Схема подключения двигателя 220 вольт через конденсатор: Подключение однофазного двигателя через конденсатор — 3 схемы

Подключение однофазного двигателя через конденсатор — 3 схемы

На промышленных объектах особых проблем, как подключить электродвигатель, не испытывают, там подводится трехфазная сеть. Работают асинхронные электродвигатели с тремя подключенными обмотками, расположенными по периметру цилиндрического статора. На каждую обмотку подсоединяемого двигателя производятся включения отдельной фазы, схема подключения электродвигателя обеспечивает сдвиг фаз переменного тока, создает крутящий момент, и моторы успешно вращаются.

В случае с бытовыми условиями на жилых объектах в частных домах и квартирах трехфазных электрических линий нет, прокладываются однофазные сети, где напряжение 220 вольт. Поэтому однофазный асинхронный двигатель подключается по другой схеме, требуется устройство с пусковой обмоткой.

Конструкция и принцип работы

Подключают электродвигатель через конденсатор по причине, что одна обмотка на статоре электродвигателя на 220 В с переменным током создает магнитное поле, которое компенсирует свои импульсы за счет смены полярности с частотой 50 Гц. В этом случае движок гудит, ротор остается на месте. Для создания крутящего момента делают дополнительные подсоединения пусковых обмоток, где электрический сдвиг по фазе будет 90° по отношению к рабочей обмотке.

Конструкция асинхронного однофазного электродвигателя

Не путайте геометрические понятия угла расположения с электрическим сдвигом фаз. В геометрическом измерении обмотки в статоре размещаются друг напротив друга.

Чтобы осуществить это технически, конструкция электромотора предусматривает большое количество механических деталей и составляющих электрической схемы:

  • статор с основной и дополнительной обмоткой пуска;
  • короткозамкнутый ротор;
  • борно с группой контактов на панели;
  • конденсаторы;
  • центробежный выключатель и многие другие элементы, показанные выше на рисунке.

Рассмотрим, как подключить однофазный двигатель. С целью смещения фаз последовательно в пусковую обмотку включается конденсатор, при подключении однофазного асинхронного электродвигателя круговое магнитное поле наводит в роторе токи. Совокупность силы полей и токов создают вращающий импульс, прилагаемый к ротору, он начинает вращаться.

Схемы подключения

 Варианты подключения двигателя через конденсатор:

  • схема подключения однофазного двигателя с использованием пускового конденсатора;
  • подключение электродвигателя с использованием конденсатора в рабочем режиме;
  • подключение однофазного электродвигателя с пусковым и рабочим конденсаторами.

Все эти схемы успешно применяются при эксплуатации асинхронных однофазных двигателей. В каждом случае есть свои достоинства и недостатки, рассмотрим каждый вариант более подробно.

Схема с пусковым конденсатором

Идея заключается в том, что конденсатор включается в цепь только при пуске, используется пусковая кнопка, которая размыкает контакты после раскрутки ротора, по инерции он начинает вращаться. Магнитное поле основной обмотки поддерживает вращение длительное время. В качестве кратковременного переключателя ставят кнопки с группой контактов или реле.

Схема подключения пускового конденсатора

Поскольку схема кратковременного подключения однофазного двигателя через конденсатор предусматривает кнопку на пружине, которая при отпускании размыкает контакты, это дает возможность экономить, провода пусковой обмотки делают тоньше. Чтобы исключить межвитковое короткое замыкание, используют термореле, которое при достижении критической температуры отключает дополнительную обмотку. В некоторых конструкциях ставят центробежный выключатель, который при достижении определенной скорости вращения размыкает контакты.

Соединения, центробежный выключатель на валу ротора

Схемы и конструкции регулировки скорости вращения и предотвращения перегрузок электродвигателя на автомате могут быть различны. Иногда центробежный выключатель устанавливается на валу ротора или на других элементах, вращающихся от него с прямым соединением, или через редуктор.

Некоторые элементы

Под действием центробежных сил груз оттягивает пружины с контактной пластиной, при достижении установленной скорости вращения замыкает контакты, переключатель реле обесточивает двигатель или подает сигнал на другой механизм управления.

Бывают варианты, когда тепловое реле и центробежный выключатель устанавливаются в одной конструкции. В этом случае тепловое реле отключает двигатель при воздействии критической температуры или усилиями раздвигающегося груза центробежного выключателя.

Варианты схемы подключения конденсаторов

В связи с особенностями характеристик асинхронного двигателя конденсатор в цепи дополнительной катушки искажает линии магнитного поля, от круглой формы до эллиптической, в результате этого потери мощности увеличиваются, снижается КПД. Пусковые характеристики остаются хорошие.

Схема с рабочим конденсатором

Отличие этой схемы в том, что конденсатор после пуска не отключается, и вторичная обмотка на протяжении всей работы импульсами своего магнитного поля раскручивает ротор. Мощность электродвигателя в этом случае значительно увеличивается, форму электромагнитного поля можно попытаться приблизить от эллиптической формы к круглой подбором емкости конденсатора. Но в этом случае момент пуска более продолжительный по времени, и пусковые токи больше. Сложность схемы заключается в том, что емкость конденсатора для выравнивания магнитного поля подбирается с учетом токовых нагрузок. Если они будут меняться, то и все параметры будут не постоянными, для стабильности формы линий магнитного поля можно установить несколько конденсаторов с различными емкостями. Если при изменении нагрузки включать соответствующую емкость, это улучшит рабочие характеристики, но существенно усложняет схему и процесс эксплуатации.

Комбинированная схема с двумя конденсаторами

Оптимальным вариантом для усреднения рабочих характеристик является схема с двумя конденсаторами — пусковым и рабочим.

Рабочий конденсатор подключен постоянно в цепи обмоток, пусковой через выключатель запуска замыкается кратковременно

Установка и подбор компонентов

Конденсаторы имеют немалые габариты, поэтому не всегда помещаются во внутреннюю часть борно (распределительная коробка на корпусе электродвигателя).

Пример размещения конденсатора на внешней стороне корпуса электродвигателя

В зависимости от места установки и других условий эксплуатации конденсаторы могут располагаться на внешней стороне двигателя рядом с коробкой расключения. В некоторых случаях конденсаторы выносят в отдельный корпус, расположенный недалеко от электродвигателя.

Величину емкости конденсаторов в идеальном случае с постоянной токовой нагрузкой можно рассчитать, но в большинстве случаев нагрузка нестабильна, и методика расчетов сложная. Поэтому опытные электрики руководствуются статистикой и практическим опытом:

  • для конденсаторов рабочей схемы емкость выбирается 0,75 мкФ на 1 кВт мощности;
  • для пусковых конденсаторов 1,8–2 мкФ на кВт мощности, при этом надо учитывать скачки напряжения в период пуска и остановки — они колеблются в пределах 300–600 В. Поэтому по напряжению конденсатор должен быть как минимум 400 В.
Конденсаторы для подключения однофазного двигателя

Вообще при выборе схемы и конденсаторов на однофазный двигатель надо руководствоваться назначением двигателя и условиями эксплуатации. Когда нужно быстро раскрутить двигатель, используется схема с пусковым конденсатором. При необходимости иметь в процессе эксплуатации большую мощность и КПД применяют схему с рабочим конденсатором — обычно в однофазном конденсаторном двигателе для бытовых нужд небольшой мощности, в пределах 1 кВт.

Похожие статьи:

Подключение асинхронного двигателя к однофазной сети (видео, схема)

После своего изобретения трехфазные двигатели успешно используются до сих пор без каких-либо существенных изменений. Подключение асинхронного двигателя к однофазной сети было лишь делом времени, так как они намного проще в эксплуатации и обслуживании, чем их коллекторные собратья. А ведь в домашних условиях используется именно однофазная сеть, а хороший двигатель нужен не только на производстве. Какие электрические машины можно использовать дома или на даче, и как правильно их запустить в работу от обычных 220 В?

Одна фаза вместо трех

Самый распространенный вариант – трехфазный асинхронный двигатель. В пазах неподвижного статора уложены три обмотки со сдвигом 120 электрических градусов. Для пуска необходимо через них пропустить трехфазный ток, который, проходя по каждой обмотке в разное время, создает вращающий момент, раскручивающий ротор. При подключении однофазной сети такого не происходит. Поэтому здесь необходимы дополнительные элементы, такие как фазосдвигающий конденсатор. Это самый простой способ.

На скорость вращения ротора это не повлияет, а вот мощность такой электрической машины упадет. В зависимости от нагрузки на валу, емкости конденсатора, схемы подключения, потери составляют 30–50 %.

Стоит сразу отметить, что аппараты не всех марок работают по однофазной схеме. Но все-таки большинство позволяет проводить с собой подобные манипуляции. Всегда стоит обращать внимание на прикрепленные таблички. Там есть все характеристики, глядя на которые можно увидеть, какая это модель и где она будет работать.

Из первой картинки (А) можно сделать вывод, что данный двигатель рассчитан на два напряжения – 220 и 380 В. Включение обмоток – треугольник и звезда. От обычной домашней сети его запустить можно (есть соответствующее напряжение), и желательно треугольником.

Вторая (Б) показывает: электрическая машина рассчитана на 380 В, включение звездой. Теоретически, на меньшее напряжение переключиться возможно, но для этого нужно разбирать корпус, искать соединение обмоток и переключать их на треугольник. Можно, конечно, ничего не переключать просто поставив конденсатор. Однако потери мощности будут колоссальными.

Если на табличке написано: Δ/Ỵ 127/220, то к сети 220 В такой аппарат можно включать только звездой, иначе он сгорит!

Подключение фазосдвигающего конденсатора

Оптимальный вариант подключения трехфазной машины в работу от 220 вольт, это треугольником. Так потери составят около 30%. Два конца в борне идут непосредственно к сети, а между третьим концом и любым из этих двух включают конденсатор.

Такой пуск возможен если нет никакой серьезной нагрузки: например, при подключении вентилятора. Если будет нагрузка, то ротор либо не будет крутиться вообще, либо запуск будет происходить очень долго. В этом случае стоит добавить пусковой конденсатор.

При этом будет хорошо использовать выключатель, у которого один контакт замыкался бы и фиксировался, пока его не отключишь, а другой отключался, когда его отпускают. Так можно на непродолжительное время подсоединять в работу пусковой конденсатор. Направление вращения изменяется переключением конденсатора в схеме на другую фазу.

На практике это может выглядеть так:

Схема для пуска в работу трехфазного двигателя к однофазной цепи звездой тоже несложная. Потери будут больше, но иногда другого выхода просто нет.

Расчет конденсатора

Вполне естественный вопрос о том, конденсатор с какими параметрами нужно использовать для запуска и работы такого аппарата. Все зависит от того, звездой или треугольником соединены обмотки на трехфазной машине.

  • Для звезды существует такой расчет: Cр = 2800•I/U.
  • Треугольник:Cр = 4800•I/U.

Cр– емкость рабочего конденсатора в микрофарадах, I – ток в амперах, U – напряжение сети в вольтах.

  • Ток можно посчитать таким образом: I = P/(1.73•U•n•cos ф).

Р – это мощность асинхронного аппарата, написанная на его бирке,n – его КПД. Он указан там же, рядом написан и cos ф.

Есть и упрощенный вариант расчета. Он выглядит таким образом: C = 70•Pн, где Pн – это номинальная мощность, кВт (на бирке). Из этой формулы можно сделать вывод, что на каждые 100 Вт должно быть около 7 мкФ емкости.

При завышенной емкости конденсатора обмотки будут сильно греться, при заниженной ротор будет тяжело раскручиваться. Поэтому идеальным вариантом является, когда после всех расчетов делается своеобразная «подгонка»: замеряется ток при помощи клещей и добавляются или убираются дополнительные конденсаторы.

Если нужен пусковой конденсатор, то необходимо подобрать его так, чтобы общая емкость (Ср+Сп) в 2–3 раза превышала рабочую(Ср).

Постепенный разгон

Как можно осуществить плавный пуск асинхронного двигателя в однофазной сети? Стоит сразу оговориться, что для домашнего использования это обойдется дорого. Сама схема очень сложна и пробовать собрать ее самостоятельно не имеет смысла. Существуют специальные устройства плавного пуска, которые успешно используются для этой цели. Суть их заключается в том, что первые секунды включения напряжение питания подается заниженным, вследствие чего занижен пусковой момент.

Но так как частота вращения роторатаких аппаратов зависит от частоты питающего напряжения, а не от его величины, то такой вариант подходит только тогда, когда нет значительной нагрузки на валу: насосы, вентиляторы. Если есть нагрузка, тогда лучше всего использовать частотный преобразователь. Он также обеспечит плавный запуск, а также много других замечательных возможностей. Правда, стоит он дороже. Из этого следует вывод: такие устройства больше подходят для использования на производстве, пусть даже небольшом. Для дома это дорого.

Как видно, этот частотник можно питать как трехфазным напряжением, так и одной фазой.

Одна фаза

Для того чтобы выполнить подключение однофазного асинхронного двигателя, достаточно двух кнопок: одна с фиксатором, другая без него. Стандартная схема: две обмотки, включенные последовательно (хотя, в зависимости от модели, могут быть варианты). Та, у которой большее сопротивление – пусковая, другая – рабочая.

Каждая модель электрической машины имеет свои характеристики, а значит, и варианты подключения могут различаться. У некоторых для запуска используется два конденсатора, у других – один.

Следовательно, начинать необходимо с выяснения модели и ее технических характеристик.

Как видно, запуск короткозамкнутых электрических машин возможен по-разному. Подключение возможно как в домашних условиях, так и на производстве, что сделало их такими популярными. И, по большому счету, более чем за сто лет не было придумано ничего лучше.

Однофазный асинхронный двигатель: 6 схем работы

Изготовление самодельных станков и механизмов требует наличия источника крутящего момента, способного развивать высокую механическую мощность на валу привода при питании от сети 220 вольт.

Для этих целей подходит электродвигатель от бетономешалки, стиральной машины, другого оборудования или просто приобретенный в продаже.

В статье я рассказываю все про однофазный асинхронный двигатель, схема подключения которого зависит от внутренней конструкции и может быть выполнена с пусковой обмоткой или конденсаторным запуском.

Содержание статьи

С чего обязательно следует начинать подключение двигателя: 2 важных момента, проверенные временем

Перед первым включением любого электродвигателя необходимо уточнить его устройство: конструкцию статора и ротора, состояние подшипников.

На собственном и чужом опыте могу заверить, что проще раскрутить несколько гаек, осмотреть внутреннюю конструкцию, выявить дефекты на начальном этапе и устранить их, чем после запуска в непродолжительную работу заниматься сложным ремонтом, который можно было предотвратить.

Важное предупреждение

Начинающие электрики довольно часто сами создают неисправности двигателя, нарушая технологию его разборки, работая обычным молотком: разбивают грани вала.

Для сохранения структуры деталей без их повреждения необходимо использовать специальный съемник подшипников электродвигателя.

В самом крайнем случае, когда его нет, удары молотком наносят через толстые пластины из мягкого металла (медь, алюминий) или плотную сухую древесину (яблоня, груша, дуб).

Как состояние подшипников влияет на работу двигателя

Любой асинхронный электродвигатель (АД) имеет ротор с короткозамкнутыми обмотками. В них наводится ток, создающий магнитный поток, взаимодействующий с вращающимся магнитным полем статора, которое и является его источником движения.

Ротор внутри корпуса крепится на подшипниках. Их состояние сильно влияет на качество вращения. Они призваны обеспечить легкое скольжение вала без люфтов и биений. Любые нарушения недопустимы.

Дело в том, что обмотку статора можно рассматривать как обыкновенный электромагнит. Если у ротора разбиты подшипники, то он под действием магнитного поля станет притягиваться, приближаясь к статорной обмотке.

Зазор между вращающейся и стационарной частями очень маленький. Поэтому касания или биения ротора могут задевать, царапать, деформировать статорные обмотки, безвозвратно повреждая их. Ремонт потребует полной перемотки статора, а это весьма сложная работа.

Обязательно разбирайте электродвигатель перед его подключением, тщательно осматривайте всю его внутреннюю конструкцию.

Обращайте особое внимание на состояние подшипников, выполнение нормативов по допускам и посадкам, качество смазки. Сухую и старую смазку обязательно необходимо заменять свежей.

Что надо учитывать в конструкции статорных обмоток и как их подготовить

Домашнему мастеру чаще всего попадают электродвигатели, которые уже где-то поработали, а, возможно, и прошли реконструкцию или перемотку. Никто об этом обычно не заявляет, на шильдиках и бирках информацию не меняют, оставляют прежней. Поэтому рекомендую визуально осмотреть их внутренности.

Статорные катушки у асинхронных двигателей для питания от однофазной и трехфазной сети отличаются количеством обмоток и конструкцией.

Трехфазный электродвигатель имеет три абсолютно одинаковые обмотки, разнесенные по направлению вращения ротора на 120 угловых градусов. Они выполнены из одного провода с одинаковым числом витков.

Все они имеют равное активное и индуктивное сопротивление, занимают одинаковое число пазов внутри статора.

Это позволяет первоначально оценивать их состояние обычным цифровым мультиметром в режиме омметра при отключенном напряжении.

Однофазный асинхронный двигатель имеет две разные обмотки на статоре, разнесенные на 90 угловых градусов. Одна из них создана для длительного прохождения тока в номинальном режиме работы и поэтому называется основной, главной либо рабочей.

Для уменьшения нагрева ее делают более толстым проводом, обладающим меньшим электрическим сопротивлением.

Перпендикулярно ей смонтирована вторая обмотка большего сопротивления и меньшего диаметра, что позволяет различать ее визуально. Она создана для кратковременного протекания пусковых токов и отключается сразу при наборе ротором номинального числа оборотов.

Пусковая или вспомогательная обмотка занимает примерно 1/3 пазов статора, а остальная часть отведена рабочим виткам.

Однако, приведенное правило имеет исключения: на практике встречаются однофазные электродвигатели с двумя одинаковыми обмотками.

Для подключения статора к питающей сети концы обмоток выводят наружу проводами. С учетом того, что одна обмотка имеет два конца, то у трехфазного электродвигателя может быть, как правило, шесть выводов, а у однофазного — четыре.

Но из этого простого правила встречаются исключения, связанные с внутренней коммутацией выводов для упрощения монтажа на специальном оборудовании:

  • у трехфазных двигателей из статора могут выводиться:
    • три жилы при внутренней сборке схемы треугольника;
    • или четыре — для звезды;
  • однофазный электродвигатель может иметь:
    • три вывода при внутреннем объединении одного конца пусковой и рабочей обмоток;
    • или шесть концов для конструкции с пусковой обмоткой и встроенным контактом ее отключения от центробежного регулятора.

Как видите, судить о конструкции асинхронного двигателя по количеству выведенных проводов на клеммнике от обмоток статора можно, но вероятность ошибки довольно высока. Нужен более тщательный анализ его устройства.

Техническое состояние изоляции обмоток

Где и в каких условиях хранился статор не всегда известно. Если он находился без защиты от атмосферных осадков или внутри влажных помещений, то его изоляция требует сушки.

В домашней обстановке разобранный статор можно поместить в сухую комнату для просушки. Ускорить процесс допустимо обдувом вентилятора или нагревом обычными лампами накаливания.

Обращайте внимание, чтобы разогретое стекло лампы не касалось провода обмоток, обеспечивайте воздушный зазор. Окончание процесса сушки связано с восстановлением свойств изоляции. Этот процесс необходимо контролировать замерами мегаомметром.

Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице

Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.

Как видите, промышленностью массово выпущены модели с:

  • повышенным сопротивлением пусковой обмотки;
  • пусковым конденсатором;
  • рабочим конденсатором;
  • пусковым и рабочим конденсатором;
  • экранированными полюсами.

А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:

  • значительное снижение реактивной мощности;
  • повышение КПД;
  • уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.

Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.

Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.

Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.

Схема подключения асинхронного двигателя с пусковой обмоткой: последовательность сборки

Например, мы определили, что из статора выходят четыре или три провода. Вызваниваем между ними активное сопротивление омметром и определяем пусковую и рабочую обмотку.

Допустим, что у четырех проводов между собой вызваниваются две пары с сопротивлением 6 и 12 Ом. Скрутим произвольно по одному проводу от каждой обмотки, обозначим это место, как «общий провод» и получим между тремя выводами замер 6, 12, 18 Ом.

Точками на этой схеме я обозначил начала обмоток. Пока на этот вопрос не обращайте внимание. Но, к нему потребуется вернуться дальше, когда возникнет необходимость выполнять реверс.

Цепочка между общим выводом и меньшим сопротивлением 6Ω будет главной, а большим 12Ω — вспомогательной, пусковой обмоткой. Последовательное их соединение покажет суммарный результат 18 Ом.

Помечаем эти 3 конца уже понятной нам маркировкой:

  • О — общий;
  • П — пусковой;
  • Р — рабочий.

Дальше нам понадобиться кнопка ПНВС, специально созданная для запуска однофазных асинхронных двигателей. Ее электрическая схема представлена тремя замыкающими контактами.

Но, она имеет важное отличие от кнопки запуска трехфазных электродвигателей ПНВ: ее средний контакт выполнен с самовозвратом, а не фиксацией при нажатии.

Это означает, что при нажатии кнопки все три контакта замыкаются и удерживаются в этом положении. Но, при отпускании руки два крайних контакта остаются замкнутыми, а средний возвращается под действием пружины в разомкнутое состояние.

Эту кнопку и клеммы вывода обмоток статора из электродвигателя соединяем трехжильным кабелем так, чтобы на средний контакт ПНВС выходил контакт пусковой обмотки. Выводы П и Р подключаем на ее крайние контакты и помечаем.

С обратной стороны кнопки между контактами пусковой и рабочей обмоток жестко монтируем перемычку. На нее и второй крайний контакт подключаем кабель питания бытовой сети 220 вольт с вилкой для установки в розетку.

При включении этой кнопки под напряжение все три контакта замкнутся, а рабочая и пусковая обмотка станут работать. Буквально через пару секунд двигатель закончит набирать обороты, выйдет на номинальный режим.

Тогда кнопку запуска отпускают:

  • пусковая обмотка отключается самовозвратом среднего контакта;
  • главная обмотка двигателя продолжает раскручивать ротор от сети 220 В.

Это самая доступная схема подключения асинхронного двигателя с пусковой обмоткой для домашнего мастера. Однако, она требует наличия кнопки ПНВС.

Если ее нет, а электродвигатель требуется срочно запустить, то ее допустимо заменить комбинацией из двухполюсного автоматического выключателя и обычной электрической кнопки соответствующей мощности с самовозвратом.

Придется включать их одновременно, а кнопку отпускать после раскрутки электродвигателя.

Все запуски электродвигателей и любого электрического оборудования всегда выполняйте с защитой этих цепей автоматическими выключателями. Они предотвратят развитие аварийных ситуаций при возникновении любых случайных ошибок.

С целью закрепления материала по этой теме рекомендую посмотреть видеоролик владельца Oleg pl. Он как раз показывает конструкцию встроенного центробежного регулятора, предназначенного для автоматического отключения вспомогательной обмотки.

Схема подключения асинхронного двигателя с конденсаторным запуском: 3 технологии

Статор с обмотками для запуска от конденсаторов имеет примерно такую же конструкцию, что и рассмотренная выше. Отличить по внешнему виду и простыми замерами мультиметром его сложно, хотя обмотки могут иметь равное сопротивление.

Ориентируйтесь по заводскому шильдику и таблице из книги Алиева. Такой электродвигатель можно попробовать подключить по схеме с кнопкой ПНВС, но он не станет раскручиваться.

Ему не хватит пускового момента от вспомогательной обмотки. Он будет гудеть, дергаться, но на режим вращения так и не выйдет. Здесь нужно собирать иную схему конденсаторного запуска.

2 конца разных обмоток подключают с общим выводом О. На него и второй конец рабочей обмотки подают через коммутационный аппарат АВ напряжение бытовой сети 220 вольт.

Конденсатор подключают к выводам пусковой и рабочей обмоток.

В качестве коммутационного аппарата можно использовать сдвоенный автоматический выключатель, рубильник, кнопки типа ПНВ или ПНВС.

Здесь получается, что:

  • главная обмотка работает напрямую от 220 В;
  • вспомогательная — только через емкость конденсатора.

Эта схема используется для легкого запуска конденсаторных электродвигателей, включаемых в работу без тяжелой нагрузки на привод, например, вентиляторы, наждаки.

Если же в момент запуска необходимо одновременно раскручивать ременную передачу, шестеренчатый механизм редуктора или другой тяжелый привод, то в схему добавляют пусковой конденсатор, увеличивающий пусковой момент.

Принцип работы такой схемы удобно приводить с помощью все той же кнопки ПНВС.

Ее контакт с самовозвратом подключается на вспомогательную обмотку через дополнительный пусковой конденсатор Сп. Второй конец его обкладки соединяется с выводом П и рабочей емкостью Ср.

Дополнительный конденсатор в момент запуска электродвигателя с тяжелым приводом помогает ему быстро выйти на номинальные обороты вращения, а затем просто отключается, чтобы не создавать перегрев статора.

Эта схема таит в себе одну опасность, связанную с длительным хранением емкостного заряда пусковым конденсатором после снятия питания 220 при отключении электродвигателя.

При неаккуратном обращении или потере внимательности работником ток разряда может пройти через тело человека. Поэтому заряженную емкость требуется разряжать.

В рассматриваемой схеме после снятия напряжения и выдергивания вилки со шнуром питания из розетки это можно делать кратковременным включением кнопки ПНВС. Тогда емкость Сп станет разряжаться через пусковую обмотку двигателя.

Однако не все люди так поступают по разным причинам. Поэтому рекомендуется в цепочку пуска монтировать два дополнительных резистора.

Сопротивление Rр выбирается номиналом около 300÷500 Ом нескольких ватт. Его задача — после снятия напряжения питания осуществить разряд вспомогательной емкости Сп.

Резистор Rо низкоомный и мощный выполняет роль токоограничивающего сопротивления.

Добавление резисторов в схему пуска электродвигателя повышает безопасность его эксплуатации, автоматически ограничивает протекание емкостного тока разряда заряженного конденсатора через тело человека.

Где взять номиналы главного и вспомогательного конденсаторов?

Дело в том, что величину пусковой и рабочей емкости для конденсаторного запуска однофазного АД завод определяет индивидуально для каждой модели и указывает это значение в паспорте.

Отдельных формул для расчета, как это делается для конденсаторного запуска трехфазного двигателя в однофазную сеть по схемам звезды или треугольника просто нет.

Вам потребуется искать заводские рекомендации или экспериментировать в процессе наладки с разными емкостями, выбирая наиболее оптимальный вариант.

Владелец
видеоролика “I V Мне интересно” показывает способы оптимальной настройки параметров схемы запуска конденсаторных двигателей.

Как поменять направление вращения однофазного асинхронного двигателя: 2 схемы

Высока вероятность того, что АД запустили по одному из вышеперечисленных принципов, а он крутится не в ту сторону, что требуется для привода.

Другой вариант: на станке необходимо обязательно выполнять реверс для обработки деталей. Оба эти случаи поможет реализовать очередная разработка.

Возвращаю вас к начальной схеме, когда мы случайным образом объединяли концы главной и вспомогательной обмоток. Теперь нам надо сменить последовательность включения одной из них. Показываю на примере смены полярности пусковой обмотки.

В принципе так можно поступить и с главной. Тогда ток по этой последовательно собранной цепочке изменит направление одного из магнитных потоков и направление вращения ротора.

Для одноразового реверса этого переключения вполне достаточно. Но для станка с необходимостью периодической смены направления движения привода предлагается схема реверса с управлением тумблером.

Этот переключатель можно выбрать с двумя или тремя фиксированными положениями и шестью выводами. Подбирать его конструкцию необходимо по току нагрузки и допустимому напряжению.

Схема реверса однофазного АД с пусковой обмоткой через тумблер имеет такой вид.

Пускать токи через тумблер лучше от вспомогательной обмотки, ибо она работает кратковременно. Это позволит продлить ресурс ее контактов.

Реверс АД с конденсаторным запуском удобно выполнить по следующей схеме.

Для условий тяжелого запуска параллельно основному конденсатору через средний контакт с самовозвратом кнопки ПНВС подключают дополнительный конденсатор. Эту схему не рисую, она показана раньше.

Переключать положение тумблера реверса необходимо исключительно при остановленном роторе, а не во время его вращения. Случайная смена направления работы двигателя под напряжением связана с большими бросками токов, что ограничивает его ресурс.

Поэтому место расположения тумблера реверса на станке необходимо выбирать так, чтобы исключить случайное оперирование им во время работы. Устанавливайте его в углублениях конструкции.

Если у вас еще остались неясные моменты про однофазный асинхронный двигатель и схему подключения, то задавайте их в комментариях. Обязательно обсудим.

Как подключить электродвигатель 380 на 220 Вольт?

Трёхфазный асинхронный электродвигатель при необходимости можно подключить и к однофазной электросети. Вал движка будет вращаться, но при этом, конечно же, не будет на нём той силы, которая существует при его трёхфазном подключении. Помимо вращающегося магнитного поля в статоре получается наложение электромагнитных полей трёх обмоток. Они и определяют силу и крутящий момент на валу. Но при однофазном включении трёхфазный асинхронный двигатель можно рассматривать и как крупногабаритную разновидность однофазного двигателя. Ведь в нем, по сути, присутствуют одна рабочая и две пусковые обмотки.

Штатное подключение к трёхфазной электросети предусматривает одну из схем соединения обмоток – либо «треугольник», либо «звезда». Поэтому электрические режимы обмоток при соединении их по схеме «треугольник» допускают напряжение 380 В как номинальное. При однофазном напряжении его величина равна 220 В. Это меньше чем при включении по схеме «треугольник» и поэтому безопасно для электрических режимов обмотки относительно надёжности изоляции и насыщения сердечников обмоток. Но уменьшение напряжение приводит к снижению уровня, как электрической мощности, так и мощности на вале движка.

Для чего нужен конденсатор?

Поэтому одну из обмоток надо присоединить в однофазной электросети напрямую. Чтобы остальные обмотки также давали максимальную отдачу их используют совместно при соединении через конденсатор, которым создаётся фазовый сдвиг напряжения на них. В результате получается такое же соединение обмоток по схеме «треугольник», но уже для однофазной электрической цепи с конденсатором. Но поскольку необходимое для вращения ротора пространственное перемещение магнитного поля создаётся конденсатором, имеет значение величина его ёмкости. Трёхфазный движок сконструирован для перемещения максимума магнитного поля в пределах 120 градусов. А при использовании конденсатора можно получить перемещение максимума магнитного поля только в пределах 90 градусов.

Поэтому при запуске двигателя ёмкости конденсатора может оказаться недостаточно. Чтобы увеличить пусковой момент потребуется увеличение ёмкости конденсатора. Однако после разгона ротора движка может получиться так, что добавленная ёмкость слишком велика для этого режима работы двигателя и при меньшей величине он работает лучше. Поэтому чтобы оптимизировать режим запуска и режим номинальных оборотов двигателя конденсаторов используется два. Один из них постоянно присоединён к электрической цепи, а другой присоединяется с использованием кнопки только при запуске электродвигателя.

Ещё одной особенностью конденсатора в электрической цепи с трёхфазным асинхронным двигателем является его присоединение относительно обмоток, фазного и нулевого проводов. Он подключается либо к обмоткам и фазному проводу, либо к обмоткам и нулевому проводу. В зависимости от этих подключений получается то или иное направление вращения ротора электродвигателя. Поэтому, добавив в электрическую цепь всего лишь один переключатель, можно управлять направлением вращения вала движка.


Как известно, ёмкость это не единственный параметр электрической цепи, который влияет на фазовый сдвиг напряжения и тока в ней. Индуктивность так же создаёт фазовый сдвиг в электрической цепи, но при ином соотношении угла между напряжением и током. Но если вместо конденсатора в электрическую цепь включить дроссель он существенно уменьшит силу тока в пусковых обмотках и в результате движок не запустится из-за слабого магнитного поля, которое эти обмотки создают. Поэтому конденсатор это единственный элемент, который пригоден для получения эффективного перемещающегося магнитного поля в статоре электродвигателя в однофазной электросети.

Как правильно подобрать конденсаторы?

Чтобы получить надёжную работу трёхфазного асинхронного двигателя в однофазной электросети конденсаторы надо правильно выбрать. При этом надо помнить о том, что величина 220 В напряжения однофазной электрической сети это величина условная, поскольку реально напряжение изменяется от нуля и до амплитудного значения, которое больше чем 220 В и равно примерно 310 В, то есть больше в 1,42 раза. Но реальные величины напряжения могут быть ещё больше. А поскольку для конденсатора существует номинальное напряжение, его величина при работе от электросети должна быть выбрана с небольшим запасом. Желательно использовать конденсаторы с номинальным напряжением 350 В.

Если нашёлся асинхронный движок предназначенный для трёхфазной электросети в которой величина фазного напряжения меньше 220 В вместо схемы «треугольник» надо применить схему «звезда». Конденсаторы также будут для такого варианта с иными величинами ёмкости применительно к мощности движка. Она является паспортной величиной и всегда указывается в сопроводительной документации к электродвигателю и обычно есть на его металлическом ярлыке, расположенном на корпусе (на шильдике). По величине мощности легко определить силу тока в номинально нагруженном движке. Для этого делится его мощность в Ваттах на 220.

Полученное значение умножается на коэффициент 12,73 для схемы «звезда» и на коэффициент 24 для схемы «треугольник». В результате получается ёмкость в микрофарадах. Ёмкость конденсаторов при запуске двигателя суммируется из двух конденсаторов. Дополнительный конденсатор подбирается опытным путём по запуску нагруженного движка. При опытах надо быть предельно аккуратным в обращении с заряженными конденсаторами. Поскольку рекомендуется применять различные модели металло- бумажных конденсаторов, они долго удерживают заряд. Поэтому рекомендуется припаять к клеммам конденсаторов резисторы с сопротивлением 3 – 5 кОм для ускорения их разряда.

Важно запомнить, что подключение двигателя 380 на 220 Вольт это всегда нестандартные решения. Всегда приходится идти на эксперимент. Его надо выполнять при строгом соблюдении мер безопасности.

Подключение электродвигателя 380 вольт на 220 вольт

Домашнее хозяйство часто нуждается в средствах механизации. Самодельный станок, насос для воды, оборудование для малого бизнеса… да мало ли для чего может понадобиться хороший электродвигатель! Однако проблема в том, что промышленные электродвигатели рассчитаны на работу в трехфазной сети (380 В).

В то время как в жилых домах и квартирах сеть однофазная, или 220 В. Но решение есть! Давайте рассмотрим, как заставить работать промышленный двигатель от бытовой сети.

Содержание статьи

Отличия однофазного двигателя от трехфазного

В трехфазном двигателе вращение ротора вызывает магнитное поле, которое наводится в статоре переменным напряжением каждой из трех фаз относительно друг друга. Это обеспечивает эффективность работы двигателя. Частота вращения двигателя остается одинаковой при однофазном и трехфазном подключении, а вот мощность при однофазном значительно уменьшается.

В этом случае мы получим от двигателя не больше 70% от номинальной мощности. Чтобы достичь максимально возможного результата, обмотки двигателя необходимо соединить «треугольником». Если подключение выполнено «звездой», то максимальная мощность (даже теоретически) составит не более 50% от номинальной. Чтобы уточнить методику соединения обмоток (если вы затрудняетесь отличить «звезду» от «треугольника»), рекомендуется просмотреть дополнительную информацию.

Так как в трехфазном двигателе имеется три выхода, на два из них подключается нулевой и фазный провода, а третий соединяется через конденсатор. При этом направление вращения будет зависеть от того, как будет подключен конденсатор — к нулевому или фазовому выводам.

Схемы подключения трехфазных двигателей на 220 вольт

Если двигатель маломощный (менее 1,5 кВт), и подключение происходит без нагрузки, то для успешной работы достаточно просто подключить к схеме конденсатор. Например, один вывод припаять к входу нулевого провода, а другой — к свободному концу обмотки, или третьему выводу треугольника. Если направление вращения не устраивает, то нужно просто прикрепить второй вывод конденсатора к входу фазного провода.

          

Для запуска нагруженного или мощного двигателя необходим более мощный «толчок», который может обеспечить дополнительный (пусковой) конденсатор. Он впаивается в схему параллельно основному, однако работает не постоянно, а только несколько секунд, на время старта двигателя. Обычно его подключают через кнопку или двухпозиционный тумблер. Для запуска требуется нажать кнопку (включить тумблер) на то время, пока двигатель запустится и наберет обороты. Затем кнопку отпускают, разрывая сеть и отключая емкость.

Двигатель можно заставить работать в прямом и реверсивном режимах. Для этого в схеме подключения добавляется тумблер, который в одном положении подключает конденсатор к нулевому, а в другом — к фазовому проводу. В реверсивной схеме, если двигатель медленно запускается или не стартует вообще, также может быть добавлен пусковой конденсатор. Он точно так же подключается параллельно основному и включается кнопкой «Пуск».

Часто можно услышать вопрос, а можно ли в принципе запустить трехфазный двигатель без конденсатора? К сожалению, этого сделать нельзя. Так можно запустить только мотор, изначально предназначенный для работы с однофазной сетью 220 В.

Подбор емкости конденсатора

Рабочее напряжение конденсатора должно быть не меньше 300 В. Лучше всего для схемы подходят конденсаторы марок БГТ, МБЧГ, МБПГ и МБГО. Все данные (тип, Uраб, емкость) указаны на корпусе.

Для расчета необходимой емкости следует воспользоваться формулой:

  • для подключения «треугольником» С = (I/U)x4800;
  • для подключения «звездой» С = (I/U)x2800.

Где С — емкость конденсатора в микрофарадах (мкФ), I — номинальный ток в обмотках (по паспорту), U — напряжение питания (220 В), а цифры — коэффициенты для разных типов подключения обмотки.

Что касается пусковых конденсаторов, то их емкость необходимо подбирать путем эксперимента. Обычно она составляет 2-3 от рабочего номинала.

Приведем пример расчета

Соединение — треугольник. Потребляемый номинальный паспортный ток — 3 А. Подставляя значения в формулу, получаем С=(3/220)х4800 = 65 мкФ. В этом случае емкость пускового конденсатора нужно выбирать в пределах 130-180 мкФ. Однако конденсаторов на 65 мкФ в продаже не бывает, поэтому собираем набор из 6 шт. по 10 мкФ и добавляем еще один — 5 мкФ.

Нужно учитывать, что при расчете использовались данные на номинальную мощность. Если двигатель будет работать с недогрузом, он будет перегреваться. В этом случае необходимо уменьшить емкость конденсаторов, чтобы снизить ток в обмотке. Но со снижением емкости уменьшится и мощность, которую может развить двигатель.

Поэтому при подключении рекомендуется действовать методом подбора. Начинать с минимально необходимой емкости, а затем постепенно увеличивать ее до получения оптимальных показателей.

Дополнительные замечания и предостережения:
  • Следует помнить, что двигатель, переделанный с 380 на 220 В, при работе без нагрузки может просто сгореть.
  • Двигатели мощнее 3 кВт не рекомендуется подключать к стандартной проводке жилого дома. Из-за высокой потребляемой мощности он будет выбивать пробки и автоматы, а если поставить более мощные автоматы, то может просто расплавиться изоляция на проводах. Это может привести к пожару или поражению током.
  • Даже после отключения конденсаторы долго сохраняют напряжение на выводах. Поэтому при монтаже они должны быть ограждены, чтобы не допустить случайного касания. Перед работой с конденсаторами обязательно проводите их «контрольную» разрядку.

 

Понравилась статья? Поделиться с друзьями:

Подключение однофазного электродвигателя на 220 через конденсаторы, как определить пусковую и рабочую обмотки

Подключение электродвигателя к однофазной сети – это ситуация, которая встречается достаточно часто. Особенно такое подключение требуется на загородных участках, когда трехфазные электродвигатели используются под какие-то приспособления. К примеру, для изготовления наждака или самодельного сверлильного аппарата. Кстати, мотор стиральной машины через конденсатор производится. Но как это сделать правильно? Необходима схема подключения электродвигателя на 220В через конденсатор. Давайте разбираться в ней.

Начнем с того, что существует две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник. Оба вида подключения создают условия, при которых в обмотках статора двигателя попеременно проходит ток. Он создает внутри вращающееся магнитное поле, которое действует на ротор, заставляя его вращаться. Если подключается трехфазный электродвигатель в однофазную сеть, то вот этот вращающийся момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в схему конденсатор.

Необходимо отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные виды. У них даже на бирках указаны, что можно проводить подключение и на трехфазную сеть, и на однофазную. При этом обязательно указывается величина напряжения – 127/220 или 220/380В. Меньший показатель предназначен для схемы треугольник, больший для звезды. На картинке ниже показано обозначение.

Внимание! Конденсаторный двигатель в однофазную сеть лучше подключать через схему треугольник. Это обусловлено тем, что при таком виде подключения уменьшаются потери мощности агрегата.

Обратите внимание в рисунке на нижнюю бирку (Б). Она говорит о том, что двигатель можно подключить только через звезду. С этим придется смириться и получить аппарат с низкой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, после чего провести подключение по треугольнику.

И еще один очень важный момент. Если вы устанавливаете в однофазную сеть электродвигатель с напряжением 127/220 вольт, то понятно, что к сети напряжением 220В можно подключиться через звезду. Потери мощности гарантированы. Но сделать в данном случае ничего нельзя. Если будет произведено подключение этого прибора через треугольник – мотор просто сгорит.

Емкость конденсатора, который устанавливается в схему подключения трехфазного электродвигателя, подсоединяемого к сети напряжением в 220В, зависит от самой схемы. Для этого существуют специальные формулы.

Cр = 2800•I/U, где Ср – это емкость, I – сила тока, U – напряжение. Если производится подсоединение треугольником, то используется та же формула, только коэффициент 2800 меняется на 4800.

Хотелось бы обратить ваше внимание на тот факт, что сила тока (I) на бирке мотора не указывается, поэтому ее надо будет рассчитать по вот этой формуле:

I = P/(1.73•U•n•cosф), где Р- это мощность электрического двигателя, n – КПД агрегата, cosф – коэффициент мощности, 1,73 – это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.

Так как чаще всего подключение трехфазного двигателя к однофазной сети 220В производится по треугольнику, то емкость конденсатора (рабочего) можно подсчитать по более простой формуле:

C = 70•Pн, здесь Рн – это номинальная мощность агрегата, измеряемая в киловаттах и обозначаемая на бирке прибора. Если разобраться в этой формуле, то можно понять, что существует достаточно простое соотношение: 7 мкФ на 100 Вт. К примеру, если устанавливается мотор мощностью 1 кВт, то для него необходим конденсатор на 70 мкФ.

Как определить, точно ли подобран конденсатор? Это можно проверить только в рабочем режиме.

Даже расчет может привести к неправильному выбору, ведь условия эксплуатации мотора будут влиять на его работу. Поэтому рекомендуется начинать подбор с низких величин, и при необходимости наращивать показатели до необходимых (номинальных).

Что касается пусковой емкости, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хотелось бы обратить ваше внимание на то, что пусковая емкость и емкость пускового конденсатора – это не одно и то же. Первая величина – это сумма емкостей рабочего и пускового конденсаторов.

Внимание! Емкость пускового конденсатора должна быть раза в три больше емкости рабочего. При этом специалисты советуют вместо одного большого прибора использовать несколько с малой емкостью. К тому же пусковые работают непродолжительное время, поэтому на их место можно устанавливать дешевые модели.

В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза быть больше номинального. Как видите, подобрать точно конденсатор под электродвигатель достаточно непростым. Даже расчет является процессом неточным.

Как подключить трехфазный электродвигатель в сеть 220В – схемы и рекомендации

Схема подключения трехфазного электродвигателя к трехфазной сети

Отличие от трехфазных двигателей

Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.

Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:

  1. добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
  2. для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.

Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.

После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.

Схема подключения коллекторного электродвигателя в 220В

Схема подключения однофазного асинхронного двигателя (схема звезда)

Как это работает

Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.

Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.

Основные схемы подключения

В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.

однофазный асинхронный двигатель и конденсатор

Различают три основные способа запуска однофазного асинхронного двигателя через:

  • рабочий;
  • пусковой;
  • рабочий и пусковой конденсатор.

В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.

Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).

Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.

Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.

Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.

Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.

На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.

Другие способы

При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.

С экранированными полюсами и расщепленной фазой

В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.

После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.

Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.

С асимметричным магнитопроводом статора

Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.

Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Как определить рабочую и пусковую обмотки у однофазного двигателя

Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.

Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.

У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.

У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.

То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.

Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.

Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.

Рис. 1. Рабочая и пусковая обмотки однофазного двигателя

А теперь несколько примеров, с которыми вы можете столкнуться:

Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.

Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.

Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.

Л. Рыженков

Редактировал А. Повный

Как подключить электродвигатель однофазный к сети 220 Вольт. Пуск и работа асинхронного двигателя на 220В на примере двигателя типа АВЕ 071-40У4 от стиральной машины Сибирь. Схема подключения.



Подключение однофазного асинхронного двигателя к сети 220в. Пуск однофазного двигателя от стиральной машины Сибирь от сети 220в. Двигатель от стиральной машинки Сибирь сделать под наждак (точило), торчат четыре провода. Как подключить

Электродвигатель типа АВЕ 071-40У4 от стиральной машины «Сибирь» имеет две обмотки — пусковую и рабочую, из снятого двигателя торчат четыре провода. Эти 4 провода необходимо «прозвонить» любым пробником или прибором, чтобы определить выводы каждой из обмоток. Далее на корпусе двигателя Вы можете прочитать, конденсатор какой емкости Вам потребуется для пуска однофазного асинхронного двигателя на 220 Вольт от стиральной машинки «Сибирь» — это конденсатор емкостью 6 микрофарад на напряжение 600 Вольт. Далее соединяете все по электрической схеме, представленной ниже. Если двигатель и конденсатор исправны, то все должно работать.

Ниже на фото представлено практическое воплощение способа подключения однофазного асинхронного двигателя на 220 Вольт и, в отличие от сказанного выше, здесь применен конденсатор не на 6 мкф 600В, а два параллельно соединенных конденсатора, емкость каждого из которых 4 мкф, что в сумме составит 8 мкф — ничего страшного, такая схема пуска тоже отлично работает. Если Вы захотите изменить направление вращения вала двигателя, т.е. осуществить реверс, то Вам необходимо просто поменять местами выводы обмотки В (см. схему электрическую принципиальную). Данную схему подключения можно использовать для изготовления из этого, или другого аналогичного асинхронного однофазного двигателя, точила (наждака). Удачи Вам!

********************************************************************************************************************************************

!!! СЕРЬЁЗНЫЕ ЗНАКОМСТВА С ИНОСТРАНЦАМИ ДЛЯ ЖЕНЩИН ИЗ РФ И СНГ !!!

**********************************************************

!!! СЕКС-ЗНАКОМСТВА, СЕКС-ФОТО И СЕКС-ВИДЕО. ЗАХОДИ !!!

********************************************************************************************************************************************

В категорию сайта «Техника и электротехника»

ВИНЕГРЕТ.РУ — Обо всем понемногу. ГЛАВНАЯ

Схема подключения двух пусковых конденсаторов двигателя. Это 1

Реверсирование вращения электродвигателей можно легко выполнить с помощью трехфазных двигателей. Этого легко добиться, поменяв местами любые два провода двигателя. А вот 3-х фазные моторы обычно встречаются и используются в промышленных целях. Те, которые встречаются и используются в наших домах, от водяных насосов до электрических вентиляторов, представляют собой однофазные двигатели с конденсаторным пуском. В отличие от трехфазных двигателей, изменение направления вращения однофазных электродвигателей — непростая задача.Замена любых двух проводов двигателя не приведет к изменению направления вращения двигателя. Прежде чем вносить какие-либо изменения для достижения желаемого результата, необходимо провести анализ обмоток и соединений двигателя. В качестве примера возьмем трехскоростной однофазный электродвигатель с конденсаторным пуском, электрическая схема которого приведена ниже. Прежде чем следовать этому совету, убедитесь, что двигатель отключен от источника питания. Этот совет предназначен только для людей, обладающих знаниями в области электротехники, необходимыми инструментами и понимающих риски, связанные с обращением с электрическим оборудованием и устройствами.

Первым этапом процесса является определение пусковой обмотки, которая подключается к линии (переменный ток белого цвета) и к одной стороне пускового конденсатора. Чтобы точно определить пусковую обмотку, отсоедините все провода двигателя от пускового конденсатора и переключателя скорости для многоскоростных двигателей, а затем, установив омметр на самую низкую шкалу (R x 1), измерьте сопротивление между белой линией переменного тока и каждой из двигатель подключается к пусковому конденсатору. Тот, который имеет наименьшее сопротивление, является выводом пусковой обмотки.

После определения вывода пусковой обмотки, идущего к конденсатору, повторно подключите конденсатор, затем подключите черную линию переменного тока к найденному выводу пусковой обмотки (обозначен X). Подключите белую линию переменного тока к L переключателя скорости, провод двигателя, ранее подключенный к сети переменного тока, белый к 3, красный к 2 и белый к 1, как показано ниже. Оставьте подключение зеленого/желтого провода заземления как есть.

Ниже приведены модификации проводки для двухскоростных и односкоростных однофазных электродвигателей с конденсаторным пуском.

Схемы подключения однофазных конденсаторных двигателей

Реверсирование вращения электродвигателей можно легко выполнить с помощью трехфазных двигателей. Этого легко добиться, поменяв местами любые два провода двигателя. А вот 3-х фазные моторы обычно встречаются и используются в промышленных целях. Те, которые встречаются и используются в наших домах, от водяных насосов до электрических вентиляторов, представляют собой однофазные двигатели с конденсаторным пуском. В отличие от трехфазных двигателей, изменение направления вращения однофазных электродвигателей — непростая задача.Замена любых двух проводов двигателя не приведет к изменению направления вращения двигателя. Прежде чем вносить какие-либо изменения для достижения желаемого результата, необходимо провести анализ обмоток и соединений двигателя. В качестве примера возьмем трехскоростной однофазный электродвигатель с конденсаторным пуском, электрическая схема которого приведена ниже. Прежде чем следовать этому совету, убедитесь, что двигатель отключен от источника питания. Этот совет предназначен только для людей, обладающих знаниями в области электротехники, необходимыми инструментами и понимающих риски, связанные с обращением с электрическим оборудованием и устройствами.

Первым этапом процесса является определение пусковой обмотки, которая подключается к линии (переменный ток белого цвета) и к одной стороне пускового конденсатора. Чтобы точно определить пусковую обмотку, отсоедините все провода двигателя от пускового конденсатора и переключателя скорости для многоскоростных двигателей, а затем, установив омметр на самую низкую шкалу (R x 1), измерьте сопротивление между белой линией переменного тока и каждой из двигатель подключается к пусковому конденсатору. Тот, который имеет наименьшее сопротивление, является выводом пусковой обмотки.

После определения вывода пусковой обмотки, идущего к конденсатору, повторно подключите конденсатор, затем подключите черную линию переменного тока к найденному выводу пусковой обмотки (обозначен X). Подключите белую линию переменного тока к L переключателя скорости, провод двигателя, ранее подключенный к сети переменного тока, белый к 3, красный к 2 и белый к 1, как показано ниже. Оставьте подключение зеленого/желтого провода заземления как есть.

Ниже приведены модификации проводки для двухскоростных и односкоростных однофазных электродвигателей с конденсаторным пуском.

Мне нужна электрическая схема для двигателя Baldor мощностью 10 л.с., 1 фаза,

Привет Кейси, я электрик и могу помочь вам с этой проблемой.

Во-первых, отказ от ответственности. Без каталожного номера вашего двигателя или электрической схемы для него никто не сможет с уверенностью сказать вам, как подключить этот двигатель. С учетом сказанного…

Почти все односкоростные трехфазные двигатели имеют 9 проводов (пронумерованных от 1 до 9) и могут быть подключены как к «высокому», так и к «низкому» напряжению.В большинстве случаев высокое значение составляет 480 вольт, а низкое — 208/240 вольт. Учитывая, что вы указали силу тока как «41-38/19», я на 99% уверен, что 41 ампер соответствует напряжению 208 вольт, 38 ампер соответствует напряжению 240 вольт, а 19 ампер соответствует напряжению 480 вольт. Далее ниже указан способ подключения, если производитель двигателя или паспортная табличка не указывают иначе. Вам нужно будет определить напряжение прибора, в который он будет установлен. Вы должны найти это на паспортной табличке устройства, но здесь также могут быть указаны характеристики двойного напряжения.В этом случае вам необходимо *тщательно* измерить напряжение с помощью измерителя или выяснить напряжение электрического щита, который питает прибор.

После того, как вы узнали входное напряжение, вы подключите двигатель как таковой, когда L1, L2 и L3 являются проводами питания сети, а номера проводов с 1 по 9 соответствуют номерам девяти проводов от двигателя.

208/240 или «Низкое» напряжение:
Выводы двигателя 4, 5 и 6 соединены вместе и проволочной гайкой.
Провода двигателя 1 и 7 к L1 и проволочной гайке.;
Провода двигателя 2 и 8 к L2 и проволочной гайке и, наконец,
Провода двигателя 3 и 9 к L3 и проволочной гайке.

480 или «высокое» напряжение:
Вывод двигателя 1 к L1 и проволочная гайка,
Вывод двигателя 2 к L2 и проволочная гайка,
Вывод 3 двигателя к L3 и проволочная гайка,
Вывод двигателя 4 к 7 и проволочная гайка,
Вывод двигателя 5 к 8 и проволочная гайка и, наконец,
Провода двигателя с 6 по 9 и проволочная гайка.

Двигатель должен работать кратковременно или в толчковом режиме, чтобы определить направление вращения двигателя. Если необходимо изменить направление вращения двигателя, просто поменяйте местами любые два провода «L» (поменяйте местами L1 и L2, или L1 и L3, или L2 и L3).Проверьте еще раз, чтобы проверить вращение и, когда все будет правильно, закройте отсек проводки и завершите установку. Замена проводов L, вероятно, будет намного быстрее и проще сделать на магнитном контакторе, а не в отсеке проводки двигателя. Любое расположение приемлемо.

Вы должны попытаться получить данные с заводской таблички для этого двигателя — если это вообще возможно, чтобы убедиться в напряжении и способе подключения. Я надеюсь, что это поможет и удачи!

Схема подключения электродвигателя 220В с конденсатором.Подключение конденсатора

Большинство владельцев частных гаражей или мастерских сталкиваются с таким вопросом, как подключение электродвигателя 380В на 220В через конденсатор или другими способами. Некоторые виды оборудования, которые могут находиться в частной собственности, такие как бетономешалки, шлифовальные станки или деревообрабатывающие станки, потребляют больше энергии.

При интенсивном пуске используется пусковая муфта до 7,5 кВт. Если муфта допускает полный пуск на холостом ходу, эти двигатели можно подключать к сети 15 кВт непосредственно в сеть, пусковой ток не должен превышать номинального тока более чем в 2,5 раза, однако неравномерность включения не должна превышать номинального тока более чем в 2,5 раза. 1, 9 раз.

Особенности и способы подключения к однофазной сети

Для двигателей с двигателями со щеткой и коротким сцеплением, а также для пусков больших двигателей следует избегать выхода из строя. Для двигателей, предназначенных для повторно-кратковременной работы, ток включения не должен превышать номинальный ток в 3 раза. Для переключения двигателей применимо то же положение.

Может быть обеспечен асинхронным трехфазным двигателем, вот только главная его беда — расчет на подключение к сети 380В, которая отсутствует или сильно ограничена в большинстве частных домовладений.Варианты выхода из сложившейся ситуации 380/220 рассмотрим ниже.

Отличие однофазных агрегатов от трехфазных

Прежде чем перейти к непосредственному рассмотрению схем подключения типа 380/220, необходимо уяснить следующее:

Однофазные двигатели: Режимы подключения двигателей постоянного тока. Ток включения не должен превышать номинальный ток в 2,5 раза. Способы соединения переносных и переносных двигателей. Не подключайте двигатель напрямую к внешней линии.Конструкция подвижного источника должна быть такой, чтобы она соответствовала рабочей среде, сечение проводов и типы вилок и розеток в соответствии с токовой нагрузкой, мощностью двигателя и защитным проводом, подключаемым к защитным контактным вилкам с защитный зажим двигателя.

  • какие двигатели обоих классов;
  • как они работают;
  • каковы принципы работы однофазной (220) и трехфазной (380) сети?

Так как большинство асинхронных электродвигателей трехфазные (на 380В), то с них и начнем.Любой такой агрегат имеет два основных элемента: подвижный ротор, соединенный с приводным валом, и неподвижный кольцевой статор. Каждая из них имеет фазные обмотки, смещенные относительно друг друга на 120º. Принцип работы двигателя 380В заключается в создании движущегося (вращающегося) магнитного поля. Он создается в обмотках статора при подаче на них напряжения. Из-за разности частот полей ротора и статора между контактными обмотками возникает ЭДС, которая заставляет вал вращаться. Три фазы (по 220 В) должны прийти на клеммы такого двигателя через соединение звезда или треугольник.

Однако, если питание короткое, его устанавливают с другим подвижным входом в том же поперечном сечении, что предусмотрено на одном конце вилки и вторым подвижным выходом. Соединить провода, соединив их, невозможно. Для перемещения корма рекомендуется использовать намоточный барабан, подходящие седелки или зажимы на крышке или несущей раме. При подсоединении двигателя необходимо соблюдать особую осторожность, чтобы не повредить всасывание дросселем, скручиванием и т.п. не повредиться даже при длительном использовании и не повредиться даже при закрытой крышке.

Однофазным называется блок питания, предназначенный для подключения к идентичной, чаще всего бытовой сети напряжением 220В. Учитывая, что любой такой кабель имеет два провода (фазу и ноль), то для двигателя достаточно иметь только одну фазную обмотку. На самом деле статор конструктивно имеет две обмотки, но одна используется как рабочая, а вторая как пусковая. Для того, чтобы двигатель 220В начал работать, то есть создать вращающееся магнитное поле и ЭДС после него, необходимо использовать обе схемы.При этом пусковая обмотка подключается через промежуточную емкостно-индуктивную цепь или замыкается при малой мощности блока.

Как можно сделать вывод, основное отличие этих двух классов двигателей (220 и 380 В) не столько в количестве фаз/проводов подключения, сколько в организации пуска.

Особенности и способы подключения к однофазной сети

Однофазный ток 220В, подаваемый на электродвигатель, точнее на его статор и ротор, образует два эквивалентных магнитных поля, вращающихся в противоположных направлениях.Для того чтобы заставить ротор вращаться, нужно вручную или за счет пусковых устройств организовать фазовый сдвиг. Мощность будет ниже номинальной (50…70%), но двигатель будет работать.

Очевидно, что прямое подключение одной из фазных обмоток к сети 220В при неработающих остальных не запустит двигатель. Поэтому все три фазы нужно соединить через промежуточный контур. Это можно сделать двумя основными способами:

  1. Емкостная схема. Одна из обмоток двигателя подключена через конденсатор, формирующий сдвиг фазы тока вперед на 90º.После запуска эту схему можно отключить;
  2. Индуктивная цепь. Работает он примерно так же, как и предыдущий, только фазовый сдвиг происходит в обратную сторону.

Чтобы сэкономить на оплате электроэнергии, наши читатели рекомендуют энергосберегающую коробку. Ежемесячные платежи будут на 30-50% меньше, чем были до использования экономики. Он убирает из сети реактивную составляющую, в результате чего снижается нагрузка и, следовательно, потребляемый ток.Электроприборы потребляют меньше электроэнергии, снижая затраты на ее оплату.

Иногда достаточно даже механического вращения ротора, чтобы двигатель 380 мог работать от 220.

Общие схемы подключения двигателей от 380В до 220В через конденсатор

Чаще всего, если нужно решить эту задачу , использовать рабочие и пусковые конденсаторы (конденсаторные батареи). Принципиальные схемы подключения треугольника и звезды 380В можно увидеть на следующем рисунке:

Нефиксированная кнопка «Разгон» служит для включения параллельно подключенного пускового конденсатора.Его необходимо удерживать до тех пор, пока двигатель не достигнет максимальных оборотов. После этого пусковую цепь необходимо отключить во избежание перегрева обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.

Емкость конденсатора рассчитывается по следующим формулам:


Емкость пускового конденсатора при этом должна быть вдвое больше рабочей. Если не прибегать к расчету по формулам, то можно использовать значение 7 мкФ/кВт.

Практика показывает, что соединение треугольником более эффективно, так как в этом случае распределение напряжения в обмотках будет более равномерным, а мощность будет меньше снижаться. Однако есть одно ограничение, касающееся компоновки клеммной колодки двигателя. Если под его крышкой всего три контакта на 380, значит там предустановленная схема подключения, которую нельзя изменить. Если выводов шесть, то можно выбрать, какой вариант организовать. Характеристическое обозначение наносится на металлическую табличку с характеристиками.

Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовая схема может быть изменена с организацией цепи динамического торможения:


Здесь можно посмотреть включение моторного треугольника через емкостную цепь конденсаторов С1 (пусковой) и С2 (рабочий). Дополнительно организована схема на транзисторе и резистивном элементе, который соединен с трехпозиционным ключом. Когда он находится в положении «3», на обмотки статора подается питающее напряжение 220В и для его запуска можно использовать кнопку К1.Для остановки двигателя ключ переводят в положение «1», после чего на обмотки подается постоянный ток. и осуществляется торможение. Следует отметить, что этот переключатель имеет всего два фиксированных положения «2» и «3». Чтобы использовать обычный двухпозиционный переключатель, вам нужно будет добавить в эту цепь еще один конденсатор. Выглядит это так:


Как уже упоминалось, однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно перемещать (заставлять вращать) в ту или иную сторону.Поэтому можно реализовать на практике схему обратного подключения электродвигателя 380В:


Схема в некотором роде является комбинацией двух предыдущих, только здесь двойной выключатель и пуск через реле Р1 используются.

Схемы, рассмотренные в статье, являются базовыми, но в зависимости от конкретного случая их можно модифицировать по своему усмотрению, чтобы добиться включения трехфазного в сеть 220В однофазного асинхронного электродвигателя на 380В .

Подключение двигателя к однофазной сети — это ситуация, которая встречается довольно часто. Особенно такое подключение требуется на загородных участках, когда для некоторых устройств используются трехфазные электродвигатели. Например, для изготовления наждака или самодельного сверлильного аппарата. Кстати, двигатель стиральной машины через конденсатор производится. Но как сделать это правильно? Схема подключения электродвигателя 220В через конденсатор обязательна. Давайте разберемся.

Начнем с того, что есть две стандартные схемы подключения электродвигателя к трехфазной сети: звезда и треугольник.Оба типа соединения создают условия, при которых попеременно протекает ток в обмотках статора двигателя. Он создает внутри вращающееся магнитное поле, которое воздействует на ротор, заставляя его вращаться. Если трехфазный электродвигатель подключен к однофазной сети, то этот вращающий момент не создается. Что делать? Вариантов несколько, но чаще всего электрики устанавливают в цепь конденсатор.

Что происходит?

  • Скорость вращения не меняется.
  • Мощность резко падает.Разумеется, о конкретных цифрах здесь говорить не приходится, потому что падение мощности будет зависеть от разных факторов. Например, на условия работы самого двигателя, на схему подключения, на конденсаторы, а точнее на их емкость. Но в любом случае потери будут от 30 до 50 процентов.

Следует отметить, что не все электродвигатели могут работать от однофазной сети. Лучше всего работают асинхронные представления. У них даже на бирках указано, что возможно подключение как к трехфазной сети, так и к однофазной.При этом указывается значение напряжения – 127/220 или 220/380В. Меньшая цифра предназначена для узора треугольник, большая – для звезды. На картинке ниже показан символ.

Внимание! Конденсаторный двигатель лучше подключать треугольником к однофазной сети. Это связано с тем, что такой тип подключения снижает потери мощности агрегата.

Обратите внимание на рисунок на нижней бирке (B). Она говорит, что двигатель можно подключить только через звезду.С этим придется смириться и получить устройство с малой мощностью. Если есть желание изменить ситуацию, то придется разобрать двигатель и вывести еще три конца обмоток, а потом сделать соединение по треугольнику.

И еще один очень важный момент. Если установить электродвигатель с напряжением 127/220 вольт в однофазную сеть, то понятно, что подключиться к сети 220 вольт можно через звезду. Потеря мощности гарантирована. Но ничего нельзя сделать в этом случае.Если устройство подключить через треугольник, мотор просто сгорит.

Схемы подключения

Давайте посмотрим на обе диаграммы. Начнем с треугольника. В любой схеме очень важно правильно подключить конденсатор. В этом случае провода распределяются следующим образом:

  • Два контакта подключены к сети.
  • Один через конденсатор на обмотку.

Но есть одно но, если электродвигатель не нагружен, то его ротор без проблем начнет вращаться.Если пуск будет производиться под определенной нагрузкой, то вал либо вообще не будет вращаться, либо с очень малой скоростью. Для решения этой проблемы в схему необходимо установить еще один конденсатор — пусковой. На нем лежит только одна задача — запустить двигатель, отключить и разрядить. На самом деле пуск работает всего 2-3 секунды.


В схеме звезда конденсатор подключен к выводам обмоток. Два из них подключены к сети 220В, а свободный конец и один из сетевых замыкают конденсатор.

Как рассчитать емкость

Емкость конденсатора, который установлен в схеме подключения трехфазного электродвигателя, подключаемого к сети напряжением 220В, зависит от самой схемы. Для этого существуют специальные формулы.

Звездное соединение:

Cp = 2800 I/U, где Cp – емкость, I – сила тока, U – напряжение. При подключении треугольником используется та же формула, только коэффициент 2800 меняется на 4800.

Хочу обратить внимание, что сила тока (I) на бирке двигателя не указывается, поэтому нужно будет рассчитать по этой формуле:

I = Р/(1.73 U n cosf), где Р- мощность электродвигателя, n — единичный КПД, cosf — коэффициент мощности, 1,73 — это поправочный коэффициент, он характеризует соотношение между двумя видами токов: фазным и линейным.


Поскольку чаще всего подключение трехфазного двигателя к однофазной сети 220В производится треугольником, емкость конденсатора (рабочего) можно рассчитать по более простой формуле:

С = 70 Ph, здесь PH — номинальная мощность агрегата, измеряемая в киловаттах и ​​обозначаемая на бирке прибора.Если вникнуть в эту формулу, то можно понять, что здесь достаточно простая зависимость: 7 мкФ на 100 Вт. Например, если установлен двигатель мощностью 1 кВт, то для него нужен конденсатор на 70 мкФ.

Как определить правильно ли подобран конденсатор? Проверить это можно только во время работы.

  • Если во время работы двигатель перегревается, значит, мощность устройства больше требуемой.
  • Низкая мощность двигателя означает малую мощность.

Даже расчет может привести к неправильному выбору, ведь на его работу будут влиять условия эксплуатации двигателя.Поэтому подбор рекомендуется начинать с низких значений, а при необходимости повышать производительность до требуемой (номинальной).


Что касается пусковой мощности, то здесь в первую очередь учитывается, какой пусковой момент необходим для запуска электродвигателя. Хочу обратить ваше внимание, что пусковая емкость и емкость пускового конденсатора не одно и то же. Первое значение представляет собой сумму емкостей рабочего и пускового конденсаторов.

Внимание! Емкость пускового конденсатора должна быть в три раза больше емкости рабочего. В этом случае специалисты советуют вместо одного большого устройства использовать несколько с небольшой мощностью. Кроме того, пусковые установки работают недолго, поэтому на их место можно установить дешевые модели.

В качестве рабочих можно использовать бумажные, металлизированные или пленочные аналоги. При этом необходимо учитывать тот факт, что допустимое напряжение должно быть в полтора раза больше номинального.Как видите, подобрать именно конденсатор под электродвигатель достаточно сложно. Даже расчет является неточным процессом.

Похожие сообщения:

Двигатели с конденсаторным пуском: схема и объяснение того, как конденсатор используется для запуска однофазного двигателя

Однофазный асинхронный двигатель можно сделать самозапускающимся различными способами. Одним из часто используемых методов являются двигатели с расщепленной фазой. Другим методом являются асинхронные двигатели с пусковым конденсатором.

Асинхронные двигатели с пусковым конденсатором

Мы знаем об активности конденсатора в чистой цепи переменного тока. Когда конденсатор вводится таким образом, напряжение отстает от тока на некоторый фазовый угол. В этих двигателях необходимая разность фаз между Is и Im достигается включением конденсатора последовательно с обмоткой стартера. Конденсатор, используемый в этих двигателях, электролитического типа и обычно виден, поскольку он установлен снаружи двигателя как отдельный блок. (нажмите на изображение, чтобы увеличить его).

Во время пуска, поскольку конденсатор включен последовательно с обмоткой стартера, ток через обмотку стартера Is опережает напряжение V, которое прикладывается к цепи. Но ток через основную обмотку Im все еще отстает от приложенного к цепи напряжения V. Таким образом, чем больше разница между Is и Im, тем лучше результирующее вращающееся магнитное поле.

Когда двигатель достигает примерно 75% скорости полной нагрузки, центробежный переключатель S размыкается и, таким образом, отключает обмотку стартера и конденсатор от основной обмотки.На векторной диаграмме важно отметить, что разность фаз между Im и Is составляет почти 80 градусов по сравнению с 30 градусами в асинхронном двигателе с расщепленной фазой. Таким образом, асинхронный двигатель с пусковым конденсатором создает лучшее вращающееся магнитное поле, чем двигатели с расщепленной фазой. Из векторной диаграммы видно, что ток через обмотку пускателя Is опережает напряжение V на небольшой угол, а ток через основную обмотку Im отстает от приложенного напряжения. Следует понимать, что результирующий ток I мал и почти совпадает по фазе с приложенным напряжением V.

Крутящий момент, развиваемый асинхронным двигателем с расщепленной фазой, прямо пропорционален синусу угла между Is и Im. Также угол составляет 30 градусов в случае двигателей с расщепленной фазой. Но в случае асинхронных двигателей с конденсаторным пуском угол между Is и Im составляет 80 градусов. Тогда становится очевидным, что увеличение угла (с 30 градусов до 80 градусов) само по себе увеличивает пусковой момент почти в два раза по сравнению со значением, развиваемым стандартным асинхронным двигателем с расщепленной фазой.Кривая характеристики скорость-момент демонстрирует пусковой и рабочий моменты асинхронного двигателя с конденсаторным пуском.

Типы двигателей

Существуют различные типы двигателей с конденсаторным пуском, разработанные и используемые в различных областях. Они следующие:

  1. Одновольтные, с внешним реверсом,
  2. Одновольтные, нереверсивные,
  3. Одновольтные, реверсивные и с термостатом,
  4. Одновольтные, нереверсивные с магнитным выключателем
  5. Двухвольтный, нереверсивный,
  6. Двухвольтный, реверсивный,
  7. Одновольтный, трехпроводной, реверсивный,
  8. Одновольтный, мгновенно реверсивный,
  9. Двухскоростной , и
  10. Двухскоростные с двухконденсаторным типом.

Эти двигатели можно использовать для различных целей в зависимости от потребностей пользователя. Пусковые, скоростные/моментные характеристики каждого из вышеперечисленных двигателей могут быть проанализированы перед использованием их в работе.

Моя следующая статья будет посвящена однофазным двигателям с расщепленными полюсами; Вы можете прочитать это здесь.

Авторы изображений:

www.tpub.com

www.allaboutcircuits.com

A/C-D/C Machines производства A.K & B.L. Терая.

Инструкции по правильному подключению двигателей вентиляторов конденсатора в 3-проводной и 4-проводной конфигурациях

«Мой оригинальный двигатель вентилятора конденсатора имеет три провода, а двигатель вентилятора конденсатора, который я купил на замену, имеет четыре провода. Я купил не тот двигатель? ”

Это, безусловно, самый распространенный вопрос после сделки, который мы получаем от клиентов, которые недавно приобрели сменные двигатели вентиляторов конденсатора. Проще говоря, нет — вы купили не тот двигатель вентилятора конденсатора. В то время как большинство оригинальных двигателей вентиляторов конденсатора имеют только три провода, двигатели вентиляторов конденсатора на замену очень часто имеют четыре провода.В этом руководстве объясняется, как подключить новый двигатель вентилятора конденсатора с помощью четырехпроводной или трехпроводной схемы при использовании одинарного рабочего конденсатора или двойного рабочего конденсатора.

Обзор компонентов:

Если вы помните из нашего руководства по сезонному охлаждению жилых помещений, в наружных конденсаторных блоках используется переключатель, называемый контактором. Этот переключатель управляется термостатом и замыкает электрическую цепь, когда необходимо подать электричество на двигатель вентилятора конденсатора и компрессор.Думайте о контакторе почти как о привратнике — через него должны проходить две ветви электропитания на 115 вольт, чтобы ваша система функционировала должным образом.

В блоках конденсатора

также используется компонент, называемый рабочим конденсатором. Рабочие конденсаторы позволяют двигателям вентиляторов конденсаторов и компрессорам работать более эффективно, и они оцениваются в единицах измерения, называемых микрофарадами. Двойные рабочие конденсаторы используются как для двигателя вентилятора конденсатора, так и для компрессора. Одноходовые конденсаторы используются исключительно только для двигателя вентилятора конденсатора или только для компрессора.Как и ваш контактор, ваш конденсатор должен быть правильно подключен, чтобы он функционировал должным образом.

Использование двойного рабочего конденсатора:

Если вы используете двойной рабочий конденсатор, вы будете использовать только три из четырех проводов, отходящих от нового двигателя вентилятора конденсатора.

Вы собираетесь подключить черный провод к тому месту, где был подключен черный провод на предыдущем двигателе вентилятора конденсатора. Скорее всего, это вернется к вашему контактору. Вы собираетесь подключить белый провод к тому месту, где был подключен белый провод на вашем предыдущем двигателе вентилятора конденсатора.Скорее всего, это будет вывод «C» или «Общий» на вашем двойном рабочем конденсаторе. Наконец, вы собираетесь подключить коричневый провод к тому месту, где был подключен ваш предыдущий коричневый провод. Скорее всего, это будет клемма «F» или «Fan» на вашем двойном рабочем конденсаторе. Коричневый грифель с белым индикатором в этой установке использоваться не будет. Вы можете использовать проволочную гайку и изоленту, чтобы связать его.

ПРИМЕЧАНИЕ. Вам понадобится перемычка между клеммой «C» или «Общий» на конденсаторе и одной ножкой контактора.

Использование одного рабочего конденсатора с четырехпроводной схемой:

Если вы приобрели новый двигатель вентилятора конденсатора с новым однотактным конденсатором, вы будете использовать эту схему подключения.Вы собираетесь подключить черный провод к тому месту, где был подключен черный провод на вашем предыдущем двигателе вентилятора конденсатора. Скорее всего, это вернется к вашему контактору. Вы собираетесь подключить белый провод обратно к другой ноге вашего контактора. Вы собираетесь подключить коричневый провод к одному набору клемм на вашем новом конденсаторе, а коричневый провод с белой трассировкой — к другому набору клемм.

Использование одного рабочего конденсатора с трехпроводной схемой:

Если вы приобрели новый одноходовой конденсатор, а двигатель вентилятора конденсатора, который вы используете, имеет только три провода, отходящих от него, вы будете использовать такую ​​схему подключения.Вы собираетесь подключить черный провод к тому месту, где он был ранее подключен. Скорее всего, это вернется к вашему контактору. Вы собираетесь подключить белый провод к одному набору клемм на вашем новом конденсаторе. Вам нужно будет подключить перемычку от этого набора клемм к другой ножке вашего контактора. Наконец, вы собираетесь подключить коричневый провод к противоположному набору клемм на вашем новом рабочем конденсаторе, чем к общему проводу.

Суммарно:

Всегда есть чувство удовлетворения, когда вы выполняете проект самостоятельно, но подключение нового двигателя вентилятора конденсатора и рабочего конденсатора может быть немного сложным, если вы не делали этого раньше.Безопасность всегда является наивысшим приоритетом. Перед началом любых работ убедитесь, что электропитание блока конденсатора отключено. Используйте свой мультиметр, чтобы подтвердить отключение. Если вам неудобно работать с электричеством, обратитесь к местному подрядчику по ОВКВ, и они с радостью выполнят эту задачу за вас.

Перед снятием двигателя вентилятора конденсатора или рабочего конденсатора очень полезно задокументировать расположение существующих проводных соединений. Используйте камеру, чтобы сфотографировать соединения и сверьтесь с фотографиями при установке нового двигателя вентилятора конденсатора и рабочего конденсатора.

Для наглядного изображения типовых конфигураций проводки обратитесь к следующему руководству: Схема подключения двигателя вентилятора конденсатора HVAC.

Наконец, это руководство предназначено для использования в качестве общего обзора общих схем подключения конденсаторных блоков. Некоторые двигатели вентиляторов конденсатора подключаются к печатной плате, в то время как другие используют специальные разъемы для своих разъемов. Мы настоятельно рекомендуем обратиться к руководству по вашему устройству за инструкциями по правильному подключению.

Руководство по поиску и устранению неисправностей — двигатели переменного тока

Используйте этот ресурс для устранения неполадок двигателя переменного тока.Если проблемы с двигателем не могут быть решены с помощью этого списка, обратитесь за помощью по телефону к вашему поставщику .

1. Двигатель не запускается при первоначальной установке

  • Неправильно подключен двигатель
    • Обратитесь к электрической схеме, чтобы убедиться в правильности подключения электродвигателя.
  • Двигатель поврежден, ротор ударяется о статор
    • Поверните вал двигателя и почувствуйте трение.
  • Неисправность источника питания или линии
    • Проверьте источник питания, перегрузку, предохранители, элементы управления и т. д..

2. Двигатель работал, но не запускается

  • Сработал предохранитель или автоматический выключатель
    • Замените предохранитель или переустановите автоматический выключатель.
  • Статор закорочен или заземлен (двигатель будет издавать гудящий звук и сработает автоматический выключатель или предохранитель)
    • Проверьте змеевики на наличие утечек. При обнаружении утечек двигатель подлежит замене.
  • Двигатель перегружен или заклинен
    • Убедитесь, что нагрузка свободна.Проверьте потребляемый ток двигателя по сравнению с паспортной табличкой.
  • Возможно, вышел из строя конденсатор (на однофазном двигателе)
    • Сначала разрядите конденсатор. Для проверки конденсатора установите вольтметр на шкалу RX100 и прикоснитесь его щупами к выводам конденсатора. Если конденсатор в порядке, стрелка подскочит до нуля омов и вернется к высокому уровню. Постоянный нуль Ом указывает на короткое замыкание; постоянное высокое сопротивление указывает на обрыв цепи.

3.Мотор работает, но глохнет

  • Падение напряжения
    • Если напряжение составляет менее 90 % от номинального значения двигателя, обратитесь в электроэнергетическую компанию или убедитесь, что другое оборудование не отбирает мощность у двигателя.
  • Увеличение нагрузки
    • Убедитесь, что нагрузка не изменилась и оборудование не стало более натянутым. Если это приложение с вентилятором, убедитесь, что воздушный поток не изменился.

4.Двигатель слишком долго разгоняется

  • Неисправный конденсатор
    • Проверьте конденсатор в соответствии с предыдущими инструкциями.
  • Плохие подшипники
    • Шумные подшипники или подшипники с грубыми ощущениями должны быть заменены поставщиком двигателя.
  • Слишком низкое напряжение
    • Убедитесь, что напряжение находится в пределах 10 % от номинала двигателя, указанного на паспортной табличке. Если нет, обратитесь в свою энергетическую компанию или проверьте, не отбирает ли какое-либо другое оборудование питание от двигателя.

5. Двигатель вращается в неправильном направлении

  • Неправильное подключение
    • Переподключите двигатель в соответствии со схемой, прилагаемой к двигателю. Схемы подключения Groschopp можно найти на странице «Схемы подключения» в разделе наших ресурсов или на страницах отдельных двигателей.

6. Двигатель перегружен/тепловая защита постоянно капает

  • Слишком большая нагрузка
    • Убедитесь, что загрузка не зажата.Если двигатель подлежит замене, убедитесь, что номинальные характеристики такие же, как у старого двигателя. Если предыдущий двигатель был специальной конструкции, серийный двигатель не сможет воспроизвести производительность. Снимите нагрузку с двигателя и проверьте потребляемый ток двигателя без нагрузки. Оно должно быть меньше номинальной нагрузки, указанной на паспортной табличке (только для трехфазных двигателей).
  • Слишком высокая температура окружающей среды
    • Убедитесь, что двигатель получает достаточно воздуха для надлежащего охлаждения.Большинство двигателей предназначены для работы при температуре окружающей среды не выше 40°C. (Примечание: правильно работающий двигатель может быть горячим на ощупь.)

7. Перегрев двигателя

  • Перегрузка. Сравните фактический ток (измеренный) с паспортным номиналом .
    • Найдите и устраните источник чрезмерного трения в двигателе или нагрузке. Уменьшите нагрузку или замените двигатель на двигатель большей мощности.
  • Однофазный (только трехфазный)
    • Проверьте ток на всех фазах.Должно получиться примерно одинаково.
  • Неправильная вентиляция
    • Проверьте внешний вентилятор охлаждения, чтобы убедиться, что воздух правильно проходит через каналы охлаждения. При чрезмерном скоплении грязи очистите двигатель.
  • Несимметричное напряжение (только три фазы)
    • Проверьте напряжение на всех фазах. Должно получиться примерно одинаково.
  • Ротор трется о статор
  • Повышенное или пониженное напряжение
    • Проверьте входное напряжение на каждой фазе двигателя, чтобы убедиться, что двигатель работает при напряжении, указанном на паспортной табличке.
  • Открытая обмотка статора (только трехфазная)
    • Проверьте балансировку сопротивления статора на всех трех фазах.
  • Неправильные соединения
    • Осмотрите все электрические соединения на правильность подключения, зазоры, механическую прочность и электрическую целостность. См. схему подключения двигателя.

8. Двигатель вибрирует

  • Двигатель не соответствует нагрузке
  • Несбалансированная нагрузка (прямой привод)
    • Снимите двигатель с нагрузки и осмотрите двигатель сам по себе.Убедитесь, что вал двигателя не погнут.
  • Дефектные подшипники двигателя
    • Проверьте двигатель самостоятельно. Если подшипники плохие, вы услышите шум или почувствуете шероховатость.
  • Слишком легкая нагрузка (только однофазная)
    • Некоторая вибрация при небольшой нагрузке является стандартной. Рассмотрите возможность переключения на меньший двигатель из-за чрезмерной вибрации.
  • Дефектная обмотка
    • Проверить обмотку на короткое замыкание или обрыв цепи.Усилители также могут быть высокими. При повреждении обмотки замените двигатель.
  • Высокое напряжение
    • Проверьте источник питания, чтобы убедиться в правильности напряжения.

9. Неисправность подшипников

  • Нагрузка на двигатель может быть чрезмерной или несбалансированной
    • Проверьте нагрузку двигателя и проверьте натяжение приводного ремня, чтобы убедиться, что он не слишком тугой. Несбалансированная нагрузка также может привести к выходу из строя подшипников.
  • Высокие температуры окружающей среды
    • Если двигатель используется в среде с высокой температурой окружающей среды, может потребоваться другой тип смазки для подшипников.Возможно, вам придется проконсультироваться с заводом.
  • Высокая температура двигателя
    • Проверьте и сравните фактическую нагрузку двигателя с номинальной нагрузкой двигателя.

0 comments on “Схема подключения двигателя 220 вольт через конденсатор: Подключение однофазного двигателя через конденсатор — 3 схемы

Добавить комментарий

Ваш адрес email не будет опубликован.