Джоуль на метр это: The page cannot be found

Джоуль-квадратный метр — Энциклопедия по машиностроению XXL

Атомная тормозная способность — размерность L MT-2, единица — джоуль-квадратный метр (J-m Дж-м ).  [c.18]

Массовая тормозная способность — размерность L T-2, единица — джоуль-квадратный метр на килограмм (J-m2/kg Дж-м /кг).  [c.18]

Джоуль-квадратный метр на килограмм  [c.93]

Джоуль-квадратный метр  [c.93]

Джоуль-квадратный метр 34, 67, 72, 81, 241  [c.290]

Джоуль-квадратный метр на килограмм 50, 78, 205 Джоуль на квадратный метр 34, 51, 77, 78  [c.290]

НЬЮТОН на квадратный метр джоуль  [c.8]


При таких определениях поверхностного натяжения его единицей является джоуль на квадратный метр (Дж/м ).  [c.70]

Джоуль на квадратный метр равен энергетической экспозиции, при которой на поверхность площадью 1 падает излучение с энергией 1 Дж.  [c.175]

Гиромагнитное отношение у, dim у = М Т1, единица — ампер-квадратный метр на джоуль-секунду (А-т / /(J-S) А-м2/(Дж-с)).  

[c.18]

Перенос (флюенс) энергии — размерность МТ- , единица-джоуль на квадратный метр Дж м 2).  [c.18]

Джоуль на квадратный метр равен переносу (флю-енсу) энергии ионизирующего излучения, при котором в сферу с площадью центрального сечения 1 проникает излучение с энергией 1 Дж.  [c.19]

И выражаются соответственно Q — в джоулях (Дж), Q — в ваттах (Вт), q — в ваттах на квадратный метр (Вт/м ).  [c.150]

Ньютон на квадратный метр Ньютон-секунда на квадратный метр Квадратный метр на секунду Джоуль  [c.465]

Единицы ударной вязкости в СИ и СГС — джоуль на квадратный метр и зрг на квадратный сантиметр (Дж/м, эрг/см ). Соотношения между ними  [c.172]

Единица поверхностного натяжения в СИ — ньютон на метр (Н/м) или джоуль на квадратный метр (Дж/м ), в СГС — дина на сантиметр (дин/см) или эрг на квадратный сантиметр (эрг/см ).  

[c.175]

Очевидно, что единицы лучистой экспозиции в СИ и СГС — джоуль на квадратный метр (Дж/м ) и эрг на квадратный сантиметр (эрг/см ).  [c.285]

Ударная вязкость джоуль на квадратный метр Дж/м J/m  [c.759]

Полный переход на единицы СИ потребует проведения большого числа мероприятий, поэтому он не может быть со вершен за короткое время. Наряду с большим числом единиц СИ, уже вошедших в практику (единица длины — метр, единица массы — килограмм, единица времени — секунда, значительная часть электрических и световых единиц и т. п.), имеются новые для практики единицы. К ним, в первую очередь, относятся единица веса и силы—ньютон, единица давления— ньютон на квадратный метр, единица работы и энергии — джоуль. Особые трудности при переводе приборостроения на единицы СИ возникнут в отношении единицы давления.  

[c.21]

Единицей активности изотопа в радиоактивном источнике является распад в секунду (расп./се/с), т. е. число актов распада (ядерных превращений) изотопа, происходящих в единицу времени. Между ранее применявшейся единицей активности —кюри и этой единицей существует следующее соотношение I кюри = = 3,7- 10 ° расп./се/с. В качестве единицы плотности потока какого-либо вида частиц или квантов в стандарте установлена одна частица данного вида или квант в секунду на квадратный метр. Сокращенное обозначение единицы плотности альфа-част./ (сек-м ), бета-часг./ (сек-м ), нейтрон/ (сек-м ), гамма-квант/ (сек-м ). Для поглощенной дозы излучения установлена единица джоуль на килограмм, для экспозиционной дозы излучения — кулон на килограмм и т. д. Стандартом допускается также применение внесистемных единиц кюри, рада и рентгена.  [c.17]


Наибольшую сложность представляет переход на новые единицы в практике народного хозяйства, так как здесь переход требует наличия приборов со шкалами, проградуированными в новых единицах, внесения изменений в техническую документацию и переподготовки кадров. Наиболее сложным является введение таких непривычных единиц, как ньютон для силы, ньютон на квадратный метр для давления и напряжения, джоуль для работы, энергии и количества тепла, ватт для мощности поршневых машин и теплового потока и т. п.  
[c.46]

Энергетическая экспозиция (лучистая экспозиция) МТ» джоуль на квадратный метр J/m Дж/м» Джоуль на квадратный метр равен энергетической экспозиции, при которой на повер.чность площадью 1 падает излучение с энергией 1 J  [c.83]

Подвижность ионов 9.1. Энергия ионизирующего излучения М» Т 1 L MT- квадратный метр на вольт-секунду IX. Ионизируют джоуль m /(V-s) яе излучения J м /(В- с) Дж См. п. 3.15 настоящей таблицы  [c.94]

Перенос энергии МТ джоуль на квадратный метр J. т Дж-м»  [c.98]

Спектральное эффективное сечение м- т квадратный метр на джоуль m /J м /Дж —  

[c.99]

Дифференциальное спектральное эффективное сечение м- т квадратный метр на стерадиан-джоуль m /(srO) м (ср-Дж) -  [c.100]

Перевод значений давления из килограмм-сил на квадратный сантиметр в ньютоны на квадратный метр приведен в табл. 3, а перевод значений количества теплоты из калорий (международных) в джоули — в табл. 4.  [c.337]

Наибольшую сложность для внедрения в народнохозяйственную практику вызовут те единицы СИ, которые еще не нашли широкого применения в инженерных расчетах и для измерения которых в настоящее время отсутствуют измерительные приборы, градуированные в соответствующих единицах, например для измерения силы в ньютонах, давления — в ньютонах на квадратный метр, электрической энергии — в джоулях и др. Поэтому особое внимание необходимо будет уделить переходу на единицы системы СИ в области измерения силы (ньютон) и давления (ньютон на квадратный метр), учитывая большое количество машин и приборов для измерения этих величин в единицах килограмм-сила и килограмм-сила на квадратный сантиметр соответственно, а также другим единицам, получившим широкое применение (например, килограмм-сила на квадратный миллиметр и т. д.).  

[c.615]

Спектральное эффективное сечение — размерность М- Т , единица — квадратный метр на джоуль (m J м7Дж).  [c.18]

Внедрение Международной системы единиц в практику облегчается тем, что большинство единиц этой системы уже широко применяется. К их числу относятся единица длины— метр, единица массы—килограмм, единица времени—секунда, значительная часть электрических единиц, световые единицы и т. д. Таким образом, внедрение будет заключаться в переходе к применению сравнительно небольшого числа единиц, еще не получивших широкого распространения, таких, как единица силы — ньютон, единица давления и напряжения — ньютон на квадратный метр, единица работы и энергии — джоуль, единицы магнитных величин — вебер, тесла, ампер на метр и др. Одновременно надлежит прекратить применение единиц, не входящих в СИ, но широко используемых в практике, в частности единиц систем СГС и МКГСС, а также многих внесистемных единиц единицы давления — килограмм-силы на квадратный сантиметр, миллиметра ртутного столба, миллиметра водяного столба, единицы мощности — лошадиной силы, единицы энергии — ватт-часа и киловатт-часа,, единицы количества теплоты — калории и килокалории и т. д.  

[c.8]

В системе единиц СИ — это килограмм-квадратный метр на секунду в квадрате кг м 1сек ), т. е. ньютон-метр или джоуль.  [c.43]


Из-за быстрого отверждения и низкого коэффициента диффузии в неметаллической матрице (исключение составляют органоволокниты) в КМ нет переходного слоя между компонентами. Связь между волокнами и матрицей носит адгезионный характер, т.е. осуществляется путем молекулярного взаимодействия. Прочность связи, характеризуемая параметром (т О — прочность сцепления, — коэффициент контакта), повышается с увеличением критического поверхностного натяжения волокна (стс). Для обеспечения высокой прочности связи между компонентами необходимо полное смачивание волокон (которое достигается, например, растеканием жидкого связующего по поверхности волокон) при этом поверхностная энергия волокон должна быть больше поверхностного натяжения жидкой матрицы. Однако для жидких эпоксидных смол, обладающих лучшей адгезией к наполнителям среди других полимеров, поверхностное натяжение составляет 5,0 10 Дж/м , тогда как для углеродных волокон оно находится в интервале (2,7 — 5,8) 10 Дж/м , а дла борных равно 2,0 10 Дж/м . Поверхностную энергию волокон повышают различными методами обработки их поверхности травлением, окислением, вискеризацией. Например, после травления борных волокон в азотной кислоте их критическое поверхностное натяжение достигает сотен джоулей на квадратный метр. На рис. 14.32 видно, что благодаря травлению поверхностное натяжение борного волокна увеличивается и параметр резко возрастает. Это свидетельствует об увеличении прочности связи между волокном и матрицей.  
[c.456]

Джоуль на квадратный метр равен флюенсу энергии ионизирующего излучения, при котором в сферу с площадью центрального сечения 1 м проникает излучение с энергией 1 Дж Ватт на квадратный метр равен плотности потока энергии ионизиру-  [c.130]

СкЕшярная величина U представляет собой плотность энергии электромагнитного поля и имеет размерность джоуль на кубический метр (Дж/м ). Вектор S является потоком энергии и называется вектором Пойнтинга он имеет размерность Дж/(м -с). Величина ISI — это мощность, переносимая полем через единичную площадку в направлении вектора S и имеющая размерность ватт на квадратный метр (Вт/м ). Таким образом, величина V-S представляет собой результирующий поток электромагнитной мощности из единичного объема. Соотношение (1.2.4) известно как уравнение непрерывности или сохранения энергии (теорема Пойнтинга). Аналогичным образом можно получить законы сохранения импульса для, электромагнитных полей. Мы предлагаем читателю вывести их самостоятельно в качестве упражнения (задача 1.4).  

[c.14]


Приложение К Справочник единиц измерения.

Величина

Единица

Наименование

Размерность

Наименование

Обозначение

   

международное

русское

Пространство и время

Площадь

L2

квадратный метр

m2

м2

Объем, вместимость

L3

кубический метр

m3

м3

Скорость

LT-1

метр в секунду

m/s

м/с

Ускорение

LT2

метр на секунду в квадрате

m/s2

м/с2

Угловая скорость

Т+1

радиан в секунду

rad/s

рад/с

Угловое ускорение

Т-2

радиан на секунду в квадрате

rad/s2

рад/с2

Периодические явления, колебания и волны

Период

Т

секунда

s

с

Частота периодического процесса, частота колебаний

Т-1

герц

Hz

Гц

Частота вращения

Т-1

секунда в минус первой степени

s1

с-1

Длина волны

L

метр

m

м

Волновое число

L1

метр в минус первой степени

m1

м-1

Коэффициент затухания

Т-1

секунда в минус первой степени

s1

с-1

Коэффициент ослабления, коэффициент фазы, коэффициент распространения

L1

метр в минус первой степени

m1

м-1

Механика

Плотность

L3M

килограмм на кубический метр

kg/m3

кг/м

Удельный объем

L3M-1

кубический метр на килограмм

m3×kg×

м3×кг

Количество движения

LMT-1

килограмм-метр в секунду

kg×m/s

кг×м/с

Момент количества движения

L2MT-1

килограмм-метр в квадрате на секунду

kg×m2/s

кг×м2

Момент инерции (динамический момент инерции)

L2M

килограмм-метр в квадрате

kg×m2

кг×м2

Сила, сила тяжести (вес)

LMT-1

ньютон

N

Н

Момент силы, момент пары сил

L2MT2

ньютон-метр

N×m

Н×м

Импульс силы

LMT-1

ньютон-секунда

N×s

Н×с

Давление, нормальное напряжение, касательное напряжение, модуль

продольной упругости, модуль сдвига, модуль объемного сжатия

L1MT2

паскаль

Pa

Па

Момент инерции (второй момент) площади плоской фигуры- (осевой, полярный, центробежный)

L4

метр в четвертой степени

m4

м4

Момент сопротивления плоской фигуры

L3

метр в третьей степени

m3

м3

Динамическая вязкость

L1MT1

паскаль-секунда

Pa×s

Па×с

Кинематическая вязкость

L2T1

квадратный метр на секунду

nr/s

м2

Поверхностное натяжение

MT2

ньютон на метр

N/m

Н/м

Работа, энергия

Мощность

L2MT3

L2MT3

джоуль

ватт

J
W

Дж
Вт

Теплота

Температура Цельсия

Ө

градус Цельсия

°C

°С

Температурный коэффициент

Ө-1

кельвин в минус первой степени

К-1

К-1

Температурный градиент

L1 Ө

кельвин на метр

К/m

К/м

Теплота, количество теплоты

L2MT2

джоуль

J

Дж

Тепловой поток

L2MT3

ватт

W

Вт

Поверхностная плотность теплового потока

МТ3

ватт на квадратный метр

W/m2

Вт/м2

Теплопроводность

LMT-3

ватт на метр-кельвин

W/(m×K)

Вт/(м×К)

Коэффициент теплообмена, коэффициент теплопередачи

MT-1 Ө-1

ватт на квадратный метр-кельвин

W/(m2×K)

Вт/(м×К)

Температуропроводность

L2T-1

квадратный метр на секунду

m2/s

м2

Теплоемкость

L2MT-2Ө-1

джоуль на кельвин

J/K

Дж/К

Удельная теплоемкость

LT-1Ө-1

джоуль на килограмм-кельвин

J/(kg×K)

Дж/(кг×К)

Энтропия

LMT-1Ө-1

джоуль на кельвин

J/K

Дж/К

Удельная энтропия

L2T-2Ө-1

джоуль на килограмм-кельвин

J/(kg×K)

Дж/кг×К)

Термодинамический потенциал (внутренняя энергия, энтальпия, изохорно-изотермический потенциал, изобарно-изотермический потенциал), теплота фазового превращения, теплота химической реакции

L1MT-2

джоуль

J

Дж

Удельное количество теплоты, удельный термодинамический потенциал, удельная теплота фазового превращения, удельная

теплота химической реакции

L2T-2

джоуль на килограмм

J/kg

Дж/кг

Электричество и магнетизм

Количество электричества (электрический заряд)

TI

кулон

С

Кл

Пространственная плотность электрического заряда

L-3-TI

кулон на кубический метр

C/m3

Кл/м3

Поверхностная плотность электрического заряда

L-2TI

кулон на квадратный метр

C/m2

Кл/м2

Напряженность электрического поля

LMT-3I-1

вольт на метр

V/m

В/м

Электрическое напряжение

L2MT-3I-1

вольт

V

В

Электрический потенциал

L2MT-3I-1

вольт

V

В

Разность электрических потенциалов

L2MT-3I-1

вольт

V

В

Электродвижущая сила

L2M T-3I-1

вольт

V

В

Поток электрического смещения

TI

кулон

С

Кл

Электрическое смещение

L-2TI

кулон на квадратный метр

C/m2

Кл/м2

Электрическая емкость

L-2M-1T4I2

фарад

F

Ф

Абсолютная диэлектрическая проницаемость

L-3M-1T4I2

фарад на метр

F/m

Ф/м

Электрический момент диполя

LTI

кулон-метр

C×m

Кл×м

Плотность электрического тока

L-2I

ампер на квадратный метр

A/m2

А/м2

Линейная плотность электрического тока

L-1I

ампер на метр

A/m

А/м

Напряженность магнитного поля

L-1I

ампер на метр

A/m

А/м

Магнитодвижущая сила, разность магнитных потенциалов

I

ампер

A

А

Магнитная индукция

M T-1I-1

тесла

T

Тл

Магнитный поток

L2M T-2I-1

вебер

Wb

Вб

Индуктивность, взаимная индуктивность

L2МТ2I2

генри

Н

Гн

Абсолютная магнитная

проницаемость

LMT-2I-2

генри на метр

Н/т

Гн/м

Магнитный момент (амперовский)

L2I

ампер-квадратный метр

А×m2

A×m2

Магнитный момент (кулоновскнй)

L3МT-2I-2

вебер-метр

Wb×m

Вб×м

Намагниченность (интенсивность намагничивания)

L-1I

ампер на метр

А/т

А/м

Электрическое сопротивление (активное, реактивное, полное)

L2МT-3I-2

ом

Ом

Электрическая проводимость (активная, реактивная, полная)

L-2М-1T3I-2

сименс

S

См

Удельное электрическое сопротивление

L3МT-3I-2

ом-метр

Ω×m

Ом×м

Удельная электрическая проводимость

L-3М-1T3I-2

сименс на метр

S/m

См/м

Магнитное сопротивление

L-2М-1T2I2

генри в минус первой степени

Н-1

Гн-1

Магнитная проводимость

L2МT-2I-2

генри

Н

Гн

Активная мощность

L2MT-3

ватт

W

Вт

Электромагнитная энергия

L2MT-2

джоуль

J

Дж

Свет и другие электромагнитные излучения

Энергия излучения

L2МT-2

джоуль

J

Дж

Энергетическая экспозиция (лучистая экспозиция)

МT-2

джоуль на квадратный метр

J/m2

Дж/м2

Поток излучения, мощность излучения

L2 МT-3

ватт

W

Вт

Поверхностная плотность потока излучения, энергетическая светимость (излучательность), энергетическая освещенность (облученность)

МT-3

ватт на квадратный метр

W/m2

Вт/м2

Энергетическая сила света (сила излучения)

L2 МT-3

ватт на стерадиан

W/sr

Вт/ср

Энергетическая яркость (лучистость)

МT-3

ватт на стерадиан-квадратный метр

W/fsr×m2)

Вт/(ср×м2)

Световой поток

J

люмен

lm

лм

Световая энергия

TJ

люмен-секунда

lm×s

лм×с

Яркость

L-2J

кандела на квадратный метр

cd/m2

кд/м

Светимость

L-2J

люмен на квадратный метр

lm/m2

лм/м

Освещенность

L-2J

люкс

Ix

лк

Световая экспозиция

L-2TJ

люкс-секунда

lx×s

лк/с

Акустика

Период звуковых колебаний

T

секунда

s

с

Частота звуковых колебаний

T1

герц

Hz

Гц

Звуковое давление, давление звука

L-1МT-2

паскаль

Pa

Па

Колебательная скорость (скорость колебания частицы)

LT-1

метр в секунду

m/s

м/с

Объемная скорость

L3T-1

кубический метр в секунду

m3/s

м3

Скорость звука

LT-1

метр в секунду

m/s

м/с

Звуковая энергия

L2MT-2

джоуль

J

Дж

Плотность звуковой энергии

L-1МT-2

джоуль на кубический метр

J/m3

Дж/м3

Поток звуковой энергии

L2MT-3

ватт

W

Вт

Звуковая мощность

L2MT-3

ватт

W

Вт

Интенсивность звука

MT-3

ватт на квадратный метр

W/m2

Вт/м2

Акустическое сопротивление

L4МT-1

паскаль-секунда на

кубический метр

Pa×s/m3

Па×с/ м3

Удельное акустическое

сопротивление

L2МT1

паскаль-секунда на метр

Pa×s/m

Па×с/м

Механическое сопротивление

МT1

ньютон-секунда на метр

N×s/m

Н×с/м

Эквивалентная площадь поглощения поверхностью или предметом

L2

квадратный метр

м2

м2

Время реверберации

Т

секунда

s

с

Физическая химия и молекулярная физика

Молярная масса

МN1

килограмм на моль

kg/mol

кг/моль

Молярный объем

L3N1

кубический метр на моль

m3/ mol

м3/моль

Тепловой эффект химической реакции (образования, растворения, горения, фазовых превращений и

т.д.)

L2MT2

джоуль

J

Дж

Молярная внутренняя энергия, молярная энтальпия, химический потенциал, химическое сродство, энергия активации

L2MT2N-1

джоуль на моль

J/mol

Дж/моль

Молярная теплоемкость, молярная энтропия

L2MT2 Ө-1N-1

джоуль на моль-кельвин

J/(mol×K)

Дж/(моль×К)

Концентрация молекул

L-3

метр в минус третьей степени

m-3

м-3

Массовая концентрация

M L-3

килограмм на кубический метр

kg/m3

кг/м3

Молярная концентрация

L-3N

моль на кубический метр

mol/m3

моль/м3

Моляльность. удельная адсорбция

M-3N

моль на килограмм

mol/kg

моль/кг

Летучесть (фугитивность)

L-1mt2

паскаль

Pa

Па

Осмотическое давление

L-1ML-2

паскаль

Pa

Па

Коэффициент диффузии

L2T-1

квадратный метр на секунду

m2/s

м2

Скорость химической реакции

L3 Т-1N

моль на кубический метр в секунду

mol/(m3×s)

моль/(м3×с)

Степень дисперсности

L-1

метр в минус первой степени

m-1

м-1

Удельная площадь поверхности

L2M-1

квадратный метр на килограмм

m2/kg

м2/кг

Поверхностная плотность

L2N

моль на квадратный метр

mol/m2

моль/м2

Электрический дипольный момент

LTI

кулон-метр

C×m

Кл×м

Поляризованность

М-1Т4I2

кулон-квадратный метр на вольт

C×m2/V

Кл×м2

Молекулярная рефракция

М-1Т4I2N-1

кулон-квадратный метр на вольт-моль

C×m2/(V×mol)

Кл×м2/ (В×моль)

Ионная сила раствора

M1 N

М-1 Т3 I2 N-1

моль на килограмм сименс-квадратный метр на моль

mol/kg
S×m2/mol

моль/кг

См×м2/моль

Электродный потенциал

L2MT-3 I-1

вольт

V

В

Молярная концентрация

L-3N

моль на кубический метр

mol/m3

моль/м3

Подвижность ионов

M-1T2I

квадратный метр на вольт-секунду

m2/(V×s)

м2/(В×с)

Ионизирующие излучения

       

Энергия ионизирующего излучения

L2MT-2

джоуль

J

Дж

Поглощенная доза излучения (доза излучения), керма

L2 T 2

грэй

Gy

Гр

Экспозиционная доза

рентгеновского и гамма-излучений

M-1 TI

кулон на килограмм

C/kg

Кл/кг

Активность нуклида в радиоактивном источнике

T-1

бсккерель

Bq

Бк

Атомная и ядерная физика

       

Масса покоя частицы, атома, ядра

М

килограмм

kg

кг

Дефект массы

М

килограмм

kg

кг

Элементарный заряд

T I

кулон

С

Кл

Магнетон ядерный

L2I

ампер-квадратный метр

A×m2

А×м2

Гиромагнитное отношение

M-1 TI

ампер-квадратный метр на джоуль-секунду

A× m2/(J×s)

А×м2/(Дж×с)

Ядерный квадрупольный момент

L2

квадратный метр

m2

м2

Энергия связи, ширина уровня

L2MT-2

джоуль

J

Дж

Интенсивность излучения (плотность потока энергии)

МТ-3

ватт на квадратный метр

W/m2

Вт/м2

Активность нуклида (в радиоактивном источнике)

T-1

беккерель

Bq

Бк

Удельная активность

M-1T-1

беккерель на килограмм

Bq/kg

Бк/кг

Молярная активность

M-1N-1

беккерель на моль

Bq/mol

Бк/моль

Объемная активность

L-3T-1

беккерель на кубический метр

Bq/m3

Бк/ m3

Поверхностная активность

L -2T-1

беккерель на квадратный метр

Bq/m2

Бк/м2

Период полураспада, средняя продолжительность жизни

T

секунда

s

с

Постоянная распада

T-1

секунда в минус первой степени

s-1

с-1

Эффективное сечение

L2

квадратный метр

m2

м2

Дифференциальное эффективное сечение

L2

квадратный метр на стерадиан

m7sr

м2/ср

Подвижность

M-1T2I

квадратный метр на вольт-секунду

m2/(V-s)

м2/(В×с)

Замедляющая способность среды

L-1

метр в минус первой степени

m-1

м-1

Длина замедления, длина диффузии, длина миграции

L

метр

m

м

Единица измерения джоуль перевести. Что измеряется в джоулях

Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная электрическая проводимость Электрическая емкость Индуктивность Американский калибр проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Экспозиционная доза Радиация. Поглощённая доза Десятичные приставки Передача данных Типографика и обработка изображений Единицы измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 джоуль [Дж] = 1E-09 гигаджоуль [ГДж]

Исходная величина

Преобразованная величина

джоуль гигаджоуль мегаджоуль килоджоуль миллиджоуль микроджоуль наноджоуль аттоджоуль мегаэлектронвольт килоэлектронвольт электрон-вольт эрг гигаватт-час мегаватт-час киловатт-час киловатт-секунда ватт-час ватт-секунда ньютон-метр лошадиная сила-час лошадиная сила (метрич.)-час международная килокалория термохимическая килокалория международная калория термохимическая калория большая (пищевая) кал. брит. терм. единица (межд., IT) брит. терм. единица терм. мега BTU (межд., IT) тонна-час (холодопроизводительность) эквивалент тонны нефти эквивалент барреля нефти (США) гигатонна мегатонна ТНТ килотонна ТНТ тонна ТНТ дина-сантиметр грамм-сила-метр· грамм-сила-сантиметр килограмм-сила-сантиметр килограмм-сила-метр килопонд-метр фунт-сила-фут фунт-сила-дюйм унция-сила-дюйм футо-фунт дюймо-фунт дюймо-унция паундаль-фут терм терм (ЕЭС) терм (США) энергия Хартри эквивалент гигатонны нефти эквивалент мегатонны нефти эквивалент килобарреля нефти эквивалент миллиарда баррелей нефти килограмм тринитротолуола Планковская энергия килограмм обратный метр герц гигагерц терагерц кельвин aтомная единица массы

Общие сведения

Энергия — физическая величина, имеющая большое значение в химии, физике, и биологии. Без нее жизнь на земле и движение невозможны. В физике энергия является мерой взаимодействия материи, в результате которого выполняется работа или происходит переход одних видов энергии в другие. В системе СИ энергия измеряется в джоулях. Один джоуль равен энергии, расходуемой при перемещении тела на один метр силой в один ньютон.

Энергия в физике

Кинетическая и потенциальная энергия

Кинетическая энергия тела массой m , движущегося со скоростью v равна работе, выполняемой силой, чтобы придать телу скорость v . Работа здесь определяется как мера действия силы, которая перемещает тело на расстояние s . Другими словами, это энергия движущегося тела. Если же тело находится в состоянии покоя, то энергия такого тела называется потенциальной энергией. Это энергия, необходимая, чтобы поддерживать тело в этом состоянии.

Например, когда теннисный мяч в полете ударяется об ракетку, он на мгновение останавливается. Это происходит потому, что силы отталкивания и земного притяжения заставляют мяч застыть в воздухе. В этот момент у мяча есть потенциальная, но нет кинетической энергии. Когда мяч отскакивает от ракетки и улетает, у него, наоборот, появляется кинетическая энергия. У движущегося тела есть и потенциальная и кинетическая энергия, и один вид энергии преобразуется в другой. Если, к примеру, подбросить вверх камень, он начнет замедлять скорость во время полета. По мере этого замедления, кинетическая энергия преобразуется в потенциальную. Это преобразование происходит до тех пор, пока запас кинетической энергии не иссякнет. В этот момент камень остановится и потенциальная энергия достигнет максимальной величины. После этого он начнет падать вниз с ускорением, и преобразование энергии произойдет в обратном порядке. Кинетическая энергия достигнет максимума, при столкновении камня с Землей.

Закон сохранения энергии гласит, что суммарная энергия в замкнутой системе сохраняется. Энергия камня в предыдущем примере переходит из одной формы в другую, и поэтому, несмотря на то, что количество потенциальной и кинетической энергии меняется в течение полета и падения, общая сумма этих двух энергий остается постоянной.

Производство энергии

Люди давно научились использовать энергию для решения трудоемких задач с помощью техники. Потенциальная и кинетическая энергия используется для совершения работы, например, для перемещения предметов. Например, энергия течения речной воды издавна используется для получения муки на водяных мельницах. Чем больше людей использует технику, например автомобили и компьютеры, в повседневной жизни, тем сильнее возрастает потребность в энергии. Сегодня большая часть энергии вырабатывается из невозобновляемых источников. То есть, энергию получают из топлива, добытого из недр Земли, и оно быстро используется, но не возобновляется с такой же быстротой. Такое топливо — это, например уголь, нефть и уран, который используется на атомных электростанциях. В последние годы правительства многих стран, а также многие международные организации, например, ООН, считают приоритетным изучение возможностей получения возобновляемой энергии из неистощимых источников с помощью новых технологий. Многие научные исследования направлены на получение таких видов энергии с наименьшими затратами. В настоящее время для получения возобновляемой энергии используются такие источники как солнце, ветер и волны.

Энергия для использования в быту и на производстве обычно преобразуется в электрическую при помощи батарей и генераторов. Первые в истории электростанции вырабатывали электроэнергию, сжигая уголь, или используя энергию воды в реках. Позже для получения энергии научились использовать нефть, газ, солнце и ветер. Некоторые большие предприятия содержат свои электростанции на территории предприятия, но большая часть энергии производится не там, где ее будут использовать, а на электростанциях. Поэтому главная задача энергетиков — преобразовать произведенную энергию в форму, позволяющую легко доставить энергию потребителю. Это особенно важно, когда используются дорогие или опасные технологии производства энергии, требующие постоянного наблюдения специалистами, такие как гидро- и атомная энергетика. Именно поэтому для бытового и промышленного использования выбрали электроэнергию, так как ее легко передавать с малыми потерями на большие расстояния по линиям электропередач.

Электроэнергию преобразуют из механической, тепловой и других видов энергии. Для этого вода, пар, нагретый газ или воздух приводят в движение турбины, которые вращают генераторы, где и происходит преобразование механической энергии в электрическую. Пар получают, нагревая воду с помощью тепла, получаемого при ядерных реакциях или при сжигании ископаемого топлива. Ископаемое топливо добывают из недр Земли. Это газ, нефть, уголь и другие горючие материалы, образованные под землей. Так как их количество ограничено, они относятся к невозобновляемым видам топлива. Возобновляемые энергетические источники — это солнце, ветер, биомасса, энергия океана, и геотермальная энергия.

В отдаленных районах, где нет линий электропередач, или где из-за экономических или политических проблем регулярно отключают электроэнергию, используют портативные генераторы и солнечные батареи. Генераторы, работающие на ископаемом топливе, особенно часто используют как в быту, так и в организациях, где совершенно необходима электроэнергия, например, в больницах. Обычно генераторы работают на поршневых двигателях, в которых энергия топлива преобразуется в механическую. Также популярны устройства бесперебойного питания с мощными батареями, которые заряжаются когда подается электроэнергия, а отдают энергию во время отключений.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Импульсный или постоянный свет? Вот в чем вопрос

Очень немногие фотографы могут ответить на вопрос — как пересчитать импульсный свет в постоянный. Как пересчитать Ватты в Джоули? А если сюда добавить еще люминисцентный или светодиодный свет, то задача переходит в разряд неразрешимых.

Более того — решения этой задачи нет и в теории. Хотя кажется, что теоретически считается все просто: Дж — это Вт в секунду. То есть источник в 200 Вт за 1 секунду выдает энергию, равную 200 Дж. То есть, если снимать с выдержкой в 1 секунду, то нет разницы, чем снимаешь — вспышкой на 200 Дж или постоянным источником на 200 Вт. Вот тут и кроется сногсшибательная хитрость от производителей! Они указывают потребляемую мощность, а не ту, которая выдается в результате.

Лампочка в 200 Вт галогенная и 200 Вт люминисцентная — это разные лампы и при одинаковом потреблении электричества люминисцентная выдаст света в видимом диапазоне раз в 10 больше! Или не в десять, а только в 6?

Вот тут обычно и возникает неразрешимый вопрос — как сравнить мощность различных приборов? Этот узел невозможно развязать, слишком много всяких теоретических «если», но можно разрубить!


Давайте представим, что мы — фотографы, нас не волнует ни температура источников, ни потери, ни импульсный это свет или постоянный. У нас в наличии есть один прибор — флэшметр, который и покажет, а, собственно, что мы получим, как фотографы, используя тот или иной прибор?

Необходимо всего лишь поставить разное студийное оборудование в одинаковые условия. Сразу следует оговориться, что в силу различных размеров, совсем в одинаковые условия приборы поставить не получится, но для измерения хватит.

Нам известно, что флэшметр сконструирован так, чтобы измерять освещенность одной единственной точки, но приборы рассеивают свет по-разному. В зависимости от насадки освещенность будет разная. А насадку одну на светодиодную панель и галогеновый осветитель сложно надеть. Поэтому заставим все приборы светить рассеянным светом через один и тот же кусок ткани.


Это поставит все приборы в равное положение, мы укрепим кусок ткани так плотно, чтобы приборы весь свой свет пускали только через нее, и в метре от этого прибора измерим диафрагму.

Не так важно в принципе, что именно за приборы будут участвовать в гонке. Даже неважно, если на приборе написано 500 Дж, и все равно генератор это от Broncolor или моноблок Bowens . Галогенки вообще можно не обсуждать и не принимать во внимание.

Производители студийного оборудования не производят лампы, они используют лампы нескольких фирм — чаще всего галогенные лампы Osram, иногда Phillips. Импульсные лампы чаще всего Perkin Elmer. Но это так… лирика.

Чтобы быть объективными все-таки назовем участников, которые по счастливой случайности оказались в домашней фотостудии:

1) Hensel Expert Pro 500 — импульсный осветитель на 500 Дж потребляемой мощности

2) Hensel Expert Pro 500 — в нем есть пилотная лампа на 300 Вт, как нельзя лучше подходящая для нашей задачи, так как будет испытываться вместе с

3) YongNuo YN-600 LED — светодиодный осветитель на 600 светодиодов с потребляемой мощностью 36 Вт.

4) Canon 580 EX II — накамерная вспышка с ведущим числом 58. Тоже своего рода вещь в себе, с трудом пересчитываемая в Джоули или Ватты. Да еще и зависящая от фокусного расстояния.



Все замеры проводились в метре от рассеивающей ткани.

Если проанализировать цифры, то все становится на свои места! И уже можно делать выводы.

Вывод 1. Как и предполагалось, диафрагма при измерении вспышки, не зависит от выдержки, что в принципе понятно и вытекает из самой физики процесса. Вспышка — процесс быстрый и конечный во времени.

Вывод 2. 600 светодиодов на ступень больше, чем 300 Вт галогенка, а потому условно вполне можно приравнять 1Вт галогенки к светимости одного светодиода. Это очень грубо, но для прикидочных расчетов очень удобно.

Вывод 3. Если необходимо снимать с выдержкой 1/500, необходимо реально много постоянного света. Для объектива с диафрагмой 1,4 — минимум 2000 Вт, потому что вы не будете светить с расстояния всего 1 метр, а на 2 метрах вам понадобится уже в 3-4 раза больше света.

Вывод 4. Рассеивающий экран очень хорошо себя показал — получить разницу в 4/10 стопа на разных фокусных расстояниях у вспышки Canon — хороший показатель, и значит — расчеты верны до половины стопа. Что допустимо.

Вывод 5. Вспышка Canon 580 EX II — это 50-60 Дж мощности. Не буду утомлять расчетами!

Вывод 6. Главный вывод!

Как же все-таки перевести Вт в Дж? Естественно это можно сделать только на определенной выдержке. Если снимаете с рук в студии на полтинник (50 мм объектив), то 1 Дж = 150 Вт галогенового осветителя (если у вас получились другие расчеты — напишите), ну или осветителя на 150 светодиодов.

При выдержке 1/125 уже будет 300 Вт = 1 Джуоль.

Цифры выглядят фантастическими, но от эксперимента никуда не деться.

В скором времени по этой же шкале проведем испытания со светодиодным осветителем с плоским большим светодиодом Raylab LED-99. Следите за новостями Фотогоры.

Григорий Васильев , фотограф, специалист направления «Студийное оборудование»

Состоялось в 1889 году на Втором международном конгрессе электриков. В тот год скончался известный английский ученый-физик Джеймс Прескотт Джоуль. Труды этого исследователя оказали большое влияние на становление термодинамики. Он открыл связь между плотностью электрического тока на величину электрического поля и выделяющимся количеством тепла (закон Джоуля – Ленца), внес значительный вклад в формирование концепции закона сохранения энергии. В честь этого ученого новая единица измерения и получила наименование джоуль.

Физические величины, измеряемые в джоулях

Энергия представляет собой физическую величину, которая выражает меру перехода одних форм материи в другие. В замкнутой физической системе энергия сохраняется в течение всего того времени, что система остается замкнутой – это называется законом сохранения энергии.

Существуют разные виды энергии. Кинетическая энергия зависит от скоростей движения точек механической системы, потенциальная характеризует запас энергии тела, который идет на приобретение кинетической, внутренняя представляет собой внутреннюю энергию молекулярных связей. Существует энергия электрического поля, гравитационная, ядерная энергия.

Превращение одних видов энергии в другие характеризует иная физическая величина – механическая работа. Она зависит от величины и направления силы, действующей на тело, и от перемещения тела в пространстве.

Еще одно важное понятие в классической термодинамике – теплота. Согласно первому началу термодинамики, получаемое системой количество теплоты идет на совершение работы, противодействующей внешним силам, и на изменение ее внутренней энергии.

Все три величины связаны друг с другом. Чтобы произошел теплообмен, в результате которого будет изменена внутренняя энергия той или иной системы, должна быть совершена механическая работа.

Характеристика джоуля

Джоуль как единица измерения механической работы равен работе, производимой при перемещении тела на расстояние в 1 метр силой, величина которой равна 1 ньютону , в том направлении, в котором действует эта сила.

Применительно к расчетам энергии электрического тока джоуль определяется как работа, которую в течение одной секунды совершает ток силой в 1 ампер при разнице потенциалов, равной одному вольту.

Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная электрическая проводимость Электрическая емкость Индуктивность Американский калибр проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Экспозиционная доза Радиация. Поглощённая доза Десятичные приставки Передача данных Типографика и обработка изображений Единицы измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 ватт [Вт] = 3600 джоуль в час [Дж/ч]

Исходная величина

Преобразованная величина

ватт эксаватт петаватт тераватт гигаватт мегаватт киловатт гектоватт декаватт дециватт сантиватт милливатт микроватт нановатт пиковатт фемтоватт аттоватт лошадиная сила лошадиная сила метрическая лошадиная сила котловая лошадиная сила электрическая лошадиная сила насосная лошадиная сила лошадиная сила (немецкая) брит. термическая единица (межд.) в час брит. термическая единица (межд.) в минуту брит. термическая единица (межд.) в секунду брит. термическая единица (термохим.) в час брит. термическая единица (термохим.) в минуту брит. термическая единица (термохим.) в секунду МBTU (международная) в час Тысяча BTU в час МMBTU (международная) в час Миллион BTU в час тонна охлаждения килокалория (межд.) в час килокалория (межд.) в минуту килокалория (межд.) в секунду килокалория (терм.) в час килокалория (терм.) в минуту килокалория (терм.) в секунду калория (межд.) в час калория (межд.) в минуту калория (межд.) в секунду калория (терм.) в час калория (терм.) в минуту калория (терм.) в секунду фут фунт-сила в час фут·фунт-сила/минуту фут·фунт-сила/секунду фунт-фут в час фунт-фут в минуту фунт-фут в секунду эрг в секунду киловольт-ампер вольт-ампер ньютон-метр в секунду джоуль в секунду эксаджоуль в секунду петаджоуль в секунду тераджоуль в секунду гигаджоуль в секунду мегаджоуль в секунду килоджоуль в секунду гектоджоуль в секунду декаджоуль в секунду дециджоуль в секунду сантиджоуль в секунду миллиджоуль в секунду микроджоуль в секунду наноджоуль в секунду пикоджоуль в секунду фемтоджоуль в секунду аттоджоуль в секунду джоуль в час джоуль в минуту килоджоуль в час килоджоуль в минуту планковская мощность

Общие сведения

В физике мощность — это отношение работы ко времени, в течении которого она выполняется. Механическая работа — это количественная характеристика действия силы F на тело, в результате которого оно перемещается на расстояние s . Мощность можно также определить как скорость передачи энергии. Другими словами, мощность — показатель работоспособности машины. Измерив мощность, можно понять в каком количестве и с какой скоростью выполняется работа.

Единицы мощности

Мощность измеряют в джоулях в секунду, или ваттах. Наряду с ваттами используются также лошадиные силы. До изобретения паровой машины мощность двигателей не измеряли, и, соответственно, не было общепринятых единиц мощности. Когда паровую машину начали использовать в шахтах, инженер и изобретатель Джеймс Уатт занялся ее усовершенствованием. Для того чтобы доказать, что его усовершенствования сделали паровую машину более производительной, он сравнил ее мощность с работоспособностью лошадей, так как лошади использовались людьми на протяжении долгих лет, и многие легко могли представить, сколько работы может выполнить лошадь за определенное количество времени. К тому же, не во всех шахтах применялись паровые машины. На тех, где их использовали, Уатт сравнивал мощность старой и новой моделей паровой машины с мощностью одной лошади, то есть, с одной лошадиной силой. Уатт определил эту величину экспериментально, наблюдая за работой тягловых лошадей на мельнице. Согласно его измерениям одна лошадиная сила — 746 ватт. Сейчас считается, что эта цифра преувеличена, и лошадь не может долго работать в таком режиме, но единицу изменять не стали. Мощность можно использовать как показатель производительности, так как при увеличении мощности увеличивается количество выполненной работы за единицу времени. Многие поняли, что удобно иметь стандартизированную единицу мощности, поэтому лошадиная сила стала очень популярна. Ее начали использовать и при измерении мощности других устройств, особенно транспорта. Несмотря на то, что ватты используются почти также долго, как лошадиные силы, в автомобильной промышленности чаще применяются лошадиные силы, и многим покупателям понятнее, когда именно в этих единицах указана мощность автомобильного двигателя.

Мощность бытовых электроприборов

На бытовых электроприборах обычно указана мощность. Некоторые светильники ограничивают мощность лампочек, которые в них можно использовать, например не более 60 ватт. Это сделано потому, что лампы более высокой мощности выделяют много тепла и светильник с патроном могут быть повреждены. Да и сама лампа при высокой температуре в светильнике прослужит недолго. В основном это проблема с лампами накаливания. Светодиодные, люминесцентные и другие лампы обычно работают с меньшей мощностью при одинаковой яркости и, если они используются в светильниках, предназначенных для ламп накаливания, проблем с мощностью не возникает.

Чем больше мощность электроприбора, тем выше потребление энергии, и стоимости использования прибора. Поэтому производители постоянно улучшают электроприборы и лампы. Световой поток ламп, измеряемый в люменах, зависит от мощности, но также и от вида ламп. Чем больше световой поток лампы, тем ярче выглядит ее свет. Для людей важна именно высокая яркость, а не потребляемая ламой мощность, поэтому в последнее время альтернативы лампам накаливания пользуются все большей популярностью. Ниже приведены примеры видов ламп, их мощности и создаваемый ими световой поток.

  • 450 люменов:
    • Лампа накаливания: 40 ватт
    • Компактная люминесцентная лампа: 9–13 ватт
    • Светодиодная лампа: 4–9 ватт
  • 800 люменов:
    • Лампа накаливания: 60 ватт
    • Компактная люминесцентная лампа: 13–15 ватт
    • Светодиодная лампа: 10–15 ватт
  • 1600 люменов:
    • Лампа накаливания: 100 ватт
    • Компактная люминесцентная лампа: 23–30 ватт
    • Светодиодная лампа: 16–20 ватт

    Из этих примеров очевидно, что при одном и том же создаваемом световом потоке светодиодные лампы потребляют меньше всего электроэнергии и более экономны, по сравнению с лампами накаливания. На момент написания этой статьи (2013 год) цена светодиодных ламп во много раз превышает цену ламп накаливания. Несмотря на это, в некоторых странах запретили или собираются запретить продажу ламп накаливания из-за их высокой мощности.

    Мощность бытовых электроприборов может отличаться в зависимости от производителя, и не всегда одинакова во время работы прибора. Внизу приведены примерные мощности некоторых бытовых приборов.

    • Бытовые кондиционеры для охлаждения жилого дома, сплит-система: 20–40 киловатт
    • Моноблочные оконные кондиционеры: 1–2 киловатта
    • Духовые шкафы: 2.1–3.6 киловатта
    • Стиральные машины и сушки: 2–3.5 киловатта
    • Посудомоечные машины:1.8–2.3 киловатта
    • Электрические чайники: 1–2 киловатта
    • Микроволновые печи:0.65–1.2 киловатта
    • Холодильники: 0.25–1 киловатт
    • Тостеры: 0.7–0.9 киловатта

    Мощность в спорте

    Оценивать работу с помощью мощности можно не только для машин, но и для людей и животных. Например, мощность, с которой баскетболистка бросает мяч, вычисляется с помощью измерения силы, которую она прикладывает к мячу, расстояния которое пролетел мяч, и времени, в течение которого эта сила была применена. Существуют сайты, позволяющие вычислить работу и мощность во время физических упражнений. Пользователь выбирает вид упражнений, вводит рост, вес, длительность упражнений, после чего программа рассчитывает мощность. Например, согласно одному из таких калькуляторов, мощность человека ростом 170 сантиметров и весом в 70 килограмм, который сделал 50 отжиманий за 10 минут, равна 39.5 ватта. Спортсмены иногда используют устройства для определения мощности, с которой работают мышцы во время физической нагрузки. Такая информация помогает определить, насколько эффективна выбранная ими программа упражнений.

    Динамометры

    Для измерения мощности используют специальные устройства — динамометры. Ими также можно измерять вращающий момент и силу. Динамометры используют в разных отраслях промышленности, от техники до медицины. К примеру, с их помощью можно определить мощность автомобильного двигателя. Для измерения мощности автомобилей используется несколько основных видов динамометров. Для того, чтобы определить мощность двигателя с помощью одних динамометров, необходимо извлечь двигатель из машины и присоединить его к динамометру. В других динамометрах усилие для измерения передается непосредственно с колеса автомобиля. В этом случае двигатель автомобиля через трансмиссию приводит в движение колеса, которые, в свою очередь, вращают валики динамометра, измеряющего мощность двигателя при различных дорожных условиях.

    Динамометры также используют в спорте и в медицине. Самый распространенный вид динамометров для этих целей — изокинетический. Обычно это спортивный тренажер с датчиками, подключенный к компьютеру. Эти датчики измеряют силу и мощность всего тела или отдельных групп мышц. Динамометр можно запрограммировать выдавать сигналы и предупреждения если мощность превысила определенное значение. Это особенно важно людям с травмами во время реабилитационного периода, когда необходимо не перегружать организм.

    Согласно некоторым положениям теории спорта, наибольшее спортивное развитие происходит при определенной нагрузке, индивидуальной для каждого спортсмена. Если нагрузка недостаточно тяжелая, спортсмен привыкает к ней и не развивает свои способности. Если, наоборот, она слишком тяжелая, то результаты ухудшаются из-за перегрузки организма. Физическая нагрузка во время некоторых упражнений, таких как велосипедный спорт или плавание, зависит от многих факторов окружающей среды, таких как состояние дороги или ветер. Такую нагрузку трудно измерить, однако можно выяснить с какой мощностью организм противодействует этой нагрузке, после чего изменять схему упражнений, в зависимости от желаемой нагрузки.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

– это единица измерения мощности в системе СИ. Имеет русскоязычное обозначение Вт и зарубежное W. Названа так эта единица в честь изобретателя Джеймса Уатта. Сейчас в ваттах измеряется мощность всех электроприборов, эту характеристику потребляемой мощности можно найти либо на самом приборе, либо в инструкции к нему.

Вам понадобится

Инструкция

Джоуль — это единица измерения энергии (работы), мощность связана с работой формулой:

N = E / t,
где N – мощность в ваттах, E – энергия в джоулях, t – время в секундах.
То есть, мощность в ваттах количественно равна энергии в джоулях, затраченной за 1 секунду. Так что, для того чтобы перевести ватты в джоули за единицу времени, вам не понадобится даже калькулятор – посмотрите мощность устройства в ваттах и узнаете, сколько джоулей энергии он потребляет за 1 секунду. Правда, как таковым переводом это назвать нельзя – ведь мощность и энергия являются разными физическими величинами.

Но не всегда мощность может быть выражена в ваттах, существуют и другие единицы измерения мощности. Например, лошадиная сила – единица измерения, которая устарела и фактически не используется в науке. Хотя до сих пор мощность двигателя в автомобилях указывается в лошадиных силах. Чтобы перевести лошадиные силы в ватты, умножьте величину в лошадиных силах на 735.5:

1 л.с. = 735.5 ватт

Для определения мощности тока в электрической цепи можете воспользоваться ваттметром. В этом приборе есть два измерительных элемента: последовательная и параллельная катушки. В первой катушке протекает ток, пропорциональный нагрузке, а во второй пропорциональный сетевому напряжению. Включите прибор в электрическую цепь согласно инструкции и снимите с него показания мощности в ваттах. Перевод в джоули проделайте так, как и выше. А если узнать количество затраченной энергии требуется за период больший, чем 1 секунда, то энергию в джоулях ищите так:
E = N * t,

где N – мощность в ваттах, t – время в секундах.

Но такой способ перевода мощности в энергию не всегда справедлив, это касается особенно мгновенных процессов. Например, вспышка в фотостудии. Даже не пытайтесь делить указанную энергию вспышки на время – вы не получите правильную мощность, а только зря потратите время. То же самое касается и студийного освещения. Тут требуется учитывать множество различных факторов для определения мощности светового потока, поэтому для таких целей используйте устройства флешметеры (экспонометры), они покажут результаты намного точнее.

Система СИ. Единицы физических величин Международной системы СИ.

Наименование

Единица

Обозначение

международное / русское

Длина

Метр

т/м

Масса

Килограмм

kg/кг

Время

Секунда

S/C

Сила эл. тока

Ампер

А/А

Термодинамическая температура

Кельвин

К/К

Количество вещества

Моль

mol/моль

Сила света

Кандела

cd/кд

Определения основных величин

Метр равен расстоянию, проходимому светом в вакууме за 1/299 722 458-ю долю секунды.

Килограмм равен массе международного прототипа килограмма.

Секунда равна 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

Ампер равен силе неизменяющегося тока, который при прохождении по двум параллельным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2 • 107 Н.

Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде — 12 массой 0,012 кг.

При применении моля структурные элементы должны быть специфицированы и м. б. атомами, молекулами, ионами, электронами и др. частицами.

Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540 • 1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Дополнительные единицы

Плоский угол

радиан

(1 рад = 57°17)

рад

Телесный угол

стерадиан

ср

Определения дополнительных единиц

Радиан равен углу между двумя радиусами окружности, длина дуги между ко-орыми равна радиусу.

Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной, равной радиусу сферы.

Единицы пространства и времени

Площадь

кв. метр

м

Объем, вместимость

куб. метр

м3

Скорость (линейная)

метр в секунду

м/с

Ускорение

метр на секунду в квадрате

м/с2

Частота колебаний Частота вращения

герц

Гц

Частота вращения

секунда в минус первой степени

Секунда в минус первой степени — частота равномерного вращения, при которой за время 1 с совершается один полный оборот тела.

Период

секунда

Угловая частота

Радиан в секунду

рад/с

Угловое ускорение

Радиан на секунду в квадрате

Рад/с2

Единицы механических величин

Плотность

килограмм на куб. метр

кг/м3

Момент инерции (динамический)

килограмм — метр в квадрате

 кг-м2

Количество движения (импульс)

килограмм — метр в секунду

кг • м/с

Сила, сила тяжести (вес)

ньютон

Н

Импульс силы

ньютон-секунда

Н-с

Удельный вес

ньютон на куб. метр

Н/м3

Момент силы

ньютон-метр

 Н-м

Давление

Паскаль

Па

Паскаль — давление, вызываемое силой 1 Н, равномерно распределенной по поверхности площадью 1 м2.

Работа (энергия)

джоуль

Дж

Мощность

ватт

Вт

Динамическая вязкость

паскаль-секунда

Па-с

Кинематическая вязкость

кв. метр на секунду

М2

Ударная вязкость

джоуль на кв. метр

Дж/м2

Единицы электрических и магнитных величин

Количество электричества, электрический заряд

кулон

Кл = А-с

Электрическое напряжение, разность потенциалов, ЭДС

вольт

В

Напряженность электрического поля

вольт на метр

В/м

Электрическая емкость

фарад

Ф = Кл/В

Электрическое сопротивление

ом

Ом = В/А = 1/См

Удельное электрическое

сопротивление

ом • метр

Ом-м = 106 Ом-мм2

Электрическая проводимость

сименс

См = А/В = 1/Ом

Магнитный поток

вебер

Вб = В • с

Магнитная индукция

тесла

Тл = Вб/м2

Магнитодвижущая сила

ампер

А

Напряженность магн. поля

ампер на метр

А/м

Индуктивность

генри

Гн = Вб/А = Ом • с

Активная мощность электрической цепи

ватт

Вт

Реактивная мощность

электрической цепи

вар

вар

Полная мощность электрической цепи

вольт-ампер

В-А

Единицы тепловых величии

Количество теплоты (энтальпия), термодинамический потенциал

джоуль

Дж

Удельное количество теплоты

джоуль на килограмм

Дж/кг

Теплоемкость системы, энтропия системы

джоуль на Кельвин

Дж/К

Удельная теплоемкость, удельная энтропия

джоуль на килограмм-кельвин

Дж/(кг-К)

Тепловой поток

ватт

Вт

Поверхностная плотность теплового потока

ватт на кв. метр

Вт/м2

Коэффициент теплообмена (теплоотдачи), коэффициент теплопередачи

ватт на кв. метр-кельвин

Вт/(м2 • К)

Теплопроводность

ватт на метр-кельвин

Вт/(м • К)

Температуропроводность

кв. метр на секунду

м2

Температурный градиент

кельвин на метр

К/м

Кроме температуры Кельвина (обозначение Т), допускается применять также температуру Цельсия (обозначение 1), определяемую выражением t= Т — То, где То = 273,15 К по определению. По размеру градус Цельсия равен Кельвину. Разность температур Кельвина выражается в Кельвинах. Разность температур Цельсия допускается выражать как в Кельвинах, так и в градусах Цельсия.

Единицы световых величин

Световой поток

люмен

лм

Освещенность

люкс

лк

Яркость

кандела на кв. метр

кд/м

Единицы магнитных величин в системе СГС

Магнитный поток

максвелл, 1 Мкс = 10-8 Вб

Магнитная индукция

гаусс, 1 Гс = 10-4 Вб/м2 = 10-4 Тл

Магнитодвижущая сила

гильберт, 1 Гб = 10/(4?)А

Напряженность  магнитного поля

эрстед, 1 Э = 1/(4 ?)103 А/м

Единицы, допускаемые к применению наравне с единицами СИ

Масса: центнер (ц), тонна (т).

Удельный расход топлива: г/(кВт • ч).

Время: мин, ч, сут, нед, мес, год, век. 1 год = 8760 ч.

Содержание веществ в воде: мкг/кг мг/кг.

Площадь: гектар (га).

Жесткость и щелочность воды: мкг-экв/кг, мг-экв/кг.

Объем, вместимость: литр (л).

Удельная электрическая проводимость: мкСм/см.

Скорость: км/ч

Удельное электрическое сопротивление: кОм • см.

Частота вращения: об/с, об/мин.

Работа, энергия: кВт- ч.

Количество электричества: А • ч.

Массовый расход: т/ч, кг/ч.

Объемный расход: м3/ч.

Децибел (дБ):

1. Уровень звукового давления р, для которого выполняется соотношение 20 lg (p/pq) = 1, где Pq — пороговое звуковое давление (порог слышимости), равное 20 мкПа (2 • 10-5 Па) при частоте в 1 кГц.

2. Уровень интенсивности (громкости) звука /, для которой выполняется соотношение 10 lg (J/Jq) = 1, где /0 — пороговая интенсивность, равная 10-12 Вт/м2 при той же частоте.

Единицы механических величин в системе СИ

 

Наименование

величины

 

Наименование единицы

 

Выражение через единицы СИ

Обозначение

единицы

русское

между­народное

Длина

метр

м

М

m

Масса

килограмм

кг

кг

Kg

Время

секунда

с

С

s

Площадь

кв. метр

М2

М2

m2

Объем, вмести­мость

куб, метр

М3

Мз

m3

Сила, вес

ньютон

кг*м/с2

Н

N

Плотность

килограмм на куб. метр

кг/мЗ

кг/мЗ

kg/m3

Момент силы

Ньютон*метр

кг*м2/с2

Н*м

N*m

Работа, энергия

джоуль

кг*м2/с2

Дж

J

Мощность

ватт

кг*м2/с3 = Дж/с

Вт

W

Давление

паскаль

кг/(м*с2) = Н/м2

Па

Pa

Количество дви­жения (импульс)

килограмм-метр в секунду

кг*м/с

кг*м/с

kg*m/s

Момент количества дви­жения

килограмм-метр в квадрате в секунду

кг*м2/с = Н-м-с

кг*м2/с

kg*m2/s

Момент инерции (динамический)

килограмм-метр в квадрате

кг*м2

кг*м2

kg-m2

Скорость

метр в секунду

м/с

м/с

m/s

Ускорение

метр на секунду

м/с2

м/с2

m/s2

Угловая скорость

радиан в секунду

с-1

рад/с

rad/s

Угловое ускорение

радиан на секунду в квадрате

С-2

рад/с2

rad/s2

Период

секунда

с

с

s

 Частота периодич. процесса

 герц

 С-1

 Гц

Hz 

Таблица перевода единиц измерений

кубический метр в час (м3/ч) 1
кубический метр в минуту (м3/мин) 0,01667
кубический метр в секунду (м3/с) 0,0002278
кубический метр в сутки (м3/сутки) 24
кубический метр в год (м3/год) 8 766
литр в секунду (л/с) 0,2778
литр в минуту (л/мин) 16,67
литр в час (л/ч) 1 000
литр в сутки (л/сутки) 24 000
литр в год (л/год) 8 765 813
кубический сантиметр в секунду (см3/с) 277,8
кубический сантиметр в минуту (см3/мин) 16 667
кубический сантиметр в час (см3/час) 1 000 000
кубический сантиметр в сутки (см3/сутки) 24 000 000
кубический сантиметр в год (см3/год) 8 765 812 800
баррель (нефтяной) в секунду 0,001747
баррель (нефтяной) в минуту 0,1048
баррель (нефтяной) в час 6,29
баррель (нефтяной) в сутки 151
баррель (нефтяной) в год 55 135
галлон США в минуту (gpm) 4,403
галлон США в час (gph) 264,2
кубический фут в секунду (ft3/s) 0,00981
кубический фут в минуту (ft3/min) 0,5886
кубический фут в час (ft3/hour) 35,31
кубический фут в сутки (ft3/day) 847,6
кубический фут в год (ft3/year) 309 562
кубический дюйм в секунду (in3/s) 16,95
кубический дюйм в минуту (in3/min) 1 017
кубический дюйм в час (in3/hour) 61 024
кубический дюйм в сутки (in3/day) 1 464 570
кубический дюйм в год (in3/year) 534 922 720

Конвертер величин


Длина — это расстояние между двумя наиболее удаленными точками одного объекта. Обычно длина это наибольшая из трех физических характеристик объекта – длины, ширины, высоты.

Расстояние – это степень удаленности двух объектов друг от друга.

Измеряются длина и расстояние в системных единицах измерения – метр. Обозначение единиц измерения длины в СИ: м – русское, m – международное.

В системе СИ метр — это расстояние, пройденное светом в вакууме за время 1/299 792 458 секунд.

В различных сферах ряда государств применяются внесистемные единицы измерения длины, например: сантиметр, нанометр, фут, дюйм, ярд, миля и другие многочисленные единицы.

Такое многообразие связано с национальными система измерения различных государств, которые складывались столетиями, а иногда и тысячелетиями. С введением международной СИ, применение национальных единиц измерения не прекратилось, так как переход к международной СИ требует значительных финансовых и временных затрат.

К примеру, во многих англоязычных странах основной единицей измерения длины и расстояния, является дюйм, а система измерения называется не метрической, а дюймовой. Применение дюйма в качестве основной единицы сложилось исторически, и теперь быстро перейти на международную метрическую систему весьма затруднительно.

Применение внесистемных единиц измерения в различных областях науки и техники, связано с неудобством стандартных системных величин. Если к примеру речь идет о очень больших расстояниях, таких как объекты вселенной, то измерения расстояний в миллиардах километрах очень неинформативно и не удобно. Поэтому в астрономии более распространены единицы измерения – один световой год, парсек, астрономическая единица. А к примеру, в микромире наиболее удобно применять малые единицы измерения – микрон, нанометр.

Перевести единицы: ньютон [Н] в джоуль на метр [Дж/м] • Конвертер силы • Популярные конвертеры единиц • Компактный калькулятор • Онлайн-конвертеры единиц измерения , модуль ЮнгаПреобразователь энергии и работыПреобразователь мощностиПреобразователь силыПреобразователь времениПреобразователь линейной скорости и скоростиПреобразователь угловПреобразователь топливной экономичности, расхода топлива и экономии топливаКонвертер чиселКонвертер единиц хранения информации и данныхКурсы обмена валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиПреобразователь угловой скорости и частоты вращенияПреобразователь ускоренияПреобразователь углового ускоренияПлотность КонвертерКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыИмпульсИмпульсПреобразователь крутящего моментаУдельная энергия, теплота сгорания (на массу) КонвертерУдельная энергия, теплота сгорания Конвертер температурного интервала Конвертер коэффициента теплового расширения Конвертер теплового сопротивления Конвертер теплопроводностиКонвертер удельной теплоемкостиПлотность теплоты, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициента теплопередачиКонвертер объемного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер массового потокаКонвертер молярной абсолютной концентрацииКонвертер массовой концентрации в раствореДинамический ( ) Конвертер вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер проницаемости, проницаемости, проницаемости водяного параКонвертер коэффициента пропускания паров влагиКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с выбираемым опорным давлением Конвертер фокусного расстоянияОптическая мощность (D Конвертер iopter) в Увеличение (X)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер плотности поверхностного зарядаОбъемная плотность зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер индуктивностиКонвертер плотности электрического поляКонвертер электрического потенциала и напряженияКонвертер электрического сопротивленияКонвертер электрического сопротивленияКонвертер электрической проводимостиКонвертер электрической проводимостиКонвертер емкостиКонвертер емкости уровней в дБм, дБВ, Ваттах и ​​других единицах измерения. Конвертер магнитодвижущей силы. Конвертер напряженности магнитного поля.Преобразователь радиоактивного распадаПреобразователь радиационного воздействияИзлучение. Конвертер поглощенной дозыКонвертер метрических префиксов Конвертер передачи данных Конвертер типографских и цифровых изображений Конвертер единиц измерения объема пиломатериаловКалькулятор молярной массыПериодическая таблица воздействие, которое изменяет движение тела, будь то внешнее движение или движение внутри тела, например изменение его формы.Например, когда камень отпускается, он падает, потому что его притягивает сила земного притяжения. Во время удара он сгибает травинки, на которые падает, — сила веса камня заставляет их двигаться и менять форму.

Сила является вектором, то есть имеет направление. Когда несколько сил действуют на объект и тянут его в разные стороны, эти силы могут быть в равновесии, а это означает, что их векторная сумма равна нулю. В этом случае объект будет покоиться.Камень из предыдущего примера может катиться после удара о землю, но в конце концов он остановится. Сила тяжести по-прежнему тянет его вниз, но в то же время нормальная сила, или сила реакции земли, толкает камень вверх. Суммарная сумма этих сил равна нулю, они находятся в равновесии, и камень не движется.

Единицей силы в системе СИ является ньютон. Один ньютон соответствует чистой силе, которая ускоряет объект массой один килограмм на один метр в секунду в квадрате.

Равновесие

Одним из первых ученых, исследовавших силы и создавших модель их взаимодействия с материей во Вселенной, был Аристотель. Согласно его модели, если чистая векторная сумма сил, действующих на объект, равна нулю, силы находятся в состоянии равновесия, а объект неподвижен. Позже эта модель была исправлена, чтобы включить объекты, движущиеся с постоянной скоростью, когда силы находятся в равновесии. Этот тип равновесия называется динамическим равновесием, а тот, в котором объект находится в состоянии покоя, называется статическим равновесием.

Фундаментальные силы во Вселенной

Силы природы заставляют объекты двигаться или оставаться на месте. В природе существует четыре фундаментальных взаимодействия: сильное, электромагнитное, слабое и гравитационное. Все остальные силы являются подмножествами этих четырех. В отличие от электрических и гравитационных сил сильные и слабые силы воздействуют на материю только на ядерном уровне. Они не работают на больших расстояниях.

Сильная сила

Сильная сила — самая сильная из четырех сил.Он действует на элементы ядра атома, удерживая вместе нейтроны и протоны. Эта сила переносится глюонами и связывает кварки вместе, образуя более крупные частицы. Кварки образуют нейтроны, протоны и другие более крупные частицы. Глюоны — это более мелкие элементарные частицы, не имеющие субструктуры и движущиеся между кварками как переносчики силы. Движение глюонов создает сильное взаимодействие между кварками. Это сила, из которой состоит материя во Вселенной.

Электромагнитная сила

Трансформаторы опорного типа в Киото, Япония

Электромагнитная сила является второй по величине силой.Это взаимодействие между частицами с противоположными или одинаковыми электрическими зарядами. Когда две частицы имеют одинаковый заряд, то есть обе они положительны или обе отрицательны, они отталкиваются друг от друга. Если, с другой стороны, они имеют противоположный заряд, где один положительный, а другой отрицательный, они притягиваются друг к другу. Это движение частиц, которые отталкиваются или притягиваются к другим частицам, и есть электричество — физическое явление, которое мы используем в нашей повседневной жизни и в большинстве технологий.

Электромагнитная сила может объяснить химические реакции, свет и электричество, а также взаимодействие между молекулами, атомами и электронами. Эти взаимодействия между частицами ответственны за форму, которую твердые объекты принимают в мире. Электромагнитная сила препятствует проникновению двух твердых тел друг в друга, поскольку электроны одного объекта отталкивают электроны того же заряда другого объекта. Исторически электрические и магнитные силы рассматривались как отдельные воздействия, но со временем было обнаружено, что они связаны.Большинство объектов имеют нейтральный заряд, но можно изменить заряд объекта, потирая два объекта друг о друга. Электроны будут перемещаться между двумя материалами, притягиваясь к противоположно заряженным электронам в другом материале. Это оставит больше электронов с одинаковым зарядом на поверхности каждого объекта, тем самым изменив доминирующий заряд объекта в целом. Например, если потереть волосы свитером, а затем снять свитер, волосы встанут и «последуют» за свитером.Это связано с тем, что электроны на поверхности волос больше притягиваются к атомам на поверхности свитера, чем электроны на поверхности свитера притягиваются к атомам на поверхности волос. Волосы или другие объекты с аналогичным зарядом также будут притягиваться к нейтрально заряженным поверхностям.

Слабое взаимодействие

Слабое взаимодействие слабее электромагнитного. Точно так же, как глюоны несут сильное взаимодействие, бозоны W и Z несут слабое взаимодействие. Это элементарные частицы, которые испускаются или поглощаются.Бозоны W облегчают процесс радиоактивного распада, в то время как бозоны Z не влияют на частицы, с которыми они вступают в контакт, кроме передачи импульса. Углеродное датирование, процесс определения возраста органического вещества, возможен из-за слабого взаимодействия. Он используется для установления возраста исторических артефактов и основан на оценке распада углерода, присутствующего в этом органическом веществе.

Гравитационная сила

Озеро Онтарио. Миссиссога (Канада). Звездная ночь

Сила гравитации самая слабая из четырех.Он удерживает астрономические объекты на их местах во вселенной, отвечает за приливы и заставляет объекты падать на землю, когда их отпускают. Это сила, которая действует на объекты, притягивая их друг к другу. Сила этого притяжения увеличивается с увеличением массы объекта. Как и другие силы, считается, что она передается частицами, гравитонами, но эти частицы еще не обнаружены. Гравитация влияет на то, как движутся астрономические объекты, и это движение можно рассчитать на основе массы окружающих объектов.Эта зависимость позволила ученым предсказать существование Нептуна, наблюдая за движением Урана до того, как Нептун был замечен в телескоп. Это произошло потому, что движение Урана не соответствовало его предсказанному движению, основанному на астрономических объектах, известных в то время, поэтому ученые пришли к выводу, что другая планета, еще невидимая, должна влиять на его модели движения.

Согласно теории относительности, гравитация также изменяет пространственно-временной континуум, четырехмерное пространство, в котором существует все, включая человека.Согласно этой теории, искривление пространства-времени увеличивается с увеличением массы, и поэтому его легче заметить на объектах размером с планету или больше по массе. Эта кривизна доказана экспериментально и видна при сравнении двух синхронизированных часов, из которых одни неподвижны, а другие движутся на значительное расстояние вдоль тела большой массы. Например, если часы перемещаются по орбите Земли, как в эксперименте Хафеле-Китинга, то время, которое они показывают, будет отставать от неподвижных часов, потому что искривление пространства-времени заставляет время идти медленнее для движущихся часов.

Сила гравитации заставляет объекты ускоряться при падении на другой объект, и это заметно, когда разница в массе между ними велика. Это ускорение можно рассчитать на основе массы объектов. Для объектов, падающих на Землю, она составляет около 9,8 метра в секунду в квадрате.

Приливы и отливы

Морские скалы

Приливы являются примерами действия гравитационной силы. Они вызваны гравитационными силами Луны, Солнца и Земли.В отличие от твердых тел, вода может легко менять форму под действием сил. Поэтому, когда на Землю действуют гравитационные силы Луны и Солнца, земная поверхность не так притягивается этими силами, как вода. Луна и Солнце движутся по небу, а вода на Земле следует за ними, вызывая приливы. Силы, действующие на воду, называются приливными; они представляют собой различные гравитационные силы. Луна, будучи ближе к Земле, имеет более сильную приливную силу по сравнению с Солнцем.Когда приливные силы Солнца и Луны действуют в одном направлении, прилив является самым сильным и называется весенним приливом. Когда эти две силы находятся в оппозиции, прилив самый слабый и называется квадратным приливом.

Приливы случаются с разной частотой в зависимости от географического региона. Поскольку гравитация Луны и Солнца притягивает как воду, так и всю планету Земля, в некоторых районах приливы возникают, когда сила гравитации тянет воду и Землю в одном или разных направлениях.В этом случае пара приливов и отливов происходит дважды за один день. В некоторых районах это происходит только один раз в день. Модели приливов на побережье зависят от формы побережья, глубинных моделей приливов в океане и местоположения Луны и Солнца, а также от взаимодействия их гравитационных сил. В некоторых местах продолжительность времени между приливами может длиться до нескольких лет. В зависимости от береговой линии и глубины океана приливы могут вызывать течения, штормы, изменения характера ветра и колебания атмосферного давления.В некоторых местах используются специальные часы, чтобы рассчитать, когда произойдет следующий прилив. Они настраиваются на основе приливов и отливов в этом районе, и их необходимо перенастраивать при перемещении в другое место. В некоторых районах приливные часы неэффективны, потому что там трудно предсказать приливы.

Приливная сила, которая перемещает воду к берегу и от берега, иногда используется для выработки электроэнергии. Приливные мельницы веками использовали эту силу. Базовая конструкция имеет резервуар для воды, вода поступает во время прилива и выливается во время отлива.Кинетическая энергия протекающей воды приводит в движение колесо мельницы, а вырабатываемая мощность используется для выполнения работы, например, перемалывания зерна в муку. Хотя с этой системой связан ряд проблем, в том числе опасность для экосистемы, в которой построен этот завод, у этого метода производства энергии есть потенциал, поскольку он является возобновляемым и надежным источником энергии.

Неосновные силы

Силы, производные от основных сил, называются неосновными силами.

Нормальная сила

Равновесие

Одной из неосновных сил является нормальная сила, которая действует перпендикулярно поверхности объекта и выталкивает наружу, сопротивляясь давлению других объектов. Когда объект помещается на поверхность, величина нормальной силы равна результирующей силе, давящей на поверхность. На плоской поверхности, когда силы, отличные от силы тяжести, находятся в равновесии, нормальная сила равна силе тяжести по величине и противоположна по направлению.Тогда сумма векторов двух сил равна нулю, и объект неподвижен или движется с постоянной скоростью. Когда объект находится под наклоном и другие силы находятся в равновесии, сумма гравитационных и нормальных сил направлена ​​вниз (но не прямо вниз, перпендикулярно горизонту), и объект скользит вниз по наклону.

Более широкие шины обеспечивают лучшее трение

Трение

Трение — это сила, параллельная поверхности объекта и направленная против его движения.Это происходит, когда два объекта скользят друг относительно друга (кинетическое трение) или когда неподвижный объект помещается на наклонную поверхность (статическое трение). Эта сила используется при приведении объектов в движение, например, при сцеплении колес с землей за счет трения. Без него они не смогли бы приводить в движение транспортные средства. Трение между резиной шин и землей достаточно велико, чтобы гарантировать, что шины не скользят по земле, и обеспечивает качение и лучший контроль направления движения.Трение катящегося объекта, трение качения или сопротивление качению не так сильно, как сухое трение двух объектов, скользящих друг о друга. Трение используется при остановке с применением тормозов — колеса автомобиля затормаживаются за счет сухого трения в дисковых или барабанных тормозах. В некоторых случаях трение нежелательно, поскольку оно замедляет движение и изнашивает механические компоненты. Жидкости или гладкие поверхности используются для минимизации трения.

Интересные факты о силах

Силы могут деформировать твердые тела или изменять объем и давление в жидкостях и газах.Это происходит, когда силы приложены неодинаково к разным частям объекта или вещества. В некоторых случаях, когда к тяжелому объекту прикладывается достаточное усилие, его можно сжать в очень маленькую сферу. Если эта сфера достаточно мала, меньше определенного радиуса, то может образоваться черная дыра. Этот радиус называется радиусом Шварцшильда . Он варьируется в зависимости от массы объекта и может быть рассчитан по формуле. Объем этой сферы настолько мал, что по сравнению с массой объекта он почти равен нулю.Поскольку масса черных дыр так сильно сгущена, они обладают чрезвычайно сильным гравитационным притяжением, так что другие объекты не могут избежать его, и ни один из них не может светиться. Черные дыры не отражают свет, поэтому они кажутся абсолютно черными. Вот почему их называют черными дырами. Ученые считают, что крупные звезды в конце своей жизни превращаются в черные дыры и могут увеличиваться в массе за счет поглощения других объектов, находящихся в заданном радиусе.

Ссылки

Эта статья была написана Катериной Юрием

У вас есть трудности с переводом единицы измерения на другой язык? Помощь доступна! Разместите свой вопрос в TCTerms и вы получите ответ от опытных технических переводчиков в считанные минуты.

Перевести единицы: ньютон [Н] в джоуль на метр [Дж/м] • Конвертер силы • Популярные конвертеры единиц • Компактный калькулятор • Онлайн-конвертеры единиц измерения Конвертер напряжения, модуля ЮнгаПреобразователь энергии и работыПреобразователь силыПреобразователь силыПреобразователь времениПреобразователь линейной скорости и скоростиПреобразователь углаПреобразователь эффективности использования топлива, расхода топлива и экономии топливаКонвертер чиселКонвертер единиц хранения информации и данныхКурсы обмена валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиПреобразователь угловой скорости и частоты вращенияПреобразователь ускоренияПреобразователь углового ускорения КонвертерКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер импульсаИмпульсКонвертер крутящего моментаКонвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты Конвертер температурного интервала Конвертер температурного интервала Конвертер коэффициента теплового расширения Конвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность теплоты, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициента теплопередачиКонвертер объемного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер массового потокаКонвертер молярной концентрацииКонвертер массовой концентрации в раствореДинамический (динамический) Конвертер абсолютной вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер проницаемости, проницаемости, паропроницаемостиКонвертер скорости пропускания паров влагиКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиКонвертер силы светаКонвертер освещенностиПреобразователь разрешения цифрового изображенияПреобразователь частоты и длины волныОптическая мощность (диоп) в конвертер фокусного расстоянияOptical P Конвертер мощности (диоптрии) в увеличение (X)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер плотности поверхностного зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряженности электрического поляКонвертер электрического потенциала и напряжения Конвертер манометровКонвертер уровней в дБм, дБВ, Ваттах и ​​других единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер плотности магнитного потокаМощность поглощенной дозы излучения, суммарная мощность дозы ионизирующего излучения Конвертер мощности дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распадаПреобразователь радиационного воздействияИзлучение. Конвертер поглощенной дозыКонвертер метрических префиксов Конвертер передачи данных Конвертер типографских и цифровых изображений Конвертер единиц измерения объема пиломатериаловКалькулятор молярной массыПериодическая таблица воздействие, которое изменяет движение тела, будь то внешнее движение или движение внутри тела, например изменение его формы.Например, когда камень отпускается, он падает, потому что его притягивает сила земного притяжения. Во время удара он сгибает травинки, на которые падает, — сила веса камня заставляет их двигаться и менять форму.

Сила является вектором, то есть имеет направление. Когда несколько сил действуют на объект и тянут его в разные стороны, эти силы могут быть в равновесии, а это означает, что их векторная сумма равна нулю. В этом случае объект будет покоиться.Камень из предыдущего примера может катиться после удара о землю, но в конце концов он остановится. Сила тяжести по-прежнему тянет его вниз, но в то же время нормальная сила, или сила реакции земли, толкает камень вверх. Суммарная сумма этих сил равна нулю, они находятся в равновесии, и камень не движется.

Единицей силы в системе СИ является ньютон. Один ньютон соответствует чистой силе, которая ускоряет объект массой один килограмм на один метр в секунду в квадрате.

Равновесие

Одним из первых ученых, исследовавших силы и создавших модель их взаимодействия с материей во Вселенной, был Аристотель. Согласно его модели, если чистая векторная сумма сил, действующих на объект, равна нулю, силы находятся в состоянии равновесия, а объект неподвижен. Позже эта модель была исправлена, чтобы включить объекты, движущиеся с постоянной скоростью, когда силы находятся в равновесии. Этот тип равновесия называется динамическим равновесием, а тот, в котором объект находится в состоянии покоя, называется статическим равновесием.

Фундаментальные силы во Вселенной

Силы природы заставляют объекты двигаться или оставаться на месте. В природе существует четыре фундаментальных взаимодействия: сильное, электромагнитное, слабое и гравитационное. Все остальные силы являются подмножествами этих четырех. В отличие от электрических и гравитационных сил сильные и слабые силы воздействуют на материю только на ядерном уровне. Они не работают на больших расстояниях.

Сильная сила

Сильная сила — самая сильная из четырех сил.Он действует на элементы ядра атома, удерживая вместе нейтроны и протоны. Эта сила переносится глюонами и связывает кварки вместе, образуя более крупные частицы. Кварки образуют нейтроны, протоны и другие более крупные частицы. Глюоны — это более мелкие элементарные частицы, не имеющие субструктуры и движущиеся между кварками как переносчики силы. Движение глюонов создает сильное взаимодействие между кварками. Это сила, из которой состоит материя во Вселенной.

Электромагнитная сила

Трансформаторы опорного типа в Киото, Япония

Электромагнитная сила является второй по величине силой.Это взаимодействие между частицами с противоположными или одинаковыми электрическими зарядами. Когда две частицы имеют одинаковый заряд, то есть обе они положительны или обе отрицательны, они отталкиваются друг от друга. Если, с другой стороны, они имеют противоположный заряд, где один положительный, а другой отрицательный, они притягиваются друг к другу. Это движение частиц, которые отталкиваются или притягиваются к другим частицам, и есть электричество — физическое явление, которое мы используем в нашей повседневной жизни и в большинстве технологий.

Электромагнитная сила может объяснить химические реакции, свет и электричество, а также взаимодействие между молекулами, атомами и электронами. Эти взаимодействия между частицами ответственны за форму, которую твердые объекты принимают в мире. Электромагнитная сила препятствует проникновению двух твердых тел друг в друга, поскольку электроны одного объекта отталкивают электроны того же заряда другого объекта. Исторически электрические и магнитные силы рассматривались как отдельные воздействия, но со временем было обнаружено, что они связаны.Большинство объектов имеют нейтральный заряд, но можно изменить заряд объекта, потирая два объекта друг о друга. Электроны будут перемещаться между двумя материалами, притягиваясь к противоположно заряженным электронам в другом материале. Это оставит больше электронов с одинаковым зарядом на поверхности каждого объекта, тем самым изменив доминирующий заряд объекта в целом. Например, если потереть волосы свитером, а затем снять свитер, волосы встанут и «последуют» за свитером.Это связано с тем, что электроны на поверхности волос больше притягиваются к атомам на поверхности свитера, чем электроны на поверхности свитера притягиваются к атомам на поверхности волос. Волосы или другие объекты с аналогичным зарядом также будут притягиваться к нейтрально заряженным поверхностям.

Слабое взаимодействие

Слабое взаимодействие слабее электромагнитного. Точно так же, как глюоны несут сильное взаимодействие, бозоны W и Z несут слабое взаимодействие. Это элементарные частицы, которые испускаются или поглощаются.Бозоны W облегчают процесс радиоактивного распада, в то время как бозоны Z не влияют на частицы, с которыми они вступают в контакт, кроме передачи импульса. Углеродное датирование, процесс определения возраста органического вещества, возможен из-за слабого взаимодействия. Он используется для установления возраста исторических артефактов и основан на оценке распада углерода, присутствующего в этом органическом веществе.

Гравитационная сила

Озеро Онтарио. Миссиссога (Канада). Звездная ночь

Сила гравитации самая слабая из четырех.Он удерживает астрономические объекты на их местах во вселенной, отвечает за приливы и заставляет объекты падать на землю, когда их отпускают. Это сила, которая действует на объекты, притягивая их друг к другу. Сила этого притяжения увеличивается с увеличением массы объекта. Как и другие силы, считается, что она передается частицами, гравитонами, но эти частицы еще не обнаружены. Гравитация влияет на то, как движутся астрономические объекты, и это движение можно рассчитать на основе массы окружающих объектов.Эта зависимость позволила ученым предсказать существование Нептуна, наблюдая за движением Урана до того, как Нептун был замечен в телескоп. Это произошло потому, что движение Урана не соответствовало его предсказанному движению, основанному на астрономических объектах, известных в то время, поэтому ученые пришли к выводу, что другая планета, еще невидимая, должна влиять на его модели движения.

Согласно теории относительности, гравитация также изменяет пространственно-временной континуум, четырехмерное пространство, в котором существует все, включая человека.Согласно этой теории, искривление пространства-времени увеличивается с увеличением массы, и поэтому его легче заметить на объектах размером с планету или больше по массе. Эта кривизна доказана экспериментально и видна при сравнении двух синхронизированных часов, из которых одни неподвижны, а другие движутся на значительное расстояние вдоль тела большой массы. Например, если часы перемещаются по орбите Земли, как в эксперименте Хафеле-Китинга, то время, которое они показывают, будет отставать от неподвижных часов, потому что искривление пространства-времени заставляет время идти медленнее для движущихся часов.

Сила гравитации заставляет объекты ускоряться при падении на другой объект, и это заметно, когда разница в массе между ними велика. Это ускорение можно рассчитать на основе массы объектов. Для объектов, падающих на Землю, она составляет около 9,8 метра в секунду в квадрате.

Приливы и отливы

Морские скалы

Приливы являются примерами действия гравитационной силы. Они вызваны гравитационными силами Луны, Солнца и Земли.В отличие от твердых тел, вода может легко менять форму под действием сил. Поэтому, когда на Землю действуют гравитационные силы Луны и Солнца, земная поверхность не так притягивается этими силами, как вода. Луна и Солнце движутся по небу, а вода на Земле следует за ними, вызывая приливы. Силы, действующие на воду, называются приливными; они представляют собой различные гравитационные силы. Луна, будучи ближе к Земле, имеет более сильную приливную силу по сравнению с Солнцем.Когда приливные силы Солнца и Луны действуют в одном направлении, прилив является самым сильным и называется весенним приливом. Когда эти две силы находятся в оппозиции, прилив самый слабый и называется квадратным приливом.

Приливы случаются с разной частотой в зависимости от географического региона. Поскольку гравитация Луны и Солнца притягивает как воду, так и всю планету Земля, в некоторых районах приливы возникают, когда сила гравитации тянет воду и Землю в одном или разных направлениях.В этом случае пара приливов и отливов происходит дважды за один день. В некоторых районах это происходит только один раз в день. Модели приливов на побережье зависят от формы побережья, глубинных моделей приливов в океане и местоположения Луны и Солнца, а также от взаимодействия их гравитационных сил. В некоторых местах продолжительность времени между приливами может длиться до нескольких лет. В зависимости от береговой линии и глубины океана приливы могут вызывать течения, штормы, изменения характера ветра и колебания атмосферного давления.В некоторых местах используются специальные часы, чтобы рассчитать, когда произойдет следующий прилив. Они настраиваются на основе приливов и отливов в этом районе, и их необходимо перенастраивать при перемещении в другое место. В некоторых районах приливные часы неэффективны, потому что там трудно предсказать приливы.

Приливная сила, которая перемещает воду к берегу и от берега, иногда используется для выработки электроэнергии. Приливные мельницы веками использовали эту силу. Базовая конструкция имеет резервуар для воды, вода поступает во время прилива и выливается во время отлива.Кинетическая энергия протекающей воды приводит в движение колесо мельницы, а вырабатываемая мощность используется для выполнения работы, например, перемалывания зерна в муку. Хотя с этой системой связан ряд проблем, в том числе опасность для экосистемы, в которой построен этот завод, у этого метода производства энергии есть потенциал, поскольку он является возобновляемым и надежным источником энергии.

Неосновные силы

Силы, производные от основных сил, называются неосновными силами.

Нормальная сила

Равновесие

Одной из неосновных сил является нормальная сила, которая действует перпендикулярно поверхности объекта и выталкивает наружу, сопротивляясь давлению других объектов. Когда объект помещается на поверхность, величина нормальной силы равна результирующей силе, давящей на поверхность. На плоской поверхности, когда силы, отличные от силы тяжести, находятся в равновесии, нормальная сила равна силе тяжести по величине и противоположна по направлению.Тогда сумма векторов двух сил равна нулю, и объект неподвижен или движется с постоянной скоростью. Когда объект находится под наклоном и другие силы находятся в равновесии, сумма гравитационных и нормальных сил направлена ​​вниз (но не прямо вниз, перпендикулярно горизонту), и объект скользит вниз по наклону.

Более широкие шины обеспечивают лучшее трение

Трение

Трение — это сила, параллельная поверхности объекта и направленная против его движения.Это происходит, когда два объекта скользят друг относительно друга (кинетическое трение) или когда неподвижный объект помещается на наклонную поверхность (статическое трение). Эта сила используется при приведении объектов в движение, например, при сцеплении колес с землей за счет трения. Без него они не смогли бы приводить в движение транспортные средства. Трение между резиной шин и землей достаточно велико, чтобы гарантировать, что шины не скользят по земле, и обеспечивает качение и лучший контроль направления движения.Трение катящегося объекта, трение качения или сопротивление качению не так сильно, как сухое трение двух объектов, скользящих друг о друга. Трение используется при остановке с применением тормозов — колеса автомобиля затормаживаются за счет сухого трения в дисковых или барабанных тормозах. В некоторых случаях трение нежелательно, поскольку оно замедляет движение и изнашивает механические компоненты. Жидкости или гладкие поверхности используются для минимизации трения.

Интересные факты о силах

Силы могут деформировать твердые тела или изменять объем и давление в жидкостях и газах.Это происходит, когда силы приложены неодинаково к разным частям объекта или вещества. В некоторых случаях, когда к тяжелому объекту прикладывается достаточное усилие, его можно сжать в очень маленькую сферу. Если эта сфера достаточно мала, меньше определенного радиуса, то может образоваться черная дыра. Этот радиус называется радиусом Шварцшильда . Он варьируется в зависимости от массы объекта и может быть рассчитан по формуле. Объем этой сферы настолько мал, что по сравнению с массой объекта он почти равен нулю.Поскольку масса черных дыр так сильно сгущена, они обладают чрезвычайно сильным гравитационным притяжением, так что другие объекты не могут избежать его, и ни один из них не может светиться. Черные дыры не отражают свет, поэтому они кажутся абсолютно черными. Вот почему их называют черными дырами. Ученые считают, что крупные звезды в конце своей жизни превращаются в черные дыры и могут увеличиваться в массе за счет поглощения других объектов, находящихся в заданном радиусе.

Ссылки

Эта статья была написана Катериной Юрием

У вас есть трудности с переводом единицы измерения на другой язык? Помощь доступна! Разместите свой вопрос в TCTerms и вы получите ответ от опытных технических переводчиков в считанные минуты.

Перевести единицы: ньютон [Н] в джоуль на метр [Дж/м] • Конвертер силы • Популярные конвертеры единиц • Компактный калькулятор • Онлайн-конвертеры единиц измерения Конвертер напряжения, модуля ЮнгаПреобразователь энергии и работыПреобразователь силыПреобразователь силыПреобразователь времениПреобразователь линейной скорости и скоростиПреобразователь углаПреобразователь эффективности использования топлива, расхода топлива и экономии топливаКонвертер чиселКонвертер единиц хранения информации и данныхКурсы обмена валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиПреобразователь угловой скорости и частоты вращенияПреобразователь ускоренияПреобразователь углового ускорения КонвертерКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер импульсаИмпульсКонвертер крутящего моментаКонвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты Конвертер температурного интервала Конвертер температурного интервала Конвертер коэффициента теплового расширения Конвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность теплоты, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициента теплопередачиКонвертер объемного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер массового потокаКонвертер молярной концентрацииКонвертер массовой концентрации в раствореДинамический (динамический) Конвертер абсолютной вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер проницаемости, проницаемости, паропроницаемостиКонвертер скорости пропускания паров влагиКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиКонвертер силы светаКонвертер освещенностиПреобразователь разрешения цифрового изображенияПреобразователь частоты и длины волныОптическая мощность (диоп) в конвертер фокусного расстоянияOptical P Конвертер мощности (диоптрии) в увеличение (X)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер плотности поверхностного зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряженности электрического поляКонвертер электрического потенциала и напряжения Конвертер манометровКонвертер уровней в дБм, дБВ, Ваттах и ​​других единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер плотности магнитного потокаМощность поглощенной дозы излучения, суммарная мощность дозы ионизирующего излучения Конвертер мощности дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распадаПреобразователь радиационного воздействияИзлучение. Конвертер поглощенной дозыКонвертер метрических префиксов Конвертер передачи данных Конвертер типографских и цифровых изображений Конвертер единиц измерения объема пиломатериаловКалькулятор молярной массыПериодическая таблица воздействие, которое изменяет движение тела, будь то внешнее движение или движение внутри тела, например изменение его формы.Например, когда камень отпускается, он падает, потому что его притягивает сила земного притяжения. Во время удара он сгибает травинки, на которые падает, — сила веса камня заставляет их двигаться и менять форму.

Сила является вектором, то есть имеет направление. Когда несколько сил действуют на объект и тянут его в разные стороны, эти силы могут быть в равновесии, а это означает, что их векторная сумма равна нулю. В этом случае объект будет покоиться.Камень из предыдущего примера может катиться после удара о землю, но в конце концов он остановится. Сила тяжести по-прежнему тянет его вниз, но в то же время нормальная сила, или сила реакции земли, толкает камень вверх. Суммарная сумма этих сил равна нулю, они находятся в равновесии, и камень не движется.

Единицей силы в системе СИ является ньютон. Один ньютон соответствует чистой силе, которая ускоряет объект массой один килограмм на один метр в секунду в квадрате.

Равновесие

Одним из первых ученых, исследовавших силы и создавших модель их взаимодействия с материей во Вселенной, был Аристотель. Согласно его модели, если чистая векторная сумма сил, действующих на объект, равна нулю, силы находятся в состоянии равновесия, а объект неподвижен. Позже эта модель была исправлена, чтобы включить объекты, движущиеся с постоянной скоростью, когда силы находятся в равновесии. Этот тип равновесия называется динамическим равновесием, а тот, в котором объект находится в состоянии покоя, называется статическим равновесием.

Фундаментальные силы во Вселенной

Силы природы заставляют объекты двигаться или оставаться на месте. В природе существует четыре фундаментальных взаимодействия: сильное, электромагнитное, слабое и гравитационное. Все остальные силы являются подмножествами этих четырех. В отличие от электрических и гравитационных сил сильные и слабые силы воздействуют на материю только на ядерном уровне. Они не работают на больших расстояниях.

Сильная сила

Сильная сила — самая сильная из четырех сил.Он действует на элементы ядра атома, удерживая вместе нейтроны и протоны. Эта сила переносится глюонами и связывает кварки вместе, образуя более крупные частицы. Кварки образуют нейтроны, протоны и другие более крупные частицы. Глюоны — это более мелкие элементарные частицы, не имеющие субструктуры и движущиеся между кварками как переносчики силы. Движение глюонов создает сильное взаимодействие между кварками. Это сила, из которой состоит материя во Вселенной.

Электромагнитная сила

Трансформаторы опорного типа в Киото, Япония

Электромагнитная сила является второй по величине силой.Это взаимодействие между частицами с противоположными или одинаковыми электрическими зарядами. Когда две частицы имеют одинаковый заряд, то есть обе они положительны или обе отрицательны, они отталкиваются друг от друга. Если, с другой стороны, они имеют противоположный заряд, где один положительный, а другой отрицательный, они притягиваются друг к другу. Это движение частиц, которые отталкиваются или притягиваются к другим частицам, и есть электричество — физическое явление, которое мы используем в нашей повседневной жизни и в большинстве технологий.

Электромагнитная сила может объяснить химические реакции, свет и электричество, а также взаимодействие между молекулами, атомами и электронами. Эти взаимодействия между частицами ответственны за форму, которую твердые объекты принимают в мире. Электромагнитная сила препятствует проникновению двух твердых тел друг в друга, поскольку электроны одного объекта отталкивают электроны того же заряда другого объекта. Исторически электрические и магнитные силы рассматривались как отдельные воздействия, но со временем было обнаружено, что они связаны.Большинство объектов имеют нейтральный заряд, но можно изменить заряд объекта, потирая два объекта друг о друга. Электроны будут перемещаться между двумя материалами, притягиваясь к противоположно заряженным электронам в другом материале. Это оставит больше электронов с одинаковым зарядом на поверхности каждого объекта, тем самым изменив доминирующий заряд объекта в целом. Например, если потереть волосы свитером, а затем снять свитер, волосы встанут и «последуют» за свитером.Это связано с тем, что электроны на поверхности волос больше притягиваются к атомам на поверхности свитера, чем электроны на поверхности свитера притягиваются к атомам на поверхности волос. Волосы или другие объекты с аналогичным зарядом также будут притягиваться к нейтрально заряженным поверхностям.

Слабое взаимодействие

Слабое взаимодействие слабее электромагнитного. Точно так же, как глюоны несут сильное взаимодействие, бозоны W и Z несут слабое взаимодействие. Это элементарные частицы, которые испускаются или поглощаются.Бозоны W облегчают процесс радиоактивного распада, в то время как бозоны Z не влияют на частицы, с которыми они вступают в контакт, кроме передачи импульса. Углеродное датирование, процесс определения возраста органического вещества, возможен из-за слабого взаимодействия. Он используется для установления возраста исторических артефактов и основан на оценке распада углерода, присутствующего в этом органическом веществе.

Гравитационная сила

Озеро Онтарио. Миссиссога (Канада). Звездная ночь

Сила гравитации самая слабая из четырех.Он удерживает астрономические объекты на их местах во вселенной, отвечает за приливы и заставляет объекты падать на землю, когда их отпускают. Это сила, которая действует на объекты, притягивая их друг к другу. Сила этого притяжения увеличивается с увеличением массы объекта. Как и другие силы, считается, что она передается частицами, гравитонами, но эти частицы еще не обнаружены. Гравитация влияет на то, как движутся астрономические объекты, и это движение можно рассчитать на основе массы окружающих объектов.Эта зависимость позволила ученым предсказать существование Нептуна, наблюдая за движением Урана до того, как Нептун был замечен в телескоп. Это произошло потому, что движение Урана не соответствовало его предсказанному движению, основанному на астрономических объектах, известных в то время, поэтому ученые пришли к выводу, что другая планета, еще невидимая, должна влиять на его модели движения.

Согласно теории относительности, гравитация также изменяет пространственно-временной континуум, четырехмерное пространство, в котором существует все, включая человека.Согласно этой теории, искривление пространства-времени увеличивается с увеличением массы, и поэтому его легче заметить на объектах размером с планету или больше по массе. Эта кривизна доказана экспериментально и видна при сравнении двух синхронизированных часов, из которых одни неподвижны, а другие движутся на значительное расстояние вдоль тела большой массы. Например, если часы перемещаются по орбите Земли, как в эксперименте Хафеле-Китинга, то время, которое они показывают, будет отставать от неподвижных часов, потому что искривление пространства-времени заставляет время идти медленнее для движущихся часов.

Сила гравитации заставляет объекты ускоряться при падении на другой объект, и это заметно, когда разница в массе между ними велика. Это ускорение можно рассчитать на основе массы объектов. Для объектов, падающих на Землю, она составляет около 9,8 метра в секунду в квадрате.

Приливы и отливы

Морские скалы

Приливы являются примерами силы гравитации в действии. Они вызваны гравитационными силами Луны, Солнца и Земли.В отличие от твердых тел, вода может легко менять форму под действием сил. Поэтому, когда на Землю действуют гравитационные силы Луны и Солнца, земная поверхность не так притягивается этими силами, как вода. Луна и Солнце движутся по небу, а вода на Земле следует за ними, вызывая приливы. Силы, действующие на воду, называются приливными; они представляют собой различные гравитационные силы. Луна, будучи ближе к Земле, имеет более сильную приливную силу по сравнению с Солнцем.Когда приливные силы Солнца и Луны действуют в одном направлении, прилив является самым сильным и называется весенним приливом. Когда эти две силы находятся в оппозиции, прилив самый слабый и называется квадратным приливом.

Приливы случаются с разной частотой в зависимости от географического региона. Поскольку гравитация Луны и Солнца притягивает как воду, так и всю планету Земля, в некоторых районах приливы возникают, когда сила гравитации тянет воду и Землю в одном или разных направлениях.В этом случае пара приливов и отливов происходит дважды за один день. В некоторых районах это происходит только один раз в день. Модели приливов на побережье зависят от формы побережья, глубинных моделей приливов в океане и местоположения Луны и Солнца, а также от взаимодействия их гравитационных сил. В некоторых местах продолжительность времени между приливами может длиться до нескольких лет. В зависимости от береговой линии и глубины океана приливы могут вызывать течения, штормы, изменения характера ветра и колебания атмосферного давления.В некоторых местах используются специальные часы, чтобы рассчитать, когда произойдет следующий прилив. Они настраиваются на основе приливов и отливов в этом районе, и их необходимо перенастраивать при перемещении в другое место. В некоторых районах приливные часы неэффективны, потому что там трудно предсказать приливы.

Приливная сила, которая перемещает воду к берегу и от берега, иногда используется для выработки электроэнергии. Приливные мельницы веками использовали эту силу. Базовая конструкция имеет резервуар для воды, вода поступает во время прилива и выливается во время отлива.Кинетическая энергия протекающей воды приводит в движение колесо мельницы, а вырабатываемая мощность используется для выполнения работы, например, перемалывания зерна в муку. Хотя с этой системой связан ряд проблем, в том числе опасность для экосистемы, в которой построен этот завод, у этого метода производства энергии есть потенциал, поскольку он является возобновляемым и надежным источником энергии.

Неосновные силы

Силы, производные от основных сил, называются неосновными силами.

Нормальная сила

Равновесие

Одной из неосновных сил является нормальная сила, которая действует перпендикулярно поверхности объекта и выталкивает наружу, сопротивляясь давлению других объектов. Когда объект помещается на поверхность, величина нормальной силы равна результирующей силе, давящей на поверхность. На плоской поверхности, когда силы, отличные от силы тяжести, находятся в равновесии, нормальная сила равна силе тяжести по величине и противоположна по направлению.Тогда сумма векторов двух сил равна нулю, и объект неподвижен или движется с постоянной скоростью. Когда объект находится под наклоном и другие силы находятся в равновесии, сумма гравитационных и нормальных сил направлена ​​вниз (но не прямо вниз, перпендикулярно горизонту), и объект скользит вниз по наклону.

Более широкие шины обеспечивают лучшее трение

Трение

Трение — это сила, параллельная поверхности объекта и направленная против его движения.Это происходит, когда два объекта скользят друг относительно друга (кинетическое трение) или когда неподвижный объект помещается на наклонную поверхность (статическое трение). Эта сила используется при приведении объектов в движение, например, при сцеплении колес с землей за счет трения. Без него они не смогли бы приводить в движение транспортные средства. Трение между резиной шин и землей достаточно велико, чтобы гарантировать, что шины не скользят по земле, и обеспечивает качение и лучший контроль направления движения.Трение катящегося объекта, трение качения или сопротивление качению не так сильно, как сухое трение двух объектов, скользящих друг о друга. Трение используется при остановке с применением тормозов — колеса автомобиля затормаживаются за счет сухого трения в дисковых или барабанных тормозах. В некоторых случаях трение нежелательно, поскольку оно замедляет движение и изнашивает механические компоненты. Жидкости или гладкие поверхности используются для минимизации трения.

Интересные факты о силах

Силы могут деформировать твердые тела или изменять объем и давление в жидкостях и газах.Это происходит, когда силы приложены неодинаково к разным частям объекта или вещества. В некоторых случаях, когда к тяжелому объекту прикладывается достаточное усилие, его можно сжать в очень маленькую сферу. Если эта сфера достаточно мала, меньше определенного радиуса, то может образоваться черная дыра. Этот радиус называется радиусом Шварцшильда . Он варьируется в зависимости от массы объекта и может быть рассчитан по формуле. Объем этой сферы настолько мал, что по сравнению с массой объекта он почти равен нулю.Поскольку масса черных дыр так сильно сгущена, они обладают чрезвычайно сильным гравитационным притяжением, так что другие объекты не могут избежать его, и ни один из них не может светиться. Черные дыры не отражают свет, поэтому они кажутся абсолютно черными. Вот почему их называют черными дырами. Ученые считают, что крупные звезды в конце своей жизни превращаются в черные дыры и могут увеличиваться в массе за счет поглощения других объектов, находящихся в заданном радиусе.

Ссылки

Эта статья была написана Катериной Юрием

У вас есть трудности с переводом единицы измерения на другой язык? Помощь доступна! Разместите свой вопрос в TCTerms и вы получите ответ от опытных технических переводчиков в считанные минуты.

Перевести единицы: ньютон [Н] в джоуль на метр [Дж/м] • Конвертер силы • Популярные конвертеры единиц • Компактный калькулятор • Онлайн-конвертеры единиц измерения Конвертер напряжения, модуля ЮнгаПреобразователь энергии и работыПреобразователь силыПреобразователь силыПреобразователь времениПреобразователь линейной скорости и скоростиПреобразователь углаПреобразователь эффективности использования топлива, расхода топлива и экономии топливаКонвертер чиселКонвертер единиц хранения информации и данныхКурсы обмена валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиПреобразователь угловой скорости и частоты вращенияПреобразователь ускоренияПреобразователь углового ускорения КонвертерКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер импульсаИмпульсКонвертер крутящего моментаКонвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты Конвертер температурного интервала Конвертер температурного интервала Конвертер коэффициента теплового расширения Конвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность теплоты, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициента теплопередачиКонвертер объемного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер массового потокаКонвертер молярной концентрацииКонвертер массовой концентрации в раствореДинамический (динамический) Конвертер абсолютной вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер проницаемости, проницаемости, паропроницаемостиКонвертер скорости пропускания паров влагиКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиКонвертер силы светаКонвертер освещенностиПреобразователь разрешения цифрового изображенияПреобразователь частоты и длины волныОптическая мощность (диоп) в конвертер фокусного расстоянияOptical P Конвертер мощности (диоптрии) в увеличение (X)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер плотности поверхностного зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряженности электрического поляКонвертер электрического потенциала и напряжения Конвертер манометровКонвертер уровней в дБм, дБВ, Ваттах и ​​других единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер плотности магнитного потокаМощность поглощенной дозы излучения, суммарная мощность дозы ионизирующего излучения Конвертер мощности дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распадаПреобразователь радиационного воздействияИзлучение. Конвертер поглощенной дозыКонвертер метрических префиксов Конвертер передачи данных Конвертер типографских и цифровых изображений Конвертер единиц измерения объема пиломатериаловКалькулятор молярной массыПериодическая таблица воздействие, которое изменяет движение тела, будь то внешнее движение или движение внутри тела, например изменение его формы.Например, когда камень отпускается, он падает, потому что его притягивает сила земного притяжения. Во время удара он сгибает травинки, на которые падает, — сила веса камня заставляет их двигаться и менять форму.

Сила является вектором, то есть имеет направление. Когда несколько сил действуют на объект и тянут его в разные стороны, эти силы могут быть в равновесии, а это означает, что их векторная сумма равна нулю. В этом случае объект будет покоиться.Камень из предыдущего примера может катиться после удара о землю, но в конце концов он остановится. Сила тяжести по-прежнему тянет его вниз, но в то же время нормальная сила, или сила реакции земли, толкает камень вверх. Суммарная сумма этих сил равна нулю, они находятся в равновесии, и камень не движется.

Единицей силы в системе СИ является ньютон. Один ньютон соответствует чистой силе, которая ускоряет объект массой один килограмм на один метр в секунду в квадрате.

Равновесие

Одним из первых ученых, исследовавших силы и создавших модель их взаимодействия с материей во Вселенной, был Аристотель. Согласно его модели, если чистая векторная сумма сил, действующих на объект, равна нулю, силы находятся в состоянии равновесия, а объект неподвижен. Позже эта модель была исправлена, чтобы включить объекты, движущиеся с постоянной скоростью, когда силы находятся в равновесии. Этот тип равновесия называется динамическим равновесием, а тот, в котором объект находится в состоянии покоя, называется статическим равновесием.

Фундаментальные силы во Вселенной

Силы природы заставляют объекты двигаться или оставаться на месте. В природе существует четыре фундаментальных взаимодействия: сильное, электромагнитное, слабое и гравитационное. Все остальные силы являются подмножествами этих четырех. В отличие от электрических и гравитационных сил сильные и слабые силы воздействуют на материю только на ядерном уровне. Они не работают на больших расстояниях.

Сильная сила

Сильная сила — самая сильная из четырех сил.Он действует на элементы ядра атома, удерживая вместе нейтроны и протоны. Эта сила переносится глюонами и связывает кварки вместе, образуя более крупные частицы. Кварки образуют нейтроны, протоны и другие более крупные частицы. Глюоны — это более мелкие элементарные частицы, не имеющие субструктуры и движущиеся между кварками как переносчики силы. Движение глюонов создает сильное взаимодействие между кварками. Это сила, из которой состоит материя во Вселенной.

Электромагнитная сила

Трансформаторы опорного типа в Киото, Япония

Электромагнитная сила является второй по величине силой.Это взаимодействие между частицами с противоположными или одинаковыми электрическими зарядами. Когда две частицы имеют одинаковый заряд, то есть обе они положительны или обе отрицательны, они отталкиваются друг от друга. Если, с другой стороны, они имеют противоположный заряд, где один положительный, а другой отрицательный, они притягиваются друг к другу. Это движение частиц, которые отталкиваются или притягиваются к другим частицам, и есть электричество — физическое явление, которое мы используем в нашей повседневной жизни и в большинстве технологий.

Электромагнитная сила может объяснить химические реакции, свет и электричество, а также взаимодействие между молекулами, атомами и электронами. Эти взаимодействия между частицами ответственны за форму, которую твердые объекты принимают в мире. Электромагнитная сила препятствует проникновению двух твердых тел друг в друга, поскольку электроны одного объекта отталкивают электроны того же заряда другого объекта. Исторически электрические и магнитные силы рассматривались как отдельные воздействия, но со временем было обнаружено, что они связаны.Большинство объектов имеют нейтральный заряд, но можно изменить заряд объекта, потирая два объекта друг о друга. Электроны будут перемещаться между двумя материалами, притягиваясь к противоположно заряженным электронам в другом материале. Это оставит больше электронов с одинаковым зарядом на поверхности каждого объекта, тем самым изменив доминирующий заряд объекта в целом. Например, если потереть волосы свитером, а затем снять свитер, волосы встанут и «последуют» за свитером.Это связано с тем, что электроны на поверхности волос больше притягиваются к атомам на поверхности свитера, чем электроны на поверхности свитера притягиваются к атомам на поверхности волос. Волосы или другие объекты с аналогичным зарядом также будут притягиваться к нейтрально заряженным поверхностям.

Слабое взаимодействие

Слабое взаимодействие слабее электромагнитного. Точно так же, как глюоны несут сильное взаимодействие, бозоны W и Z несут слабое взаимодействие. Это элементарные частицы, которые испускаются или поглощаются.Бозоны W облегчают процесс радиоактивного распада, в то время как бозоны Z не влияют на частицы, с которыми они вступают в контакт, кроме передачи импульса. Углеродное датирование, процесс определения возраста органического вещества, возможен из-за слабого взаимодействия. Он используется для установления возраста исторических артефактов и основан на оценке распада углерода, присутствующего в этом органическом веществе.

Гравитационная сила

Озеро Онтарио. Миссиссога (Канада). Звездная ночь

Сила гравитации самая слабая из четырех.Он удерживает астрономические объекты на их местах во вселенной, отвечает за приливы и заставляет объекты падать на землю, когда их отпускают. Это сила, которая действует на объекты, притягивая их друг к другу. Сила этого притяжения увеличивается с увеличением массы объекта. Как и другие силы, считается, что она передается частицами, гравитонами, но эти частицы еще не обнаружены. Гравитация влияет на то, как движутся астрономические объекты, и это движение можно рассчитать на основе массы окружающих объектов.Эта зависимость позволила ученым предсказать существование Нептуна, наблюдая за движением Урана до того, как Нептун был замечен в телескоп. Это произошло потому, что движение Урана не соответствовало его предсказанному движению, основанному на астрономических объектах, известных в то время, поэтому ученые пришли к выводу, что другая планета, еще невидимая, должна влиять на его модели движения.

Согласно теории относительности, гравитация также изменяет пространственно-временной континуум, четырехмерное пространство, в котором существует все, включая человека.Согласно этой теории, искривление пространства-времени увеличивается с увеличением массы, и поэтому его легче заметить на объектах размером с планету или больше по массе. Эта кривизна доказана экспериментально и видна при сравнении двух синхронизированных часов, из которых одни неподвижны, а другие движутся на значительное расстояние вдоль тела большой массы. Например, если часы перемещаются по орбите Земли, как в эксперименте Хафеле-Китинга, то время, которое они показывают, будет отставать от неподвижных часов, потому что искривление пространства-времени заставляет время идти медленнее для движущихся часов.

Сила гравитации заставляет объекты ускоряться при падении на другой объект, и это заметно, когда разница в массе между ними велика. Это ускорение можно рассчитать на основе массы объектов. Для объектов, падающих на Землю, она составляет около 9,8 метра в секунду в квадрате.

Приливы и отливы

Морские скалы

Приливы являются примерами силы гравитации в действии. Они вызваны гравитационными силами Луны, Солнца и Земли.В отличие от твердых тел, вода может легко менять форму под действием сил. Поэтому, когда на Землю действуют гравитационные силы Луны и Солнца, земная поверхность не так притягивается этими силами, как вода. Луна и Солнце движутся по небу, а вода на Земле следует за ними, вызывая приливы. Силы, действующие на воду, называются приливными; они представляют собой различные гравитационные силы. Луна, будучи ближе к Земле, имеет более сильную приливную силу по сравнению с Солнцем.Когда приливные силы Солнца и Луны действуют в одном направлении, прилив является самым сильным и называется весенним приливом. Когда эти две силы находятся в оппозиции, прилив самый слабый и называется квадратным приливом.

Приливы случаются с разной частотой в зависимости от географического региона. Поскольку гравитация Луны и Солнца притягивает как воду, так и всю планету Земля, в некоторых районах приливы возникают, когда сила гравитации тянет воду и Землю в одном или разных направлениях.В этом случае пара приливов и отливов происходит дважды за один день. В некоторых районах это происходит только один раз в день. Модели приливов на побережье зависят от формы побережья, глубинных моделей приливов в океане и местоположения Луны и Солнца, а также от взаимодействия их гравитационных сил. В некоторых местах продолжительность времени между приливами может длиться до нескольких лет. В зависимости от береговой линии и глубины океана приливы могут вызывать течения, штормы, изменения характера ветра и колебания атмосферного давления.В некоторых местах используются специальные часы, чтобы рассчитать, когда произойдет следующий прилив. Они настраиваются на основе приливов и отливов в этом районе, и их необходимо перенастраивать при перемещении в другое место. В некоторых районах приливные часы неэффективны, потому что там трудно предсказать приливы.

Приливная сила, которая перемещает воду к берегу и от берега, иногда используется для выработки электроэнергии. Приливные мельницы веками использовали эту силу. Базовая конструкция имеет резервуар для воды, вода поступает во время прилива и выливается во время отлива.Кинетическая энергия протекающей воды приводит в движение колесо мельницы, а вырабатываемая мощность используется для выполнения работы, например, перемалывания зерна в муку. Хотя с этой системой связан ряд проблем, в том числе опасность для экосистемы, в которой построен этот завод, у этого метода производства энергии есть потенциал, поскольку он является возобновляемым и надежным источником энергии.

Неосновные силы

Силы, производные от основных сил, называются неосновными силами.

Нормальная сила

Равновесие

Одной из неосновных сил является нормальная сила, которая действует перпендикулярно поверхности объекта и выталкивает наружу, сопротивляясь давлению других объектов. Когда объект помещается на поверхность, величина нормальной силы равна результирующей силе, давящей на поверхность. На плоской поверхности, когда силы, отличные от силы тяжести, находятся в равновесии, нормальная сила равна силе тяжести по величине и противоположна по направлению.Тогда сумма векторов двух сил равна нулю, и объект неподвижен или движется с постоянной скоростью. Когда объект находится под наклоном и другие силы находятся в равновесии, сумма гравитационных и нормальных сил направлена ​​вниз (но не прямо вниз, перпендикулярно горизонту), и объект скользит вниз по наклону.

Более широкие шины обеспечивают лучшее трение

Трение

Трение — это сила, параллельная поверхности объекта и направленная против его движения.Это происходит, когда два объекта скользят друг относительно друга (кинетическое трение) или когда неподвижный объект помещается на наклонную поверхность (статическое трение). Эта сила используется при приведении объектов в движение, например, при сцеплении колес с землей за счет трения. Без него они не смогли бы приводить в движение транспортные средства. Трение между резиной шин и землей достаточно велико, чтобы гарантировать, что шины не скользят по земле, и обеспечивает качение и лучший контроль направления движения.Трение катящегося объекта, трение качения или сопротивление качению не так сильно, как сухое трение двух объектов, скользящих друг о друга. Трение используется при остановке с применением тормозов — колеса автомобиля затормаживаются за счет сухого трения в дисковых или барабанных тормозах. В некоторых случаях трение нежелательно, поскольку оно замедляет движение и изнашивает механические компоненты. Жидкости или гладкие поверхности используются для минимизации трения.

Интересные факты о силах

Силы могут деформировать твердые тела или изменять объем и давление в жидкостях и газах.Это происходит, когда силы приложены неодинаково к разным частям объекта или вещества. В некоторых случаях, когда к тяжелому объекту прикладывается достаточное усилие, его можно сжать в очень маленькую сферу. Если эта сфера достаточно мала, меньше определенного радиуса, то может образоваться черная дыра. Этот радиус называется радиусом Шварцшильда . Он варьируется в зависимости от массы объекта и может быть рассчитан по формуле. Объем этой сферы настолько мал, что по сравнению с массой объекта он почти равен нулю.Поскольку масса черных дыр так сильно сгущена, они обладают чрезвычайно сильным гравитационным притяжением, так что другие объекты не могут избежать его, и ни один из них не может светиться. Черные дыры не отражают свет, поэтому они кажутся абсолютно черными. Вот почему их называют черными дырами. Ученые считают, что крупные звезды в конце своей жизни превращаются в черные дыры и могут увеличиваться в массе за счет поглощения других объектов, находящихся в заданном радиусе.

Ссылки

Эта статья была написана Катериной Юрием

У вас есть трудности с переводом единицы измерения на другой язык? Помощь доступна! Разместите свой вопрос в TCTerms и вы получите ответ от опытных технических переводчиков в считанные минуты.

Перевести единицы: ньютон [Н] в джоуль на метр [Дж/м] • Конвертер силы • Популярные конвертеры единиц • Компактный калькулятор • Онлайн-конвертеры единиц измерения Конвертер напряжения, модуля ЮнгаПреобразователь энергии и работыПреобразователь силыПреобразователь силыПреобразователь времениПреобразователь линейной скорости и скоростиПреобразователь углаПреобразователь эффективности использования топлива, расхода топлива и экономии топливаКонвертер чиселКонвертер единиц хранения информации и данныхКурсы обмена валютРазмеры женской одежды и обувиРазмеры мужской одежды и обувиПреобразователь угловой скорости и частоты вращенияПреобразователь ускоренияПреобразователь углового ускорения КонвертерКонвертер плотностиКонвертер удельного объемаКонвертер момента инерцииКонвертер момента силыКонвертер импульсаИмпульсКонвертер крутящего моментаКонвертер удельной энергии, теплоты сгорания (на массу) Конвертер удельной энергии, теплоты Конвертер температурного интервала Конвертер температурного интервала Конвертер коэффициента теплового расширения Конвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность теплоты, плотность пожарной нагрузкиКонвертер плотности теплового потокаКонвертер коэффициента теплопередачиКонвертер объемного расходаКонвертер массового расходаКонвертер молярного расходаКонвертер массового потокаКонвертер молярной концентрацииКонвертер массовой концентрации в раствореДинамический (динамический) Конвертер абсолютной вязкостиКонвертер кинематической вязкостиКонвертер поверхностного натяженияКонвертер проницаемости, проницаемости, паропроницаемостиКонвертер скорости пропускания паров влагиКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL)Конвертер уровня звукового давления с выбираемым эталонным давлениемКонвертер яркостиКонвертер силы светаКонвертер освещенностиПреобразователь разрешения цифрового изображенияПреобразователь частоты и длины волныОптическая мощность (диоп) в конвертер фокусного расстоянияOptical P Конвертер мощности (диоптрии) в увеличение (X)Конвертер электрического зарядаКонвертер линейной плотности зарядаКонвертер плотности поверхностного зарядаКонвертер объемной плотности зарядаКонвертер электрического токаКонвертер линейной плотности токаКонвертер поверхностной плотности токаКонвертер напряженности электрического поляКонвертер электрического потенциала и напряжения Конвертер манометровКонвертер уровней в дБм, дБВ, Ваттах и ​​других единицахКонвертер магнитодвижущей силыКонвертер напряженности магнитного поляКонвертер магнитного потокаКонвертер плотности магнитного потокаМощность поглощенной дозы излучения, суммарная мощность дозы ионизирующего излучения Конвертер мощности дозы ионизирующего излученияРадиоактивность.Преобразователь радиоактивного распадаПреобразователь радиационного воздействияИзлучение. Конвертер поглощенной дозыКонвертер метрических префиксов Конвертер передачи данных Конвертер типографских и цифровых изображений Конвертер единиц измерения объема пиломатериаловКалькулятор молярной массыПериодическая таблица воздействие, изменяющее движение тела, будь то внешнее движение или движение внутри тела, например изменение его формы.Например, когда камень отпускается, он падает, потому что его притягивает сила земного притяжения. Во время удара он сгибает травинки, на которые падает, — сила веса камня заставляет их двигаться и менять форму.

Сила является вектором, то есть имеет направление. Когда несколько сил действуют на объект и тянут его в разные стороны, эти силы могут быть в равновесии, а это означает, что их векторная сумма равна нулю. В этом случае объект будет покоиться.Камень из предыдущего примера может катиться после удара о землю, но в конце концов он остановится. Сила тяжести по-прежнему тянет его вниз, но в то же время нормальная сила, или сила реакции земли, толкает камень вверх. Суммарная сумма этих сил равна нулю, они находятся в равновесии, и камень не движется.

Единицей силы в системе СИ является ньютон. Один ньютон соответствует чистой силе, которая ускоряет объект массой один килограмм на один метр в секунду в квадрате.

Равновесие

Одним из первых ученых, исследовавших силы и создавших модель их взаимодействия с материей во Вселенной, был Аристотель. Согласно его модели, если чистая векторная сумма сил, действующих на объект, равна нулю, силы находятся в состоянии равновесия, а объект неподвижен. Позже эта модель была исправлена, чтобы включить объекты, движущиеся с постоянной скоростью, когда силы находятся в равновесии. Этот тип равновесия называется динамическим равновесием, а тот, в котором объект находится в состоянии покоя, называется статическим равновесием.

Фундаментальные силы во Вселенной

Силы природы заставляют объекты двигаться или оставаться на месте. В природе существует четыре фундаментальных взаимодействия: сильное, электромагнитное, слабое и гравитационное. Все остальные силы являются подмножествами этих четырех. В отличие от электрических и гравитационных сил сильные и слабые силы воздействуют на материю только на ядерном уровне. Они не работают на больших расстояниях.

Сильная сила

Сильная сила — самая сильная из четырех сил.Он действует на элементы ядра атома, удерживая вместе нейтроны и протоны. Эта сила переносится глюонами и связывает кварки вместе, образуя более крупные частицы. Кварки образуют нейтроны, протоны и другие более крупные частицы. Глюоны — это более мелкие элементарные частицы, не имеющие субструктуры и движущиеся между кварками как переносчики силы. Движение глюонов создает сильное взаимодействие между кварками. Это сила, из которой состоит материя во Вселенной.

Электромагнитная сила

Трансформаторы опорного типа в Киото, Япония

Электромагнитная сила является второй по величине силой.Это взаимодействие между частицами с противоположными или одинаковыми электрическими зарядами. Когда две частицы имеют одинаковый заряд, то есть обе они положительны или обе отрицательны, они отталкиваются друг от друга. Если, с другой стороны, они имеют противоположный заряд, где один положительный, а другой отрицательный, они притягиваются друг к другу. Это движение частиц, которые отталкиваются или притягиваются к другим частицам, и есть электричество — физическое явление, которое мы используем в нашей повседневной жизни и в большинстве технологий.

Электромагнитная сила может объяснить химические реакции, свет и электричество, а также взаимодействие между молекулами, атомами и электронами. Эти взаимодействия между частицами ответственны за форму, которую твердые объекты принимают в мире. Электромагнитная сила препятствует проникновению двух твердых тел друг в друга, поскольку электроны одного объекта отталкивают электроны того же заряда другого объекта. Исторически электрические и магнитные силы рассматривались как отдельные воздействия, но со временем было обнаружено, что они связаны.Большинство объектов имеют нейтральный заряд, но можно изменить заряд объекта, потирая два объекта друг о друга. Электроны будут перемещаться между двумя материалами, притягиваясь к противоположно заряженным электронам в другом материале. Это оставит больше электронов с одинаковым зарядом на поверхности каждого объекта, тем самым изменив доминирующий заряд объекта в целом. Например, если потереть волосы свитером, а затем снять свитер, волосы встанут и «последуют» за свитером.Это связано с тем, что электроны на поверхности волос больше притягиваются к атомам на поверхности свитера, чем электроны на поверхности свитера притягиваются к атомам на поверхности волос. Волосы или другие объекты с аналогичным зарядом также будут притягиваться к нейтрально заряженным поверхностям.

Слабое взаимодействие

Слабое взаимодействие слабее электромагнитного. Точно так же, как глюоны несут сильное взаимодействие, бозоны W и Z несут слабое взаимодействие. Это элементарные частицы, которые испускаются или поглощаются.Бозоны W облегчают процесс радиоактивного распада, в то время как бозоны Z не влияют на частицы, с которыми они вступают в контакт, кроме передачи импульса. Углеродное датирование, процесс определения возраста органического вещества, возможен из-за слабого взаимодействия. Он используется для установления возраста исторических артефактов и основан на оценке распада углерода, присутствующего в этом органическом веществе.

Гравитационная сила

Озеро Онтарио. Миссиссога (Канада). Звездная ночь

Сила гравитации самая слабая из четырех.Он удерживает астрономические объекты на их местах во вселенной, отвечает за приливы и заставляет объекты падать на землю, когда их отпускают. Это сила, которая действует на объекты, притягивая их друг к другу. Сила этого притяжения увеличивается с увеличением массы объекта. Как и другие силы, считается, что она передается частицами, гравитонами, но эти частицы еще не обнаружены. Гравитация влияет на то, как движутся астрономические объекты, и это движение можно рассчитать на основе массы окружающих объектов.Эта зависимость позволила ученым предсказать существование Нептуна, наблюдая за движением Урана до того, как Нептун был замечен в телескоп. Это произошло потому, что движение Урана не соответствовало его предсказанному движению, основанному на астрономических объектах, известных в то время, поэтому ученые пришли к выводу, что другая планета, еще невидимая, должна влиять на его модели движения.

Согласно теории относительности, гравитация также изменяет пространственно-временной континуум, четырехмерное пространство, в котором существует все, включая человека.Согласно этой теории, искривление пространства-времени увеличивается с увеличением массы, и поэтому его легче заметить на объектах размером с планету или больше по массе. Эта кривизна доказана экспериментально и видна при сравнении двух синхронизированных часов, из которых одни неподвижны, а другие движутся на значительное расстояние вдоль тела большой массы. Например, если часы перемещаются по орбите Земли, как в эксперименте Хафеле-Китинга, то время, которое они показывают, будет отставать от неподвижных часов, потому что искривление пространства-времени заставляет время идти медленнее для движущихся часов.

Сила гравитации заставляет объекты ускоряться при падении на другой объект, и это заметно, когда разница в массе между ними велика. Это ускорение можно рассчитать на основе массы объектов. Для объектов, падающих на Землю, она составляет около 9,8 метра в секунду в квадрате.

Приливы и отливы

Морские скалы

Приливы являются примерами силы гравитации в действии. Они вызваны гравитационными силами Луны, Солнца и Земли.В отличие от твердых тел, вода может легко менять форму под действием сил. Поэтому, когда на Землю действуют гравитационные силы Луны и Солнца, земная поверхность не так притягивается этими силами, как вода. Луна и Солнце движутся по небу, а вода на Земле следует за ними, вызывая приливы. Силы, действующие на воду, называются приливными; они представляют собой различные гравитационные силы. Луна, будучи ближе к Земле, имеет более сильную приливную силу по сравнению с Солнцем.Когда приливные силы Солнца и Луны действуют в одном направлении, прилив является самым сильным и называется весенним приливом. Когда эти две силы находятся в оппозиции, прилив самый слабый и называется квази-приливом.

Приливы случаются с разной частотой в зависимости от географического региона. Поскольку гравитация Луны и Солнца притягивает как воду, так и всю планету Земля, в некоторых районах приливы возникают, когда сила гравитации тянет воду и Землю в одном или разных направлениях.В этом случае пара приливов и отливов происходит дважды за один день. В некоторых районах это происходит только один раз в день. Модели приливов на побережье зависят от формы побережья, глубинных моделей приливов в океане и местоположения Луны и Солнца, а также от взаимодействия их гравитационных сил. В некоторых местах продолжительность времени между приливами может длиться до нескольких лет. В зависимости от береговой линии и глубины океана приливы могут вызывать течения, штормы, изменения характера ветра и колебания атмосферного давления.В некоторых местах используются специальные часы, чтобы рассчитать, когда произойдет следующий прилив. Они настраиваются на основе приливов и отливов в этом районе, и их необходимо перенастраивать при перемещении в другое место. В некоторых районах приливные часы неэффективны, потому что там трудно предсказать приливы.

Приливная сила, которая перемещает воду к берегу и от берега, иногда используется для выработки электроэнергии. Приливные мельницы веками использовали эту силу. Базовая конструкция имеет резервуар для воды, вода поступает во время прилива и выливается во время отлива.Кинетическая энергия протекающей воды приводит в движение колесо мельницы, а вырабатываемая мощность используется для выполнения работы, например, перемалывания зерна в муку. Хотя с этой системой связан ряд проблем, в том числе опасность для экосистемы, в которой построен этот завод, у этого метода производства энергии есть потенциал, поскольку он является возобновляемым и надежным источником энергии.

Неосновные силы

Силы, производные от основных сил, называются неосновными силами.

Нормальная сила

Равновесие

Одной из неосновных сил является нормальная сила, которая действует перпендикулярно поверхности объекта и выталкивает наружу, сопротивляясь давлению других объектов. Когда объект помещается на поверхность, величина нормальной силы равна результирующей силе, давящей на поверхность. На плоской поверхности, когда силы, отличные от силы тяжести, находятся в равновесии, нормальная сила равна силе тяжести по величине и противоположна по направлению.Тогда сумма векторов двух сил равна нулю, и объект неподвижен или движется с постоянной скоростью. Когда объект находится под наклоном и другие силы находятся в равновесии, сумма гравитационных и нормальных сил направлена ​​вниз (но не прямо вниз, перпендикулярно горизонту), и объект скользит вниз по наклону.

Более широкие шины обеспечивают лучшее трение

Трение

Трение — это сила, параллельная поверхности объекта и направленная против его движения.Это происходит, когда два объекта скользят друг относительно друга (кинетическое трение) или когда неподвижный объект помещается на наклонную поверхность (статическое трение). Эта сила используется при приведении объектов в движение, например, при сцеплении колес с землей за счет трения. Без него они не смогли бы приводить в движение транспортные средства. Трение между резиной шин и землей достаточно сильное, чтобы гарантировать, что шины не скользят по земле, и обеспечивает качение и лучший контроль направления движения.Трение катящегося объекта, трение качения или сопротивление качению не так сильно, как сухое трение двух объектов, скользящих друг о друга. Трение используется при остановке с применением тормозов — колеса автомобиля затормаживаются за счет сухого трения в дисковых или барабанных тормозах. В некоторых случаях трение нежелательно, поскольку оно замедляет движение и изнашивает механические компоненты. Жидкости или гладкие поверхности используются для минимизации трения.

Интересные факты о силах

Силы могут деформировать твердые тела или изменять объем и давление в жидкостях и газах.Это происходит, когда силы приложены неодинаково к разным частям объекта или вещества. В некоторых случаях, когда к тяжелому объекту прикладывается достаточное усилие, его можно сжать в очень маленькую сферу. Если эта сфера достаточно мала, меньше определенного радиуса, то может образоваться черная дыра. Этот радиус называется радиусом Шварцшильда . Он варьируется в зависимости от массы объекта и может быть рассчитан по формуле. Объем этой сферы настолько мал, что по сравнению с массой объекта он почти равен нулю.Поскольку масса черных дыр так сильно сгущена, они обладают чрезвычайно сильным гравитационным притяжением, так что другие объекты не могут избежать его, и ни один из них не может светиться. Черные дыры не отражают свет, поэтому они кажутся абсолютно черными. Вот почему их называют черными дырами. Ученые считают, что крупные звезды в конце своей жизни превращаются в черные дыры и могут увеличиваться в массе за счет поглощения других объектов, находящихся в заданном радиусе.

Ссылки

Эта статья была написана Катериной Юрием

У вас есть трудности с переводом единицы измерения на другой язык? Помощь доступна! Разместите свой вопрос в TCTerms и вы получите ответ от опытных технических переводчиков в считанные минуты.

Перевести Джоули на метр в Килограмм-сила (Дж/м → кгс)

1 Джоулей на метр =  0,102  Килограмм-сила 10 Джоулей на метр = 1,0197 Килограмм-сила 2500 Джоули на метр = 254,93 Килограмм-сила
2 Джоулей на метр = 0,2039 Килограмм-сила 20 Джоулей на метр = 2.0394 Килограмм-сила 5000 Джоули на метр = 509,86 Килограмм-сила
3 Джоулей на метр = 0,3059 Килограмм-сила 30 Джоулей на метр = 3,0591 Килограмм-сила 10000 Джоулей на метр = 1019,72 Килограмм-сила
4 Джоули на метр = 0,4079 Килограмм-сила 40 Джоулей на метр = 4.0789 Килограмм-сила 25000 Джоули на метр = 2549,29 Килограмм-сила
5 Джоулей на метр = 0,5099 Килограмм-сила 50 Джоулей на метр = 5,0986 Килограмм-сила 50000 Джоули на метр = 5098,58 Килограмм-сила
6 Джоулей на метр = 0,6118 Килограмм-сила 100 Джоулей на метр = 10.1972 Килограмм-сила 100000 Джоулей на метр = 10197,16 Килограмм-сила
7 Джоулей на метр = 0,7138 Килограмм-сила 250 Джоулей на метр = 25,4929 Килограмм-сила 250000 Джоули на метр = 25492,91 Килограмм-сила
8 Джоулей на метр = 0,8158 Килограмм-сила 500 Джоулей на метр = 50.9858 Килограмм-сила 500000 Джоули на метр = 50985,81 Килограмм-сила
9 Джоули на метр = 0,9177 Килограмм-сила 1000 Джоулей на метр = 101,97 Килограмм-сила 1000000 Джоули на метр = 101971,62 Килограмм-сила

Полезные таблицы

Полезные таблицы

Раздел 15.8

Полезные таблицы

Таблица 1а. Базовые единицы СИ
Единица СИ
Количество Имя Символ
длина метр м
масса 1 килограмм кг
время секунды с
электрический ток ампер А
термодинамическая температура кельвин К
количество вещества моль моль
сила света кандела компакт-диск

1 «Вес» в просторечии часто используется для обозначения «массы».»

Таблица 1б. Дополнительные единицы СИ
Единица СИ
Количество Имя Символ Выражение в базовой единице СИ
плоский уголок радиан рад м·м -1 =1
Сплошной уголок стерадиан ср м 2 ·м -2 =1
Таблица 2.Примеры производных единиц СИ, выраженных в базовых единицах
Единица СИ
Количество Имя Символ
район квадратный метр м 2
объем кубический метр м 3
скорость, скорость метр в секунду м/с
ускорение метр в секунду в квадрате м/с 2
волновой номер обратный счетчик м -1
плотность, массовая плотность килограмм на кубический метр кг/м 3
удельный объем кубический метр за килограмм м 3 /кг
плотность тока ампер на квадратный метр А/м 2
напряженность магнитного поля ампер на метр А/м
концентрация (количества вещества) моль на кубический метр моль/м 3
яркость кандела на квадратный метр кд/м 2
Таблица 3.Производные единицы СИ со специальными названиями
Единица СИ
Количество Имя Символ Выражение в других единицах
частота герц Гц с -1
сила ньютон Н м·кг/с 2
давление, напряжение паскаль Па Н/м 2
энергия, работа, количество теплоты джоуль Дж Н·м
мощность, лучистый поток Вт Вт Дж/с
электрический заряд, количество электричества кулон С с·А
электрический потенциал, поэтическая разность, электродвижущая сила вольт В В/Д
емкость фарад Ф c/V
электрическое сопротивление Ом В/А
электропроводность Сименс С А/В
магнитный поток вебер Вб В·с
плотность магнитного потока тесла Т Втб/м 2
индуктивность Генри Х Вб/А
Температура по Цельсию1 градус Цельсия °С К
световой поток люмен лм кд·ср
освещенность люкс лк лм/м 2
активность (радионуклида) беккерель Бк с -1
поглощенная доза, удельная переданная энергия, керма, поглощенная доза индекс серый Гр Дж/кг
эквивалент дозы, индекс эквивалента дозы зиверт Св Дж/кг

1 В дополнение к термодинамической температуре (обозначение T ), выраженной в кельвинах (см. табл. 1а), также используется температура по Цельсию (символ t ), определяемый уравнением t=T-T 0 , где Т 0 =273.15 К по определению. Чтобы выразить температуру по Цельсию, единица измерения используется «градус Цельсия», равный единице измерения «кельвин»; в данном случае «градус Цельсия» — это особый имя, используемое вместо «кельвин». Однако интервал или разница температур по Цельсию могут быть выражается как в кельвинах, так и в градусах Цельсия.

Таблица 4. Примеры производных единиц СИ, выраженных с помощью специальных имен
Единица СИ
Количество Имя Символ
динамическая вязкость паскаль секунда Па·с
момент силы ньютон-метр Н·м
поверхностное натяжение ньютон на метр Н/м
плотность теплового потока, освещенность ватт на квадратный метр Вт/м 2
теплоемкость, энтропия джоуль на кельвин Дж/К
удельная теплоемкость, удельная энтропия джоуль на килограмм-кельвин Дж(кг·К)
удельная энергия джоуль на килограмм Дж/кг
теплопроводность ватт на метр кельвин Вт/(м·К)
плотность энергии джоуль на кубический метр Дж/М 3
напряженность электрического поля вольт на метр В/м
плотность электрического заряда кулон на кубический метр С/м 3
плотность электрического потока кулон на квадратный метр С/м 2
диэлектрическая проницаемость фарад на метр Ж/м
проницаемость генри на метр Н/м
молярная энергия джоуль на моль Дж/моль
молярная энтропия, молярная теплоемкость джоуль на моль-кельвин Дж/(моль·К)
экспозиция (x и ) кулон на килограмм Кл/кг
мощность поглощенной дозы грей в секунду Гр/с
Таблица 5.Примеры производных единиц СИ, образованных с использованием дополнительных единиц
Единица СИ
Количество Имя Символ
угловая скорость радиан в секунду рад/с
угловое ускорение радиан на секунду в квадрате рад/с 2
интенсивность излучения ватт на стерадиан Вт/ср
сияние ватт на квадратный метр стерадиан Вт/(м 2 ·ср)
Таблица 6.Префиксы СИ
Фактор Префикс Символ
10 24 йотта Д
10 21 зетта З
10 18 экса Е
10 15 пета Р
10 12 тера Т
10 9 гига Г
10 6 мега М
10 3 кг к
10 2 гекто ч
10 1 дека да
10 -1 деци д
10 -2 санти в
10 -3 милли м
10 -6 микро
10 -9 нано н
10 -12 пико р
10 -15 фемто ф
10 -18 по и
10 -21 зепто по
10 -24 октября и
Таблица 7.Единицы, используемые с международной системой
Имя Символ Значение в единицах СИ
минута (время) мин 1 мин=60 с
час ч 1 ч=60 мин=3 600 с
день д 1 д=24 ч=86 400 с
градус (угол) ° 1°=(/180) рад
минута (угол) 1’=(1/60)°=(/10 800) рад
секунда (угол) » 1″=(1/60)’=(/648 000) рад
1 литр л 1 L=1 дм 3 =10 -3 м 3
2 метрическая тонна т 1 т=10 3 кг
га (площадь земли) га 1 га=1 гм 2 =10 4 м 2
3 электронвольт эВ 1эВ=1.602 18×10 -19 Дж, примерно
3 единая атомная единица массы и 1 u=1,660 54×10 -27 кг, примерно

1 И L, и l являются международно признанными символами литра. Потому что «л» может легко быть перепутаны с цифрой «1», символ «L» рекомендуется для использования в США.

2 Во многих странах эта единица называется «тонна».»

3 Значения этих единиц, выраженные в единицах СИ, должны быть получены путем опыт, и поэтому точно не известны. Электронвольт – это кинетическая энергия, полученная электроном, проходящим через разность потенциалов в 1 вольт в вакууме. Единая атомная масса единица равна (1/12) массы атома нуклида 12С.

Таблица 8. Единицы, временно используемые с международной системой
морская миля амбар рентген
узел бар рад 3
Ангстрём галлона 2 рем 4
есть 1 кюри

1 Единица земельной площади.

0 comments on “Джоуль на метр это: The page cannot be found

Добавить комментарий

Ваш адрес email не будет опубликован.