Диод для чего он нужен: Для чего нужен диод в электрической цепи? – Tokzamer

Диод — полупроводниковый элемент. Принцип работы, устройство и разновидности.

Диод (Diode -eng.) – электронный прибор, имеющий 2 электрода, основным функциональным свойством которого является низкое сопротивление при передаче тока в одну сторону и высокое при передаче в обратную.

То есть при передаче тока в одну сторону он проходит без проблем, а при передаче в другую, сопротивление многократно увеличивается, не давая току пройти без сильных потерь в мощности. При этом диод довольно сильно нагревается.

Диоды бывают электровакуумные, газоразрядные и самые распространённые – полупроводниковые. Свойства диодов, чаще всего в связках между собой, используются для

преобразования переменного тока электросети в постоянный ток, для нужд полупроводниковых и других приборов.

 

Конструкция диодов.

Конструктивно, полупроводниковый диод состоит из небольшой пластинки полупроводниковых материалов (кремния или германия), одна сторона (часть пластинки) которой обладает электропроводимостью p-типа, то есть принимающей электроны (содержащей искусственно созданный недостаток электроновдырочная»)), другая обладает электропроводимостью n-типа, то есть отдающей электроны (содержащей избыток электроновэлектронной»)).

Слой между ними называется p-n переходом. Здесь буквы p и n — первые в латинских словах negative — «

отрицательный», и positive — «положительный». Сторона p-типа, у полупроводникового прибора является анодом (положительным электродом), а область n-типакатодом (отрицательным электродом) диода.

 

Электровакуумные (ламповые) диоды, представляют собой лампу с двумя электродами внутри, один из которых имеет нить накаливания, таким образом подогревая себя и создавая вокруг себя магнитное поле.

При разогреве, электроны отделяются от одного электрода (катода) и начинают движение к другому электроду (аноду), благодаря электрическому магнитному полю. Если направить ток в обратную сторону (изменить полярность), то электроны практически

не будут двигаться к катоду из-за отсутствия нити накаливания в аноде. Такие диоды, чаще всего применяются в выпрямителях и стабилизаторах, где присутствует высоковольтная составляющая.

Диоды на основе германия, более чувствительны на открытие при малых токах, поэтому их чаще используют в высокоточной низковольтной технике, чем кремниевые.

 

Типы диодов:
  • · Смесительный диод — создан для приумножения двух высокочастотных сигналов.
  • · pin диод — содержит область проводимости между легированными областями. Используется в силовой электронике или как фотодетектор.
  • · Лавинный диод
    — применяется для защиты цепей от перенапряжения. Основан на лавинном пробое обратного участка вольт-амперной характеристики.
  • · Лавинно-пролётный диод — применяется для генерации колебаний в СВЧ-технике. Основан на лавинном умножении носителей заряда.
  • · Магнитодиод. Диод, характеристики сопротивления которого зависят от значения индукции магнитного поля и расположения его вектора относительно плоскости p-n-перехода.
  • · Диоды Ганна. Используются для преобразования и генерации частоты в СВЧ диапазоне.
  • · Диод Шоттки. Имеет малое падение напряжения при прямом включении.
  • · Полупроводниковые лазеры.

Применяются в лазеростроении, по принципу работы схожи с диодами, но излучают в когерентном диапазоне.

  • · Фотодиоды. Запертый фотодиод открывается под действием светового излучения. Применяются в датчиках света, движения и т.д.
  • · Солнечный элемент (вариация солнечных батарей). При попадании света, происходит движение электронов от катода к аноду, что генерирует электрический ток.
  • · Стабилитроны — используют обратную ветвь характеристики диода с обратимым пробоем для стабилизации напряжения.
  • · Туннельные диоды, использующие квантовомеханические эффекты. Применяются как усилители
    , преобразователи, генераторы и пр.
  • · Светодиоды (диоды Генри Раунда, LED). При переходе электронов, у таких диодов происходит излучение в видимом диапазоне света.

Для данных диодов используют прозрачные корпуса для возможности рассеивания света. Также производят диоды, которые могут давать излучение в ультрафиолетовом, инфракрасном и других требуемых диапазонах (в основном, литографической и космической сфере).

  • · Варикапы (диод Джона Джеумма) Благодаря тому, что закрытый p—n-переход обладает немалой ёмкостью, ёмкость зависит от приложенного обратного напряжения. Применяются в качестве конденсаторов с переменной ёмкостью.

Для чего ставят диод параллельно катушке, обмотке реле в цепи постоянного тока, в чем смысл.

На электронных схемах, где стоит электромагнитное реле, можно заметить, что параллельно его катушке припаян диод. Этот диод подсоединяется к обмотке обратным подключением. То есть, плюс диода (он же анод) будет лежать на минусе источника питания схемы, а минус диода (он же катод), будет находится на плюсе питания. Как известно, при таком способе подключения диода к питанию полупроводник находится в закрытом состоянии, он через себя не проводит электрический ток. Тогда возникает вопрос, а зачем он тогда нужен, если он работает как обычный диэлектрик?

А дело всё в том, что любая катушка, намотанная обычный образом (провод мотается в одном направлении) имеет помимо электрического сопротивления и индуктивность. Вокруг катушки при прохождении постоянного тока образуется электромагнитное поле. А в момент снятия напряжения с катушки, та энергия, которая была аккумулирована в этом электромагнитном поле резко преобразуется опять в электрическую. При этом на концах катушки появляется высоких разностный потенциал. То есть, проще говоря, в момент отключения от катушки питания на ней образуется кратковременный электрический всплески напряжения. Причем, этот всплеск ЭДС (электродвижущей силы) может в несколько раз превышать напряжение питания, которое ранее было подано на обмотку.

Такие скачки увеличенного напряжения, которые образуются на различных катушках, в том числе и на обмотке реле, способны негативно влиять на чувствительные элементы электронной схемы. Например, этот скачок легко может создать электрический пробой различных маломощных транзисторов, микросхем и т.д. Либо же это кратковременное увеличение напряжения может в момент процессов переключения реле вводить в электронную схему различные искажения, погрешности, плохо влиять на измерительные узлы и т.д. Одним словом явление возникновения подобных импульсов увеличенного напряжения – это плохо для любой электронной схемы.

А как же обычный диод может защитить от таких вот ЭДС скачков? Дело в том, что генерация ЭДС индукции имеет противоположную полярность, относительно подаваемого напряжения питания на катушку. Вначале мы на один конец катушки реле подавали плюс, а на второй – минус. При снятии напряжения питания с катушки полюса изменятся. Где был плюс, появится минус, а где был минус, появится плюс. Если наш защитный диод при одной полярности, когда идет питание катушки, находится в закрытом состоянии, работая как диэлектрик, то при другой полярности он уже будет переходить в открытое состояние. Другими словами говоря, при нормальной работе реле диод не будет себя проявлять как функциональный элемент, а при возникновении ЭДС индукции на катушки реле он сразу же станет проводником и замкнет этот импульс увеличенного напряжения на себе.

Может возникнуть вопрос. Если диод берет (замыкает) всю энергию ЭДС индукции катушки реле на себя, то не выйдет ли он от этого из строя (не сгорит ли)? Дело в том что у обычных катушек реле не столь большая энергия, что аккумулируется на ней в виде электромагнитного поля. Эта энергия имеет импульсный, одноразовый характер. Причем, при ЭДС индукции опасно именно увеличенное напряжение (относительно напряжения питания), токи же в этом импульсе достаточно малы. Задача диода нейтрализовать именно импульс увеличенного напряжения. Да и самый обычный, распространенный диод, такой как 1N4007 способен выдерживать обратное напряжение аж до 1000 вольт и прямой ток до 1 ампера (ток импульса намного меньше).

А какие диоды нужно ставить параллельно катушке реле, чтобы защитить электронную схему от подобный скачков напряжения ЭДС индукции? Как я только что уже сказал, энергия обычного маломощного реле (да и средней мощности) не такая уж и большая. Опасен именно сам увеличенный по напряжению импульс. Если питание катушки было, например, 12 вольт постоянного тока, то этот импульс может быть в несколько раз больше (ну пусть до 150 вольт, не больше). Токи, которые могут быть при этом импульсе могут иметь величину единицы и десятки миллиампер. На ток влияет диаметр провода, и его длина в катушке. Чем тоньше диаметр, и чем больше намотка, тем меньше ток. С напряжением наоборот. Чем больше витков в катушке, тем выше напряжение будет при ЭДС индукции.

Если не вдаваться в расчеты, то поставив на катушку обычного маломощного реле кремниевые диоды типа 1N4007 вы не ошибетесь. Их вполне хватит, чтобы надежно защитить электронную схему от подобный ЭДС импульсов, возникающих из-за переключающихся процессов.

P.S. Порой встречаются схемы (например электронная нагрузка), где в цепи мощных транзисторов стоят низкоомные резисторы. Эти резисторы на малое сопротивление иногда наматываются своими руками. Так вот если их мотать обычным образом (витки всего провода имеют одно направление) то это самодельное сопротивление будет обладать и активным сопротивлением и индуктивностью, которая также будет создавать эти ЭДС импульсы увеличенного напряжения. Но такие самодельные резисторы можно мотать и другим образом. Обмоточный провод складываем вдвое, его концы припаиваем на корпус обычного резистора, а сам сдвоенный провод одновременно наматываем на каркас резистора. В этом случае этот резистор будет иметь только активное сопротивление, индукция у него будет нулевая, что исключить возникновения ЭДС импульса. Дело в том, что электромагнитное поле провода одного направления будет компенсироваться полем другого провода, имеющего обратное направление.

Что такое диод: назначение, устройство, принцип работы

В электротехнике используется много радиодеталей, и все они имеют свои особенности, но семейство диодов имеет свои удивительные свойства.

Манипулируя соотношениями примесей или конструктивными особенностями, получают новые возможности этого прибора, используемые совершенно для других целей. Зная, что такое диод, его устройство и принцип работы диода можно научиться использовать его для самых неожиданных решений.

Приглашаем познакомиться с этим многоцелевым и разнообразным радиоэлементом. А начнем с назначения диода.

Назначение диода

Область применения диодов все больше и больше расширяется. Это достигается благодаря тому, что работа над их преобразованием не утихает, а только увеличивается. Рассмотрим, где их можно встретить:

  • выпрямление;
  • детектирование;
  • защита;
  • стабилизация;
  • переключение;
  • излучение.

На заре своего образования диоды назывались выпрямителями. Они способны пропускать ток в одном направлении и задерживать его в противоположном. Благодаря чему переменный ток становился однонаправленным, пульсирующим. То есть напряжение носило волновой характер.

Причем выпрямление могло быть как на одном диоде, тогда на выходе была только положительная полуволна, так и на четырех, в этом случае на выходе оставались и положительная, и отрицательная полуволны.

Другой способ применения – детектирование. Радио и телевизионные сигналы передаются на несущих частотах. В передающих устройствах с помощью модулятора происходит наложение полезного сигнала на несущую частоту.

Чтобы извлечь полезную информацию, чаще всего применяют диод с конденсатором. В этом случае диод работает как однопериодный выпрямитель, а конденсатор фильтрует ненужные частоты.

Диод используется для защиты, например, в коммутируемой цепи с индукционной нагрузкой. Если катушку, по которой проходит ток отключить, то электроны под действием электромагнитного поля продолжат двигаться, создавая для ключа опасное высокое напряжение.

В качестве ключа может быть использован транзистор, который может выйти из строя. Чтобы снять накопленный заряд, параллельно катушке подключают диод, но включают его в обратном направлении относительно движения тока. При отключении выключателя диод возвращает ток на начало катушки, тем самым защищая ключ.

Несколько измененные диоды способны работать в обратном направлении, пропуская через себя ток, когда напряжение превышает допустимое значение. Такие приборы называются стабилитронами, и о них будет сказано ниже.

Для переключения частот часто требуются переменные конденсаторы. Варикап, еще одна разновидность диода, способен менять свою емкость под действием меняющегося обратного напряжения.

Наконец, светодиоды и фотодиоды. Светодиоды способны излучать потоки лучистой энергии, фотодиоды, напротив, преобразуют солнечный свет в электрический ток. Фотодиоды по своему назначению также разнообразны и имеют различное применение.

Из чего состоит диод

Лучше всего понять, что такое диод поможет его строение. Выделим три основные группы:

  • вакуумные;
  • газонаполненные;
  • полупроводниковые.

Как у любого другого радиоэлемента у диода есть выводы. Если перевести слово диод с древнегреческого, то получится два электрода. Они носят название:

В обычном состоянии на анод подается положительное напряжение, на катод отрицательное. В этом случае диод открыт и через него протекает ток.

На оба вывода могут подаваться положительные потенциалы, но на аноде этот потенциал должен превышать катодный.

В вакуумных диодах применяются стеклянные или металлические баллоны, из которых выкачан воздух. Катод может быть:

  • прямого накала;
  • косвенного накала.

Катод прямого накала представляет собой спиральную нить, по которой проходит ток, разогревая его. При этом высвобождаются электроны, которые устремляются к аноду, если он имеет положительный потенциал относительно катода.

Если на аноде напряжение ниже катодного, то электроны возвращаются назад. Таким образом, происходит выпрямление переменного тока. В лампах с косвенным подогревом катод представляет собой короб или цилиндр, внутри него находится нить накала, разогревающая его.

В отличие от вакуумных диодов в газонаполненных имеется ионизированный газ. Он становится проводником между анодом и катодом. Для включения диода используют сетки или поджигающий электрод.

Вакуумные и газонаполненные диоды способны пропускать большой ток и работать с повышенным напряжением. Однако они потребляют много энергии для своей работы, поэтому на смену им пришли полупроводники.

По проводимости электрического тока различают:

  • проводники;
  • полупроводники;
  • диэлектрики.

Полупроводники занимают промежуточное значение между проводниками и диэлектриками. В обычном состоянии они не проводят ток, но при определенных условиях у них появляется проводимость. Достигается это, например, добавлением примесей. Различают два вида проводимости:

  • с помощью электронов, n-тип;
  • с помощью дырок, p-тип.
Материал, основным носителем которого служат положительно заряженные атомы. Для этого добавляют акцепторные примеси, при этом получается материал с недостающим количеством электронов. Для n-типа добавляют донорные примеси, материал обладает избытком электронов.

Соединяя эти два типа получают прибор, способный пропускать ток только в одном направлении.

Как определить анод и катод диода

Диоды бывают разного размера, и маркировка может несколько отличаться. Например, на диодах советского образца на корпусе, который был достаточно большим, непосредственно наносился знак диода, указывающий направление движения.

Корпус, расположенный возле катода, может иметь большое расширение в виде кольца. На некоторых видах устанавливают знаки + и – или делают отметку в виде нарисованного кольца либо точки.

В случае сомнения можно проверить диод с помощью мультиметра, поставив прибор в режим измерения сопротивления или проверки диода, если есть такой режим.

Если сопротивление маленькое, значит, щуп с положительным напряжением подключен к аноду, а минусовой к катоду. Большое сопротивление говорит, что щупы подключены в обратном порядке.

Принцип работы диода

Осталось посмотреть, как работает диод. Когда происходит соединение двух полупроводников разной проводимостью, между ними появляется пограничная полоса с нейтральным зарядом, поскольку часть электронов занимает часть дырок.

При прямом включении положительное напряжение подается на дырочную область, а отрицательное на электронную. В этом случае электроны под действием напряжения перескакивают нейтральную зону и, проходя через дырочную область, устремляются к положительному полюсу источника питания.

Если поменять напряжение, электроны уходят к положительному полюсу, увеличивая нейтральную зону. В этом случае диод закрывается.

Диод в цепи постоянного тока

В схеме с постоянным током диод работает как ключ: открывается, когда прямое напряжение превышает пороговое значение и закрывается, когда это напряжение становится меньше.

Выше было рассмотрена работа диода с катушкой индуктивности. Когда по катушке идет ток, то параллельно подключенный диод находится в закрытом состоянии, так как на аноде и катоде напряжение почти равно.

Когда цепь размыкается, по катушке продолжает идти ток и накапливается. Напряжение на аноде повышается, диод открывается и пропускает лишний заряд через себя. После падения напряжения он закрывается.

Обозначение диода на схемах

Для пояснения работы радиоэлектронного устройства используют электрические принципиальные схемы. Найти диод на схеме не составит труда, потому что обозначение диода осуществляется с помощью треугольника с вертикальным отрезком на его вершине.

Рядом ставится порядковый номер и буквы VD.

Диод в цепи переменного тока

Если диод работает как выпрямитель переменного тока, тогда во время повышения напряжения положительной полуволны диод открывается, а когда напряжение падает ниже порогового значения, он закрывается. Во время отрицательной полуволны включается в работу параллельно подключенный диод, но обращенный в обратном направлении.

Два других подключены таким же образом к нулевому проводу. При каждой полуволне участвуют в работе два диода, один связан с фазным проводом, другой с нулевым. Снимаемое с них положительное и отрицательное напряжение подается в постоянную цепь.

Характеристики диода

Полупроводники очень чувствительны к перегреву, поэтому режим их работы строго оговаривается. Учитываются следующие параметры:
рабочее, максимальное и импульсное обратное напряжение;

  1. прямое напряжение;
  2. обратный ток;
  3. прямой постоянный, импульсный и ток перегрузки;
  4. рабочая и максимальная частота;
  5. максимальная температура корпуса и перехода.

Допускается максимальное значение только по одному из указанных параметров. После импульса должно пройти оговоренное время, чтобы прибор успел остыть.

Виды диодов

Кроме описанных диодов, используются диоды, у которых характеристики изменены за счет примесей и конструкторских доработок. Остановимся на двух из них: стабилитроне и светодиоде.

Стабилитроны

Работа стабилитрона отличается от работы диода. Подключается он в обратном направлении, то есть на анод подают отрицательное напряжение, а на катод положительное. При таком подключении он работает в пробивном режиме.

Стабилитроны рассчитаны на определенное рабочее обратное напряжение, при достижении которого происходит обратимый пробой. Используются для поддержания определенного напряжения на контролируемом участке цепи. Чтобы ток не превышал рабочее значение, в цепь стабилитрона ставят ограничивающий резистор.

Светодиоды

У полупроводниковых приборов p-n-переход из-за внутреннего сопротивления постоянно греется. Это происходит главным образом во время захвата дырками электронов. Высвобождается энергия, нагревающая переход.

В 60-х годах прошлого столетия был создан светодиод, в котором часть высвобождаемой энергии была лучистой с красным и желто-зеленым свечением. Правда, процентное соотношение было маленьким, всего 0,1% от всей высвобождаемой энергии. Но это было только началом.

В 70-х годах упорные разработки привели к хорошим показателям. Сначала это был 15% выход, затем дошло до 55%. Такой показатель уже превышал к. п. д. ламп накаливания. Испускаемый свет имеет очень узкий спектр, что позволяет получать очень качественное цветное свечение.

Оно намного превосходит свет ламп накаливания, пропущенных через светофильтр. Мощность светового потока также была поднята, это дало возможность использовать светодиоды в качестве освещения.

Тиристоры

Тиристоры – это общее название для мощных диодов, работающих в режиме ключа. Подразделяются на три вида:

  1. тринистор;
  2. динистор;
  3. симистор.

Тринистор имеет три вывода: анод, катод и управляющий электрод. При подаче небольшого управляющего напряжения на управляющий электрод тринистор открывается. Динистор открывается при достижении заданного напряжения на его двух выводах. Симистор – это два динистора, включенных навстречу друг другу. То есть он работает, в отличие от динистора, в двух направлениях.

Исследуя, что такое диод, можно открыть для себя еще много удивительных знаний. Здесь были рассмотрены лишь поверхностные познания, но они уже могут дать понять, что такие элементы радиотехники очень полезны и разнообразны в своем применении.

Похожие материалы на сайте:

Понравилась статья — поделись с друзьями!

 

Для чего нужен обратный диод?

При нормальном использовании небольшой ток на базе транзистора позволяет протекать между эмиттером и коллектором гораздо большему току.

В этом случае, однако, у нас есть большое напряжение, приложенное к эмиттеру и коллектору, при (предположительно) небольшом токе или отсутствии тока, протекающем через базу, поэтому транзистор пытается остановить ток, протекающий между эмиттером и базой.

В этом случае, вероятно, будет полезно думать о транзисторе как о паре диодов с (в зависимости от того, NPN или PNP транзистор) либо их аноды, либо катоды, подключенные друг к другу.

Один из этих диодов будет проводить ток от напряжения эмиттер / коллектор. Другой попытается заблокировать это. Возникает вопрос, какое напряжение пробоя у этого «диода» (этого перехода транзистора). Если приложенное напряжение превышает это значение, вы можете поджарить транзистор.

Теперь давайте рассмотрим этот добавленный диод и то, что он делает.

Мы подключаем диод так, чтобы источник питания транзистора пытался протолкнуть ток в направлении, которое диод не проводил. Следовательно, когда транзистор работает нормально, диод в основном не имеет никакого эффекта 1 (если мы не выберем неправильный диод, например, с напряжением пробоя ниже, чем напряжение нашего источника питания).

Однако для напряжения в противоположном направлении диод выглядит / действует почти как короткое замыкание. Это означает, что весь ток от этого обратного напряжения проходит через диод. Поскольку он действует как (почти) короткое замыкание, на транзисторе не может возникнуть напряжение, что предотвращает повреждение транзистора.


1. «в основном» означает, что, например, добавляется немного дополнительной емкости. Если бы мы имели дело с достаточно высокой частотой, нам, возможно, потребовалось бы учесть это в расчетах о том, как работает схема, но для типичного драйвера двигателя мы имеем дело с достаточно низкими частотами, которые обычно нас не волнуют.

Для чего нужен диод шоттки

Многие говорят что в выпрямителях усилителей должны использоваться только лишь диоды Шоттки , или сверхбыстрые диоды » суперфаст » — это если по-русски. Если поставить обычные «медленные» диоды, то Великий Аудиофильский Дух обидится и хорошего звука вам не видать! На наше счастье, Великий Аудиофильский Дух может навредить только тем, кто в него верит. Давайте попробуем разобраться в необходимости применения таких диодов без привлечения эзотерики, а при помощи одной лишь науки и техники. Единственная претензия, предъявляемая к диодам, состоит в том, что они медленно закрываются, и при этом через них будто бы протекает обратный ток, разряжающий конденсаторы фильтра. Говорят, что это происходит примерно так, как показано на рис.


Поиск данных по Вашему запросу:

Для чего нужен диод шоттки

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: ЗАЧЕМ НУЖНЫ ДИОДЫ ШОТТКИ

Диод Шоттки SS14


Назван в честь немецкого физика Вальтера Шоттки. В специальной литературе часто используется более полное название — Диод с барьером Шоттки. В диодах Шоттки в качестве барьера Шоттки используется переход металл-полупроводник, в отличие от обычных диодов, где используется p-n-переход.

Переход металл-полупроводник обладает рядом особенных свойств отличных от свойств полупроводникового p-n-перехода. К ним относятся: пониженное падение напряжения при прямом включении, высокий ток утечки, очень маленький заряд обратного восстановления.

Диоды Шоттки изготавливаются обычно на основе кремния Si или арсенида галлия GaAs , реже — на основе германия Ge. Выбор металла для контакта с полупроводником определяет многие параметры диода Шоттки.

В первую очередь — это величина контактной разности потенциалов, образующейся на границе металл-полупроводник. При использовании диода Шоттки в качестве детектора она определяет его чувствительность, а при использовании в смесителях — необходимую мощность гетеродина.

Поэтому чаще всего используются металлы Ag , Au , Pt , Pd , W , которые наносятся на полупроводник и дают величину потенциального барьера 0, Допустимое обратное напряжение выпускаемых диодов Шоттки ограничено вольтами CSD и аналоги , на практике большинство диодов Шоттки применяются в низковольтных цепях при обратном напряжении порядка единиц и нескольких десятков вольт. Диод Шоттки — статья из Большой советской энциклопедии. Материал из Википедии — свободной энциклопедии.

У этого термина существуют и другие значения, см. Диод значения. Дата обращения 14 февраля В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема , иначе она может быть поставлена под сомнение и удалена. Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники. Эта отметка установлена 25 октября года. Полупроводниковые диоды. Суперлюминесцентный диод Органический светодиод Синий светодиод Белый светодиод. Селеновый выпрямитель Медно-закисный выпрямитель.

Лавинно-пролётный диод Туннельный диод Диод Ганна. Стабилитрон Со скрытой структурой Лавинный диод Стабистор. Лямбда-диод Кристаллический детектор Диодный мост p-n -переход. Категории : Электроника Полупроводниковые диоды.

Скрытые категории: Википедия:Статьи с некорректным использованием шаблонов:Cite web не указан язык Статьи с ссылкой на БСЭ, без указания издания Википедия:Статьи без ссылок на источники с октября года Википедия:Статьи без источников тип: не указан. Пространства имён Статья Обсуждение. Просмотры Читать Править Править код История. В других проектах Викисклад. Эта страница в последний раз была отредактирована 29 сентября в Текст доступен по лицензии Creative Commons Attribution-ShareAlike ; в отдельных случаях могут действовать дополнительные условия.

Подробнее см. Условия использования. Политика конфиденциальности Описание Википедии Отказ от ответственности Свяжитесь с нами Разработчики Заявление о куки Мобильная версия.


Диоды и их разновидности

Вспомните, как вы накачивали колесо велосипеда или автомобиля. Почему, когда вы убирали шланг насоса, воздух не выходил из колеса? Потому что на камере, в пипочке, куда вы вставляете шланг насоса, есть такая интересная штучка — ниппель. Вот он как раз пропускает воздух только в одном направлении, а в другом направлении блокирует его прохождение. Электроника — эта та же самая гидравлика или пневматика. Но весь прикол заключается в том, что в электронике вместо жидкости или воздуха используется электрический ток.

Принцип работы диода Шоттки обеспечивает минимальное падения уровня напряжения во время прямого включения. Устройство.

Диод Шоттки. Достоинства, диагностика и применение

Мы очень часто применяем в своих схемах диоды, а знаете ли вы как он работает и что из себя представляет? Сегодня в «семейство» диодов входит не один десяток полупроводниковых приборов, носящих название «диод». Диод представляет собой небольшую емкость с откачанным воздухом, внутри которой на небольшом расстоянии друг от друга находится анод и второй электрод — катод, один из которых обладает электропроводностью типа р, а другой — n. Вот мы работаем насосом, воздух закачивается в камеру через ниппель, а обратно этот воздух выйти через ниппель не может. По сути воздух, это тот же электрон в диоде, вошел электрончик, а обратно выйти уже нельзя. Если вдруг ниппель выйдет из строя то колесо сдуется, будет пробой диода. А если представить что ниппель у нас исправный, и если мы будем нажимая на пипку ниппеля выпускать воздух из камеры, причем нажимая как нам хочется и с какой длительностью — это будет управляемый пробой. Из этого можно сделать вывод что диод пропускает ток только в одном направлении в обратном направлении тоже пропускает, но совсем маленький. Чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление.

Диод Шоттки — характеристики и принцип работы

Очень часто в электротехнике или различных схемах электрических цепей встречается такое понятие, как диод Шоттки. Прежде всего, это специальный диод-полупроводник, имеющий при прямом включении маленькое падение напряжения,и состоящий из полупроводника и металла. Свое название получил в честь изобретателя из Германии Вальтера Шоттки, который изобрел этот электронный элемент. Оглавление: Отличие от других полупроводников Диод Шоттки обозначение и маркировка Достоинства и недостатки Диод Шоттки применение Диагностика диодов Шоттки Полупроводники Шоттки в современном мире. Допустимое обратное напряжение в электронном элементе в промышленных целях ограничено вольтами.

Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги.

Что такое диод

Что такое диод? Для того чтобы ответить на этот вопрос, надо копнуть вглубь, в самое начало, а именно, с чего начинается полупроводник. Попробуем представить себе кусок материала проводника, например, меди. Чем он характеризуется: в нем есть свободные носители заряда — электроны. Причем таких отрицательных частиц в нем очень много. Если на эту область подать плюс, то все эти отрицательные элементы устремятся к нему, то есть потечет ток через медь.

Выпрямитель для усилителя или

Это диод Шоттки. Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник. Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств. В качестве материала для изготовления диодов с барьером Шоттки преимущественно используется кремний Si и арсенид галлия GaAs , а также такие металлы как золото, серебро, платина, палладий и вольфрам. Как видим, его изображение несколько отличается от обозначения обычного полупроводникового диода.

Диод Шоттки, принцип работы которого мы опишем сегодня, является.

Что такое диод Шоттки, его характеристики и способ проверки мультиметром

Для чего нужен диод шоттки

Вы закончили изучать простые, пассивные компоненты, которыми являются резисторы, конденсаторы и индукторы? Тогда пришло время перейти к прекрасному миру полупроводников. Одним из наиболее широко используемых полупроводниковых компонентов является диод. Ключевая функция идеального диода — контролировать направление тока.

Основы электроники. Огромное количество современных электронных устройств используют в своей работе электрические импульсы. Это могут быть слаботочные сигналы или токовые импульсы что гораздо серьезнее в техническом отношении в цепях блоков питания и прочих импульсных преобразователей, инверторов и т. А действие импульсов в преобразователях — это всегда критичность к длительности форнтов и спадов, имеющих временные границы примерно того же порядка, что и переходные процессы в электронных компонентах, в частности — в тех же диодах. Поэтому, при использовании в импульсных схемах диодов, следует обязательно принимать во внимание переходные процессы в самих диодах — во время их включения и выключения во время открывания и закрывания p-n-перехода. В принципе, чтобы сократить время переключения диода из неповодящего состояния — в проводящее и обратно, в некоторых низковольтных схемах целесообразно прибегать к использованию диодов Шоттки.

Войдите , пожалуйста.

Развитие электроники требует все более высоких стандартов от радиодеталей. Для работы на высоких частотах используют диод Шоттки, который по своим параметрам превосходит кремниевые аналоги. Иногда можно встретить название диод с барьером Шоттки, что в принципе означает то же самое. Отличается диод Шоттки от обыкновенных диодов своей конструкцией, в которой используется металл-полупроводник, а не p-n переход. Понятно, что свойства здесь разные, а значит, и характеристики тоже должны отличаться. Диод Шоттки изготавливается из таких материалов, как арсенид галлия, кремний; намного реже, но также может использоваться — германий. Выбор материала зависит от свойств, которые нужно получить, однако в любом случае максимальное обратное напряжение, на которое могут изготавливаться данные полупроводники, не выше вольт — это самые высоковольтные выпрямители.

Шоттки диод — это диод, который является полупроводниковым с небольшим падением напряжения во время включения. Диод был назван именем физика Вальтера Шоттки. Шоттки применяют переход металл-полупроводник как барьер, обратное напряжение допускается в рамках — В.


Принцип работы и назначение диодов. Чем отличается импульсный диод от выпрямительного

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Украины

Днепропетровский национальный университет имени Олеся Гончара

Факультет физики, электроники

и компьютерных систем

Кафедра радиоэлектроники

Контрольная работа по «Твердотельной электронике»

На тему: «Особенности диода»

Выполнил

студент группы КМ-11-1

Мироненков Р.Д.

Проверил

канд. физ.-мат. наук, доцент кафедры радиоэлектроники.

Макаров В.А.

Днепропетровск 2013

Реферат

Ключевые слова: импульсный диод, высокочастотны диод, диод Ганна, воль-амперная характеристика диода.

Цель работы: исследование характеристик и принципов действия импульсных и высокочастотных диодов

Введение

1. Импульсный диод. Принцип действия

2. Высокочастотный диод. Принцип действия

2.1 Диод Ганна

3. Изготовление диодов

Заключение

Список литературы

Введение

Полупроводники стали настоящей золотой жилой техники, когда из них научились делать структуры, похожие на слоистый пирог.

Выращивая слой n-полупроводника на пластинке p-полупроводника, мы получим двухслойный полупроводник. Переходный слой между ними называется pn-переходом. Если к каждой половине припаять по соединительному проводу, то получится полупроводниковый диод, который действует на ток как вентиль: в одну сторону хорошо пропускает ток, а в другую сторону почти не пропускает.

Как возникает выпрямляющий запирающий слой? Образование слоя начинается с того, что в p-половине больше дырок, а в n-половине больше электронов. Разность плотности носителей зарядов начинается уравновешиваться через переход: дырки проникают в n-половину, электроны в p-половину.

С помощью внешнего источника тока можно повысить или понизить внешний потенциальный барьер. Если к диоду приложить прямое напряжение, т.е положительный полюс соединить с p-половиной, то внешняя электрическая сила начнёт действовать против двойного слоя, и диод пропускает ток, который быстро растёт с увеличением напряжения. Если же изменить полярность проводников, то напряжение падает почти до нулевой отметки. Если диод подключить в цепь переменного напряжения, то он будет служить как выпрямитель, т.е на выходе будет постоянное пульсирующее напряжение, по направлению в одну сторону (от плюса к минусу). Для того чтобы сгладить амплитуду, или как её ёщё называют «пиковое значение» пульсации тока, эффективно добавить параллельно диоду конденсатор Выпрямительные приборы довольно часто требуются в промышленности. Например выпрямители нужны для правильной работы бытовой техники (т.к почти все электроприборы потребляют постоянное напряжение. Это телевизоры, радиоприёмники, видеомагнитофоны и т.д). Также полупроводниковые диоды нужны для расшифровки видео, радио, фото и других сигналов в частотно-электрические сигналы. С помощью этого свойства полупроводников мы смотрим телевизор или слушаем радио.

Есть ещё и необычные полупроводниковые диоды- это светодиоды и фотодиоды. Фотодиоды пропускают ток только при попадании на их корпус света. А светодиоды при прохождении через них тока, начинают светиться. Цвет свечения светодиодов зависит от того, к какой разновидности он принадлежит.

Полупроводниковые диоды подразделяются на группы, в зависимости от их мощности, диапазона рабочих частот, напряжения и диапазона рабочих частот. Как у диодов, так и у транзисторов есть одно уникальное свойство. При изменении температуры, их внутреннее сопротивление изменяется и следовательно величина напряжения выпрямленного тока тоже изменяется в большую или меньшую сторону. Свето и фотодиоды применяются в качестве датчиков и индикаторов.

1. Импульсный диод. Принцип действия

Это обычные диоды, с обычной ВАХ, однако работающие в режиме переключения. Их область применения — цифровые схемы, элементы которых находятся либо в открытом состоянии «0», либо в закрытом «1». Поэтому в этом приложении представляют интерес временные параметры диода: как быстро он переходит из закрытого в открытое состояние и наоборот. На рис.1 показан импульсный диод на основе несимметричного контакта. Примем условие, что эмиттер имеет n — проводимость. Это дает основание рассматривать поведение и ток только электронов. При обратной не симметрии вся сказанное будет относиться к дыркам.

Рис.1. Импульсный диод

Рассмотрим процессы при переключении. Подадим на него прямое напряжение — идеальную ступень (рис.2.а) Первоначально начнут движение электроны, обладающие наибольшей энергией, находящиеся непосредственно вблизи p-n перехода, далее к ним присоединятся те, которые находятся внутри n области. Таким образом, из-за различия энергий носителей постепенно увеличивается их число, постепенно увеличивается и прямой ток. Этот процесс во времени показан на рис.2.б, а для оценки вводится параметр t уст — время установления открытого состояния. При большом времени ток не меняется и в области «p» перехода скапливается большое количество неосновных носителей, электронов. Возникает неравновесная концентрация носителей в p области кристалла.

Подадим на переход столь же резко изменяющуюся обратную полярность напряжения. Неравновесные электроны, накопившиеся в «p» области, начнут выводиться под действием электрического поля в «n» область. Концентрация их велика, поэтому обратный ток в течении какого — то времени будет большим. Эта стадия процесса показана на рис.2.б, как t 1 . в конце концов, процесс вывода закончится, переход становится в закрытое состояние. Теперь есть две полупроводящие области p и n b и слой диэлектрика между ними. Это конденсатор, который начинает заряжаться под действием обратного напряжения. Ток заряда будет уменьшаться по закону экспоненты, на рис.2.б это время t 2 . В целом время восстановления закрытого состояния равно t 1 +t 2 =t восст.

Рис.2. Процессы в импульсном диоде

Обычно t восст >> t восст. Для улучшения параметров диода для изготовления используются материалы с высокой подвижностью носителей (Ge), площадь перехода делают маленькой, применяют p-i-n структуры. Пример применения импульсного диода приведен на рис. Форма напряжения на нагрузочном сопротивлении повторяет форму тока на рис.3.

Рис.3.Работа импульсного диода

2. Высокочастотные диоды. Принцип действия

В технике сверхвысоких частот (для работы в сантиметровом и миллиметровом диапазонах волн) применяются особые германиевые и кремневые сверхвысокочастотные диоды (СВЧ диоды). По-своему назначению СВЧ диоды делятся на видео детекторные, предназначены для детектирования СВЧ колебаний, переключательные, предназначенные для применения в устройствах управления уровнем СВЧ мощности, параметрические, предназначенные для применения в параметрических усилителях СВЧ колебаний, и преобразовательные. В свою очередь, преобразовательные диоды, в которых используется нелинейность вольтамперной характеристики перехода, делят на:

· смесительные, используемые для преобразования СВЧ сигнала и сигнала гетеродина в сигнал промежуточной частоты;

· умножительные, используемые для умножения частоты СВЧ сигнала;

· модуляторные, используемые для модулирования амплитуды СВЧ сигнала.

В СВЧ диодах обычно используется точечный контакт. Переход в таких диодах не формуется. Выпрямляющий контакт осуществляется простым прижимом к полированной поверхности полупроводника острия металлического контактной пружины. Эти диоды изготовляются из очень низкоомного материала (время жизни носителей заряда мало) и имеют весьма малый радиус точечного контакта (2-3 мкм), что обеспечивает хорошие высокочастотные свойства. Однако напряжение пробоя СВЧ диодов очень низкое (всего 3-5 В), а прямое напряжение относительно высокое.

Обратный ток у них хотя и мал, но начинает возрастать практически с нуля за счет туннельного эффекта носителей через переход (рис.4).

Рис. 4. ВАХ высокочастотного диода

Конструкция СВЧ диодов обычно приспособлена к сочленению с элементами коаксиального или волноводного тракта, с измерительными головками и другими деталями системы СВЧ. В длинноволновом участке СВЧ диапазона (3-10 см) основными типами корпуса являются металлокерамический или металлостеклянный патронного типа. В диапазоне волн 1-3 см габариты и емкость этих корпусов становятся недопустимо большими, и поэтому выпрямляющий контакт монтируется в корпусе коаксиального типа. В диапазоне миллиметровых волн используются волноводную конструкцию.

Помимо длинны волны, на которой СВЧ диоды имеют параметры, гарантированные нормами технического задания и максимально допустимых данных, СВЧ диоды также характеризуются электрическими параметрами, отражающими основное значение. Так, смесительные СВЧ диоды характеризуют потерями преобразования (отношение мощности СВЧ на входе к мощности промежуточной частоты на выходе диода), шумовым отношением (отношение мощности шумов на выходе диода в рабочем режиме к мощности тепловых шумов активного сопротивлению диода), нормированным коэффициентом шума, характеризующим обобщенную чувствительность приемного устройства, и дифференциальным выходным сопротивлением. В ряде случаев электрический параметр определяет не толь-ко свойства самого СВЧ диода, но и свойства конкретного СВЧ устройства, в котором установлен данный диод.

Следует иметь в виду, что мощность, при которой происходит «выгорание» диода, сопровождающееся необратимыми ухудшениями вольтамперной характеристики или пробоем, весьма мала. Поэтому необходимо исключить всякие непредусмотренные воздействия и принять нужные меры защиты как при работе, так и при хранении СВЧ диода (например, недопустим разряд через диод статического электричества, накопленного на теле оператора; хранение диода в металлическом патроне и др.).

В устройствах миллиметрового диапазона волн (особенно интегральных) для построения мощных СВЧ усилителей широко применяют лавинно-пролетные диоды, а для построения СВЧ генераторов диоды Ганна. В этих диодах используется явление ограничения подвижности электронов в электрических полях с напряженностью выше критической, и в их вольтамперных характеристиках имеется участок с отрицательным дифференциальным сопротивлением. Лавинно-пролетные диоды работают в режиме лавинного размножения носителей заряда при обратном смещении электрического перехода. В диодах Ганна (в структуре этих приборов нет выпрямляющего перехода) используется эффект возникновения электрических колебаний в пластине из арсенида галлия при приложении к ней постоянного напряжения, создающего электрическое поле с напряженностью более 105 В/м.

Выпускаемые промышленностью лавинно-пролетные диоды и генераторы Ганна рассчитаны на выходную СВЧ мощность в непрерывном режиме в несколько десятков милливатт. В импульсном режиме эта мощность может быть повышена на несколько порядков. Для увеличения выходной мощности нужны лавинно-пролетные диоды и генераторы Ганна с большей площадью электронно-дырочного перехода и большей площадью тонкой пленки полупроводника. При этом они должны быть однородны не только по толщине, но и по площади.

Рабочие частоты современных кремниевых СВЧ диодов приближаются уже к теоретическому пределу. Поэтому, чтобы еще улучшить частотные свойства, нужно использовать другой материал, а также разрабатывать полупроводниковые приборы с другим принципом действия.

2.1 Диод Ганна

Диод Ганна (изобретён Джоном Ганном в 1963 году) — тип полупроводниковых диодов, использующийся для генерации и преобразования колебаний в диапазоне СВЧ на частотах от 0,1 до 100 ГГц. В отличие от других типов диодов, принцип действия диода Ганна основан не на свойствах p-n-переходов, т.е. все его свойства определяются не эффектами, которые возникают в местах соединения двух различных полупроводников, а собственными свойствами применяемого полупроводникового материала.

В отечественной литературе диоды Ганна называли приборами с объемной неустойчивостью или с междолинным переносом электронов, так как активные свойства диодов обусловлены переходом электронов из «центральной» энергетической долины в «боковую», где они уже могут характеризоваться малой подвижностью и большой эффективной массой. В иностранной же литературе диоду Ганна соответствует термин ТЭД (Transferred Electron Device). диод ганн высокочастотный импульсный

На основе эффекта Ганна созданы генераторные и усилительные диоды, применяемые в качестве генераторов накачки в параметрических усилителях, гетеродинов в супергетеродинных приемниках, генераторов в маломощных передатчиках и в измерительной технике.

При создании низкоомных омических контактов, необходимых для работы диодов Ганна, существуют два подхода:

· Первый из них заключается в поисках приемлемой технологии нанесения таких контактов непосредственно на высокоомный арсенид галлия.

· Второй подход заключается в изготовлении многослойной конструкции генератора. В диодах такой структуры на слой сравнительно высокоомного арсенида галлия, служащего рабочей частью генератора, наращивают с двух сторон эпитаксиальные слои относительно низкоомного арсенида галлия с электропроводностью n-типа. Эти высоколегированные слои служат переходными прослойками от рабочей части прибора к металлическим электродам.

Диод Ганна традиционно состоит из слоя арсенида галлия с омическими контактами с обеих сторон. Активная часть диода Ганна обычно имеет длину порядка l = 1-100 мкм и концентрацию легирующих донорных примесей n = 1014 ? 1016 см?3. В этом материале в зоне проводимости имеются два минимума энергии, которым соответствуют два состояния электронов — «тяжёлые» и «лёгкие». В связи с этим с ростом напряжённости электрического поля средняя дрейфовая скорость электронов увеличивается до достижения полем некоторого критического значения, а затем уменьшается, стремясь к скорости насыщения.

Таким образом, если к диоду приложено напряжение, превышающее произведение критической напряжённости поля на толщину слоя арсенида галлия в диоде, равномерное распределение напряжённости по толщине слоя становится неустойчиво. Тогда при возникновении даже в тонкой области небольшого увеличения напряжённости поля электроны, расположенные ближе к аноду, «отступят» от этой области к нему, а электроны, расположенные у катода, будут пытаться «догнать» получившийся движущийся к аноду двойной слой зарядов. При движении напряжённость поля в этом слое будет непрерывно возрастать, а вне его — снижаться, пока не достигнет равновесного значения. Такой движущийся двойной слой зарядов с высокой напряжённостью электрического поля внутри получил название домена сильного поля, а напряжение, при котором он возникает — порогового.

В момент зарождения домена ток в диоде максимален. По мере формирования домена он уменьшается и достигает своего минимума по окончании формирования. Достигая анода, домен разрушается, и ток снова возрастает. Но едва он достигнет максимума, у катода формируется новый домен. Частота, с которой этот процесс повторяется, обратно пропорциональна толщине слоя полупроводника и называется пролетной частотой.

На ВАХ полупроводникового прибора наличие падающего участка является не достаточным условием для возникновения в нём СВЧ колебаний, но необходимым. Наличие колебаний означает, что в пространстве кристалла полупроводника возникает неустойчивость волновых возмущений. Но такая неустойчивость зависит от параметров полупроводника (профиля легирования, размеров, концентрации носителей и т.д.).

Рис.5. ВАХ диода Ганна

При помещении диода Ганна в резонатор возможны другие режимы генерации, при которых частота колебаний может быть сделана как ниже, так и выше пролетной частоты. Эффективность такого генератора относительно высока, но максимальная мощность не превышает 200—300мВт.

Диод Ганна может быть использован для создания генератора в 10 ГГц и выше (ТГц) диапазона частот. А резонатор, который может принимать форму волновода, добавляют для контроля частоты. Частота генераторов на диоде Ганна определяется в основном резонансной частотой колебательной системы с учетом емкостной проводимости диода и может перестраиваться в широких пределах механическими и электрическими методами. Однако срок службы генераторов Ганна относительно мал,что связано с одновременным воздействием на кристалл полупроводника таких факторов, как сильное электрическое поле и перегрев кристалла из-за выделяющейся в нем мощности.

Диоды Ганна, работающие в различных режимах, используются в диапазоне частот 1-100 ГГц. В непрерывном режиме реальные генераторы на диодах Ганна имеют КПД порядка 2-4% и могут обеспечить выходную мощность от единиц мВт до единиц Вт. Но при переходе в импульсный режим КПД увеличивается в 2-3 раза. Специальные резонансные системы, позволяющие добавить к мощности полезного выходного сигнала некоторые высшие гармоники, служат для увеличения КПД и такой режим называется релаксационным.

Существуют несколько разных режимов, в одном из которых генератор на диоде Ганна может совершать работу, в зависимости от питающего напряжения, температуры, свойства нагрузки: доменный режим, гибридный режим, режим ограниченного накопления объемного заряда и режим отрицательной проводимости.

Наиболее часто используемым режимом является доменный режим, для которого в течение значительной части периода колебаний, характерен режим существования дипольного домена. Доменный режим может иметь три различных вида: пролетный, с задержкой образования доменов и с гашением доменов, которые получаются при изменении сопротивления нагрузки.

Для диодов Ганна был так же придуман и осуществлен режим ограничения и накопления объемного заряда. Его существование имеет место, при больших амплитудах напряжения на частотах, в несколько раз больше пролетной частоты и при постоянных напряжениях на диоде, которые в несколько раз превышают пороговое значение. Однако существуют требования для реализации к данному режиму: нужны диоды с очень однородным профилем легирования. Однородное распределение электрического поля и концентрации электронов по длине образца обеспечивается за счет большой скорости изменения напряжения на диоде.

Наряду с арсенидом галлия и фосфидом индия InP (до 170 ГГц) методом эпитаксиального наращивания, для изготовления диодов Ганна также используется нитрид галлия (GaN) на котором и была достигнута наиболее высокая частота колебаний в диодах Ганна — 3 ТГц. Диод Ганна имеет низкий уровень амплитудных шумов и низкое рабочее напряжение питания (от единиц до десятков В).

Эксплуатация диодов происходит в резонансных камерах представляющие собой в виде микросхем на диэлектрических подложках с резонирующими емкостными и индуктивными элементами, либо в виде комбинации резонаторов с микросхемами.

3. Изготовление диодов

Технология изготовления диода может быть основана на любом из описанных выше методов получения р-гс-переходов на кремнии и германии. Однако прибор, обладающий наилучшими усилительными качествами, получается диффузионным способом, с помощью меза-технологии.

Технология изготовления диодов Ганна сравнительно несложна. Диоды изготавливают либо на основе монокристаллов, либо на основе эпитакси-альных пленок GaAs. Размеры пластин для изготовления диодов выбирают, исходя из условий режима их работы и требуемых параметров.

По параметрам и технологии изготовления диодов и тиристоров в тексте и таблицах приняты следующие сокращения: Si — кремний, Qe — германий, GaAs — арсепид галлия, СаР — фосфит галлия, Si(СO 3) 2 — карбид кремния.

Заключение

В этой работе мы рассмотрели принципы работы импульсного и высокочастотного диодов. Каждый из диодов имеет свои параметры, характеристики, и свое предназначение в электрической цепи. Диод — электронный элемент, обладающий различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключаемый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом , подключаемый к отрицательному полюсу — катодом.

Импульсные диоды работают в режиме электронного ключа. Длительность импульсов может быть очень мала, поэтому диод должен очень быстро переходить из одного состояния в другое. Основным параметром, характеризующим быстродействие импульсных диодов является время восстановления обратного сопротивления. Для уменьшения используют специальные меры, ускоряющие процесс рассасывания неосновных носителей заряда в базе. Требованиям, предъявляемым к импульсным диодам, хорошо удовлетворяют диоды на основе барьера Шоттки, которые имеют очень малую инерционность благодаря отсутствию инжекции и накопления неосновных носителей заряда в базе.

Высокочастотный диод применяется для линейных или нелинейных преобразований высокочастотных сигналов до 600 МГц. (СВЧ диоды — до 12 ГГц.) Он используется в схемах детекторов — это выпрямители высокочастотных сигналов.

· Барьерная ёмкость Сб [мкФ]

· f раб [МГц]

В современных импортных диодах используется такая характеристика, как «Время восстановления». В ультрабыстродействующих диодах она достигает величин 100 нс.

Список литературы

1. Алфёров Ж. И. // Физика и техника полупроводников. 1998. Т.32. №1. С.3-18.

2. Берг А., Дин П. Светодиоды / Пер. с англ. под ред. А.Э. Юновича. М., 1979.

3. Коган Л. М. Полупроводниковые светоизлучающие диоды. М., 1983.

4. Лосев О. В. У истоков полупроводниковой техники: Избранные труды. Л., 1972.

Размещено на Allbest.ru

Подобные документы

    Понятие полупроводникового диода. Вольт-амперные характеристики диодов. Расчет схемы измерительного прибора. Параметры используемых диодов. Основные параметры, устройство и конструкция полупроводниковых диодов. Устройство сплавного и точечного диодов.

    курсовая работа , добавлен 04.05.2011

    Понятие диодов как электровакуумных (полупроводниковых) приборов. Устройство диода, его основные свойства. Критерии классификации диодов и их характеристика. Соблюдение правильной полярности при подключении диода в электрическую цепь. Маркировка диодов.

    презентация , добавлен 05.10.2015

    Напряжение тока и сопротивление диода. Исследование вольтамперной характеристики для полупроводникового диода. Анализ сопротивления диода. Измерение напряжения и вычисление тока через диод. Нагрузочная характеристика параметрического стабилизатора.

    практическая работа , добавлен 31.10.2011

    Исследование вольтамперных характеристик диодов, снятие характеристик при различных значениях напряжения. Аппроксимация графиков вольтамперных характеристик диодов, функции первой и второй степени, экспоненты. Исходный код программы и полученные данные.

    лабораторная работа , добавлен 24.07.2012

    Механизм действия полупроводникового диода — нелинейного электронного прибора с двумя выводами. Работа стабилитрона — полупроводникового диода, вольтамперная характеристика которого имеет область зависимости тока от напряжения на ее обратном участке.

    презентация , добавлен 13.12.2011

    Определение величины обратного тока диодной структуры. Расчет вольт-амперной характеристики идеального и реального переходов. Зависимости дифференциального сопротивления, барьерной и диффузионной емкости, толщины обедненного слоя от напряжения диода.

    курсовая работа , добавлен 28.02.2016

    Расчет напряжения на переходе при прямом включении при заданном прямом токе. Влияние температуры на прямое напряжение. Сопротивление диода постоянному току. Вольт-амперная характеристика диода. Параметры стабилизатора напряжения на основе стабилитрона.

    контрольная работа , добавлен 14.01.2014

    Составление и обоснование электрической схемы измерения вольт-амперных характеристик полупроводниковых приборов. Определение перечня необходимых измерительных приборов и оборудования, сборка экспериментальной установки. Построение графиков зависимостей.

    курсовая работа , добавлен 19.11.2015

    Классификация диодов в зависимости от технологии изготовления: плоскостные, точечные, микросплавные, мезадиффузионные, эпитаксально-планарные. Виды диодов по функциональному назначению. Основные параметры, схемы включения и вольт-амперные характеристики.

    курсовая работа , добавлен 22.01.2015

    Параметры, свойства, характеристики полупроводниковых диодов, тиристоров и транзисторов, выпрямительных диодов. Операционный усилитель, импульсные устройства. Реализация полной системы логических функций с помощью универсальных логических микросхем.

Импульсный диод – это полупроводниковый диод, имеющий малую длительность переходных процессов и предназначенный для применения в импульсных режимах работы.

Импульсные режимы – это такие режимы, когда диоды переключаются с прямого напряжения на обратное, через короткие промежутки времени порядка долей микросекунды при этом важную роль играют здесь переходные процессы. Основное назначение импульсных диодов – работа в качестве коммутирующих элементов. Условия работы импульсных диодов обычно соответствуют высокому уровню инжекции, т.е. относительно большим прямым токам. Вследствие этого свойства и параметры импульсных диодов определяются переходными процессами.

Одной из первых была разработана конструкция точечного импульсного диода (рис. 2.11). Точечный диод состоит из кристалла германия, припаянного к кристаллодержателю, контактного электрода в виде тонкой проволоки и стеклянного баллона. Особенностью точечных диодов является большое сопротивление базы, что приводит к увеличению прямого напряжения на диоде.

В связи с недостатками точечных диодов они практически полностью вытеснены импульсными диодами, производство которых основано на современных производительных и контролируемых методах формирования p–n -переходов (планарной технологии, эпитаксиального наращивания). Основным исходным полупроводниковым материалом при этом служит кремний, а иногда арсенид галлия.

Для ускорения переходных процессов в кремниевых импульсных диодах и для уменьшения значения времени восстановления обратного сопротивления этих диодов в исходный кремний вводят примесь золота. Эта примесь обеспечивает появление в запрещенной зоне кремния энергетических уровней рекомбинационных ловушек и уменьшение времени жизни неосновных носителей.

В настоящее время большинство конструкций имеет металлокерамический, металлостеклянный или металлический корпус с ленточными выводами.

Рассмотрим процесс переключения такого диода при воздействии на него прямоугольного импульса (рис. 2.12).

При прямом напряжении на участке 0…t 1 происходит инжекция носителей из эмиттерной области в базовую и их накопление там. При смене полярности напряжения на обратную в первый момент величина обратного тока будет значительна, а обратное сопротивление диода резко уменьшится, так как накопленные в базе неосновные носители под действием изменившегося направления напряженности электрического поля начнут двигаться в сторону p–n -перехода, образуя импульс обратного тока. По мере перехода их в эмиттерную область, их количество уменьшится и через некоторое время обратный ток достигнет нормального установившегося значения, а сопротивление диода в обратном направлении восстановится до нормальной величины.

Процесс уменьшения накопленного заряда в базе называется рассасыванием, а время, в течение которого обратный ток изменяется от максимального значения до установившегося, называется нем восстановления обратного сопротивления . Время восстановления обратного сопротивления – один из важнейших параметров импульсных диодов. Чем оно меньше, тем диод лучше. Для улучшения свойств импульсных диодов исходный полупроводник выбирают с малым временем жизни носителей заряда (для более интенсивного процесса рекомбинации в базе), а сам p–n -переход делают с малой площадью, чтобы снизить величину барьерной ёмкости перехода .

Выводы:

1. Импульсные диоды работают в режиме электронного ключа.

2. Длительность импульсов может быть очень мала, поэтому диод должен очень быстро переходить из одного состояния в другое.

3. Основным параметром, характеризующим быстродействие импульсных диодов является время восстановления обратного сопротивления.

4. Для уменьшения используют специальные меры, ускоряющие процесс рассасывания неосновных носителей заряда в базе.

5. Требованиям, предъявляемым к импульсным диодам, хорошо удовлетворяют диоды на основе барьера Шоттки, которые имеют очень малую инерционность благодаря отсутствию инжекции и накопления неосновных носителей заряда в базе.

Огромное количество современных электронных устройств используют в своей работе электрические импульсы. Это могут быть слаботочные сигналы или токовые импульсы (что гораздо серьезнее в техническом отношении) в цепях блоков питания и прочих импульсных преобразователей, инверторов и т.д.

А действие импульсов в преобразователях — это всегда критичность к длительности форнтов и спадов, имеющих временные границы примерно того же порядка, что и переходные процессы в электронных компонентах, в частности — в тех же диодах. Поэтому, при использовании в импульсных схемах диодов, следует обязательно принимать во внимание переходные процессы в самих диодах — во время их включения и выключения (во время открывания и закрывания p-n-перехода).

В принципе, чтобы сократить время переключения диода из неповодящего состояния — в проводящее и обратно, в некоторых низковольтных схемах целесообразно прибегать .

Диоды данной технологии отличаются от обычных выпрямительных диодов наличием перехода металл-полупроводник, который хоть и обладает выраженным выпрямительным эффектом, но в то же самое время имеет сравнительно малую проходную емкость перехода, заряд в которой накапливается в настолько некритичных количествах и так быстро рассасывается, что схема с диодами Шоттки может работать на достаточно высокой частоте, когда время переключения имеет порядок единиц наносекунд.

Еще один плюс диодов Шоттки — падение напряженя на их переходе составляет всего около 0,3 вольт. Итак, главное достоинство диодов Шоттки — в них не затрачивается времени на накопление и рассасывание зарядов, быстродействие здесь зависит только от скорости перезаряда небольшой барьерной емкости.

Что касается , то изначальное предназначение данных компонентов вообще не предполагает работу в импульсных режимах. Импульсный режим для выпрямительного диода — это нетипичный, нештатный рижим, поэтому и особо высоких требований к быстродействию выпрямительных диодов разработчиками не предъявляется.

Выпрямительные диоды используются в основном для преобразования низкочастотного переменного тока в постоянный или пульсирующий, где вовсе не требуется малая проходная емкость p-n-перехода и быстродействие, чаще нужны просто большая проводимость и соответственно высокая стойкость к относительно длительному непрерываному току.

Выпрямительные диоды отличаюстя поэтому малым сопротивлением в открытом состоянии, большей площадью p-n-перехода, способностью пропускать большие токи. Но за счет значительной площади перехода емкость диода получаетсвя больше — порядка сотен пикофарад. Это очень много для импульного диода. Для сравнения, у диодов Шоттки проходная емкость имеет порядок десятков пикофарад.

Итак, импульсные диоды — это специально разрабатываемые диоды для работы именно в импульсных режимах в высокочастотных цепях. Их принципиальной отличительной особенностью от выпрямительных диодов является кратковременность переходных процессов в силу очень малой емкости p-n-перехода, которая может доходить до единиц пикофарад и быть еще меньше.

Уменьшение емкости p-n-перехода в импульсных диодах достигается путем уменьшения площади перехода. Как следствие, рассеиваемая на корпусе диода мощность не должна быть очень большой, средний ток через переход малой площади не должен превышать максимально допустимого значения, указываемого к документации на диод.

Часто в качестве быстродействующих диодов используют диоды Шоттки, однако они редко отличаются высоким обратным напряжением, поэтому импульсные диоды выделены как отдельный тип диодов.

Импульсные диоды предназначены для работы в быстродействующих импульсных схемах. Основными отличительными особенностями импульсных диодов, так же как и высокочастотных, является малая площадь р-n перехода и малое время жизни неравновесных носителей заряда. Основным параметром импульсных диодов является время восстановления обратного сопротивления t вос , определяемое как время, в течение которого диод переходит в запертое состояние при мгновенном изменении полярности напряжения на диоде с прямого на обратное. Для импульсных диодов указывают такие же параметры, характерные для выпрямительных диодов. Конструкция и технология изготовления импульсных диодов аналогичны конструкции и технологии изготовления обычных высокочастотных диодов. В быстродействующих импульсных схемах широко используют диоды Шоттки, площадь перехода которых обычно составляет 20-30 мкм в диаметре, а барьерная емкость не превышает 1 пФ. Особенностью диодов Шоттки является отсутствие инжекции неосновных носителей заряда в полупроводник, поэтому основным фактором, влияющим на длительность переходных процессов, является перезаряд только барьерной емкости. Диоды Шоттки могут работать на частотах до 15 ГГц, а время переключения у них составляет около 0,1 нс.

В импульсных схемах, формирующих импульсы с крутыми фронтами, применяют диоды с накоплением заряда (ДНЗ). В этих диодах примесь в базе распределена неравномерно: концентрация ее больше в глубине базы и меньше возле р-n перехода, вследствие чего возникает внутреннее электрическое поле. Это поле препятствует проникновению в глубь базы инжектированных при прямом напряжении дырок из р -области в базу, то есть обеспечивает их группирование около границы р-n перехода. Кроме того, это поле при обратном напряжении способствует освобождению базы от неосновных носителей, в результате чего уменьшается t вос в десятки раз и отрицательный выброс импульса тока получается практически прямоугольным.

В настоящее время широкое применение находит в качестве высокочастотных и импульсных диодов диоды с p-i-n –структурой. В этих диодах сильнолегированные р и п области разделены достаточно широкой областью с собственной проводимостью. Электрическое поле действует только в i — области и оно практически однородное. Барьерная емкость p-i-n диода за счет широкой i — области мала и слабо зависит от приложенного к диоду напряжения.

Особенность работы p-i-n- диода состоит в следующем. Во-первых, при прямом смещении происходит инжекция электронов из п -области и дырок из р -области в i — область, что приводит к резкому уменьшению прямого сопротивления диода. Во-вторых, носители тока в i- области перемещаются не только за счет диффузии, но и дрейфуют в поле, что увеличивает их скорость и уменьшает время переноса носителей тока. Оба эти фактора увеличивают значение максимальной частоты работы таких диодов. При обратном напряжении происходит интенсивная экстракция носителей из i — области, что приводит к дополнительному возрастанию обратного сопротивления. Таким образом, для p-i-n диодов характерно большое отношение обратного к прямому сопротивлению, что обуславливает их хорошие импульсные свойства в переключательном режиме работы. Кроме того, такие диоды могут коммутировать в импульсе достаточно высокие мощности до нескольких десятков кВт.

В качестве импульсных диодов находят применение мезадиоды . Их особенностью является технология изготовления. При изготовлении этих диодов методом избирательного травления формируют конические выступы – столики, называемых «мезами». Такая технология позволяет получать р-п переходы с очень малой площадью и малой емкостью перехода и тем самым малым временем переключения

Контактная пружина
Внешние выводы

Рис.1.4. Конструкции двух типов импульсных диодов

Условно-графическое обозначение импульсного диода такое же как и у выпрямительного, возможные конструкции импульсных диодов приведены на рисунке 1.4.

Контрольные вопросы

1. Дайте классификацию полупроводниковых диодов.

2. Как влияет температура на вольтамперную характеристику германиевых и кремниевых выпрямительных диодов?

3. Назовите основные параметры выпрямительных диодов.

4. Какие требования предъявляются к высокочастотным и импульсным диодам?

5. В чем особенность работы р-i-п диодов и диодов с накоплением заряда (ДНЗ)?

Импульсные диоды.

Это обычные диоды, с обычной ВАХ, однако работающие в режиме переключения. Их область применения – цифровые схемы, элементы которых находятся либо в открытом состоянии «0», либо в закрытом «1». Поэтому в этом приложении представляют интерес временные параметры диода: как быстро он переходит из закрытого в открытое состояние и наоборот. На рис. показан импульсный диод на основе несимметричного контакта. Примем условие, что эмиттер имеет n – проводимость. Это дает основание рассматривать поведение и ток только электронов. При обратной несимметрии вся сказанное будет относиться к дыркам.

Рассмотрим процессы при переключении. Подадим на него прямое напряжение – идеальную ступень, рис. а). первоначально начнут движение электроны обладающие наибольшей энергией, находящиеся непосредственно вблизи p-n перехода, далее к ним присоединятся те, которые находятся внутри n области. Таким образом, из за различия энергий носителей постепенно увеличивается их число, постепенно увеличивается и прямой ток. Этот процесс во времени показан на рис. б), а для оценки вводится параметр tуст – время установления открытого состояния. При большом времени ток не меняется и в области «p» перехода скапливается большое количество неосновных носителей, электронов. Возникает неравновесная концентрация носителей в p области кристалла.

Подадим на переход столь же резко изменяющуюся обратную полярность напряжения. Неравновесные электроны накопившиеся в «p» области начнут выводится под действием электрического поля в «n» область. Концентрация их велика, поэтому обратный ток в течении какого – то времени будет большим. Эта стадия процесса показана на рис. б), как t1. в конце концов, процесс вывода закончится, переход становится в закрытое состояние. Теперь есть две полупроводящие области p и n b и слой диэлектрика между ними. Это конденсатор, который начинает заряжаться под действием обратного напряжения. Ток заряда будет уменьшаться по закону экспоненты, на рис. б) это время t2. В целом время восстановления закрытого состояния равно t1+t2=tвосст.

Рис. Импульсный диод

Рис. Процессы в импульсном диоде.

Обычно t восст. >> чем t восст. Для улучшения параметров диода для изготовления используются материалы с высокой подвижностью носителей (Ge), площадь перехода делают маленькой, применяют p-i-n структуры. Пример применения импульсного диода приведен на рис. Форма напряжения на нагрузочном сопротивлении повторяет форму тока на рис.

Рис. Работа импульсного диода

Диод на реле зачем нужен

Тема: простая защита электронной схемы с катушками реле от ЭДС индукции.

На электронных схемах, где стоит электромагнитное реле, можно заметить, что параллельно его катушке припаян диод. Этот диод подсоединяется к обмотке обратным подключением. То есть, плюс диода (он же анод) будет лежать на минусе источника питания схемы, а минус диода (он же катод), будет находится на плюсе питания. Как известно, при таком способе подключения диода к питанию полупроводник находится в закрытом состоянии, он через себя не проводит электрический ток. Тогда возникает вопрос, а зачем он тогда нужен, если он работает как обычный диэлектрик?

А дело всё в том, что любая катушка, намотанная обычный образом (провод мотается в одном направлении) имеет помимо электрического сопротивления и индуктивность. Вокруг катушки при прохождении постоянного тока образуется электромагнитное поле. А в момент снятия напряжения с катушки, та энергия, которая была аккумулирована в этом электромагнитном поле резко преобразуется опять в электрическую. При этом на концах катушки появляется высоких разностный потенциал. То есть, проще говоря, в момент отключения от катушки питания на ней образуется кратковременный электрический всплески напряжения. Причем, этот всплеск ЭДС (электродвижущей силы) может в несколько раз превышать напряжение питания, которое ранее было подано на обмотку.

Такие скачки увеличенного напряжения, которые образуются на различных катушках, в том числе и на обмотке реле, способны негативно влиять на чувствительные элементы электронной схемы. Например, этот скачок легко может создать электрический пробой различных маломощных транзисторов, микросхем и т.д. Либо же это кратковременное увеличение напряжения может в момент процессов переключения реле вводить в электронную схему различные искажения, погрешности, плохо влиять на измерительные узлы и т.д. Одним словом явление возникновения подобных импульсов увеличенного напряжения – это плохо для любой электронной схемы.

А как же обычный диод может защитить от таких вот ЭДС скачков? Дело в том, что генерация ЭДС индукции имеет противоположную полярность, относительно подаваемого напряжения питания на катушку. Вначале мы на один конец катушки реле подавали плюс, а на второй – минус. При снятии напряжения питания с катушки полюса изменятся. Где был плюс, появится минус, а где был минус, появится плюс. Если наш защитный диод при одной полярности, когда идет питание катушки, находится в закрытом состоянии, работая как диэлектрик, то при другой полярности он уже будет переходить в открытое состояние. Другими словами говоря, при нормальной работе реле диод не будет себя проявлять как функциональный элемент, а при возникновении ЭДС индукции на катушки реле он сразу же станет проводником и замкнет этот импульс увеличенного напряжения на себе.

Может возникнуть вопрос. Если диод берет (замыкает) всю энергию ЭДС индукции катушки реле на себя, то не выйдет ли он от этого из строя (не сгорит ли)? Дело в том что у обычных катушек реле не столь большая энергия, что аккумулируется на ней в виде электромагнитного поля. Эта энергия имеет импульсный, одноразовый характер. Причем, при ЭДС индукции опасно именно увеличенное напряжение (относительно напряжения питания), токи же в этом импульсе достаточно малы. Задача диода нейтрализовать именно импульс увеличенного напряжения. Да и самый обычный, распространенный диод, такой как 1N4007 способне выдерживать обратное напряжение аж до 1000 вольт и прямой ток до 1 ампера (ток импульса намного меньше).

А какие диоды нужно ставить параллельно катушке реле, чтобы защитить электронную схему от подобный скачков напряжения ЭДС индукции? Как я только что уже сказал, энергия обычного маломощного реле (да и средней мощности) не такая уж и большая. Опасен именно сам увеличенный по напряжению импульс. Если питание катушки было, например, 12 вольт постоянного тока, то этот импульс может быть в несколько раз больше (ну пусть до 150 вольт, не больше). Токи, которые могут быть при этом импульсе могут иметь величину единицы и десятки миллиампер. На ток влияет диаметр провода, и его длина в катушке. Чем тоньше диаметр, и чем больше намотка, тем меньше ток. С напряжением наоборот. Чем больше витков в катушке, тем выше напряжение будет при ЭДС индукции.

Если не вдаваться в расчеты, то поставив на катушку обычного маломощного реле кремниевые диоды типа 1N4007 вы не ошибетесь. Их вполне хватит, чтобы надежно защитить электронную схему от подобный ЭДС импульсов, возникающих из-за переключающихся процессов.

Видео по этой теме:

Зная, как работает реле, Вы сможете осуществить различные схемы подключения к электропроводке автомобиля.

Что такое реле, и как оно работает? 5-тиконтактное реле
Обычно реле имеет 5 контактов (бывают и 4-хконтактные и 7-ми и т.д.). Если Вы посмотрите на реле внимательно, то увидите, что все контакты подписаны. Каждый контакт имеет своё обозначение. 30, 85, 86, 87 и 87А. На рисунке видно где, какой контакт.
Контакты 85 и 86 — это катушка. Контакт 30 — общий контакт, контакт 87А — нормально-замкнутый контакт, контакт 87 — нормально-разомкнутый контакт.

Что такое реле, и как оно работает? 5-тиконтактное реле
В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 замкнут с контактом 87А. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 отмыкается от контакта 87А и соединяется с контактом 87. Вот и весь принцип действия. Вроде бы ничего сложного.
Реле часто приходит на выручку во время установки дополнительного оборудования. Давайте рассмотрим простейшие примеры применения реле.

Блокировка двигателя.
Что такое реле, и как оно работает? Реле блокировки двигателяВ качестве блокируемой цепи может быть что угодно, лишь бы машина не заводилась при разорванной цепи (стартер, зажигание, бензонасос, питание форсунок и т.д.). Один контакт питания катушки (пусть 85) соединяем с проводом сигнализации, на котором появляется «минус» при постановке в охрану. На другой контакт катушки (пусть 86) подаём +12 Вольт при включении зажигания. Контакты 30 и 87А подцепляем в разрыв блокируемой цепи. Теперь, если попытаться завести автомобиль при включенной охране, контакт 30 разомкнётся с контактом 87А и не даст завести двигатель.

Эта схема используется, если у вас «минус» с сигнализации на блокировку выходит при постановке в охрану. Если у вас «минус» с сигнализации на блокировку выходит при снятии с охраны, тогда вместо контакта 87А используем контакт 87, т.е. разрыв цепи теперь будет на контактах 87 и 30. При таком подключении реле будет всегда в рабочем состоянии (разомкнутом) при работающем двигателе.

Инвертируем полярность сигнала (с «минуса» делаем «плюс» и наоборот). Подключаемся к слаботочным транзисторным выходам сигнализации.
Что такое реле, и как оно работает? Инвертируем сигнал с помощью реле Допустим, нам надо получить «минус», но у нас есть только «плюсовой» сигнал (например, у автомобиля положительные концевики, а у сигнализации нет входа положительных концевиков, а есть только вход отрицательных). На помощь опять приходит реле.

Подаём на один из контактов катушки (86) наш «плюс» (с концевиков автомобиля). На другой контакт катушки (85) и на контакт 87 подаём «минус». В итоге на выходе (контакт 30) получаем нужный нам «минус».
Если нам надо, наоборот, из «минуса» получить «плюс», то маленько меняем подключение. На контакт 86 подаём исходный «минус», а на контакты 85 и 87 подаём «плюс». В итоге на выходе (контакт 30) получаем нужный нам «плюс».
Если нам надо из слаботочного отрицательного выхода сигнализации (в сигнализации такие выходы могут называться по-разному и их назначение тоже различное: выход на 3-е зажигание, выход на открытие багажника, выход на закрытие стёкол и т.д.) сделать хороший мощный «минус» или «плюс», то тоже используем эту схему.
На контакт 85 подаём выход с сигнализации. На контакт 86 подаём «плюс». На контакт 87 подаём сигнал той полярности, который нам надо получить на выходе. В итоге на контакте 30 мы имеем ту полярность, которая на контакте 87.

Открытие багажника с брелока сигнализации.
Что такое реле, и как оно работает? Открытие багажника с брелока сигнализации Если в автомобиле стоит электрический привод багажника, то можно подключиться к нему автосигнализацией для открытия его с брелока сигнализации.
Если с сигнализации выходит слаботочный сигнал на открытие багажника (а чаще всего так и есть), то используем эту схему.
Прежде всего, находим провод на привод багажник, где появляется +12 Вольт при открытии багажника. Разрезаем этот провод. Тот конец разрезанного провода, который идёт к приводу, подцепляем к контакту 30. Другой конец провода подцепляем к контакту 87А. Выход с сигнализации подцепляем к контакту 86. Контакты 87 и 85 подцепляем на +12 Вольт.

Теперь, при подаче сигнала с сигнализации на открытие багажника, реле сработает и на провод электропривода багажника пойдёт «плюс». Привод сработает, и багажник откроется.
Это лишь немногие схемы подключения с использованием реле.

Ещё один элемент, который так же, как и реле, часто используется в установке автосигнализаций — диод.

Диод (от ди- и -од из слова электрод) — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть, имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом.

Диоды бывают электровакуумными (кенотроны), газонаполненными (газотроны, игнитроны, стабилитроны), полупроводниковыми и др. В настоящее время в подавляющем большинстве случаев применяются полупроводниковые диоды.
У нас при установке автосигнализаций тоже применяются полупроводниковые диоды.

Полупроводниковые диоды используют свойство односторонней проводимости p-n перехода — контакта между полупроводниками с разным типом примесной проводимости, либо между полупроводником и металлом.

Полупроводниковый диод. Катод и анод диода. Полупроводниковый диод. Течение тока в диоде.

Полупроводниковые диоды — очень простые устройства. Кроме оценки силы тока диода, есть три основных вещи, которые вы должны держать в уме:
1. Катод (сторона с полосой)
2. Анод (сторона без полосы)
3. Диод пропускает «-» от катода к аноду (не пропускает «+») и «+» от анода к катоду (не пропускает «-»).

Подключение концевиков дверей с помощью диодов.
Немного про использование диодов при подключении автосигнализации к электропроводке автомобиля написано в статье Поиск концевиков.
Встречаются автомобили, у которых нет общей точки концевиков дверей, т.е. все концевики развязаны. Для каждой двери свой концевик. Например, Honda некоторые, Ford, GM и т.д.
При подключении автосигнализации в таких автомобилях можно подцепиться к плафону в салоне и запрограммировать функцию вежливой подсветки, можно тупо все провода концевиков связать вместе.
Первый способ не всегда может пройти. Почему, написано в статье Поиск концевиков.
Второй способ может подойти, если при таком виде подключения не нарушится функциональность некоторых приборов автомобиля. Если у вас на автомобиле на приборной панели показывается открытие каждой двери отдельно — такой способ не подойдёт. Если после установки автосигнализации у вас при открытии любой двери, а не только водительской, начинает пищать зуммер, указывающий об оставленном ключе в замке зажигания, значит, был применён вышеприведенный способ подключения концевиков.
В таких автомобилях при подключении автосигнализации правильнее всего использовать диоды.
Ниже приведены примеры подключения автосигнализации с использованием диодов к отрицательным и положительным концевикам дверей.

Полупроводниковый диод. Подключение отрицательных концевиков к автосигнализации при помощи диодов.Полупроводниковый диод. Подключение положительных концевиков к автосигнализации при помощи диодов.
Эти же схемы используются при подключении двух датчиков к одному входу (например, удара и наклонного).

Для соединения в схемах электрооборудования применяют автотракторные провода, которые делятся на провода низкого (до 48 В) и высокого напряжения. В качестве изоляции автотракторных проводов применяют попивинипхпоридный пластикат, который удовлетворяет следующим требованиям: масло-, бензо- и киспотостойкости, не распространением горения, работоспособности при высоких и низких температурах. Провода марок ПВА, ПВАЭ и ПВАЛ используют для соединений при температурах от -40 до + 105 С, провода остальных марок от -40 до +70 С. Если при соединении приборов требуется экранирование
провода, то применяют провода марок ПВАЭ и ПГВАЭ, а вспучае необходимости защиты проводов от
механических повреждений — провода с бронированной изоляцией марки ПГВАБ.
Для удобства отыскания соединений и цепей провода изготавливают следующих цветов: белого,
желтого, оранжевого, красного (бордо), розового, синего (голубого), зеленого, коричневого, черного,
серого и фиолетового. Сверху сплошного цвета допускается нанесение дополнительного цвета эмалью
ХС5103 в виде копец или полос (белой, черной, красной и голубой).
Для соединения подвижной пластины прерывателя в распределителе зажигания используют провод
марки ПЩОО сечением 0.5мм2.
В переносных пампах автомобилей применяют двухжильный провод марок ШПВУ и ПЛКТ. Соединение
аккумуляторной батареи с массой и двигателя производят медным неизолированным плетеным
проводом АМГ.
Срок службы проводов не менее 8 пет.
В зависимости от марки провода его сечение может быть следующих размеров: 0,5; 0,75; 1,0; 1,5; 2,5;
4,0; 6,0; 10; 16; 25; 35; 50; 70; и 95 мм2. Ниже приведена зависимость между сечением провода и его
сопротивлением.

Сечение провода. мм2 0.5 0.75 1.0 1.5 2.5 4.0 6.0
Электрическое сопротивление Ом’м х 10? 3.7 2.5 1.85 1.2 0.72 0.46 0.29

Допустимые значения сипы тока при длительных нагрузках роводов сечением 0.5-16 мм2 при одиночной прокладке должны быть не выше указанных в таблице

При прокладке проводов сечением 0.5 — 4.0 мм2 в жгутах, в поперечном сечении которых по трассе содержится от двух до семи проводов, сила допустимого тока в проводе 1=0,551 (где / — сила тока по таблице), а при наличии 8-19 проводов -1=0,381. Сечение проводов стартера подбирают так. чтобы падение напряжения в проводе не превышало 0.2 В на каждые ЮОА потребляемого стартером тока.
Провода высокого напряжения, применяемые для соединения в цепях зажигания, подразделяются на обычные ППВ с металлическим многожильным проводником и помехоподавительные провода марок ПВВО и ПВВП. При использовании проводов ПВВ необходимо устанавливать наконечники с подавительными резисторами. Резистивный провод ПВВО состоит из жилы-сердечника (изготовленной из хлопчатобумажной пряжи и пропитанной сажевым раствором) в хлопчатобумажной или капроновой оплетке и изоляции из поливинилхлоридного пластиката или одно- или двухслойной резины. Недостаток провода ПВВО — трудность обеспечения надежного контакта между проводом и наконечником. Реактивные провода марки ПВВП имеют в центре льняную нить, на которую нанесен слой ферропласта 7 (20% поливинилхлоридного пластиката ПДФ и 80% ферритового порошка). Поверх ферропластового слоя намотана проволока диаметром 0.12 мм2 из сплава 40Н. являющаяся токопроводящей жилой. На нее наложена изоляция ПВХ пластиката. Подавление помех в этом проводе осуществляется как слоем ферропласта. так и проводником-спиралью. Провода марки ПВВП соответствует требованиям ЕЭК ООН на допустимые пределы радиопомех.

Импульсные диоды (их ещё называют сигнальными) используются в электрических схемах для передачи информации (сигнала). Таким образом от них требуется проводить только небольшие токи (до 100 мА).

Импульсные диоды общего назначения, такие как диод 1N4148, сделаны из кремния и имеют падение напряжения около 0.7 В.

Германиевые диоды, такие как OA90, имеют более низкое падение напряжения — 0.2 В. Это делает их подходящими для использования в электронных схемах радиоприёмников в качестве детекторов (для преобразования слабых радиосигналов в звуковые сигналы, также называемое детектированием).

Для общего использования, когда падение напряжения на диоде не имеет большого значения, применение кремниевых диодов предпочтительнее, т.к. они менее подвержены выходу из строя при перегреве в момент пайки, они имеют более низкое сопротивление и у них очень низкий ток утечки при подаче обратного напряжения.

Защитный диод на реле

Диод на реле используется для защиты транзисторов и микросхем от короткого высокого обратного напряжения, появляющегося при снятии напряжения с катушки реле (так называемой обратки). На схеме показано, как включается диод для защиты транзистора.

Ток, текущий через катушку реле, создаёт магнитное поле, которое пропадает при пропадании тока. Внезапное пропадание тока вызывает в катушке короткое высокое обратное напряжение, так называемая «ЭДС самоиндукции». Это напряжение может пробить ключевой элемент, который питает реле. Для гашения этого напряжения и ставится диод. На защиту реле не стоит ставить слаботочные диоды. К примеру, диод 1N4001 будет хорошим выбором.
Если реле запитывать через какой-либо выключатель, а не транзистор или микросхему, то диод можно не ставить.

Что такое диоды и для чего они используются?

Простейший полупроводниковый компонент — диод — выполняет множество полезных функций, связанных с его основной целью управления направлением потока электрического тока. Диоды позволяют току течь через них только в одном направлении.

Совершенно эффективные диоды кажутся разомкнутыми цепями с отрицательным напряжением, а в остальном они выглядят как короткие замыкания. Но поскольку диоды допускают некоторую неэффективность, их зависимость тока от напряжения нелинейна.Таким образом, вы захотите обратиться к техническому описанию диода, чтобы увидеть график кривой зависимости прямого напряжения любого заданного диода от его прямого тока, чтобы выбрать правильный диод для вашего конкретного проекта.

Тим Ридли / Getty Images

Применение диодов

Несмотря на то, что это всего лишь простые полупроводниковые устройства с двумя выводами, диоды жизненно важны в современной электронике. Некоторые из типичных применений диодов включают в себя:

  • Выпрямление напряжения, например преобразование переменного тока в постоянное
  • Изоляция сигналов от источника питания
  • Управление размером сигнала
  • Смешивание сигналов

Преобразование мощности

Одним из важных применений диодов является преобразование мощности переменного тока в мощность постоянного тока.Один или четыре диода преобразуют бытовую электроэнергию 110 В в постоянный ток, образуя промежуточный (один диод) или двухполупериодный (четыре диода) выпрямитель . Диод пропускает только половину волны переменного тока. Когда этот импульс напряжения заряжает конденсатор, выходное напряжение представляет собой устойчивое постоянное напряжение с небольшими пульсациями напряжения. Использование двухполупериодного выпрямителя делает этот процесс еще более эффективным за счет направления импульсов переменного тока таким образом, что как положительная, так и отрицательная половина входной синусоиды воспринимаются как только положительные импульсы, эффективно удваивая частоту входных импульсов на конденсатор, что помогает держать его заряженным и обеспечивает более стабильное напряжение.

Диоды и конденсаторы создают различные умножители напряжения, чтобы взять небольшое переменное напряжение и умножить его для создания очень высокого выходного напряжения. Выходы как переменного, так и постоянного тока возможны при правильной конфигурации конденсаторов и диодов.

Демодуляция сигналов

Чаще всего диоды используются для удаления отрицательной составляющей сигнала переменного тока. Поскольку отрицательная часть сигнала переменного тока обычно идентична положительной половине, в процессе ее удаления фактически теряется очень мало информации, что приводит к более эффективной обработке сигнала.

Демодуляция сигнала обычно используется в радиостанциях как часть системы фильтрации, чтобы помочь извлечь радиосигнал из несущей волны.

Защита от перенапряжения

Диоды также хорошо работают в качестве защитных устройств для чувствительных электронных компонентов. При использовании в качестве устройств защиты от напряжения диоды не проводят ток в нормальных условиях эксплуатации, но немедленно замыкают любой высоковольтный всплеск на землю, где он не может повредить интегральную схему.Специализированные диоды, называемые ограничителями переходного напряжения , разработаны специально для защиты от перенапряжения и могут выдерживать очень большие скачки напряжения в течение коротких периодов времени, типичные характеристики скачка напряжения или поражения электрическим током, которые обычно повреждают компоненты и сокращают срок службы электронного устройства. товар.

Точно так же диод может регулировать напряжение, выступая в качестве ограничителя или ограничителя — специального назначения, ограничивающего напряжение, которое может пройти через него в определенной точке.

Текущее управление

Основное применение диодов — управлять током и следить за тем, чтобы он протекал только в правильном направлении. Одной из областей, где способность диодов к управлению током используется с пользой, является переключение с питания, поступающего от источника питания, на питание от батареи. Когда устройство подключено к сети и заряжается — например, сотовый телефон или источник бесперебойного питания — устройство должно получать питание только от внешнего источника питания, а не от аккумулятора, а пока устройство подключено к сети, питание должно подаваться от аккумулятора. и подзарядка.Как только источник питания удален, батарея должна питать устройство так, чтобы пользователь не заметил перебоев.

Хорошим примером управления током является защита от обратного тока .  Возьмем, к примеру, свою машину. Когда ваша батарея садится, и дружелюбный прохожий предлагает помочь с соединительными кабелями, если вы перепутаете порядок красных и черных кабелей, вы не поджарите электрическую систему вашего автомобиля, потому что диоды, расположенные рядом с батареей, блокируют ток неправильного направления.

Логические элементы

Компьютеры работают в двоичном формате — бесконечном море нулей и единиц. Двоичные деревья решений в вычислениях основаны на логических элементах, включенных диодами, которые контролируют, включен ли переключатель («1») или выключен («0»). Хотя в современных процессорах используются сотни миллионов диодов, функционально они такие же, как диоды, которые вы покупаете в магазине электроники, только намного меньше.

Диоды и свет

Светодиодный фонарик — это просто фонарик, источник света которого — светодиод.При наличии положительного напряжения светодиоды светятся.

Фотодиод, напротив, принимает свет через коллектор (например, мини-солнечную панель) и преобразует этот свет в небольшой ток.

Спасибо, что сообщили нам!

Расскажите нам, почему!

Другой Недостаточно подробностей Сложно понять

Полное руководство по диодам

Диод — это специализированный электронный компонент, действующий как односторонний переключатель. Он проводит электрический ток только в одном направлении и ограничивает ток в противоположном направлении.Диод смещен в обратном направлении, когда он действует как изолятор, и смещен в прямом направлении, когда через него протекает ток. Диод имеет два вывода, анод и катод. Использование диодов включает переключатели, модуляторы сигналов, смесители сигналов, выпрямители, ограничители сигналов, регуляторы напряжения, генераторы и демодуляторы сигналов.

Диод прямого смещения

Напряжение, подаваемое на анод, положительно по отношению к катоду. Кроме того, напряжение на диоде выше порогового напряжения, поэтому он действует как короткое замыкание и позволяет протекать току.

Диод обратного смещения

Если катод положителен по отношению к аноду, диод смещен в обратном направлении. Затем он будет действовать как разомкнутая цепь, что приводит к отсутствию тока.

Для чего используются диоды?

Защита от обратного тока

Блокировочный диод используется в некоторых цепях для защиты на случай случайной проблемы с обратным подключением, например неправильное подключение источника постоянного тока или изменение его полярности.Поток тока в неправильном направлении может повредить другие компоненты схемы.

Диод для защиты от обратного тока

На рисунке выше показано, что блокировочный диод включен последовательно с нагрузкой и с положительной стороной источника питания. В случае обратного подключения ток не будет течь, потому что диод будет находиться в обратном смещении. Тогда нагрузка будет защищена от обратного тока. Однако, если полярность правильная, диод будет находиться в прямом смещении, поэтому через него может протекать ток нагрузки.

Простые регуляторы напряжения

Регулятор напряжения используется для понижения входного напряжения до требуемого уровня и поддерживает его на неизменном уровне, несмотря на колебания напряжения питания. Его также можно использовать для регулирования выходного напряжения. Зенеровский диод обычно используется в качестве регулятора напряжения, поскольку он предназначен для работы в условиях обратного смещения. Он ведет себя как обычный сигнальный диод при прямом смещении. С другой стороны, напряжение остается постоянным для широкого диапазона тока при приложении к нему обратного напряжения.

Стабилитрон в качестве регулятора напряжения

На рисунке выше ток в диоде ограничен последовательным резистором, подключенным к цепи. Поскольку диод подключен к положительной клемме источника питания, он работает как устройство обратного смещения, которое также может работать в условиях пробоя. Обычно используется диод с высокой номинальной мощностью, поскольку он может выдерживать обратное смещение выше напряжения пробоя. Ток стабилитрона всегда будет минимальным, если применяется минимальное входное напряжение и максимальный ток нагрузки.Учитывая входное напряжение и необходимое выходное напряжение, мы можем использовать стабилитрон с напряжением, примерно равным напряжению нагрузки.

Стабилизаторы напряжения

Ток, протекающий через стабилитрон, уменьшается в пользу тока нагрузки, когда нагрузочный резистор подключен параллельно стабилитрону. Величина тока, протекающего в нем, важна, потому что это ключ к стабилизации. Глядя на вольтамперную кривую для стабилитронов, вы заметите резкое увеличение напряжения пробоя, что доказывает, что они лучше всего стабилизируют небольшие постоянные напряжения.Ток увеличивается, а сопротивление диода уменьшается. Поэтому напряжение на стабилитроне почти такое же. Обычно резистор подключают, чтобы убедиться, что максимально допустимая мощность рассеяния не превышена.

Преобразование переменного тока в постоянный

Диоды

обычно используются для построения различных типов схем выпрямителей, таких как полуволновые, двухполупериодные, с центральным отводом и мостовые выпрямители. Одним из его основных применений является преобразование переменного тока в постоянный.

Во время положительного полупериода входного питания анод становится положительным по отношению к катоду. Диод будет находиться в прямом смещении, что приведет к протеканию тока на нагрузку. Однако во время отрицательного полупериода входной синусоидальной волны анод становится отрицательным по отношению к катоду. Таким образом, диод будет находиться в обратном смещении, и ток в нагрузку не пойдет. Выходное напряжение будет пульсирующим постоянным током, когда и напряжение, и ток на стороне нагрузки имеют одну полярность.Нагрузка резистивная в положительном полупериоде, и напряжение на нагрузочном резисторе будет таким же, как напряжение питания. Ток нагрузки будет пропорционален приложенному напряжению, а входное синусоидальное напряжение будет на нагрузке.

Как работает диод?

Диод считается полупроводниковым устройством, имеющим два вывода и функционирующим как односторонняя дверь для электрического тока. Полупроводники могут быть проводниками или изоляторами. Их сопротивление можно контролировать, увеличивая или уменьшая его сопротивление, называемое легированием.Легирование – это процесс добавления в материал примесных атомов.

Существует два типа полупроводниковых материалов:

  • Материал N-типа — добавление количества мышьяка, фосфора, сурьмы, висмута и других пятивалентных элементов может привести к получению полупроводникового материала N-типа. У него есть дополнительные электроны. Его дополнительные отрицательно заряженные частицы перемещаются из отрицательно заряженной области в положительно заряженную область.
  • Материал P-типа – добавление некоторого количества алюминия, галлия, бора, индия и других материалов может привести к получению полупроводникового материала P-типа.Имеет дополнительные отверстия.

Наличие дырок означает отсутствие электрона и наличие положительного заряда. Каждый раз, когда электрон движется в дырку, он создает за собой еще одну дырку, поскольку они движутся в направлении, противоположном электронам. Сочетание материалов N-типа и P-типа образует соединение P-N. Вы можете увидеть область истощения по обе стороны от диодного перехода. Эта область обеднена свободными электронами и дырками. Электроны со стороны N-типа заполняют дырки на стороне P-типа.

Что такое зона истощения?

Область обеднения образуется, когда на диод не подается напряжение, поэтому электроны из материала N-типа заполняют отверстия в материале P-типа вдоль соединения между слоями.В этой области материал N-типа или P-типа возвращается в исходное изолирующее состояние. Электричество не может течь в обедненную область, так как все дыры заполнены и нет свободных электронов или пустых мест для электричества.

Вы увидите соединение P-N, когда дырки перемещаются со стороны P на материал N-типа и обнажают отрицательные заряды. Затем вы увидите, как дырки и электроны диффундируют на другую сторону. После этого начинает формироваться область истощения.

Диоды с прямым смещением против диодов с обратным смещением

Диоды специального назначения

Стабилитроны

Диоды Зенера

состоят из сильно легированного PN-перехода, который проводит ток в обратном направлении при достижении определенного заданного напряжения.Он также позволяет току течь в прямом или обратном направлении. Он обычно используется для ограничителей перенапряжения, регулирования напряжения, опорных элементов и любых других коммутационных приложений и цепей ограничителя.

Диоды Шоттки

Диоды Шоттки

имеют низкое прямое падение напряжения, но очень быстрое переключение. Между металлом и полупроводником образуется переход полупроводник-металл, который создает барьер Шоттки. Когда через диод протекает ток, на клеммах диода возникает небольшое падение напряжения.Чем ниже падение напряжения, тем выше КПД системы и выше скорость переключения. Чаще всего диод Шоттки применяется в радиочастотах, в выпрямителях в некоторых силовых приложениях и в смесителях.

Диоды выпрямителя

Диоды выпрямителя

могут быть смещенными или несмещенными. Выпрямительный диод становится несмещенным, когда на него не подается напряжение. В это время на стороне P находится большинство дырок-носителей заряда и очень мало электронов, в то время как на стороне N больше всего электронов и очень мало дырок.С другой стороны, он становится смещенным в прямом направлении, когда положительная клемма источника напряжения подключена к стороне P-типа, а отрицательная клемма подключена к стороне N-типа. Это будет обратное смещение, когда положительный вывод источника напряжения подключен к концу N-типа, а отрицательный вывод источника подключен к концу P-типа диода. Через диод не будет протекать ток, кроме обратного тока насыщения, потому что обедненный слой перехода становится шире с увеличением напряжения обратного смещения.Выпрямительные диоды обычно используются в качестве компонента в источниках питания, которые преобразуют напряжение переменного тока в напряжение постоянного тока.

Сигнальные диоды

Сигнальные диоды обычно используются для обнаружения сигналов. Обычно они имеют низкий максимальный номинальный ток и средне-высокое прямое напряжение. Одним из наиболее распространенных применений сигнального диода является базовый диодный переключатель.

Германиевые диоды

Германиевые диоды

имеют низкое прямое падение напряжения, обычно равное 0.3 вольта. Низкое прямое падение напряжения приводит к низким потерям мощности и более эффективному диоду, который во многих отношениях лучше, чем кремниевый диод. Это более важно в средах с очень низким уровнем сигнала, например, при обнаружении сигнала от аудио до частот FM и в логических схемах низкого уровня. Германиевые диоды имеют больший ток утечки для германия при обратном напряжении, чем для кремния.

Соединительные диоды

Диоды

Junction — одни из самых простых полупроводниковых приборов.Но в отличие от других диодов, они не ведут себя линейно по отношению к приложенному напряжению. Диоды имеют экспоненциальную зависимость тока от напряжения. Он образуется, когда полупроводник P-типа соединяется с полупроводником N-типа, создавая потенциальный барьер на диодном переходе.

Три возможных условия «смещения» для стандартного диода перехода

1. Прямое смещение. Потенциал напряжения подключается отрицательно к материалу N-типа и положительно к материалу N-типа через диод, что уменьшает ширину диода PN-перехода.

2. Обратное смещение. Потенциал напряжения подключается положительно к материалу N-типа и отрицательно к материалу P-типа через диод, что увеличивает ширину диода PN-перехода.

3. Нулевое смещение – на диод PN-перехода не подается потенциал внешнего напряжения.

Надеюсь, эта статья помогла вам лучше понять, что такое диоды и как они работают. Не стесняйтесь оставлять комментарии ниже, если у вас есть вопросы о чем-либо!


Что такое диод

Диоды бывают разных форм, размеров и функций, но одна функция, которая объединяет все диоды, это их способность пропускать электричество только в одном направлении.Диод, с точки зрения сантехники, можно рассматривать как односторонний клапан, в котором вода может входить в значение на входе и выходить через выход, но вода, пытающаяся попасть на выход, блокируется. Диоды классифицируются как пассивные компоненты, поскольку они не могут управляться внешним электрическим сигналом. Другие примеры пассивных компонентов включают резисторы, конденсаторы и катушки индуктивности.

История диодов — Что такое диод?

Первый диод был построен из кусочка кристалла сульфида свинца и небольшого кусочка проволоки, касающегося его поверхности.Использование тонкого провода дало ему название «кошачий ус» и стало важным компонентом в радиотехнологиях. При передаче звуковых волн (например, голоса и музыки) высокочастотная несущая волна (сотни мегагерц) модулируется низкочастотной звуковой волной. Высокочастотная несущая волна создает радиоволны в передатчике, а изменение выходной мощности — это то, что содержит аудиоинформацию. Приемник должен принять эту радиоволну и удалить высокочастотную несущую, чтобы низкочастотную звуковую волну можно было подать в динамик.

Современными методами для достижения этого было бы использование гетеродина и вычитателя, которые могут изолировать несущую волну, но такие методы не были доступны в первых радиоприемниках. Вместо этого будет использоваться кошачий ус, который вместо этого исправит входящую радиоволну. После выпрямления конденсатор используется для удаления высокочастотной волны (поскольку эти конденсаторы легко пропускают), в то время как низкочастотная звуковая волна игнорирует конденсатор. Затем этот сигнал будет усилен с помощью лампового усилителя, а результирующая усиленная волна будет отправлена ​​​​на динамик.

По мере развития технологий диоды становились стандартизированными по конструкции, разнообразными по применению и открывались лучшие материалы. Например, кремниевые диоды обычно используются в приложениях для обработки сигналов, а металлокремниевые диоды (например, диоды Шоттки) используются в приложениях для выпрямления мощности.

Конструкция диода — Из чего сделаны диоды?

Самым простым (и распространенным) диодом на сегодняшний день является кремниевый диод, состоящий из двух частей полупроводника; N и P-типа.Когда эти два куска материала соединены вместе, полученный материал приобретает диодные свойства, благодаря чему обычный ток может течь только из области P в область N (поток электронов противоположен этому, когда электроны перетекают из материала N в материал P).

Как мы уже видели, реальный мир далек от идеала, и то же самое относится и к диодам. Идеальный диод не имеет падения напряжения на нем и не потребляет энергии. Однако настоящие диоды на самом деле имеют падение напряжения на них и поэтому рассеивают тепло, проводя электричество.Это падение напряжения на диоде называется его прямым напряжением, и это число зависит от типа диода. Кремниевые диоды, например, имеют прямое напряжение 0,7 В, диоды Шоттки имеют прямое напряжение от 0,15 В до 0,46 В, а германиевые диоды имеют прямое падение напряжения 0,2 В. Прямое напряжение можно рассматривать как минимальное напряжение, необходимое для включения диода, чтобы он мог проводить электричество. Это еще один фактор, который необходимо учитывать; диоды не будут проводить электричество, пока приложенное к ним напряжение не превысит их прямое напряжение!

Интересно, что прямое напряжение на диоде практически не меняется, когда он становится проводящим.Это может быть полезно при создании опорных напряжений, которые не изменяются в зависимости от входного источника питания.

Диоды параллельно

Как и любой компонент, диоды имеют номинальную мощность, что означает, что они могут выдерживать только определенный ток. Теоретически несколько диодов можно использовать параллельно для создания более мощного диода, но в действительности это невозможно. Поскольку диоды могут различаться по прямому напряжению, несколько диодов, подключенных параллельно, могут обнаружить, что работает только один из дидоов, в то время как другие не могут достичь необходимого прямого напряжения.Это приводит к тому, что каждый диод один за другим перегревается и трещит.

Диоды

МОГУТ использоваться параллельно, но ТОЛЬКО при использовании последовательного резистора. Последовательный резистор позволяет каждому диоду достичь необходимого прямого падения напряжения, но недостатком этого метода является то, что через каждый резистор будет протекать ток, и, таким образом, будет рассеиваться мощность.

Диоды серии

Последовательные диоды

невероятно полезны для создания источников опорного напряжения.Если, например, используются кремниевые диоды, то каждый диод будет последовательно иметь 0,7 В. Следовательно, если последовательно использовать три диода, то падение напряжения на всех трех составит 0,7 В х 3 = 2,1 В. Пока входное напряжение больше 2,1 В, это значение напряжения на трех диодах всегда будет сохраняться.

Если не обрабатывается сама мощность, для диодов требуется последовательный резистор, чтобы они не проводили слишком большой ток. То же самое касается эталонов напряжения; подходящий резистор необходим последовательно, чтобы гарантировать, что источник опорного напряжения не проводит слишком большой ток.Вообще говоря, опорное напряжение может потреблять невероятно малое количество тока (менее 0,1 мА), поскольку опорное напряжение может быть подано в буфер, который будет воспроизводить опорное напряжение. Источники опорного напряжения являются важнейшим компонентом стабилизаторов постоянного напряжения, таких как 7805, которые выдают на своем выходе постоянное напряжение 5 В.

Пример диодной схемы

Чтобы лучше понять принцип работы диодов, рассмотрим несколько примеров схем

Что такое полупериодный выпрямитель

Однополупериодный выпрямитель представляет собой простейшую диодную схему, состоящую из одного диода.Такую схему можно использовать как для малой, так и для высокой мощности, но ее часто можно увидеть в приложениях, требующих удаления отрицательной части сигнала переменного тока (например, в усилителе).

Что такое двухполупериодный выпрямитель

Двухполупериодный выпрямитель представляет собой специальную конфигурацию из четырех диодов, которая выпрямляет сигнал переменного тока, но сохраняет форму волны целиком. Такая схема встречается почти исключительно в схемах преобразования мощности, которые преобразуют сеть переменного тока в постоянный.

Фиксатор напряжения

Цепи ограничителя напряжения ограничивают максимальное напряжение сигнала.Это исключительно полезно в схемах, которые могут быть повреждены внешними сигналами, если эти сигналы станут слишком большими.

Диоды Шоттки и Зенера

Как указывалось ранее, доступны диоды различных размеров, форм и функций. Все диоды бывают как со сквозным отверстием, так и со сквозным отверстием, причем варианты со сквозным отверстием часто используются в приложениях с большей мощностью. Но давайте взглянем на другие основные диоды, с которыми вы столкнетесь в мире электроники.

Что такое диоды Шоттки и для чего используются диоды Шоттки?

Диоды Шоттки

изготавливаются из цельного куска полупроводника и металлического проводника.Эти дидоны имеют большие токи утечки, но имеют низкое падение напряжения в прямом направлении. Эти типы диодов обычно используются в силовых выпрямителях, поскольку их низкое прямое падение напряжения позволяет свести к минимуму рассеивание мощности.

Что такое стабилитрон?

Стабилитроны

заслуживают отдельной статьи из-за их необычного обратного пробоя. Короче говоря, стабилитрон не позволит протекать обратному току, пока обратное напряжение не превысит определенного значения.Это значение можно отрегулировать для каждого диода, и что делает это действие полезным, так это то, что это напряжение может иметь широкий диапазон различных значений. Например, обратное напряжение пробоя стабилитронов можно сделать равным 5 В, что означает, что можно легко получить опорное напряжение 5 В. Это устраняет необходимость в последовательном подключении нескольких диодов.

Что такое диоды — описание диодов

Диоды

невероятно важны в цепях, и их способность пропускать электричество только в одном направлении делает их полезными в приложениях обработки сигналов.Но прямое падение напряжения на диодах также полезно для создания источников опорного напряжения, а также для фиксации сигналов для предотвращения повреждения чувствительных цепей, как аналоговых, так и цифровых.

Как работают и используются диоды | Тех

Как работают диоды

Диод — это электронный компонент, который направляет поток электричества в одном направлении. Их называют «активными компонентами», так же, как транзисторы и интегральные схемы.Это основной компонент, изготовленный из полупроводников. Он может регулировать поток электричества, поддерживать постоянное напряжение и обнаруживать волны.

Сначала рассмотрим свойства «полупроводника», используемого в диодах. «Может ли этот материал проводить электричество?» В зависимости от вопроса он подразделяется на «проводник», «полупроводник» и «изолятор». «Полупроводник» — это материал со свойствами, промежуточными между проводником, который хорошо проводит электричество, и изолятором, который плохо проводит электричество.

В общем, металлы хорошо проводят электричество, потому что электроны каждого атома становятся свободными электронами, когда металлические элементы связываются друг с другом.Когда подается напряжение, свободные электроны в металлическом кристалле перемещаются и несут электрический заряд, именно так течет электричество.

Полупроводники могут вести себя как проводники или изоляторы в зависимости от состояния протекающего через них электричества. Полупроводники не имеют большого количества свободных электронов, как металлы. Когда приложено напряжение, электроны движутся по очереди, чтобы заполнить недостающие дырки, или они переносят электричество с меньшим количеством свободных электронов, чем металлические связи.

Полупроводники делятся на полупроводники P-типа и полупроводники N-типа в зависимости от различий в механизме протекания электричества; Полупроводники P-типа — это те, в которых электроны первого движутся последовательно, чтобы заполнить недостающие отверстия.Четырехвалентный элемент, такой как кремний, смешанный с трехвалентной добавкой, такой как бор или бор, становится полупроводником P-типа. Поскольку ему не хватает одного электрона, он считается положительно заряженным.

Полупроводники

N-типа — это те, которые переносят электричество с меньшим количеством свободных электронов, чем последние металлические связи. Четырехвалентный элемент, такой как кремний, смешанный с одновалентной добавкой, такой как фосфор, становится полупроводником N-типа. Поскольку у него есть один дополнительный электрон, он считается отрицательно заряженным.

В PN-диоде электрод, соединенный с полупроводником P-типа, называется анодом (A), а электрод, соединенный с полупроводником N-типа, называется катодом (K). (Рисунок 1)

Когда «-» подключен к стороне анода, а «+» подключен к стороне катода PN-диода, электричество в полупроводнике притягивается к стороне электрода, и на PN-переходе генерируется пустая зона электричества. . В результате электричество не течет. (Рисунок 2)

И наоборот, если «+» подключен к стороне анода, а «-» к стороне катода, «+» и «-» электричества в полупроводнике будут слипаться в P- и N-переходах и компенсировать друг друга, но следующее электричество будет отправлено с электрода, поэтому электричество будет течь.(Рисунок 3)

Таким образом, диоды обладают свойством проводить электричество только в фиксированном направлении. Светодиоды, которые мы часто видим в нашей повседневной жизни, предназначены для излучения света, когда электричество проходит через PN-переход. Диоды также используются в различных местах, где мы их не видим, поддерживая нашу повседневную жизнь.

Роль диодов

Диоды

выполняют следующие четыре основные функции.

(1) Исправление

Направление тока всегда меняется из-за переменного тока в обычных источниках питания.Диоды обладают свойством пропускать электричество только в определенном направлении, поэтому из переменного тока можно извлечь только прямой ток. Это называется выпрямляющим действием диода.

(2) Обнаружение радиоволн

Диоды играют роль в извлечении аудиосигналов из радиоволн. Это называется обнаружением волны. Радиоволны создаются путем объединения высокочастотных сигналов, используемых для связи, с низкочастотными сигналами, такими как голос.

(3) Контроль напряжения

В общем, диоды проводят ток только в определенном направлении, но когда напряжение в обратном направлении превышает определенное значение, напряжение начинает течь.Однако, когда напряжение в обратном направлении превышает определенное значение, напряжение начинает течь, и даже если ток увеличивается, напряжение не меняется. Это называется явлением пробоя, а напряжение, при котором происходит явление пробоя, называется «напряжением пробоя» или «напряжением Зенера».
Явление текучести используется для управления напряжением диода, и диоды, используемые таким образом, называются стабилитронами.

(4) Преобразование тока

Когда свет падает на PN-переход, электроны на стороне N рядом с переходом движутся.В результате электричество будет продолжать течь, пока горит свет. Вот из чего состоит солнечный элемент.
При отсутствии внешнего напряжения работает как батарея, а при подаче напряжения действует как диод. Некоторые диоды реагируют на видимый свет, а те, которые реагируют на невидимый свет, используются в таких приложениях, как светоприемная часть инфракрасных пультов дистанционного управления.

Типы диодов

Существуют различные типы диодов. Ниже приведен список некоторых из наиболее распространенных типов.

Кремниевые диоды
Самый распространенный тип PN-диода. Чаще всего относится к выпрямительным диодам.
Германиевые диоды
Как и кремниевые диоды, это диоды, которые объединяют PN. Они часто используются для обнаружения волн из-за их низкого напряжения прямого падения, особенно в области, где протекающий ток составляет всего 0,1 мА. Однако из-за высокой стоимости германия в настоящее время широко используются диоды с барьером Шоттки.
Диод Шоттки
Это диод, изготовленный путем соединения металла и полупроводника. Эти диоды обладают превосходными характеристиками переключения по сравнению с кремниевыми диодами и поэтому используются в высокоскоростных схемах.
Переключающий диод
Диод, используемый для размыкания и замыкания силовой цепи, как переключатель. Он включается, когда напряжение подается в направлении потока мощности, и выключается, когда напряжение подается в направлении, в котором мощность не течет.
Диод Эсаки
Диод, использующий туннельный эффект, открытый лауреатом Нобелевской премии Леоной Эсаки. Туннельный эффект — это свойство диодов с PN-переходом с высокой концентрацией примесей, которое позволяет току течь даже тогда, когда он не должен из-за квантово-механических эффектов. Из-за чрезвычайно быстрого времени отклика они используются для генерации микроволн.
Светодиод (LED)
Диод, в котором переход излучает свет, когда ток протекает через PN-переход.Когда электричество протекает через полупроводник, дырки и электроны в полупроводнике P-типа объединяются, и энергия излучается в виде света. Иногда он используется как силовая лампа и как выпрямитель.
Стабилитрон
Диод, используемый для подачи напряжения в направлении, противоположном тому, в котором обычно течет ток. Он используется для получения постоянного напряжения, а также для защиты цепи от перенапряжения.

Связанные технические статьи

Рекомендуемые продукты

Высоковольтные источники питания и источники постоянного тока Matsusada Precision идеально подходят для тестирования диодов и других полупроводников.

Диод: определение, символ и типы диодов

Что такое диод?

Диод определяется как электронный компонент с двумя выводами, который проводит ток только в одном направлении (при условии, что он работает в пределах заданного уровня напряжения). Идеальный диод будет иметь нулевое сопротивление в одном направлении и бесконечное сопротивление в обратном направлении.

Хотя в реальном мире диоды не могут достигать нулевого или бесконечного сопротивления. Вместо этого диод будет иметь незначительное сопротивление в одном направлении (чтобы обеспечить протекание тока) и очень высокое сопротивление в обратном направлении ( предотвращает протекание тока ).Диод фактически подобен клапану для электрической цепи.

Полупроводниковые диоды являются наиболее распространенным типом диодов. Эти диоды начинают проводить электричество только при наличии определенного порогового напряжения в прямом направлении (то есть в направлении «низкого сопротивления»). Говорят, что диод « смещен в прямом направлении », когда он проводит ток в этом направлении. При подключении в цепи в обратном направлении (то есть в направлении «высокого сопротивления») диод называется « с обратным смещением ».

О диоде говорят, что он « смещен в прямом направлении », когда он проводит ток в этом направлении. При подключении в цепи в обратном направлении (то есть в направлении «высокого сопротивления») диод называется « с обратным смещением ».

Диод блокирует ток только в обратном направлении (т. е. когда он смещен в обратном направлении), пока обратное напряжение находится в заданном диапазоне. Выше этого диапазона обратный барьер ломается. Напряжение, при котором происходит этот пробой, называется «обратным напряжением пробоя».

Когда напряжение цепи выше обратного напряжения пробоя, диод может проводить электричество в обратном направлении (т. е. в направлении «высокого сопротивления»). Вот почему на практике мы говорим, что диоды имеют высокое сопротивление в обратном направлении, а не бесконечное сопротивление.

PN-переход — это простейшая форма полупроводникового диода. В идеальных условиях этот PN-переход ведет себя как короткое замыкание, когда он смещен в прямом направлении, и как разомкнутая цепь, когда он смещен в обратном направлении.Название «диод» происходит от слова «диод», что означает устройство с двумя электродами. Диоды обычно используются во многих электронных проектах и ​​включены во многие из лучших стартовых наборов Arduino.

Символ диода

Символ диода показан ниже. Стрелка указывает направление обычного тока в условиях прямого смещения. Это означает, что анод подключен к стороне p, а катод подключен к стороне n.

Мы можем создать простой диод с PN-переходом путем легирования пятивалентной или донорной примесью в одной части и трехвалентной или акцепторной примесью в другой части кристаллического блока кремния или германия.

Эти присадки образуют PN-переход в средней части блока. Мы также можем сформировать PN-переход, соединив полупроводник p-типа и полупроводник n-типа с помощью специальной технологии изготовления. Терминал, подключенный к p-типу, является анодом. Терминал, подключенный к стороне n-типа, является катодом.

Принцип работы диода

Принцип работы диода зависит от взаимодействия полупроводников n-типа и p-типа. Полупроводник n-типа имеет много свободных электронов и очень мало дырок.Другими словами, можно сказать, что в полупроводнике n-типа концентрация свободных электронов высока, а дырок очень низка.

Свободные электроны в полупроводнике n-типа называются основными носителями заряда, а дырки в полупроводнике n-типа называются неосновными носителями заряда.

Полупроводник р-типа имеет высокую концентрацию дырок и низкую концентрацию свободных электронов. Дырки в полупроводнике p-типа являются основными носителями заряда, а свободные электроны в полупроводнике p-типа являются неосновными носителями заряда.

Если вы предпочитаете видео-объяснение того, что такое диод, посмотрите видео ниже:

Несмещенный диод

Теперь давайте посмотрим, что происходит, когда одна область n-типа и одна область p-типа вступай в контакт. Здесь из-за различий в концентрациях большинство носителей диффундируют с одной стороны на другую. Поскольку концентрация дырок высока в области p-типа и низка в области n-типа, дырки начинают диффундировать из области p-типа в область n-типа.

Опять же, концентрация свободных электронов высока в области n-типа и низка в области p-типа, и по этой причине свободные электроны начинают диффундировать из области n-типа в область p-типа.

Свободные электроны, диффундирующие в область p-типа из области n-типа, рекомбинируют с имеющимися там дырками и создают непокрытые отрицательные ионы в области p-типа. Точно так же дырки, диффундирующие в область n-типа из области p-типа, рекомбинируют с имеющимися там свободными электронами и создают непокрытые положительные ионы в области n-типа.

Таким образом, вдоль линии соединения этих двух типов полупроводников возникнет слой отрицательных ионов со стороны p-типа и слой положительных ионов со стороны n-типа. Слои непокрытых положительных ионов и непокрытых отрицательных ионов образуют область в середине диода, где нет носителей заряда, поскольку все носители заряда рекомбинируют здесь, в этой области. Из-за отсутствия носителей заряда эта область называется обедненной.

После образования обедненной области в диоде больше не происходит диффузии носителей заряда с одной стороны на другую.Это связано с тем, что электрическое поле, возникающее поперек обедненной области, будет препятствовать дальнейшей миграции носителей заряда с одной стороны на другую.

Потенциал слоя непокрытых положительных ионов на стороне n-типа будет отражать дырки на стороне p-типа, а потенциал слоя непокрытых отрицательных ионов на стороне p-типа будет отражать свободные электроны на стороне p-типа. сторона n-типа. Это означает, что на переходе создается потенциальный барьер, предотвращающий дальнейшую диффузию носителей заряда.

Диод с прямым смещением

Теперь давайте посмотрим, что произойдет, если положительная клемма источника подключена к стороне p-типа, а отрицательная клемма источника подключена к стороне n-типа диода, и если мы увеличим напряжение этого источника медленно от нуля.

В начале через диод не протекает ток. Это связано с тем, что, хотя к диоду приложено внешнее электрическое поле, основные носители заряда по-прежнему не получают достаточного влияния внешнего поля, чтобы пересечь обедненную область.Как мы уже говорили, обедненная область действует как потенциальный барьер для большинства носителей заряда.

Этот потенциальный барьер называется прямым потенциальным барьером. Большинство носителей заряда начинают пересекать прямой потенциальный барьер только тогда, когда величина внешнего напряжения, приложенного к переходу, превышает потенциал прямого барьера. Для кремниевых диодов потенциал прямого барьера составляет 0,7 вольта, а для германиевых диодов — 0,3 вольта.

Когда приложенное извне прямое напряжение на диоде становится больше, чем потенциал прямого барьера, свободные основные носители заряда начинают пересекать барьер и вносят свой вклад в прямой ток диода.В этой ситуации диод будет вести себя как короткозамкнутый путь, и прямой ток ограничивается только внешними резисторами, подключенными к диоду.

Диод с обратным смещением

Теперь давайте посмотрим, что произойдет, если мы подключим отрицательную клемму источника напряжения к стороне p-типа, а положительную клемму источника напряжения к стороне n-типа диода. В этом случае из-за электростатического притяжения отрицательного потенциала источника дырки в области p-типа будут смещены дальше от соединения, оставляя на соединении больше непокрытых отрицательных ионов.

Таким же образом свободные электроны в области n-типа будут смещаться дальше от соединения к положительному выводу источника напряжения, оставляя больше непокрытых положительных ионов в соединении.

В результате этого явления обедненная область становится шире. Это состояние диода называется состоянием обратного смещения. В этом случае большинство носителей не пересекают перекресток, а вместо этого удаляются от него. Таким образом, диод блокирует протекание тока, когда он смещен в обратном направлении.

Как мы уже говорили в начале этой статьи, в полупроводнике p-типа всегда есть некоторое количество свободных электронов и некоторое количество дырок в полупроводнике n-типа. Эти противоположные носители заряда в полупроводнике называются неосновными носителями заряда.

В условиях обратного смещения дырки, находящиеся на стороне n-типа, легко пересекают область обеднения в обратном направлении, поскольку поле в области обеднения отсутствует, а помогает неосновным носителям заряда пересекать область обеднения.

В результате небольшой ток течет через диод от плюса к минусу. Амплитуда этого тока очень мала, так как количество неосновных носителей заряда в диоде очень мало. Этот ток называется обратным током насыщения.

Если обратное напряжение на диоде превышает безопасное значение из-за более высокой электростатической силы и более высокой кинетической энергии неосновных носителей заряда, сталкивающихся с атомами, ряд ковалентных связей разрывается, что приводит к образованию огромного количества свободных электронов -дырочные пары в диоде и процесс накопительный.

Огромное количество таких генерируемых носителей заряда будет способствовать возникновению огромного обратного тока в диоде. Если этот ток не ограничивается внешним сопротивлением, подключенным к цепи диода, диод может быть безвозвратно разрушен.

Типы диода

Типы диода . Лавинный диод

  • Светоизлучающий диод
  • Что такое диод? — Сборка электронных схем

    Меня несколько раз спрашивали, что такое диод?

    Итак, диод — это электронный компонент, который проводит ток в одном направлении и блокирует ток в другом направлении.

    Символ диода выглядит следующим образом:

    Как подключить диод

    Давайте рассмотрим пример.

    В схеме выше диод подключен в правильном направлении. Это означает, что ток может протекать через него, так что светодиод загорится.

    А что будет, если подключить наоборот?

    Во второй схеме неправильно подключен диод. Это означает, что в цепи не будет протекать ток и светодиод погаснет.

    Для чего используется диод?

    Диоды

    очень часто используются в блоках питания. Из розетки в стене вы получаете переменный ток (AC). Многие устройства, которые мы используем, нуждаются в постоянном токе (DC). Чтобы получить постоянный ток из переменного тока, нам нужна схема выпрямителя. Это схема, которая преобразует переменный ток (AC) в постоянный ток (DC). Диоды являются основными компонентами схем выпрямителей.

    Как работает диод

    Диод создан из PN-перехода. Вы получаете PN-переход, беря полупроводниковый материал с отрицательной и положительной примесью и соединяя его вместе.

    На пересечении этих двух материалов появляется «область истощения». Эта обедненная область действует как изолятор и отказывается пропускать ток.

    Когда вы подаете положительное напряжение с положительной стороны на отрицательную, «слой истощения» между двумя материалами исчезает, и ток может течь от положительной стороны к отрицательной.

    Когда вы прикладываете напряжение в другом направлении, от отрицательного к положительному, область истощения расширяется и сопротивляется протеканию любого тока.

    Что следует отметить о диодах

    • Вы должны приложить достаточное напряжение в «правильном» направлении — от плюса к минусу — чтобы диод начал проводить ток. Обычно это напряжение составляет около 0,7 В.
    • Диод имеет ограничения и не может проводить неограниченное количество тока.
    • Диоды не являются идеальными компонентами. Если вы приложите напряжение в неправильном направлении, будет течь небольшой ток. Этот ток называется «током утечки».
    • Если подать достаточно высокое напряжение в «неправильном» направлении, диод выйдет из строя и пропустит ток и в этом направлении.

    Типы диодов

    Существует множество различных типов диодов. Наиболее распространенными являются сигнальные диоды, выпрямительные диоды, стабилитроны и светоизлучающие диоды (СИД). Сигнальные и выпрямительные диоды — это почти одно и то же, за исключением того, что выпрямительные диоды рассчитаны на большую мощность.

    Стабилитроны

    — это диоды, которые используют напряжение пробоя при «неправильной» подаче напряжения. Они действуют как очень стабильные источники опорного напряжения.

    Поделитесь своими комментариями или вопросами ниже!

    Возврат из «Что такое диод?» на электронные компоненты онлайн

    Факты о диодах для детей

    Анод и катод.Катод маркируется на корпусе.

    Диод представляет собой электронный компонент с двумя электродами (разъемами), который позволяет электричеству проходить через него в одном направлении, а не в другом.

    Диоды можно использовать для преобразования переменного тока в постоянный (диодный мост). Они используются в источниках питания, а иногда и для декодирования радиосигналов с амплитудной модуляцией (например, в кристаллическом радио). Светоизлучающие диоды (СИД) — это тип диодов, излучающих свет.

    Сегодня наиболее распространены диоды из полупроводниковых материалов, таких как кремний или иногда германий.

    История

    Первые типы диодов назывались вентилями Флеминга. Это были вакуумные трубки. Они находились внутри стеклянной трубки (очень похожей на лампочку). Внутри стеклянной колбы была маленькая металлическая проволока и большая металлическая пластина. Небольшая металлическая проволока нагревалась и излучала электричество, которое улавливалось пластиной. Большая металлическая пластина не нагревалась, поэтому электричество могло проходить по трубе в одном направлении, но не в другом. Клапаны Флеминга больше не используются, потому что они были заменены полупроводниковыми диодами, которые меньше, чем клапаны Флеминга.Томас Эдисон также обнаружил это свойство, когда работал над своими лампочками.

    Строительство

    Структура лампового диода Полупроводниковые диоды

    изготовлены из двух типов полупроводников, соединенных друг с другом. Один тип имеет атомы с дополнительными электронами (так называемая n-сторона). Другой тип имеет атомы, которым нужны электроны (так называемая p-сторона). Из-за этого электричество будет легко течь со стороны, где слишком много электронов, на сторону, где их слишком мало. Однако электричество не будет легко течь в обратном направлении.Эти различные типы изготавливаются путем легирования (полупроводник). Кремний с растворенным в нем мышьяком образует хороший полупроводник на n-стороне, тогда как кремний с растворенным в нем алюминием образует хороший полупроводник на p-стороне. Другие химические вещества также могут работать.

    Разъем на стороне n называется катодом, разъем на стороне p называется анодом.

    Функция диода

    Положительное напряжение на стороне p

    Если подать положительное напряжение на p-сторону и отрицательное на n-сторону, электроны на n-стороне захотят перейти к положительному напряжению на p-стороне, а дырки на p-стороне захотят перейти к отрицательному напряжению на n-стороне.Из-за этого ток может существовать, но для его запуска требуется определенное напряжение (очень малое напряжение недостаточно для протекания электрического тока). Это называется напряжением включения. Напряжение включения кремниевого диода составляет около 0,7 В. Для германиевого диода требуется напряжение включения около 0,3 В.

    Отрицательное напряжение на стороне p

    Если вместо этого подать отрицательное напряжение на p-сторону и положительное напряжение на n-сторону, электроны n-стороны захотят перейти к источнику положительного напряжения, а не к другой стороне диода.То же самое происходит и на стороне p. Таким образом, ток не будет течь между двумя сторонами диода. Увеличение напряжения в конечном итоге приведет к протеканию электрического тока (это напряжение пробоя). Многие диоды будут разрушены обратным потоком, но некоторые из них могут выдержать его.

    Влияние температуры

    При повышении температуры напряжение включения падает. Это облегчает прохождение электричества через диод.

    Типы диодов

    Существует множество типов диодов.Некоторые из них имеют очень специфическое использование, а некоторые имеют множество применений.

    Символы

    Вот некоторые распространенные обозначения полупроводниковых диодов, используемые на принципиальных схемах:

    Стандартный выпрямительный диод

    Это изменяет A/C (переменный ток, как в настенной розетке в доме) на D/C (постоянный ток, используемый в электронике). К стандартному выпрямительному диоду предъявляются особые требования. Он должен работать с большим током, не подвергаться сильному влиянию температуры, иметь низкое напряжение включения и поддерживать быстрое изменение направления тока.В современной аналоговой и цифровой электронике используются такие выпрямители.

    Светодиод

    Светодиод излучает свет, когда через него проходит электричество. Это более долговечный и более эффективный способ создания света, чем лампы накаливания. В зависимости от того, как он был изготовлен, светодиод может иметь разный цвет. Впервые светодиоды были использованы в 1970-х годах. Светодиод может в конечном итоге заменить лампочку, поскольку развивающиеся технологии делают ее ярче и дешевле (она уже более эффективна и служит дольше).В 1970-х годах светодиоды использовались для отображения чисел в устройствах, таких как калькуляторы, и как способ показать, что питание включено для более крупных устройств.

    Фотодиод

    Фотодиод — это фотодетектор (противоположность светодиоду). Он реагирует на поступающий свет. Фотодиоды имеют оконное или оптоволоконное соединение, через которое свет попадает на чувствительную часть диода. Диоды обычно имеют сильное сопротивление; свет уменьшает сопротивление.

    Стабилитрон

    Стабилитрон похож на обычный диод, но вместо того, чтобы разрушаться большим обратным напряжением, он пропускает электричество.Напряжение, необходимое для этого, называется напряжением пробоя или напряжением Зенера. Поскольку он рассчитан на известное напряжение пробоя, его можно использовать для подачи известного напряжения.

    Варакторный диод

    Варикап или варакторный диод используется во многих приборах. Он использует область между p- и n-сторонами диода, где электроны и дырки уравновешивают друг друга. Это называется зоной истощения. При изменении величины обратного напряжения изменяется размер зоны обеднения. В этой области есть некоторая емкость, и она меняется в зависимости от размера зоны обеднения.Это называется переменной емкостью, или сокращенно варикапом. Он используется в PLL (петлях фазовой автоподстройки частоты), которые используются для управления высокоскоростной частотой, на которой работает микросхема.

    Диод ступенчатого восстановления

    Символ представляет собой символ диода с некой защелкой. Используется в цепях с высокими частотами до ГГц. Очень быстро выключается при прекращении подачи прямого напряжения. Для этого он использует ток, который течет после смены полярности.

    PIN-диод

    Конструкция этого диода имеет внутренний (нормальный) слой между n- и p-сторонами.На более медленных частотах он действует как стандартный диод. Но на высоких скоростях он не успевает за быстрыми изменениями и начинает работать как резистор. Внутренний слой также позволяет ему работать с высокой входной мощностью и может использоваться в качестве фотодиода.

    Диод Шоттки

    Символом этого является символ диода с буквой «S» на вершине. Вместо того, чтобы обе стороны были полупроводниками (как кремний), одна сторона металлическая, как алюминий или никель. Это снижает напряжение включения примерно до 0,3 вольта.Это примерно половина порогового напряжения обычного диода. Функция этого диода заключается в том, что неосновные носители не инжектируются — на n-стороне есть только дырки, а не электроны, а на p-стороне только электроны, а не дырки. Поскольку он чище, он может реагировать быстрее, без диффузионной емкости, которая может его замедлить. Он также создает меньше тепла и более эффективен. Но у него есть некоторая утечка тока при обратном напряжении.

    Когда диод переключается с движущегося тока на неподвижный, это называется переключением.В типичном диоде это занимает десятки наносекунд; это создает некоторый радиошум, который временно ухудшает качество радиосигнала. Диод Шоттки переключается за небольшую часть этого времени, менее наносекунды.

    Туннельный диод

    В условном обозначении туннельного диода есть своего рода дополнительная квадратная скобка в конце обычного условного обозначения.

    Туннельный диод состоит из сильнолегированного pn-перехода. Из-за этого сильного легирования существует только очень узкая щель, через которую могут пройти электроны.Этот туннельный эффект проявляется в обоих направлениях. После прохождения определенного количества электронов ток через промежуток уменьшается, пока не начинается нормальный ток через диод при пороговом напряжении. Это вызывает область отрицательного сопротивления. Эти диоды используются для работы с очень высокими частотами (100 ГГц). Также они устойчивы к радиации, поэтому их используют в космических кораблях. Они также используются в микроволновых печах и холодильниках.

    Обратный диод

    Символ имеет на конце диода знак, похожий на большую букву I.Он выполнен аналогично туннельному диоду, но n- и p-слои не так сильно легированы. Это позволяет току течь в обратном направлении с небольшими отрицательными напряжениями. Его можно использовать для выпрямления низких напряжений (менее 0,7 вольт).

    Кремниевый выпрямитель (SCR)

    Вместо двух слоев, как у обычного диода, он имеет четыре слоя, по сути, это два соединенных вместе диода с затвором посередине. Когда между затвором и катодом появится напряжение, нижний транзистор включится. Это позволяет протекать току, который активирует верхний транзистор, и тогда ток не нужно будет включать напряжением затвора.

    Картинки для детей

    • Крупный план кремниевого диода. Анод находится с правой стороны; катод находится с левой стороны (там, где он отмечен черной полосой). Между двумя выводами виден квадратный кристалл кремния.

    0 comments on “Диод для чего он нужен: Для чего нужен диод в электрической цепи? – Tokzamer

    Добавить комментарий

    Ваш адрес email не будет опубликован.