В чем отличие проводников от диэлектриков: Чем отличаются диэлектрики от проводников

Чем отличаются диэлектрики от проводников

Для того чтобы исследовать явления, которые происходят при введении различных веществ в электрическое поле, рассмотрим свойства этих веществ.

Определение

Проводник — тело, в объёме которого находится большое количество свободных зарядов, которые перемещаются по всему объёму этого тела. Различают проводники с  электронной и ионной проводимостью. К первым относятся все металлы и сплавы. Ко вторым — электролиты, то есть водные растворы солей, щелочей, кислот и др.

Диэлектрик — тело, в объёме которого нет  свободных  зарядов. Диэлектрик состоит из нейтральных атомов или молекул. В нейтральном атоме все заряженные частицы тесно связаны друг с другом, в результате чего даже под воздействием электрического поля они не могут перемещаться по всему объёму тела. Поэтому диэлектрики практически не проводят электрический ток и имеют очень низкую электропроводность. К ним можно отнести стекло, смолы, лаки и т.д.

к содержанию ↑

Сравнение

В проводниках в отличие от диэлектриков, высокая концентрация свободных электрических зарядов. В металлах таковыми являются свободные электроны, которые способны передвигаться по всему объёму вещества. Возникновение свободных электронов обусловлено тем, что валентные электроны в атомах металлов весьма плохо взаимодействуют с ядрами и  легко теряют связь с ними.

У диэлектриков, напротив, электроны с атомами крепко связаны и не имеют возможности свободно перемещаться под воздействием электрического поля. И так как количество свободных заряженных носителей в диэлектриках ничтожно мало, из этого следует, что в них отсутствует электростатическая индукция, и напряжённость электрического поля внутри диэлектриков не превращается в ноль, а только уменьшается.

Напряжённость нельзя повышать безгранично, т. к. при определенной величине все заряды могут сместиться настолько, что произойдет изменение структуры материала, иными словами, произойдет пробой диэлектрика. В этом случае он потеряет свои изоляционные свойства.

к содержанию ↑

Выводы TheDifference.ru

  1. В проводнике свободные электроны, подвергающиеся влиянию сил электрического поля, перемещаются по всему объему.
  2. В отличие от проводника, в диэлектрике (изоляторе) нет свободных зарядов. Изоляторы состоят из нейтральных молекул или атомов. Заряды в нейтральном атоме друг с другом сильно связаны и не могут перемещаться под воздействием электрического поля по всему объёму диэлектрика.

Чем отличаются диэлектрики от проводников?

В соответствии с электрическими свойствами существуют два противоположных типа веществ. Это проводники и диэлектрики. Рассмотрим, чем отличаются диэлектрики от проводников. Проводниками называют тела, которые проводят электрический заряд от заряженного тела к незаряженному (или имеющему меньший заряд). Свойство проводить заряд через себя объясняется тем, что проводники имеют свободные носители заряда. Так, в металлах такими свободными носителями заряда являются электроны. В противоположность проводникам, диэлектрики являются изоляторами. Изоляторы – это вещества сквозь которые заряды не могут переходить от одного тела к другому. Яркими примерами диэлектриков являются: сухое дерево, эбонит, стекло.
Если тело из проводящего вещества поместить в электрическое поле, то произойдет разделение зарядов противоположных знаков в теле. Это явление носит название — электростатическая индукция. При внесении проводника в электрическое поле его свободные заряды приходят в движение. Они перераспределяются , что изменяет электрическое поле. Перемещение зарядов идет до тех пор, пока напряженность электрического поля внутри проводника не становится равной нулю. При этом свободные заряды распределяются на поверхности проводника так, что вектор напряженности электрического поля становится перпендикулярным его поверхности.  Поверхность проводника, не зависимо от формы, является эквипотенциальной в электрическом поле.

В диэлектрике, который помещен в электрическое поле, заряды не могут разделиться, там нет свободных зарядов. В электрическом поле происходит поляризация диэлектрика. Поляризация – это процесс смещения зарядов разных знаков в противоположные стороны (смещение происходит в пределах атома или молекулы). Результат поляризации проявляется в возникновении на поверхности диэлектрика связанных зарядов. При этом, вектор напряженности поля, которое создают связанные заряды, имеет направление противоположное вектору напряженности внешнего поля. При этом говорят, что диэлектрик ослабляет электрическое поле в раз по сравнению с тем же полем в вакууме. — диэлектрическая проницаемость вещества.

Диэлектрики отличие от полупроводников — Энциклопедия по машиностроению XXL

Однако в отличие от полупроводников во многих диэлектриках подвижность электронов и дырок чрезвычайно мала в сотни и даже в тысячи раз ниже, чем в полупроводниках. Столь низкие значения подвижности связаны с тем, что электроны находятся в этих веществах в связанном состоянии, образуя квазичастицы— поляроны.  [c.273]

Электропроводность диэлектриков в отличие от полупроводников чаще всего носит не электронный, а ионный характер. Это связано с тем, что ширина запрещенной зоны в диэлектриках АЯ >кГ и лишь ничтожное количество  [c.98]


Диэлектрики в отличие от полупроводников имеют более широкую запрещенную зону (до 7—10 эВ). Поэтому при обычных температурах они обладают очень низкой концентрацией свободных носителей заряда, обусловливающей чрезвычайно малую их электропроводность. Это позволяет использовать диэлектрические пленки в качестве изолирующих прокладок между металлами или металлами и полупроводниками в тонкопленочных и интегральных схемах.  
[c.271]

В отличие от металлов в полупроводниках и диэлектриках также возникает так называемый внутренний фотоэффект, состояш,ий в возбуждении электронов из валентной зоны в зону проводимости. Для внутреннего фотоэффекта энергия поглощенного светового кванта не должна быть меньше ширины запрещенной зоны (разность энергии между нижней границей зоны проводимости и верхней границей валентной зоны).  [c.345]

В отличие от диэлектриков и полупроводников в металлах валентная зона заполнена электронами либо частично, либо целиком, но при этом перекрывается со следующей разрешенной зоной. Заполненные состояния от незаполненных отделяются уровнем Ферми. Таким образом, уровень Ферми в металлах расположен в разрешенной зоне.  [c.255]

См/м) н проводимостью диэлектриков (ss 10 + 10 ° См/м). Таким образом, естественные полупроводники отличаются от диэлектриков более узкой запрещенной зоной. У диэлектриков ширина запрещенной зоны составляет несколько электрон-вольт, а у полупроводников-около 1 эВ. Например, у кремния и германия ширина запрещенных зон равна соответственно 1,1 и 0,75 эВ.  

[c.342]

Приближенная количественная оценка показывает, что в диэлектрике с шириной запрещенной зоны 3 эВ концентрация свободных носителей заряда при комнатной температуре должна составлять j 2 10 м . При подвижности носителей Ыр 10 м /(В с) (100 см /(В с)) удельная электропроводность такого диэлектрика должна быть порядка 7 10 Ом х X м» (7-10 Oм см ). В действительности столь низкая электропроводность в диэлектриках не наблюдается из-за наличия в них примесей и дефектов, создающих энергетические уровни в запрещенной зоне. Концентрация свободных носителей заряда в таких диэлектриках определяется фактически количеством и характером расположения донорных и акцепторных уровней в запрещенной зоне. У контакта же с металлом концентрация свободных носителей может существенно отличаться от концентрации в толще диэлектрика вследствие образования здесь слоев обогащения или обеднения. С подобным явлением мы уже встречались в гл. 8 при рассмотрении контакта металл — полупроводник.  

[c.272]

Полупроводниками называют вещества, удельное сопротивление которых при нормальной температуре находится между значениями удельных сопротивлений проводников и диэлектриков (в диапазоне от до 10 °…10 Омом). Основным свойством полупроводника является зависимость его электропроводности от воздействия температуры, электрического поля, излучения и других факторов. Полупроводники в отличие от проводников имеют отрицательный коэффициент температурного удельного сопротивления, электропроводность полупроводников с увеличением температуры растет экспоненциально.  [c.334]


Диэлектрики и полупроводники качественно подобны и те и другие имеют энергетическую щель в спектре электронных состояний. Однако в полупроводниках эта щель (запрещенная зона) гораздо меньше. Поэтому проводимость полупроводников заключена в широком интервале, разделяющем проводимость металлов и диэлектриков. Например, для кремния при 300 К а=5-10 См/м, а для германия а=2,5 См/м, что в 10 —10 раз превышает проводимость диэлектриков и в то же время в 10 —10 раз уступает проводимости металлов. Зависимость о Т) полупроводников лишь в исключительных случаях и в небольшом температурном интервале может носить металлический характер как правило, и в полупроводниках, и в диэлектриках температурные зависимости проводимости подобны. Ширина энергетической щели в германии равна 0,72 эВ, а в кремнии 1,12 эВ, в то время как в алмазе — диэлектрике е такой же кристаллической структурой — запрещенная зона равна 7 эВ. Таким образом, с точки зрения зонной теории полупроводники принципиально отличаются от металлов наличием энергетической щели, в то время ак между полупроводниками и диэлектриками есть только количественное отличие. Считается, что при Д
[c.16]

Ковалентные кристаллы полупроводников (типа кремния) в отличие от ионных кристаллов — диэлектриков —прозрачны в инфракрасной области спектра, так как энергия квантов этой частоты недостаточна для возбуждения свободных электронов. Поэтому кремний и германий па частотах 10″—10 Гц используются как весьма совершенные и прозрачные материалы оптических элементов инфракрасной техники. Следовательно, эти типичные полупроводники в определенном частотном диапазоне играют роль весьма совершенных диэлектриков, в то время как обычно применяемые в оптике стекла и ионные кристаллы в инфракрасной области сильно отражают и поглощают электромагнитные волны (в этом диапазоне находятся собственные частоты колебаний кристаллической решетки).  [c.17]

По современным представлениям электроны и дырки в кристаллах являются квантовыми возбужденными состояниями с отрицательным (—е) и положительным ( + е) зарядами соответственно. Важно отметить, что масса электрона или дырки в кристалле может существенно отличаться от массы т,, электрона в вакууме и, более того, зависит от направления движения электронов или дырок, являясь анизотропной (тензорной) величиной. Поэтому при описании электронного механизма электропроводности диэлектриков и полупроводников вводится представление об эффективной массе Шэф.  

[c.44]

Кристаллы и поликристаллы — важнейшие материалы электронной техники именно они используются во многих современных акустических, электронных и оптических приборах (см. гл. 5—7). В отличие от типичных полупроводников, в которых преобладает ковалентная связь атомов, кристаллические диэлектрики, в том числе пьезо-, пиро- и сегнетоэлектрики, характеризуются главным образом конной связью (хотя во многих случаях в них нельзя пренебрегать и другими видами связей [9]).  [c.82]

Методы, основанные на комбинационном рассеянии света, эллипсометрии и тепловом расширении дифракционной решетки (естественной или искусственной), также значительно уступают интерференционной термометрии по чувствительности и помехозащищенности. По чувствительности ЛИТ полупроводников и диэлектриков на 2-ь4 порядка превосходит другие методы, основанные на регистрации отраженного, проходящего или рассеянного света. Выбор толщины пластинки и длины волны зондирующего света позволяет в пределах нескольких порядков изменять температурную чувствительность. Это свойство обусловлено двухступенчатым преобразованием изменений температуры в изменения интенсивности отраженного света. Такая схема позволяет управлять усилением преобразования, в отличие от многих методов, где преобразование является одноступенчатым, т. е. отражает только определенное свойство материала и не допускает усиления или ослабления коэффициента преобразования путем выбора условий считывания.  

[c.175]

Полупроводники по удельному сопротивлению, которое при комнатной температуре составляет 10 — 10 Ом -м, занимают промежуточное положение между металлами и диэлектриками. Они обладают совокупностью специфических свойств, которые и выделяют их среди других веществ. В отличие от металлов полупроводники имеют в большом интервале температур отрицательный температурный коэффициент удельного сопротивления ТКр, т. е. положительный температурный коэффициент удельной проводимости ТКу (рис. И.1).  [c.47]


Удельное сопротивление серебра равно 1,62 X X 10″ Ом-м, меди 1,72-10″ Ом-м. Удельное сопротивление обычных металлов в любом случае менее 10 Ом-м имеет положительный температурный коэффициент, равный около 4-10-3 °С» . В сравнении с ними диэлектрики в большинстве своем характеризуются удельным сопротивлением 10 —Ю Ом-м. Удельное сопротивление проводников более чем на 15 порядков отличается от удельного сопротивления диэлектриков. Полупроводники имеют удельное сопротивление  
[c.308]

Ом-м и занимают промежуточное положение между диэлектриками и проводниками. Температурный коэффициент сопротивления диэлектриков и полупроводников в отличие от металлов отрицателен. Различия между проводниками, и полупроводниками и диэлектриками объясняются с помощью зонной теории.  [c.308]

Лазерный отжиг — процесс восстановления кристаллической структуры твердого тела, нарушенной радиационным воздействием. В отличие от обычного, он позволяет контролировать температуру и время нагрева поверхностных слоев различных материалов на заданную глубину. Лазерный отжиг применяется для полупроводников, диэлектриков, металлов и сплавов. Его особенность состоит в том, что, во-первых, ввиду малой глубины проникновения лазерного излучения (10 +10″ см) не происходит нарушений более глубоких слоев во-вторых, время действия лазерного излучения при импульсном облучении может быть чрезвычайно малым (нано- и пикосекундный диапазон).  [c.523]

В отличие от проводников электропроводность полупроводников, как правило, быстро возрастает с увеличением температуры, а удельное сопротивление соответствен о падает. Уменьшение удельного электросопротивления полупроводников при повышении температуры может достигать нескольких тысяч раз. При очень низких температурах полупроводники превращаются в диэлектрики (изоляторы).  [c.10]

Полупроводники. К полупроводникам относится широкий круг конструкционных материалов, электрическая проводимость которых ограничивается интервалом от 10 ° до 10 Ом см т. е. меньше, чем у металлов и больше, чем у диэлектриков. Б отличие от металлов и диэлектриков для полупроводников характер-  [c.183]

Полупроводники качественно отличаются от металлов природой химических связей, структурой и физико-механическими свойствами. От диэлектриков полупроводники отличаются лишь количественно. Полупроводники — это вещества, имеющие при нормальной температуре удельную проводимость в интервале 10″ —10 Ом» м , которая зависит от вида и количества примесей, структуры вещества и внешних условий температуры, давления, электрических и магнитных полей, освещения, облучения ядерными частицами. В соответствии с зонной теорией у металлов валентные электроны легко переходят на уровни зоны проводимости и все валентные электроны участвуют в создании тока. У полупроводника энергетическая зона валентных электронов занята полностью и отделена от зоны проводимости зоной запрещенных энергий. К полупроводникам относятся вещества, для которых запрещенная зона равна (0,16- -5,1) 10″ Дж. Вещества с большей шириной запрещенной зоны относятся к диэлектрикам. Основу полупроводникового прибора составляет кристалл полупроводникового материала с одним пли несколькими электронно-дырочными р—м-переходами, которые получают,, вводя разнообразные примеси в различные участки одного и того же кристалла.  [c.230]

ПОЛЯРИТОН, составная квазичастица, возникающая нри вз-ствии экситона или онтич. фонона с фотонами частоты (й=81п>, где 8 — энергия экситона или фонона. Свойства П., напр, их дисперсии закон, существенно отличаются от свойств как экситонов, так и фотонов. П. обусловливают особенности оптич. спектров полупроводников и диэлектриков в области экситонных или фононных полос поглощения.  [c.578]

ОТЛИЧИЕ СВОЙСТВ ДИЭЛЕКТРИКОВ ОТ СВОЙСТВ МЕТАЛЛОВ И ПОЛУПРОВОДНИКОВ  [c.9]

Твердые тела, которые являются диэлектриками при Т = О, но имеют такие энергетические щели, что тепловое возбуждение при температурах ниже точки плавления может обусловливать заметную проводимость, называются полупроводниками. Ясно, что не существует четкого различия между полупроводником и диэлектриком грубо говоря, в наиболее важных полупроводниках энергетическая щель обычно меньше 2 эВ, а часто составляет лишь несколько десятых электронвольта. Типичные удельные сопротивления полупроводников при комнатной температуре лежат в интервале между 10 и 10 Ом-см (в отличие как от металлов, где р 10 Ом-см, так и от хороших диэлектриков, у которых р может достигать 10 Ом-см).  [c.185]

Все отличие проводников и полупроводников от диэлектриков с точки зрения теории Максвелла заключается в ненулевой величине слагаемого, содержащего плотность тока проводимости в уравнении  [c.192]

Зонная структура твердого тела является результатом взаимодействия волновой функции электрона с рещеткой. Зонная структура позволяет найти частоты и направления, для которых волновая функция электрона может или не может проходить через решетку. Отражение электронной волны под углами Брэгга от кристаллографических плоскостей является идеально упругим и не вносит вклада в электрическое сопротивление. Для каждого кристалла и каждой электронной конфигурации условия Брэгга налагают определенные ограничения на направление волнового вектора и значения энергий, которые может принимать электронная волна. Эти ограничения в направлениях и значениях энергий приводят к появлению щелей в почти непрерывном спектре энергий и направлений. Именно эти щели (порядка 1 эВ для полупроводников и 5 эВ или больше для хороших диэлектриков) обусловливают сильнейшие различия между металлами, полупроводниками и диэлектриками (рис. 5.2). Для металлов характерно, что уровень Ферми оказывается внутри зоны, имеющей вакантные энергетические уровни. Полупроводники имеют полностью заполненную разрешенную зону. Ширина запрещенной зоны у них невелика, н поэтому ие большое число электронов при тепловом возбуждении может перейти в расположенную выше разрешенную зону. Диэлектрик отличается от полупроводника тем, что его запрещенная зона очень велика, и практически ни один возбужденный электрон не может ее преодолеть.  [c.190]


Первые попытки применения квантово-механической теории энергетического состояния электронов в диэлектриках и полупроводниках к интерпретации фотохимических и фотоэлектрических явлений в щелочно-галоидных кристаллах принадлежат П. С. Тар-таковскому [71]. На основе имевшихся в то время экспериментальных данных и общих соображений об энергетических уровнях в кристаллах Тартаковским впервые была построена схема энергетических уровней для ряда щелочно-галоидных соединений с учетом локальных электронных состояний различных центров окраски. Анализируя электронные переходы между различными уровнями энергии кристалла, можно было объяснить ряд оптических и фотоэлектрических свойств окрашенных кристаллов ще-лочно-галоидных соединений с единой точки зрения. Однако в отличие от полупроводников, для которых свет в области их фундаментального поглощения является фотоэлектрически активным, в щелочно-галоидных кристаллах не наблюдается внутреннего фотоэффекта под действием света в области первой полосы собственного поглощения. По этой причине попытки применения зонной теории к толкованию всей совокупности явлений, связанных с собственным поглощением, фотопроводимостью и люминесценцией щелочно-галоидных кристаллов наталкивались на существенные затруднения. Некоторые фундаментальные экспериментальные факты относительно свойств окрашенных щелочно-галоидных кристаллов не получили объяснения ни в энергетической схеме Тарта-ковского, ни в подобных более всеобъемлющих схемах, предлагавшихся позднее. В частности, оставалась совершенно непонятной сама возможность образования в кристалле столь устойчивой окраски под действием света или рентгеновых лучей, какая в действительности наблюдается у щелочно-галоидных кристаллов. В самом деле, при образовании в процессе фотохимического окрашивания свободных электронов, локализующихся затем на уровнях захвата, в верхней зоне заполненных уровней энергии должны образоваться свободные положительные дырки. Вследствие диффузии этих дырок в верхней зоне заполненных уровней вероятность их рекомбинации с электронами, локализованными в центрах окраски, должна быть достаточной, чтобы кристалл быстро обесцветился даже в темноте. Между тем, известно, что окраска кристалла весьма устойчива и сохраняется в темноте очень продолжительное время. Возможность локализации положительных дырок в предлагавшихся квантово-механических моделях не рассматривалась.  [c.30]

Электропроводность диэлектриков в отличие от полупроводников чаще всего носит не электронный, а ионный характер. Это связано с тем, что ширина запрещенной зоны в диэлектриках AW kT и лишь ничтожное количество электронов может отрываться от своих атомов за счет теплового движения. Ионы же часто оказываются слабо связанными в узлах решетки, и энергия W, необходимая для их срыва, сравнима с кТ, Например, в кристалле Na l = 6 эВ, а энергия  [c.123]

ЭЛЕКТРИЧЕСКИЙ ПРОБОЙ диэлектриков и полупроводников— резкое падение их электрич. сопротивления при достаточно высоком приложенном к образцу напряжении (см. также Пробой электрический). Э. п. отличается от теплового пробоя тем, что на подготовит, стадии пробоя ни разогрев, ни хим. процессы не имеют существенного значения, а также малым временем развития пробоя, слабой зависимостью пробивного напряжения от темп-ры. Э. п. обусловлен ударной ионизацией атомов и молекул электронами. Электрон получает возможность ударной ионизации, если энергия U, передаваемая ему электрич. полем, оказывается больше энергии U, теряемой электроном при рассеянии на фононах, дефектах и примесях кристаллич. рещётки. При этом электрон мо-  [c.514]

В качестве такого метода применяется сильнополевая туннельная ин-жекция заряда в диэлектрик, проводимая в режиме постоянного тока. В отличие от лавинной, режимы туннельной инжекции не зависят от характеристик области пространственного заряда полупроводника и определяются только параметрами границ раздела и самого диэлектрика. Использование туннельной инжекции позволяет точно дозировать ин-жекционную нагрузку структур и не требует создания специальных структур с инжекторами, т.е. она может проводиться в процессе формирования подзатворного диэлектрика до проведения металлизации.  [c.124]

Диэлектриками являются неионизованные газы, а также жидкости и твердые тела, характеризующиеся полностью заполненной электронами валентной зоной и полностью свободной зоной проводимости. Если термического возбуждения электронов на уровни зоны проводимости не происходит, то такие вещества ведут себя как изоляторы. При малой энергетической щели Д Е или при большей температуре эти вещества ведут себя как полупроводники. Диэлектрики и полупроводники, в отличие от металлических проводников, экспоненциально уменьшают объемное сопротивление при повышении температуры.  [c.320]

Ограничения методов ЛТ. Степень универсальности метода определяется количеством разнородных объектов, для которых возможна регистрация температурно-зависимого параметра и термометрия. Методы ЛТ являются узкоспециализированными, в отличие от универсального метода термометрии по тепловому излучению. Узрсая специализация методов ЛТ означает, что любой из них позволяет проводить измерения лишь для ограниченного набора материалов, а в некоторых случаях имеются еще дополнительные требования к геометрической форме образца и свойствам поверхности. Например, для применения метода лазерной интерференционной термометрии полупроводников и диэлектриков необходимо, чтобы образец имел форму плоскопараллельной пластины, которая прозрачна для зондирующего излучения и имеет достаточно гладкие поверхности (тогда пластина может выполнять роль интерферометра Фабри-Перо). Компенсировать узкую специализацию рсаждого из методов ЛТ удается их многочисленностью и разнообразием.  [c.201]

Полевые транзисторы в отличие от биполярных имеют большее входное сопротивление, обладают значительно большей стабильностью при изменении температуры, создают меньшего уровня шум, обладают более высокой стойкостью к действию ионизирующего излучения. Разновидностью полевых транзисторов являются транзисторы с изолированным затвором, или МДП-транзисторы (металл — диэлектрик — полупроводник) или МОП-транзисторы (металл — оксид — полупроводник). Различают МДП-транзисторы с собственным каналом, характеристики которого представлены на рис. 3.23, и МДП-транзисторы с индуцированным каналом, характеристики которого даны на рис. 3.24. Параметры МДП-транзисторов аналогичны параметрам полевых транзисторов, транзисхоры имеют те же преимущества, что и биполярные. По сравнению с полевыми транзисторами МДП-транзисторы имеют большее входное сопротивление, достигающее 10 …10 Ом, и меньшую входную ёмкость, что позволяет их использовать на частотах до сотен мегагерц.  [c.472]

Сущность внутреннего фотоэффекта состоит в том, что при освещении полупроводников и диэлектриков от некоторых атомов отрываются электроны, которые, однако (в отличие от внешне1 о фотоэффекта), не выходят через поверхность тела, а остаются внутри него. В результате внутреннего фотоэффекта сопротивление полупроводников и диэлектриков уменьшается.  [c.165]

В 1931 англ. физик А. Вильсон указал на то, что существование Т. т. с различными электрич. св-вами связано с хар-ром заполнения эл-нами энергетич. зон при Г=ОК. Если все зоны либо целиком заполнены эл-нами, либо пусты, то такие тела не проводят электрич. ток, т. е. являются диэлектриками (рис. 3, а). Т. т., имеющие зоны, частично заполненные эл-нами,— металлы (рис. 3, б). Полупроводники отличаются от диэлектриков малой шириной запрещённой зоны между последней заполненной (валентной) зоно11 и первой пустой. зоной (зоной проводимости, рис. 3, в).  [c.736]


В полупроводниках и диэлектриках порог Ф. э. /1СОо= д+Х, где а— ширина запрещённой зоны, % — сродство к электрону, представляет собой высоту потенц. барьера для электронов проводимости (рис. 1, б). В не сильно легированных ПП эл-нов проводимости мало, поэтому здесь, в отличие от металлов, рассеяние энергии фотоэлектронов на эл-нах проводимости роли не играет. В этих материалах фотоэлектрон теряет энергию при вз-ствии с эл-нами валентной зоны (ударная ионизация) или с тепловыми колебаниями кристаллической решётки (рождение фононов). Скорость рассеяния энергии и глубина.  [c.830]

Полупроводниковые твердые тела >, содержащие слабо связанные электроны, по величине электропроводности занимают промежуточное положение между металлами — хорошими проводниками тепла и электричества и дизлентриками — плохими проводниками тепла и электричества. Чистые полупроводники обладают смешанной (электронной и дырочной) проводимостью. С повышением температуры число свободных электронов увеличивается, в соответствии с этим увеличивается и доля электронной проводимости. При достаточно низких температурах все полупроводники становятся диэлектриками. В этом случае теплопроводность обусловливается главным образом упругими колебаниями решетки. Поэтому отличие полупроводников от диэлектриков носит скорее количественный, чем качественный характер.  [c.9]

ПОЛУПРОВОДНИКЙ — широкий класс веществ, в к-рых концентрация подвижных носителей заряда значительно ниже, чем концентрация атомов, в может изменяться под влиянием теми-ры, освещения иля относительно малого кол-ва примесей. Эти свойства, а также увеличение проводимости с ростом темп-ры, качественно отличают П. от металлов. Различие между П. и диэлектриками носит условный характер, к диэлектрикам обычно относят вещества, уд. сопротивление р к-рых при комнатной темп-ре (7″ = 300 К) >104—10 Ом-см.  [c.35]


Глава 19. Проводники и диэлектрики в электрическом поле

В школьном курсе физики есть раздел, посвященный электрическим свойствам проводников и диэлектриков и их поведению во внешнем электрическом поле. В необходимый минимум знаний по этому вопросу входит понимание явления электростатической индукции и его механизмов в проводниках и диэлектриках, а также умение находить в простейших ситуациях индуцированные в проводниках и диэлектриках заряды. Кратко рассмотрим эти вопросы.

В состав атомов входят заряженные частицы (электроны и протоны). Поэтому любое тело содержит огромное количество зарядов. Число протонов и число электронов в составе незаряженного тела одинаково, заряженное тело содержит разные количества протонов и электронов.

В зависимости от того, являются ли заряды внутри тела свободными или связанными, все вещества делятся на проводники, диэлектрики (или изоляторы) и полупроводники. В проводниках электрические заряды могут свободно перемещаться, и потому такие тела проводят электрический ток. К проводникам относятся все металлы, в которых носителями заряда являются «оторвавшиеся» от атомов валентные электроны (свободные электроны), а также растворы электролитов (кислот, щелочей и солей), в которых перемещаются положительные и отрицательные ионы.

В диэлектриках все заряды «привязаны» к покоящимся атомам и не могут перемещаться. Поэтому диэлектрики не проводят электрический ток. К диэлектрикам, например, относятся: газы, пластмассы, эбонит, резина, дистиллированная вода.

Вещества, занимающие по своей проводимости промежуточное положение между проводниками и диэлектриками, называются полупроводниками. Типичными полупроводниками являются кристаллические германий и кремний. В полупроводниках свободные носители заряда есть, но их мало. Не следует, однако, думать, что полупроводники являются просто «плохими» проводниками или «плохими» изоляторами. Промежуточная проводимость полупроводников приводит ко многим необычным их свойствам, которые отличают полупроводники как от проводников, так и от диэлектриков. С этими свойствами связаны многие применения полупроводников в технике.

При помещении проводника в электрическое поле свободные носители заряда внутри проводника перемещаются и на его поверхности образуются области положительного и отрицательного заряда. Такое явление разделения зарядов в проводнике под действием внешнего электрического поля называется электростатической индукцией или поляризацией проводника. В результате поляризации электрическое поле в пространстве изменяется и становится равным сумме внешнего поля и поля индуцированных зарядов. Можно доказать, что перемещение зарядов в проводнике будет происходить до тех пор, пока суммарное поле внутри проводника не станет равным нулю, а на его поверхности — перпендикулярным поверхности.

Такое свойство проводника позволяет находить индуцированные на его поверхности заряды. Для этого нужно ввести эти заряды как некоторые неизвестные величины, затем найти поле, создаваемое этими зарядами и суммарное поле, равное векторной сумме внешнего поля и поля индуцированных зарядов, приравнять суммарное поле внутри проводника к нулю. Решение полученного уравнения и позволит найти индуцированные заряды.

В диэлектрике поляризация также происходит, однако механизмы этого явления — другие. Как правило, молекулы диэлектрика являются полярными, т.е. какая-то область молекулы заряжена положительно, какая-то — отрицательно. При помещении диэлектрика во внешнее поле молекулы поворачиваются, и на определенные участки поверхности диэлектрика «выходят» своими положительными областями, на другие — отрицательными. В результате на поверхности диэлектрика образуются области положительного и отрицательного заряда, но при разрезании диэлектрика (в отличие от разрезания проводника) получившиеся части будут незаряженными. Благодаря поляризации диэлектрика поле в нем ослабляется, но не становится равным нулю. Характеристика диэлектрика , которая показывает, во сколько раз ослабляется поле в нем, называется диэлектрической проницаемостью.

Рассмотрим в рамках данного фактического материала задачи первой части.

В задаче 19.1.1 из нижеперечисленного списка веществ проводником электрического тока является металл — свинец (ответ 3).

В задаче 19.1.2 диэлектриком является мел (ответ 1; алюминий и железо — металлы, т.е. проводники тока, в водопроводной воде растворены различные соли в таком количестве, что она является прекрасным проводником электрического тока).

Как отмечалось ранее, при внесении металлического тела в электрической поле (задача 19.1.3) на поверхности тела индуцируются электрические заряды, сумма которых равна нулю. Все остальные предложенные ответы неверны: для приобретения электрического заряда телу нужно сообщить или забрать у него электроны, заряды не могут индуцироваться в объеме проводника — их невозможно там удержать.

Взаимодействие между зарядом и незаряженным диэлектрическим телом возникает (задача 19.1.4), причем это взаимодействие –— притяжение (ответ 2). Это взаимодействие возникает благодаря поляризации: из-за ориентации молекул диэлектрика часть поверхности тела, обращенная к заряду, приобретает заряд противоположного знака, дальняя от заряда часть поверхности тела — заряд того же знака (см. рисунок).

Поэтому возникнет две силы — притяжение близких участков и отталкивание дальних. Но поскольку индуцированные заряды — одинаковы по величине, а кулоновское взаимодействие убывает с ростом расстояния, притяжение сильнее отталкивания, и тело будет притягиваться к заряду.

Как указывалось во введении к настоящей главе, части металлического тела, внесенного в электрическое поле и разрезанного там (задача 19.1.5) будут заряжены. Поскольку направление вектора напряженности совпадает с направлением силы, действующей на положительный заряд, часть будет заряжена положительно, часть — отрицательно (ответ 2). Если тело является диэлектриком, то его части будут незаряженными (задача 19.1.6 — ответ 1).

После соединения проводником (задача 19.1.9) два металлических тела и соединяющий проводник будут представлять собой единое проводящее тело. Поэтому потенциалы любых точек этого тела должны быть одинаковы. Следовательно, выровняются потенциалы сфер (ответ 1).

В задачах с заземлением (задача 19.1.10) рассматривается следующая модель Земли: это проводящий шар с размерами, много большими размеров любых тел, имеющихся в задаче. Поэтому для потенциала Земли можно использовать формулу (18.8), которая для любых зарядов, с которыми мы имеем дело, дает нулевой результат. Поэтому при заземлении тела его потенциал становится равным нулю (ответ 2).

Сила взаимодействия противоположных электрических зарядов при внесении между ними диэлектрической пластинки (задача 19.2.1) увеличится (ответ 2). Действительно, в поле зарядов на поверхности пластинки будут индуцироваться заряды: ближе к положительному — минусы, ближе к отрицательному — плюсы (см. рисунок). В результате на каждый точечный наряду с той же самой силой притяжения к другому заряду (а она, конечно, не меняется, ведь принцип суперпозиции говорит о том, что все заряды взаимодействуют независимо) будут действовать две дополнительные силы. Это будет сила притяжения к зарядам того же знака и отталкивания от зарядов противоположного. А поскольку заряды противоположного знака ближе, сила притяжения будет больше. Возникновение дополнительной силы, направленной к пластинке, будет восприниматься как увеличение силы притяжения.

Как отмечалось выше (задача 19.1.7) потенциал электрического поля во всех точках проводящего тела одинаков. Поэтому можно ввести понятие потенциала проводящего тела, который определяется как потенциал электрического поля в любой точке этого тела. Поэтому для потенциала металлического шара из задачи 19.2.2 имеем , где , — заряд шара, — его радиус. Потенциал поля шара на расстоянии двух радиусов от его поверхности и, следовательно, трех радиусов от центра шара равен , т.е. одной трети от потенциала шара. Отсюда находим В (ответ 2).

Потенциал каждой капли ртути (задача 19.2.3) равен , где , — заряд капли, — ее радиус. После слияния заряд большой капли равен , а радиус , где — число капель (последнее следует из того, что объем большой капли равен сумме объемов капель). Отсюда находим потенциал большой капли

(ответ 2).

Поскольку после соединения шары будут представлять собой единое металлическое тело (задача 19.2.4), то заряд разделится между ними так, что потенциалы шаров будут одинаковы. Поэтому для зарядов шаров и выполнено условие

Отсюда находим (ответ 4).

Согласно принципу суперпозиции потенциал каждой точки складывается из потенциала, создаваемого в этой точке всеми зарядами. Поэтому потенциалы и внутренней и внешней сферы (задача 19.2.5) создаются зарядами внутренней и внешней сфер. А поскольку потенциал в любой точке внутри сферы определяется ее радиусом сферы (см. (18.8)), получаем

Аналогично находим потенциал внешней сферы

Отсюда находим

(ответ 3).

Чтобы найти разность потенциалов между двумя проводниками нужно мысленно перенести пробный заряд с одного из них на другой, найти работу, совершаемую электрическим полем при этом, разделить работу на величину пробного заряда. В задаче 19.2.6 между пластинками будет однородное поле с напряженностью . Поэтому работа поля над пробным зарядом при его перемещении с одной пластинки на другую есть . С другой стороны, работа поля следующим образом связана с разностью потенциалов . Отсюда находим разность потенциалов пластин

(ответ 3).

Поскольку напряженность поля между двумя параллельными пластинками, заряженными одинаковым зарядом равна нулю (см. задачу 18.2.8), то при перенесении пробного заряда с одной пластины на другую поле не совершает работу. Следовательно, разность потенциалов между такими пластинками в задаче 19.2.7 равна нулю (ответ 4).

В задаче 19.2.8 заряды распределятся только по внешней поверхности полого шара (если бы весь заряд или какая-то его часть находилась на внутренней поверхности, то в объеме проводника было бы электрическое поле, чего быть не должно). А поскольку заряд, расположенный на поверхности сферы, создает поле только снаружи этой сферы, то напряженность будет отлична от нуля только в области 3. Поэтому правильный ответ в задаче — 4.

В задаче 19.2.9 заряды индуцируются и на внешней и на внутренней поверхностях полого шара, причем их сумма равна нулю. Результирующее поле будет создаваться центральным зарядом и индуцированными зарядами, которые, фактически, представляют собой равномерно заряженные сферы. А поскольку поле сферы равно нулю внутри этой сферы, то суммарное поле в полости (в области 1) равно полю точечного заряда, т.е. не равно нулю. Внутри металлического тела (в области 2) поле равно нулю, как и внутри любого проводника. Снаружи шара поля индуцированных зарядов компенсируют друг друга, поэтому суммарное поле равно полю точечного заряда, т.е. не равно нулю. Поэтому правильный ответ в этой задаче — 2.

В задаче 19.2.10 на внешней и внутренней поверхности сферической оболочки будут индуцироваться такие заряды, что суммарное поле (внешнее плюс поле индуцированных зарядов) внутри оболочки будет равняться нулю. Пусть на внутренней поверхности будет индуцирован заряд — , тогда на внешней поверхности будет индуцирован заряд . Поле внутри оболочки (в области 2) будет создаваться только точечным зарядом и зарядами внутренней поверхности (заряд внешней поверхности благодаря ее сферичности в этой области электрического поля не создает). С другой стороны это поле равно нулю. Отсюда заключаем, что заряд внутренней поверхности оболочки противоположен по знаку центральному точечному заряду и равен ему по величине . Следовательно, заряд внешней поверхности оболочки центральному заряду (ответ 1).

Проводники и диэлектрики в электротехнике имеют большое значение.

Все вещества условно, в зависимости от электрических свойств, делятся на две категории — проводники и ди­электрики.
В настоящий момент промышленность имеет огромный ассортимент проводников и диэлектриков (изоляторов). И их ассортимент постоянно растет.

Проводники

Проводники характеризуются хорошей электропроводностью, т. е. большим количеством свободных электрически заряженных частиц (электронов или ионов), которые могут перемещаться под действием сил поля по проводнику.

Проводники первого рода

Существуют два рода проводников. Проводниками -первого ро­да, в которых возможно перемещение только электронов, являют­ся металлы. В металлических проводниках электроны, располо­женные на внешних орбитах атомов, сравнительно слабо связаны с их ядрами, отчего часть электронов, оторвавшихся от своих ядер, перемещается между атомами, переходя из сферы действия одного ядра в сферу действия другого и заполняя пространство между ними наподобие газа. Эти электроны -принято называть свободными электронами или электронами про­водимости. Свободные электроны находятся в состоянии бес­порядочного (теплового) движения в отличие от положительно заряженных ионов металла, составляющих остов проводника, об­ладающих весьма малой подвижностью и совершающих лишь не­большие колебания около своего среднего положения.

Проводники второго рода

В проводниках второго рода, называемых электролита­ми (водные растворы кислот, солей, щелочей и оснований), под действием растворителя молекулы вещества распадаются на от­рицательные и положительные ионы, которые подобно электро­нам в металлических проводниках могут перемещаться по всему объему проводника.

Диэлектрики

Вещества, число свободных электронов в которых ничтожно мало, называются непроводниками (диэлектриками или изоляторами).К ним относятся газы, часть жидких тел (мине­ральные масла, лаки) и почти все твердые тела, за исключением металлов и угля.

Лучшим непроводником электрического тока является вакуум. Газы, в том числе и воздух, также являются хорошими изоляторами.

Проводники и диэлектрики в электрическом поле

Однако при некоторых условиях, например в сильном электри­ческом поле, происходит расщепление молекул диэлектрика на ионы, и вещество, которое при отсутствии электрического поля или в слабом поле было изолятором, становится проводником. Напряженность электрического поля, при которой начинается ио­низация молекул диэлектрика, называется пробивной на­пряженностью (электрической прочностью) диэлектрика. Величина напряженности электрического поля, которая допус­кается в диэлектрике при его использовании в электрической ус­тановке, называется допускаемой напряженностью. Допускаемая напряженность обычно в несколько раз меньше пробивной.

На электрические свойства газов оказывают сильное влияние давление и температура.

В качестве примера приведем значения пробивной напряженности в кв!см для некоторых диэлектриков:
воздух — 30,
масло минеральное (трансформаторное) — 50—150,
электрокартон — 100,
фарфор — 80-150,
слюда — 800-2000.

Проводники и диэлектрики 8 класс видео:

Сведения о проводниках, диэлектриках, сверхпроводимости, что такое заземляющий проводник

Понятия проводников и диэлектриков получили широкое распространение в связи с использованием электроэнергии. Их суть заключается в различном поведении в электрическом поле и в отношении переноса электрических зарядов. Если не рассматривать идеальные случаи, то граница между проводниками и диэлектриками несколько размыта. При определенных условиях вещество, являющееся проводником, может проявить свойства диэлектрика и наоборот.

Проводники и изоляторы

Проводники

К проводникам относятся вещества, которые способны оказывать наименьшее сопротивление протекающему току. Поскольку электрический ток, например, передаваемый по проводам, представляет собой движение заряженных частиц под действием электрического поля, то проводимость обеспечивается наличием достаточного их количества. Носителями могут выступать:

  • Электроны;
  • Ионы.

Если принять верхнюю границу удельного сопротивления проводников 10-5 Ом·м, то к ним относятся металлы, растворы солей, ионизированный газ (плазма).

Разряд плазмы в тиратроне

Большинство металлов являются хорошими проводниками. Наилучшим проводником является серебро.

Проводники электрического тока, у которых носителями заряда являются электроны, а это, в основном, твердые вещества, в том числе и металлы, относятся к проводникам первого рода. Те вещества, у которых проводимость обеспечивается при помощи ионов (растворы, плазма), относятся к проводникам второго рода.

Такой элемент, как углерод, имея разную структуру, проявляет двоякие свойства. Так, в виде графита или угля он является хорошим проводником, а алмаз – практически идеальным изолятором.

Проводимость большинства веществ сильно зависит от посторонних примесей. Самый простой пример – вода. В зависимости от степени очистки, удельное сопротивление воды может изменяться в десятки и сотни раз. Проводимость воды вызвана наличием ионов при электролитической диссоциации растворенных примесей. Очищенная вода (дистиллят) обладает свойствами диэлектрика.

Свойство воды изменять сопротивление в различных условиях следует учитывать при монтаже заземлителей, поскольку проводящие свойства грунта во многом зависят от наличия в нем влаги и солей. Заземляющие проводники, выполняющие свои функции в обычную погоду, в период засухи или полного промерзания грунта у заземляемых конструкций практически полностью теряют свои функции. Наоборот, те устройства, которые заземлились в неблагоприятных условиях: в засуху или мороз, при обычной погоде многократно повышают безопасность.

Заземление

Диэлектрики

В отличие от проводников, диэлектрики не проводят электроток, то есть являются изоляторами. Принято относить к диэлектрикам материалы, у которых удельное электрическое сопротивление составляет 108 Ом·м и выше.

Диэлектрики характеризуются большим количеством параметров, которые имеют различную степень важности, в зависимости от области применения. До начала развития электроники диэлектрики использовались, в подавляющем большинстве, в качестве изоляционных материалов. В данной области основным параметром диэлектриков являлось их удельное сопротивление, пробивное напряжение (электрическая прочность).

Остальные параметры относятся к физико-химическим свойствам:

  • Плотность;
  • Прочность;
  • Температура плавления;
  • Гигроскопичность.

Последний параметр важен тем, что наличие влаги в составе материала резко снижает удельное сопротивление и в определенных условиях может перенести хороший диэлектрик в область проводников (сухая древесина – влажная древесина).

Диэлектрические перчатки

Диэлектрики, работающие в цепях с высокочастотным током, классифицируются по:

  • Диэлектрической проницаемости;
  • Тангенсу угла потерь.

Данные характеристики являются основополагающими при изготовлении конденсаторов.

Ряд уникальных свойств присутствует только у диэлектриков и позволяет конструировать на их основе радиоэлектронные компоненты специального назначения. Это такие свойства, как:

  • Пьезоэлектричество;
  • Сегнетомагнетизм;
  • Сегнетоэлектричество;
  • Пироэлектричество;
  • Электретность.

Пьезоэлектрический излучатель

Основное назначение диэлектриков, как изоляционных материалов – предохранение утечек тока и предотвращение несчастных случаев и аварий. Данные мероприятия зачастую дублируют, устанавливая заземляющие проводники, которые отводят нежелательный потенциал на корпусе аппаратуры на заземление.

Полупроводники

Данный класс веществ занимает промежуточное место между проводниками и диэлектриками. Полупроводники характеризуются сильной зависимостью проводимости от концентрации примесей, причем, в отличие от проводников, проводимость может иметь иную природу. Все зависит от того, каким образом атомы примесей встраиваются в кристаллическую решетку исходного вещества.

Если в металлах и жидкостях ток вызван движением свободных электронов или ионов, то в полупроводниках для высвобождения свободных электронов требуется некоторая энергия, поэтому при повышении температуры проводимость полупроводников увеличивается, а при понижении они начинают приобретать свойства диэлектриков. Увеличение сопротивления объясняется отсутствием свободных носителей заряда при низких температурах. Еще одна особенность – наличие «дырочной проводимости». Дырка – это виртуальный положительный заряд, вызванный отсутствием электрона в оболочке атома. Электрон с соседней оболочки может занять это место, и тогда получится, что положительный заряд сместится на его место. К полупроводниковым материалам неприменима формула сопротивления проводников.

К наиболее известным полупроводниковым материалам относятся кремний, германий, галлий, индий, селен. В настоящее время в основном только кремний и германий используются в чистом виде, а во многих областях электроники находят применение сложные полупроводники, которые представляют собой химические соединения: арсенид галлия, сульфид цинка и другие.

Монокристалл германия

Сверхпроводимость

Некоторые вещества, охлажденные до температуры вблизи абсолютного нуля, скачкообразно теряют свое сопротивление току, которое не просто уменьшается, а исчезает полностью. При этом длина проводника может иметь абсолютно любое значение, ограниченное только объемом охлаждающего сосуда. Открытие данного явления положило начало изучению сверхпроводимости и путям его практического использования. Основным препятствием широкому распространению сверхпроводящих материалов являются большие затраты на создание и поддержку низких температур в диапазоне единиц градусов Кельвина (температура жидкого гелия).

В результате исследований созданы материалы, которым свойственна высокотемпературная сверхпроводимость. Температура перехода в сверхпроводящее состояние у таких веществ составляет уже десятки и сотни градусов Кельвина, что позволяет использовать более дешевый сжиженный азот вместо дорогостоящего гелия.

Высокотемпературные сверхпроводники нашли распространение при изготовлении мощных электромагнитов ускорителей частиц. Изготовление источников электромагнитного поля из традиционной меди затрудняется ввиду огромных токов, которые вызывают нагрев обмоток.

Сверхпроводящий материал, не имея сопротивления, не подвержен тепловому действию тока и может коммутировать любую мощность.

Для сверхпроводников характерен эффект Мейснера, который заключается в том, что линии внешнего магнитного поля выталкиваются за пределы сверхпроводника, и внутри его магнитное поле отсутствует.

Сверхпроводящий кабель

Как уже говорилось, проводники и диэлектрики не всегда имеют четкую границу между собой, поэтому для различных сфер применения оговариваются  пределы проводимости для отдельных веществ и материалов с учетом условий применения. Следует учитывать, что многие диэлектрики, оказывающие большое сопротивление постоянному току, могут работать совсем иначе, когда к ним приложено переменное напряжение.

Видео

Оцените статью:

Проектируем электрику вместе: Проводники и диэлектрики. Полупроводники

Сопротивление проводников. Проводимость. Диэлектрики. Применение проводников и изоляторов. Полупроводники.

Физические вещества многообразны по своим электрическим свойствам. Наиболее обширные классы вещества составляют проводники и диэлектрики.

Проводники

Основная особенность проводников – наличие свободных носителей зарядов, которые участвуют в тепловом движении и могут перемещаться по всему объему вещества.
Как правило, к таким веществам относятся растворы солей, расплавы, вода (кроме дистиллированной), влажная почва, тело человека и, конечно же, металлы.

Металлы считаются наиболее хорошими проводниками электрического заряда.
Есть также очень хорошие проводники, которые не являются металлами.
Среди таких проводников лучшим примером является углерод.

Все проводники обладают такими свойствами, как сопротивление и проводимость. Ввиду того, что электрические заряды, сталкиваясь с атомами или ионами вещества, преодолевают некоторое сопротивление своему движению в электрическом поле, принято говорить, что проводники обладают электрическим сопротивлением (R).
Величина, обратная сопротивлению, называется проводимостью (G).

G = 1/ R

То есть, проводимостьэто свойство или способность проводника проводить электрический ток.
Нужно понимать, что хорошие проводники представляют собой очень малое сопротивление потоку электрических зарядов и, соответственно, имеют высокую проводимость. Чем лучше проводник, тем больше его проводимость. Например, проводник из меди имеет большую проводимость, чем проводник из алюминия, а проводимость серебряного проводника выше, чем такого же проводника из меди.

Диэлектрики

В отличие от проводников, в диэлектриках при низких температурах нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

К диэлектрикам относятся, в первую очередь, газы, которые проводят электрические заряды очень плохо. А также стекло, фарфор, керамика, резина, картон, сухая древесина, различные пластмассы и смолы.

Предметы, изготовленные из диэлектриков, называют изоляторами. Надо отметить, что диэлектрические свойства изоляторов во многом зависят от состояния окружающей среды. Так, в условиях повышенной влажности (вода является хорошим проводником) некоторые диэлектрики могут частично терять свои диэлектрические свойства.

О применении проводников и изоляторов

Как проводники, так и изоляторы широко применяются в технике для решения различных технических задач.

К примеру, все электрические провода в доме выполнены из металла (чаще всего медь или алюминий). А оболочка этих проводов или вилка, которая включается в розетку, обязательно выполняются из различных полимеров, которые являются хорошими изоляторами и не пропускают электрические заряды.

Нужно отметить, что понятия «проводник» или «изолятор» не отражают качественных характеристик: характеристики этих материалов в действительности находятся в широком диапазоне – от очень хорошего до очень плохого.
Серебро, золото, платина являются очень хорошими проводниками, но это дорогие металлы, поэтому они используются только там, где цена менее важна по сравнению с функцией изделия (космос, оборонка).
Медь и алюминий также являются хорошими проводниками и в то же время недорогими, что и предопределило их повсеместное применение.
Вольфрам и молибден, напротив,  являются плохими проводниками и по этой причине не могут использоваться в электрических схемах (будут нарушать работу схемы), но высокое сопротивление этих металлов в сочетании с тугоплавкостью предопределило их применение в лампах накаливания и высокотемпературных нагревательных элементах.

Изоляторы также есть очень хорошие, просто хорошие  и плохие. Связано это с  тем, что в реальных диэлектриках также есть свободные электроны, хотя их очень мало. Появление свободных зарядов даже в изоляторах обусловлено тепловыми колебаниями электронов: под воздействием высокой температуры некоторым электронам все-таки удается оторваться от ядра и изоляционные свойства диэлектрика при этом ухудшаются. В некоторых диэлектриках свободных электронов больше и качество изоляции у них, соответственно, хуже. Достаточно сравнить, например, керамику и картон.

Самым лучшим изолятором является идеальный вакуум, но он практически не достижим на Земле. Абсолютно чистая вода также будет отличным изолятором, но кто-нибудь видел ее в реальности? А вода с наличием каких-либо примесей уже является достаточно хорошим проводником.
Критерием качества изолятора является соответствие его функциям, которые он должен выполнять в данной схеме. Если диэлектрические свойства материала таковы, что любая утечка через него ничтожно мала (не влияет на работу схемы), то такой материал считается хорошим изолятором.
 
Полупроводники

Существуют вещества, которые по своей проводимости занимают промежуточное место между проводниками и диэлектриками.
Такие вещества называют полупроводниками. Они отличаются от проводников сильной зависимостью проводимости электрических зарядов от температуры, а также от концентрации примесей и могут иметь свойства, как проводников, так и диэлектриков.

В отличие от металлических проводников, у которых с ростом температуры проводимость уменьшается, у полупроводников проводимость растет  с увеличением температуры, а сопротивление, как величина обратная проводимости — уменьшается.

При низких температурах сопротивление полупроводников, как видно из  рис. 1, стремится к бесконечности.
Это значит, что при температуре абсолютного нуля полупроводник не имеет свободных носителей в зоне проводимости и в отличие от проводников ведёт себя, как диэлектрик.
При увеличении температуры, а также при добавлении примесей (легировании) проводимость полупроводника растет и он приобретает свойства проводника. 

Рис. 1. Зависимость сопротивлений проводников и полупроводников от температуры

Примерами классических полупроводников являются такие химические элементы, как кремний (Si) и германий (Ge). Более подробно об этих элементах читайте в статье «О проводимости полупроводников».

Статьи по теме: 1. Что такое электрический ток?
                            2. Постоянный и переменный ток
                            3. Взаимодействие электрических зарядов. Закон Кулона
                            4. Направление электрического тока
                            5. О скорости распространения электрического тока
                            6. Электрический ток в жидкостях 
                            7. Проводимость в газах
                            8. Электрический ток в вакууме
                            9. О проводимости полупроводников

Внимание!
Всех интересующихся практической электротехникой приглашаю на страницы своего нового сайта «Электрика для дома». Сайт посвящен основам электротехники и электричества с акцентом на домашние электрические установки и процессы, в них происходящие.

В чем основная разница между проводником и диэлектриком

проводник

: Материал, содержащий подвижные электрические заряды. диэлектрик: Электроизолирующий или непроводящий материал, рассматриваемый в связи с его электрической восприимчивостью (т. е. его свойством поляризации при воздействии внешнего электрического поля). Проводник: Материал, содержащий подвижные электрические заряды. диэлектрик: электроизоляционный электроизоляционный электроизоляционный материал, в котором электрический ток не протекает свободно.Атомы изолятора имеют прочно связанные электроны, которые не могут легко перемещаться. Отличительной чертой изолятора является его удельное сопротивление; изоляторы имеют более высокое удельное сопротивление, чем полупроводники или проводники. https://en.wikipedia.org › wiki › Изолятор_(электричество)

Изолятор (электричество) — Википедия

или непроводящий материал, рассматриваемый в связи с его электрической восприимчивостью (т. е. его свойством поляризации при воздействии внешнего электрического поля).

В чем основное различие между диэлектриком и изолятором?

Итак, в чем разница между диэлектриком и изолятором? Изоляторы — это материалы, которые не проводят электричество в электрическом поле, так как не имеют свободных электронов. С другой стороны, диэлектрики — это изоляторы, которые можно поляризовать.

В чем принципиальная разница между проводниками и изоляторами?

Проводники обеспечивают перенос заряда за счет свободного движения электронов.В отличие от проводников изоляторы представляют собой материалы, препятствующие свободному потоку электронов от атома к атому и от молекулы к молекуле.

В чем разница между проводником и проводимостью?

В качестве существительных разница между дирижером и кондукцией заключается в том, что дирижер — это тот, кто проводит или ведет; Руководство; директор, в то время как проводимость — это (физика) передача тепла или электричества через материал.

В чем разница между плохими проводниками и диэлектриками?

В чем разница между изолятором и плохим проводником электричества? Вещества, не пропускающие электричество, называются изоляторами.Вещества, пропускающие через себя очень мало электричества, называются плохими проводниками. Они не пропускают электричество через себя.

Что такое диэлектрический пример?

На практике большинство диэлектрических материалов являются твердыми. Примеры включают фарфор (керамику), слюду, стекло, пластик и оксиды различных металлов. Сухой воздух является отличным диэлектриком и используется в конденсаторах переменной емкости и некоторых типах линий передачи. Дистиллированная вода является хорошим диэлектриком.

Почему его называют диэлектриком?

Диэлектрики — это материалы, которые не пропускают ток.Их чаще называют изоляторами, потому что они являются полной противоположностью проводникам. Этот процесс называется пробоем диэлектрика, потому что диэлектрик переходит из изолятора в проводник.

Какой металл является лучшим проводником электричества?

Какой металл является лучшим проводником электричества? Серебряный. Лучшим проводником электричества является чистое серебро, но неудивительно, что это не один из наиболее часто используемых металлов для проведения электричества. Медь. Одним из наиболее часто используемых металлов для проведения электричества является медь.Алюминий.

Что такое общий проводник?

Проводники очень легко проводят электрический ток из-за наличия в них свободных электронов. Некоторые распространенные проводники — это медь, алюминий, золото и серебро. Некоторыми распространенными изоляторами являются стекло, воздух, пластик, резина и дерево.

Какие 10 примеров проводников?

10 электрических проводников, серебро. Золото. Медь. Алюминий. Меркурий. Сталь. Железо. Морская вода.

Которые не пропускают через себя электричество?

Материалы, не пропускающие электричество, называются изоляторами.Пластик — хороший изолятор.

Является ли металл проводником?

Металлы – это элементы, хорошо проводящие электрический ток и тепло. Они также имеют тенденцию быть блестящими и гибкими, как медная проволока. Большинство элементов в периодической таблице являются металлами.

Что такое хороший проводник?

Хорошими проводниками являются такие материалы, которые позволяют электричеству легко проходить через них. Плохие проводники — это те материалы, которые не позволяют электричеству легко проходить через них.Пример – медь, алюминий. Пример – резина, дерево. Может использоваться для создания электрических цепей.

Какие бывают плохие проводники?

Неметаллы обычно являются плохими проводниками или изоляторами. Металлы, с другой стороны, являются хорошими проводниками. Некоторыми другими примерами плохих проводников электричества являются слюда, бумага, дерево, стекло, резина, тефлон и т. д. Некоторыми примерами плохих проводников тепла являются воздух, свинец и т. д.

Какой плохой проводник?

Материалы, плохо проводящие электричество, называются изоляторами.Некоторыми примерами являются дерево, стекло, пластмассы, неметаллические элементы, которые представляют собой полимеры углеводородов.

Почему правильно говорить «плохие проводники» вместо «плохие проводники»?

При определенных условиях большинство материалов могут проводить электричество. Следовательно, предпочтительнее классифицировать материалы как хорошие проводники и плохие проводники, а не классифицировать их как проводники и изоляторы. Материалы, которые не позволяют электрическому току легко проходить через них, являются плохими проводниками электричества.

Где используется диэлектрик?

Диэлектрические материалы используются во многих приложениях, таких как: электронные компоненты, такие как конденсаторы (отвечают за свойства аккумулирования энергии устройства) материалы с высоким K / низким K, широко используемые в полупроводниках для повышения производительности и уменьшения размера устройства (где K относится к диэлектрическая проницаемость или диэлектрическая проницаемость).

Какие два типа диэлектрика?

В зависимости от типа молекул, присутствующих в материалах, диэлектрики подразделяются на два типа – полярные и неполярные диэлектрические материалы.Полярные диэлектрические материалы. Неполярные диэлектрические материалы.

Что вы подразумеваете под диэлектриком?

Диэлектрик, изоляционный материал или очень плохой проводник электрического тока. Когда диэлектрики помещаются в электрическое поле, в них практически не течет ток, потому что, в отличие от металлов, в них нет слабо связанных или свободных электронов, которые могут дрейфовать через материал. Вместо этого возникает электрическая поляризация.

Что понимают под диэлектрическими потерями?

Диэлектрические потери, потери энергии, которые идут на нагрев диэлектрического материала в переменном электрическом поле.Например, конденсатор, включенный в цепь переменного тока, заряжается и разряжается попеременно каждый полупериод. Диэлектрические потери зависят от частоты и материала диэлектрика.

Что подразумевается под диэлектрическими свойствами?

Диэлектрические свойства материалов определяются как молекулярное свойство, которое является фундаментальным для всех материалов, способных к движению электронов, приводящему к поляризации внутри материала при воздействии внешнего электрического поля.

Является ли вода диэлектриком?

Электрический изолятор — это материал, который не пропускает заряд. По этому определению жидкая вода не является электрическим изолятором и, следовательно, жидкая вода не является диэлектриком. Самоионизация воды — это процесс, при котором небольшая часть молекул воды диссоциирует на положительные и отрицательные ионы.

Какие 5 хороших проводников?

Проводники: серебро. медь. золото. алюминий. железо. сталь.латунь. бронза.

Какой металл является самым плохим проводником электричества?

Висмут и вольфрам — два металла, плохо проводящие электричество.

Является ли Алмаз хорошим проводником электричества?

В молекуле графита один валентный электрон каждого атома углерода остается свободным, что делает графит хорошим проводником электричества. В то время как в алмазе у них нет свободного подвижного электрона. Следовательно, не будет потока электронов. Это причина того, что алмаз плохо проводит электричество.

Какие бывают 3 типа проводников?

Многие материалы используются для передачи электроэнергии, но чаще всего в качестве типов проводников используются медь, сталь с медным покрытием, высокопрочные медные сплавы и алюминий.

Какой проводник самый дорогой?

Существуют различные типы проводимости, включая электрическую, тепловую и акустическую проводимость. Самым электропроводящим элементом является серебро, за ним следуют медь и золото.Серебро также обладает самой высокой теплопроводностью среди всех элементов и самым высоким коэффициентом отражения света.

Какой проводник лучше, но дешевле?

Медь менее проводящая, чем серебро, но дешевле и обычно используется в качестве эффективного проводника в бытовых приборах.

В чем основная разница между проводником и диэлектриком?

проводник: Материал, содержащий подвижные электрические заряды. диэлектрик: Электроизолирующий или непроводящий материал, рассматриваемый в связи с его электрической восприимчивостью (т.е., его свойство поляризации при воздействии внешнего электрического поля).

Положительные заряды внутри диэлектрика смещаются поминутно в направлении электрического поля, а отрицательные заряды поминутно смещаются в направлении, противоположном электрическому полю. Наличие диэлектрического материала влияет на другие электрические явления. Сила между двумя электрическими зарядами в диэлектрической среде меньше, чем в вакууме, а количество энергии, запасенной в электрическом поле на единицу объема диэлектрической среды, больше.Влияние диэлектрика на электрические явления описывается в большом или макроскопическом масштабе с использованием таких понятий, как диэлектрическая проницаемость, диэлектрическая проницаемость и поляризация.

Является ли диэлектрик проводником? Диэлектрик, изоляционный материал или очень плохой проводник электрического тока. … Когда диэлектрики помещаются в электрическое поле, в них практически не течет ток, потому что, в отличие от металлов, в них нет слабо связанных или свободных электронов, которые могут дрейфовать через материал.

Что такое изолятор? Знаете ли вы ответ на этот вопрос? Помогите сообществу, став участником.

В чем разница между проводником и изолятором на примере? В проводнике электрический ток может течь свободно, в изоляторе — нет. Металлы, такие как медь, являются типичными проводниками, в то время как большинство неметаллических твердых тел считаются хорошими изоляторами, обладающими чрезвычайно высоким сопротивлением потоку заряда через них.

Что такое проводники и изоляторы 7? Проводник позволяет току легко течь по нему.Изоляторы не пропускают через себя ток. Электрические заряды в изоляторе отсутствуют.

Дополнительные вопросы

Что такое проводники и изоляторы класса 6?

Резюме. Материалы, пропускающие через себя электрический ток, называются проводниками. Материалы, не пропускающие через себя электрический ток, называются изоляторами.

В чем разница между диэлектриками и изоляторами?

Материал, накапливающий электрическую энергию в электрическом поле, известен как диэлектрический материал, тогда как материал, блокирующий поток электронов, известен как изолятор.… Диэлектрический материал накапливает электрические заряды, тогда как изолятор блокирует электрические заряды.

Какие 10 примеров проводников?

— Серебро.
— Золото.
— Медь.
– Алюминий.
— Меркурий.
– Сталь.
– Железо.
— Морская вода.

Какие 5 примеров проводников?

– серебро.
– медь.
– золото.
– алюминий.
– железо.
– сталь.
– латунь.
– бронза.

Что такое изолятор класса 6?

Материалы, не пропускающие электричество, называются изоляторами.Некоторыми распространенными изоляторами являются стекло, воздух, пластик, хлопок, термокол, дерево и резина. Поскольку изоляторы не проводят электричество, они используются для защиты нас от опасного воздействия электричества.

В чем разница между проводниками и непроводниками, приведите по два примера каждого?

Проводники

пропускают через себя тепло и электричество. непроводники не пропускают через себя тепло и электричество. Примеры проводника: сталь, железо и т. д.

Что такое проводник и изолятор на примере?

Примеры проводников включают металлы, водные растворы солей (т.э., ионные соединения, растворенные в воде), графит и организм человека. Примеры изоляторов включают пластмассы, пенополистирол, бумагу, резину, стекло и сухой воздух.

Почему его называют диэлектриком?

Диэлектрики — это материалы, которые не пропускают ток. Их чаще называют изоляторами, потому что они являются полной противоположностью проводникам. … Это означает, что большие электрические поля создают свободные заряды (в данном случае электроны), которые могут свободно перемещаться через материал и переносить ток.

Что такое диэлектрик и его виды?

Диэлектрический материал — это материал, плохо проводящий электричество, но способный поддерживать электростатические поля. … Диэлектрические материалы делятся на типы в зависимости от их состояния – твердые, жидкие или газообразные. Каждый тип имеет разные диэлектрические свойства и, в зависимости от его состояния, разные области применения.

Уменьшают ли диэлектрики электрическое поле?

(b) Диэлектрик снижает напряженность электрического поля внутри конденсатора, что приводит к меньшему напряжению между пластинами при том же заряде.Конденсатор сохраняет тот же заряд при меньшем напряжении, что означает, что он имеет большую емкость из-за диэлектрика.

Имеют ли диэлектрики электрическое поле?

Диэлектрик, изоляционный материал или очень плохой проводник электрического тока. … Когда диэлектрики помещаются в электрическое поле, в них практически не течет ток, потому что, в отличие от металлов, в них нет слабо связанных или свободных электронов, которые могут дрейфовать через материал.

Что такое проводник 6 класса?

Материалы, пропускающие через себя электрический ток, называются проводниками электричества.Примеры: железный гвоздь, ключ, английская булавка, вода, человеческое тело и т. д. … Электрические устройства состоят из проводников.

В чем принципиальная разница между проводниками и изоляторами?

В проводнике электрический ток может течь свободно, в изоляторе — нет. Металлы, такие как медь, являются типичными проводниками, в то время как большинство неметаллических твердых тел считаются хорошими изоляторами, обладающими чрезвычайно высоким сопротивлением потоку заряда через них.

Как диэлектрик влияет на электрическое поле?

Как диэлектрик влияет на электрическое поле?

В чем основное отличие проводников-полупроводников от изоляторов?

Уровни проводимости являются основным различием между проводниками, полупроводниками и изоляторами.Проводники обладают высокой проводимостью, что означает, что они позволяют энергии, такой как электричество, тепло или звук, легко проходить через них. В то время как полупроводники допускают умеренный поток, а изоляторы обладают низкой проводимостью.

В чем разница между диэлектриком и проводником?

проводник

: Материал, содержащий подвижные электрические заряды. диэлектрик: Электроизолирующий или непроводящий материал, рассматриваемый в связи с его электрической восприимчивостью (т. е. его свойством поляризации при воздействии внешнего электрического поля).

В чем основная разница между проводником и диэлектриком?

Связанные вопросы Ответы

Тайлер Уорд
Профессиональный

Быстрый ответ: легко ли царапается золото?

Несмотря на то, что платина прочнее и долговечнее, платина является более мягким металлом, чем 14-каратное золото. Это означает, что она поцарапается немного легче, чем 14-каратное золото. Однако важно отметить, что когда золото царапается, золото теряется и выглядит как царапина.Легко ли царапается 10-каратное золото? Из-за своей твердости ювелирные изделия из 10-каратного золота относительно прочны. Для сравнения, такие сплавы, как 18-каратное или 20-каратное золото, намного легче царапаются, а украшения из них легче сгибаются. Нажмите здесь, чтобы увидеть широкий выбор ювелирных изделий из 10-каратного золота. Легко ли царапается 18-каратное золото? Обычно вы не найдете золотых колец выше 18 карат, потому что они слишком легко царапаются и деформируются. Очевидно, что 18-каратное золото является самым дорогим, но оно также менее подвержено потускнению.Тем не менее, он более подвержен воздействию повседневного использования…

Калеб Гриффин
Профессиональный

Можно ли закрасить засохшую краску?

Как покрасить уже окрашенный металл? Металлические поверхности, которые уже были окрашены распылением, предварительно подготовив проект, выполнив следующие действия: Удалите рыхлую ржавчину с помощью проволочной щетки, наждачной бумаги или химического средства для удаления ржавчины. Слегка отшлифуйте металлическую поверхность.Удалите пыль липкой салфеткой. Как закрасить облупившуюся краску? Подготовьте область. Старая краска может трескаться, отслаиваться или отслаиваться, оставляя после себя трещины и небольшие отверстия. … Удалить облупившуюся краску. Если вы попытаетесь закрасить облупившуюся краску, у вас не получится гладкой, профессиональной отделки. … Залатать стену. … Песчаные участки. … Очистите и нанесите грунтовку. … Подождите, пока грунтовка полностью высохнет, прежде чем перекрашивать. Что будет, если не использовать грунтовку перед покраской? Поскольку грунтовка для гипсокартона имеет клеевую основу, она помогает краске лучше прилипать.Если вы пропустите грунтовку, вы рискуете отслоить краску, особенно во влажных условиях. Кроме того, отсутствие адгезии…

Реджинальд Хьюз
Профессиональный

Как удалить царапины с фарфора?

В тех случаях, когда царапины относительно небольшие, можно использовать пищевую соду, чтобы удалить раздражающие царапины на фарфоровой раковине. Просто посыпьте пищевой содой всю длину царапины или покройте всю царапину изрядной дозой пищевой соды.Затем отполируйте царапины и порезы мягкой влажной тканью. Как убрать царапины с фарфорового унитаза? Как удалить царапины с фарфорового унитаза Смочите неабразивную тряпку чистой водой. Насыпьте немного абразивного порошка на тряпку, а не на фарфор. Промойте чистой водой, когда царапины исчезнут. Смочите пемзу водой, чтобы смазать ее. Сначала проверьте пемзу на незаметном участке унитаза, просто на всякий случай. Как удалить металлические царапины с фарфора? Шаги по удалению меток: Начните с разбрызгивания пищевой соды на отмеченные поверхности.Может помочь опрыскивание…

Карлос Барнс
Профессиональный

Почему керамика так легко ломается?

«Твердые керамические осколки разбитых свечей зажигания отлично подходят для разрушения закаленного стекла. Причина в том, что маленькие, острые и твердые керамические осколки вызывают царапины, проникающие сквозь остаточные напряжения в стекле. Как только трещина начинается, она быстро распространяется. ». Почему керамика так легко разбивает стекло? При броске с умеренной скоростью в боковое окно острый осколок исключительно твердой керамики на основе оксида алюминия, используемой в свечах зажигания, фокусирует энергию удара на достаточно небольшой площади, не затупляясь, чтобы инициировать растрескивание, высвобождая внутреннюю энергию и разбивая стекло.Может ли керамика легко сломаться? Проблема с керамикой заключается в том, что, хотя ее трудно поцарапать, она * * более склонна к растрескиванию по сравнению с металлом. Некоторые виды керамики, такие как кирпичи, имеют большие поры. «Чем больше поры, тем легче их сломать», — говорит Грир. Если вы когда-нибудь разбивали керамическую вазу или что-то в этом роде, вероятно, причиной поломки было…

Вятт Аллен
Профессиональный

Вопрос: Почему керамические ножи такие острые?

Керамические лезвия требуют значительно меньше работы, чем металлические ножи.Традиционные стальные лезвия необходимо регулярно точить и повторно затачивать, чтобы они оставались острыми, но было доказано, что керамический нож остается острым до 10 раз дольше. Керамические ножи остаются острыми? Когда они сделаны хорошим производителем, они поставляются резко. Они дольше остаются острыми, чем стальные ножи, и, конечно же, не ржавеют. Кроме того, многие люди считают, что малый вес ножей является удобным. Керамические ножи имеют тот недостаток, что их трудно, а то и невозможно заточить самостоятельно.Нужна ли заточка керамическим ножам? Если вы не режете другую керамику или алмазы, эти ножи практически никогда не затупятся. Кость имеет твердость около 3,5, стальные ножи около 6,5 и керамические ножи около 9,5. Бриллиантов 10. Если вы действительно хотите их заточить, вам понадобится…

Адриан Батлер
Гость

Вопрос: Какой самый прочный, но самый легкий металл?

Новый сплав на основе магния как самый прочный и легкий металл в мире изменит мир: исследователи из Университета штата Северная Каролина разработали материал с использованием магния, который легкий, как алюминий, но такой же прочный, как титановые сплавы.Этот материал имеет самое высокое отношение прочности к весу, известное человечеству.12 Dec 2015 Какой самый прочный, легкий и дешевый металл? Самый прочный природный металл — вольфрам, самый твердый металл — хром, самый дешевый металл — железо, а самый легкий металл на земле — микрорешетка. Да, вы правы, алюминий — один из самых легких и дешевых металлов, но менее прочный. Алюминиевый сплав 6063, обладающий отличной коррозионной стойкостью, используется в аэрокосмических деталях.14 июня 2016 г. Какие металлы самые прочные? В то время как вышеупомянутые сплавы можно считать самыми прочными металлами в мире, следующие металлы являются самыми прочными чистыми, нелегированными металлами: Вольфрам обладает самой высокой прочностью на растяжение среди всех природных металлов, но он хрупок и склонен…

Уильям Уильямс
Гость

Вопрос: стекло или керамика лучший изолятор?

Керамика сохраняет тепло лучше, чем стекло Теплопроводность – это потеря тепла при прямом контакте двух материалов, один из которых холоднее другого.Поскольку керамика более пористая, чем стекло, проводимость в керамических кружках происходит медленнее. Керамика прочнее стекла? Керамика легче стекла, но обычно потому, что она пористая. Одним из больших преимуществ керамики по сравнению с классом является то, что керамика является хорошим теплоизолятором благодаря своей пористости. Стекло или пластик лучший изолятор? Если у вас есть 2 чашки одинаковой толщины, одна стеклянная и одна пластиковая, пластиковая чашка будет изолировать в 5-10 раз лучше, чем стеклянная, потому что теплопроводность пластика в 5-10 раз ниже, чем у стекла.Это позволяет теплу передаваться быстрее в стекле, чем в пластике. В чем разница между стеклом и керамикой? При производстве стекла и керамики…

Хейден Хьюз
Гость

Что такое высокотехнологичная керамика?

Высокотехнологичные керамические часы представляют собой сверхтонкий порошок, состоящий из оксида циркония, соединения, используемого в медицине и космической технике. В порошок добавляются пигменты, чтобы зафиксировать его цвет.В результате получается революционная, нецарапающаяся керамика, легкая и гладкая. Что такое плазменная высокотехнологичная керамика? ПЛАЗМЕННАЯ ВЫСОКОТЕХНОЛОГИЧЕСКАЯ КЕРАМИКА. Плазменная высокотехнологичная керамика Rado — прекрасный пример современной алхимии, зарождающегося движения, рожденного стремлением создавать красоту посредством преобразования материалов. Керамика, материал, который сопровождал человечество на протяжении тысячелетий, теперь получил революционный металлический оттенок. Какая самая прочная керамика? Технические свойства карбида кремния очень похожи на свойства алмаза.Это один из самых легких, твердых и прочных технических керамических материалов, обладающий исключительной теплопроводностью, химической стойкостью и низким тепловым расширением. Керамика дорогая? Механическая обработка, как правило, очень сложна для большинства керамических изделий.…

Иисус Браун
Гость

Вопрос: Какая керамика самая прочная?

Что прочнее стекло или керамика? Теоретически керамика прочнее стекла.Обычно керамика прочнее стекла той же толщины и более устойчива к нагреву и температурным изменениям. Керамика тверже алмаза? Твердость материала определяется путем измерения размера отпечатка, сделанного острым алмазом, сильно прижатым к образцу материала. Твердость глиноземной керамики почти в три раза выше, чем у нержавеющей стали; карбид кремния более чем в четыре раза тверже нержавеющей стали. Какое стекло самое твердое? Новое металлическое стекло прочнее и жестче стали.Исследователи создали металлическое стекло, которое является самым прочным и жестким материалом из когда-либо созданных. Мост Золотые Ворота сделан из стали с относительно низкой прочностью, поэтому он не сломается, когда землетрясение сотрясет район залива. Керамика тверже титана? Вольфрам примерно в 10 раз тверже, чем 18K…

Исайя Уильямс
Гость

Как удалить металлические следы с фарфора?

Шаги по удалению меток: Начните с разбрызгивания пищевой соды на отмеченные поверхности.Может помочь сначала слегка сбрызнуть раковину водой, чтобы пищевая сода прилипла. Слегка распылите на поверхность средство Windex. Протрите мягкой тканью или губкой, пока пятна не исчезнут. Повторите при необходимости. Как убрать металлические царапины с фарфорового унитаза? Как удалить царапины с фарфорового унитаза Смочите неабразивную тряпку чистой водой. Насыпьте немного абразивного порошка на тряпку, а не на фарфор. Промойте чистой водой, когда царапины исчезнут. Смочите пемзу водой, чтобы смазать ее.Сначала проверьте пемзу на незаметном участке унитаза, просто на всякий случай. Как удалить царапины с алюминиевого фарфора? Как удалить царапины на алюминии с фарфоровой раковины Распылите воду на царапины. Посыпать пищевой содой на…

Сэмюэл Гонсалес
Профессор

Вопрос: Керамика тверже стекла?

Теоретически керамика прочнее стекла.Стекло на самом деле является разновидностью керамики, но, если быть точным, стекло не имеет упорядоченной молекулярной структуры. Большая часть современной керамики имеет кристаллическую молекулярную структуру. Как правило, керамика прочнее стекла той же толщины и более устойчива к нагреву и температурным изменениям.3 Февраль 2016 Керамика прочнее стекла? Керамика легче стекла, но обычно потому, что она пористая. Одним из больших преимуществ керамики по сравнению с классом является то, что керамика является хорошим теплоизолятором благодаря своей пористости.6 Ноябрь 2009 г. В чем разница между стеклом и керамикой? В производстве как стекла, так и керамики есть небольшая разница.Стеклянная печь будет иметь нагревательные элементы сверху, тогда как керамическая печь будет иметь нагревательные элементы по бокам. Известно, что стекло некристаллическое. Керамика может быть кристаллической или частично кристаллической.11 июня 2017 г. Легко ли ломается керамика? Керамика…

Оскар Коллинз
Профессор

Вопрос: Устойчива ли керамика к царапинам?

Керамика сохраняет цвет и устойчива к царапинам; это означает, что безель всегда будет выглядеть «совершенно новым».Керамика является одним из самых твердых известных материалов, а это означает, что инженерия материала чрезвычайно трудна. С другой стороны, поскольку он настолько прочен, его трудно поцарапать. Легко ли ломается керамика? Керамика хрупкая, потому что она заполнена неравномерно распределенными порами. Некоторые виды керамики, такие как кирпичи, имеют большие поры. «Чем больше поры, тем легче их сломать», — говорит Грир. Если вы когда-нибудь разбивали керамическую вазу или что-то в этом роде, вероятно, разбилась пора. Керамика дорогая? Механическая обработка, как правило, очень сложна для большинства керамик.Совершенно нормально, что керамический корпус дороже стального или даже титанового. Однако вряд ли он превысит стоимость золотого или платинового корпуса, так как используемые материалы не такие…

Брюс Флорес
Профессор

Вопрос: Легко ли царапается Rolex?

В отличие от других высококлассных механических часов, часы Rolex созданы для того, чтобы выдерживать ежедневные удары, будь то корпус часов, стекло и все такое прочее.Царапины и наручные часы — это реальность. Часы Rolex из золота, платины и нержавеющей стали 904L царапаются при повседневном использовании. Устойчивы ли часы Rolex к царапинам? Без сомнения, часы Rolex известны как одни из самых прочных механических часов. Rolex использует нержавеющую сталь 904L, которая хорошо полируется и устойчива к царапинам, но царапины случаются. Царапается ли лицо Rolex? Акрил имеет свои преимущества. Он очень прочный, легко противостоит ударам. Тем не менее, он не устойчив к царапинам, поэтому челка все равно может оставить след.Rolex использовал акрил в своих часах, но постепенно начал предлагать замену синтетическому сапфиру, подобному изображенному на изображении выше. Как предотвратить появление царапин на часах? 0:41 1:28 Предлагаемый клип · 40 секунд Как перестать царапать часы !! — YouTube YouTube Старт…

Гилберт Александр
Профессор

Вопрос: стекло тверже керамики?

Теоретически керамика прочнее стекла.Стекло на самом деле является разновидностью керамики, но, если быть точным, стекло не имеет упорядоченной молекулярной структуры. Большинство современных керамических изделий имеют кристаллическую молекулярную структуру. Как правило, керамика прочнее стекла той же толщины и более устойчива к теплу и термическим изменениям. Считается ли стекло керамикой? Керамический материал представляет собой неорганический, неметаллический, часто кристаллический оксидный, нитридный или карбидный материал. Некоторые элементы, такие как углерод или кремний, можно считать керамикой. Стекло часто не считается керамикой из-за его аморфного (некристаллического) характера.Керамика легко разбивается? Керамика хрупкая, потому что она заполнена неравномерно распределенными порами. Некоторые виды керамики, такие как кирпичи, имеют большие поры. «Чем больше поры, тем легче их сломать», — говорит Грир. Если вы когда-нибудь разбивали керамическую вазу или что-то в этом роде, вероятно, разбилась пора. Какая самая твердая керамика? Технические свойства кремния…

Норман Росс
Профессор

Вопрос: Легко ли ломается керамика?

Проблема с керамикой заключается в том, что, хотя ее трудно поцарапать, она * * более склонна к растрескиванию по сравнению с металлом.Некоторые виды керамики, такие как кирпичи, имеют большие поры. «Чем крупнее поры, тем легче их разбить», — говорит Грир. Легко ли ломаются керамические часы? Потенциально хрупкий Несмотря на то, что керамика чрезвычайно прочна и устойчива к царапинам и обычным повреждениям, из-за молекулярной структуры она не устойчива к разрушению. Если керамический корпус упадет на твердую поверхность с высоты нескольких футов или более, велика вероятность того, что он разобьется.Почему керамика легко ломается? Но в керамике из-за комбинированного механизма ионной и ковалентной связи частицы не могут легко перемещаться. Керамика ломается, когда прикладывается слишком большое усилие, и работа, проделанная для разрушения связей, создает новые поверхности при растрескивании.…

Блейк Флорес
Пользователь

Быстрый ответ: Керамика прочнее стали?

Прочность (1) Твердость материала определяется путем измерения размера отпечатка, сделанного острым алмазом, сильно прижатым к образцу материала.Твердость глиноземной керамики почти в три раза выше, чем у нержавеющей стали; карбид кремния более чем в четыре раза тверже нержавеющей стали. Керамика прочная? Керамический материал представляет собой неорганический, неметаллический, часто кристаллический оксидный, нитридный или карбидный материал. Некоторые элементы, такие как углерод или кремний, можно считать керамикой. Керамические материалы хрупкие, твердые, прочные на сжатие и слабые на сдвиг и растяжение. Какая сталь самая прочная? Какой самый прочный нелегированный металл в мире? Вольфрам обладает самой высокой прочностью на растяжение среди всех природных металлов, но он хрупок и имеет тенденцию разрушаться при ударе.Титан имеет предел прочности на растяжение 63 000 фунтов на квадратный дюйм. Хром, по шкале твердости Мооса, является самым твердым металлом. Керамика прочнее металлов? В…

Калеб Скотт
Пользователь

Быстрый ответ: бьется ли керамика?

Керамика и фарфор — два материала, прочные и гладкие, но хрупкие. Это разновидность керамики, но глина делает ее более плотной и долговечной. Глина белая и очень изысканная.Хотя они очень похожи, фарфор, как правило, дороже керамики. Керамика легко разбивается? Керамика хрупкая, потому что она заполнена неравномерно распределенными порами. Некоторые виды керамики, такие как кирпичи, имеют большие поры. «Чем больше поры, тем легче их сломать», — говорит Грир. Если вы когда-нибудь разбивали керамическую вазу или что-то в этом роде, вероятно, разбилась пора. Керамика прочная? Керамический материал представляет собой неорганический, неметаллический, часто кристаллический оксидный, нитридный или карбидный материал.Некоторые элементы, такие как углерод или кремний, можно считать керамикой. Керамические материалы хрупкие, твердые, прочные на сжатие и слабые на сдвиг и растяжение. Керамика хрупкая? Две наиболее распространенные химические связи для керамических материалов…

Хуан Эрнандес
Пользователь

Быстрый ответ: может ли керамика поцарапать металл?

Керамика, с другой стороны, практически не царапается. В отличие от корпуса из алюминия или нержавеющей стали, керамический можно лизнуть и продолжать тикать.Проблема с керамикой заключается в том, что, хотя ее трудно поцарапать, она * * более склонна к растрескиванию по сравнению с металлом. Можно ли поцарапать керамику? Керамика сохраняет цвет и устойчива к царапинам; это означает, что безель всегда будет выглядеть «совершенно новым». Керамика является одним из самых твердых известных материалов, а это означает, что инженерный материал чрезвычайно тверд. С другой стороны, поскольку он такой прочный, его трудно поцарапать. Керамика тверже стали? Твердость материала определяется путем измерения размера отпечатка, сделанного острым алмазом, сильно прижатым к образцу материала.Твердость глиноземной керамики почти в три раза выше, чем у нержавеющей стали; карбид кремния более чем в четыре раза тверже нержавеющей стали.…

Энтони Райт
Пользователь

Вопрос: Устойчивы ли керамические лицевые панели к царапинам?

Керамика сохраняет цвет и устойчива к царапинам; это означает, что безель всегда будет выглядеть «совершенно новым». Насколько долговечны керамические часы? Высокотехнологичная керамика – это действительно материал с уникальными свойствами.Помимо того, что высокотехнологичная часовая керамика устойчива к царапинам, она очень легкая, термостойкая и антиаллергенная. Керамические часы долговечны и очень универсальны в блестящих металлических цветах с гладкими или декоративными поверхностями. Может ли Rolex поцарапать лицо? Акрил имеет свои преимущества. Он очень прочный, легко противостоит ударам. Тем не менее, он не устойчив к царапинам, поэтому челка все равно может оставить след. Как вы можете видеть на изображении выше, акриловый кристалл может собрать много царапин, особенно если его часто носят.Почему керамические часы такие дорогие? Механическая обработка, как правило, очень сложна для большинства керамик. Сырье для изготовления керамических деталей дешевое, но процесс их изготовления дорогой. Металлы часто другие…

Фрэнсис Грей
Пользователь

Керамика тверже нержавеющей стали?

Прочность (1) Твердость глиноземной керамики почти в три раза выше, чем у нержавеющей стали; карбид кремния более чем в четыре раза тверже нержавеющей стали.Эта чрезвычайная твердость является одним из многих уникальных свойств, которые делают Fine Ceramics «суперматериалами» для современных технологий. Керамические ножи лучше металлических? Лезвие настолько тонко заточено, что любой твердый предмет может сколоть керамический нож. Нож, который вы выберете, будет соответствовать вашим потребностям; Керамические ножи не так универсальны, как стальные, и из них нельзя сделать хороший универсальный нож, однако они отлично подходят для тонкой нарезки фруктов и овощей. Керамика тверже титана? Вольфрам примерно в 10 раз тверже 18-каратного золота, в 5 раз тверже инструментальной стали и в 4 раза тверже титана.Твердость вольфрама составляет от 8 до 9 по шкале Мооса. (Бриллианты — это 10 — высшая оценка.) Вольфрам, хотя и очень твердый, но…

Диэлектрик и проводник — в чем разница?

Диэлектрик, сущ.

(метаматериал) Электроизолирующий или непроводящий материал, рассматриваемый в связи с его электрической восприимчивостью, т. е. его свойством поляризации при воздействии внешнего электрического поля.

Conductornoun

Тот, кто дирижирует или руководит; Руководство; директор.

Диэлектрический прилагательное

(электрически) изолирующий

Conductornoun

(музыка) Лицо, которое дирижирует оркестром, хором или другим музыкальным коллективом; профессионал, занимающийся дирижированием.

Диэлектрик, сущ.

Любое вещество или среда, которая передает электрическую силу посредством процесса, отличного от проводимости, как в явлениях индукции; диэлектрик, отделяющий тело, наэлектризованное индукцией, от наэлектризованного тела.

Conductornoun

Лицо, которое принимает билеты на общественный транспорт, а также помогает пассажирам

«проводник поезда; кондуктор трамвая»;

Dielectricnoun

материал, такой как стекло или фарфор, с незначительной электрической или теплопроводностью

Conductornoun

То, что может передавать электричество, тепло, свет или звук.

Диэлектрик

В электромагнетизме диэлектрик (или диэлектрический материал) представляет собой электрический изолятор, который может поляризоваться приложенным электрическим полем. Когда диэлектрический материал помещается в электрическое поле, электрические заряды не протекают через материал, как в электрическом проводнике, а вместо этого лишь немного смещаются от своего среднего равновесного положения, вызывая диэлектрическую поляризацию.

Conductornoun

(математика) Идеал кольца, который измеряет, насколько далеко оно находится от полного закрытия. директор.

Conductornoun

(архитектура) Лидер.

Conductornoun

Тот, кто или то, что проводит; лидер; командир; Руководство; менеджер; директор.

‘Рвение, слепой проводник воли.’;

Conductornoun

Тот, кто отвечает за общественный транспорт, такой как железнодорожный поезд или трамвай.

Conductornoun

Лидер или руководитель оркестра или хора.

Conductornoun

Вещество или тело, способное быть средой для передачи определенных сил, в частности.тепло или электричество; точнее громоотвод.

Conductornoun

Рифленый звук или стержень, используемый для направления инструментов, в качестве литонтриптических щипцов и т. д.; директор.

Conductornoun

То же, что и Лидер.

Conductornoun

лицо, руководящее музыкальной группой электричество и тепло

Conductornoun

лицо, которое взимает плату за проезд в общественном транспорте

В чем разница между диэлектриком и проводником?

Диэлектрик является родственным термином проводник .

В качестве существительных разница между

диэлектриком и проводником заключается в том, что диэлектрик (физика) представляет собой электрически изолирующий или непроводящий материал, рассматриваемый из-за его электрической восприимчивости, т. е. его свойства поляризации при воздействии внешнего электрического поля, в то время как проводник тот, кто проводит или ведет; Руководство; директор.

В качестве прилагательного

диэлектрик является (электрически) изолирующим.

Другие сравнения: в чем разница?

Существительное

( существительное )
  • (физика) Электроизолирующий или непроводящий материал, рассматриваемый в связи с его электрической восприимчивостью, т.е.е. его свойство поляризации при воздействии внешнего электрического поля.
  • Синонимы
    * изолятор

    Производные термины
    * диэлектрическая постоянная * диэлектрическая проницаемость

    Английский

    Альтернативные формы

    * проводник ( устарело )

    Существительное

    ( существительное )
  • Тот, кто ведет или ведет; Руководство; директор.
  • * Драйден
  • Рвение слепое проводник воли.
  • (музыка) Лицо, которое руководит оркестром, хором или другим музыкальным коллективом; профессионал, занимающийся дирижированием.
  • Лицо, покупающее билеты на общественный транспорт.
  • поезд проводник»’; трамвай »’кондуктор
  • То, что может передавать электричество, тепло, свет или звук.
  • (математика) Идеал кольца, показывающий, насколько далеко оно от замкнутого на целое
  • * 1988 , Ф ван Ойстайен, Ливен Ле Брюйн, Перспективы теории колец
  • Если c является идеалом проводника для R в R, то простые идеалы, не содержащие c, соответствуют локализациям, дающим дискретные кольца нормирования.
  • Рифленый звук или стержень, используемый для направления инструментов, таких как литонтриптические щипцы; директор.
  • (архитектура) Лидер.
  • Антонимы
    * диэлектрик (3), диэлектрик (3), изолятор (3)

    Производные термины
    * молниеотвод

    Связанные термины
    * провести * полупроводник, диэлектрик

    См. также

    * контролер —-

    Разница между диэлектриком и изолятором (с таблицей) – спросите о разнице

    Диэлектрик и изолятор – это два изолятора, но с совершенно разными функциями и работой.Диэлектрический изолятор позволяет и даже экономит электроэнергию, в то время как изоляторы препятствуют прохождению электричества через него и даже противостоят нагреву. Хотя, будучи изолятором, оба они работают противоположно и имеют совершенно разное применение. Один используется для экономии проходящего электричества, а другой используется для сопротивления электричеству и теплу.

    Диэлектрик против изолятора

    Основное различие между диэлектриком и изолятором заключается в том, что материал, который хранит или сохраняет электрическую энергию в электрическом поле, является диэлектрическим материалом, а с другой стороны, материалом, который блокирует поток электронов в электрическом поле является изолятором.

    Диэлектрический материал может поляризоваться в присутствии электрического поля, в то время как изоляторы, с другой стороны, не поляризуются. Если говорить о диэлектрической проницаемости, то у диэлектриков их много, а у изоляторов диэлектрическая проницаемость сравнительно низкая.

    Электрические заряды накапливаются в диэлектрических материалах, а в изоляторах они блокируются. Изоляторы обычно используются в проводах и кабелях, поскольку они предотвращают попадание электричества, поэтому нет возможности получить удар электрическим током, когда в конденсаторе обычно применяется диэлектрический материал.

    Диэлектрические материалы используются для проверки того, в достаточной ли степени изоляция компонента защищает пользователей от поражения электрическим током. В то время как изоляторы в основном используются перед любыми испытаниями высокого потенциала, чтобы исключить любое загрязнение изоляции электричества. Диэлектрики обладают способностью выдерживать высокое электрическое напряжение без какой-либо проводимости. Но изоляторы ограничивают любую передачу или поток электронов.

    Диэлектрики — это просто изоляторы, не содержащие в себе свободных электронов.При приложении к ним электрического поля диэлектрики легко поляризуются. В то время как изолятор — это материал, который позволяет передавать от него тепло или электричество. Некоторые изоляционные материалы включают бумагу, стекло, масло, резину и пластик. Хотя вакуум тоже изолятор его нельзя считать материал

    Сравнение таблицы между диэлектрическим и изолятором 1 Параметры сравнения
    диэлектрический Изоляторы
    Определение Электрический изолятор, способный выдерживать сильное электрическое напряжение без какой-либо проводимости. Это материалы или устройства, ограничивающие передачу тепла или электричества .
    Использование Используется для проверки того, в достаточной ли степени изоляция компонента защищает пользователей от поражения электрическим током. В основном используется перед любыми высокопотенциальными испытаниями, чтобы исключить любое загрязнение изоляции электричества .
    Поляризация В присутствии электрического поля диэлектрики очень легко поляризуются. Изоляторы не могут быть поляризованы.
    Число диэлектрических постоянных Диэлектрики имеют большое число диэлектрических постоянных. изоляторы имеют сравнительно низкий показатель диэлектрической проницаемости.
    Пример Слюда, пластик и оксиды различных материалов. Резина, стекло, алмаз, дерево и масло

    Что такое диэлектрик?

    Диэлектрик — это в основном материал с плохой электропроводностью, но обладающий способностью накапливать электрический заряд.По сути, это просто изоляторы, не содержащие в себе свободных электронов. При приложении к ним электрического поля диэлектрики легко поляризуются. Таким образом, можно сказать, что их поведение в поле электричества совершенно иное, чем у проводников.

    Существует два типа диэлектрических материалов: полярные и неполярные. Полярные постоянно находятся в электрическом диполе, и их поляризация зависит от температуры. В то время как у неполярных индуцированный электрический диполь и их поляризация совершенно не зависят от температуры.

    Что такое изолятор?

    Изолятор — это материал, который позволяет передавать от него тепло или электричество. Некоторые изоляционные материалы включают бумагу, стекло, масло, резину и пластик. Хотя вакуум также является изолятором, его нельзя рассматривать как материал. В основном все электрические материалы покрыты изоляцией, чтобы избежать электрического тока.

    Обычно изоляторы рассчитаны на несколько сотен вольт, но некоторые из них, которые используются для распределения электроэнергии, рассчитаны даже на сотни тысяч вольт.Для того, чтобы сделать любой непреднамеренный контакт, изоляторы поддерживаются или удерживаются от электрических проводников.

    Основное различие между диэлектриком и изолятором
    1. Основное и существенное различие между диэлектриком и изолятором заключается в том, что диэлектрик допускает и сохраняет поток электричества в нем и через него, в то время как изолятор, с другой стороны, блокирует и предотвращает поток электронов и электричества из него.
    2. Диэлектрический материал может поляризоваться в присутствии электрического поля, в то время как изоляторы, с другой стороны, не поляризуются.
    3. Молекулы в диэлектрическом материале очень слабо связаны, тогда как молекулы в изоляторе прочно связаны друг с другом.
    4. Диэлектрик имеет большое число диэлектрических проницаемостей, в то время как изоляторы имеют сравнительно низкую диэлектрическую проницаемость.
    5. Изоляторы обычно используются в проводах и кабелях, поскольку они предотвращают попадание электричества и исключают возможность поражения электрическим током, когда в конденсаторе обычно применяется диэлектрический материал.
    6.  Примерами изоляторов, препятствующих прохождению и передаче электричества, являются воздух, стекло, пластик, сухое дерево и медь.Примером диэлектрика является конденсатор.

    Заключение

    Таким образом, мы пришли к выводу, что диэлектрик — это не что иное, как изоляционный материал, но тот, который накапливает и пропускает электричество, в то время как изоляторы, с другой стороны, представляют собой материалы с нулевым уровнем электропроводности. в них и не позволяет потоку или передаче электричества через них, фактически, они препятствуют потоку и передаче электрического тока.

    Диэлектрические материалы используются для проверки того, в достаточной ли степени изоляция компонента защищает пользователей от поражения электрическим током. В то время как изоляторы в основном используются перед любыми испытаниями высокого потенциала, чтобы исключить любое загрязнение изоляции электричества. Диэлектрики обладают способностью выдерживать высокое электрическое напряжение без какой-либо проводимости. Но изоляторы ограничивают любую передачу или поток электронов.

    Ссылки
    1. https://www.sciencedirect.com/science/article/pii/S0924013607004657
    2. https://link.springer.com/chapter/10.1007/978-3-642-77453-9_8

    Разница между диэлектриком и изолятором со сравнительной таблицей

    Диэлектрик и изолятор различаются по своему применению. Одно из основных различий между диэлектриком и изолятором заключается в том, что диэлектрик накапливает электрические заряды, а изолятор препятствует потоку электронов. Некоторые другие различия между ними объясняются ниже в сравнительной таблице.

    Содержание: диэлектрик против изолятора

    1. Сравнительная таблица
    2. Определение
    3. Ключевые отличия

    Сравнительная таблица

    Основание для сравнения Диэлектрик Изолятор
    Определение Материал, в котором может возникать электрическое поле с минимальной потерей энергии, называется диэлектриком. Вещество с низкой электропроводностью, препятствующее прохождению тока, известное как изолятор.
    Поляризация Поляризация в электрическом поле. Нельзя поляризовать
    Связка Слабая связь по сравнению с изолятором. Ковалентная связь
    Диэлектрическая проницаемость Высокая Низкая
    Заряды Хранение зарядов Препятствование зарядам.
    Пример Сухой воздух, вакуум, дистиллированная вода и т.д. Хлопок, пластик, слюда и т. д.
    Применение Конденсатор, силовой кабель и т. д. Токопроводы в системе высокого напряжения и т. д.

    Определение диэлектрика

    Диэлектрический материал представляет собой тип изолятора, который имеет некоторое количество свободных электронов. Он поляризуется в присутствии электрического поля. Поляризация — это свойство материала, при котором положительные и отрицательные заряды материала смещены в противоположном направлении.Поляризация уменьшает общее поле материала.

    Хранение и рассеивание электрической энергии являются основными свойствами диэлектрического материала. Электропроводность идеального диэлектрического материала равна нулю. Типичным примером диэлектрика является конденсатор. Поляризация между параллельными пластинами конденсатора увеличивает площадь поверхности емкости.

    Определение изолятора

    Материал, не пропускающий электрический ток, называется изолятором.Изоляционный материал не имеет свободных электронов, поскольку их молекулы имеют прочную ковалентную связь. Удельное сопротивление материала очень велико по сравнению с другими материалами. Удельное сопротивление — это свойство материала, которое показывает сильное препятствие потоку зарядов.

    Эбонит, бумага, дерево, пластик – вот некоторые примеры изоляторов.

    Ключевые различия между диэлектриком и изолятором

    1. Материал, сохраняющий электрическую энергию в электрическом поле, известен как диэлектрический материал, тогда как материал, блокирующий поток электронов, известен как изолятор.
    2. Диэлектрический материал поляризуется в присутствии электрического поля, тогда как изоляторы не поляризуются.
      Примечание: Поляризация — это свойство материала, при котором положительные и отрицательные заряды движутся в противоположных направлениях.
    3. Молекулы диэлектрического материала слабо связаны, тогда как молекулы изоляторов прочно связаны друг с другом по сравнению с диэлектриком.
    4. Диэлектрический материал имеет высокую диэлектрическую проницаемость, тогда как изолятор имеет низкую диэлектрическую проницаемость.Диэлектрическая проницаемость измеряет аккумулирующую способность материала.
    5.  Диэлектрический материал накапливает электрические заряды, тогда как изолятор блокирует электрические заряды.

    0 comments on “В чем отличие проводников от диэлектриков: Чем отличаются диэлектрики от проводников

    Добавить комментарий

    Ваш адрес email не будет опубликован.