поля пропорциональна квадрату напряженности поля.

Имеется уединенный проводник. Ему сообщен заряд Q. Вычислим электрический потенциал в точке М.

Если на проводник поместить заряд Q·b, то


Потенциал в каждой точке поля возрастает прямо пропорционально заряду проводника, т.е. φ ~ Q.


, (2)

где с – электрическая ёмкость (ёмкость)

Или можно показать: ΔQ=cΔφ


(3)

Физический смысл емкости.

Отметим, что все предыдущее справедливо, если при этом не меняются формы и размеры проводника, а также внешние условия (среда, расположение окружающих предметов).

СИ :

IV.Конденсаторы.Вычисление емкости конденсаторов.

Конденсатором называется система двух (или более) проводников, имеющих такую форму и расположение относительно друг друга, что поле, создаваемое такой системой, локализовано в ограниченной области пространства.

Примеры конденсаторов :

Проводники, образующие конденсатор, называются обкладками .

Чтобы зарядить конденсатор, нужно присоединить его обкладки к источнику напряжения или одну обкладку соединить с Землей, а другую («+») с клеммой источника.

Емкостью конденсатора С называется величина, измеряемая отношением зарядаQна одной пластине к разности потенциалов между пластинами:


(4)

Примеры вычисления емкости конденсаторов .

1. Плоский конденсатор.




(5)

2. Сферический конденсатор.



(6)

Положим: r 1 –r 2 =d;d

Следствие:

если зазор мал, то С пл = С сф

если r 1 >>r 2 , то С сф = 4πεε 0 r→C сф = С шара

3. Цилиндрический конденсатор.


(7)

Если напряжение U на конденсаторе сделать слишком большим, то происходит разряд через слой диэлектрика – пробой. Поэтому каждый конденсатор характеризуется не только своей емкостью С, но и максимальным рабочим напряжениемU max =U пр.

Располагая разными по ёмкости конденсаторами, можно получить желаемую емкость, путем соединения конденсаторов:

а) последовательное:

б) параллельное:

в) смешенное




Q = Q 1 + Q 2 + … + Q n

CU = C 1 U + C 2 U + … +C n U

C = C 1 + C 2 + … +C n


V.Энергия заряженного конденсатора.Энергия электрического поля.

Для многих вопросов теории и практики необходимо определять электрическую энергию заряженного проводника. (Определяем через работу разряда проводника).

Пусть имеется проводник с зарядом Qи начальным потенциалом φ 0 . Тогда элементарная работа при переходе элементарного зарядаdQс проводника на землю равна:

dA=φ·dQ, где

 – мгновенное значение потенциала, но

dQ= –Cdφ(“–“ – означает уменьшение потенциала).

dA = –Cφ·dφ


Найденная работа совершилась за счет убыли потенциальной энергии и численно равна энергии заряженного проводника W:


Энергия заряженного конденсатора:

Формула для энергии заряженного тела по существу определяет и энергию электрического поля созданного заряженным телом:


(8)

Объемная плотность энергии электростатического поля – физическая величина, численно равная отношению потенциальной энергии поля в единице объема.



(9)


При создании схем во время занятия любительской радиоэлектроникой приходится оперировать значительным количеством терминологии. И одной из самых важных составляющих являются конденсаторы. Сами по себе они не очень интересны, главнее для нас — их функции. Вот, к примеру, электрическая энергия конденсатора. Что это? Она обусловлена тем, что электрическое поле, которое находится между обкладками конденсатора, само обладает энергией. Так, его напряженность является пропорциональной подаваемому напряжению. Давайте рассмотрим более детально и с рядом формул.

Энергия заряженного конденсатора

Обкладки конденсатора имеют электроемкость (Э). На них же расположено два электрических заряда: -з и +з. Тогда напряжение (Н), что существует между обкладками, будет равным:

Всё составляющие этого уравнения были рассмотрены выше, и если вы запутались, перечитайте, пока не сможете понять. Без этого будет невозможно продолжить ознакомление с материалом статьи, чтобы он усвоился. Данные знания необходимы, чтобы понять, как функционирует энергия поля конденсатора.

Но устройство со временем разряжается. Что с этим делать? Когда происходит процесс разрядки, то напряжение, существующее между его обкладками, будет убывать прямо пропорционально заряду от начального значения до нуля. В формульном выражении данное уравнение будет выглядеть таким образом:

Но у нас ещё есть работа А, которая совершается электрическим полем во время разрядки конденсатора. В формульном представлении всё выглядит следующим образом:

  • А=з*Н ср =(з*Н)/2=(Э*Н 2)/2

Но вместе с этим возникает вопрос: чему будет равна потенциальная энергия конденсатора с данной электроемкостью Э, который заряжен до значения Н? Ответ на этот вопрос нам может дать такое уравнение:

  • ПЭ=А=(Э*Н 2)/2=з 2 /(2*Э)=(з*Н)/2

Тут вам следует понять, что энергия конденсатора зависит от электрического поля, что существует между его обкладками, и оно же является её обладателем. А из этого можно сделать вывод, что она также пропорциональна квадрату напряженности. Чтобы запомнить, чему равна энергия заряженного конденсатора, можно выучить ещё одно школьное правило. Или даже точней будет сказать — освежить свою память им. Энергия конденсатора равняется работе, которая совершается электрическим полем во время сближения пластин устройства вплотную. Она также равна труду, что делается для разделения отрицательных и положительных зарядов, что необходим для последующей зарядки прибора. Это изучается в качестве примера в курсе школьной физики.

Электроемкость


В рамках предыдущего раздела статьи упоминалось такое слово. Учитывая его важность, при разборе ситуации с конденсатором можно разобраться с тем, что понимают под данным словом. Итак, электроемкость:

  1. Используется в качестве характеристики способности накапливать электрический заряд конденсатором.
  2. Является зависимой от целого ряда параметров:
    1. От геометрических размеров конденсатора.
    2. От его формы.
    3. От расположения в схеме.
    4. От свойств электрической среды, в которой собственно и находится конденсатор.
  3. Не зависит от значений заряда и напряжения.

Электроемкость измеряется в Фарадах (на практике ещё добавляется приставка микро-, поскольку объем конденсатора обычно невелик).

Энергия поля и формула


Она примерно равняется квадрату напряженности электрического поля внутри конденсатора.

Плотность энергии измеряется по формуле:

Что можно дополнительно сказать по этому? Данный эффект суммируется с другими и может составлять электрическое поле всего устройства, частью которого является конденсатор.

Заключение


Итак, в рамках статьи была рассмотрена энергия конденсатора, а также поле, которое создаётся ею. Необходимо также учитывать, что другие детали электротехнических схем тоже обладают определённой энергией и могут позитивно сказываться на степени заряженности данного устройства. Если конденсатор находится за гранями схем и не используется ими, но находится вблизи, то он постепенно будет заряжаться. Правдивость этого факта очень легко проверить в домашних условиях, если есть необходимая измерительная техника. Для этого необходимо сам конденсатор поместить около телевизора, устройства радио или компьютера и записывать значение заряженности, которое будет показывать измерительная аппаратура. Благодаря этому свойству энергия конденсатора может меняться даже при отсутствии прямого видимого подключения к источнику питания.

Электрическая емкость проводника.

Электрическая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд . В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.


Конденсатор. Емкость плоского конденсатора.

Соединение конденсаторов.

Параллельное соединение конденсаторов

Обкладки конденсаторов соединяют попарно, т.е. в системе остается два изолированных проводника, которые и представляют собой обкладки нового конденсатора

Вывод: При параллельном соединении конденсаторов

а) заряды складываются,

б) напряжения одинаковые,

в) емкости складываются.

Т.о., общая емкость больше емкости любого из параллельно соединенных конденсаторов

Производят только одно соединение, а две оставшиеся обкладки — одна от конденсатора С 1 другая от конденсатора С 2 — играют роль обкладок нового конденсатора.

Вывод: При последовательном соединении конденсаторов

а) напряжения складываются,

б) заряды одинаковы,

в) складываются величины, обратные емкости.

Т.о., общая емкость меньше емкости любого из последовательно соединенных конденсаторов.


Энергия, накопленная в конденсаторе.

При заряде конденсатора внешний источник расходует энергию на разделение зарядов на положительные и отрицательные. Которые будут находиться на обкладках конденсатора. Следовательно, исходя из закона сохранения энергии, она никуда не пропадает, а остается в конденсаторе. Энергия в конденсаторе запасается в виде силы взаимодействия положительных и отрицательных зарядов находящихся на его обкладках. То есть в виде электрического поля. Которое сосредоточено между пластинами. Это взаимодействие стремится притянуть одну обкладку к другой, поскольку, как известно разноименные заряды притягиваются.

Как известно из механики F=mg , аналогично в электрике F=qE , роль массы играет заряд, а роль сили притяжения напряжённость поля.

Работа по перемещению заряда в электрическом поле выглядит так:A=qEd1-qEd2=qEd

C другой же стороны работа также равна разнице потенциальных энергий A=W1-W2=W.

Таким образом используя эти два выражения можно сделать вывод что потенциальная энергия накопленная в конденсаторе равна:

Формула 1 — Энергия заряженного конденсатора

Не трудно заметить, что формула очень похожа на потенциальную энергию из механики W=mgh .

Если провести аналогию с механикой: Представим камень, находящийся на крыше здания. Здесь взаимодействует масса земли с массой камня посредством силы тяжести, а здание высотой h противодействует силе гравитации. Если здание убрать камень упадет, следовательно, потенциальная энергия перейдет в кинетическую.

В электростатике же есть два разноименных заряда стремящихся притянутся друг к другу им противодействует диэлектрик толщиной d находящийся между обкладками. Если обкладки замкнуть между собой то потенциальная энергия заряда перейдет в кинетическую то есть в тепло.

В электротехнике формула для энергии в таком виде не применяется. Ее удобно выразить через емкость конденсатора и напряжение, до которого он заряжен.

Так как заряд конденсатора определяется зарядом одной из его пластин то напряжённость поля, создаваемая ею, будет равна E/2 . Поскольку общее поле складывается из полей создаваемых обеими обкладками заряжении одинаково, но с противоположным знаком.

Темы кодификатора ЕГЭ : электрическая ёмкость, конденсатор, энергия электрического поля конденсатора.

Предыдущие две статьи были посвящены отдельному рассмотрению того, каким образом ведут себя в электрическом поле проводники и каким образом — диэлектрики. Сейчас нам понадобится объединить эти знания. Дело в том, что большое практическое значение имеет совместное использование проводников и диэлектриков в специальных устройствах — конденсаторах .

Но прежде введём понятие электрической ёмкости .

Предположим, что заряженный проводник расположен настолько далеко от всех остальных тел, что взаимодействие зарядов проводника с окружающими телами можно не принимать во внимание. В таком случае проводник называется уединённым .

Потенциал всех точек нашего проводника, как мы знаем, имеет одно и то же значение , которое называется потенциалом проводника. Оказывается, что потенциал уединённого проводника прямо пропорционален его заряду . Коэффициент пропорциональности принято обозначать , так что

Величина называется электрической ёмкостью проводника и равна отношению заряда проводника к его потенциалу:

(1)

Например, потенциал уединённого шара в вакууме равен:

где — заряд шара, — его радиус. Отсюда ёмкость шара:

(2)

Если шар окружён средой-диэлектриком с диэлектрической проницаемостью , то его потенциал уменьшается в раз:

Соответственно, ёмкость шара в раз увеличивается:

(3)

Увеличение ёмкости при наличии диэлектрика — важнейший факт. Мы ещё встретимся с ним при рассмотрении конденсаторов.

Из формул (2) и (3) мы видим, что ёмкость шара зависит только от его радиуса и диэлектрической проницаемости окружающей среды. То же самое будет и в общем случае: ёмкость уединённого проводника не зависит от его заряда; она определяется лишь размерами и формой проводника, а также диэлектрической проницаемостью среды, окружающей проводник. От вещества проводника ёмкость также не зависит.

В чём смысл понятия ёмкости? Ёмкость показывает, какой заряд нужно сообщить проводнику, чтобы увеличить его потенциал на В . Чем больше ёмкость — тем, соответственно, больший заряд требуется поместить для этого на проводник.

Единицей измерения ёмкости служит фарад (Ф). Из определения ёмкости (1) видно, что Ф = Кл/В.

Давайте ради интереса вычислим ёмкость земного шара (он является проводником!). Радиус считаем приближённо равным км.

МкФ.

Как видите, Ф — это очень большая ёмкость.

Единица измерения ёмкости полезна ещё и тем, что позволяет сильно сэкономить на обозначении размерности диэлектрической постоянной . В самом деле, выразим из формулы (2) :

Следовательно, диэлектрическая постоянная может измеряться в Ф/м:

Ф.

Так легче запомнить, не правда ли?

Ёмкость уединённого проводника на практике используется редко. В обычных ситуациях проводники не являются уединёнными. Заряженный проводник взаимодействует с окружающими телами и наводит на них заряды, а потенциал поля этих индуцированных зарядов (по принципу суперпозиции!) изменяет потенциал самого проводника. В таком случае уже нельзя утверждать, что потенциал проводника будет прямо пропорционален его заряду, и понятие ёмкости проводника самого по себе фактически утрачивает смысл.

Можно, однако, создать систему заряженных проводников, которая даже при накоплении на них значительного заряда почти не взаимодействует с окружающими телами. Тогда мы сможем снова говорить о ёмкости — но на сей раз о ёмкости этой системы проводников.

Наиболее простым и важным примером такой системы является плоский конденсатор . Он состоит из двух параллельных металлических пластин (называемых обкладками ), разделённых слоем диэлектрика. При этом расстояние между пластинами много меньше их собственных размеров.

Для начала рассмотрим воздушный конденсатор, у которого между обкладками находится воздух

Пусть заряды обкладок равны и . Именно так и бывает в реальных электрических схемах: заряды обкладок равны по модулю и противоположны по знаку. Величина — заряд положительной обкладки — называется зарядом конденсатора .

Пусть — площадь каждой обкладки. Найдём поле, создаваемое обкладками в окружающем пространстве.

Поскольку размеры обкладок велики по сравнению с расстоянием между ними, поле каждой обкладки вдали от её краёв можно считать однородным полем бесконечной заряженной плоскости:

Здесь — напряжённость поля положительной обкладки, — напряженность поля отрицательной обкладки, — поверхностная плотность зарядов на обкладке:

На рис. 1 (слева) изображены векторы напряжённости поля каждой обкладки в трёх областях: слева от конденсатора, внутри конденсатора и справа от конденсатора.


Рис. 1. Электрическое поле плоского конденсатора

Согласно принципу суперпозиции, для результирующего поля имеем:

Нетрудно видеть, что слева и справа от конденсатора поле обращается в нуль (поля обкладок погашают друг друга):

Внутри конденсатора поле удваивается:

(4)

Результирующее поле обкладок плоского конденсатора изображено на рис. 1 справа. Итак:

Внутри плоского конденсатора создаётся однородное электрическое поле, напряжённость которого находится по формуле (4) . Снаружи конденсатора поле равно нулю, так что конденсатор не взаимодействует с окружающими телами.

Не будем забывать, однако, что данное утверждение выведено из предположения, будто обкладки являются бесконечными плоскостями. На самом деле их размеры конечны, и вблизи краёв обкладок возникают так называемые краевые эффекты : поле отличается от однородного и проникает в наружное пространство конденсатора. Но в большинстве ситуаций (и уж тем более в задачах ЕГЭ по физике) краевыми эффектами можно пренебречь и действовать так, словно утверждение, выделенное курсивом, является верным без всяких оговорок.

Пусть расстояние между обкладками конденсатора равно . Поскольку поле внутри конденсатора является однородным, разность потенциалов между обкладками равна произведению на (вспомните связь напряжения и напряжённости в однородном поле!):

(5)

Разность потенциалов между обкладками конденсатора, как видим, прямо пропорциональна заряду конденсатора. Данное утверждение аналогично утверждению «потенциал уединённого проводника прямо пропорционален заряду проводника», с которого и начался весь разговор о ёмкости. Продолжая эту аналогию, определяем ёмкость конденсатора как отношение заряда конденсатора к разности потенциалов между его обкладками:

(6)

Ёмкость конденсатора показывает, какой заряд ему нужно сообщить, чтобы разность потенциалов между его обкладками увеличилась на В. Формула (6) , таким образом, является модификацией формулы (1) для случая системы двух проводников — конденсатора.

Из формул (6) и (5) легко находим ёмкость плоского воздушного конденсатора :

(7)

Она зависит только от геометрических характеристик конденсатора: площади обкладок и расстояния между ними.
Предположим теперь, что пространство между обкладками заполнено диэлектриком с диэлектрической проницаемостью . Как изменится ёмкость конденсатора?

Напряжённость поля внутри конденсатора уменьшится в раз, так что вместо формулы (4) теперь имеем:

(8)

Соответственно, напряжение на конденсаторе:

(9)

Отсюда ёмкость плоского конденсатора с диэлектриком :

(10)

Она зависит от геометрических характеристик конденсатора (площади обкладок и расстояния между ними) и от диэлектрической проницаемости диэлектрика, заполняющего конденсатор.

Важное следствие формулы (10) : заполнение конденсатора диэлектриком увеличивает его ёмкость .

Заряженный конденсатор обладает энергией. В этом можно убедиться на опыте. Если зарядить конденсатор и замкнуть его на лампочку, то (при условии, что ёмкость конденсатора достаточно велика) лампочка ненадолго загорится.

Следовательно, в заряженном конденсаторе запасена энергия, которая и выделяется при его разрядке. Нетрудно понять, что этой энергией является потенциальная энергия взаимодействия обкладок конденсатора — ведь обкладки, будучи заряжены разноимённо, притягиваются друг к другу.

Мы сейчас вычислим эту энергию, а затем увидим, что существует и более глубокое понимание происхождения энергии заряженного конденсатора.

Начнём с плоского воздушного конденсатора. Ответим на такой вопрос: какова сила притяжения его обкладок друг к другу? Величины используем те же: заряд конденсатора , площадь обкладок .

Возьмём на второй обкладке настолько маленькую площадку, что заряд этой площадки можно считать точечным. Данный заряд притягивается к первой обкладке с силой

где — напряжённость поля первой обкладки:

Следовательно,

Направлена эта сила параллельно линиям поля (т. е. перпендикулярно пластинам).

Результирующая сила притяжения второй обкладки к первой складывается из всех этих сил , с которыми притягиваются к первой обкладке всевозможные маленькие заряды второй обкладки. При этом суммировании постоянный множитель вынесется за скобку, а в скобке просуммируются все и дадут . В результате получим:

(11)

Предположим теперь, что расстояние между обкладками изменилось от начальной величины до конечной величины . Сила притяжения пластин совершает при этом работу:

Знак правильный: если пластины сближаются , то сила совершает положительную работу, так как пластины притягиваются друг к другу. Наоборот, если удалять пластины > , то работа силы притяжения получается отрицательной, как и должно быть.

С учётом формул (11) и (7) имеем:

Это можно переписать следующим образом:

(12)

Работа потенциальной силы притяжения обкладок оказалась равна изменению со знаком минус величины . Это как раз и означает, что — потенциальная энергия взаимодействия обкладок, или энергия заряженного конденсатора .

Используя соотношение , из формулы (12) можно получить ещё две формулы для энергии конденсатора (убедитесь в этом самостоятельно!):

(13)

(14)

Особенно полезными являются формулы (12) и (14) .

Допустим теперь, что конденсатор заполнен диэлектриком с диэлектрической проницаемостью . Сила притяжения обкладок уменьшится в раз, и вместо (11) получим:

При вычислении работы силы , как нетрудно видеть, величина войдёт в ёмкость , и формулы (12) — (14) останутся неизменными . Ёмкость конденсатора в них теперь будет выражаться по формуле (10) .

Итак, формулы (12) — (14) универсальны: они справедливы как для воздушного конденсатора, так и для конденсатора с диэлектриком.

Мы обещали, что после вычисления энергии конденсатора дадим более глубокое истолкование происхождения этой энергии. Что ж, приступим.

Рассмотрим воздушный конденсатор и преобразуем формулу (14) для его энергии:

Но — объём конденсатора. Получаем:

(15)

Посмотрите внимательно на эту формулу. Она уже не содержит ничего, что являлось бы специфическим для конденсатора! Мы видим энергию электрического поля , сосредоточенного в некотором объёме .

Энергия конденсатора есть не что иное, как энергия заключённого внутри него электрического поля.

Итак, электрическое поле само по себе обладает энергией. Ничего удивительного для нас тут нет. Радиоволны, солнечный свет — это примеры распространения энергии, переносимой в пространстве электромагнитными волнами.

Величина — энергия единицы объёма поля — называется объёмной плотностью энергии . Из формулы (15) получим:

(16)

В этой формуле не осталось вообще никаких геометрических величин. Она даёт максимально чистую связь энергии электрического поля и его напряжённости.

Если конденсатор заполнен диэлектриком, то его ёмкость увеличивается в раз, и вместо формул (15) и (16) будем иметь:

(17)

(18)

Как видим, энергия электрического поля зависит ещё и от диэлектрической проницаемости среды, в которой поле находится.
Замечательно, что полученные формулы для энергии и плотности энергии выходят далеко за пределы электростатики: они справедливы не только для электростатического поля, но и для электрических полей, меняющихся во времени.

8.3 Энергия, запасенная в конденсаторе — University Physics Volume 2

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, как энергия накапливается в конденсаторе
  • Использование энергетических соотношений для определения энергии, запасенной в конденсаторной сети

Большинство из нас видели инсценировку медицинского персонала, использующего дефибриллятор для пропускания электрического тока через сердце пациента, чтобы заставить его нормально биться.Часто реалистичный в деталях, человек, применяющий разряд, приказывает другому человеку «сделать на этот раз 400 джоулей». Энергия, подаваемая дефибриллятором, сохраняется в конденсаторе и может регулироваться в зависимости от ситуации. Часто используются единицы СИ – джоули. Менее драматично использование конденсаторов в микроэлектронике для подачи энергии при зарядке батарей (рис. 8.15). Конденсаторы также используются для питания ламп-вспышек на камерах.

Фигура 8.15 Конденсаторы на печатной плате электронного устройства соответствуют соглашению по маркировке, согласно которому каждый из них идентифицируется кодом, начинающимся с буквы «C.(кредит: Уинделл Оскей)

Энергия UCUC, хранящаяся в конденсаторе, представляет собой электростатическую потенциальную энергию и, таким образом, связана с зарядом Q и напряжением В между пластинами конденсатора. Заряженный конденсатор запасает энергию в электрическом поле между своими пластинами. Когда конденсатор заряжается, электрическое поле нарастает. При отключении заряженного конденсатора от батареи его энергия остается в поле в пространстве между его пластинами.

Чтобы понять, как эта энергия может быть выражена (в терминах Q и V ), рассмотрим заряженный пустой конденсатор с параллельными пластинами; то есть конденсатор без диэлектрика, но с вакуумом между его пластинами.Пространство между его пластинами имеет объем Ad и заполнено однородным электростатическим полем E . Полная энергия UCUC конденсатора заключена в этом пространстве. Плотность энергии uEuE в этом пространстве равна просто UCUC, деленной на объем Ad . Если мы знаем плотность энергии, то энергию можно найти как UC=uE(Ad)UC=uE(Ad). В «Электромагнитных волнах» мы узнаем (после завершения изучения уравнений Максвелла), что плотность энергии uEuE в области свободного пространства, занятого электрическим полем E , зависит только от величины поля и равна

uE=12ε0E2.uE=12ε0E2.

8,9

Если мы умножим плотность энергии на объем между пластинами, мы получим количество энергии, запасенной между пластинами плоского конденсатора: UC=uE(Ad)=12ε0E2Ad=12ε0V2d2Ad=12V2ε0Ad=12V2CUC=uE(Ad) =12ε0E2Ad=12ε0V2d2Ad=12V2ε0Ad=12V2C.

В этом выводе мы использовали тот факт, что электрическое поле между пластинами однородно, так что E=V/dE=V/d и C=ε0A/d.C=ε0A/d. Поскольку C=Q/VC=Q/V, мы можем выразить этот результат в других эквивалентных формах:

UC=12V2C=12Q2C=12QV.UC=12V2C=12Q2C=12QV.

8.10

Выражение в уравнении 8.10 для энергии, запасенной в конденсаторе с плоскими пластинами, в целом справедливо для всех типов конденсаторов. Чтобы убедиться в этом, рассмотрим любой незаряженный конденсатор (не обязательно пластинчатый). В какой-то момент мы подключаем его к батарее, придавая ему разность потенциалов V=q/CV=q/C между его пластинами. Первоначально заряд на пластинах равен Q=0.Q=0. По мере заряда конденсатора заряд на его обкладках постепенно накапливается и через некоторое время достигает значения Q .Чтобы переместить бесконечно малый заряд dq с отрицательной пластины на положительную (от более низкого потенциала к более высокому), количество работы dW , которое необходимо совершить над dq , равно dW=Vdq=qCdqdW=Vdq= qCdq.

Эта работа превращается в энергию, запасенную в электрическом поле конденсатора. Чтобы зарядить конденсатор до заряда ·, необходимо совершить общую работу

. W=∫0W(Q)dW=∫0QqCdq=12Q2C.W=∫0W(Q)dW=∫0QqCdq=12Q2C.

Поскольку геометрия конденсатора не указана, это уравнение верно для любого типа конденсатора.Полная работа Вт , необходимая для зарядки конденсатора, представляет собой запасенную в нем электрическую потенциальную энергию UCUC, или UC=WUC=W. Когда заряд выражается в кулонах, потенциал — в вольтах, а емкость — в фарадах, это соотношение дает энергию в джоулях.

Зная, что энергия, запасенная в конденсаторе, равна UC=Q2/(2C)UC=Q2/(2C), теперь мы можем найти плотность энергии uEuE, запасенной в вакууме между пластинами заряженного плоскопараллельного конденсатора. Нам остается только разделить UCUC на объем Ad пространства между его пластинами и учесть, что для плоского конденсатора имеем E=σ/ε0E=σ/ε0 и C=ε0A/dC=ε0A/d .Таким образом, мы получаем

uE=UCAd=12Q2C1Ad=12Q2ε0A/d1Ad=121ε0(QA)2=σ22ε0=(Eε0)22ε0=ε02E2.uE=UCAd=12Q2C1Ad=12Q2ε0A/d1Ad=121ε0(QA)2=σ22ε0=(Eε0)22ε0=ε02E2.

Мы видим, что это выражение для плотности энергии, хранящейся в плоском конденсаторе, соответствует общему соотношению, выраженному в уравнении 8.9. Мы могли бы повторить этот расчет либо для сферического конденсатора, либо для цилиндрического конденсатора, либо для других конденсаторов, и во всех случаях мы пришли бы к общему соотношению, заданному уравнением 8.9.

Пример 8,8

Энергия, запасенная в конденсаторе
Рассчитайте энергию, накопленную в цепи конденсаторов на рис. 8.14(a), когда конденсаторы полностью заряжены и когда емкости C1=12,0 мкФ, C2=2,0 мкФ, C1=12,0 мкФ, C2=2,0 мкФ и C3=4,0 мкФ. ,C3=4,0 мкФ соответственно.
Стратегия
Мы используем уравнение 8.10, чтобы найти энергию U1U1, U2U2 и U3U3, хранящуюся в конденсаторах 1, 2 и 3 соответственно. Полная энергия есть сумма всех этих энергий.
Решение
Мы идентифицируем C1=12.0 мкФ1 = 12,0 мкФ и V1 = 4,0 В V1 = 4,0 В, C2 = 2,0 мкФС2 = 2,0 мкФ и V2 = 8,0 В V2 = 8,0 В, С3 = 4,0 мкФ3 = 4,0 мкФ и V3 = 8,0 В. V3 = 8,0 В. Энергия, запасенная в этих конденсаторах, U1=12C1V12=12(12,0 мкФ)(4,0 В)2=96 мкДж,U2=12C2V22=12(2,0 мкФ)(8,0 В)2=64 мкДж,U3=12C3V32=12(4,0 мкФ)(8,0 В)2=130 мкДж .U1=12C1V12=12(12,0 мкФ)(4,0 В)2=96 мкДж,U2=12C2V22=12(2,0 мкФ)(8,0 В)2=64 мкДж,U3=12C3V32=12(4,0 мкФ)(8,0 В)2= 130 мкДж.

Общая энергия, запасенная в этой сети, составляет

UC=U1+U2+U3=96 мкДж+64 мкДж+130 мкДж=0,29 мДж. UC=U1+U2+U3=96 мкДж+64 мкДж+130 мкДж=0,29 мДж.
Значение
Мы можем проверить этот результат, рассчитав энергию, запасенную в одиночном 4.Конденсатор 0-мкФ4,0-мкФ, который оказывается эквивалентным всей сети. Напряжение в сети составляет 12,0 В. Полная энергия, полученная таким образом, согласуется с нашим ранее полученным результатом: V)2=0,29 мДж.

Проверьте свое понимание 8,6

Проверьте свои знания Разность потенциалов на конденсаторе емкостью 5,0 пФ составляет 0,40 В. а) Какая энергия хранится в этом конденсаторе? б) разность потенциалов увеличилась до 1.20 В. Во сколько раз увеличивается накопленная энергия?

При неотложной сердечной деятельности портативное электронное устройство, известное как автоматический внешний дефибриллятор (АНД), может спасти жизнь. Дефибриллятор (рис. 8.16) подает большой заряд короткой вспышкой или разрядом в сердце человека для коррекции аномального сердечного ритма (аритмии). Сердечный приступ может возникнуть в результате быстрого, нерегулярного сокращения сердца, называемого сердечной или желудочковой фибрилляцией. Применение сильного разряда электрической энергии может остановить аритмию и позволить естественному водителю ритма вернуться к своему нормальному ритму.Сегодня машины скорой помощи обычно несут AED. AED также можно найти во многих общественных местах. Они предназначены для использования мирянами. Устройство автоматически диагностирует сердечный ритм пациента, а затем применяет разряд с соответствующей энергией и формой волны. СЛР (сердечно-легочная реанимация) рекомендуется во многих случаях перед использованием дефибриллятора.

Фигура 8.16 Автоматические наружные дефибрилляторы можно найти во многих общественных местах. Эти портативные устройства дают словесные инструкции по использованию в первые несколько важных минут для человека, страдающего сердечным приступом.(кредит: Оуайн Дэвис)

Пример 8,9

Емкость дефибриллятора сердца
Сердечный дефибриллятор выдает 4,00×102 Дж4,00×102 Дж энергии, разряжая конденсатор первоначально при 1,00×104 В. 1,00×104 В. Какова его емкость?
Стратегия
Нам даны UCUC и V , и нас просят найти емкость C . Решаем уравнение 8.10 для C и подставляем.
Решение
Решение этого выражения для C и ввод заданных значений дает С=2UCV2=24.00×102 Дж(1,00×104 В)2=8,00 мкФ.C=2UCV2=24,00×102 Дж(1,00×104 В)2=8,00 мкФ.

4.3 Энергия, запасенная в конденсаторе – введение в электричество, магнетизм и электрические цепи

ЦЕЛИ ОБУЧЕНИЯ

К концу этого раздела вы сможете:
  • Объясните, как энергия накапливается в конденсаторе
  • Использование энергетических соотношений для определения энергии, запасенной в конденсаторной сети

Большинство из нас видели инсценировку медицинского персонала, использующего дефибриллятор для пропускания электрического тока через сердце пациента, чтобы заставить его нормально биться.Часто реалистичный в деталях, человек, применяющий разряд, приказывает другому человеку «на этот раз сделать джоули». Энергия, подаваемая дефибриллятором, сохраняется в конденсаторе и может регулироваться в зависимости от ситуации. Часто используются единицы СИ – джоули. Менее драматично использование конденсаторов в микроэлектронике для подачи энергии при зарядке аккумуляторов (рис. 4.3.1). Конденсаторы также используются для питания ламп-вспышек на камерах.

(рис. 4.3.1)  

Рис 4.3.1  Конденсаторы на печатной плате электронного устройства маркируются согласно соглашению, согласно которому каждый из них идентифицируется кодом, начинающимся с буквы «C».

Энергия, хранящаяся в конденсаторе, представляет собой электростатическую потенциальную энергию и, таким образом, связана с зарядом и напряжением между пластинами конденсатора. Заряженный конденсатор запасает энергию в электрическом поле между своими пластинами. Когда конденсатор заряжается, электрическое поле нарастает. При отключении заряженного конденсатора от батареи его энергия остается в поле в пространстве между его пластинами.

Чтобы понять, как эта энергия может быть выражена (через  и ), рассмотрим заряженный пустой конденсатор с параллельными пластинами; то есть конденсатор без диэлектрика, но с вакуумом между его пластинами. Пространство между его пластинами имеет объем и заполнено однородным электростатическим полем. Полная энергия конденсатора содержится в этом пространстве. Плотность энергии  в этом пространстве просто делится на объем . Если мы знаем плотность энергии, то энергию можно найти как .В «Электромагнитных волнах» (после завершения изучения уравнений Максвелла) мы узнаем, что плотность энергии в области свободного пространства, занятого электрическим полем, зависит только от величины поля и составляет

(4.3.1)  

Если мы умножим плотность энергии на объем между пластинами, мы получим количество энергии, запасенной между пластинами плоского конденсатора: .

В этом выводе мы использовали тот факт, что электрическое поле между пластинами однородно, так что  и .Поскольку мы можем выразить этот результат в других эквивалентных формах:

(4.3.2)  

Выражение в уравнении 4.3.1 для энергии, запасенной в конденсаторе с плоскими пластинами, в целом справедливо для всех типов конденсаторов. Чтобы убедиться в этом, рассмотрим любой незаряженный конденсатор (не обязательно пластинчатый). В какой-то момент мы подключаем его к батарее, задавая ему разность потенциалов между его пластинами. Первоначально заряд на пластинах равен . По мере заряда конденсатора заряд на его обкладках постепенно накапливается и через некоторое время достигает значения .Чтобы переместить бесконечно малый заряд с отрицательной пластины на положительную (от более низкого к более высокому потенциалу), необходимо совершить работу, равную .

Эта работа превращается в энергию, запасенную в электрическом поле конденсатора. Чтобы зарядить конденсатор до заряда, необходимо совершить

работ.

   

Поскольку геометрия конденсатора не указана, это уравнение верно для любого типа конденсатора. Полная работа, необходимая для зарядки конденсатора, представляет собой запасенную в нем электрическую потенциальную энергию, или .Когда заряд выражается в кулонах, потенциал — в вольтах, а емкость — в фарадах, это соотношение дает энергию в джоулях.

Зная, что энергия, хранящаяся в конденсаторе, равна , теперь мы можем найти плотность энергии, хранящейся в вакууме между пластинами заряженного конденсатора с параллельными пластинами. Нам остается только разделить  на объем пространства между его пластинами и учесть, что для плоского конденсатора имеем  и . Таким образом, мы получаем

   

Мы видим, что это выражение для плотности энергии, запасенной в конденсаторе с плоскими пластинами, соответствует общему соотношению, выраженному в уравнении 4.3.1. Мы могли бы повторить этот расчет либо для сферического конденсатора, либо для цилиндрического конденсатора, либо для других конденсаторов, и во всех случаях мы получили бы общее соотношение, заданное уравнением 4.3.1.

ПРИМЕР 4.3.1


Энергия, запасенная в конденсаторе

Рассчитайте энергию, запасенную в конденсаторной сети на Рисунке 4.2.4(а), когда конденсаторы полностью заряжены и когда емкости равны ,  и  соответственно.

Стратегия

Мы используем уравнение 4.3.2 найти энергию , , и , запасенную в конденсаторах , , и , соответственно. Полная энергия есть сумма всех этих энергий.

Решение

Мы определяем  и ,  и ,  и . Энергия, запасенная в этих конденсаторах, составляет

   

Общая энергия, запасенная в этой сети, составляет

   

Значение

Мы можем проверить этот результат, рассчитав энергию, запасенную в одном конденсаторе, которая оказывается эквивалентной всей сети.Напряжение в сети равно . Полная энергия, полученная таким образом, согласуется с нашим ранее полученным результатом .

ПРОВЕРЬТЕ ВАШЕ ПОНИМАНИЕ 4.6


Разность потенциалов на конденсаторе равна . а) Какая энергия запасена в этом конденсаторе? б) разность потенциалов увеличилась до . Во сколько раз увеличилась запасенная энергия?

При неотложной сердечной деятельности портативное электронное устройство, известное как автоматический внешний дефибриллятор (АНД), может спасти жизнь.Дефибриллятор  (Рисунок 4.3.2) подает большой заряд короткой вспышкой или разрядом в сердце человека для коррекции аномального сердечного ритма (аритмии). Сердечный приступ может возникнуть в результате быстрого, нерегулярного сокращения сердца, называемого сердечной или желудочковой фибрилляцией. Применение сильного разряда электрической энергии может остановить аритмию и позволить естественному водителю ритма вернуться к своему нормальному ритму. Сегодня машины скорой помощи обычно несут AED. AED также можно найти во многих общественных местах.Они предназначены для использования мирянами. Устройство автоматически диагностирует сердечный ритм пациента, а затем применяет разряд с соответствующей энергией и формой волны. СЛР (сердечно-легочная реанимация) рекомендуется во многих случаях перед использованием дефибриллятора.

(рис. 4.3.2)  

Рисунок 4.3.2  Автоматические наружные дефибрилляторы можно найти во многих общественных местах. Эти портативные устройства дают словесные инструкции по использованию в первые несколько важных минут для человека, страдающего сердечным приступом.

Цитаты Кандела

Лицензионный контент CC, указание авторства

  • Бесплатно скачать по адресу http://cnx.org/contents/[email protected] Получено с : http://cnx.org/contents/[email protected] Лицензия : CC BY: Attribution

Energy in a Capacitor > Лаборатория поддержки лекций по физике и астрономии > USC Дана и Дэвид Дорнсайф Колледж литературы, искусств и наук

C.4(1) — Управление двигателем


Энергия, хранящаяся в конденсаторе, используется для привода небольшого двигателя, который вращает пропеллер. Схема состоит из восьми параллельно соединенных конденсаторов с эквивалентной емкостью 30000 мкФ, соединенных последовательно с пятью резисторами 500 Ом последовательно. Постоянная времени для схемы составляет 75 секунд . Аппарат подключен к источнику питания высокого напряжения на 250 вольт . он установлен на доске 25 см x 25 см .

 

 

Топ


C.4(2) — Разгрузка с помощью металлического стержня

 

Конденсатор (100 мкФ, 3000 В постоянного тока) заряжается в течение нескольких минут. Конденсатор подключен к источнику питания. После зарядки выключите питание и мультиметр (будьте осторожны при отключении мультиметра). Затем конденсатор закорачивают большим металлическим стержнем с изолированной ручкой, вызывая большую искру.

 

 

Нажмите здесь, чтобы посмотреть видео этой демонстрации.

 

Топ


C.4(3a) — Взрыватель проволоки (старый)


Большой конденсатор (240 мкФ, 5000 В) используется в качестве опоры для устройства, которое неожиданно показывает энергию, запасенную в конденсаторе. Над ним и вокруг него уложены толстые листы плексигласа, в состав которых входят: электромагнитный переключатель, небольшой измеритель, резисторы и подставка, прочно удерживающая очень тонкую металлическую проволоку, как показано на рисунке.Блок питания и переключатель на длинном проводе установлены сбоку. Конденсатор заряжается в течение 5-10 минут при напряжении 2000 В постоянного тока через резистор R=1,8 x 106 Ом (или до тех пор, пока счетчик не покажет не менее 15-20 минут). Выключите питание. Возьмите переключатель и отойдите от аппарата. Замкните и разомкните дистанционный переключатель. Когда цепь замкнута, конденсатор разряжается через тонкую проволоку, измельчая ее. Это вызывает большой взрыв, большую искру и даже немного дыма. Постоянная времени для этой схемы составляет 432 секунды.После зарядки в течение 5 минут заряд, накопленный на конденсаторе, составляет около 0,24 кулона, а общая энергия, выделившаяся в момент взрыва, составляет около 173 Дж. Это очень громко и очень неожиданно. Имейте в виду, что конденсатор все еще может быть заряжен, так как взрыв провода обычно не разряжает его полностью. Разрядник с длинными ручками используется для полной разрядки конденсатора, после чего следуют другие более мелкие взрывы и искры.

 

 

Топ

 

С.4(3b) — Взрыватель проволоки (новый)

 

Эта переработанная демонстрация состоит из: большого конденсатора (240 мкФ; 5 кВ), электромагнитного переключателя, небольшого измерителя и подставки, которая прочно удерживает очень тонкий металлический провод, если смотреть сквозь экран из плексигласа. Блок питания и переключатель на длинном проводе установлены сбоку.

Конденсатор заряжается напрямую до 3 кВ постоянного тока в течение примерно 15 минут. После этого заряд, накопленный на конденсаторе, составляет около 0.24 кулона, а полная энергия, выделяемая при коротком замыкании, составляет около 173 джоулей. Когда цепь замкнута, конденсатор разряжается через тонкий провод, превращая его в пыль. Это вызывает громкий взрыв и большие искры. Имейте в виду, что конденсатор все еще может быть заряжен, так как взрыв провода обычно не разряжает его полностью. Разрядник с длинными ручками используется для полной разрядки конденсатора.

Можно использовать два типа проволоки:

  • Медный магнитный провод
  • Неизолированная никель-хромовая проволока

 

Нажмите здесь, чтобы посмотреть видео о новой демонстрации Wire Exploder в действии.

 

Топ

 

C.4(4) — Ультраконденсатор

Эта демонстрация состоит из одного конденсатора 16 В/58 Ф по сравнению с одним ультраконденсатором 16 В/210000 мкФ. Каждая пара конденсаторов подключена к электрическому вентилятору. Как и ожидалось, вентилятор, подключенный к обычным конденсаторам, остановится через несколько секунд, в то время как вентилятор, подключенный к ультраконденсаторам, проработает гораздо дольше. Это демонстрирует, что ультраконденсаторы способны хранить больше заряда, чем обычные конденсаторы.

 

 

Нажмите здесь, чтобы посмотреть видео этой демонстрации.

Верх

Энергия, запасенная в конденсаторе

В предварительном чтении, конденсаторе, мы описали конденсатор как «способ хранения электрической энергии как разделение заряда». Давайте проработаем детали.

Работа, которую необходимо совершить, чтобы зарядить конденсатор, перемещая заряды с одной стороны пластины на другую, равна количеству запасенной в нем потенциальной энергии (по теореме о работе-энергии).E_{хранится} \propto Q\Delta V.$$

Нам нужно только вычислить константу пропорциональности.

Если мы подумаем о перемещении зарядов с одной стороны пары пластин на другую, мы начнем с пары незаряженных пластин, как показано на рисунке внизу слева, и закончим парой противоположно заряженных пластин, как показано на рисунке ниже. правильно.

         

Когда мы начинаем заряжать пластины, это выглядит как на рисунке слева. Если мы возьмем небольшой кусочек положительного заряда $dq$ с серой (незаряженной) пластины справа и переместим его на серую (незаряженную) пластину слева, левый слайд будет слегка положительно заряжен (на величину $dq$), в то время как богатая сторона теперь будет слегка отрицательно заряжена (на сумму $-dq$).Разность потенциалов между двумя пластинами была равна 0, поэтому нам не нужно было совершать никакой работы.

Когда мы почти закончим, тарелки будут выглядеть так, как показано на рисунке справа. Левая пластина будет заряжена положительно (синяя), а правая пластина будет заряжена отрицательно (красная). Между пластинами, направленными вправо, будет электрическое поле, как показано на рисунке. Если мы возьмем наш последний небольшой кусочек положительного заряда $dq$ с правой пластины и переместим его влево, нам придется столкнуться с полем E, перемещая наш заряд вверх по потенциальному холму, который теперь имеет значение почти $\Дельта V$.2$$.

Вам будет предложено найти коэффициент явным вычислением в связанной задаче, ссылка на которую приведена внизу страницы.

Джо Редиш и Вольфганг Лосерт 20.02.12, 22.02.13, 30.04.19

Энергия, запасенная в конденсаторе

Пример 6.4: Энергия, запасенная в конденсаторе
Следующая: Электрический ток Вверху: Емкость Предыдущий: Пример 6.3: Эквивалентная емкость Вопрос: Плоский конденсатор с воздушным наполнением имеет емкость пФ.потенциал Напряжение 100 В подается на пластины, находящиеся на расстоянии см друг от друга, с помощью аккумуляторная батарея. Какая энергия запасена в конденсаторе? Предположим, что аккумулятор отключается, а пластины перемещаются до см отдельно. Какая теперь энергия запасена в конденсаторе? Предположим вместо этого, что батарея остается подключенной, а пластины снова перемещаются до тех пор, пока они не см друг от друга. Какая энергия запасается в конденсаторе в этом случае?

Ответ: Начальная энергия, запасенная в конденсатор


При увеличении расстояния между пластинами в два раза емкость конденсатора уменьшается вдвое до пФ.Если аккумулятор отключен, то этот процесс происходит при постоянном заряде. Таким образом, следует из формула


что энергия, запасенная в конденсаторе, удваивается. Итак новая энергия J. Кстати, повышенная энергия конденсатора приходится на работу, совершаемую при вытягивании пластины конденсатора врозь (поскольку эти пластины заряжены противоположно, они притягиваются друг к другу).

Если аккумулятор оставить подключенным, то емкость по-прежнему уменьшается вдвое, но теперь процесс протекает при постоянном напряжении.Это следует из формула


что энергия, запасенная в конденсаторе, уменьшается вдвое. Итак, новая энергия Дж. Кстати, энергия потеряна конденсатором отдается аккумулятору (фактически идет на подзарядку батарея). Аналогично, работа, совершаемая при разъединении пластин, равна также отдано аккумулятору.

Следующая: Электрический ток Вверху: Емкость Предыдущий: Пример 6.3: Эквивалентная емкость
Ричард Фицпатрик 2007-07-14

Лекция 4

gc6 tb16.11
К одному концу незаряженного металлического стержня подносят отрицательно заряженный стержень. Самый дальний от заряженного стержня конец металлического стержня будет заряжен
А. положительный
Б. отрицательный
С. нейтральный
D. ни один из этих ответов

Рыцарь2 29.CQ.10
Каковы соотношения полей и потенциалов в положениях, указанных на рисунке? Позволять В = 0 В на отрицательной пластине.


Ответ

сж6 26.2
Проводники с зарядами +10 мкКл и -10 мкКл имеют разность потенциалов 10 В. Какова емкость?
А. 1 пФ
Б. 10 пФ
С. 1 мкФ
D. 100 мкФ
Ответ

сж6 26.2б
Если заряды увеличить в десять раз, что произойдет с разностью потенциалов?
A. уменьшение в 100 раз
B. уменьшение в 10 раз
C. остаться прежним
D. увеличить в 10 раз
Ответ

gc6 17.50
Конденсатор имеет фиксированный заряд на своих пластинах, так как расстояние между пластинами удваивается. Что происходит с запасенной энергией в электрическом поле?
А. U 2 = 4 U 1
B. U 2 = 2 U 1
C. U 2 = 0,5 U 1
D. U 2 = 0,25 U 1
Ответ

сбн5 26.47
Конденсатор с А = 25 см 2 и d = 1,5 см заряжен до 250 В. Чему равен заряд на своих тарелках?
А. 151 нС
Б. 369 пС
С. 519 мкКл
D. 17.1 mC
Ответ

АПБ 1998.14
Две параллельные проводящие пластины подключены к источнику постоянного напряжения. Величина электрического поля между пластинами составляет 2000 Н/Кл. Если напряжение увеличить вдвое, а расстояние между пластинами уменьшить до 1/5 исходного расстояния, величина нового электрического поля составляет
А.800 Н/З
Б. 1600 Н/К
С. 2400 Н/С
Д. 5000 Н/К
E. 20 000 N/C
Ответ

 

Б. отрицательный
Положительные заряды в металлическом стержне будут притягиваться к отрицательно заряженному стержню, оставляя противоположный конец стержня отрицательным. заряжен. Можно также сказать, что электроны в металлическом стержне отталкиваются от отрицательно заряженного стержня.

 

Поле постоянно между пластинами конденсатора, но потенциал возрастает линейно.

 

С. 1 мкФ

 

D. увеличение в 10 раз
Емкость будет оставаться постоянной до тех пор, пока геометрия конденсатор остается постоянным. Следовательно, поскольку C = Q/V , разность потенциалов будет увеличиваться линейно. пропорционально сумме начисления.

 

B. U 2 = 2 U 1
Энергия, запасенная в конденсаторе, пропорциональна квадрату заряда разделить на емкость, но емкость уменьшится вдвое, если расстояние между пластинами увеличится вдвое.Следовательно, запасенная энергия удвоится. Это потому, что требуется работа, чтобы разорвать противоположно заряженные пластины притягиваются друг к другу.

 

Б. 369 пС

 

E. 20 000 Н/З

Электрическое поле однородно и постоянно между пластинами и равно Δ V / d (уравнение 20-4, см. также уравнение 20-11). Удвоение Δ V удвоит E , и уменьшение d в 5 раз увеличит E в 5 раз.Два изменения вместе увеличит E в 10 раз.

Конденсаторная энергия — AP Physics 2

Если вы считаете, что контент, доступный с помощью Веб-сайта (как это определено в наших Условиях обслуживания), нарушает одно или более ваших авторских прав, пожалуйста, сообщите нам, предоставив письменное уведомление («Уведомление о нарушении»), содержащее в информацию, описанную ниже, назначенному агенту, указанному ниже. Если университетские наставники примут меры в ответ на ан Уведомление о нарушении, он предпримет добросовестную попытку связаться со стороной, предоставившей такой контент средства самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении может быть направлено стороне, предоставившей контент, или третьим лицам, таким как так как ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатов), если вы существенно искажать информацию о том, что продукт или деятельность нарушают ваши авторские права. Таким образом, если вы не уверены, что содержимое находится на Веб-сайте или на который ссылается Веб-сайт, нарушает ваши авторские права, вам следует сначала обратиться к адвокату.

Чтобы подать уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись владельца авторских прав или лица, уполномоченного действовать от его имени; Идентификация авторских прав, которые, как утверждается, были нарушены; Описание характера и точного местонахождения контента, который, как вы утверждаете, нарушает ваши авторские права, в \ достаточно подробно, чтобы преподаватели университета могли найти и точно идентифицировать этот контент; например, мы требуем а ссылку на конкретный вопрос (а не только название вопроса), который содержит содержание и описание к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба; Ваше имя, адрес, номер телефона и адрес электронной почты; а также Заявление от вас: (а) что вы добросовестно полагаете, что использование контента, который, как вы утверждаете, нарушает ваши авторские права не разрешены законом или владельцем авторских прав или его агентом; б) что все информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство вы либо владельцем авторских прав, либо лицом, уполномоченным действовать от их имени.

Отправьте жалобу нашему назначенному агенту по адресу:

Чарльз Кон Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
Сент-Луис, Миссури 63105

Или заполните форму ниже:

 

.

0 comments on “Энергия конденсатора это: Энергия конденсатора, теория и примеры

Добавить комментарий

Ваш адрес email не будет опубликован.