Схема пуска двигателя с магнитным пускателем: Схема пуска асинхронного двигателя | Заметки электрика

Схема запуска двигателя. Как собрать схему с магнитным пускателем

Установи расширение и зарабатывай!

Все что вы делаете в соц. сетях теперь можно

заработать!

         Всем привет. Если вы читаете эту статью значит вы хотите научится собирать электрические схемы.  В этой статье я расскажу как собрать схему с магнитным пускателем. Немного о теории: магнитный пускатель это — электромагнитное устройство предназначенное для пуска электродвигателей. В этой статье я покажу пример сбора магнитного пускателя марки КМИ 11210

     Итак в магнитном пускателе присутствуют 2 части: Основные контакты и контакты катушки. В данном пускателе катушка на 220 В, контактами катушки являются клеммы A1 и A2 (А2 снизу и сверху являются одним контактом). Для того чтобы начинать собирать схему нам необходим сам пускатель и кнопки управления (пуск и стоп), а также в схему можно включить тепловое реле для защиты двигателя. На рисунках представлена кнопка управления и шаблон этой кнопки.

ПРИКЛЮЧЕНИЯ
ГУРМАНА
РЕЦЕПТЫ

Вид снаружи

Вид внутри

Шаблон кнопки

    Для начала нам необходимо узнать какие замкнутые контакты и какие разомкнутые. Это делается путем обычной прозвонкой (тестер на диапозон сопротивления). В моем случаи: замкнутые верхние, разомкнутые нижние (картинка).

   После того как определили разомкнутые и замкнутые контакты на кнопке, рассмотрим саму схему.

        На данном рисунке представлена схема управления электродвигателем от сети 380 В. Теперь давайте разберемся с самой схемой. Напряжение подается на 3 фазы: A B C. Проходит через автоматический выключатель QF далее на контакты пускателя и затем на контакты теплового реле и сам двигатель. С силовой частью разобрались теперь перейдем на цепь управление. На цепь управление идет фаза В и N (Нейтраль) . Вернемся к кнопке управления, которую мы рассматривали выше.

       Вход — это начало разомкнутого контакта кнопки пуск, далее: перемычка на замкнутый контакт кнопки стоп и в этой же клемме блок-контакт и выход с замкнутого контакта кнопки стоп, который потом пойдет на катушку пускателя. Всего из такой кнопки должно выходить 3 провода: Вход, блок-контакт и выход, их необходимо запомнить (можно сделать их разными цветами или в моем случаи выход завязан на узел, а блок-контакт синий)

         На схеме это вот эта часть:

      Когда собрали кнопки: пуск и стоп, собираем саму схему. Для начала прикрепим тепловое реле: тепловое реле должно прикрепляться на 3 нижних контактов пускателя (нижние клеммы T1 T2 T3, с теплового реле выходят эти же контакты, то есть это одни и те же контакты T1 T2 T3). Итак  3 фазы A B C идут на автомат, но так как у меня нет автомата (схему собираю дома) сразу кидаем 3 провода на основные контакты пускателя (это клеммы L1 L2 L3, также остается четвертая клемма, в будущем мы используем ее для блок-контакта)

         Вот так это должно быть: 

         Вернемся снова к кнопке. Вход по схеме идет к фазе B. Выход идет к контакту катушки А1.

          Со второго контакта катушки А2 кидаем на контакт теплового реле 95. Будем использовать контакты с надписью NC (95,96), они являются замкнутыми. Дальше по схеме 96 контакт теплового реле является N (Нейтраль), (то есть провод который идет в 96 контакт будет N).

          Как это выглядит:

         Все что у нас остается это блок-контакт. Делаем перемычку с фазы B (отдельный провод) на свободный контакт пускателя (четвертый контакт, H0 верхний). И вторая часть блок-контакта у нас выходит из кнопки (см. выше), присоединяем ее на нижнюю часть H0. Итого в фазе B должно быть 3 провода (сама фаза B, вход кнопки пуск, и перемычка на блок-контакт)

  Теперь схема полностью собрана. На картинках не везде хорошо видно как собрана схема. Поэтому я нарисовал шаблон этой схемы:

       Пред тем как запускать схему в работу стоит перепроверить правильность сборки схемы от возникновение сбоев и ошибок. Сама схема включается от сети 380 В. Я покажу как такую схему можно включить от сети 220 В дома. Для этого нужно определить концы вилки. В моем случаи один конец вилки будет фаза B, другой N (в розетке фаза и 0). Также вместо двигателя мы на примере включим лампочку на 220 В.

Букс платит за посещения

сайтов в Биткоинах!

Расширение платит за

показы рекламы!

           Кто хочет посмотреть как работает схема, здесь. В видео я наглядно показал как работает пускатель.

В заключении хочу сказать, что в этой статье я расписал все по полочкам с картинками и пояснением. Вообщем эта самая простая схема с пускателем и кнопками, в такую схему может включатся: световая сигнализация, реверс, частотный преобразователь и др.  Надеюсь вам помогла моя статья и у вас все получилось.

Расширение платит в Долларах!!!

Сервис покупки и продажи трафика.

Расширение платит за

показы рекламы!

Электрическая схема магнитного пускателя, контактора, самый простой вариант.

 

Это простейшая схема пускателя (упрощенный вариант), которая лежит в основе всех или, по крайней мере, большинства схем запуска асинхронных электродвигателей, применяемых очень широко, как в промышленности, так и в обычном быте. Плох тот электрик, который не знает данной схемы (как ни странно, но есть и такие люди). Хоть Вы, возможно, конечно знаете принцип её работы, но для освежения памяти или для новичков все же опишу вкратце эту работу. И так, вся схема кроме электродвигателя, который установлен непосредственно на конкретном оборудовании или устройстве, монтируется либо в щитке или в специальной коробке (

ПМЛ).

Кнопки ПУСКА и СТОПА, могут находится как на передней стороне этого щитка, так в не его (монтируются на месте, где удобно управлять работой), а может быть и там и там, в зависимости от удобства. К данному щитку подводится трёхфазное напряжение от ближайшего места запитки (как правило, от распределительного щита), а с него уже выходит кабель, идущий на сам электродвигатель.

А теперь о принципе работы: на клеммы Ф1, Ф2, Ф3 подается трехфазное напряжение. Для запуска асинхронного электродвигателя требуется срабатывание магнитного пускателя (ПМ) и замыкания его контактов ПМ1, ПМ2 и ПМ3. Для срабатывания ПМ, необходимо подать на его обмотку напряжение (кстати, величина его зависит от самой катушки, то есть, на какое именно напряжение она рассчитана. Это так же зависит от условий и места работы оборудования. Они бывают на 380в, 220в, 110в, 36в, 24в и 12в) (данная схема рассчитана на напряжение 220в, поскольку берётся с одной из имеющихся фаз и нуля).

Подача электропитания на катушку магнитного пускателя осуществляется по такой цепи: С ф1 поступает фаза на нормально замкнутый контакт тепловой защиты электродвигателя ТП1, далее проходит через катушку самого пускателя и выходит на кнопку ПУСК (КН1) и на контакт самозадхвата ПМ4 (магнитного пускателя). С них питание выходит на нормально замкнутую кнопку СТОП и после замыкается на нуле. Для запуска требуется нажать кнопку ПУСК, после чего цепь катушки магнитного пускателя замкнётся и притянет (замкнёт) контакты ПМ1-3 (для пуска двигателя) и контакт ПМ4, который даст возможность при отпускании кнопки пуска, продолжать работу и не отключить магнитный пускатель (называется самозадхватом). Для остановки электродвигателя, требуется всего лишь нажать кнопку СТОП (КН2) и тем самым разорвать цепь питания катушки ПМ. В результате контакты ПМ1-3 и ПМ4 отключатся, и работа будет остановлена до следующего запуска ПУСКа.

Для защиты обязательно ставятся тепловые реле (на нашей схеме это ТП). При перегрузки электродвигателя, соответственно повышается ток, и двигатель резко начинает  нагреваться, вплоть до выхода из строя. Данная защита срабатывает именно при повышении тока на фазах, тем самым размыкает свои контакты ТП1, что подобно нажатию кнопки СТОП. Данные случаи бывают в основном при полном заклинивании механической части или при большой механической перегрузки в оборудовании, на котором работает электродвигатель. Хотя и не редко причиной становится и сам движок, из-за высохших подшипников, плохой обмотки, механического повреждения и т.д. Думаю для тех, кто этого не знал, данная статья, электрическая схема магнитного пускателя, упрощенный вариант, была весьма полезна и однажды не раз пригодится в жизни. Ну а пока на этом всё.

Видео по этой теме:

P.S. Данная принципиальная электрическая схема магнитного пускателя является наиболее простым вариантом, который лежит в основе большинства рабочих схем в сфере электрики. Хорошо понимая выше описанный принцип работы этой схемы пускателя Вы будете в состоянии разобраться и с другими, более сложными, вариантами схем.

Реверсивная схема подключения электродвигателя 380 через пускатель и кнопку

Новые статьи

Схема подключения трехфазного электродвигателя к трехфазной сети

Всем электрикам известно, что трехфазные электродвигатели работают эффективнее, чем однофазные на 220 вольт. Поэтому если в вашем гараже проведена подводка питающего кабеля на три фазы, то оптимальный вариант – установить любой станок с мотором на 380 вольт. Это не только эффективно в плане экономичности работы, но и в плане стабильности. При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет. Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит. Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт. При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Подключение электрического двигателя через магнитный пускатель

В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».

Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению. Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».

Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.

Как правильно провести подключение электродвигателя звездой и треугольником

Подключение звезда и треугольник – в чем разница?

Схема подключения электродвигателя на 220В через конденсатор

СХЕМА ПОДКЛЮЧЕНИЯ МАГНИТНОГО ПУСКАТЕЛЯ

Прежде чем приступить к практическому подключению пускателя — напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп » и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск », «Вперёд », «Назад ».

Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

Схема подключения магнитного пускателя на 220 В

Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения — «пуск» и SB1 для остановки — «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку. При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3. При нажатии «стоп» питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р – обеспечивается разрыв ноля N, питающего катушку.

Схема подключения магнитного пускателя на 380 В

Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае — L3 и ноль.

На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 – через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой. Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В. В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 – подвижный блок, замыкающийся при втягивании сердечника.

При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

Подключение магнитного пускателя через кнопочный пост

В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Подключение двигателя через пускатели

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая – «Пуск», другая замкнутая – «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов – одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй – подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода – «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1–3–5, а те, к которым подключен двигатель как 2–4–6.

Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом – через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

Советы и хитрости установки

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 – значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор — пробник электрика. который легко можно сделать самому.

Подключение трехфазного двигателя через магнитный пускатель

Подключаем магнитный пускатель

Схема подключения магнитного пускателя 380 в через кнопочный пост. Электротехническ ий аппарат, который предназначен для удалённого управления электрического двигателя, его защиты, поддержания работоспособност и — это и есть аппарат магнитного пускателя. Часто, такие пускатели используют для автоматического подключения освещающих линий и др. Как провести подключение толково магнитного пускателя своими руками. Возможно ли это.

Чтобы понять, каким образом осуществить подключение самостоятельно магнитного пускателя, в первую очередь нужно узнать об особенностях его работы, его характеристиках при приобретении.

В данной статье пойдёт речь о том, как запустить включатель своими руками, как правильно выбрать реверсивный пускатель с пластиковым корпусом. В принципе, кнопки управления расположены на крышке, поэтому остаётся лишь подключить кабеля от питания.

Для того чтобы приступить к работе по сборке и подключению магнитного пускателя нужно:

1. Отключить питание и проверить отсутствие напряжения.

2. Определить, какое рабочее напряжение у катушки, которая расположена на корпусе. Возможно два варианта. Когда напряжение равно 220 вольт, либо 380 вольт. В первом случае на контакты подают нуль и фазы. Если же напряжение равно 380, тогда разные фазы. Если сделать ошибку, то катушка перегорит, поэтому следует соблюдать внимательность.

3. Силовые контакты используют фазы для включения и выключения магнитного пускателя. А нули и фазы нужно между собой соединить.

Для того чтобы выполнить подключение пускателя необходимо

1. Контакты, в наличии 3 штук. Благодаря им будет подаваться питание.

2. Катушка, кнопки управления. Благодаря им будет поддерживаться блокировка ошибочных включений магнитного пускателя.

3. Использование схемы с одним пускателем. Для этого понадобится трёхжильный кабель и несколько контактов.

Если использовать схему подключения с катушкой на 380 вольт, то нужно использовать разноимённую фазу красного либо чёрного цвета. Также в контакте будет применяться свободная пара.

Чтобы подключить цепь магнитного пускателя, нужна одна зелёная фаза, которая будет идти к контакту катушки. А со второго контакта будет идти на кнопку «Пуск». С кнопки «Пуск» на кнопку «Стоп».

То есть при нажатии на «Пуск», будет подаваться 220 вольт, которые буду способствовать включению остальных контактов. Для отключения магнитного пускателя необходимо будет разорвать «ноль», а для включения обратно нажать «Пуск».

Для подключения реле необходимо последовательно подключить его, подобрав рабочий ток для конкретного двигателя.

Подключать его следует к магнитному выходу на электродвигатель. после на термореле и на электромотор.

Для того, чтобы запускать электродвигатель в прямом и обратном направлении применяется реверсивная схема управления на магнитном пускателе.

В этой статье подробно рассмотрена пошаговая работа схемы. Схему, в которой двигатель работает только в одном направлении, без реверса, смотрите в статье нереверсивная схема подключения магнитного пускателя.

В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя.

Вначале рассмотрим реверсивную схему подключения с катушкой магнитного пускателя на 220В, а затем работу схемы.

Фазы А,В и С питающего напряжения подводятся к клеммам асинхронного двигателя через:

— 3-х полюсный автоматический выключатель, который защищает всю схему и позволяет отключать питающее напряжение;

— поочередно через три пары силовых контактов магнитных пускателей КМ1 и КМ2;

— тепловое реле Р, которое служит для защиты от перегрузок.

Для того, чтобы изменить направление вращения трехфазного электродвигателя, необходимо поменять местами подключение любых двух фаз!

Для этого в цепь обмотки двигателя включены силовые контакты от двух пускателей, которые подключаются поочередно, меняя чередование фаз. В нашей схеме при вращении вперед последовательность фаз такая — А, В, С. При вращении назад — С, В, А. Т.е. чередование фаз А и С меняется местами.

Катушки магнитных пускателей с одной стороны подключены к нулевому рабочему проводнику N через нормально-замкнутый контакт теплового реле Р, с другой, через кнопочный пост к фазе С.

Кнопочный пост состоит из 3-х кнопок:

1) нормально-разомкнутой кнопки ВПЕРЕД;

2) нормально-разомкнутой кнопки НАЗАД;

3) нормально-замкнутой кнопки СТОП.

К кнопке ВПЕРЕД параллельно подключен нормально-разомкнутый вспомогательный контакт пускателя КМ1, и соответственно, к кнопке НАЗАД — нормально-разомкнутый вспомогательный контакт пускателя КМ2.

Также в цепь питания обмотки пускателя КМ1 включен нормально-замкнутый контакт пускателя КМ2, а в цепь обмотки пускателя КМ2, включен нормально-замкнутый контакт пускателя КМ1. Это сделано для блокировки, чтобы предотвратить запуск двигателя назад, когда он вращается вперед, и наоборот. Т.е. запустить двигатель в любую из сторон можно только из положения останова.

Работа схемы

Переводим рычаг трехполюсного автоматического выключателя во включенное положение, его контакты замыкаются, схема готова к работе.

Запуск вперед

Нажимаем кнопку ВПЕРЕД. Цепь питания обмотки магнитного пускателя КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД.

Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя.

Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

Отпускаем кнопку ВПЕРЕД, она возвращается в исходное нормально-разомкнутое состояние. Теперь питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

Останов двигателя из положения ВПЕРЕД

Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП. Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкается вспомогательный контакт КМ1 в цепи питания пускателя КМ2.

Отпускаем кнопку СТОП. Она возвращается в исходное, нормально-замкнутое положение. Но поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

Реверс двигателя

Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД.

Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД. Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

Отпускаем кнопку НАЗАД. Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

Останов двигателя из положения НАЗАД

Для останова повторно нажимаем кнопку СТОП. Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

Отпускаем кнопку СТОП, схема готова к следующему пуску.

Защита от перегрузок

Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя, поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В, схема подключения будет следующая.

Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Если видео понравилось, не забывайте нажать НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, узнайте первым о выходе новых интересных видео по электрике!

Не забудьте посмотреть новые статьи сайта.

Рекомендую также прочитать:

Нереверсивная схема подключения магнитного пускателя.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Номиналы групповых автоматов превышают номинал вводного?

Менять ли автоматический выключатель, если его «выбивает»?

Почему в жару срабатывает автоматический выключатель?

Рассмотрение общепринятых схем монтажа магнитного пускателя позволит пользователю самостоятельно подключить трехфазный асинхронный двигатель самостоятельно, избежав при этом распространённых ошибок, не прибегая к услугам профессиональных электриков.

Необходимость в специфическом кнопочном контакте

Известно, что контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления.

Удержание контактора во включенном состоянии происходит по принципу самоподхвата – когда дополнительный (вспомогательный) контакт шунтирует (подключается параллельно) пусковую кнопку, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом.

Исходя из этого, кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов – нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC) (см. рис.)

Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп» и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск», «Вперёд», «Назад».

Простая схема — нереверсивный режим двигателя

Данный режим работы мотора означает, что вращение вала происходит только в одном направлении, запуск осуществляется при помощи кнопки «Пуск», а остановка происходит спустя некоторое время (из-за инерции) после нажатия «Стоп».

Существуют две распространенные разновидности данной схемы подключения – с катушкой управления 220 В и 380 В (подключение между двумя фазами). Схема с применением катушки пускателя с номиналом на 220В требует подсоединения нулевого провода, но применение нуля более привычно для простого пользователя, поэтому вначале будет рассмотрен именно этот вариант подключения.

Подключение эл. двигателя через магнитный пускатель на 220 В

Нужно детально рассмотреть все соединения, чтобы полностью понять принцип работы данной схемы, после чего будет проще разобрать более сложные варианты.

Детальное рассмотрение электромонтажа

Для удобства нужно составить монтажную схему.

Вначале подключается контактор (само собой, напряжение на входном кабеле должно отсутствовать). В приведённой выше схеме напряжение, необходимое для управления, снимается с фазы «В» (L2), но выбор фазного провода в этом случае не имеет никакого значения (как будет удобно).

Проводник, идущий к кнопке «Стоп» подключается вместе с фазным проводом на клемме контактора. Чтобы не было путаницы, общепринято маркировать нормально разомкнутые контакты цифрами «1», «2», а размыкающие соответственно – «3», «4».

Далее нужно установить перемычку в кнопочном посте.

После чего подсоединяется провод, идущий от клеммы «1» пусковой кнопки к выводу А1 управляющей катушки контактора.

От клеммы «2» кнопки запуска нужно подсоединить провод к вспомогательному контакту NO13. В данном случае неважно, к какому выводу подключать данный провод, но лучше придерживаться схемы, чтобы потом не запутаться.

Далее необходимо подсоединить с помощью перемычки вывод NO14 вспомогательного контакта с клеммой А1, где уже подключён провод от кнопочного поста.

Осталось подсоединить вывод А2 катушки управления к нулевой шине.

Теперь, перепроверив правильность монтажа можно подать напряжение и проверить работоспособность схемы.

Убедившись в работоспособности схемы, можно подсоединять выводы обмоток двигателя к выходным клеммам контактора.

Видео по подключению магнитного пускателя классическим способом:

Использование катушки на 380В и теплового реле

Разумеется, что подключение кнопочного поста и трехфазного двигателя необходимо делать не одиночными проводами, а защищённым кабелем – приведённые выше примеры даны для того, чтобы пошагово объяснить весь процесс монтажа.

Выполняя шаг за шагом данные инструкции пользователь сможет самостоятельно собрать магнитный пускатель, даже не имея опыта в электротехнике.

Набравшись опыта и поняв принцип работы, можно использовать контактор номиналом на 380 В, в этом случае вывод с катушки А2 подключается не на нулевую шину, к одной из двух фаз, к которым не подключена клемма «4» («Стоп»).

Аналогично выглядит схема, если используется трёхфазная сеть с напряжением 220В.

В магнитном пускателе с тепловым реле схема немного меняется за счёт включения размыкающего контакта в разрыв провода от клеммы А2 контактора. Вывод А2 с катушки управления подключается к фазе или нулю через размыкающий контакт данного теплового реле P, подключённого последовательно в силовые цепи обмоток.(см. схему ниже)

Реверсивный электромагнитный пускатель

Для реверса электродвигателя (вращения вала в обратную сторону), необходимо изменить последовательность фаз, для чего применяют два контактора и кнопочный пост с тремя кнопками.

Подключение магнитных пускателей для реверса двигателя

При этом, для блокировки случайного одновременного включения обеих пускателей необходимо цепи управления запуском подключать через размыкающие контакты смежных контакторов.

Если у контакторов данные вспомогательные размыкающие контакты отсутствуют, то необходимо использовать контактную приставку.

Принцип работы, с использованием самоподхвата, остается прежним, но схема немного усложняется за счёт включения новых элементов.

Подключение эл. двигателя через реверсивные магнитные пускатели 220 В

Ключевым моментом является то, что размыкающий контакт контактора КМ2 включён в пусковую цепь КМ1, и наоборот. Необходимо рассмотреть процесс включения с самого начала, когда вспомогательные контактные мостики КМ1 и КМ2 замкнуты, то есть существует возможность запуска двигателя в любую сторону.

Запустим пускатель КМ1, при котором его нормально замкнутый контакт, через который подключёна цепь запуска в обратную сторону, разомкнётся, тем самым делая невозможным реверс до отключения КМ1. Аналогично блокируется КМ1 при работе КМ2. На контакторы устанавливается система перемычек.

Подключение эл. двигателя через реверсивные магнитные пускатели 380 В

Данный принцип сохраняется при использования катушек любого номинала.

Реверс часто используют для торможения двигателя, контролируя его обороты с помощью специального контроллера.

Переключение обмоток двигателя

Известно, что асинхронный электродвигатель потребляет меньшие стартовые токи при подключении обмоток «звездой», но максимум мощности развивает, если используется схема включения по типу «треугольника».

Поэтому, на производстве, для запуска особенно мощных электродвигателей используется переключение обмоток.

Подключение обмоток двигателе по схеме 1.»звезда» и 2.»треугольник»

Электронный прибор контролирует обороты электродвигателя – как только они достигнут номинального значения, инициируется сигнал, переключающий контакторы, вследствие чего обмотки двигателя переключатся от «звезды» к «треугольнику».

Готовый вариант пускателя

Тепловые реле, помимо уставки тока и регулировки выдержки, также имеют рычажок отключения, который часто используют в компактных магнитных пускателях, размещая кнопку «Стоп» на крышке корпуса напротив.

Включение контактора происходит при механической передаче усилия нажатия от стартовой кнопки к специальной кнопочной приставке, прикрепляемой к контактору. Схема подключения остаётся прежней, только в данном случае кнопочный пост совмещён с контактором в едином корпусе магнитного пускателя.

кнопочный пост в одном корпусе с магнитным пускателем

Поскольку подсоединение и монтаж кнопок в данных изделиях осуществляются непосредственно производителем, то пользователю необходимо только подключить питание и нагрузку, и отрегулировать тепловое реле.

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.

Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.

На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.

В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.

Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.

Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.

1. Исходное состояние схемы.

При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.

Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.

На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.

2. Работа цепей управления при вращении двигателя влево.

При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.

Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.

На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.

3. Работа цепей управления при вращении двигателя вправо.

Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.

Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.

При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:

Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1.2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.

Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.

4. Силовые цепи.

А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.

Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.

Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.

А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.

Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.

Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».

Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.

5. Защита силовых цепей от короткого замыкания или «защита от дурака».

Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.

Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».

А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.

6. Заключение.

Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.

И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.

А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!

Схема включения реверсивного двигателя. Схема реверсивного пуска двигателя.


Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься.

Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.
На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя.

Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.

При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.

Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического «отключения» оборудования при «пропадание» электричества.
Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился. Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма. При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка «Пуск» .

Схемы подключения магнитного пускателя

Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.

В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.

В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М.

Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на «3» контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.

Обратите внимание . В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.
Например если катушка магнитного пускателя на 220 вольт — один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.

Если номинал катушки на 380 вольт — один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.
Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО.

В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.


Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.


Как выглядит монтажная (практическая) схема подключения магнитного пускателя?


Чтобы не тянуть лишний провод на кнопку «Пуск», можно поставить перемычку между выводом катушки и одним из ближайших вспомогательных контактов, в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на «3» контакт кнопки «Пуск».

Как подключить магнитный пускатель в однофазной сети


Представляет собой простейший комплект аппаратов для дистанционного управления электродвигателями и кроме самого контактора часто имеет кнопочную станцию и аппараты защиты.

Схема подключения нереверсивного магнитного пускателя

На рис. 1, а, б показаны соответственно монтажная и принципиальная схемы включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором. На монтажной схеме границы одного аппарата обводят штриховой линией. Она удобна для монтажа аппаратуры и поиска неисправностей. Читать эти схемы трудно, так как они содержат много пересекающихся линий.

Рис. 1. Схема включения нереверсивного магнитного пускателя: а — монтажная схема включения пускателя, электрическая принципиальная схема включения пускателя

На принципиальной схеме все элементы одного магнитного пускателя имеют одинаковые буквенно-цифровые обозначения. Это позволяет не связывать вместе условные изображения катушки контактора и контактов, добиваясь наибольшей простоты и наглядности схемы.

Нереверсивный магнитный пускатель имеет контактор КМ с тремя главными замыкающими контактами (Л1 — С1, Л2 — С2, Л3 — С3) и одним вспомогательным замыкающим контактом (3-5).

Главные цепи, по которым протекает ток электродвигателя, принято изображать жирными линиями, а цепи питания катушки пускателя (или цепи управления) с наибольшим током — тонкими линиями.

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». При этом по цепи катушки магнитного пускателя, потечет ток, якорь притянется к сердечнику. Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт 3 — 5, что создаст параллельную цепь питания катушки магнитного пускателя.

Если теперь кнопку «Пуск» отпустить, то катушка магнитного пускателя будет включена через собственный вспомогательный контакт. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис. 2, а.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Электрическая схема цепи управления реверсивного пускателя с блокировкой на вспомогательных размыкающих контактах изображена на рис. 2, б.

В этой схеме включение одного из контакторов, например КМ1, приводит к размыканию цепи питания катушки другого контактора КМ2. Для реверса необходимо предварительно нажать кнопку SB1 «Стоп» и отключить контактор КМ1. Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Для осуществления дистанционного включения оборудования используется магнитный пускатель или магнитный контактор. Как подключить магнитный пускатель по простой схеме и как подключить реверсивный пускатель мы и рассмотрим в этой статье.

Отличие между магнитным пускателем и магнитным контактором в том, какую мощность нагрузки могут коммутировать эти устройства.

Магнитный пускатель может быть «1», «2», «3», «4» или «5» величины. Например пускатель второй величины ПМЕ-211 выглядит так:


Названия пускателей расшифровываются следующим образом:

  • Первый знак П — Пускатель;
  • Второй знак М — Магнитный;
  • Третий знак Е, Л, У, А… — это тип или серия пускателя;
  • Четвертый цифровой знак — величина пускателя;
  • Пятый и последующие цифровые знаки — характеристики и разновидности пускателя.

Некоторые характеристики магнитных пускателей можно посмотреть в таблице

Отличия магнитного контактора от пускателя весьма условны. Контактор выполняет ту же роль, что и пускатель. Контактор производит аналогичные подключения, как и пускатель, только электропотребители имеют большую мощность, соответственно и размеры у контактора значительно больше, и контакты у контактора значительно мощней.Магнитный контактор имеет немного другой внешний вид:


Габариты контакторов зависят от его мощности. Контакты коммутирующего прибора необходимо разделять на силовые и управляющие. Пускатели и контакторы необходимо применять когда простые устройства коммутации не могут управлять большими токами. За счёт этого магнитный пускатель может размещаться в силовых шкафах рядом с силовым устройством, которые он подключает, а все его управляющие элементы в виде кнопок и кнопочных постов на включение могут размещаться в рабочих зонах пользователя.
На схеме пускатель и контактор обозначаются таким схематичным знаком:


где A1-A2 катушка электромагнита пускателя;

L1-T1 L2-T2 L3-T3 силовые контакты, к которым подключается силовое трехфазное напряжение (L1-L2-L3) и нагрузка (T1-T2-T3), в нашем случае электродвигатель;

13-14 контакты, блокирующие пусковую кнопку управления двигателем.

Данные устройства могут иметь катушки электромагнитов на напряжения 12 В, 24 В, 36 В, 127 В, 220 В, 380 В. Когда требуется повышенный уровень безопасности, есть возможность использовать электромагнитный пускатель с катушкой на 12 или 24 В, а напряжение цепи нагрузки может иметь 220 или 380 В.
Важно знать, что подключенные пускатели для подключения трехфазного двигателя способны обеспечить дополнительную безопасность при случайной потере напряжения в сетях. Это связано с тем, что при исчезновении тока в сети, напряжение на катушке пускателя пропадает и силовые контакты размыкаются. А когда напряжение возобновится, то в электрооборудовании будет отсутствовать напряжения до тех пор, покуда кнопку «Пуск» не активируют. Для подключения магнитного пускателя имеется несколько схем.

Стандартная схема коммутации магнитных пускателей

Это схема подключения пускателя требуется для того, чтобы произвести запуск двигателя через пускатель с помощью кнопки «Пуск» и обесточивания этого двигателя кнопкой «Стоп». Это проще понимается, если разделить схему на две части: силовую и цепь управления.
Силовую часть схемы следует запитать трёхфазным напряжением 380 В, имеющим фазы «A», «B», «C». Силовая часть состоит из трёхполюсного автоматического выключателя, силовых контактов магнитного пускателя «1L1-2T1», «3L2-4T2», «5L3-6L3», а также асинхронного трехфазного электродвигателя «M».

К управляющей цепи подаётся питание 220 вольт от фазы «A» и к нейтрали. К схеме управляющей цепи относится кнопка «Стоп» «SB1», «Пуск» «SB2», катушка «KM1» и вспомогательный контакт «13HO-14HO», что подключён параллельно контактам кнопки «Пуску». Когда автомат фаз «A», «B», «C», включается, ток проходит к контактам пускателя и остаётся на них. Питающая цепь управления (фаза «А») проходит через кнопку «Стоп» к 3 контакту кнопки «Пуск», и параллельно на вспомогательный контакт пускателя 13HO и остаётся там на контактах.
Если активируется кнопка «Пуск», к катушке приходит напряжение — фаза «А» с пускателя «KM1». Электромагнит пускателя срабатывает, контакты «1L1-2T1», «3L2-4T2», «5L3-6L3» замыкаются, после чего напряжение 380 вольт подается на двигатель по данной схеме подключения и начинает свою работу электродвигатель. При отпускании кнопки «Пуск» ток питания катушки пускателя течет через контакты 13HO-14HO, электромагнит не отпускает силовые контакты пускателя, двигатель продолжает работать. При нажатии кнопки «Стоп» цепь питания катушки пускателя обесточивается, электромагнит отпускает силовые контакты, напряжение на двигатель не подается, двигатель останавливается.

Как подключить трехфазный двигатель можно дополнительно посмотреть на видео:

Схема коммутации магнитных пускателей через кнопочный пост

Схема для подключения магнитного пускателя к электродвигателю через кнопочный пост, включает в себя непосредственно сам пост с кнопками «Пуск» и «Стоп», а также две пары замкнутых и разомкнутых контактов. Также сюда относится пускатель с катушкой 220 В.

Питание для кнопок берётся с силовых контактовых клемм пускателя, а напряжение доходит к кнопке «Стоп». После этого по перемычке оно проходит сквозь нормально замкнутый контакт на кнопку «Пуск». Когда активирована кнопка «Пуск», нормально разомкнутый контакт будет замкнут. Отключение происходит путём нажатия на кнопку «Стоп», тем самым размыкая ток от катушки и после действия возвратной пружины, пускатель отключится и устройство обесточится. После выполнения вышеуказанных действий электродвигатель будет отключён и готов к последующего пуска с кнопочного поста. В принципе работа схемы аналогична предыдущей схемы. Только в данной схеме нагрузка однофазная.

Реверсивная схема коммутации магнитных пускателей

Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:


Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.


К имеющемуся в предыдущих схемах пускателю добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем. Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

Прежде чем приступить к практическому подключению пускателя — напомним полезную теорию: контактор магнитного пускателя включается управляющим импульсом, исходящим от нажатия пусковой кнопки, с помощью которой подается напряжение на катушку управления. Удержание контактора во включенном состоянии происходит по принципу самоподхвата — когда дополнительный контакт подключается параллельно пусковой кнопке, тем самым подавая напряжение на катушку, вследствие чего пропадает необходимость удерживать кнопку запуска в нажатом состоянии.

Отключение магнитного пускателя в этом случае возможно только при разрыве цепи управляющей катушки, из чего становится очевидной необходимость использования кнопки с размыкающим контактом. Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов — нормально открытые (разомкнутые, замыкающие, НО, NO) и нормально закрытые (замкнутые, размыкающие, НЗ, NC)


Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя. Общепринято называть отключающую кнопку словом: «Стоп » и маркировать её красным цветом. Включающую кнопку часто называют пусковой, стартовой, или обозначают словом «Пуск », «Вперёд », «Назад ».


Если катушка рассчитана на срабатывание от 220 В, то цепь управления коммутирует нейтраль. Если рабочее напряжение электромагнитной катушки 380 В, то в цепи управления протекает ток, «снятый» с другой питающей клеммы пускателя.

Схема подключения магнитного пускателя на 220 В


Здесь ток на магнитную катушку КМ 1 подается через тепловое реле и клеммы, соединенных в цепь кнопок SB2 для включения — «пуск» и SB1 для остановки — «стоп». Когда мы нажимаем «пуск» электрический ток поступает на катушку. Одновременно сердечник пускателя притягивает якорь, в результате чего происходит замыкание подвижных силовых контактов, после чего напряжение поступает на нагрузку. При отпускании «пуск» не происходит размыкание цепи, поскольку параллельно этой кнопке выполнено подключение блок-контакта КМ1 с замкнутыми магнитными контактами. Благодаря этому на катушку поступает фазное напряжение L3. При нажатии «стоп» питание отключается, подвижные контакты приходят в исходное положение, что приводит к обесточиванию нагрузки. Те же процессы происходят при работе теплового реле Р — обеспечивается разрыв ноля N, питающего катушку.

Схема подключения магнитного пускателя на 380 В

Подключение к 380 В практически не отличается от первого варианта, различие лишь в питающем напряжении магнитной катушки. В данном случае питание осуществляется с использованием двух фаз L2 и L3, тогда как в первом случае — L3 и ноль.


На схеме видно, что катушка пускателя (5) питается от фаз L1 и L2 при напряжении 380 В. Фаза L1 присоединяется напрямую к ней, а фаза L2 — через кнопку 2 «стоп», кнопку 6 «пуск» и кнопку 4 теплового реле, соединенные последовательно между собой. Принцип действия такой схемы следующий: После нажатия кнопки 6 «пуск» через включенную кнопку 4 теплового реле напряжение фазы L2 попадает на катушку магнитного пускателя 5. Происходит втягивание сердечника, замыкающее контактную группу 7 на определенную нагрузку (электродвигатель М), при этом подается ток, напряжением 380 В. В случае выключения «пуск» цепь не прерывается, ток проходит через контакт 3 — подвижный блок, замыкающийся при втягивании сердечника.


При аварии в обязательном порядке должно сработать теплового реле 1, его контакт 4 разрывается, отключается катушка и возвратные пружины приводят сердечник в исходное положение. Контактная группа размыкается, снимая напряжение с аварийного участка.

Подключение магнитного пускателя через кнопочный пост

В данную схему включены дополнительные кнопки включения и остановки. Обе кнопки «Стоп» подключены в цепь управления последовательно, а кнопки «Пуск» соединяются параллельно.Такое подключение позволяет производить коммутацию кнопками с любого поста.

Вот ещё вариант. Схема состоит из двухкнопочного поста “Пуск” и “Стоп” с двумя парами контактов нормально замкнутых и разомкнутых. Магнитный пускатель с катушкой управления на 220 В. Питание кнопок взято с клеммы силовых контактов пускателя, цифра 1. Напряжение подходит до кнопки “Стоп” цифра 2. Проходит через нормально замкнутый контакт, по перемычке до кнопки “Пуск” цифра 3.

Нажимаем кнопку “Пуск”, замыкается нормально разомкнутый контакт цифра 4. Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Вспомогательный блок контакт 6 шунтирует контакт кнопки “пуск” 4, для того, чтобы при отпускании кнопки “Пуск” пускатель не отключился. Отключение пускателя осуществляется нажатием кнопки “Стоп”, цифра 7, снимается напряжение с катушки управления и под воздействием возвратных пружин пускатель отключается.

Подключение двигателя через пускатели

Нереверсивный магнитный пускатель

Если изменять направление вращения двигателя не требуется, то в цепи управления используются две не фиксируемые подпружиненные кнопки: одна в нормальном положении разомкнутая — «Пуск», другая замкнутая — «Стоп». Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Такие кнопки обычно имеют две пары групп контактов — одну нормально разомкнутую, другую замкнутую. Их тип определяется во время монтажных работ визуально или с помощью измерительного прибора.

Провод цепи управления подключается к первой клемме замкнутых контактов кнопки «Стоп». Ко второй клемме этой кнопки подключают два провода: один идет на любой ближайший из разомкнутых контактов кнопки «Пуск», второй — подключается к управляющему контакту на магнитном пускателе, который при отключенной катушке разомкнут. Этот разомкнутый контакт соединяется коротким проводом с управляемой клеммой катушки.

Второй провод с кнопки «Пуск» подключается непосредственно на клемму втягивающей катушки. Таким образом, к управляемой клемме «втягивающей» должно быть подключено два провода — «прямой» и «блокирующий».

Одновременно замыкается управляющий контакт и, благодаря замкнутой кнопке «Стоп», управляющее воздействие на втягивающую катушку фиксируется. При отпускании кнопки «Пуск» магнитный пускатель остается замкнутым. Размыкание контактов кнопки «Стоп» вызывает отключение электромагнитной катушки от фазы или нейтрали и электродвигатель отключается.

Реверсивный магнитный пускатель

Для реверсирования двигателя необходимо два магнитных пускателя и три управляющие кнопки. Магнитные пускатели устанавливаются рядом друг с другом. Для большей наглядности условно отметим их питающие клеммы цифрами 1-3-5, а те, к которым подключен двигатель как 2-4-6.


Для реверсивной схемы управления пускатели соединяются так: клеммы 1, 3 и 5 с соответствующими номерами соседнего пускателя. А «выходные» контакты перекрестно: 2 с 6, 4 с 4, 6 с 2. Провод, питающий электродвигатель, подключается к трем клеммам 2, 4, 6 любого пускателя.

При перекрестной схеме подключения одновременное срабатывание обоих пускателей приведет к короткому замыканию. Поэтому проводник «блокирующей» цепи каждого пускателя должен проходить сначала через замкнутый управляющий контакт соседнего, а потом — через разомкнутый своего. Тогда включение второго пускателя будет вызывать отключение первого и наоборот.

Ко второй клемме замкнутой кнопки «Стоп» подключаются не два, а три провода: два «блокирующих» и один питающий кнопки «Пуск», включаемых параллельно друг другу. При такой схеме подключения кнопка «Стоп» выключает любой из скоммутированных пускателей и останавливает электродвигатель.

  • Перед сборкой схемы надо освободить рабочий участок от тока и проконтролировать, чтобы напряжение отсутствовало тестером.
  • Установить обозначение напряжения сердечника, которое упоминается на нем, а не на пускателе. Оно может быть 220 или 380 вольт. Если оно 220 В, на катушку идет фаза и ноль. Напряжение с обозначением 380 — значит разные фазы. Это является важным аспектом, ведь при неверном подсоединении сердечник может сгореть или не будет запускать полностью нужные контакторы.
  • Кнопка на пускатель (красная)Нужно взять одну красную кнопку «Стоп» с замкнутыми контактами и одну черную либо зеленую кнопку с надписью «Пуск» с неизменно разомкнутыми контактами.
  • Учтите, что силовые контакторы заставляют работать или останавливают только фазы, а нули, которые приходят и отходят, проводники с заземлением всегда объединяются на клеммнике в обход пускателя. Для подсоединения сердечника в 220 Вольт на дополнение с клеммника берется 0 в конструкцию организации пускателя.

А ещё вам понадобится полезный прибор — , который легко можно сделать самому.

В данной статье вы узнаете, что такое магнитные пускатели, схемы подключения их рассмотрите, а самое главное — уход за приборами. На сегодняшний день в промышленности получили широкое распространение электрические двигатели с КЗ ротором (их доля составляет примерно 95-96%). Именно они работают в дуэте с магнитными пускателями. Кроме того, пускатели расширяют возможности электропривода. Но обо всем по порядку, сначала нужно ответить на вопрос о том, для каких целей они предназначены.

Предназначение пускателей

Схема подключения однофазного магнитного пускателя позволяет проводить коммутацию любого потребителя. Конечно, если у него питание производится тоже от одной фазы. А если быть точнее, то МП позволяет осуществить дистанционное управление электроприводом или иным устройством. Например, нереверсивный пускатель способен только производить включение или отключение потребителя от сети

Но вот реверсивные МП могут не только вышеперечисленное делать. Они способны изменить подключение фаз к электродвигателю. А это значит, что ротор начнет вращаться в обратном направлении. Управление МП осуществляется при помощи кнопок:

  • «Пуск»;
  • «Стоп»;
  • «Реверс» (при необходимости).

Причем эти кнопки имеют напряжение питания не более 24 Вольт. Все управление осуществляется именно при помощи низкого напряжения. А для питания катушки электромагнита больше и не требуется.

Типы магнитных пускателей

Магнитный пускатель, схема подключения которого приведена в статье, может быть сделан в трех исполнениях. Все зависит от того, в каких условиях происходит его эксплуатация. Так, открытое исполнение пускателей предназначено для монтажа в Крепление производится на ДИН-рейку. Само собой, что электрощит должен быть защищен от попадания посторонних предметов, например пыли или жидкости.

Второй тип корпуса — защищенный. Он хоть и предназначен для монтажа внутри помещений, а не щитов, но все равно недопустимо попадание на него большого количества пыли, а тем более жидкости. Если необходимо установить магнитные пускатели, схемы подключения которых приведены в статье, в условиях повышенной влажности, то разумнее использовать пылевлагонепроницаемые. Правда, у них имеется ограничение — разрешается монтаж на улице, но только при условии, что на него не попадает солнечный свет и дождь.

Конструкция магнитных пускателей

Состоит любой магнитный пускатель 220В, схема подключения которого приведена, из одной основной части — магнитной системы. Это катушка, намотанная вокруг металлического сердечника, и подвижный якорь. Все это находится в корпусе из пластика. Но это основа, еще имеется множество мелочей, например траверса, скользящая по направляющим осям. На ней находится якорь. Кроме того, с ней соединены блокировочные и главные контакты. Они оснащены пружинами, которые помогают размыкаться при отключении питания электромагнита.

Как работает пускатель

В основе работы МП лежит элементарная физика. Когда подаете напряжение на обмотку, возникает магнитное поле вокруг сердечника. В результате этого подвижный якорь начинает притягиваться к сердечнику. Так работает любой магнитный пускатель, схема подключения только может отличаться (в зависимости от наличия реверса). Между прочим, можно осуществить и при помощи двух обычных МП. Контакты пускателя нормально разомкнуты по умолчанию.

Когда якорь движется к сердечнику, они замыкаются. Но существует и другая конструкция, в которой по умолчанию контактная группа нормально разомкнута. В этом случае картина противоположная. Следовательно, при подаче напряжения на катушку замыкается цепь и начинает работать электропривод. Но когда происходит отключение питания катушки, перестает работать электромагнит. Вступают в действие возвратные пружины, которые заставляют двигаться контактную группу в исходное положение.

Схема включения пускателя

Для начала стоит рассмотреть, как выглядит магнитный пускатель, схема подключения «реверс» если используется. По сути, это два идентичных устройства, объединенных в одном корпусе. С таким же успехом, как было сказано ранее, можно использовать и простые МП, если знать схему включения. В пускателях имеется блокировка, которая осуществляется посредством нормально замкнутых контактов. Дело в том, что недопустимо, чтобы они оба включились в одно время. Иначе произойдет замыкание фаз.

Существует также и механическая защита, устанавливаемая в корпусе пускателя. Но ее можно не использовать, если предусмотрена электрическая степень защиты. Особенность осуществления реверса заключается в том, что необходимо полностью отключать электропривод от питания. Для этого сначала производится отключение от сети электромотора. После этого необходимо, чтобы ротор полностью прекратил вращение. И лишь после этого допускается включение двигателя в обратную сторону. Обратите внимание на то, что мощность пускателя должна быть вдвое больше, чем у двигателя, если применяется противовключение либо торможение.

Тепловое реле

А теперь рассмотрим типичный магнитный пускатель 380В. Схема подключения его не обходится без дополнительной защиты. И таковой является тепловое реле, устанавливаемое на корпусе пускателя. Главная задача теплового реле — это предотвратить температурные перегрузки мотора. Они, конечно, будут присутствовать, но незначительные, перегрев электродвигателя невозможен становится. В качестве измерителя тепловой перегрузки выступает Защита, впрочем, аналогична конструкции автоматического выключателя.

Тепловое реле, устанавливаемое на магнитных пускателях, позволяет проводить небольшие регулировки. Так называемая уставка — настройка максимального значения потребляемого тока электродвигателем. Как правило, данная настройка производится при помощи отвертки. Движок имеет канавку под нее, а также градуировку. Процедура несложная, достаточно только установить стрелку на пластиковом диске напротив соответствующей метки со значением предельного тока потребления. Обратите внимание на то, что тепловые реле не способны проводить защиту от короткого замыкания. Для этой цели используйте

Как монтируются пускатели


Стоит заметить, что схема подключения магнитного допускает возможность их монтажа внутри электрощитов. Но имеются требования, предъявляемые ко всем конструкциям пускателей. Чтобы обеспечить высокую надежность функционирования, необходимо, чтобы производилась установка только на идеально ровной и жесткой поверхности. Причем она должна быть вертикально расположенной. Если выразиться проще, то на стенке электрощита. Если имеется тепловое реле в конструкции, то необходимо, чтобы разница температур между МП и электромотором была минимальной.

Для исключения ложного срабатывания пускателя или его защиты недопустимо проводить монтаж устройства в местах, которые подвержены ударам, тряске, вибрациям, толчкам. В том числе запрещен монтаж на одной панели с электрическими пускателями, у которых ток составляет свыше 150 Ампер. Когда такие аппараты включаются и выключаются, происходит резкий удар. тоже необходимо проводить правильно. В целях улучшения контакта и для того, чтобы не произошло перекоса пружинистых шайб зажимов, необходимо провода изгибать в форме круга или буквы «П».

Включение пускателя


Старайтесь всегда соблюдать технику электробезопасности, никогда не работайте без отключения питания. Если у вас мало опыта, то под рукой всегда должна быть схема. Фото подключения магнитного пускателя приведено в данной статье, можете ознакомиться. Что нужно выполнить перед запуском пускателя? Самое главное — проведите визуальный осмотр на предмет наличия трещин, перекосов, замыканий фаз. Помните, что необходимо отключать от питания всю цепь привода. Попробуйте руками нажать на траверсу, она должна свободно перемещаться по направляющим. Проверьте внимательно в системе все магнитные пускатели, схемы подключения силовых проводников.

Обратите внимание на подключение катушки электромагнита пускателя. Также сверьтесь, что оно в пределах допустимого значения. Если необходимо 24 В, то столько и подавайте. Проверьте все провода управления, верно ли они соединены с кнопками «Пуск», «Стоп», «Реверс» (при необходимости). Имеется ли на контактах раствор для смазки? Если нет, то нанесите его, иначе блокировка может не сработать своевременно. После этого можно осуществить включение цепи и провести запуск привода. Обратите внимание на то, что катушка электрического магнита может слегка гудеть в этом состоянии.

Как проводить уход за пускателями


Вот и все, рассмотрены полностью магнитные пускатели, схемы подключения, осталось упомянуть про уход за ними. Во время эксплуатации необходимо постоянно следить за состоянием магнитного пускателя. Основные работы по уходу — это недопущение образования слоя пыли, а тем более грязи, на поверхности пускателя или теплового реле. Время от времени проводиться должна затяжка контактов для подключения к сети и к приводу. Пыль необходимо удалять либо ветошью, либо сжатым воздухом (только не влажным). Запрещается проводить зачистку контактов, так как это отражается на ресурсе прибора. При необходимости проводится замена. Срок службы зависит от множества факторов, но самый главный — это режим работы. Если пускатель постоянно в движении, производит коммутацию, то он прослужит недолго. Его ресурс измеряется в количестве циклов включения и отключения, а в не в часах или годах.

Тематические материалы:

Обновлено: 21.02.2018

103583

Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter

Схема подключения реверсивного магнитного пускателя

При управлении  мощными нагрузками типа асинхронного двигателя иногда требуется смена направления вращения вала двигателя. При трех фазной электро сети для реверса(т.е. смены направления вращения) двигателя достаточно поменять две любые фазы местами и получить обратное вращение. По скольку для реверса двигателя применяется такой метод ( а именно меняются две фазы местами) есть опасность того что фазные напряжения встретятся на одном из контактов двигателя. По этому для организации реверсивного вращения применяются специальные Реверсивные пускатели  которые могут противостоять такому стечению обстоятельств. А именно имеют внутри себя специальную механическую блокировку и дополнительные блокирующие электрические контакты о чем написано в статье просвещенной внутренней  . Для управления данным пускателем используются три кнопки две «Пуск» с нормально разомкнутым контактом, и одна «Стоп» с нормально замкнутым контактом. Схема подключения собирается таким образом чтобы при включении одного из пускателей цепь управления катушкой другого разрывалась дополнительным контактом включенного пускателя и при нажатии второй кнопки «Пуск» цепь не замыкалась. Для отключения данного пускателя применяется общая кнопка «Стоп» которая разрывает цепь питания катушек при её нажатии. Такая схема подключения реверсивного магнитного пускателя выглядит следующим образом

Схема подключения магнитного реверсивного пускателя

Реверсивный магнитный пускатель представленный на  схеме имеет внутри себя две катушки для управления контактами рассчитанные на напряжение включения равное 380 вольтам.

Принцип работы магнитного реверсивного пускателя следующий. При нажатии на любую из клавиш Пуска магнитного пускателя происходит замыкание цепи катушки управления пускателем, срабатывает механическая блокировка пускателя при этом срабатывает блок дополнительный контактов. Один из которых дублирует кнопку что в следствии позволяет её отпустить после включения пускателя. Второй в этот же момент времени размыкает цепь питания второй катушки реверсивного магнитного пускателя. То есть если при включенной первой катушки магнитного пускателя нажать вторую кнопку Пуск не чего не произойдет так как цепь не замкнется. Для того чтобы осуществить реверс двигателя необходимо нажать кнопку Стоп которая разорвет цепь питания обеих катушек и отключит пускатель. В этот момент механическая блокировка пускателя тоже придет в исходное положение. Что опять даст возможность включить любой из пускателей. При нажатии второй кнопки Пуск происходят те же действия что описаны ранние только участвует вторая катушка пускателя и второй блок дополнительных контактов. Существует также схемы включения для реверсивного пускателя с катушками управления на 220 вольт выглядит она так 

Еще реверсивные пускатели можно использовать и с разными катушками управления одновременно тогда схема включения магнитных пускателей будет выглядеть так

схема включения реверсивного магнитного пускателя с разными управляющими катушками

Для более удобного использования реверсивного пускателя можно применить для управления не отдельные кнопки, а так называемый ПКЕ-212/3 который выпускается с нужными для управления контактами или можно собрать такой пост самим для этого закупаются кнопки с необходимыми контактами и корпус(бокс) под них производителей такой мелочевки много например ИЭК, EKF есть и подороже тот же самый шнайдер электрик. Но у этих производителей так же выпускаются и кнопочные посты так что смотрите что на данный момент выгодней то и приобретайте. Поскольку трех фазный электродвигатель чувствителен к исчезновению одной из питающих фаз, а иногда даже просто к перекосу напряжения на фазах в цепь управления двигателем необходимо добавить защиту электродвигателя. Которая подробно рассматривается в статье

Похожие посты:

Нереверсивная схема подключения электродвигателя — Дачный сезон agrohim-tulun.ru

Нереверсивная схема подключения магнитного пускателя

В этой статье мы подробно рассмотрим нереверсивную схему подключения магнитного пускателя для управления трехфазным асинхронным электродвигателем.

Также я для Вас записал видео с подробным описанием работы схемы, которое Вы можете просмотреть в конце этой статьи.

Вначале давайте рассмотрим схему подключения магнитного пускателя с катушкой на 220В.

Три фазы питающего напряжения подаются на клеммы асинхронного двигателя через:

— силовые контакты магнитного пускателя КМ;

— тепловое реле Р.

Обмотка катушки магнитного пускателя подключена с одной стороны к нулевому рабочему проводу N, с другой, через кнопочный пост к одной из фаз, в нашей схеме — к фазе С.

Кнопочный пост содержит 2 кнопки:

1) нормально-разомкнутую кнопку ПУСК ;

2) нормально-замкнутую — СТОП .

Нормально-разомкнутый вспомогательный контакт пускателя КМ подключен параллельно кнопке ПУСК .

Для защиты электродвигателя от перегрузок используется тепловое реле Р, которое устанавливается в разрыв питающих фаз. Вспомогательный нормально-замкнутый контакт теплового реле Р включен в цепь обмотки магнитного пускателя.

Рассмотрим работу схемы.

Включаем трехполюсный автоматический выключатель , его контакты замыкаются, питающее напряжение подается к силовым контактам пускателя и в цепь управления. Схема готова к работе.

Запуск.

Для запуска двигателя нажимаем кнопку ПУСК . Цепь питания обмотки магнитного пускателя замыкается, якорь катушки притягивается, замыкая силовые контакты КМ и подавая три питающих фазы на обмотки двигателя. Происходит запуск и двигатель начинает вращаться.

Одновременно с этим замыкается вспомогательный контакт пускателя КМ, шунтируя кнопку ПУСК .

Теперь, отпуская кнопку ПУСК , питание на обмотку пускателя продолжает поступать через его замкнутый вспомогательный контакт КМ. Двигатель запущен и продолжает работать.

Останов.

Чтобы остановить двигатель, нажимаем кнопку СТОП . Цепь питания обмотки пускателя разрывается. Якорь под действием пружины возвращается в исходное состояние, размыкая силовые контакты, обесточивая тем самым обмотки электродвигателя. Он начинает останавливаться.

Одновременно с этим размыкается вспомогательный контакт КМ в цепи питания обмотки пускателя.

После отпускания кнопки СТОП питание на обмотку не подается, поскольку вспомогательный контакт КМ разомкнут. Двигатель выключен и цепь готова к следующему запуску.

Защита от перегрузок.

Предположим, что двигатель запущен. Если по каким-то причинам ток нагрузки двигателя увеличится, биметаллические пластины теплового реле Р под действием повышенного тока начнут изгибаться, и приведут в действие механизм расцепителя. Он разомкнет вспомогательный контакт Р в цепи обмотки магнитного пускателя. Цепь обмотки пускателя разомкнется, силовые и вспомогательный контакты пускателя вернуться в исходное разомкнутое состояние, двигатель остановится.

Если катушка магнитного пускателя рассчитана на 380В, то схема подключения будет, как на рисунке ниже.

В этом случае, обмотка пускателя подключается к любым двум фазам, на схеме к фазам В и С.

Для дополнительной защиты цепи управления магнитным пускателем устанавливают предохранитель FU. В случае, например, межвиткового замыкания в катушке пускателя, плавкая вставка предохранителя перегорит, обесточив цепь управления.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.

Если видео оказалось для Вас полезным, нажмите НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, и Вы первым узнаете о выходе новых интересных видео по электрике!

Рекомендую также прочитать:

Реверсивная схема подключения электродвигателя

Направление вращения вала электродвигателя иногда требуется изменить. Для этого необходима реверсивная схема подключения. Ее вид зависит от того, какой у вас мотор: постоянного или переменного тока, 220В или 380В. И совсем по-другому устроен реверс трехфазного двигателя, включенного в однофазную сеть.

Переменная сеть: мотор 380 к сети 380

Для реверсивного подключения трехфазного асинхронного электродвигателя возьмем за основу схему его включения без реверса:

Эта схема позволяет вращаться валу только в одну сторону – вперед. Чтобы заставить его повернуться в другую, нужно поменять местами любые две фазы. Но в электрике принято менять только А и В, несмотря на то, что к такому же результату привели бы смены А на С и В на С. Схематично это будет выглядеть так:

Для подключения дополнительно понадобятся:

  • Магнитный пускатель (или контактор) – КМ2;
  • Трехкнопочная станция, состоящая из двух нормально замкнутых и одного нормально разомкнутого контактов (добавлена кнопка Пуск2).

Важно! В электрике нормально замкнутый контакт – это состояние кнопочного контакта, у которого есть только два несимметричных состояния. Первое положение (нормальное) – рабочее (замкнуто), а второе – пассивное (разомкнуто). Точно так же формулируется понятие нормально разомкнутого контакта. В первом положении кнопка пассивна, а во втором – активна. Понятно, что такая кнопка будет называться «СТОП», в то время как две другие: «ВПЕРЕД» и «НАЗАД».

Схема реверсивного подключения мало отличается от простой. Главное ее отличие состоит в электроблокировке. Она необходима для исключения пуска мотора сразу в двух направлениях, что привело бы к поломке. Конструктивно блокировка – это блок с клеммами магнитных пускателей, которые соединены в управляющей цепи.

Для запуска двигателя:

  1. Включите автоматы АВ1 и АВ2;
  2. Нажмите кнопку Пуск1 (SB1) для вращения вала по часовой стрелке или Пуск2 (SB2) для вращения в обратную сторону;
  3. Двигатель работает.

Если нужно сменить направление, то сначала нужно нажать кнопку «СТОП». Затем включить другую пусковую кнопку. Электрическая блокировка не позволяет активировать ее, если мотор не выключен.

Переменная сеть: электродвигатель 220 к сети 220

Реверс электродвигателя 220В возможен только в том случае, если выводы обмоток лежат вне корпуса. На рисунке ниже – схема однофазного включения, когда пусковая и рабочая намотки расположены внутри и выводов наружу не имеют. Если это ваш вариант, вы не сможете изменить направление вращения вала.

В любом другом случае для реверсирования однофазного конденсаторного АД необходимо поменять направление рабочей обмотки. Для этого вам понадобятся:

Схема однофазного агрегата почти ничем не отличается от той, что представлена для трехфазного асинхронного двигателя. Ранее мы перекидывали фазы: А и В. Сейчас при смене направления вместо фазного провода с одной стороны рабочей обмотки будет подключаться нулевой, а с другой – вместо нулевого фазный. И наоборот.

Переменная сеть: 380В к 220В

Для подключения трехфазного асинхронного двигателя к электросети 220В необходимо использовать один или два конденсатора для компенсации отсутствующей фазы: рабочий и пусковой. Направление вращательного движения зависит от того, с чем соединяется третья обмотка.

Чтобы заставить вал вращаться в другую сторону, обмотку №3 необходимо подключить с помощью конденсатора к тумблеру с двумя позициями. Он должен иметь два контакта, соединенных с обмотками №1 и №2. Ниже показана подробная схема.

Такой мотор будет играть роль однофазного, поскольку подключение происходило с помощью одного фазного провода. Чтобы запустить его, необходимо перевести реверсирующий тумблер в нужное положение («вперед» или «назад), затем перевести тумблер «пуск» в положение «включено». На момент запуска необходимо нажать одноименную кнопку – «пуск». Держать ее нужно не более трех секунд. Этого будет достаточно для разгона.

Постоянный электроток: особенности

Двигатели постоянного тока подключаются труднее моторов, питающихся от переменной сети. Потому что для того чтобы соединить обмотки, нужно точно знать, какой марки ваш агрегат. Только потом можно найти подходящую схему.

Но в любом электромоторе постоянного тока есть якорь и намотка возбуждения. От способа их включения их делят на агрегаты:

  • с возбуждением независимым,
  • с самостоятельным возбуждением (делится еще на три группы: последовательное, параллельное и смешанное подключение).

Электродвигатели постоянного тока с независимым возбуждением (схематично изображены ниже) применяется на производствах. Их намотка никак не связана с якорем, потому что подключается к другому электрическому источнику.

В станках и вентиляторах применяются моторы однофазного питания с параллельным возбуждением. Тут нет надобности во втором источнике.

В электротранспорте применяются агрегаты с последовательным возбуждением.

Если одна намотка параллельна якорю, а другая последовательна, то такой способ подключения – смешанный. Он встречается редко.

Все способы включения электродвигателей постоянного тока могут реверсироваться:

  • Если возбуждение последовательное, то направление тока нужно поменять либо в возбуждающей намотке, либо в якоре;
  • В любом другом случае рекомендуется менять обмотку только в якоре. Если менять в намотке, то есть опасность, что она оборвется. Это приведет к резкому возрастанию электродвижущей силы, которая приведет к повреждению изоляции.

Реверсирование двигателя постоянного тока с независимым возбуждением выполняется так же.

Имейте в виду, что в розетке ток переменный. Но это не значит, что он переменный во всех электроприборах, оснащенных электродвигателем и включенных в нее. Ток из переменного фазного может стать постоянным, пройдя через выпрямитель. Фазного питания вообще может не быть, если двигатель запитан от батареи.

Схема реверсивного подключения электродвигателя

В домашнем хозяйстве приходится использовать различные приборы, которые помогают облегчить выполнение какой-то задачи. В некоторых случаях под потребности приходится собирать какой-то конкретный инструмент, который стоит довольно дорого или под него просто есть все необходимые компоненты. Часто для этого важно знать, как сделать схему подключения электродвигателя. Заставить его вращаться не так сложно, а изменить направление движения уже сложнее. В статье будет рассказано о том, как выполнить схему реверсивного подключения двигателя.

Принцип работы


Электрический двигатель представляет собой механизм, в котором вращение осуществляется под воздействием электромагнитных волн. В основу положено всего два компонента:

Вращается только первый элемента, а импульс на него подается со второго элемента. Чем выше мощность двигателя, тем больше его габариты. Из всего разнообразия различают:

В двигателях коллекторного типа питание на ротор подается через угольные щетки, которые касаются ламелей коллектора. Такие двигатели еще называют короткозамкнутыми. В асинхронных двигателях схема действия несколько отличается. В этом случае вращение происходит под воздействием двух сил:

Напряжение от источника питания подается на фиксированные обмотки статора. При этом в нем возникают электромагнитные волны. Если напряжение переменное, тогда магнитное поле нестабильно и имеет определенные колебания. Благодаря этим колебаниям и происходит смещение ротора. Между ротором и статором есть небольшой воздушный зазор, благодаря которому и возможно беспрепятственное смещение. Магнитные волны из обмоток статора воздействуют на обмотки ротора, создавая напряжение. Благодаря такому воздействию возникает электродвижущая сила или ЭДС. Она заставляет магнитные волны взаимодействовать в обратном направлении тем, что есть в статоре, поэтому двигатель и называется асинхронным.

Требуемые компоненты


Самостоятельное подключение двигателя для реверсивного вращения не вызовет особых сложностей, если руководствоваться приведенной схемой. Одним из важных компонентов, который облегчит такую задачу является магнитный пускатель или контактор. На самом деле магнитный пускатель и контактор не являются тождественными понятиями. Если говорить просто, то контактор входит в состав магнитного пускателя, но для упрощения в статье оба понятия используются как равнозначные. Магнитные пускатели как раз и применяются для запуска, реверсивного движения и остановки асинхронных двигателей.

Возможно, возникает вопрос о том, почему нельзя использовать обычный рубильник или силовой автомат. В принципе, это допустимо, но не всегда пусковые токи, которые необходимы двигателю для нормального начала функционирования являются безопасными для человека. При включении может возникнуть пробой, который выведет из строя как выключатель, так и навредит оператору. Чтобы свести риски к минимуму, потребуется пускатель. В нем контактная часть отделена от той, с которой взаимодействует оператор. В нем есть отдельный модуль с катушкой, которая создает электромагнитное поле. Для работы катушки может потребоваться напряжение в 12 или больше вольт. При подаче этого напряжения происходит взаимодействие с металлическим сердечником, который втягивается внутрь катушки. К сердечнику закреплена пластина, которая уходит к контактной группе. Они замыкаются и происходит запуск двигателя. Остановка происходит в обратном порядке.

Кроме контактора, потребуется трехкнопочная станция. Одна клавиша выполняет функцию остановки, а две других функции запуска с разницей в направлении вращения. В трехкнопочной станции должно быть два нормально разомкнутых контакта и один нормально замкнутый. Если говорить просто, то нормальным положением контактора называется его нерабочее положение. То есть при воздействии на контакт он либо замыкается, либо размыкается. Если в рабочем состоянии он замкнут, то обозначается как НО, а если разомкнут, то обозначается как НЗ. Контакт НЗ применяется для кнопки остановки.

Принципиальная схема


На иллюстрации выше можно видеть принципиальную схему реверсивного подключения двигателя. Она отличается от обычной только наличием дополнительного модуля. Если говорить точнее, то в схеме задействуется два модуля управления. Один из них заставляет вращаться двигатель вправо, а другой влево. Взаимодействие оператора с модулями происходит посредством кнопок SB2 и SB3. Латинскими буквами A, B, C на схеме обозначены подводящие линии трехфазной сети. Они подходят к общему выключателю, который обозначен QF1. Далее идут два контактора КМ и цифровым обозначением. От контакторов цепь уходит к обмоткам двигателя. Каждый из этих контакторов вынесен отдельно и находится справа, где дополнительно можно рассмотреть их составные компоненты.

Процесс включения


Процесс включения двигателя довольно просто описать, используя все ту же схему. Первым делом происходит задействование общего рубильника QF1. Как только он включается, происходит подача напряжения по трем фазам. Но это напряжение не подается непосредственно на сам двигатель, т. к. еще нет четких указаний, в каком направлении он должен вращаться. Далее проводники проходят через автомат SF1 он выполняет защитную функцию, обесточивая всю систему в случае короткого замыкания. Далее следует кнопка выключения, которая также способна быстро разомкнуть цепь питания. Только после этого напряжение следует к клавишам SB2 и SB3, после воздействия на который, питание проходит к двигателю.

Чтобы двигатель получил достаточное усилие для обратного вращения, необходимо переключить силовые фазы, для чего и предназначен пускатель КМ2. Если еще раз обратить внимание на схему, то можно заметить, что пускатель КМ1 имеет прямое подключение фаз к двигателю, а КМ2 обеспечивает некоторое смещение. Все происходит за чет первой фазы, она в этой схеме является ждущей. Как только она размыкается, прекращается подача напряжения на двигатель.

После полной остановки может быть задействована кнопка SB3. Она активирует второй пускатель. Последний меняет положение фаз, как показано на схеме. При этом дежурная фаза остается неизменной, питание от нее все так же подается на первый контакт двигателя. Изменения происходят во второй и третьей фазе. Благодаря этому обеспечивается реверсивное движение.

Этапы подключения


Подключение двигателя для реверсивного движения отличается в зависимости от того, какая сеть будет выступать питающей 220 или 380. Поэтому есть смысл рассмотреть их отдельно.

К трехфазной сети


Руководствуясь представленной схемой легко составить последовательность, в которой должно производиться подключение электродвигателя. Первым делом устанавливается основной силовой автомат. Его номинальное напряжение и сила тока должны быть рассчитаны на те, которые будет потреблять двигатель. Только в этом случае можно быть уверенным в бесперебойной работе. Перед монтажом автомата для двигателя потребуется обесточить сеть. Следующим устанавливается предохранительный выключатель. После него фазный кабель уходит на разрыв, на кнопку стоп, а уже от нее делается подключение к контакторам. На каждом элементе контактора и кнопочного поста обычно делаются соответствующие обозначения, которые упрощают процесс подключения. Видео о сборке тестовой схемы можно посмотреть ниже.

К однофазной сети


В домашних условиях часто приходится задействовать асинхронный двигатель, но не в каждом хозяйстве есть трехфазная сеть, поэтому важно знать, как подключить двигатель к однофазной сети. Для запуска от одной фазы требуется дополнительный импульс, чтобы его обеспечить подбирается конденсатор требуемой емкости. Если говорить проще, то конденсаторов должно быть два. Один из них является пусковым и подключается параллельно первому. Соединение обмоток двигателя выполняется по схеме «звезда». Если обмотки соединены другим способом и нет возможности его изменить, тогда не получиться выполнить требуемую схему.

Чтобы реверсивная схема функционировала потребуется переключение питания, которое поступает от конденсаторов между полюсами. Понадобится два выключателя и одна не фиксируемая кнопка. Одни из выключателей будет отвечать за подачу напряжения в цепь питания двигателя. Второй выключатель должен иметь три положения. В одном из них он будет выключенным, а в двух других изменять подачу питания от конденсаторов на обмотки. Не фиксируемая кнопка будет дополнительно подключать второй конденсатор на момент запуска двигателя.

Два вывода конденсатора подключаются между собой. К двум другим происходит подключение пусковой кнопки. Средний вывод трехпозиционного переключателя подключается к конденсаторам в том месте, где они объединены между собой. Два других вывода подключаются к клеммам двигателя, на которые приходит питание. Конденсаторы подключаются к выходу обмотки, которая применяется для запуска. Кнопка включения ставится в разрыв фазного провода.

Чтобы привести весь механизм в действие, необходимо подать питание на цепь двигателя основным выключателем. После этого задается направление вращения двигателя трехпозиционным выключателем. Далее нажимается кнопка пуска до момента выхода двигателя на рабочие обороты. Если возникает необходимость изменить направление вращения, тогда потребуется обесточить двигатель и дождаться его полной остановки, переключить трехпозиционный тумблер в противоположное крайнее положение и повторить процесс.

Резюме


Как видно реверсивное подключение требует определенных навыков, но может быть осуществлено без особых сложностей при соблюдении всех рекомендаций. Теперь не будет препятствий в использовании трехфазных агрегатов от однофазной сети, при этом следует понимать, что максимальная мощность будет ограничена, т. к. невозможен выход на полное потребление. На компонентах для подключения лучше не экономить, т. к. это скажется на сроке службы всей схемы. Во время сборки и запуска необходимо придерживаться всех правил безопасности работы с электрическим током.

Нереверсивная схема подключения электродвигателя

Что такое магнитный пускатель – это коммутационный аппарат, предназначенный для автоматического включения и отключения потребителей электроэнергии многократно таких, как электрокотел, электра тэна, электродвигатель и т.п.

Магнитный пускатель позволяет осуществить дистанционное управление, включать и отключать потребителя на расстоянии с пульта управления. Самое распространенное применение магнитного пускателя получили асинхронные двигателя, при помощи его осуществляется пуск, стоп и реверс (смена направления вращение вала) двигателя.

Еще магнитный пускатель служит для разгрузки маломощных контактов. Например, возьмем простой выключатель, который стоит дома, он рассчитан включать и отключать нагрузку не более 10 Ампер, определяем мощность: ток умножаем на напряжение 10*220 = 2200 Вт. Это значит, что через этот выключатель, можно, включить не более двадцати двух лампочек мощностью 100Вт.

Разгрузим контакт простого выключателя с помощью магнитного пускателя третьей величины, у которого силовые контакты рассчитаны включать и отключать ток 40 Ампер, мощность, которую он сможет включать и отключать: 40*220 = 8800 Вт. В итоге сможем одним щелчком выключателя, включать и отключать всю алею уличного освещения через контакты магнитного пускателя.

Управляется магнитный пускатель третьей величины с помощью электромагнитной катушки, которая потребляет 200Вт в момент срабатывания, а в сработанном состоянии потребляет всего 25Вт, что получается 200/380 = 0,52 А — это ток которым необходим, чтобы пускатель сработал и включил основную силовую цепь. Теперь представьте, что можно поставить маленький компактный выключатель, который будет управлять магнитным пускателем, а он своими силовыми контактами будет включать и отключать большие мощности.

Еще у магнитного пускателя катушки управления бывают на напряжения 380В, 220В и 36В в целях безопасности человека от поражения электрическим током. На токарных станках устанавливают магнитные пускатели с катушками на 36В. Это необходимо, для того чтобы на пульте управление токарным станком было безопасное напряжение, на случай пробоя изоляции.Для чего нужно тепловое реле в комплекте с магнитным пускателем. Тепловое реле защищает двигатель от перегруза и от неполнофазного режима работы. Что такое неполнофазный режим – это когда при работе электродвигателя исчезла одна из трех фаз.

Причины однофазного режима: перегорела плавкая вставка на одной фазе, подгорел контакт на клемме или выкрутился винт на клеммнике магнитного пускателя и выпал фазный провод от вибрации, плохой контакт на силовых контактах пускателя.

При перегрузке двигателя или работе в неполнофазном режиме увеличивается ток, проходящий через тепловое реле. В тепловом реле нагреваются токопроводящие биметаллические пластины, под действием тепла они выгибаются, и механически воздействует на размыкание контакта в тепловом реле, который отключает питание катушки магнитного пускателя, происходит отключение двигателя по средствам пускателя.

СЕМА ПОДКЛЮЧЕНИЕ АСИНХРОННОГО ДВИГАТЕЛЯ ЧЕРЕЗ МАГНИТНЫЙ ПУСКАТЕЛЬ.

Схема состоит:
из QF — автоматического выключателя; KM1 — магнитного пускателя; P — теплового реле; M — асинхронного двигателя; ПР — предохранителя; кнопки управления (С-стоп, Пуск). Рассмотрим работу схемы в динамике.
Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя.

КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя.
При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.

Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Не реверсивная схема магнитного пускателя с катушкой 380В.

РЕВЕРСИВНАЯ СХЕМА МАГНИТНОГО ПУСКАТЕЛЯ.

Схема состоит аналогично, так же, как на не реверсивной схеме, единственно добавилась кнопка реверса и магнитный пускатель.

Принцип работы схемы немного сложнее, рассмотрим в динамике. Что требуется от схемы, реверс двигателя за счет переворачивания местами двух фаз. При этом нужна блокировка, которая не давала бы включиться второму пускателю, если первый находится в работе и наоборот. Если включить два пускателя одновременно то произойдет КЗ – короткое замыкание на силовых контактах пускателя.

Включаем QF – автоматический выключатель, давим кнопку «Пуск[1]» подаем напряжение на КМ1 катушку пускателя, пускатель срабатывает. Силовыми контактами включает двигатель, при этом шунтируется пусковая кнопка «Пуск [1]».

Блокировка второго пускателя — КМ2 осуществляется, нормально замкнутым КМ1 — блок контактом. При срабатывании КМ1 — пускателя, размыкается КМ1 — блок контакт тем самым размыкает подготовленную цепочку катушки второго КМ2 — магнитного пускателя.

Чтобы осуществить реверс двигателя, его необходимо отключить. Отключаем двигатель, нажатием кнопку «С — стоп», снимается напряжение с катушки, которая находилась в работе. Пускатель и блок контакты под действием пружин возвращаются в исходное положение.

Схема готова к реверсу, нажимаем кнопку «Пуск[2]», подаем напряжение на катушку — КМ2, пускатель — КМ2 срабатывает и включает двигатель в противоположном вращение. Кнопка «Пуск[2]» шунтируется блок контактом — КМ2, а нормально замкнутый блок контакт КМ2 размыкается и блокирует готовность катушки магнитного пускателя — КМ1.
При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Реверсивная схема магнитного пускателя с катушкой 380В.

Принцип работы схемы магнитного пускателя с катушкой на 220В тот же, что и с катушкой на 380В.

Не реверсивная схема магнитного пускателя с катушкой 220В.

Реверсивная схема магнитного пускателя с катушкой 220В.

Просмотр и ввод комментариев к статье

голоса

Рейтинг статьи

Управление с помощью магнитных пускателей

Управление с помощью магнитных пускателей  [c.7]

Управление электроталями осуществляется с помощью магнитных пускателей или контроллеров.  [c.873]

На фиг. 1,6 представлена схема управления электродвигателем с помощью магнитного пускателя с тепловой защитой. В отличие от предыдущей схемы электродвигатель защищен от длительных перегрузок тепловыми реле 1РТ, 2РТ. При перегрузке электродвигателя по нагревательным элементам, включенным в две фазы электродвигателя, протекает повышенный  [c.8]


Фиг. 1. Схемы управления асинхронным электродвигат чем с коротко-замкнутым ротором с помощью магнитного пускателя
Если применение низкого напряжения необязательно, то следует использовать то же напряжение, что и для привода исполнительных элементов. Так, например, если привод питается трехфазным током 380/220 в, то для цепей управления используется напряжение 220 в. Следует по возможности избегать применения напряжения выше 220 в. Напряжение 380 в может применяться в случае простей-щей схемы управления, главным образом одиночными приводами с помощью магнитных пускателей или контакторов.  [c.82]

Схема электрооборудования автомата изображена на рис. 13. В схеме применено дистанционное управление электродвигателем с помощью магнитного пускателя. Электродвигатель включается в сеть пакетным выключателем. От короткого замыкания защитой служат плавкие предохранители. Скорость ротора электродвигателя трехфазного переменного тока типа АО-41/4 мощностью 1,7 кет 1420 об/мин. От перегрузки электродвигатель защищен тепловым реле РТ. Цепь управления, в которую включена катушка магнитного пускателя К, состоит из нормально закрытого контакта кнопки Стоп , нормально открытого контакта кнопки Пуск и нормально закрытых контактов конечных выключателей КВМ и КВР.  [c.130]

Стрела крана — подъемная, присоединяется шарнирно к передней части платформы и подвешивается с помощью полиспаста к стойке. Все механизмы крана, за исключением механизма передвижения, имеют двигатели с фазовым ротором. Управление механизмами — контроллерное, механизмом передвижения — кнопочное с помощью магнитных пускателей.  [c.24]

На рис. 67 приведена схема управления электродвигателем с помощью магнитного пускателя и кнопочной станции. Предусмотрено дистанционное включение и отключение электродвигателя.  [c.86]


Для питания грузоподъемных электромагнитов получают постоянный ток напряжением 220 в от цеховой сети постоянного тока или от преобразователя трехфазного переменного тока. Обычно в качестве преобразователя применяют двигатель-генератор, устанавливаемый на мосту электрического крана переменного тока. Двигатель-генератор состоит из асинхронного короткозамкнутого двигателя трехфазного тока, пускаемого в ход с помощью магнитного пускателя, и из генератора постоянного тока. Постоянный ток, вырабатываемый генератором, поступает по проводам в панель управления грузоподъемным электромагнитом (типа ПМС) и командоконтроллер типа (ВУ-501), предназначенный для включения тока в магнит. Далее от панели ПМС  [c.108]

Однооборотные электрические исполнительные механизмы (МЭО) по ГОСТ 7192—74 используются для управления регулирующими клапанами в бесконтактных и контактных системах автоматического регулирования и дистанционного управления. Бесконтактное управление механизмами осуществляется с помощью магнитных усилителей типа УМД или пускателя бесконтактного типа ПБР-2, контактное — с помощью магнитных контактных пусковых устройств (магнитных пускателей МКР-0-58). Напряжение питания для механизмов МЭО  [c.193]

Тельфер состоит из электротали, закреплённой к ходовой тележке, перемещающейся по монорельсовому подвижному пути, и снабжённой механизмом с ручным или машинным приводом от электродвигателя постоянного или переменного тока . Подводка тока к тельферам осуществляется с помощью троллейных проводов, подвешиваемых в уровне монорельсового пути и параллельных ему. С троллеями соприкасаются токоприёмники, укрепляемые на кронштейнах ходовых тележек. Управление электродвигателями может производиться при помощи магнитных пускателей или контроллеров с уровня пола (земли) или из кабин.  [c.874]

Управление электродвигателями приводов задвижек осуществляется с местного щита и районного диспетчерского пункта при помощи магнитного пускателя с кнопками. Величина открытия задвижек контролируется конечными выключателями, включенными в цепи катушек пускателя.  [c.220]

В тельферах грузоподъемностью 1—5 т на валу редуктора дополнительно помещается еще грузоупорный тормоз 8. Управление электродвигателем производится при помощи магнитных пускателей, соединенных подвесными кнопочными станциями, с уровня земли. Подводка тока к тельферу осуществляется с помощью троллейных проводов, подвешиваемых параллельно монорельсовому пути. С троллеями соприкасаются токоприемники тельфера.  [c.168]

Электрическая схема этого агрегата (рис. 109) во многом аналогична электрической схеме предыдущего и действует так же. Как и в предыдущем случае, при подключении батареи срабатывает реле Р1 и его разомкнутый контакт замыкает цепь питания катушки магнитного пускателя К2 электродвигателя вентилятора, который начинает разгоняться. Этот двигатель имеет две обмотки пусковую, включающуюся с помощью контакта реле Р1 и магнитного пускателя К2, и рабочую. Далее схема работает следующим образом. При нажатии на кнопку управления КУ включается магнитный пускатель К1 в цепи питания выпрямителя, катушка которого получает питание по цепи контакт магнитного пускателя двигателя вентилятора — контакт реле времени зарядки РВЗ типа ВС-10-88—контакт реле аварийной концентрации водорода РА — контакт реле Р2 — контакт реле протока воздуха РВ, который в это время замыкается, так как электродвигатель вентилятора разгоняется до необходимой скорости. Схема включения реле РА и РВЗ показана на рис. 112. Контакт магнитного пускателя К1 отключает цепь пусковой обмотки электродвигателя вентилятора, и питание будет получать только рабочая обмотка. По окончании процесса зарядки размыкается контакт РВЗ в цепи управления магнитным пускателем К1 и агрегат отключается. Таким образом, при отсутствии тока в цепи заряжаемой батареи, при неисправности вентилятора или при неправильном включении батареи агрегат запустить не удастся.  [c.177]


Общим для станков всех типов приёмом управления является приём пуск—остановка главного движения, легко автоматизируемый при помощи кнопочной станции с магнитным пускателем.  [c.715]

Электродвигатели секционирующих задвижек, установленных на магистральных теплопроводах, управляются с помощью реверсивного магнитного пускателя типа М-334 и кнопки управления типа К-03. Защита электродвигателя от перегрузок и короткого замыкания осуществляется при помощи автомата типа АП-25. В случае заедания задвижки срабатывает токовое реле и электродвигатель отключается. Блокировка задвижек на подающей и обратной линиях сети предусматривает очередность закрытия, исключая тем самым возможность повышения давления в отопительных системах  [c.217]

Для включения двигателя М1 стреловой лебедки нажимают на кнопку К7 (или Кб) управления подъемом (или опусканием) стрелы. При этом включаются реверсивные магнитные пускатели 14 и 15, замыкаются контакты kk и II в цепи статора двигателя М1 и одновременно подается напряжение на двигатели гидравлических толкателей тормозов 17 и 18, которые растормаживают тормоза лебедки. Частоту вращения двигателя стреловой лебедки регулируют с помощью частотного регулирования. Останавливают двигатель кнопкой К5.  [c.66]

Пуск, остановка, реверс и регулирование частоты вращения двигателей грузовой и стреловой лебедок и механизма поворота осуществляются соответственно с помощью кулачкового контроллера 22, кнопок магнитного пускателя 24 и универсального переключателя 23. Для включения двигателей Мз грузовой лебедки или М2 механизма поворота рукоятку контроллера 22 или универсального переключателя 23 переводят в первое положение для включения двигателя Мх стреловой лебедки нажимают на кнопку управления подъемом или опусканием стрелы. При этом замыкаются контакты в цепи статора соответствующего двигателя и одновременно подается напряжение на соответствующие двигатели 25, 29 и 31 гидравлических толкателей тормозов, которые растормаживают тормоз своего механизма.  [c.99]

Если с помощью одной ленты нужно управлять не одним, а тремя исполнительными двигателями (фиг. 4, б), то необходимо иметь три генератора, настроенных каждый на определенную частоту, и три кнопки управления. В этом случае в схему включаются три полосовых фильтра 10, каждый из которых настроен на частоту своего генератора. Полосовой фильтр пропускает в реле 7 ток только в том случае, если он соответствует частоте, на которую настроен фильтр. Реле 7 срабатывает и включает соответствующий магнитный пускатель, а следовательно, и соответствующий исполнительный двигатель.  [c.23]

Система управления короткозамкнутыми электродвигателями вклю-тет в себя магнитные пускатели и кнопки. Двигателями с фазовым ротором управляют с помощью силовых или магнитных контроллеров.  [c.132]

Главными гидравлическими цилиндрами и гидравлическим насосом управляют также кнопками при помощи реверсивного золотника 14 с электромагнитным управлением и магнитного пускателя.  [c.104]

Кнопки управления. Кнопки управления (рис. 87, а) служат для замыкания и размыкания цепей катушек контакторов, магнитных пускателей и реле, а также для включения звукового сигнала. Кнопка состоит из стержня 2 с головкой (толкателя), смонтированного на стержне контактного мостика, и неподвижных контактов, укрепленных на корпусе 1 кнопки. Толкатель кнопки удерживается в исходном положении с помощью возвратной пружины. Толкатели кнопок снабжены надписями Пуск , Стоп в зависимости от назначения кнопок. Кнопка имеет обычно замыкающий и размыкающий контакты, электрически не связанные друг с другом. Контакты кнопок выдерживают ток до 5 А.  [c.127]

Кнопки магнитных пускателей могут быть расположены на пульте управления автоматической установки. С помощью этих кнопок осуществляется дистанционное регулирование тока, что очень удобно для управления автоматом.  [c.69]

Применяемые в современных проектах схемы дистанционного управления наружным освещением (рис. 9.5—9.10) обеспечивают централизованное управление освещением из одного пункта раздельно каждым объектом контроль положения магнитных пускателей местное управление освещением отдельных объектов при общем централизованном управлении ремонтное отключение наружного освещения с пункта питания возможность отключения рабочего освещения объектов контролируемого района с пульта централизованного отключения освещения частичное отключение на крупных станциях рабочего освещения отдельного ряда объектов из шкафа управления раздельное управление рабочим и дежурным освещением платформ централизованное отключение освещения охраняемых и неохраняемых переездов с помощью реле двойного снижения напряжения (ДСН), установленного в шкафах СЦБ автоматическое включение прожекторной установки для  [c.156]

В аммиачных приборах применяют стальные, гофрированные мембраны в приборах для агентов средних (кроме аммиака) и низких давлений— сильфоны. Приборы, предназначенные для различных агентов, отличаются друг от друга диаметрами сильфонов и пружинами. Обычно применяют однополюсные контакты. Разрывная мощность прибора достигает иногда 15иО am при твёрдых и 1000 вт при ртутных контактах, но обычно выполняется в 2—3 раза ниже. Однофазные двигатели пускаются непосредственно приборами, трёхфазные—с помощью магнитных пускателей. Конструкции приборов управления пуском ко.мпрессора весьма разнообразны.  [c.704]

Для дистанционного управления электромагнитными аппаратами и для цепей сигнализации используются кнопки управления КУ. Номинальное напряжение, при котором они работают, не должно превышать 440 на постоянном и 500В на переменном токе. Дистанционное управление трехфазными асинхронными двигателями производят с помощью магнитных пускателей, представляющих собой электромагнитные аппараты. Магнитные пускатели имеют две цепи силовую (основную), управления (вспомогательную). Силовая цепь состоит из плавких предохранителей, линейных контактов, нагревательных элементов тепловых реле. Катушка пускателя рассчитана на работу при напряжении 85—100% номинального. Минимальное напряжение, при котором катушка надежно удерживает пускатель во включенном положении, на 50—60% ниже номинального.  [c.43]


Включение двигателей в сеть, реверсирование, разгон до номинальной скорости, отключение и т. д. производятся с помощью магнитных пускателей, контакторов, контроллеров или релейноконтакторных систем управления, называемых магнитными контроллерами. Магнитные пускатели и отдельные контакторы при-  [c.66]

Как видно из рассмотренных схем, канадый механизм мостовых и козловых кранов и кран-балок обслуживается индивидуальным электродвигателем. В кранах применяют двигатели переменного тока. При двигателях с короткозамкнутым ротором, как это имеет место, например, в электроталях, управление кнопочное, с помощью магнитных пускателей.  [c.105]

Контактный поверхностный нагрев по методу Н. В. Ге-велинга осуществляется с помощью установки для контактного нагрева, схема которой приведена на рис. 148. Установка включается с помощью рубильника /, тумблера на пульте управления 2 и магнитного пускателя 3. От автотрансформатора 4 напряжение подается на силовой трансформатор 5, который гибкими шинами 6 соединен с роликами 7. Ролики соприкасаются с вращающейся деталью 8. Для закалки с контактным нагревом может быть использован любой металлорежущий станок. Охлаждающая жидкость (вода или эмульсия) подается насосом из бака. Иногда используют воду из водопроводной сети.  [c.261]

Подключение электродвигателей чаще производится с подющью магнитных пускателей. В свою очередь включение пускателей осуществляется с помощью кнопок управления. Наиболее распространены кнопки с само-возвратом, подающие командный импульс только при нажатии их. Кнопки имеют один нормально разомкнутый и один нормально замкнутый контакты мостикового типа (рис. 49). При нажатии кнопки контактный мостик сначала  [c.55]

Для автоматического пуска асинхронных двигателей с фазовым ротором или двигателей постоянного тока применяются магнитные контроллеры (контакторные панели), представляющие собой комплект контакторов и реле, соединеннных по определенной схеме. Все сказанное о магнитном пускателе полностью осуществихмо в случае управления электродвигателями с помощью магнитных контроллеров. При напряженном режиме работы, характеризующемся большим числом включений в час, и при значительной мощности двигателя, когда управление с помощью обычного (ручного) контроллера становится затруднительным, применяют магнитные контроллеры. При весьма тяжелых режимах работы кранов, при питании кранов переменным током применя-  [c.94]

В головках с автоматически регулируемой скоростью подачи электрода применяется разнообразная пусковая и регулировочная аппаратура. В головках с постоянной скоростью подачи электродной проволоки пусковая и регулировочная аппаратура значительно проще благодаря замене контакторных схем управления бесконтакторными кнопочными схемами управления. Тащ например, управление самоходной головкой УСА осуществляется при помощи простейшей пятикнопочной схемы (фиг. 128). Аппаратура состоит из кнопок, линейных контакторов и магнитных пускателей, реверсных переключателей и тормозных магнитов.  [c.344]

Так как работа электропривода грузоподъемных машин происходит в повторно-кратковременном режиме с частыми пусками и остановками, то весьма важно обеспечить защиту электродвигателя и пусковой аппаратуры от перегрузки и перегрева. Поэтому все машины имеют различные автоматические защитные и блокировочные устройства. Электроприводы с двигателем с фазным ротором имеют устройства, обеспечивающие автоматический контроль за режимом пуска электродвигателей. Управление электродвигателями подъемно-транспортных машин осуществляется с помощью контроллеров, магнитных пускателей, контакторов или релейно-контакторных систем. Электрическая схема управления электродвигателями грузо-подъемной машины должна исключать возможность самоза-пуска двигателей после восстановления прерванного ранее по какой-либо причине напряжения в сети, питающей грузоподъемную машину. Электротехническая промышленность выпускает стандартные панели управления для электродвигателей всех типов для различных механизмов грузоподъемных машин.  [c.290]

Для изменения направления вращения электродвигателя применяются реверсивные схемы. Они выполняются с помощью реверсивных магнитных пускателей (фиг. 2,а). Такой пускатель имеет две независимые магнитные системы и две группы главных и блокировочных контактов. Управление магнитным пускателем, а следовательно, и электродвигателем производится посредством трехштифтовой кнопки ПВ, ПН, С. При нажатии кнопки ПВ ( Вперед ) включается катушка ПМВ магнитного 8  [c.8]

На фиг. 13 изображена схема управления нереверсивным четырехскоростным электродвигателем, в которой переключение скоростей производится ручным переключателем. Чтобы уменьшить габариты переключателя, его предназначают лишь для подготовки силовых цепей, а пуск и остановка электродвигателя осуществляется магнитным пускателе м ПМ с помощью кнопок Л, С. При каждом переключении контакт 20 в цепи магнитного пускателя размыкается несколько раньше, чем контакты в главной цепи.  [c.19]

На фиг. 54 приведен первый вариант принципиальной электросхемы управления для случая оставления аппаратуры на самом электротельфере. Электродвигатель 1Д перемещения управляется магнитным пускателем ШМВ—1ПМН с помощью соответствующих кнопок. Электродвигатель 2Д подъема управляется магнитным пускателем 2ПМВ—2ПМН своими кнопками. Эта часть схемы пояснений не требует.  [c.88]

Рассмотрим устройство токарно-винторезного станка модели 1К62 (рис. 227). Основные узлы станка следующие станина 15, передняя бабка 2, задняя бабка 9, коробка подач 1 с ходовым винтом 13 и ходовым валиком 14, фартук 16 с механизмами подачи, суппорт 5 и электропривод. Кроме этих узлов, станок имеет масляный насос для смазки механизмов станка, насос для подачи смазочно-охлаждающей жидкости и кнопочное или рычажное управление для пуска и остановки станка. Включение, выключение и реверсирование электродвигателя производится посредством реверсивного магнитного пускателя с помощью рукоятки.  [c.536]

Электрическая схема выпрямителя типа ВАКГ-12/6-630 приведена на рис. 5.4. Включение выпрямителя осуществляется магнитным пускателем К.М при помощи кнопки КП. Для защиты от коротких замыканий, а также при перегрузке применены автоматический выключатель Q и реле максимального тока КА, настраиваемое на силу тока, равную 1,25 от номинальной величины. Силовая цепь состоит из трансформатора Т1, дросселей Ы—Ь6, выпрямительного моста, включающего шесть кремниевых вентилей VI—У6 на силу тока 200 А каждый и уравнительный реактор Ь. Блок управления состоит из трансформатора Т2 и цепи управления. В цепь опорного напряжения входят резисторы Rl и Й2, конденсатор С1, стабилитрон VII и обмотки магнитного усилителя МУ (4Н—4К, 6Н—6К). В цепи токового сигнала имеются датчик тока 17 (дроссель насыщения), диоды У7—У10, конденсатор С2, резисторы Я4—Я5 и обмотка магнитного усилителя (5Я—5К). В цепь сигнала напряжения на выходе включены резистори обмотка магнитного усилителя (7Я—7К). Для охлаждения выпрямителя используется вентилятор с электродвигателем Ж.  [c.181]



Основы пускателей и контакторов двигателей

Пускатели двигателей

Добро пожаловать в это руководство EATON, в котором рассказывается о пускателях, устройствах, управляющих использованием электроэнергии для оборудования, обычно двигателя. Как следует из названия, стартеры «запускают» двигатели. Они также могут остановить их, обратить вспять, ускорить и защитить.

Основы пускателей двигателей и контакторов (на фото: магнитный пускатель двигателей Eaton)

Пускатели состоят из двух строительных блоков, контакторов и защиты от перегрузки:

  • Контакторы контролируют подачу электрического тока на двигатель.Их функция состоит в том, чтобы повторно устанавливать и прерывать электрическую цепь.
  • Защита от перегрузки защищает двигатели от чрезмерного потребления тока и перегрева, буквально от «выгорания».

Контакторы

Контактор может использоваться как устройство управления мощностью или как часть пускателя. Контакторы используются в различных приложениях, от выключателя света до самого сложного автоматизированного промышленного оборудования.

Контакторы используются электрическим оборудованием, которое часто выключается и включается (размыкание и замыкание цепи), таким как освещение, нагреватели и двигатели.

Рисунок 1. Пускатель состоит из контроллера (чаще всего контактора) и защиты от перегрузки

Независимо от применения функция контактора всегда одна и та же: замыкать и размыкать все линии электроснабжения, идущие к нагрузке . Или, как определено NEMA, многократно устанавливать и прерывать электрическую цепь.

Начнем с основных компонентов пускателя: контактор и защита от перегрузки . Затем мы закончим обсуждением стартеров.

Вот темы, которые мы рассмотрим:

  1. Контактор (магнитный контактор, принцип работы контактора, срок службы контактов и т. д.)
  2. Защита от перегрузки (Как работают двигатели, что такое перегрузки? , реле перегрузки, отключение и т. д.)
  3. Пускатель (магнитный пускатель двигателя, схема пускателя, типы, стандарты и номиналы и т. д.)
  4. Помощь заказчику (NEMA или IEC?, проверка паспортной таблички двигателя и т. д.))
Основы пускателей и контакторов двигателей от EATON

Понимание основ пускателей двигателей — Palmer DCS

Средства управления двигателем, и особенно пускатели двигателей, являются основой многих решений по управлению электрооборудованием. Чтобы помочь вам стать лучше понимание того, что такое стартер двигателя, как они работают, почему мы используем их и различные типы стартеров, мы составили этот пост, первый в серии статей, посвященных основам стартеров двигателей.

ЧТО ТАКОЕ СТАРТЕР МОТОРА?

Пускатель электродвигателя — это электрический компонент, предназначенный для безопасного пуска и останова электродвигателя.Подобно реле, пускатель двигателя включает и выключает питание. В отличие от реле, пускатель также обеспечивает защиту от перегрузки по току и низкого напряжения.

Пускатель двигателя выполняет четыре основные функции:

  1. Безопасный запуск двигателя.
  2. Безопасный останов двигателя.
  3. Изменить направление вращения двигателя.
  4. Обеспечивает защиту двигателя от низкого напряжения и перегрузки по току.

Пускатель двигателя обычно состоит из двух компонентов, которые работают вместе для управления и защиты двигателя.

  • Электрический контактор: запускает и останавливает подачу питания на двигатель, замыкая или размыкая контактные клеммы.
  • Реле перегрузки: контролирует ток в условиях перегрузки.

ПОЧЕМУ МЫ ИСПОЛЬЗУЕМ СТАРТЕР С ДВИГАТЕЛЕМ

Электродвигатели классифицируются как индуктивная нагрузка, что означает требуется огромное количество энергии, чтобы разогнаться, а затем относительно небольшое количество энергии для поддержания этой скорости. Этот начальный всплеск мощности называется пусковым током.Несмотря на то, что он короткий, он может в несколько раз превышать установившийся ток. Двигатели рассчитаны на этот пусковой ток и могут запускаться и останавливаться без повреждений.

Однако приложения, требующие нескольких пусков/остановок (обычно более 4 в час) следует использовать частотно-регулируемый привод VFD, т.к. повторный пуск от запуска через линию может привести к перегрузке и повреждению двигателя.

Для более крупных двигателей такой большой ток может вызвать провалы напряжения в линии питания, что может привести к повреждению другого оборудования, подключенного к той же линии.Соответственно, большинство более крупных двигателей запускаются другим способом (устройство плавного пуска RVSS или частотно-регулируемый привод VFD, обсуждаемые отдельно). Если несколько меньших нагрузок настроены на совместное подключение к сети, следует позаботиться о том, чтобы их пуски были распределены по времени с помощью таймеров задержки включения или программирования системы управления.

ПРИНЦИП РАБОТЫ СТАРТЕРА

Пускатель двигателя может быть ручным или электромеханическим. В приложениях, где используется ручной стартер, рычаг ВКЛ/ВЫКЛ или кнопку необходимо вручную перевести из положения ON или OFF.Это выключит или включит источник питания, замкнув или разомкнув контакты.

Недостатком ручных пускателей является то, что при сбое питания они возобновят работу, как только питание вернется в сеть, потенциально создающих угрозу безопасности. Ручные пускатели не позволяют однако для автоматического управления, поэтому лучшие отраслевые практики ограничивают использование ручных пускателей в пользу автоматических пускателей.

В электромеханическом пускателе контактор действует подобно реле.Цепь управления подает напряжение на катушку, которая возбуждает и магнитно притягивает контакты, завершающие цепи к двигателю и позволяя ему потреблять мощность. Это полностью изолирует цепи управления и питания, обеспечивая низкое напряжение. (обычно 120 В) управление более высоким напряжением (обычно 208 В или 460 В) силовой цепи.

Реле перегрузки защищает двигатель от перегрузки. Поскольку ток генерирует тепло, перегрузки контролируют ток, поступающий на двигатель, чтобы увидеть, сколько тепла выделяется.

Перегрузка может произойти по разным причинам, это может быть превышение тока полной нагрузки, пусковой ток может потребляться слишком долго, или одна из фаз может потреблять больше, чем другие. В случае перегрузки срабатывает реле перегрузки, автоматически обесточивая катушки контактора и отключая питание двигателя. Это делается для предотвращения повреждения двигателя.

В отличие от ручного пускателя контактор контактирует в электро- механический стартер возвращается в исходное положение после сбой питания или перегрузка, которая держит двигатель выключенным, когда сила течет снова.

В приложениях, где автоматический перезапуск может опасность, можно добавить кнопку пуска, чтобы предотвратить автоматический перезапуск двигателя при возобновлении питания. Это также предотвратит одновременное подключение нескольких нагрузок после сбоя питания, что приведет к провалам напряжения и потенциальному повреждению оборудования, как обсуждалось ранее.

Palmer DCS предлагает широкий выбор магнитных пускателей двигателей. которые отвечают требованиям времени занятых сервисных компаний HVAC, механические и электрические подрядчики и многое другое.Мы подходим к каждому работа с качеством, гибкостью и надежностью, предлагая больше, чем 30 000 конфигураций для магнитных пускателей двигателей NEMA и IEC. К загрузите наше прилагаемое руководство по решениям для магнитных пускателей, посетите наш сайт по адресу https://www.palmerdcs.com/motor-starters. Спасибо, что позволили нам рассказать вам больше о том, что мы делаем.

Основы пускателей трехфазных двигателей

Трехполюсные (трехфазные) электромагнитные пускатели двигателей (рис. 1) обычно используются для управления трехфазными асинхронными двигателями переменного тока с интегральной мощностью.Этот тип трехполюсного пускателя двигателя обычно описывается как трехфазный пускатель двигателя с прямым или полным напряжением, потому что полное линейное напряжение подается на соответствующие выводы двигателя, когда катушка электромагнита пускателя двигателя находится под напряжением.

Трехфазный электромагнитный пускатель двигателя состоит из силового контактора и реле перегрузки, как показано на рисунке 2. Механическое замыкание силовых контактов осуществляется электромагнитным полем, которое создается катушкой провода, находящейся в соленоид.Электромагнитная катушка может активироваться электрическим сигналом из удаленного места.

Контактор

В конструкции трехполюсного электромагнитного пускателя двигателя контактор является силовым контактором (рис. 2). В нем используется соленоид для электромеханического включения (путем создания линейного движения) всех трех контактов переключения мощности одновременно, когда катушка находится под напряжением. Линейное движение электромагнитной катушки в трехполюсном электромагнитном пускателе двигателя заменяет рукоятку переключателя, используемого в трехполюсном ручном пускателе.

Вспомогательные контакты управления

Трехполюсный электромагнитный пускатель двигателя обычно поставляется (приобретается) как минимум с одним комплектом замыкающих (нормально разомкнутых) вспомогательных контактов (рис. 2), которые активируются силовыми контактами. Эти вспомогательные нормально разомкнутые контакты могут использоваться в качестве переключателя для управления сигнальными лампами, другими трехполюсными электромагнитными пускателями двигателей или необходимыми герметизирующими контактами в трехпроводной цепи управления.

Рис. 2. Расположение компонентов обычного пускателя двигателя.Силовые контакторы некоторых трехполюсных электромагнитных пускателей двигателей снабжены (снабжены) как набором НО, так и набором НЗ вспомогательных контактов. Оба типа контактов активируются (замкнуты и разомкнуты соответственно), когда силовые контакты замкнуты.

Вспомогательные размыкающие контакты могут использоваться для выключения освещения при работающем двигателе (активирован пускатель двигателя). Их также можно использовать для отключения другой функции управления, например, блокировки (отключения) катушки противоположного направления на реверсивном трехполюсном электромагнитном пускателе (двигатель не может работать в обоих направлениях одновременно).

Вспомогательные контакты NC могут также использоваться для блокировки трехполюсного электромагнитного пускателя второго двигателя, когда два двигателя не могут работать одновременно. Эти управляющие контакты называются вспомогательными контактами, поскольку основная функция трехполюсного электромагнитного пускателя двигателя заключается в переключении его силовых контактов, которые регулируют мощность, подаваемую на обмотки двигателя.

Реле перегрузки

Как и в случае с трехполюсным ручным пускателем двигателя, реле перегрузки трехполюсного пускателя двигателя с прямым (электромагнитным или полным напряжением) состоит из трех нагревательных элементов, соединенных последовательно, по одному на каждый, с тремя двигателями. -подводящие провода.Три клеммы питания реле перегрузки обычно крепятся болтами непосредственно к клеммам нагрузки трехполюсного силового контактора. Клеммы нагрузки реле перегрузки, обозначенные T1, T2 и T3, являются клеммами питания двигателя. С помощью проводников цепи двигателя эти клеммы реле перегрузки должны быть подключены к проводам трехфазного двигателя переменного тока T1, T2 и T3 в корпусе клеммы двигателя.

Элементы перегрузки (нагреватели) в реле перегрузки трехполюсного электромагнитного пускателя двигателей, размеры которых соответствуют таблице нагревателей изготовителя и ограниченному превышению в процентах от фактического (паспортного) тока полной нагрузки двигателя, должны быть установлены в соответствующие слоты на реле перегрузки (по одному последовательно с каждым из трех проводов двигателя).

Реле перегрузки для встроенных трехполюсных электромагнитных пускателей двигателей меньшей мощности обычно содержат один набор управляющих контактов, которые удерживаются замкнутыми посредством механической связи со всеми тремя нагревательными элементами. Если какая-либо ветвь (фаза питания) двигателя потребляет ток, превышающий номинальный ток нагревательного элемента, соответствующий нагреватель размыкает контакты управления. Эти контакты, при правильном подключении к цепи управления, прерывают управляющее питание, подаваемое на соленоид пускателя двигателя.

Трехполюсные электромагнитные пускатели электродвигателей со встроенной мощностью более высокой мощности могут иметь индивидуальные реле перегрузки, установленные в каждом проводе питания двигателя. Контакты управления НЗ трех отдельных (отдельных) реле перегрузки обычно подключаются последовательно на заводе-изготовителе. На некоторых схемах могут быть показаны все три контакта перегрузки. Другие покажут только один. Оба средства допустимы, если в цепи управления идентифицированы контакты управления реле перегрузки НЗ.

Требования NEC

В соответствии с правилами NE Code, которые не позволяют устанавливать переключатель или переключающие контакты последовательно с заземляющим проводником, управляющие контакты реле перегрузки должны быть установлены в качестве последнего элемента управления перед клеммой со стороны линии трехполюсный электромагнитный соленоид пускателя двигателя в заданной ступени управления или линии лестничной схемы.

Поскольку цепь управления двигателем представляет собой цепь с ограничением мощности (отдельно производная система), Кодекс NE прямо не запрещает замыкание контактов управления реле перегрузки НЗ последовательно с электромагнитной катушкой пускателя двигателя на ее заземленной обратной стороне. Большинство новых трехполюсных электромагнитных пускателей электродвигателей на заводе подключаются к замкнутым контактам реле перегрузки последовательно с катушкой соленоида на его общей или обратной стороне. Вместо этого Кодекс NE предусматривает, что схема управления двигателем должна быть подключена или устроена таким образом, чтобы непреднамеренное (случайное) заземление любого проводника цепи управления не приводило к автоматическому запуску двигателя или обходу каких-либо устройств ручного отключения или любых устройств автоматического отключения безопасности в системе управления. схема.

Руководство по четырем основным функциям пускателя двигателя

Как безопасно управлять двигателем переменного тока?

Безопасность всегда является главным приоритетом в любой промышленной среде.

Заводы и перерабатывающие предприятия являются рабочими местами с высоким риском, сталкиваясь с реальной опасностью катастрофических событий, таких как пожары и взрывы.

 Надежное управление высокими уровнями электрического тока, протекающего через несколько двигателей переменного тока, которые питают современные промышленные объекты, имеет решающее значение для безопасности предприятия.

В любой установке с электродвигателями могут возникать различного рода неисправности. К ним относятся: короткие замыкания между фазами источника питания, перенапряжение источника питания и перегрузка двигателя, приводящая к скачку напряжения.

Последствия таких неисправностей варьируются от временных отключений и разрушения двигателя и компонентов его стартера до возгорания электрооборудования.

Чтобы избежать таких повреждений или, по крайней мере, ограничить их последствия, каждый двигатель должен быть защищен от:

  • короткие замыкания: плавкими предохранителями, магнитными выключателями и т.п.
  • перегрузки: от тепловых или электронных реле перегрузки, многофункциональных реле и т. д.

В пускателе электродвигателя эти защитные элементы объединены с выключателем-разъединителем и устройством управления. Чтобы они правильно выполняли свои функции, их следует координировать.

Ниже приведено краткое руководство по четырем основным функциям пускателя электродвигателя, за которым следует объяснение важности обеспечения их согласованности для правильной совместной работы.

 

1 — Разъединение и размыкание

 Любой пускатель двигателя должен иметь возможность отключения от сети и изоляции, чтобы предотвратить повторный запуск. Возможность отключения питания и изоляции позволяет безопасно выполнять работы по техническому обслуживанию и ремонту двигателя, приводимого оборудования или компонентов его пускателя.

В простейшей форме это может быть обеспечено выключателем-разъединителем в верхней части цепи.

Однако производители предлагают множество устройств, способных выполнять эту функцию.Функции выключателя-разъединителя и защиты от короткого замыкания (ниже) часто объединяются в одном устройстве, например, в выключателе-разъединителе с предохранителем.

2 — Защита от короткого замыкания

 Проблема с отключением электричества в том, что оно любит течь. Он будет продолжать течь и может проходить через воздух — это можно увидеть в доме, когда вы видите небольшую вспышку, когда выключаете свет ночью.

 В бытовых условиях нормальный ток нагрузки составляет всего несколько ампер, но при коротком замыкании он может достигать нескольких тысяч ампер.MCB в вашем распределительном щите способны устранить этот ток неисправности.

 В промышленной среде все увеличивается в масштабе. Нормальный ток нагрузки может составлять 1000 ампер, а предполагаемый ток короткого замыкания может превышать 100 000 ампер. Эти уровни энергии нуждаются в правильном оборудовании для предотвращения разрушительных взрывов и пожаров.

 Устройства защиты от короткого замыкания выбираются в соответствии с предполагаемым током короткого замыкания, для устранения которого они могут потребоваться.Они обнаруживают короткое замыкание, а затем отключают питание безопасным способом. Функция обеспечивается автоматическим выключателем или предохранителями.

 

3 — Защита от перегрузки

Перегрузки вызваны тем, что двигатель потребляет большую мощность, чем он рассчитан, неизменно потому, что его заставляют работать больше, чем следует: например, конвейерная лента перемещает более тяжелые предметы, чем обычно, или насос с засорением.

Защита от перегрузки обнаруживает избыточные токи из-за перегрузки и размыкает цепь, чтобы предотвратить перегрев и перегорание двигателя.

Сложность заключается в том, что при запуске двигатели потребляют большие токи. Устройство должно допускать кратковременные перегрузки, на которые рассчитан двигатель, но срабатывать, если перегрузка продолжается.

Эта защита обеспечивается электромеханическими или электронными реле перегрузки в сочетании с отключающим устройством, таким как автоматический выключатель или контактор. Он также может быть встроен в электронные пускатели или приводы с регулируемой скоростью.

4 — Управление

Это замыкание и размыкание электрической цепи под нагрузкой, которое чаще всего выполняется с помощью контактора, впервые изобретенного компанией Telemecanique (часть Schneider Electric) в 1924 году.

Контактор имеет главные полюса, которые выполняют переключение. Эти полюса открываются и закрываются за счет возбуждения электромагнита, называемого катушкой. Катушка обычно рассчитана на переменное или постоянное напряжение и имеет номинальное управляющее напряжение.

Повышенное или пониженное напряжение на катушке может иметь разрушительные последствия для контактора. Режим отказа обычно приводит к перегоревшей катушке, которая просто отключает контактор, но может выйти из строя, если контактор заклинило в замкнутом состоянии. Катушки новых контакторов Tesys D Green могут работать как на переменном, так и на постоянном токе и имеют широкий диапазон допусков по управляющему напряжению.

Координация имеет решающее значение

Четыре различных функции пускателя двигателя должны работать или координироваться вместе должным образом.

Одно устройство, известное как пускатель-контроллер или устройство управления и защитного переключения (CPS), такое как Tesys U, может использоваться для выполнения всех четырех функций.

Другие компоненты могут выполнять более одной функции в одном устройстве, а затем можно использовать комбинации двух или трех устройств. Например, магнитный автоматический выключатель, такой как GV2L, представляет собой устройство защиты от короткого замыкания и выключатель-разъединитель.В сочетании с отдельным устройством защиты от перегрузки и контактором он может выполнять все четыре функции, используя всего 3 компонента.

Чтобы помочь разработчикам систем выбрать эти компоненты пускателя двигателя, все основные производители пускателей двигателей публикуют в своих каталогах таблицы комбинаций для своего оборудования.

Люди, устанавливающие пускатели электродвигателей, должны обеспечить подлинную координацию между этими компонентами.

Schneider протестирует эти комбинации и опубликует координационные таблицы устройств, которые будут правильно работать вместе.

Если вы смешиваете и подбираете производителей, комбинация вряд ли будет протестирована и может работать неправильно в условиях неисправности.

Если комбинации не согласованы правильно, результат может быть катастрофическим. Например, в условиях короткого замыкания автоматический выключатель вполне может устранить неисправность, но энергия, пропущенная им в процессе, может привести к взрыву или возгоранию контактора.

Скоординированные устройства

типа 1 обеспечат локализацию неисправности в компонентах пускателя двигателя.Компоненты могут нуждаться в замене, но оператор защищен от травм, а панель защищена от любых других повреждений.

Координированные устройства типа 2 — это усовершенствование типа 1, поскольку вы можете снова запустить завод. Возможно, вам придется удалить прихваточный шов на контакторе, но компоненты будут исправны.

Вот почему координация имеет решающее значение, и, если вы не уверены, комплексное решение, такое как TeSys U, может быть вашим лучшим выбором. TeSys U обеспечивает «полную координацию» — отсутствие риска повреждения, отсутствие риска контактного сваривания, просто бесперебойная работа без обслуживания.

Узнайте больше о TeSys U

Стандартные схемы управления двигателем

— журнал IAEI

Однофазные и трехфазные асинхронные двигатели переменного тока с короткозамкнутым ротором нуждаются в цепи определенного типа, чтобы инициировать функцию пуска или останова. Обычно однофазные двигатели и трехфазные двигатели меньшей мощности могут запускаться при полном напряжении в сети. Однако трехфазные двигатели большей мощности требуют методов запуска с пониженным напряжением.

Цепи питания и цепи управления

Обычно в управлении двигателем используются два типа цепей — силовая цепь линейного напряжения и цепь управления . Силовая цепь при прямом пуске на полном напряжении состоит из устройства защиты от перегрузки по току (OCPD), будь то плавкие предохранители или автоматический выключатель; линейные проводники, которые заканчиваются на клеммах L1, L2 и L3; магнитный пускатель двигателя или полупроводниковое устройство; и проводники нагрузки, которые заканчиваются на клеммах T1, T2 и T3.

Цепь управления   состоит из компонентов лестничной схемы, таких как кнопки пуска и останова, катушки реле, сигнальные лампы и любые другие устройства замыкания контактов, такие как концевые выключатели, реле давления, регуляторы температуры, датчики приближения или поплавковые выключатели. Цепь управления может быть дополнительно классифицирована как двухпроводная или трехпроводная в зависимости от применения. Также важно отметить, что мощность силовой цепи рассчитана в соответствии с номинальным напряжением нагрузки двигателя: 115 В, 200 В, 230 В, 460 В или 575 В.Цепь управления может работать при том же напряжении, что и силовая цепь, но она также может работать при более низком напряжении за счет использования станочного трансформатора для понижения напряжения до более безопасного уровня.

Схема типичной пусковой цепи с полным напряжением от сети показана на рис. 1. На этой схеме показаны как силовая цепь , так и цепь управления . Обратите внимание, что схема управления представляет собой схему управления с трехпроводной лестничной схемой, которая хорошо работает для трехфазных двигателей меньшей мощности.Электроэнергетическая компания будет иметь правила относительно того, насколько большой двигатель может быть запущен через линию. Как только мощность двигателя превышает это значение, необходимо использовать методы запуска при пониженном напряжении. Двигатели являются индуктивными нагрузками; поэтому они имеют очень высокие пусковые токи в диапазоне от 2,5 до 10 раз больше рабочего тока двигателя при полной нагрузке. Этот чрезмерный пусковой ток, также называемый током заторможенного ротора, вызывает колебания напряжения на линиях. Вы, вероятно, наблюдали эффект пускового тока всякий раз, когда свет в здании гаснет, когда оборудование HVAC подключается к сети.Когда этот чрезмерный пусковой ток потребляется от источника напряжения в течение нескольких секунд, это вызывает падение напряжения. Это падение напряжения означает, что для оборудования доступно более низкое напряжение; и осветительные приборы, в частности, будут мерцать.

Рис. 1. Трехпроводное управление при полном напряжении

Пускатели пониженного напряжения

В основном существует шесть типов пускателей пониженного напряжения: первичный резистор, реактор, автотрансформатор, частичная обмотка, звезда-треугольник и полупроводниковый. Твердотельные пускатели пониженного напряжения очень распространены, поскольку они хорошо взаимодействуют с частотно-регулируемыми приводами (ЧРП) и программируемыми логическими контроллерами (ПЛК).

Пускатели с первичным резистором  используют резисторы, включенные последовательно с выводами двигателя во время функции пуска. Поскольку теперь это последовательная цепь, прикладываемое напряжение падает между последовательным резистором и обмоткой двигателя, вызывая более низкий пусковой ток. Реле времени управляет реле управления, контакты которого закорачивают последовательные резисторы после запуска.

Пускатели реактора  работают таким же образом, за исключением того, что вместо резисторов используются реакторы.Пускатели реакторов встречаются гораздо реже, чем в прошлом.

Автотрансформаторные пускатели используют автотрансформаторы с ответвлениями, отводы которых обычно устанавливаются на 50%, 65% или 80% доступного сетевого напряжения. Опираясь на концепцию «коэффициента витков» в трансформаторе, этот тип пускателя допускает меньшие токи на стороне сети с точки зрения электроснабжения и большие токи на стороне нагрузки с точки зрения двигателя во время запуска. Автотрансформатор отличается от двухобмоточного трансформатора тем, что не обеспечивает гальваническую развязку между первичной и вторичной обмотками.Повышающий автотрансформатор часто называют «повышающим» автотрансформатором, а понижающий автотрансформатор — «понижающим».

Помните «коэффициент трансформации» для трансформатора? При рассмотрении напряжения вы полагаетесь на следующую формулу:

V первичный / V вторичный = N первичный / N вторичный

Для тока вы полагаетесь на эту формулу:

I первичный / I вторичный = N вторичный / N первичный

Возьмем для иллюстрации простой пример.Трансформатор мощностью 1 кВА имеет первичную обмотку 240 В и вторичную обмотку 120 В. Первичный ток составляет 4,17 А при 240 В, а вторичный ток — 8,33 А при 120 В. Трансформатор имеет коэффициент трансформации 2:1. Напряжение уменьшается в два раза, а ток увеличивается в два раза. Этот принцип позволяет работать пускателю автотрансформаторного типа.

Пускатель с частичной обмоткой предназначен для работы с двигателем с частичной обмоткой, который имеет два набора одинаковых обмоток. Вы можете использовать двигатели с двойным напряжением 230/460 В, но вы должны соблюдать крайнюю осторожность.Концепция заключается в том, что двигатель 230/460 В работает при напряжении 230 В с параллельными обмотками. Следовательно, при пуске в цепи находится половина обмоток двигателя; затем через несколько секунд в цепь включается другая половина обмоток двигателя. Серьезные проблемы могут возникнуть, если схема синхронизации не соединит другую половину обмоток двигателя сразу после запуска.

Пускатель «звезда-треугольник» работает, позволяя запускать двигатель в конфигурации «звезда», а затем работать в конфигурации «треугольник».Использование этой конфигурации позволяет снизить пусковой ток во время запуска, сохраняя при этом пусковой момент примерно на 33%. Открытый переход является важным соображением, которое следует учитывать при использовании пускателей по схеме «звезда-треугольник», поскольку между конфигурацией «звезда» для пуска и конфигурацией «треугольник» для работы будет период времени, когда обмотки двигателя будут отключены. Пускатели с закрытым переходом устраняют этот недостаток, но стоят гораздо дороже.

Твердотельные пускатели часто называют пускателями с плавным пуском, поскольку для выполнения этой задачи в них используются кремниевые выпрямители (SCR).Наполненные газом вакуумные лампы, называемые тиратронами, были ранней версией семейства твердотельных тиристоров, которое включает в себя SCR Triacs, Diacs и UJT (транзисторы с однопереходным переходом). SCR состоит из трех элементов, называемых анодом, катодом и затвором. Подавая сигнал на элемент затвора точно в нужное время, вы можете контролировать, какой ток SCR будет либо пропускать, либо блокировать в течение цикла; это известно как фазовый контроль. Способность этого устройства обеспечивать либо частичную, либо полную проводимость во время цикла обеспечивает большую гибкость для проектировщика.Эта возможность позволяет точно контролировать ток нагрузки двигателя во время запуска.

Цепи управления лестницей

Обычно используются два типа лестничных цепей управления: двухпроводная и трехпроводная. Двухпроводная схема управления использует устройства с постоянным контактом для управления магнитным пускателем двигателя. В трехпроводной схеме управления используются устройства мгновенного действия, управляющие магнитным пускателем двигателя.

Двухпроводная схема управления показана на рисунке 2.Он состоит из нормально разомкнутого контактного устройства, которое при замыкании подает питание на катушку магнитного пускателя двигателя, который, в свою очередь, подает питание на подключенную двигательную нагрузку. Двухпроводная схема управления обеспечивает так называемый «расцепитель низкого напряжения». В случае сбоя питания магнитный пускатель двигателя отключится. Как только питание будет восстановлено, магнитный пускатель двигателя автоматически снова подаст питание, при условии, что ни одно из поддерживаемых контактных устройств не изменило своего состояния. Это может быть очень выгодно в таких приложениях, как охлаждение или кондиционирование воздуха, где вам не нужно, чтобы кто-то перезапускал оборудование после сбоя питания.Однако это может быть чрезвычайно опасно в приложениях, где оборудование запускается автоматически, подвергая оператора опасности.

Рис. 2. Двухпроводное управление при полном напряжении

Трехпроводная схема управления показана на рисунке 1. Она состоит из нормально замкнутой кнопки останова (СТОП), нормально разомкнутой кнопки пуска (ПУСК), пломбировочного контакта (М) и катушки магнитного пускателя двигателя. При нажатии нормально разомкнутой кнопки пуска на катушку магнитного пускателя двигателя (М) подается напряжение.Вспомогательный контакт (M) герметизирует кнопку пуска, обеспечивая замыкание цепи. Нажатие нормально замкнутой кнопки остановки прерывает цепь. Трехпроводная схема управления обеспечивает так называемую «защиту от низкого напряжения». В случае сбоя питания магнитный пускатель двигателя отключится. Однако в этом случае после восстановления питания магнитный пускатель двигателя не включится автоматически. Оператор должен нажать кнопку запуска, чтобы снова запустить последовательность операций.

По сравнению с двухпроводной схемой управления, трехпроводная схема управления обеспечивает гораздо большую безопасность для оператора, поскольку оборудование не запускается автоматически после восстановления питания. На рис. 3 показана схема управления с несколькими кнопками пуска и останова. В этой схеме несколько нормально замкнутых кнопок останова расположены последовательно, а несколько нормально разомкнутых кнопок пуска расположены параллельно для управления магнитным пускателем двигателя. Это обычное применение трехпроводной схемы управления, в которой вам необходимо запускать и останавливать один и тот же двигатель из нескольких мест на объекте.Трехпроводная схема управления может использоваться различными способами в соответствии с конкретным применением схемы.

Рисунок 3. Многократная схема управления пуском/остановом

Управление двигателем переменного тока

— очень интересный и специализированный сегмент нашей отрасли. Электромеханические магнитные пускатели двигателей уже много лет являются стандартом. Твердотельные устройства позволили лучше контролировать параметры схемы, обеспечивая при этом настоящую интеграцию с частотно-регулируемыми приводами и программируемыми логическими контроллерами.

Управление двигателем

Существует четыре основных темы управления двигателем:

  • Защита
  • Начиная с
  • Остановка
  • Регулятор скорости

а. Защита двигателя

Защита двигателя защищает двигатель, систему питания и персонал от различных нештатных ситуаций приводимой нагрузки, системы питания или самого двигателя.

Отключить

В соответствии с требованиями Канадского электрического кодекса обычно требуется подходящее отключающее устройство достаточной мощности в пределах видимости двигателя.Цель состоит в том, чтобы разомкнуть провода питания двигателя, чтобы персонал мог безопасно работать на установке.

Перегрузка по току

Защита от перегрузки по току прерывает подачу электроэнергии в случае чрезмерного потребления тока в системе питания. Обычно в виде предохранителей или автоматических выключателей эти устройства срабатывают при коротком замыкании или очень сильной перегрузке.

Если защита от перегрузки по току отключает двигатель, обычно на это есть веская причина.Тщательно исследуйте повторное отключение и избегайте увеличения уровня уставки отключения до тех пор, пока не будет подтверждено, что двигатель может безопасно выдерживать более высокое значение уставки. Рабочие токи следует измерять на всех трех фазах, чтобы убедиться, что фазы сбалансированы, а двигатель не работает постоянно в условиях перегрузки.

Перегрузка

Защита от перегрузки защищает двигатель от механических перегрузок.

Четыре общих устройства защиты от перегрузки:

  • Реле перегрузки
  • Тепловые перегрузки
  • Электронные реле перегрузки
  • Предохранители

Реле перегрузки работают на магнитном воздействии тока нагрузки, протекающего через катушку.Когда ток нагрузки становится слишком большим, плунжер втягивается в катушку, разрывая цепь. Ток отключения регулируется изменением начального положения плунжера относительно катушки.

Тепловое реле перегрузки использует нагреватель, подключенный последовательно с источником питания двигателя. Количество выделяемого тепла увеличивается с увеличением тока питания. В случае перегрузки выделяющееся тепло приводит к размыканию набора контактов, разрывая цепь. Ток срабатывания изменяется путем установки другого нагревателя для требуемой точки срабатывания.Этот тип защиты очень эффективен, потому что нагреватель очень близок к фактическому нагреву в обмотках двигателя и имеет «память» для предотвращения немедленного сброса и перезапуска.

При электронных перегрузках измеряется ток нагрузки и рассчитывается эффект нагрева двигателя. Если существует состояние перегрузки, цепь датчика прерывает цепь питания. Ток отключения можно отрегулировать в соответствии с конкретным приложением. Электронные устройства защиты от перегрузок часто выполняют дополнительные защитные функции, такие как защита от замыкания на землю и обрыва фазы.

Плавкие предохранители также могут использоваться для защиты двигателя при условии, что для предотвращения работы двигателя при перегорании только одного предохранителя также используется некоторая форма однофазной защиты.

Другая защита

Защита от низкого напряжения срабатывает, когда напряжение питания падает ниже установленного значения. После восстановления нормального напряжения питания двигатель должен быть перезапущен.

Расцепитель низкого напряжения разрывает цепь, когда напряжение питания падает ниже установленного значения, и восстанавливает цепь, когда напряжение питания возвращается к норме.Защита от обрыва фазы отключает питание на всех фазах трехфазной цепи при выходе из строя любой из фаз. Обычные плавкие предохранители и защита от перегрузки могут не защитить 3-фазный двигатель от повреждений при однофазной работе. Это особенно критическая проблема для двигателей, питаемых напряжением треугольника. Без этой защиты двигатель будет продолжать работать при потере одной фазы. В цепи ротора возникают большие токи обратной последовательности, вызывающие чрезмерный ток и нагрев обмоток статора, которые в конечном итоге перегорают.Защита от обрыва фазы является единственным эффективным способом надлежащей защиты двигателя от однофазного тока.

Защита от переполюсовки срабатывает при обнаружении перепутывания фаз в 3-фазной цепи. Этот тип защиты используется в таких приложениях, как лифты, где было бы опасно или опасно работать задним ходом двигателя.

Защита от замыкания на землю срабатывает, когда одна фаза двигателя замыкается на землю, что предотвращает повреждение обмотки статора и металлического сердечника высокими токами.

К другим устройствам защиты двигателя относятся устройства контроля температуры подшипников и обмоток, дифференциальные реле тока и средства контроля вибрации.

Как правило, используемый уровень защиты повышается пропорционально стоимости двигателя. Следовательно, двигатели мощностью менее 20 л.с. обычно не имеют ничего, кроме защиты от перегрузок и перегрузок по току, если двигатель не управляет критическим процессом.

б. Запуск двигателя

Пускатели асинхронных двигателей должны подавать на двигатель ток, достаточный для обеспечения адекватного пускового момента при наихудшем сетевом напряжении и условиях нагрузки.

Пускатели трехфазных двигателей

Пуск асинхронных двигателей через линию:

Прямой пускатель является наименее дорогим вариантом и обычно используется для асинхронных двигателей (Рисунок 8-1). Все асинхронные двигатели конструкции NEMA мощностью до 200 л.с. и многие более крупные могут выдерживать полный асинхронный пуск.

Ручные пускатели часто используются для небольших двигателей – примерно до 10 л.с. Они состоят из выключателя с одним набором контактов на каждую фазу и устройства защиты от тепловой перегрузки.Контакты пускателя остаются замкнутыми, если питание отключается от цепи, и двигатель перезапускается при возобновлении подачи питания.

Если существует вероятность получения травм в результате неожиданного перезапуска двигателя, вместо него следует использовать магнитный пускатель.

Рисунок 8-1: Ручной пускатель

 

Магнитные пускатели

используются с более крупными двигателями или там, где требуется дистанционное управление (Рисунок 8-2). Основным элементом пускателя является контактор, представляющий собой набор контактов, приводимых в действие электромагнитной катушкой.Подача питания на катушку приводит к замыканию контактов А, что позволяет инициировать и прерывать большие токи управляющим сигналом. Управляющее напряжение не обязательно должно совпадать с напряжением питания двигателя и часто имеет низкое напряжение, что позволяет размещать элементы управления пуском и остановом вдали от силовой цепи.

Понижающий трансформатор, защищенный предохранителем, часто используется для двигателей более высокого напряжения. В дополнение к функциям пуска и останова низковольтный источник питания может также питать дистанционные индикаторы состояния и т. д.

Рисунок 8-2: Магнитный пускатель

 

Замыкание контактов кнопки пуска включает катушку контактора. Вспомогательный контакт B на контакторе подключен для герметизации цепи катушки. Контактор обесточивается, если цепь управления прерывается нажатием кнопки останова, срабатыванием теплового реле перегрузки или при отключении питания.

Контакты перегрузки устроены таким образом, что отключение по перегрузке на любой фазе приведет к размыканию всех фаз.

Контакторы

рассчитаны на различные рабочие напряжения и имеют размеры в зависимости от мощности двигателя и ожидаемого режима работы.

Установка дополнительной кнопки аварийного КРАСНОГО СТОП рядом с двигателем (или дистанционно) имеет смысл при выборе магнитного пускателя. Нормально замкнутые кнопки останова соединены последовательно в цепи останова, так что нажатие на любую из них отключает магнитный контактор.

Пускатели пониженного напряжения:

Если приводная нагрузка или система распределения питания не могут обеспечить пуск при полном напряжении, необходимо использовать какой-либо тип схемы пониженного напряжения или «мягкого» пуска.Пускатели пониженного напряжения не экономят энергию. Они просто предназначены для решения проблем пуска, таких как падение напряжения и механическая защита, и могут использоваться только там, где допустим низкий пусковой крутящий момент. (См. также Контроллер коэффициента мощности).

Первичные пускатели сопротивления:

Замыкание контактов в точке A подключает двигатель к источнику питания через резисторы, которые обеспечивают падение напряжения, тем самым уменьшая пусковое напряжение, доступное для двигателя (Рисунок 8-3). Значение резисторов выбирается таким образом, чтобы обеспечить адекватный пусковой момент при минимальном пусковом токе.Пусковой ток двигателя уменьшается во время разгона, уменьшая падение напряжения на резисторах и обеспечивая больший крутящий момент двигателя. Это приводит к плавному ускорению.

Рисунок 8-3: Пускатель с первичным сопротивлением

 

Пускатели автотрансформатора:

Автотрансформатор представляет собой однообмоточный трансформатор на многослойном сердечнике с ответвлениями в различных точках обмотки (рис. 8-4). Отводы обычно выражаются в процентах от общего числа витков и, следовательно, в процентах от приложенного выходного напряжения.

Три автотрансформатора подключены по схеме «звезда» или два по схеме «открытый треугольник», при этом отводы выбраны для обеспечения соответствующего пускового тока.

Двигатель сначала запитывается пониженным напряжением путем замыкания контактов А.

Рисунок 8-4: Пускатель автотрансформатора

 

Через короткое время автотрансформаторы отключаются от цепи путем размыкания контактов А и замыкания контактов В, тем самым подавая на двигатель полное напряжение.Автотрансформаторам не обязательно иметь большую мощность, поскольку они используются только в течение очень короткого периода времени.

Твердотельные пускатели:

Твердотельные пускатели используют тиристоры или другие полупроводниковые устройства (например, кремниевый выпрямитель, симисторы, транзисторы и т. д.) для управления напряжением, подаваемым на двигатель. Тиристор — это, по сути, электронный переключатель, который может заменить механический контактор. Однако, в отличие от механического контактора, тиристор может включаться и выключаться в определенной точке кривой переменного тока во время каждого цикла.Для переменного тока с 60 циклами это может быть 120 раз в секунду на фазу (т.е. цикл включения-выключения за полупериод). Сокращение времени включения во время каждого цикла приводит к уменьшению среднего выходного напряжения на двигателе. Постепенно увеличивая время включения, напряжение постепенно увеличивается до полного напряжения. Уменьшая напряжение при запуске, ток также уменьшается. В результате время запуска имеет тенденцию быть больше по сравнению с запуском от сетевого напряжения. Функция пуска не экономит энергию, а решает проблемы запуска, включая провалы напряжения и механическую защиту.

Поскольку тиристорами можно точно управлять, можно (в зависимости от характеристик отдельного пускателя) ограничить пусковой ток, а также обеспечить плавную остановку (очень полезно для таких нагрузок, как конвейеры деталей, для предотвращения относительного смещения на ленте).

Пусковой ток и крутящий момент легко регулируются, а полупроводниковые пускатели часто имеют другие функции, такие как защита от перегрузки. См. также Контроллер коэффициента мощности.

Рисунок 8-5: Твердотельный пускатель (упрощенный)

 

В диммерах используются тиристоры для затемнения света.Поворот ручки или перемещение ползунка изменяет часть времени, в течение которого тиристор включен в течение каждого ½ цикла. Полная яркость достигается при включении тиристора в начале каждого ½ цикла.

Уай-Дельта Начало:

Пуск по схеме «звезда-треугольник» (рис. 8-6) можно использовать с двигателями, у которых доступны все шесть выводов обмоток статора (на некоторых двигателях доступны только три провода).

Рисунок 8-6: Пускатель звезда-треугольник

 

При первом замыкании контактов А и В обмотки соединяются звездой, что обеспечивает подачу на двигатель только 57 % номинального напряжения.

Полное напряжение затем подается путем повторного подключения двигателя по схеме треугольника путем замыкания контактов C и размыкания контактов A.

Пусковой ток и крутящий момент составляют 33 % от их полного номинального напряжения, что ограничивает приложения нагрузками, требующими очень низкого пускового крутящего момента.

Этот тип пускателя физически велик и дорог, так как для выполнения этой задачи требуется много контакторов. В таких нагрузках, как большие чиллеры, может использоваться пускатель звезда-треугольник. Твердотельные пускатели становятся менее дорогостоящими и конкурируют с этой специальной компоновкой двигателя/стартера.

Преобразователь частоты Запуск:

Преобразователи частоты

(VFD) также являются эффективным средством запуска двигателя. Разгоняя двигатель до скорости путем линейного изменения частоты напряжения, подаваемого на двигатель, можно минимизировать пусковой ток, сохраняя при этом достаточный крутящий момент для управления нагрузкой. Это применение частотно-регулируемых приводов не экономит энергию; однако приложения с переменным крутящим моментом делают это.

Контроллер коэффициента мощности:

Контроллер коэффициента мощности (PFC) представляет собой полупроводниковое устройство, которое снижает напряжение на двигателе, когда двигатель слегка нагружен.Ток намагничивания и резистивные потери уменьшаются пропорционально этому снижению напряжения. При увеличении нагрузки напряжение поднимается до нормы. Снижение напряжения приводит к улучшению коэффициента мощности в течение этих периодов низкой нагрузки.

Для однофазных и трехфазных асинхронных двигателей выпущено

ККМ. Для экономии энергии средняя нагрузка двигателя должна быть минимальной в течение продолжительных периодов времени работы. Устройства с постоянной нагрузкой, такие как компрессоры, не являются хорошими кандидатами для PFC, если размер двигателя оптимален для нагрузки.Двигатель настольной пилы может быть потенциальным применением, если двигатель работает в течение длительных периодов времени, а производительность материала непостоянна. PFC также могут обеспечивать функции плавного пуска и остановки.

Первоначально разработанные НАСА в 1984 году, варианты PFC продаются уже несколько лет. Многие из них продвигались на потребительский рынок в качестве энергосберегающих емкостей. Хотя основная концепция верна, вилки мало что сделают для экономии энергии в современных приборах, которые должны быть энергоэффективными.Старые приборы, такие как холодильники, могут обеспечить умеренную экономию энергии при использовании этих устройств.

Пускатели с частичной обмоткой:

Пускатели с частичной обмоткой иногда используются в двигателях с обмоткой для работы с двойным напряжением, таких как двигатель 230/460 В. Эти двигатели имеют два набора обмоток, которые соединены параллельно для работы с низким напряжением и последовательно для работы с высоким напряжением.

При использовании на более низком напряжении двигатели могут быть запущены путем подачи питания только на одну обмотку.Это ограничивает пусковой ток и крутящий момент примерно до половины значений полного напряжения. Затем вторая обмотка подключается нормально, как только скорость двигателя приближается к рабочей.

Пускатели однофазных двигателей

Однофазные двигатели обычно имеют мощность менее 10 л.с. Пускатели варьируются от простого выключателя с сухим контактом для небольших однофазных двигателей до магнитных контакторов для больших размеров.

Твердотельные пускатели

могут использоваться для двигателей с плавным пуском для ограничения пускового тока, а также для обеспечения возможности регулирования скорости.Этот тип пускателя особенно подходит для применения на фермах, поскольку он позволяет использовать более крупные двигатели на однофазных линиях с ограниченными возможностями.

Как отмечалось ранее, всегда рекомендуется использовать магнитные пускатели, если речь идет о безопасности. Простой переключатель может стоить всего несколько долларов, тогда как магнитный пускатель может стоить 100 долларов и более; тем не менее, если вы избежите серьезной травмы, магнитный пускатель станет бесценным.

Пускатели двигателей постоянного тока

Поскольку сопротивление постоянного тока большинства якорей двигателей низкое (0.05 до 0,5 Ом), и поскольку противоЭДС не существует до тех пор, пока якорь не начнет вращаться, необходимо использовать внешнее пусковое сопротивление последовательно с якорем двигателя постоянного тока, чтобы поддерживать начальный ток якоря на безопасном уровне. Когда якорь начинает вращаться, увеличивается противоЭДС. Поскольку встречная ЭДС противодействует приложенному напряжению, ток якоря уменьшается.

Когда двигатель достигает нормальной скорости и на якорь подается полное напряжение, внешнее сопротивление последовательно с якорем уменьшается или устраняется.Управление пусковым сопротивлением в двигателе постоянного тока осуществляется либо вручную, оператором, либо с помощью любого из нескольких автоматических устройств. Автоматические устройства обычно представляют собой просто переключатели, управляемые датчиками скорости двигателя (рис. 8-7).

Другим способом пуска двигателей постоянного тока являются электронные пускатели пониженного напряжения, которые снижают пусковые токи. Этот тип управления особенно популярен там, где требуется регулирование скорости.

Двигатель постоянного тока реверсируется путем изменения направления тока в якоре.Когда ток якоря меняется на противоположный, ток через промежуточный полюс также меняется на противоположный. Поэтому промежуточный полюс сохраняет правильную полярность для обеспечения автоматической коммутации.

Рисунок 8-7: Пример пускателя двигателя постоянного тока

 

в. Останов двигателя

Наиболее распространенный метод остановки двигателя — отключить напряжение питания и дать возможность двигателю и нагрузке остановиться. Однако в некоторых приложениях двигатель необходимо останавливать быстрее или удерживать на месте с помощью какого-либо тормозного устройства.

Электрический тормоз

Электрическое торможение использует обмотки двигателя для создания тормозящего момента. Кинетическая энергия ротора и нагрузки рассеивается в виде тепла в стержнях ротора двигателя. Двумя способами электрического торможения являются заглушка и динамическое торможение.

Заглушка приводит к очень быстрой остановке асинхронного двигателя путем подключения двигателя для обратного вращения во время его работы. Чтобы предотвратить реверс двигателя после его остановки, питание отключается с помощью переключателя нулевой скорости.

Динамическое торможение достигается отключением питания переменного тока от двигателя и подачей постоянного тока на одну из фаз статора.

Ни блокировка, ни динамическое торможение не могут удержать двигатель в неподвижном состоянии после его остановки.

Ручные циркулярные и переносные торцовочные пилы часто используют электрический тормоз. Когда переключатель отпущен, двигатель останавливает вращающееся лезвие быстрее, чем если бы ему позволили двигаться по инерции. Если эта функция перестает работать на универсальном двигателе, проверьте износ щеток и при необходимости замените их.

Рекуперативное торможение

Регенеративное торможение — это средство замедления двигателя до полной остановки путем временного преобразования его в генератор при подаче команды останова. Выходная мощность двигателя (теперь генератора) рассеивается через силовые резисторы или используется для зарядки аккумулятора.

Рекуперативное торможение используется в гибридных электромобилях. Часть энергии рассеивается обычными тормозами, а часть возвращается в аккумулятор автомобиля. Для транспортных средств такое расположение необходимо, чтобы дать водителю лучший контроль над торможением.Прием заряда аккумулятора зависит от его состояния заряда.

Механический тормоз

Механическое торможение относится к устройствам, внешним по отношению к двигателю, которые обеспечивают тормозящий момент.

Большинство из них полагаются на трение в барабанных или дисковых тормозах, приводятся в действие пружиной и отключаются соленоидом или двигателем.

Эти устройства способны удерживать двигатель в неподвижном состоянии.

Вихретоковый тормоз представляет собой электромеханическое устройство, обеспечивающее тормозящий момент за счет создания вихревых токов в барабане с помощью электромагнитного ротора, прикрепленного к валу двигателя.Величину тормозной силы можно регулировать, изменяя ток ротора.

Вихретоковые тормоза не могут удерживать двигатель в неподвижном состоянии.

д. Регулятор скорости двигателя

Ниже приведены примеры типовых регуляторов скорости двигателя. (Эта тема более подробно освещена в Руководстве по приводу с регулируемой скоростью ).

Контроль скорости можно разделить на пять основных областей:

  1. Многоскоростные двигатели.
  2. Блок управления асинхронным двигателем с фазным ротором
  3. Контроллеры двигателей постоянного тока
  4. Преобразователи частоты для асинхронных и синхронных двигателей.
  5. Механический регулятор скорости

Многоскоростные двигатели

Асинхронные двигатели

с многоскоростной обмоткой подходят для приложений, требующих до четырех дискретных скоростей. Скорость выбирается путем соединения обмоток в разных конфигурациях и практически постоянна при каждой настройке. Эти двигатели часто используются в таких устройствах, как вентиляторы и насосы.

Обычно многоскоростные двигатели не особенно эффективны на пониженной скорости.Таким образом, этот тип двигателя является плохим выбором для привода вентиляторов на низкой скорости для приложений с постоянным потоком воздуха. ECM был бы лучшим выбором для вентиляторов с регулируемой скоростью.

Управление двигателем ротора с обмоткой

Характеристики крутящего момента асинхронного двигателя с фазным ротором можно изменять в широком диапазоне путем добавления внешнего сопротивления в цепь ротора через контактные кольца. Энергия, извлекаемая из цепи ротора, либо теряется в виде тепла, либо восстанавливается и преобразуется в полезную электрическую или механическую энергию.

Для двигателей с фазным ротором требуется более тщательное техническое обслуживание. Необходима периодическая чистка и замена щеток.

Управление двигателем постоянного тока

Двигатель постоянного тока является самым простым в управлении, так как скорость пропорциональна напряжению якоря. Скорость может варьироваться в очень широком диапазоне.

Напряжение постоянного тока может быть преобразовано из переменного тока с помощью выпрямителей с фазовым управлением или сгенерировано мотор-генераторной установкой (система Ward Leonard).

Беговые дорожки для тренировок обычно используют двигатели на 90 В постоянного тока, скорость которых регулируется контроллером переменного напряжения постоянного тока.

Преобразователи частоты (ЧРП) для асинхронных и синхронных двигателей

Частотно-регулируемые приводы (ЧРП) применяются, когда необходимо регулировать скорость (асинхронные и синхронные) и устранять проскальзывание (асинхронные). Скорость асинхронных двигателей можно регулировать электрическими и механическими средствами. Преобразователи частоты управляют скоростью двигателя электрически.

Использование частотно-регулируемого привода может повысить общую энергоэффективность, несмотря на то, что сам привод потребляет энергию.Приложения, в которых требования к нагрузке варьируются в широком диапазоне со значительной частью нагрузки, делают частотно-регулируемые приводы привлекательным вариантом. Общая экономия энергии достигается с помощью частотно-регулируемых приводов по сравнению с альтернативными методами изменения мощности (например, заслонками вентилятора и рециркуляцией насоса).

ЧРП

работают путем изменения частоты переменного напряжения, подаваемого на двигатель, с помощью полупроводниковых устройств. Напряжение также контролируется, чтобы обеспечить постоянное отношение напряжения к частоте. Они стали предпочтительным способом достижения работы с переменной скоростью, поскольку они относительно недороги и очень надежны.

Способность двигателя эффективно охлаждаться снижается по мере замедления двигателя.

При продолжительной работе на низких скоростях и высоких нагрузках может потребоваться увеличение мощности двигателя или обеспечение встроенной принудительной вентиляции.

Работа на разных скоростях может вызвать механические резонансы в ведомом оборудовании. Эти скорости должны быть идентифицированы и запрограммированы вне рабочего диапазона частотно-регулируемого привода.

ЧРП

генерируют гармонические напряжения и токи, которые в некоторых случаях могут оказывать нежелательное воздействие на систему распределения электроэнергии и влиять на работу оборудования.Иногда для минимизации этих эффектов потребуются изолирующие трансформаторы, сетевые реакторы или фильтрующие устройства. Некоторые частотно-регулируемые приводы нового поколения устраняют внутренние гармоники и устраняют требования к внешнему смягчению.

Следующий график допустимого крутящего момента двигателей A и B конструкции NEMA из-за пониженного охлаждения при работе на пониженных скоростях можно использовать в качестве руководства для снижения номинальных характеристик двигателей или выбора двигателя соответствующего увеличенного размера (Рисунок 8-8).

ЧРП за последние годы стали дешевле и надежнее.Тем не менее, сначала следует оценить, нужен ли частотно-регулируемый привод или доступно более простое решение. Следует оценить, сколько времени двигатель будет частично загружен, чтобы определить, достижима ли значительная экономия или нет. Если ЧРП не обойден, когда двигатель работает с полной или почти полной нагрузкой, ЧРП будет потреблять от 2% до 5% от общей номинальной нагрузки и может стоить больше, чем двигатель с фиксированной скоростью.

Рисунок 8-8: Влияние пониженного охлаждения на крутящий момент

 

Применение частотно-регулируемого привода может вызвать скачки напряжения, значительно превышающие номинальное напряжение двигателя, и привести к выходу из строя системы изоляции.Это происходит из-за взаимодействия частоты переключения ШИМ и формы волны, длины кабеля, питающего двигатель, и индуктивности двигателя.

Из-за скачков напряжения может возникнуть повышенная нагрузка на изоляцию двигателя. Высокочастотное прерывание от частотно-регулируемого привода может вызвать очень высокие всплески напряжения, которые могут быстро разрушить обычную изоляцию двигателя.

Эту проблему можно свести к минимуму, используя соответствующие фильтры (линейные дроссели), сохраняя длину кабелей короткими (менее 100 футов), используя двигатели с инверторным режимом работы с улучшенными системами изоляции и гарантируя, что отремонтированные двигатели имеют улучшенные системы изоляции.

Механический регулятор скорости

Скорость, с которой движется нагрузка, также можно регулировать с помощью внешних по отношению к двигателю устройств. Примеры включают бесступенчатую трансмиссию, гидравлическую муфту, вихретоковые муфты и привод магнитной муфты. Эти устройства преобразуют номинальную скорость двигателя в требуемую скорость нагрузки.

В приводе магнитной муфты могут использоваться электромагниты или более поздние разработки, использующие редкоземельные магниты [например, неодим/железо/бор (Ne/Fe/B)] для передачи крутящего момента между двигателем и нагрузкой.Магнитная муфта может позволить двигателю запускаться без нагрузки и постепенно увеличивать крутящий момент.

Механические устройства управления скоростью имеют внутренние потери, но эти потери обычно меньше, чем при использовании других средств управления, таких как дросселирование насоса или дефлектор вентилятора. Экономия энергии для центробежных нагрузок с частичной нагрузкой может составлять 30% и более по сравнению с методами механического дросселирования (ссылка 15). Последнее утверждение также относится к частотно-регулируемым приводам.

Предыдущий: Выбор двигателя | Содержание | Далее: Техническое обслуживание

 

Бесплатные карточки о Блоке 3

Вопрос Ответ
СОВЕТ: Что такое магнитный пускатель сетевого напряжения? Электромагнитный выключатель с защитой от перегрузки
Сколько полюсов требуется на пускателях для следующих двигателей: а.240-вольтовый однофазный асинхронный двигатель б. Трехфазный асинхронный двигатель 440 В a. 2 б. 3
Если пускатель двигателя установлен в соответствии с инструкциями, но не запускается, какова частая причина невозможности запуска? Нагреватели без перегрузки
СОВЕТ: Что вызывает гудение или дребезжание переменного тока в электромагнитных устройствах переменного тока? , потому что использовалось переменное напряжение с нулевым напряжением. когда он достигает 0, на якорь не действует тяга, в результате чего он падает под действием силы тяжести и втягивается обратно по принципу соленоида.
СОВЕТ: Каково фазовое соотношение между потоком в основном полюсе магнита и потоком в заштрихованной части полюса? 90 градусов друг от друга
В каких устройствах переменного тока используется принцип экранированного полюса? Магнитные пускатели на контакторной секции Реле
Какой тип защитного корпуса используется чаще всего и каков его номер NEMA? NEMA 1 Общего назначения
Магнитный пускатель удерживается в закрытом состоянии а.механически б. на 15% пониженное напряжение в. на 15% перенапряжения д. электрически магнитно d. электрически магнитно
при обесточивании катушки пускателя двигателя, а. контакты остаются замкнутыми б. он удерживается закрытым механически в. гравитационные и пружинные разомкнутые контакты д. он должен остыть для перезапуска c. гравитация и натяжение пружины разомкнутые контакты
Ac Магнит переменного тока может чрезмерно гудеть из-за а.неправильное выравнивание б. посторонние предметы между контактными поверхностями в. свободное ламинирование д. все эти d. все эти
Магниты переменного тока изготовлены из многослойного железа. а. для лучшей индукции б. для уменьшения нагревательного эффекта в. для переменного и постоянного тока д. для предотвращения вибрации b. для уменьшения эффекта нагрева
Целью защиты двигателя от перегрузки является защита а. двигатель от длительных перегрузок по току б.провод от больших токов в. двигатель от длительного перенапряжения д. двигатель от короткого замыкания а. двигателя от длительных перегрузок по току
Количество полюсов магнитного пускателя относится к а. количество контактов питания, двигателя или нагрузки б. количество управляющих контактов в. количество северных и южных полюсов д. все эти а. количество контактов питания, двигателя или нагрузки
Двигатели могут сгореть из-за а.перегрузка б. высокие температуры окружающей среды в. плохая вентиляция д. все вышеперечисленное d. все вышеперечисленное
Экранирующая катушка на конце электромагнитного полюса переменного тока предназначена для а. предотвратить перегрев катушки б. ограничить ток отключения в. ограничить ток замыкания д. предотвращение вибрации d. предотвращение вибрации
СОВЕТ: Какие преимущества дает использование комбинированных стартеров? у нас есть и разъединитель, и пусковая защита
какую функцию безопасности обеспечивает комбинированный пускатель, чего нет у отдельных пусковых устройств? пусковая защита: предохранители и автоматические выключатели
УКАЗАНИЕ: перечислите возможные причины, если якорь не освобождается после отключения магнитного пускателя. механическое крепление; воздушный зазор в магните разрушен; липкое вещество на гранях магнита; слабое давление наконечника; приварка контактных наконечников
как выбираются размеры нагревателей перегрузки для конкретной установки? Возьмите паспортную табличку полного тока нагрузки (FLA) двигателя и посмотрите на заводской крышке
ток, потребляемый двигателем, а. низкий при запуске б. точное измерение нагрузки двигателя в. неточное измерение нагрузки двигателя д.ни один из этих b. точное измерение нагрузки двигателя
тепловые реле перегрузки реагируют на а. высокие температуры окружающей среды и чрезмерный нагрев из-за токов перегрузки б. тяжелые механические нагрузки в. из FLA двигателя и таблицы выбора производителя д. по температуре окружающей среды а. высокая температура окружающей среды и чрезмерный нагрев из-за токов перегрузки
когда кнопка сброса не восстанавливает цепь управления после перегрузки, вероятной причиной является а.

0 comments on “Схема пуска двигателя с магнитным пускателем: Схема пуска асинхронного двигателя | Заметки электрика

Добавить комментарий

Ваш адрес email не будет опубликован.