Емкость конденсатора код 101: Конденсатор 101 емкость

Конденсатор 101 емкость

Он состоит из буквы и нескольких цифр. Таблица П5. Характеристика групп температурной стабильности керамических, стеклянных и стеклокерамических конденсаторов. Примечание к табл. Конденсаторы могут быть покрыты эмалью любого цвета нетолько той, что указана в таблице , с буквенно-цифровой маркировкой или обозначением в виде двух рядом расположенных цветных знаков точек или полос. Для других групп цвет первого знака должен соответствовать цвету покрытия, а второго — цвету маркировочного знака.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Как определить емкость конденсатора по маркировке .

Кодовая, цифровая маркировка конденсаторов


Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой. Как определить тип конденсатора.

Сегодня на рынке электронных компонентов существует много разных типов конденсаторов, и каждый тип обладает своими собственными преимуществам и недостатками. Некоторые способны работать при высоких напряжениях, другие отличаются значительной емкостью, у третьих мала собственная индуктивность, а какие-то характеризуются исключительно малым током утечки. Все эти факторы определяют области применения конденсаторов конкретных типов. Рассмотрим, какие же бывают типы конденсаторов. Вообще их очень много, но здесь мы рассмотрим основные популярные типы конденсаторов, и разберемся, как этот тип определить.

Конденсаторы алюминиевые электролитические , например К или К, состоят из двух тонких полосок алюминия, скрученных в рулон, между которыми в качестве диэлектрика помещается пропитанная электролитом бумага.

Рулон помещается в герметичный алюминиевый цилиндр, на одном из торцов которого радиальный тип корпуса или на двух торцах которого аксиальный тип корпуса располагаются контактные выводы.

Выводы могут быть под пайку либо под винт. Ёмкость электролитических конденсаторов измеряется микрофарадами, и может быть от 0. Значительная емкость электролитических конденсаторов, по сравнению с другими типами конденсаторов, и является их главным преимуществом.

Максимальное рабочее напряжение электролитических конденсаторов может достигать вольт. Максимально допустимое рабочее напряжение, как и емкость конденсатора, указываются на его корпусе. Есть у этого типа конденсаторов и недостатки.

Первый из которых — полярность. На корпусе конденсатора отрицательный вывод помечен знаком минус, именно этот вывод должен быть, при работе конденсатора в схеме под более низким потенциалом, чем другой, или конденсатор не сможет нормально накапливать заряд, и скорее всего взорвется, или будет в любом случае испорчен, если долго держать его под напряжением неверной полярности. Именно по причине полярности, электролитические конденсаторы применимы лишь в цепях постоянного или пульсирующего тока, но никак не напрямую в цепях переменного тока, только выпрямленным напряжением можно заряжать электролитические конденсаторы.

Второй недостаток конденсаторов этого типа — высокий ток утечки. По этой причине не получится использовать электролитический конденсатор для длительного хранения заряда, но он вполне подойдет в качестве промежуточного элемента фильтра в активной схеме.

Третьим недостатком является то, что емкость конденсаторов этого типа снижается с ростом частоты пульсирующего тока , но эта проблема решается установкой на платах параллельно электролитическому конденсатору еще и керамического конденсатора сравнительно небольшой емкости, обычно в меньшей, чем у стоящего рядом электролитического.

Подробнее смотрите здесь: Электролитические конденсаторы. Теперь поговорим о танталовых конденсаторах. Примером могут служить К или smd А. В их основе пентаоксид тантала. Суть в том, что при окислении тантала образуется плотная не проводящая оксидная пленка, толщину которой можно технологически контролировать. Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита твердого или жидкого и катода.

Технологическая цепочка при производстве довольно сложна. Затем, путем электрохимического окисления, на аноде формируют диэлектрик в виде пленки пентаоксида тантала, толщину которой регулируют меняя напряжение в процессе электрохимического окисления, в результате толщина пленки получается всего от сотен до тысяч ангстрем, но пленка имеет такую структуру, что обеспечивает высокое электрическое сопротивление.

Следующий этап — формирование электролита, которым выступает полупроводник диоксид марганца. Солями марганца пропитывают танталовый пористый анод, затем его подвергают нагреву, чтобы диоксид марганца появился на поверхности; процесс повторяют несколько раз до получения полного покрытия.

Полученную поверхность покрывают слоем графита, затем наносят серебро — получается катод. Структуру затем помещают в компаунд. Танталовые конденсаторы похожи свойствами на алюминиевые электролитические, однако имеют особенности. Их рабочее напряжение ограничено вольтами, емкость не превышает мкф, собственная индуктивность у них меньше, поэтому применяются танталовые конденсаторы и на высоких частотах, достигающих сотен килогерц. Недостаток их заключается в крайней чувствительности к превышению максимально допустимого напряжения, по этой причине танталовые конденсаторы выходят из строя чаще всего из-за пробоя.

Линия на корпусе танталового конденсатора обозначает положительный электрод — анод. Выводные или SMD танталовые конденсаторы можно встретить на современных печатных платах многих электронных устройств. Керамические однослойные дисковые конденсаторы , например типов КВ, К, КД-2, отличаются относительно большой емкостью от 1 пф до 0,47 мкф при малых размерах.

Их рабочее напряжение лежит в диапазоне от 16 до 50 вольт. Их особенности: малые токи утечки, низкая индуктивность, дающая им возможность работать при высоких частотах, а также малые размеры и высокая температурная стабильность емкости.

Такие конденсаторы успешно работают в цепях постоянного, переменного и пульсирующего тока. Керамические конденсаторы устойчивы в внешним факторам, таким как вибрация с частотой до Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки. Керамические дисковые конденсаторы широко применяются в сглаживающих фильтрах источников питания, при фильтрации помех, в цепях межкаскадной связи, и почти во всех радиоэлектронных устройствах.

Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой имеет емкость пф, а конденсатор с маркировкой — 4,7 нф.

Керамические многослойные конденсаторы , например КА или КБ, в отличие от однослойных, имеют в своей структуре чередующиеся тонкие слои керамики и металла.

Их емкость поэтому больше, чем у однослойных, и может легко достигать нескольких микрофарад. Максимальное напряжение также ограничено здесь 50 вольтами. Конденсаторы этого типа способны, так же как и однослойные, исправно работать в цепях постоянного, переменного и пульсирующего тока.

Высоковольтные керамические конденсаторы способны работать при высоком напряжении от 50 до вольт. Их емкость лежит в диапазоне от 68 до нф, и работать такие конденсаторы могут в цепях постоянного, переменного или пульсирующего тока.

Порой без применения этих конденсаторов, выход из строя устройства может угрожать жизни людей. Особый тип высоковольтных керамических конденсаторов — конденсатор высоковольтный импульсный , применяемый для мощных импульсных режимов. Эти конденсаторы способны работать под напряжением до вольт, а высоковольтные импульсы могут следовать с высокой частотой, до импульсов в секунду. Керамика обеспечивает надежные диэлектрические свойства, а особая форма конденсатора и расположение обкладок препятствует пробою снаружи.

Такие конденсаторы весьма популярны в качестве контурных в мощной радиоаппаратуре и очень приветствуются, например, тесластроителями для конструирования катушек Тесла на искровом промежутке или на лампах, — SGTC, VTTC. Полиэстеровые полиэтилентерефталат, лавсан конденсаторы , например K или CL21, на основе металлизированной пленки широко применяются в импульсных блоках питания и электронных балластах.

Их корпус из эпоксидного компаунда придает конденсаторам влагостойкости, теплостойкости и делает их устойчивыми к воздействию агрессивных сред и растворителей. Полиэстеровые конденсаторы выпускаются емкостью от 1 нф до 15 мкф, и рассчитаны на напряжение от 50 до вольт. Их отличает высокая температурная стабильность при высокой емкости и небольших размерах.

Цена полиэстеровых конденсаторов не высока, поэтому они весьма популярны во многих электронных устройствах, в частности в балластах энергосберегающих ламп. Таблицы для расшифровки маркировки можно легко найти в интернете. Широкий диапазон емкостей и напряжений, дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсного токов.

Полипропиленовые конденсаторы , например К, в отличие от полиэстеровых, в качестве диэлектрика имеют полипропиленовую пленку.

Конденсаторы этого типа выпускаются емкостью от пф до 10 мкф, а напряжение может достигать вольт. Такие конденсаторы широко используются, например, в индукционных нагревателях, и могут работать на частотах измеряемых десятками и даже сотнями килогерц. Отдельного упоминания заслуживают пусковые полипропиленовые конденсаторы , такие например, как CBB Эти конденсаторы используют для пуска асинхронных двигателей переменного тока.

Они наматываются металлизированной полипропиленовой пленкой на пластиковый сердечник, затем рулон заливается компаундом. Корпус конденсатора выполнен из материала не поддерживающего горение, то есть конденсатор полностью пожаробезопасный и подходит для работы в тяжелых условиях.

Выводы могут быть как проводными, так и под клеммы и под болт. Очевидно, конденсаторы этого типа предназначены для работы на промышленной сетевой частоте. Пусковые конденсаторы выпускаются на переменное напряжение от до вольт, а диапазон типичных емкостей — от 1 до мкф. Смотрите также по этой теме: Использование конденсаторов в электронных схемах. Поделитесь этой статьей с друзьями:. Вступайте в наши группы в социальных сетях:. ВКонтакте Facebook Одноклассники Pinterest. Смотрите также на Электрик Инфо : Полярные и неполярные конденсаторы — в чем отличие Конденсаторы для электроустановок переменного тока Как выбрать конденсаторы для подключения однофазного и трехфазного электрод Электролитические конденсаторы Как определить неисправность конденсаторов.

Возможно, следует добавить несколько строк о неполярных электролитических конденсаторах и присоединить к этому абзацу имеющееся описание пусковых конденсаторов.

Полагаю, так будет более понятно то, что электролитический конденсатор — и вдруг! В статье про них ничего нет. Спасибо за полезный сайт. Ничего более масштабного и доступного по объему и простоте изложения информации по электрике и электронике в Интернете не встречала.

Продолжайте и дальше нас всех радовать! Благодарю за данную статью! Новые статьи Тематическая викторина от Иосифа Труба Чем конструкция дорогих розеток отличается от дешевых Какие нужны насадки на болгарку и перфоратор для провед IGBT-транзисторы — основные компоненты современной сило Как работают датчики и токовые клещи для измерения пост Какое напряжение опасно для жизни человека?

Почему выключатель размыкает фазу, а не ноль? В Интернете кто-то прав!


Как проверить конденсатор?

Кроме буквенно-цифровой маркировки применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC табл. При таком способе маркировки первые две или три цифры обозначают значение емкости в пикофарадах пФ , а последняя цифра — количество нулей. При маркировке емкостей конденсаторов в микрофарадах применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, — мкФ. Таблица 2. Кодировка номинальной емкости конденсаторов тремя цифрами. Пикофарады пф ; pF. Нанофарады нФ ; nF.

Конденсатор емкость СВЧ микроволновой печи высоковольтный V MF 1,00 mF V для микроволновки 12AG с доставкой по России!.

CC0201JRNPO8BN101

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой. Как определить тип конденсатора. Сегодня на рынке электронных компонентов существует много разных типов конденсаторов, и каждый тип обладает своими собственными преимуществам и недостатками. Некоторые способны работать при высоких напряжениях, другие отличаются значительной емкостью, у третьих мала собственная индуктивность, а какие-то характеризуются исключительно малым током утечки. Все эти факторы определяют области применения конденсаторов конкретных типов.

Маркировка конденсаторов

Пользователь интересуется товаром NK — 6-канальная цветомузыкальная приставка. Пользователь интересуется товаром MPBT — Встраиваемый Bluetooth модуль для усилителя, активных колонок или магнитолы c режимом hands free. Конденсатор встречается в наборах Мастер Кит да и вообще в электронных устройствах почти так же часто, как и резистор. Поэтому важно хотя бы в общих чертах представлять его основные характеристики и принцип работы. В простейшем варианте конструкция состоит из двух электродов в форме пластин называемых обкладками , разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок.

Войдите , пожалуйста.

Кодовая и цветовая маркировка конденсаторов

Маркировка конденсаторов. Маркировка тремя цифрами. В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Маркировка четырьмя цифрами. Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Буквенно-цифровая маркировка.

Урок 2.3 — Конденсаторы

И все элементы должны быть возвращены в исходное состояние для получения возмещения или замены. Dongguan Xuansn Electronic Tech Co. Guangdong, China. Бизнес Диапазон:. Электричество и Электроника. Торговая Компания. Электролитический Конденсатор , Конденсатор. Связаться с Поставщиком Избранное Компании.

Полезный сайт» Маркировка конденсаторов , пФ, нФ . Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть.

Маркировка конденсаторов

Отличает низкие потери, высокое рабочее напряжение и стабильность. Все конденсаторы обозначены значением, легко найти то, что нужно. Организован по размерам в прозрачном чехле для хранения для быстрого доступа и защиты.

953 кОм 1206 1% Чип-резистор, Royal Ohm

ВИДЕО ПО ТЕМЕ: Ёмкость конденсатора

Войти через. На AliExpress мы предлагаем тысячи разновидностей продукции всех брендов и спецификаций, на любой вкус и размер. Если вы хотите купить ceramic capacitor и подобные товары, мы предлагаем вам позиций на выбор, среди которых вы обязательно найдете варианты на свой вкус. Кроме того, если вы ищите ceramic capacitor, мы также порекомендуем вам похожие товары, например кожи в винтажном стиле; высокие сапоги для мужчин , ксеноновых фар, высокопрочная конструкция 35 вт к h21 , vw new beetle i , универсальные наушники провода , умная розетка sp , подходит для ipad 2, кабель для синхронизации данных , смарт-телефонов и 4a , видеокамера скрытая камера wi-fi , женские повседневные футболки с коротким рукавом.

Пн-Пт: с до В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника.

Очень важно знать емкость того или иного конденсатора, а под рукой не всегда оказываются измерительные приборы с помощью которых можно эту емкость узнать. Специально для этих случаев были придуманы кодовые маркировки. Существую 4 основных способа маркировки конденсаторов : Кодовая маркировка 3 цифрами; Кодовая маркировка 4 цифрами; Буквенно цифровая маркировка; Специальная маркировка для планарных конденсаторов. Последняя цифра это показатель степени по основанию А первые три это число которое необходимо умножить на 10 возведенную в определенную степень. Буквенно-цифровая маркировка В данном случае вместо запятой ставится соответсвующая единица измерения пФ, нФ, мкФ.

Ёмкость конденсаторов может обозначаться в микрофарадах uF , нанофарадах nF , пикофарадах pF , либо кодом. Данная таблица поможет вам разобраться в одинаковых значениях при различных обозначениях и подобрать аналоги для замены. Магазин Dalincom предлагает большой ассортимент конденсаторов — керамические, электролитические, металлопленочные, пусковые, и др, которые вы можете купить в разделе Конденсаторы.


Маркировка конденсаторов

Маркировка и расшифровка конденсаторов
Всем привет!
Предлагаю вашему вниманию таблицу
маркировок и расшифровки керамических конденсаторов.
Конденсаторы имеют определённую кодовую маркировку и, умея расшифровывать  эти коды, можно узнать  их ёмкость. Для чего это нужно — всем понятно.
Итак,
расшифровывать коды нужно так:
Например, на конденсаторе написано «104». Первые две цифры обозначают ёмкость конденсатора в пикофарадах (10 пф), последняя цифра указывает количество нулей, которое нужно прибавить к 10, т.е. 10 и четыре нуля, получится 100000 пф.
Если последняя цифра в коде «9», это значит ёмкость данного конденсатора меньше 10 пф. Если первая цифра «0», то ёмкость меньше 1 пф, например код 010 означает 1 пф. Буква в коде применяется в качестве десятичной запятой, т.е. код, например, 0R5 означает ёмкость конденсатора 0,5 пф.
Также в кодовых обозначениях конденсаторов применяется такой параметр, как температурный коэффициент ёмкости (ТКЕ). Этот параметр показывает изменение ёмкости конденсатора при изменении температуры окружающей среды и выражается в миллионных долях ёмкости на градус (10
оС). Существуют несколько ТКЕ – положительный (обозначается буквами «Р» или «П»), отрицательный (обозначается буквами «N» или «М») и ненормированный (обозначается  «Н»).
Если кодовое число обозначается четырьмя цифрами, то расчёт производится по такой же схеме, но ёмкость обозначают первые три цифры.
Например код 4753=475000пф=475нф=0.475мкф
Код
Ёмкость
Пикофарад
(пФ, pF)
Нанофарад (нФ, nF)
Микрофорад (мкФ, µF)
109
1.0
0.001
159
1.5
0.0015
229
2.2
0.0022
339
3.3
0.0033
479
4.7
0.0047
689
6.8
0.0068
100
10
0.01
150
15
0.015
220
22
0.022
330
33
0.033
470
47
0.047
680
68
0.068
101
100
0.1
151
150
0.15
221
220
0.22
331
330
0.33
471
470
0.47
681
680
0.68
102
1000
1.0
0.001
152
1500
1.5
0.0015
222
2200
2.2
0.0022
332
3300
3.3
0.0033
472
4700
4.7
0.0047
682
6800
6.8
0.0068
103
10000
10
0.01
153
15000
15
0.015
223
22000
22
0.022
333
33000
33
0.033
473
47000
47
0.047
683
68000
68
0.068
104
100000
100
0.1
154
150000
150
0.15
224
220000
220
0.22
334
330000
330
0.33
474
470000
470
0.47
684
680000
680
0.68
105
1000000
1000
1.0
1622
16200
16.2
0.0162
4753
475000
475
0.475
 
 
 
 
 
Надеюсь, принцип понятен, а с остальным разберётесь.
На этом всё.
Пишите комментарии и делитесь в соц.сетях!
Успехов вам!
P.S. Если хотите получать уведомления о новых публикациях, рекомендую оформить подписку на обновления, заполнив форму справа.

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Кодовая маркировка конденсаторов | Мастер Винтик. Всё своими руками!

Добавил: STR2013,Дата: 19 Янв 2015

В аппаратуре часто встречаются конденсаторы с кодовой маркировкой в виде цифр — 102, 103, 501, 772 и т.д. Как же распознать эти значения? Давайте подробнее рассмотрим кодировку в этой статье.

Первые две цифры кода указывают на значение ёмкости в пикофарадах (пф), последняя — количество нулей.

Вот например:

Если на конденсаторе написано «105» (нижняя строчка таблицы) значит у него ёмкость  1,0 мкф (микрофарада) или 1000нф (нанофарад) или 100 000пф (пикофарад).

Если на конденсаторе написано «104» (см. таблицу) значит у него ёмкость  0,1 мкф (микрофарада) или 100нф (нанофарад).

Если на конденсаторе написано «103» (см. таблицу) значит у него ёмкость  0,01 мкф (микрофарада) или 10нф (нанофарад) или 10 000пф (пикофарад).

Если на конденсаторе написано «102» (см. таблицу) значит у него ёмкость  0,001 мкф (микрофарада) или 1нф (нанофарада) или 1000пф (пикофарад).

Если на конденсаторе написано «101» (см. таблицу) значит у него ёмкость  0,0001 мкф (микрофарада) или 0,1нф (нанофарада) или 100пф (пикофарад).

Если конденсатор имеет ёмкость менее 10 пФ, то последняя цифра может быть «9».

Например, код «109» — ёмкость 1,0 пф или 0,001 нф (нанофарад) — смотрите верхняя строчка таблицы.

При ёмкостях меньше 1 пф первая цифра «0». Буква «R» используется в качестве  запятой.

Например, код «010» равен 1,0 пф, а код «0R1» — 0,1 пФ.

Краткая таблица цифровой кодировки неполярных керамических конденсаторов



ПОДЕЛИТЕСЬ СО СВОИМИ ДРУЗЬЯМИ:

П О П У Л Я Р Н О Е:
  • Краткие характеристики зарубежных микросхем
  • Краткие характеристики зарубежных микросхем

    Ниже в таблице приведены краткие характеристики зарубежных микросхем. Увидев микросхему на плате радиоаппаратуры по приведенной таблице можно определить что за микросхема и какую функцию она выполняет.

    Подробнее…

  • Вход в сервисное меню телевизоров
  • Команды для входа в сервисный режим телевизоров

    Для настройки некоторых параметров телевизора, которых нет на обычном пульте или кнопках передней панели телевизора существуют специальные команды для входа в сервисное меню телевизора.

    Ранее была статья о входе в сервисный режим некоторых телевизоров. Если Вашей модели там нет, то можете поискать в статье, ниже.

    Предупреждение! Только для опытных телемастеров! Перед изменением параметров рекомендуем записать текущие данные для возможного возврата в исходное состояние. Вся представленная информация будет использоваться Вами на свой страх и риск. Автор не несет никакой ответственности за возможные последствия изменений в настройках телевизора.

    Подробнее…

  • Таблица омыления жиров.
  • Ниже представлена таблица коэффициентов омыления различных масел: Подробнее…

Популярность: 96 415 просм.

Маркировка конденсаторов пленочных 100н 100в. Маркировка конденсаторов

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов. Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре. Естественно, перед вторичным использованием необходимо проверять конденсаторы , особенно ёмкость электролитических , которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает.

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

    Первое, это номинальная ёмкость конденсатора . Измеряется в долях Фарады.

    Второе – допуск. Или по-другому допустимое отклонение номинальной ёмкости от указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.

    Третье, что указывается в маркировке конденсатора, это допустимое рабочее напряжение . Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы постоянной ёмкости.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные. Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от маркировки отечественных производителей.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.


Конденсаторы серии К73 и их маркировка

Правила маркировки.

Номинальная ёмкость конденсатора.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая букву H или n .

Обозначение 100n – это значение номинальной ёмкости конденсатора. Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру:
330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47H C. Данная маркировка ёмкости соответствует маркировке 47n K и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определять ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения.

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C.
Здесь, буква М условно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость конденсатора является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ. Получается, что ёмкость конденсатора с маркировкой M10С равно ёмкости конденсатора с маркировкой 100nJ. Только условная маркировка чуть отличается.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквой M , m вместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя букву П или p после числа. Если ёмкость менее 10 пФ, то ставиться буква R и две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код ёмкости.



Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка 224 соответствует значению 220 000 пикофарад, или 220 нанофарад и 0,22 мкФ. В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах . При 221, ёмкость равна 220 пФ, при 220 – 22 пФ. Если же в маркировке конденсатора используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей. Так при 4722, ёмкость равна 47200 – 47,2 нФ.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой. Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости для конденсатора аналогично допуску у резисторов.

Буквенный код отклонения ёмкости конденсатора (допуск).

Так если конденсатор со следующей маркировкой – M47C, то его ёмкость 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H , M , J , K . Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK , 220nM , 470nJ .

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов.

Д опуск в % Б уквенное обозначение
лат. рус.
± 0,05p A
± 0,1p B Ж
± 0,25p C У
± 0,5p D Д
± 1,0 F Р
± 2,0 G Л
± 2,5 H
± 5,0 J И
± 10 K С
± 15 L
± 20 M В
± 30 N Ф
-0…+100 P
-10…+30 Q
± 22 S
-0…+50 T
-0…+75 U Э
-10…+100 W Ю
-20…+5 Y Б
-20…+80 Z А

Допустимое рабочее напряжение конденсатора.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение. Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя конденсаторов. Не лишним будет брать конденсатор с запасом по рабочему напряжению.

Обычно, значение допустимого рабочего напряжения конденсатора указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.

Н оминальное рабочее напряжение , B Б уквенный код
1,0 I
1,6 R
2,5 M
3,2 A
4,0 C
6,3 B
10 D
16 E
20 F
25 G
32 H
40 S
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
350 T
400 Y
450 U
500 V

Это наиболее важные параметры конденсаторов, которые стоит знать при подборе нужного конденсатора. Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

Длина и расстояние Масса Меры объема сыпучих продуктов и продуктов питания Площадь Объем и единицы измерения в кулинарных рецептах Температура Давление, механическое напряжение, модуль Юнга Энергия и работа Мощность Сила Время Линейная скорость Плоский угол Тепловая эффективность и топливная экономичность Числа Единицы измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Угловая скорость и частота вращения Ускорение Угловое ускорение Плотность Удельный объем Момент инерции Момент силы Вращающий момент Удельная теплота сгорания (по массе) Плотность энергии и удельная теплота сгорания топлива (по объему) Разность температур Коэффициент теплового расширения Термическое сопротивление Удельная теплопроводность Удельная теплоёмкость Энергетическая экспозиция, мощность теплового излучения Плотность теплового потока Коэффициент теплоотдачи Объёмный расход Массовый расход Молярный расход Плотность потока массы Молярная концентрация Массовая концентрация в растворе Динамическая (абсолютная) вязкость Кинематическая вязкость Поверхностное натяжение Паропроницаемость Паропроницаемость, скорость переноса пара Уровень звука Чувствительность микрофонов Уровень звукового давления (SPL) Яркость Сила света Освещённость Разрешение в компьютерной графике Частота и длина волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Электрический заряд Линейная плотность заряда Поверхностная плотность заряда Объемная плотность заряда Электрический ток Линейная плотность тока Поверхностная плотность тока Напряжённость электрического поля Электростатический потенциал и напряжение Электрическое сопротивление Удельное электрическое сопротивление Электрическая проводимость Удельная электрическая проводимость Электрическая емкость Индуктивность Американский калибр проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Магнитодвижущая сила Напряженность магнитного поля Магнитный поток Магнитная индукция Мощность поглощенной дозы ионизирующего излучения Радиоактивность. Радиоактивный распад Радиация. Экспозиционная доза Радиация. Поглощённая доза Десятичные приставки Передача данных Типографика и обработка изображений Единицы измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 нанофарад [нФ] = 0,001 микрофарад [мкФ]

Исходная величина

Преобразованная величина

фарад эксафарад петафарад терафарад гигафарад мегафарад килофарад гектофарад декафарад децифарад сантифарад миллифарад микрофарад нанофарад пикофарад фемтофарад аттофарад кулон на вольт абфарад единица емкости СГСМ статфарад единица емкости СГСЭ

Общие сведения

Электрическая емкость — это величина, характеризующая способность проводника накапливать заряд, равная отношению электрического заряда к разности потенциалов между проводниками:

C = Q/∆φ

Здесь Q — электрический заряд, измеряется в кулонах (Кл), — разность потенциалов, измеряется в вольтах (В).

В системе СИ электроемкость измеряется в фарадах (Ф). Данная единица измерения названа в честь английского физика Майкла Фарадея.

Фарад является очень большой емкостью для изолированного проводника. Так, металлический уединенный шар радиусом в 13 радиусов Солнца имел бы емкость равную 1 фарад. А емкость металлического шара размером с Землю была бы примерно 710 микрофарад (мкФ).

Так как 1 фарад — очень большая емкость, поэтому используются меньшие значения, такие как: микрофарад (мкФ), равный одной миллионной фарада; нанофарад (нФ), равный одной миллиардной; пикофарад (пФ), равный одной триллионной фарада.

В системе СГСЭ основной единицей емкости является сантиметр (см). 1 сантиметр емкости — это электрическая емкость шара с радиусом 1 сантиметр, помещенного в вакуум. СГСЭ — это расширенная система СГС для электродинамики, то есть, система единиц в которой сантиметр, грам, и секунда приняты за базовые единицы для вычисления длины, массы и времени соответственно. В расширенных СГС, включая СГСЭ, некоторые физические константы приняты за единицу, чтобы упростить формулы и облегчить вычисления.

Использование емкости

Конденсаторы — устройства для накопления заряда в электронном оборудовании

Понятие электрической емкости относится не только к проводнику, но и к конденсатору. Конденсатор — система двух проводников, разделенных диэлектриком или вакуумом. В простейшем варианте конструкция конденсатора состоит из двух электродов в виде пластин (обкладок). Конденсатор (от лат. condensare — «уплотнять», «сгущать») — двухэлектродный прибор для накопления заряда и энергии электромагнитного поля, в простейшем случае представляет собой два проводника, разделённые каким-либо изолятором. Например, иногда радиолюбители при отсутствии готовых деталей изготавливают подстроечные конденсаторы для своих схем из отрезков проводов разного диаметра, изолированных лаковым покрытием, при этом более тонкий провод наматывается на более толстый. Регулируя число витков, радиолюбители точно настраивают контура аппаратуры на нужную частоту. Примеры изображения конденсаторов на электрических схемах приведены на рисунке.

Историческая справка

Еще 275 лет назад были известны принципы создания конденсаторов. Так, в 1745 г. в Лейдене немецкий физик Эвальд Юрген фон Клейст и нидерландский физик Питер ван Мушенбрук создали первый конденсатор — «лейденскую банку» — в ней диэлектриком были стенки стеклянной банки, а обкладками служили вода в сосуде и ладонь экспериментатора, державшая сосуд. Такая «банка» позволяла накапливать заряд порядка микрокулона (мкКл). После того, как ее изобрели, с ней часто проводили эксперименты и публичные представления. Для этого банку сначала заряжали статическим электричеством, натирая ее. После этого один из участников прикасался к банке рукой, и получал небольшой удар током. Известно, что 700 парижских монахов, взявшись за руки, провели лейденский эксперимент. В тот момент, когда первый монах прикоснулся к головке банки, все 700 монахов, сведенные одной судорогой, с ужасом вскрикнули.

В Россию «лейденская банка» пришла благодаря русскому царю Петру I, который познакомился с Мушенбруком во время путешествий по Европе, и подробнее узнал об экспериментах с «лейденской банкой». Петр I учредил в России Академию наук, и заказал Мушенбруку разнообразные приборы для Академии наук.

В дальнейшем конденсаторы усовершенствовались и становились меньше, а их емкость — больше. Конденсаторы широко применяются в электронике. Например, конденсатор и катушка индуктивности образуют колебательный контур, который может быть использован для настройки приемника на нужную частоту.

Существует несколько типов конденсаторов, отличающихся постоянной или переменной емкостью и материалом диэлектрика.

Примеры конденсаторов

Промышленность выпускает большое количество типов конденсаторов различного назначения, но главными их характеристиками являются ёмкость и рабочее напряжение.

Типичные значение ёмкости конденсаторов изменяются от единиц пикофарад до сотен микрофарад, исключение составляют ионисторы, которые имеют несколько иной характер формирования ёмкости – за счёт двойного слоя у электродов – в этом они подобны электрохимическим аккумуляторам. Суперконденсаторы на основе нанотрубок имеют чрезвычайно развитую поверхность электродов. У этих типов конденсаторов типичные значения ёмкости составляют десятки фарад, и в некоторых случаях они способны заменить в качестве источников тока традиционные электрохимические аккумуляторы.

Вторым по важности параметром конденсаторов является его рабочее напряжение . Превышение этого параметра может привести к выходу конденсатора из строя, поэтому при построении реальных схем принято применять конденсаторы с удвоенным значением рабочего напряжения.

Для увеличения значений ёмкости или рабочего напряжения используют приём объединения конденсаторов в батареи. При последовательном соединении двух однотипных конденсаторов рабочее напряжение удваивается, а суммарная ёмкость уменьшается в два раза. При параллельном соединении двух однотипных конденсаторов рабочее напряжение остаётся прежним, а суммарная ёмкость увеличивается в два раза.

Третьим по важности параметром конденсаторов является температурный коэффициент изменения ёмкости (ТКЕ) . Он даёт представление об изменении ёмкости в условиях изменения температур.

В зависимости от назначения использования, конденсаторы подразделяются на конденсаторы общего назначения, требования к параметрам которых некритичны, и на конденсаторы специального назначения (высоковольтные, прецизионные и с различными ТКЕ).

Маркировка конденсаторов

Подобно резисторам, в зависимости от габаритов изделия, может применяться полная маркировка с указанием номинальной ёмкости, класса отклонения от номинала и рабочего напряжения. Для малогабаритных исполнений конденсаторов применяют кодовую маркировку из трёх или четырёх цифр, смешанную цифро-буквенную маркировку и цветовую маркировку.

Соответствующие таблицы пересчёта маркировок по номиналу, рабочему напряжению и ТКЕ можно найти в Интернете, но самым действенным и практичным методом проверки номинала и исправности элемента реальной схемы остаётся непосредственное измерение параметров выпаянного конденсатора с помощью мультиметра.

Предупреждение: поскольку конденсаторы могут накапливать большой заряд при весьма высоком напряжении, во избежание поражения электрическим током необходимо перед измерением параметров конденсатора разряжать его, закоротив его выводы проводом с высоким сопротивлением внешней изоляции. Лучше всего для этого подходят штатные провода измерительного прибора.

Оксидные конденсаторы: данный тип конденсатора обладает большой удельной емкостью, то есть, емкостью на единицу веса конденсатора. Одна обкладка таких конденсаторов представляет собой обычно алюминиевую ленту, покрытую слоем оксида алюминия. Второй обкладкой служит электролит. Так как оксидные конденсаторы имеют полярность, то принципиально важно включать такой конденсатор в схему строго в соответствии с полярностью напряжения.

Твердотельные конденсаторы: в них вместо традиционного электролита в качестве обкладки используется органический полимер, проводящий ток, или полупроводник.

Переменные конденсаторы: емкость может меняться механическим способом, электрическим напряжением или с помощью температуры.

Пленочные конденсаторы: диапазон емкости данного типа конденсаторов составляет примерно от 5 пФ до 100 мкФ.

Имеются и другие типы конденсаторов.

Ионисторы

В наши дни популярность набирают ионисторы. Ионистор (суперконденсатор) — это гибрид конденсатора и химического источника тока, заряд которого накапливается на границе раздела двух сред — электрода и электролита. Начало созданию ионисторов было положено в 1957 году, когда был запатентован конденсатор с двойным электрическим слоем на пористых угольных электродах. Двойной слой, а также пористый материал помогли увеличить емкость такого конденсатора за счет увеличения площади поверхности. В дальнейшем эта технология дополнялась и улучшалась. На рынок ионисторы вышли в начале восьмидесятых годов прошлого века.

С появлением ионисторов появилась возможность использовать их в электрических цепях в качестве источников напряжения. Такие суперконденсаторы имеют долгий срок службы, малый вес, высокие скорости зарядки-разрядки. В перспективе данный вид конденсаторов может заменить обычные аккумуляторы. Основными недостатками ионисторов является меньшая, чем у электрохимических аккумуляторов удельная энергия (энергия на единицу веса), низкое рабочее напряжение и значительный саморазряд.

Ионисторы применяются в автомобилях Формулы-1. В системах рекуперации энергии, при торможении вырабатывается электроэнергия, которая накапливается в маховике, аккумуляторах или ионисторах для дальнейшего использования.

В бытовой электронике ионисторы применяются для стабилизации основного питания и в качестве резервного источника питания таких приборов как плееры, фонари, в автоматических коммунальных счетчиках и в других устройствах с батарейным питанием и изменяющейся нагрузкой, обеспечивая питание при повышенной нагрузке.

В общественном транспорте применение ионисторов особенно перспективно для троллейбусов, так как становится возможна реализация автономного хода и увеличения маневренности; также ионисторы используются в некоторых автобусах и электромобилях.

Электрические автомобили в настоящем времени выпускают многие компании, например: General Motors, Nissan, Tesla Motors, Toronto Electric. Университет Торонто совместно с компанией Toronto Electric разработали полностью канадский электромобиль A2B. В нем используются ионисторы вместе с химическими источниками питания, так называемое гибридное электрическое хранение энергии. Двигатели данного автомобиля питаются от аккумуляторов весом 380 килограмм. Также для подзарядки используются солнечные батареи, установленные на крыше электромобиля.

Емкостные сенсорные экраны

В современных устройствах все чаще применяются сенсорные экраны, которые позволяют управлять устройствами путем прикосновения к панелям с индикаторами или экранам. Сенсорные экраны бывают разных типов: резистивные, емкостные и другие. Они могут реагировать на одно или несколько одновременных касаний. Принцип работы емкостных экранов основывается на том, что предмет большой емкости проводит переменный ток. В данном случае этим предметом является тело человека.

Поверхностно-емкостные экраны

Таким образом, поверхностно-емкостный сенсорный экран представляет собой стеклянную панель, покрытую прозрачным резистивным материалом. В качестве резистивного материала обычно применяется имеющий высокую прозрачность и малое поверхностное сопротивление сплав оксида индия и оксида олова. Электроды, подающие на проводящий слой небольшое переменное напряжение, располагаются по углам экрана. При касании к такому экрану пальцем появляется утечка тока, которая регистрируется в четырех углах датчиками и передается в контроллер, который определяет координаты точки касания.

Преимущество таких экранов заключается в долговечности (около 6,5 лет нажатий с промежутком в одну секунду или порядка 200 млн. нажатий). Они обладают высокой прозрачностью (примерно 90%). Благодаря этим преимуществам, емкостные экраны уже с 2009 года активно начали вытеснять резистивные экраны.

Недостаток емкостных экранов заключается в том, что они плохо работают при отрицательных температурах, есть трудности с использованием таких экранов в перчатках. Если проводящее покрытие расположено на внешней поверхности, то экран является достаточно уязвимым, поэтому емкостные экраны применяются лишь в тех устройствах, которые защищены от непогоды.

Проекционно-емкостные экраны

Помимо поверхностно-емкостных экранов, существуют проекционно-емкостные экраны. Их отличие заключается в том, что на внутренней стороне экрана нанесена сетка электродов. Электрод, к которому прикасаются, вместе с телом человека образует конденсатор. Благодаря сетке, можно получить точные координаты касания. Проекционно-емкостный экран реагирует на касания в тонких перчатках.

Проекционно-емкостные экраны также обладают высокой прозрачностью (около 90%). Они долговечны и достаточно прочные, поэтому их широко применяют не только в персональной электронике, но и в автоматах, в том числе установленных на улице.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Самый простой состоит из двух металлических пластин (обкладок), разделенных тонким слоем диэлектрика (изолятора), в качестве которого может служить воздух, фарфор, слюда, керамика, бумага или другой материал, обладающий достаточно большим сопротивлением.

Единицей электрической емкости конденсатора является фарада (Ф) — дань памяти великому английскому ученому Майклу Фарадею.

В радиоэлектронике используются конденсаторы, емкость которых составляет дробные единицы фарад: пикофарады (пФ), нанофарады (нФ), микрофарады (мкФ).

1 Ф (фарада) = 1000000 мкФ (микрофарад)
1 мкФ (микрофарада) = 1000 нФ (нанофарад) = 1000000 пФ (пикофарад)
1 нФ (нанофарад) = 1000 пФ (пикофарад)

Керамические конденсаторы

Конденсаторы, как и резисторы , существуют постоянные и переменные. В зависимости от материала диэлектриков современные конденсаторы бывают: бумажные, керамические, слюдяные, электролитические и другие.

Наибольшее распространение имеют керамические конденсаторы. Емкость керамических конденсаторов составляет единицы — тысячи пикофарад.

Самой большой емкостью обладают электролитические конденсаторы , у которых в качестве изолятора используется тончайший слой окисла, получаемый электролитическим способом. Емкость электролитических конденсаторов может достигать тысяч микрофарад. Электролитические конденсаторы, как правило, полярные, т. е. имеют положительный и отрицательный полюса. Нарушение правильной полярности при включении электролитического конденсатора в цепь недопустимо, так как может вывести его из строя.

На корпусе конденсаторов наряду со значением их емкости и величиной ее возможного отклонения от номинала обычно указывается значение рабочего электрического напряжения. На конденсаторах, в основном, указано номинальное рабочее напряжение при постоянном токе. Включение конденсатора в цепь, напряжение в которой превосходит его рабочее напряжение, не допускается, так как происходит разрушение изолятора, вследствие чего конденсатор выходит из строя.

Конденсаторы, емкость которых можно менять в заданных интервалах, называются конденсаторами переменной емкости и подстроечными.

Для конденсаторов постоянной емкости на схеме рядом с условным графическим обозначением указывают значение емкости. При емкости менее 0,01 мкФ (10000 пФ) ставят число пикофарад без обозначения размерности, например, 15, 220, 9100. Для емкости 0,01 мкФ и более ставят число микрофарад.

У электролитических конденсаторов возле одной из обкладок ставят плюс. Такой же знак обычно стоит и на корпусе конденсатора около соответствующего вывода. Также чаще всего указывают номинальное напряжение.

Для конденсаторов переменной емкости и подстроечных указывают пределы изменения емкости при крайних положениях ротора, например, 6…30, 10…180, 6…470.

Маркировка конденсаторов

При обозначении номинала на зарубежных керамических конденсаторах часто используется специальная кодировка, при которой последняя цифра в числе обозначает количество нулей (емкость в пикофарадах). Например:

Заряд конденсатора

Рассмотрим процесс накопления конденсатором электрической энергии. Подсоединим обкладки конденсатора к полюсам источника тока. В момент замыкания цепи на обкладках конденсатора начнет накапливаться заряд. Как только напряжение на конденсаторе уравнивается с напряжением источника, процесс заряда конденсатора закончится и ток в цепи станет равным нулю. Таким образом, по окончании заряда цепь постоянного тока окажется разомкнутой. Если теперь несколько увеличить напряжение источника, то конденсатор накопит еще некоторый заряд. Чем больше емкость конденсатора, тем больший заряд будет на его обкладках при заданном значении напряжения между обкладками.

Если цепь конденсатора и источника постоянного тока разорвать, то конденсатор остается заряженным. Заряженный конденсатор может быть использован в качестве источника энергии, которая накоплена в нем в виде энергии электрического поля зарядов на обкладках. Именно таким образом используют конденсатор в солнечных двигателях BEAM-роботов. Источником электроэнергии при этом является солнечная батарея.

Посмотрим, что произойдет, если теперь подключить заряженный конденсатор, например, к светодиоду (с учетом полярностей). В получившейся цепи снова потечет ток (ток разряда конденсатора). Этот ток имеет направление, противоположное току заряда, то есть вытекает из положительно заряженной обкладки конденсатора как из положительного полюса источника. По мере разряда напряжение на конденсаторе уменьшится, и ток в цепи начнет убывать. В момент окончания разряда энергия конденсатора окажется полностью израсходованной, и ток в цепи исчезнет.

1. Маркировка тремя цифрами .

В этом случае первые две цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения номинала в пикофарадах. Последняя цифра «9» обозначает показатель степени «-1». Если первая цифра «0», то емкость менее 1пФ (010 = 1.0пФ).

код пикофарады, пФ, pF нанофарады, нФ, nF микрофарады, мкФ, μF
109 1.0 пФ
159 1.5 пФ
229 2.2 пФ
339 3.3 пФ
479 4.7 пФ
689 6.8 пФ
100 10 пФ 0.01 нФ
150 15 пФ 0.015 нФ
220 22 пФ 0.022 нФ
330 33 пФ 0.033 нФ
470 47 пФ 0.047 нФ
680 68 пФ 0.068 нФ
101 100 пФ 0.1 нФ
151 150 пФ 0.15 нФ
221 220 пФ 0.22 нФ
331 330 пФ 0.33 нФ
471 470 пФ 0.47 нФ
681 680 пФ 0.68 нФ
102 1000 пФ 1 нФ
152 1500 пФ 1.5 нФ
222 2200 пФ 2.2 нФ
332 3300 пФ 3.3 нФ
472 4700 пФ 4.7 нФ
682 6800 пФ 6.8 нФ
103 10000 пФ 10 нФ 0.01 мкФ
153 15000 пФ 15 нФ 0.015 мкФ
223 22000 пФ 22 нФ 0.022 мкФ
333 33000 пФ 33 нФ 0.033 мкФ
473 47000 пФ 47 нФ 0.047 мкФ
683 68000 пФ 68 нФ 0.068 мкФ
104 100000 пФ 100 нФ 0.1 мкФ
154 150000 пФ 150 нФ 0.15 мкФ
224 220000 пФ 220 нФ 0.22 мкФ
334 330000 пФ 330 нФ 0.33 мкФ
474 470000 пФ 470 нФ 0.47 мкФ
684 680000 пФ 680 нФ 0.68 мкФ
105 1000000 пФ 1000 нФ 1 мкФ

2. Маркировка четырьмя цифрами .

Эта маркировка аналогична описанной выше, но в этом случае первые три цифры определяют мантиссу, а последняя — показатель степени по основанию 10, для получения емкости в пикофарадах. Например:

1622 = 162*10 2 пФ = 16200 пФ = 16.2 нФ .

3. Буквенно-цифровая маркировка .

При такой маркировке буква указывает на десятичную запятую и обозначение (мкФ, нФ, пФ), а цифры — на значение емкости:

15п = 15 пФ, 22p = 22 пФ, 2н2 = 2.2 нФ, 4n7 = 4,7 нФ, μ33 = 0.33 мкФ

Очень часто бывает трудно отличить русскую букву «п» от английской «n».

Иногда для обозначения десятичной точки используется буква R. Обычно так маркируют емкости в микрофарадах, но если перед буквой R стоит ноль, то это пикофарады, например:

0R5 = 0,5 пФ, R47 = 0,47 мкФ, 6R8 = 6,8 мкФ

4. Планарные керамические конденсаторы .

Керамические SMD конденсаторы обычно или вообще никак не маркируются кроме цвета (цветовую маркировку не знаю, если кто расскажет — буду рад, знаю только, что чем светлее — тем меньше емкость) или маркируются одной или двумя буквами и цифрой. Первая буква, если она есть обозначает производителя, вторая буква обозначает мантиссу в соответствии с приведенной ниже таблицей, цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Пример:

N1 /по таблице определяем мантиссу: N=3.3/ = 3.3*10 1 пФ = 33пФ

S3 /по таблице S=4.7/ = 4.7*10 3 пФ = 4700пФ = 4,7нФ

маркировка значение маркировка значение маркировка значение маркировка значение
A 1.0 J 2.2 S 4.7 a 2.5
B 1.1 K 2.4 T 5.1 b 3.5
C 1.2 L 2.7 U 5.6 d 4.0
D 1.3 M 3.0 V 6.2 e 4.5
E 1.5 N 3.3 W 6.8 f 5.0
F 1.6 P 3.6 X 7.5 m 6.0
G 1.8 Q 3.9 Y 8.2 n 7.0
H 2.0 R 4.3 Z 9.1 t 8.0

5. Планарные электролитические конденсаторы .

Электролитические SMD конденсаторы маркируются двумя способами:

1) Емкостью в микрофарадах и рабочим напряжением, например: 10 6.3V = 10мкФ на 6,3В.

2) Буква и три цифры, при этом буква указывает на рабочее напряжение в соответствии с приведенной ниже таблицей, первые две цифры определяют мантиссу, последняя цифра — показатель степени по основанию 10, для получения емкости в пикофарадах. Полоска на таких конденсаторах указывает положительный вывод. Пример:

По таблице «A» — напряжение 10В, 105 — это 10*10 5 пФ = 1 мкФ, т.е. это конденсатор 1 мкФ на 10В

Конденсатор можно сравнить с небольшим аккумулятором, он умеет быстро накапливать и так же быстро ее отдавать. Основной параметр конденсатора – это его емкость (C) . Важным свойством конденсатора, является то, что он оказывает переменному току сопротивление, чем больше частота переменного тока, тем меньше сопротивление. Постоянный ток конденсатор не пропускает.

Как и , конденсаторы бывают постоянной емкости и переменной емкости. Применение конденсаторы находят в колебательных контурах, различных фильтрах, для разделения цепей постоянного и переменного токов и в качестве блокировочных элементов.


Основная единица измерения емкости – фарад (Ф) – это очень большая величина, которая на практике не применяется. В электронике используют конденсаторы емкостью от долей пикофарада (пФ) до десятков тысяч микрофарад (мкФ) . 1 мкФ равен одной миллионной доле фарада, а 1 пФ – одной миллионной доле микрофарада.

На электрических принципиальных схемах конденсатор отображается в виде двух параллельных линий символизирующих его основные части: две обкладки и диэлектрик между ними. Возле обозначения конденсатора обычно указывают его номинальную емкость, а иногда его номинальное напряжение.

Номинальное напряжение – значение напряжения указанное на корпусе конденсатора, при котором гарантируется нормальная работа в течение всего срока службы конденсатора. Если напряжение в цепи будет превышать номинальное напряжение конденсатора, то он быстро выйдет из строя, может даже взорваться. Рекомендуется ставить конденсаторы с запасом по напряжению, например: в цепи напряжение 9 вольт – нужно ставить конденсатор с номинальным напряжением 16 вольт или больше.

Температурный коэффициент емкости конденсатора (ТКЕ)

ТКЕ показывает относительное изменение емкости при изменении температуры на один градус. ТКЕ может быть положительным и отрицательным. По значению и знаку этого параметра конденсаторы разделяются на группы, которым присвоены соответствующие буквенные обозначения на корпусе.

Маркировка емкости конденсаторов

Емкость от 0 до 9999 пФ может быть указана без обозначения единицы измерения:

22 = 22p = 22П = 22пФ

Если емкость меньше 10пФ, то обозначение может быть таким:

1R5 = 1П5 = 1,5пФ

Так же конденсаторы маркируют в нанофарадах (нФ) , 1 нанофарад равен 1000пФ и микрофарадах (мкФ) :

10n = 10Н = 10нФ = 0,01мкФ = 10000пФ

Н18 = 0,18нФ = 180пФ

1n0 = 1Н0 = 1нФ = 1000пФ

330Н = 330n = М33 = m33 = 330нФ = 0,33мкФ = 330000пФ

100Н = 100n = М10 = m10 = 100нФ = 0,1мкФ = 100000пФ

1Н5 = 1n5 = 1,5нФ = 1500пФ

4n7 = 4Н7 = 0,0047мкФ = 4700пФ

6М8 = 6,8мкФ

Цифровая маркировка конденсаторов

Если код трехзначный, то первые две цифры обозначают значение, третья – количество нулей, результат в пикофарадах.

Например: код 104, к первым двум цифрам приписываем четыре нуля, получаем 100000пФ = 100нФ = 0,1мкФ.

Если код четырехзначный, то первые три цифры обозначают значение, четвертая – количество нулей, результат тоже в пикофарадах.

4722 = 47200пФ = 47,2нФ

Электролитические конденсаторы

Для работы в диапазоне звуковых частот, а так же для фильтрации выпрямленных напряжений питания, необходимы конденсаторы большой емкости. Такие конденсаторы называются – электролитическими. В отличие от других типов электролитические конденсаторы полярны, это значит, что их можно включать только в цепи постоянного или пульсирующего напряжения и только в той полярности, которая указана на корпусе конденсатора. Не выполнение этого условия приводит к выходу конденсатора из строя, что часто сопровождается взрывом.

Конденсаторы виды свойства применение. Конденсаторы: назначение, устройство, принцип действия

— один из самых распространенных электронных компонентов. Существует множество разных типов конденсаторов, которые классифицируют по различным свойствам.

В основном типы конденсаторов разделяют:

  • По характеру изменения емкости — постоянной емкости, переменной емкости и подстроечные.
  • По материалу диэлектрика — воздух, металлизированная бумага, слюда, тефлон, поликарбонат, оксидный диэлектрик (электролит).
  • По способу монтажа — для печатного или навесного монтажа.

Керамические конденсаторы

Керамические конденсаторы или керамические дисковые конденсаторы сделаны из маленького керамического диска, покрытого с двух сторон проводником (обычно серебром).

Карамические конденсаторы

Благодаря довольно высокой относительной диэлектрической проницаемости (от 6 до 12) керамические конденсаторы могут вместить достаточно большую емкость при относительно малом физическом размере. Диапазон емкости этого типа конденсаторов — от нескольких пикоФарад (пФ или pF) до нескольких микроФарад (мФ или uF). Однако их номинальное напряжение, как правило, невысокое.

Маркировка керамических конденсаторов обычно представляет собой трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить.


Например, маркировка 103 на керамическом конденсаторе означает 10 000 пикоФарад или 10 наноФарад. Соответственно, маркировка 104 будет означать 100 000 пикоФарад или 100 наноФарад и.т.д. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%.

Емкость конденсатора зависит от площади обкладок . Для того чтобы компактно вместить большую площадь, используют пленочные конденсаторы. Здесь применяют принцип «многослойности». Т.е. создают много слоев диэлектрика, чередующегося слоями обкладок. Однако с точки зрения электричества, это такие же два проводника разделенные диэлектриком, как и у плоского керамического конденсатора.

В качестве диэлектрика пленочных конденсаторов обычно используют тефлон, металлизированную бумагу, майлар, поликарбонат, полипропилен, полиэстер. Диапазон емкости этого типа конденсаторов составляет примерно от 5pF (пикофарад) до 100uF (микрофарад). Диапазон номинального напряжения пленочных конденсаторов достаточно широк. Некоторые высоковольтные конденсаторы этого типа достигают более 2000 вольт.

Различают два вида пленочных конденсаторов по способу размещения слоев диэлектрика и обкладок – радиальные и аксиальные .


Радиальный и аксиальный тип пленочных конденсаторов

Маркировка емкости пленочных конденсаторов происходит по тому же принципу что и керамических. Это трехзначный числовой код, обозначающий значение емкости в пикофарадах. Первые две цифры указывают значение емкости. Третья цифра указывает количество нулей, которые нужно добавить. Иногда к этому коду добавляют буквы, обозначающие допуск. Например, J = 5%, K = 10%, M = 20%. Например 103J означает 10 000 пикоФарад +/- 5% или 10 наноФарад +/-5%.

Однако довольно часто разные производители кроме значения емкости и точности добавляют символы номинального напряжения, температуры, серии, класса, корпуса, и других особых характеристик. Данные символы могут отличатся и быть размещены в разном порядке, в зависимости от производителя. Поэтому для разшифровки маркировки пленочных конденсаторов желательно пользоваться документацией (Datasheets) .

Обычно используются когда требуется большая емкость. Конструкция этого типа конденсаторов похожа на конструкцию пленочных, только здесь вместо диэлектрика используется специальная бумага, пропитанная электролитом. Обкладки конденсатора создаются из алюминия или тантала.

Обратим внимание, что электролит хорошо проводит электрический ток! Это полностью противоречит принципу устройства конденсатора, где два проводника должны быть разделены диэлектриком.

Дело в том, что слой диэлектрика создается уже после изготовления конструкции компонента. Через конденсатор пропускают ток, и в результате электролитического окисления на одной из обкладок появляется тонкий слой оксида алюминия или оксида тантала (в зависимости из какого металла состоит обкладка). Этот слой представляет собой очень тонкий и эффективный диэлектрик, позволяющий электролитическим конденсаторам превосходить по емкости в сотни раз «обычные» пленочные конденсаторы.

Недостатком вышеописанного процесса окисления является полярность конденсатора. Оксидный слой обладает свойствами односторонней проводимости. При неправильном подключении напряжения оксидный слой разрушается, и через конденсатор может пойти большой ток. Это приведет к быстрому нагреву и разширению электролита, в результате чего может произойти взрыв конденсатора! Поэтому необходимо всегда соблюдать полярность при подключении электролитического конденсатора . В связи с этим на корпусе компонента производители указывают куда подключать минус.

По причине своей полярности электролитические конденсаторы не могут быть использованы в цепях с переменным током. Но иногда можно встретить компоненты состоящие из двух конденсаторов, соединенными минус-к-минусу и формирующие «не полярные» конденсаторы. Их можно использовать в цепях с переменным током малого напряжения.

Емкость алюминиевых электролитических конденсаторов в колеблется основном от 1 мкФ до 47000 мкФ. Номинальное напряжение — от 5В до 500В. Допуск обычно довольно большой — 20%.

Танталовые конденсаторы физически меньше алюминиевых аналогов. Вдобавок электролитические свойства оксида тантала лучше чем оксида алюминия — у танталовых конденсаторов значительно менше утечка тока и выше стабильность емкости. Диапазон типичных емкостей от 47нФ до 1500мкФ.

Танталовые электролитические конденсаторы также являются полярными, однако лучше переносят неправильное подключение полярности чем их алюминиевые аналоги. Вместе с тем, диапазон типичных напряжений танталовых компонентов значительно ниже – от 1В до 125В.

Широко используются в устройствах, где часто требуется настройка во время работы — приемниках, передатчиках, измерительных приборах, генераторах сигналов, аудио и видео аппаратуре. Изменение емкости конденсатора позволяет влиять на характеристики проходящего через него сигнала (форму, частоту, амплитуду и т.д.).

Емкость может менятся механическим способом, электрическим напряжением (вариконды), и с помощью температуры (термоконденсаторы). В последнее время во многих областях вариконды вытесняются варикапами (диодами с переменной емкостью).

Под названием «переменные конденсаторы» обычно имеют ввиду компоненты с механическим изменением емкости. Управление емкостю здесь достигается путем изменения площади обкладок. Обкладки в переменных конденсаторах состоят из множества пластин с воздушным пространством между ними в качестве диэлектрика.

Часть пластин фиксированная, часть подвижная. Положение подвижных пластин по отношению к фиксированным определяет общую емкость конденсатора. Чем больше общая площадь пластин тем больше емкость.


Подстроечные конденсаторы

Подстроечные конденсаторы используются при разовом или периодическом регулировании емкости, в отличии от «стандартных» переменных конденсаторов, где емкость меняется в «режиме реального времени». Такая настройка предназначена для самих производителей аппаратуры, а не для ее пользователей, и выполняется специальной настроечной отверткой. Обычная стальная отвертка не подходит, так как может повлиять на емкость конденсатора. Емкость подстроечных конденсаторов как правило невелика – до 500 пикоФарад.

Способ монтажа конденсаторов

Конденсаторы разделяют по способу монтажа на компоненты для навесного монтажа и для печатного монтажа (SMD или чип-конденсаторы). У компонентов для навесного монтажа есть выводы в виде «ножек». У конденсаторов для печатного монтажа выводами служит часть их поверхности.

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “ “

Конденсаторы

Надо сказать, что конденсатор , как и резистор, можно увидеть во многих устройствах. Как правило, простейший конденсатор это две металлических пластинки и воздух между ними . Вместо воздуха может быть фарфор, слюда или другой материал, который не проводит ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где надо отделить постоянный ток от переменного .

Конденсаторы бывают постоянные, подстроечные, переменные и электролитические . Кроме этого, они отличаются материалом между пластинами и внешней конструкцией. Существуют конденсаторы воздушные , слюдяные , керамические, пленочные и т.п. Применение тех или иных видов конденсаторов обычно описано в сопровождающей документации к принципиальной схеме. Некоторые конденсаторы постоянной емкости и их обозначение на принципиальной схеме показаны на Рис.1.

Основной параметр конденсатора – емкость . Она измеряется в микро -, нано — и пикофарадах . На схемах Вы встретите все три единицы измерения. Обозначаются они следующим образом: микрофарады – мКф или мF , нанофарады – нф, Н или п , пикофарады – пф или pf . Чаще буквенное обозначение пикофарад не указывают ни на схемах, ни на самой радиодетали, т.е. обозначение 27, 510 подразумевают 27 пф, 510 пф. Чтобы проще разбираться в емкости, запомните следующее: 0,001 мкф = 1 нф, или 1000 пф.

В отечественной электронике применяется буквенно-цифровая маркировка конденсаторов. Если емкость выражают целым числом, то буквенное обозначение емкости ставят после этого числа, например: 12П (12 пф) , 15Н (15 нф = 15 000 пф, или 0,015 мкф), ЮМ (10 мкф). Чтобы выразить номинальную емкость десятичной дробью, буквенное обозначение единицы емкости размещают перед числом: Н15 (0,15 нф = 150 пф) , М22 (0,22 мкф). Для выражения емкости конденсатора целым числом с десятичной дробью буквенное обозначение единицы ставят между целым числом и десятичной дробью, заменяя ее запятой, например: 1П2 (1,2 пф) , 4Н7 (4,7 нф = 4700 пф), 1М5 (1,5 мкф).
Буквенно-цифровая маркировка конденсаторов используется и в зарубежной электронике. Она нашла широкое применение на конденсаторах большой емкости. Например, надпись 0,47 |iF = 0,47 мкф. Не забыли разработчики и о цветовой маркировке , которая может содержать полосы, кольца или точки . Маркируемые параметры: номинальная емкость ; множитель ; допускаемое отклонение напряжения ; температурный коэффициент емкости (ТКЕ) и (или) номинальное напряжение. Определить емкость можно при помощи следующей таблицы.


Некоторые примеры цветовой маркировки постоянных конденсаторов показаны на Рис. 2.


Кроме буквенно-цифровой и цветовой маркировки применяется способ цифровой маркировки конденсаторов тремя или четырьмя цифрами (международный стандарт). В случае трехзначной маркировки первые две цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра – количество нулей (здесь обращаю ваше внимание на маркировку конденсаторов емкостью менее 10 пикофарад: последней цифрой в этом случае может быть девятка):


(в таблице ошибка, должно быть: 100 10 пикофарад 0,01 нанофарада 0,00001 мкф(!) )


При кодировании четырехзначным числом последняя цифра так же указывает количество нулей, а первые три — емкость в пикофарадах (pF):


Некоторые примеры цифровой маркировки конденсаторов представлены на Рис. 3.


Среди большого разнообразия конденсаторов постоянной емкости особое место занимают электролитические конденсаторы . Сегодня чаще всего можно услышать название оксидные конденсаторы, т.к. в них используется оксидный диэлектрик. Такие конденсаторы выпускают большой емкости – от 0,5 до 10000 мкф. Оксидные конденсаторы полярны , поэтому на принципиальных схемах для них указывают не только емкость, но и знак ” + ” (плюс), а на самом конденсаторе: в зарубежном варианте нанесен знак “-“, в отечественном устаревшем – ” + ” . Кроме этого, на принципиальных схемах указывают и максимальное напряжение, на котором их можно использовать. Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкф надо взять на напряжение не ниже 10 В.

Многие начинающие бояться применять конденсаторы на большее напряжение, чем указанное в схемах. А зря! Возьмем, к примеру, устройство с питанием 9В. Здесь необходимо использовать конденсатор на напряжение не ниже 10В, но лучше – 16В. Дело в том, что “питание” не застраховано от скачков. А для конденсаторов резкие перепады в сторону увеличения приравниваются к смерти. Поэтому, если Вы примените электролит на напряжение 50В, 160В или еще большее, хуже работать устройство не будет! Разве что размеры увеличатся: чем больше напряжение конденсатора, тем больше его размеры.

Оксидные конденсаторы обладают неприятным свойством терять емкость – “высыхать” , что является одной из основных причин отказов радиоаппаратуры, находящейся в длительной эксплуатации. Такой неприятной особенностью в частности обладают отечественные электролиты, особенно старые. Поэтому старайтесь ставить зарубежные новые конденсаторы.
Выпускают производители и неполярные оксидные конденсаторы , хотя применяются они довольно редко. Существую еще и танталовые конденсаторы , которые отличаются долговечностью, высокой стабильностью рабочих характеристик, устойчивостью к повышению температуры. При небольшом внешнем виде они могут обладать достаточно большой емкостью.
Линия, нанесенная на корпусе танталового конденсатора, означает плюсовой вывод, а не минус, как многие думают .
Некоторые разновидности оксидных конденсаторов показаны на Рис. 4.


Особенностью подстроечных и переменных конденсаторов есть изменение емкости при обращении оси, которая выступает наружу. Раньше они широко применялись радиоприемниках. Именно конденсатор переменной емкости крутили Ваши родители для настройки на нужную радиостанцию. Некоторые подстроечные и переменный конденсаторы показаны на Рис. 5.


Для подстроечных или переменных конденсаторов на схеме указывают крайние значения емкости, которые создаются, если вращать ось конденсатора от одного крайнего положения к другому или вертеть по кругу (как у подстроечных конденсаторов). Например, надпись 5-180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пф, а в другом – 180 пф. При плавном возвращении с одного положения в другое емкость конденсатора также плавно будет изменяться от 5 до 180 пф или от 180 до 5 пф. Сегодня не используют конденсаторы переменной емкости, так как их вытеснили варикапы – полупроводниковый элемент, емкость которого зависит от приложенного напряжения .


Электрический конденсатор — один из самых распространених радио элементов, служит он для накопления электроэнергии (заряда). Самый простой конденсатор можно представить в виде двух металлических пластин (обкладок) и диэлектрика который находится между ними.

Когда к конденсатору подключают источник напряжения, то на его обкладках (пластинах) появляются противоположные заряды и возникнет электрическое поле притягивающие их друг к другу, и даже после отключения источника питания, такой заряд остается некоторое время и энергия сохраняется в электрическом поле между обкладками.

В электронных схемах роль конденсатора также может состоять не только в накоплении заряда но и в разделения постоянной и переменной составляющей тока, фильтрации пульсирующего тока и разных других задачах.
В зависимости от задач и факторов работы, конденсаторы используются очень разных типов и конструкций. Здесь мы рассмотрим наиболее популярные типы конденсаторов.

Конденсаторы алюминиевые электролитические

Это может быть, например, конденсатор К50-35 или К50-2 или же другие более новые типы.
Они состоят из двух тонких полосок алюминия свернутых в рулон, между которыми в том же рулоне находится пропитанная электролитом бумага в роли диэлектрика.
Рулон находится в герметичном алюминиевом цилиндре, чтобы предотвратить высыхание электролита.
На одном из торцов конденсатора (радиальный тип корпуса) или на двух торцах которого (аксиальный тип корпуса) располагаются контактные выводы. Выводы могут быть под пайку либо под винт.


В электролитических конденсаторах емкость исчисляется в микрофарадах и может быть от 0.1 мкф до 100 000 мкф. Как правило большая емкость и характеризует этот тип конденсаторов.
Еще одним из важных параметров есть максимальное рабочее напряжение, которое всегда указывается на корпусе и в конденсаторах этого типа может быть до 500 вольт!


Среди недостатков данного типа можно рассмотреть 3 причины:
1. Полярность. Полярные конденсаторы недопустимы с работой в переменном токе. На корпусе обозначаются соответствующими значками выводы конденсатора, как правило конденсаторы с одним выводом минусовой контакт имеют на корпусе, а плюсовой на выводе.
2. Большой ток утечки. Естественно такие конденсаторы не годятся для длительного хранения энергии заряда, но они хорошо себя зарекомендовали в качестве промежуточных элементов, в фильтрах активных схем и пусковых установках двигателей.
3.Снижение емкости с увеличением частоты. Такой недостаток легко устраняется с помощью параллельно подключенного керамического конденсатора с очень маленькой ёмкостью.

Керамические однослойные конденсаторы

Такие типы, например как К10-7В, К10-19, КД-2. Максимальное напряжения такого типа конденсаторов лежит в пределах 15 — 50 вольт, а ёмкость от 1 пФ до 0.47 мкф при сравнительно небольших размерах довольно не плохой результат технологии.
У данного типа характерны малые токи утечки и низкая индуктивность что позволяет им легко работать на высоких частотах, при постоянном, переменном и пульсирующих токах.
Тангенс угла потерь tgδ не превышает обычно 0,05, а максимальный ток утечки – не более 3 мкА.
Конденсаторы данного типа спокойно переносят внешние факторы, такие как вибрация с частотой до 5000 Гц с ускорением до 40 g, многократные механические удары и линейные нагрузки.


Маркировка на корпусе конденсатора обозначает его номинал. Три цифры расшифровываются следующим образом. Если две первые цифры умножать на 10 в степени третьей цифры, то получится значение емкости данного конденсатора в пф. Так, конденсатор с маркировкой 101 имеет емкость 100 пф, а конденсатор с маркировкой 472 — 4,7 нф. Для удобства составлены таблицы наиболее «ходовых» ёмкостей конденсаторов и их маркировочные коды.
Наиболее часто применяются в фильтрах блоков питания и как фильтр поглощающий высокочастотные импульсы и помехи.

Керамические многослойные конденсаторы

Например К10-17А или К10-17Б.
В отличии от вышеописанных, состоят уже из нескольких слоев металлических пластин и диэлектрика в виде керамики, что позволяет иметь им большую ёмкость чем у однослойных и может быть порядка нескольких микрофарад, но максимальное напряжение у данного типа все также ограничено 50 вольтами.
Применяются в основном как фильтрующие элементы и могут исправно работать как с постоянным так и с переменным и пульсирующим током.

Керамические высоковольтные конденсаторы

Например К15У, КВИ и К15-4
Максимальное рабочее напряжение данного типа может достигать 15 000 вольт! Но ёмкость у них небольшая, порядка 68 — 100 нФ.


Работают они как с переменным так и с постоянным током. Керамика в качестве диэлектрика создает нужное диэлектрическое свойство выдерживать большое напряжение, а особая форма защищает конструкцию от пробоя пластин.


Применение у них самое разнообразное, например в схемах вторичных источников питания в качестве фильтра для поглощения высокочастотных помех и шумов, или в конструирование катушек Тесла, мощной и ламповой радиоаппаратуре.

Танталовые конденсаторы

Например К52-1 или smd А. Основным веществом служит — пентоксид тантала, а в качестве электролита — диоксид марганца.

Твердотельный танталовый конденсатор состоит из четырех основных частей: анода, диэлектрика, электролита (твердого или жидкого) и катода.
По рабочим свойствам танталовые конденсаторы схожи с электролитическими, но рабочее максимальное напряжение ограничено 100 вольтами, а ёмкость как правило не превышает 1000 мкФ.
Но в отличии от электролитических, у данного типа собственная индуктивность намного меньше что дает возможность их использования на высоких частотах, до несколько сотен килогерц.


Основной причиной выхода из строя бывает превышение максимального напряжения.
Применение у них в большинстве наблюдается в современных платах электронных устройств, что возможно из за конструктивной особенности smd-монтажа.

Полиэстеровые конденсаторы

Например K73-17 или CL21, на основе металлизированной пленки…
Весьма популярные из за небольшой стоимости конденсаторы встречающиеся в почти всех электронных устройствах, например в балластах энергосберегающих ламп. Их корпус состоит из эпоксидного компаунда что придает конденсатору устойчивость к внешним неблагоприятным факторам, химическим растворам и перегревам.


Ёмкость таких конденсаторов идет порядка 1 нф — 15мкф и максимальное рабочее напряжение у них от 50 до 1500 вольт.
Большой диапазон максимального напряжения и ёмкости дает возможность использования полиэстеровых конденсаторов в цепях постоянного, переменного и импульсных токов.

Полипропиленовые конденсаторы

Например К78-2 и CBB-60.
В данного типа конденсаторов в качестве диэлектрика выступает полипропиленовая пленка. Корпус изготовлен из негорючих материалов, а сам конденсатор призначен для работы в тяжелых условиях.
Ёмкость, как правило в пределах 100пф — 10мкф, но в последнее время выпускают и больше, а по поводу напряжение то большой запас может достигать и 3000 вольт!

Преимущество этих конденсаторов заключается не только в высоком напряжении, но и в чрезвычайно низком тангенсе угла потерь, поскольку tg? может не превышать 0,001, что позволяет использовать конденсаторы на больших частотах в несколько сотен килогерц и применять их в индукционных обогревателях и пусковых установках асинхронных электродвигателей.

Пусковые конденсаторы (CBB-60) могут иметь ёмкость и до 1000мкф что стает возможным из за особенностей конструкции такого типа конденсаторов. На пластиковый сердечник наматывается металлизированная полипропиленовая пленка, а сверху весь этот рулон покрывается компаундом.

Электрические конденсаторы являются средством накопления электроэнергии в электрическом поле. Типичными областями применения электрических конденсаторов являются сглаживающие фильтры в источниках электропитания, цепи межкаскадной связи в усилителях переменных сигналов, фильтрация помех, возникающих на шинах электропитания электронной аппаратуры и т д.

Электрические характеристики конденсатора определяются его конструкцией и свойствами используемых материалов.

При выборе конденсатора для конкретного устройства нужно учитывать следующие обстоятельства:

а) требуемое значение емкости конденсатора (мкФ, нФ, пФ),

б) рабочее напряжение конденсатора (то максимальное значение напряжения, при котором конденсатор может работать длительно без изменения своих параметров),

в) требуемую точность (возможный разброс значений емкости конденсатора),

г) температурный коэффициент емкости (зависимость емкости конденсатора от температуры окружающей среды),

д) стабильность конденсатора,

е) ток утечки диэлектрика конденсатора при номинальном напряжении и данной температуре. (Может быть указано сопротивление диэлектрика конденсатора.)

В табл. 1 — 3 приведены основные характеристики конденсаторов различных типов.

Таблица 1. Характеристики керамических, электролитических конденсаторов и конденсаторов на основе металлизированной пленки

Параметр конденсатора Тип конденсатора
Керамический Электролитический На основе металлизированной пленки
От 2,2 пФ до 10 нФ От 100 нФ до 68 мкФ 1 мкФ до 16 мкФ
± 10 и ± 20 -10 и +50 ± 20
50 — 250 6,3 — 400 250 — 600
Стабильность конденсатора Достаточная Плохая Достаточная
От -85 до +85 От -40 до +85 От -25 до +85

Таблица 2. Характеристики слюдяных конденсаторов и конденсаторов на основе полиэстера и полипропилена

Параметр конденсатора Тип конденсатора
Слюдяной На основе полиэстера На основе полипропилена
Диапазон изменения емкости конденсаторов От 2,2 пФ до 10 нФ От 10 нФ до 2,2 мкФ От 1 нФ до 470 нФ
Точность (возможный разброс значений емкости конденсатора), % ± 1 ± 20 ± 20
Рабочее напряжение конденсаторов, В 350 250 1000
Стабильность конденсатора Отличная Хорошая Хорошая
Диапазон изменения температуры окружающей среды, о С От -40 до +85 От -40 до +100 От -55 до +100

Таблица 3. Характеристики слюдяных конденсаторов на основе поликарбоната, полистирена и тантала

Параметр конденсатора

Тип конденсатора

На основе поликарбоната

На основе полистирена

На основе тантала

Диапазон изменения емкости конденсаторов От 10 нФ до 10 мкФ От 10 пФ до 10 нФ От 100 нФ до 100 мкФ
Точность (возможный разброс значений емкости конденсатора), % ± 20 ± 2,5 ± 20
Рабочее напряжение конденсаторов, В 63 — 630 160 6,3 — 35
Стабильность конденсатора Отличная Хорошая Достаточная
Диапазон изменения температуры окружающей среды, о С От -55 до +100 От -40 до +70 От -55 до +85

Керамические конденсаторы применяются в разделительных цепях, электролитические конденсаторы используются также в разделительных цепях и сглаживающих фильтрах, а конденсаторы на основе металлизированной пленки применяются в высоковольтных источниках электропитания.

Слюдяные конденсаторы используются в звуковоспроизводящих устройствах, фильтрах и осцилляторах. Конденсаторы на основе полиэстера — это конденсаторы общего назначения, а конденсаторы на основе полипропилена применяются в высоковольтных цепях постоянного тока.

Конденсаторы на основе поликарбоната используются в фильтрах, осцилляторах и времязадающих цепях. Конденсаторы на основе полистирена и тантала используются также во времязадающих и разделительных цепях. Они считаются конденсаторами общего назначения.

Небольшие замечания и советы по работе с конденсаторами

Всегда нужно помнить, что рабочие напряжения конденсаторов следует уменьшать при возрастании температуры окружающей среды, а для обеспечения высокой надежности необходимо создавать большой запас по напряжению .

Если задано максимальное постоянное рабочее напряжение конденсатора, то это относится к максимальной температуре (при отсутствии дополнительных оговорок). Поэтому конденсаторы всегда работают с определенным запасом надежности. Тем не менее нужно обеспечивать их реальное рабочее напряжение на уровне 0,5-0,6 разрешенного значения.

Если для конденсатора оговорено предельное значение переменного напряжения, то это относится к частоте (50-60) Гц. Для более высоких частот или в случае импульсных сигналов следует дополнительно снижать рабочие напряжения во избежание перегрева приборов из-за потерь в диэлектрике.

Конденсаторы большой емкости с малыми токами утечки способны довольно долго сохранять накопленный заряд после выключения аппаратуры. Для обеспечения большей безопасности следует в цепь разряда подключить параллельно конденсатору резистор сопротивлением 1 МОм (0,5 Вт).

В высоковольтных цепях часто используется последовательное включение конденсаторов. Для выравнивания напряжений на них нужно параллельно каждому конденсатору подключить резистор сопротивлением от 220к0м до 1 МОм.

Рис. 1 Использование резисторов для выравнивания напряжений на конденсаторах

Керамические проходные конденсаторы могут работать на очень высоких частотах (свыше 30 МГц) . Их устанавливают непосредственно на корпусе прибора или на металлическом экране.

Неполярные электролитические конденсаторы имеют емкость от 1 до 100 мкФ и рассчитаны на 50 В. Кроме того, они дороже обычных (полярных) электролитических конденсаторов.

При выборе конденсатора фильтра источника электропитания следует обращать внимание на амплитуду импульса зарядного тока, который может значительно превосходить допустимое значение . Например, для конденсатора емкостью 10 000 мкФ эта амплитуда не превышает 5 А.

При использовании электролитического конденсатора в качестве разделительного необходимо правильно определить полярность его включения . Ток утечки этого конденсатора может влиять на режим усилительного каскада.

В большинстве случаев применения электролитические конденсаторы взаимозаменяемы . Следует лишь обращать внимание на значение их рабочего напряжения.

Вывод от внешнего слоя фольги полистиреновых конденсаторов часто помечается цветным штрихом. Его нужно присоединять к общей точке схемы.

Рис. 2 Эквивалентная схема электрического конденсатора на высокой частоте

Цветовая маркировка конденсаторов

На корпусе большинства конденсаторов написаны их номинальная емкость и рабочее напряжение. Однако встречается и цветовая маркировка.

Некоторые конденсаторы маркируют надписью в две строки. На первой строке указаны их емкость (пФ или мкФ) и точность (К = 10%, М — 20%). На второй строке приведены допустимое постоянное напряжение и код материала диэлектрика.

Монолитные керамические конденсаторы маркируются кодом, состоящим из трех цифр. Третья цифра показывает, сколько нулей нужно подписать к первым двум, чтобы получить емкость в пикофарадах.

(288 кб)

Пример. Что означает код 103 на конденсаторе? Код 103 означает, что нужно приписать три нуля к числу 10, тогда получится емкость конденсатора — 10 000 пФ.

Пример. Конденсатор маркирован 0,22/20 250. Это означает, что конденсатор имеет емкость 0,22 мкФ ± 20% и рассчитан на постоянное напряжение 250 В.

В радиоэлектронике используются огромное количество всевозможных конденсаторов. Все они различаются по таким основным параметрам как номинальная ёмкость, рабочее напряжение и допуск.

Но это лишь основные параметры. Ещё одним немаловажным параметрам может служить то, из какого диэлектрика состоит конденсатор . Рассмотрим более подробно, какие бывают конденсаторы по типу диэлектрика.

В радиоэлектронике применяются полярные и неполярные конденсаторы. Отличие полярных конденсаторов от неполярных заключается в том, что полярные включаются в электронную схему в строгом соответствии с указанной полярностью. К полярным конденсаторам относятся так называемые электролитические конденсаторы. Наиболее распространены радиальные алюминиевые электролитические конденсаторы. В отечественной маркировке они имеют обозначение К50-35.

У аксиальных конденсаторов проволочные выводы размещены по бокам цилиндрического корпуса, в отличие от радиальных конденсаторов, выводы которых размещаются с одной стороны цилиндрического корпуса. Аксиальными электролитами являются конденсаторы с маркировкой К50-29 К50-12, К50-15 и К50-24.


Аксиальные электролитические конденсаторы серии К50-29 и импортный фирмы PHILIPS

В обиходе радиолюбители называют электролитические конденсаторы “электролитами”.

Обнаружить их можно в блоках питания радиоэлектронной аппаратуры. В основном они служат для фильтрации и сглаживания выпрямленного напряжения. Также электролитические конденсаторы активно применяются в усилителях звуковой частоты (усилках) для разделения постоянной и переменной составляющей тока.

Электролитические конденсаторы обладают довольно значительной ёмкостью. В основном, значения номинальной ёмкости простираются от 0,1 микрофарады (0,1 мкФ) до 100.000 микрофарад (100000 мкФ).

Номинальное рабочее напряжение электролитических конденсаторов может быть в диапазоне от 10 вольт до нескольких сотен вольт (100 – 500 вольт). Конечно, не исключено, что есть и другие образцы, с другой ёмкостью и рабочим напряжением, но на практике встречаются они довольно редко.

Стоит отметить, что номинальная ёмкость электролитических конденсаторов уменьшается по мере роста срока их эксплуатации.

Поэтому, для сборки самодельных электронных устройств, стоит применять либо новые купленные, либо те конденсаторы, которые эксплуатировались в электроаппаратуре небольшой срок. В противном случае, можно столкнуться с ситуацией неработоспособности самодельного устройства по причине неисправности электролитического конденсатора. Наиболее распространённый дефект “старых” электролитов – потеря ёмкости и повышенная утечка.

Перед повторным применением стоит тщательно проверить конденсатор , ранее бывший в употреблении.

Опытные радиомеханики могут многое рассказать про качество электролитических конденсаторов. В пору широкого распространения советских цветных телевизоров в ходу была очень распространённая неисправность телевизоров по причине некачественных электролитов. Порой доходило до того, что телемастер заменял практически все электролитические конденсаторы в схеме телевизора, после чего аппарат исправно работал долгие годы.

В последнее время всё большее распространение получают компактные электролитические конденсаторы для поверхностного монтажа. Их габариты значительно меньше, чем классических выводных.


Конденсаторы электролитические алюминиевые для SMD монтажа на плате CD — привода

Также существуют миниатюрные танталовые конденсаторы . Они имеют довольно малые размеры и предназначены для SMD монтажа. Обнаружить их легко на печатных платах миниатюрных МР3 плееров, мобильных телефонов, материнских платах ноутбуков и компьютеров.


Танталовые электролитические конденсаторы на печатной плате MP-3 плеера

Несмотря на свои маленькие размеры, танталовые конденсаторы имеют значительную ёмкость. Они аналогичны алюминиевым электролитическим конденсаторам для поверхностного монтажа, но имеют значительно меньшие размеры.


Танталовый SMD конденсатор ёмкостью 47 мкФ и рабочее напряжение 6 вольт.
Печатная плата компьютерного CD-привода

В основном в компактной аппаратуре встречаются танталовые конденсаторы на 6,3 мкФ, 10 мкФ, 22 мкФ, 47 мкФ, 100 мкФ, 470 мкФ и на рабочее напряжение 10 -16 вольт. Столь небольшое рабочее напряжение связано с тем, что напряжение источника питания в малогабаритной электронике редко превышает порог в 5 – 10 вольт. Конечно, есть и более высоковольтные экземпляры.

Кроме танталовых конденсаторов в миниатюрной электронике используются и полимерные для поверхностного монтажа. Такие конденсаторы изготавливаются с применением твёрдого полимера. Он выполняет роль отрицательной обкладки – катода . Плюсовым выводом – анодом — в полимерном конденсаторе служит алюминиевая фольга. Такие конденсаторы хорошо подавляют электрические шумы и пульсации, обладают высокой температурной стабильностью.

На танталовых конденсаторах указывается полярность, которую необходимо учитывать при их использовании в самодельных конструкциях.

Кроме танталовых конденсаторов в SMD корпусах есть и выводные с танталовым диэлектриком. Их форма напоминает каплю. Отрицательный вывод маркируется полосой на корпусе.

Такие конденсаторы также обладают всеми преимуществами, что и танталовые для поверхностного монтажа, а именно низким током утечки, высокой температурной и частотной стабильностью, более высоким сроком эксплуатации по сравнению с обычными конденсаторами. Активно применяются в телекоммуникационном оборудовании и компьютерной технике.


Выводной танталовый конденсатор ёмкостью 10 микрофарад и рабочее напряжение 16 вольт

Среди электролитических конденсаторов есть и неполярные . Выглядят они, так же как и обычные электролитические конденсаторы, но для них не важна полярность приложенного напряжения. Они применяются в схемах с переменным или пульсирующим током, где использование полярных конденсаторов невозможно. К неполярным относятся конденсаторы с маркировкой К50-6. Отличить полярный конденсатор от неполярного можно, например, по отсутствию маркировки полярности на его корпусе.

Конденсаторы. Маркировка конденсаторов(в том ч.-smd), знаковая и цветовая.

Цветовая кодировка керамических конденсаторов.

На корпусе конденсатора, слева — направо, или сверху — вниз наносятся цветные полоски.

Как правило, номинал емкости оказывается закодирован первыми тремя полосками.
Каждому цвету, в первых двух полосках,соответствует своя цифра:
черный — цифра 0;
коричневый — 1;
красный — 2;
оранжевый — 3;
желтый — 4;
зеленый — 5;
голубой — 6;
фиолетовый — 7;
серый — 8;
белый — 9.
Таким образом, если например, первая полоска коричневая а вторая желтая, то это соответствует числу -14. Но это число не будет величиной номинальной емкости конденсатора, его еще необходимо умножить на множитель, закодированный третьей полоской.

В третьей полоске цвета имеют следующие значение:
оранжевый — 1000;
желтый — 10000;
зеленый — 100000.
Допустим, что цвет третьей полоски нашего конденсатора — желтый. Умножаем 14 на 10000, получаем емкость в пикофарадах -140000, иначе, 140 нанофарад или 0,14 микрофарад. Четвертая полоска обозначает допустимые отклонения от номинала емкости(точность), в процентах:
белый — ± 10 %;
черный — ± 20%.
Пятая полоска — номинальное рабочее напряжение. Красный цвет — 250 Вольт, желтый — 400.

Цветовая кодировка электролитических конденсаторов.

Что касается малогабаритных электролитических конденсаторов, то их номинальная емкость кодируется с помощью двух полосок и одного цветового пятна.

Первая и вторая полоска определяет число, а пятно — множитель. Цветовая кодировка первых двух полосок у электролитических конденсаторов полностью соответствует маркировке конденсаторов керамических. Необходимо учитывать, лишь то, что величина емкости у «электролитов» получается в микрофарадах, а не пикофарадах как у керамических конденсаторов. Цвета пятна, означающего множитель:
черный — 1;
коричневый — 10;
красный — 100;
серый — 0,01;
белый — 0,1;
Например, цвет первой полоски голубой( цифра 6), второй — оранжевый( цифра 3), при коричневом цвете пятна( множитель — 10). Это означает 63*10= 630 микрофарада. Если у электролитического конденсатора присутствует третья полоска, то она определяет его номинальное напряжение:
белый цвет — 3 вольта;
желтый — 6,3 вольт;
черный — 10 вольт;
зеленый — 16 вольт;
голубой — 20 вольт;
серый — 25 вольт;
розовый — 35 вольт.

Плюсовой вывод в таких электролитических конденсаторах — более толстый, чем минусовой.

Расшифровка маркировки конденсаторов | ldsound.ru

Для расшифровки обозначения, требуется знать значение первых двух цифр, которые говорят о емкости. Если устройство имеет очень маленькие габаритные размеры, не позволяющие это условие выполнить, то его маркировка осуществляется по международному стандарту EIA.

Разберем трехзначную маркировку на примере. Перед нами конденсатор с надписью “104”. Что это означает? Значение емкости в пикофарадах “10” после которой следует дописать четыре нуля, т.к. последняя цифра “4”. Получаем “100000” или 100000 пФ, что равно 0.1 мкФ.

Код Пикофарады (пФ, pf) Нанофарады (нФ, nf) Микрофарады (мкФ, µf)
109 1.0 0.001 0.000001
159 1.5 0.0015 0.000001
229 2.2 0.0022 0.000001
339 3.3 0.0033 0.000001
479 4.7 0.0047 0.000001
689 6.8 0.0068 0.000001
100* 10 0.01 0.00001
150 15 0.015 0.000015
220 22 0.022 0.000022
330 33 0.033 0.000033
470 47 0.047 0.000047
680 68 0.068 0.000068
101 100 0.1 0.0001
151 150 0.15 0.00015
221 220 0.22 0.00022
331 330 0.33 0.00033
471 470 0.47 0.00047
681 680 0.68 0.00068
102 1000 1.0 0.001
152 1500 1.5 0.0015
222 2200 2.2 0.0022
332 3300 3.3 0.0033
472 4700 4.7 0.0047
682 6800 6.8 0.0068
103 10000 10 0.01
153 15000 15 0.015
223 22000 22 0.022
333 33000 33 0.033
473 47000 47 0.047
683 68000 68 0.008
104 100000 100 0.1
154 150000 150 0.15
224 220000 220 0.22
334 330000 330 0.33
474 470000 470 0.47
684 680000 680 0.68
105 1000000 1000 1.0

Маркировка конденсаторов по рабочему напряжению

Также важным параметром конденсатора является допустимое рабочее напряжение. Не лишним будет брать конденсатор с запасом по рабочему напряжению. Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Номинальное рабочее напряжение, B  Буквенный код
1 I
1.6 R
2.5 M
3.2 A
4 C
6.3 B
10 D
16 E
20 F
25 G
32 H
40 S
50 J
63 K
80 L
100 N
125 P
160 Q
200 Z
250 W
315 X
350 T
400 Y
450 U
500 V

Каково значение конденсатора 101? – JanetPanic.com

Каково значение конденсатора 101?

Электронные компоненты

: как считывать значения емкости конденсатора

Маркировка Емкость (пФ) Емкость (мкФ)
101 100 пФ 0,0001 мФ
221 220 пФ 0,00022 МФ
471 470 пФ 0.00047 МФ
102 1000 пФ 0,001 мкФ

Сколько стоит керамический конденсатор 103?

На конденсаторе из примера напечатан трехзначный номер (103). Первые две цифры, в данном случае 10, дают нам первую часть значения. Третья цифра указывает количество лишних нулей, в данном случае 3 лишних нуля. Таким образом, значение равно 10 с 3 дополнительными нулями или 10 000.

Какова емкость керамического конденсатора 104?

Идентификация керамических конденсаторов

Код Пикофарад (пФ) Микрофарад (мкФ)
103 10000 0.01
683 68000 0,068
104 100000 0,1
154 150000 0,15

Какие номера указаны на керамических конденсаторах?

Керамические колпачки Значение напечатано на каждом в виде трехзначного кода. Этот код аналогичен цветовому коду резисторов, но вместо цветов используются цифры. Первые две цифры — это две старшие значащие цифры значения, а третья цифра — показатель степени числа 10.С Пико Фарада.

Что означает 103, написанное на конденсаторе?

Конденсаторы будут иметь номера, такие как 103, 104, 224. Последнее число представляет собой количество нулей. Все значения указаны в пикофарадах. Например: 103 становится 10 + 000 (3 нуля) пФ = 10000 пФ = 10 нФ. Например: 224 становится 22 + 0000 (4 нуля) пФ = 220000 пФ = 220 нФ = 0,22 мкФ.

uF больше, чем nF?

Преобразование между мкФ, нФ и пФ с помощью приведенной ниже таблицы преобразования мкФ в нФ-пФ Ньюарка….Конденсатор мкФ – нФ – пФ Преобразование.

мкФ/ МФД нФ пФ/ММФД
0,0000027 мкФ / МФД 0,0027 нФ 2,7 пФ (ММФД)
0,0000025 мкФ/МФУ 0,0025 нФ 2,5 пФ (ММФД)
0,0000022 мкФ / МФД 0,0022 нФ 2,2 пФ (ММФД)

Как проверить керамический конденсатор?

Используйте цифровой мультиметр для проверки керамического конденсатора.Если напряжение постоянное, конденсатор работает правильно. Однако вы не сможете правильно измерить его, если выход омметра и цифровая емкость не соответствуют напряжению конденсатора, и в этом случае предпочтительнее второе решение.

Какие бывают типы конденсаторов?

Двумя наиболее распространенными типами электролитических конденсаторов являются алюминиевые электролитические конденсаторы и танталовые конденсаторы. Танталовые конденсаторы отличаются от большинства электролитических тем, что они больше похожи на керамические конденсаторы.В отличие от керамических конденсаторов, танталовые конденсаторы поляризованы.

Какова емкость конденсатора?

Значения конденсаторов могут находиться в диапазоне более 10 9 и даже больше, поскольку в настоящее время используются суперконденсаторы. Чтобы избежать путаницы с большим количеством нулей, присоединенных к значениям различных конденсаторов, широко используются общие префиксы пико (10 -12 ), нано (10 -9) и микро (10 -6).

Код конденсатора 101 — 04/2022

Код конденсатора 101 Обзор

Конденсатор Код 101 может предложить вам множество вариантов для экономии деньги благодаря 22 активных результатов.Вы можете получить лучшая скидка до до 76%.
Новые коды скидок постоянно обновляются на Couponxoo. Последние находятся на 06 апр. 2022 г.
11 новый Конденсатор Код 101 результаты были найдены в последнем 90 дни, которые означает, что каждые 8, новый Конденсатор Код 101 результат выяснен.
Благодаря отслеживанию Couponxoo, онлайн-покупатели недавно могли сэкономить 26% В среднем с использованием наших купонов для покупок в Код конденсатора 101 .Это легко сделать с помощью поиска на Купоны Коробка.

Как я могу узнать, проверен ли результат кода конденсатора 101 или нет?

Согласно системе отслеживания CouponXoo, поиск Capacitor Code 101 в настоящее время дает 22 доступных результата. Купоны с проверенными этикетками работают для большинства. Чтобы убедиться, вам просто нужно скопировать код и применить его к любым продуктам, которые продаются со скидкой.

Какие шаги я могу сделать, чтобы применить предложения Capacitor Code 101?

Чтобы применить купон Capacitor Code 101, все, что вам нужно сделать, это скопировать соответствующий код из CouponXoo в буфер обмена и применить его при оформлении заказа.
Примечание. Некоторые результаты конденсатора с кодом 101 подходят только для определенных продуктов, поэтому перед отправкой заказа убедитесь, что все товары в вашей корзине соответствуют требованиям.

Сколько кодов купонов можно использовать для каждого заказа при поиске кода конденсатора 101?

Обычно на один товар действует от 1 до 3 кодов скидок. Однако в каждом заказе клиенты могут использовать только один код купона. Поэтому при использовании кода купона старайтесь выбрать лучший код с наибольшей скидкой.

Где найти соответствующие результаты кода конденсатора 101?

Прямо под кодом конденсатора 101 CouponXoo показывает все результаты, связанные с кодом конденсатора 101, после чего вы можете легко его использовать.Наряду с этим, в нижней части страницы вы можете найти раздел «Недавно найденные», в котором удобно видеть, что вы искали.

Как прочитать керамический конденсатор

Существует несколько вариантов символа конденсатора. Итак, сегодня мы просто сосредоточимся на том, как читать керамические конденсаторы. Тот, что слева, для электролитических конденсаторов. Керамические конденсаторы не имеют полярности. Вот почему схематический символ немного отличается от электрического добавленного конденсатора.Теперь есть две диаграммы, на которые мы должны ссылаться, когда говорим о конденсаторе.

Маркировка емкости (пФ) Емкость (КРП)
101 100 пФ 0,0001 ıf
221 220 пФ 0,00022 ıf
471 470 PF 0,00047 ìf
102 102 1000 PF 0,001 f
222 2200 PF 0.0022, если
472 4700 пФ 0,0047 ıf
103 10000 пФ 0,01 ıf
223 22000 пФ 0,022 ıf
473 47000 пФ 0.047 ìf
104 100 000 PF 0,1 f
224 220 000 pf 0.22 ìf
474 470 000 PF 0.47, если
105 1000000 пФ 1 Если
225 2200000 пФ 2.2 Если
475 4700000 пФ 4.7 Если

Буква распечатаны конденсатора указывают допуск

E ± 0,5% ± 2% 2 x
письмо Толерантность
A 0,05 PF
2 B ± 0,1 PF
C ± 0.25 PF
d ± 0,5 pf
E
F
F ± 1%
г
г
H ± 3%
± 5% ± 5%
K
K
2 K 2 ± 10%
L
L
м
м ± 20%
N ± 30%
p -0%, + 100%
S -20%, + 50%
W -0%, + 200%
–20%, +40%
Z –20%, +80%

Что такое керамический конденсатор?

Что такое керамический конденсатор? Керамический конденсатор имеет форму диска и имеет минимальные размеры.Керамический конденсатор имеет две клеммы. Это неполяризованный конденсатор, что означает, что между положительной и отрицательной клеммами нет разницы. Посмотрите сюда, внутрь керамического конденсатора. Внешний двор защищает внутреннюю сторону конденсаторов. Этот — электрод, а верхний — диэлектрический керамический диск.

Поэтому конденсатор называется керамическим. Этот керамический диск хранит заряды. Это символ керамического конденсатора. Маленький диск и маленькая точка обозначают керамический конденсатор.Диапазон керамических конденсаторов от 0 до 0,01 мкФ до 1 мкФ.

Где использовать керамический конденсатор?

Керамический конденсатор используется в разных местах. В основном используется для фильтрации. Он используется в сигнальной или частотной цепи для фильтрации сигнала и его очистки. Он также используется на DC для чистого DC. Керамический конденсатор используется для хранения энергии. Он хранит постоянный ток, но пропускает переменный ток. Это и есть керамический конденсатор.

Как мы считываем номинал керамического конденсатора

Первый — это буквенный код, который говорит нам о допуске компонента.Второй — числовой код, который говорит нам о фактическом размере емкости конденсатора.

Итак, прямо сейчас мы рассмотрим наш пример. И наш пример говорит 102 k. Если разбить код, то первая значащая цифра будет единица, а вторая значащая цифра — ноль. Итак, это числа перед нашим множителем.

Расчет номинала керамического конденсатора

Итак, теперь, когда мы возьмем ваш множитель, который равен двум, и посмотрим на график, это будет означать два нуля.Таким образом, мы добавляем два нуля в конце числа. Итак, 1000 пикофарад. Теперь K представляет наш допуск компонента, который в данном случае составляет плюс-минус 10%. Вот как мы определяем размер и номинал конденсатора.

Узнайте здесь, как измерить емкость конденсатора, подключив его к мультиметру. Итак, в этом примере я использую конденсатор с числовым значением 103, что составляет 10 нанофарад.

Теперь, когда вы посмотрите на то, что оценивается на дисплее, его практическая оценка такова, что он работает, это девять ферритов.Так что допуск около 10%. Теперь, когда вы подключаете его к своему базовому мультиметру. Убедитесь, что у вас есть соответствующий терминал в этом. Как видите, в правом нижнем углу у меня есть символ емкости. Затем убедитесь, что вы находитесь в соответствующем диапазоне вашего мультиметра. А затем, чтобы убедиться, что вы выбрали соответствующую настройку.

Таблица кодов дисковых керамических конденсаторов

7 109006 109007 5000
Пикофарад пФ Нанофарад нФ Микрофарад мкФ Код
01 0,00001 100
15 0,015 0,000015 150
22 0,022 0,000022 220
33 0,033 0,000033 330
47 0.047 0.047 0.000047 470
100
0,1 0,0001 101
120 0.12 0,00012 121
130 0,13 0,00013 131
150 0,15 0,00015 151
180 0,18 0,00018 181
220 0.22 0,22 0,00022 221
330 0.33 0,00033 331
47014
470 0.47 0,00047 471
560 0,56 0,00056 561
680 0,68 0,00068 681
750 0,75 0,00075 751
820 0.82 0,00082 0,00082 821
1000 1,0 1.0 0.001 102
1500 1.5 0,0015 152
2000 2,0 0,002 202
2200 2,2 0,0022 222
3300 3,3 0,0033 332
4700 4700 470017 0.0047 472
5,0 5.0 0.005 502
5600 5.6 0,0056 562
10000 10 0,1 102
15000 15 0,015 152
22000 22 0,022 223
33000 33000 33 0.033 333
47000 47 47 0.047 473
68000 68 0.068 683
100000 100 0,1 104
150000 150 0,15 154
200000 200 0,2 254
220000 220 0.22 0.22 224
3300000 330 0.33 334
47000000 47000000 470 0.47 474
680000 680 0,68 684
1000000 1000 1,0 105
1500000 1500 1,5 154
2000000 2000 2000 2.0 205
2200000 2200000 220017 220017 2.2 225
3300000 3300 3.3 335
4700000
4700000 4700000 470017 470017 475

Последнее число, написанное на керамическом конденсаторе, — это мощность 10 и умножена на первые два нет.
Допустим, керамический конденсатор записал код 682; сначала проверьте последний номер. Итак, как мы видим, здесь последнее число равно 2. Теперь множитель равен 10 2

.

Некоторые примеры

    1. 204 = 20 × 10 4 = 200000 PF
    2. 472 = 47 × 10 2 = 4700 PF
    3. 502 = 50 × 10 2 = 5000 PF
    4. 330 = 33×10 = 33 PF   [10 = 1]

    ЕДИНИЦЫ

    1. 1000 нанофарад (нФ) = 1 микрофарад (мкФ)
    2. 1 пикофарад = 10 -12 фарад.
    3. Nano = 10 -9 -9
    4. Micro = 10 -6
    5. 1 Nano Farad = 10 -9 Farad
    6. 1 Microfarad (мкф) = 10 -6 Фарад

    1 нФ = 1000 пФ
    1 пФ = 0,001 нФ

    Пример:  

    преобразовать 15 нФ в пФ:
    15 нФ = 15 × 1000 пФ = 15000 пФ

    Код напряжения конденсатора

    0G 4VDC 0L 5.5VDC 0J 6.3VDC
    1A 10VDC 1С 16VDC 1E 25VDC
    1H 50VDC 1J 63VDC 1K 80VDC
    2A 100VDC 2Q 110VDC 2B 125VDC
    2C 160VDC 2Z 180VDC 2D 200VDC
    2P 220VDC 2E 250VDC 2F 315VDC
    2V 350VDC 2G 400 В 2W 450VDC
    2H 500VDC 2J 630VDC 3A 1000VDC

    Связанный контент

    Микроволны101 | Конденсаторы

    Нажмите здесь, чтобы перейти на нашу страницу с сосредоточенными элементами

    Учебный фильм ВМС США 1943 года, посвященный емкости

    Давайте рассмотрим два фильма (давайте проявим уважение к секунде и не будем называть фильм видео, хорошо?) производства U.Учебное командование ВМФ С. в 1943 году, объясняющее емкость своим стажерам-радистам. Канал YouTube объединил два фильма в одно видео, в котором есть несколько пробелов, которые вам нужно игнорировать. Первый фильм начинается с показа того, как бильярдный стол может продемонстрировать закон Ома… Мы не уверены, что бильярдный стол является здесь лучшей аналогией. А вы как думаете? Объяснение емкости начинается примерно на двухминутной отметке и является точным. Рассказчик напоминает нам, что конденсаторы когда-то назывались конденсаторами.На пятиминутной отметке автомобильную шину сравнивают с конденсатором. Смотрите, когда матрос накачивает ее до 20 фунтов на квадратный дюйм… На современных автомобилях это будет считаться спущенной шиной! Опять же, это не идеальная аналогия, так как у конденсатора два порта, а у шины только один. Обратите внимание, что у шины есть внутренняя камера, это видно по тому, как вентиль небрежно прилегает к ободу. Напомним, что «Q» в Q=CV получило свое название от 91 173 количества 91 174 электронов… примерно через семь минут вы увидите отказ конденсатора из-за перенапряжения.Когда это происходит в лаборатории с другим персоналом, может возникнуть вопрос: «Кто ругался?» На 10-й минуте моряк подает 800 вольт на какие-то конденсаторы, бережно держась за пластиковую часть щупов, и даже не выключает питание, когда кладет щупы на скамейку… авария ждет своего часа. Второй фильм (Емкость, часть 2) посвящен постоянной времени RC-цепей. Примерно через 17 минут вводится осциллограф для построения кривой зависимости напряжения от времени, которая должна укорениться в вашей голове, если вы инженер-электрик.Американские оптические прицелы были довольно бесполезны во время Второй мировой войны, их, вероятно, отдали местному задроту, которому сказали: «Вы можете придумать, как использовать эту штуку?». Одним из ограничений является то, что развертка должна запускаться извне, она не запускалась из исследуемой формы волны. На видео, когда вы наблюдаете за движением трассы по ЭЛТ, вы можете представить, как другой моряк щелкает рубильником вверх и вниз, чтобы запустить дорожки. В 1946 году компания Tektronics разработала устройство, в которое была добавлена ​​функция триггера, позволяющая повторять трассировку.Угадайте, где они научились этому? Германия. Наконец, в видео рассматривается что происходит в емкостных цепях, подвергающихся воздействию переменного тока, затрагивается концепция реактивного сопротивления и необходимость блокировочных конденсаторов. Ближе к концу вы встретите рассказчика, а это красавчик-дьявол. Браво ВМС США, которые снимают такие фильмы!

     

     

    Здесь представлено введение в различные типы конденсаторов, используемых в микроволновой технике. Эта страница является дополнением к нашим страницам, посвященным микроволновым индукторам и микроволновым резисторам.

    Вот кликабельный указатель на наш материал по конденсаторам:

    Влияние температуры конденсатора

    Влияние напряжения на конденсаторе

    Изготовление конденсаторов

    Общие сведения о конденсаторах и определения

    Материалы для конденсаторов (отдельная страница)

    Микроволновый конденсатор модели

    Конденсаторная математика (отдельная страница)

    Емкостное реактивное сопротивление

    Емкость параллельных пластин

    Листовая емкость

    Конденсаторные резонансы

    Расчет запаса заряда (отдельная страница, новинка марта 2007 г.!)

    Конденсаторы однослойные

    Многослойные керамические конденсаторы

    Отдельная страница по этой теме, новинка от сентября 2008 г.

    Электролитические конденсаторы

    Эффекты СОЭ (отдельная страница, новинка сентября 2008 г.)

    Общие сведения о конденсаторах и определения

    Конденсаторы СВЧ

    используются в качестве элементов настройки или компонентов в простых или сложных структурах фильтров.При использовании в качестве элемента настройки часто требуется высокий допуск при низком значении емкости. При использовании в качестве блока постоянного тока или байпаса обычно все, о чем вы заботитесь, это то, что ваш радиочастотный сигнал видит низкий импеданс.

    Единицей измерения емкости является фарада, названная в честь Майкла Фарадея. На «классических» микроволновых частотах, таких как X-диапазон, обычно используются единицы измерения емкости в пикофарадах (10 -12 фарад). Многие люди типа RFIC используют нанофарады (10 -9 фарад) так же часто, как и в приложениях миллиметрового диапазона (т.е. там, где работают «настоящие мужчины»), иногда используем фемтофарады (10 -15 Фарад) (спасибо за поправку, Дэвид!)

    Конденсатор часто не действует как конденсатор на микроволновых частотах. Микроволновые конденсаторы должны быть достаточно малы, чтобы их можно было считать сосредоточенными элементами. Конденсаторы с осевыми выводами неприменимы на микроволновых частотах из-за необходимости сохранения малых размеров.

    Блоки постоянного тока и ВЧ обходные конденсаторы

    Оба фильтра представляют собой простые фильтры, в которых используются микроволновые конденсаторы.Блок постоянного тока представляет собой последовательный конденсатор, который имеет низкое реактивное сопротивление для интересующей ВЧ частоты (короткое замыкание ВЧ), но блокирует постоянный ток, поскольку представляет собой разомкнутую цепь на частоте 0 Гц. ВЧ-байпас — это шунтирующий (параллельный) элемент, который действует как короткое замыкание для микроволновых сигналов, но здесь он предназначен для отражения ВЧ-сигналов путем их короткого замыкания.

    Конденсаторы для накопления заряда

    Используются для поддержания напряжения в импульсном режиме. Обычно это не конденсаторы микроволнового типа, а чаще всего электролитические.

    Микроволновый конденсатор модели

    Ниже приведена классическая модель конденсатора с сосредоточенными элементами для СВЧ-цепей. Физические модели конденсаторов также используются на микроволновых частотах, особенно в моделировании MMIC, мы вернемся к этой теме в другой раз.

    Элемент, обозначенный в модели буквой «С», является номинальным значением емкости, остальные элементы считаются паразитными. LS — собственная индуктивность конструкции. Эквивалентное последовательное сопротивление (ESR) представляет собой действительную часть последовательного сопротивления конденсатора и вызывает потери из-за нагрева.Параллельная емкость CP также вызывает некоторые проблемы, но ее часто можно игнорировать, поскольку мы пытаемся работать ниже частоты, при которой возникает резонанс.

    Уравнение добротности конденсатора (Q) можно найти на нашей странице математики конденсаторов.

    Многослойные керамические конденсаторы

    У этой темы теперь есть собственная страница.

    Многослойные керамические конденсаторы используются в качестве устройств для поверхностного монтажа в микроволновых печатных платах, а иногда и в гибридных интегральных схемах фильтрации постоянного тока.Многослойная технология обеспечивает высокую емкость при небольшом объеме. Размеры многослойных конденсаторов, которые популярны для работы в микроволновой печи, — это 0402, 0603 и 0805. Эти размеры «расшифровываются», отмечая, что число «02» означает 0,02 дюйма, «04» означает 0,04 дюйма и т. д. Метрическая система склоняется к опять английская система!!!

    Для колпачков для поверхностного монтажа, таких как многослойная керамика и тантал, коэффициент расширения становится важным, когда вы используете колпачки большого размера в широком диапазоне температур.

    Две интернет-легенды о многослойных кепках, которые мы подождем, пока наша аудитория поддержит или опровергнет…

    Вы можете увеличить SRF, смонтировав мультислой «толстым» размером вверх. (Хорошо, здесь нужна цифра…)

    Вы можете проверить многослойные колпачки на низкое СОЭ, разогрев их в микроволновой печи и выбросив те, которые нагреваются больше всего.

    Однослойные конденсаторы, также известные как тонкопленочные конденсаторы (TFC)

    Однослойные колпачки — выбор для самых высоких частотных характеристик.Также называемые тонкопленочными конденсаторами, при монолитной реализации их можно использовать, как и в микроволновых цепях, далеко за пределами W-диапазона (<110 ГГц). TFC используются в MMIC и RFIC для обхода, блокировки постоянного тока и элементов настройки RF. Хороший процесс может обеспечить точность +/-10%, все зависит от того, насколько хорошо вы можете контролировать толщину диэлектрика. Обычными диэлектриками являются нитрид кремния и оксид кремния. Для конденсаторов на МИС верхний предел порядка 20 пФ.

    TFC формируется путем металлизации подложки, покрытия ее тонким диэлектриком, а затем добавления верхнего металла для формирования сэндвича.Их иногда называют колпачками MIM (металл-изолятор-металл).

    Если кто-то предложит изготовить ТПЧ на подложке из оксида алюминия, имейте в виду, что это непростая задача. Зернистая структура полированного оксида алюминия очень грубая по сравнению с типичной толщиной диэлектрика (несколько тысяч ангстрем), и в этом случае предпочтительным дефектом являются короткие замыкания.

    Металлооксидно-полупроводниковые (МОП) конденсаторы

    Эти конденсаторы появились как побочный продукт кремниевой революции. Кремниевые цепи изолируются выращиванием оксида кремния.Добавьте слой металла сверху (почти всегда алюминий в кремниевом процессе), и вы сможете создать конденсатор. Конденсатор этого типа обеспечивает превосходный микроволновый отклик при значениях до сотен пФ.

    Колпачки MOS

    отличаются от колпачков MIM тем, что основным «металлом» в MOS является полупроводник (кремний), который обеспечивает электрический контакт через заднюю сторону. Задняя сторона колпачка MOS может быть покрыта алюминием или оставлена ​​без покрытия. Другие вариации на эту тему включают МНС (металлический нитрид кремния).

    Однослойные керамические колпачки

    Однослойные керамические колпачки изготавливаются путем металлизации тонкой керамической подложки и ее нарезки кубиками. Часто керамика имеет очень высокую диэлектрическую проницаемость, так что небольшие конденсаторы (менее 1 мм с каждой стороны) могут обеспечить емкость 100 пФ и более. Высокий DK часто достигается за счет плохой температурной стабильности.

    Электролитические конденсаторы

    Электролитические конденсаторы обеспечивают самую высокую плотность емкости со значениями в десятки микрофарад.Часто их изготавливают из тантала. На самом деле они не соответствуют микроволновому качеству, но часто используются в качестве фильтрации источника питания для микроволновых цепей. Линейным регуляторам всегда нужны как минимум две электролитические крышки, одна на входе и одна на выходе, чтобы оставаться стабильной. В импульсных приложениях электролиты скомпонованы в батареи для обеспечения накопления заряда, чтобы контролировать падение напряжения. Узнайте о накоплении заряда здесь и об эквивалентном последовательном сопротивлении здесь. В чем разница между droopи drop? Скиньте сюда.

    Электролитические конденсаторы имеют полярность , а это означает, что вы должны быть осторожны при подключении к ним постоянного напряжения. Сместите их назад, и они сработают извещателем дыма!

    Интересный процесс изготовления танталовых конденсаторов. Тантал перерабатывается в очень маленькие сферы, которые сжимаются и спекаются вместе в губчатую структуру с большой площадью поверхности на единицу объема (чем меньше и однороднее размер сферы, тем больше площадь).На этой среде выращивается пятиокись тантала, которая действует как диэлектрический слой. В структуру пронизывается еще один проводник, добавляются контакты, и вуаля, у вас конденсатор высокой плотности!

     

    Easy View идентификация номиналов конденсаторов с использованием цветовых или числовых кодов

     

    Как считывать номиналы конденсаторов по их цветным или числовым кодам
        Было бы неплохо, если бы маркировка конденсаторов была более последовательной.Если у производителя много места (например, на больших электролитах), они обычно печатают все, что могут; значение, номинальное напряжение, номинальная температура, серия, даже страна изготовления. Однако чем меньше становится деталь, тем меньше информации вы получаете до тех пор, пока на мельчайших деталях может вообще ничего не быть. На керамике с небольшим сквозным отверстием два числа плюс показатель степени система часто (но не всегда) используется. Это, как и большинство систем маркировки, основано на пикофарадах, наименьшем общем знаменателе емкости.470 может быть 47 (47 x 100) или 470 пФ, но 471 почти наверняка равно 470 (47 x 101). 473, вероятно, будет 0,0047. Однако 479, вероятно, будет означать 4,7 (47 x 10 -1). Значения ниже 10 пФ могут использовать «R» для десятичной точки, например, 4R7 = 4,7 пФ. Если повезет, вы также можете найти материал (C0G, X7R и т. д.) и номинальное напряжение. Допуск может быть рядом с стоимость.

           
    Номер Умножить на ..
    (дополнительное количество нулей)
    0 Нет (0)
    1 10 (1)
    2 100 (2)
    3 1000 (3)
    4 10 000 (4)
    5 100 000 (5)
    6 1 000 000 (6)
    Код Допуск
    С 0.25пФ
    Ж 5%
    К 10%
    М 20%
    Д 0,5 пФ
    З +80% / -20%

     

       

    CM02CG101K16AP | см | Многослойные керамические конденсаторы (MLCC) | конденсаторы | Продукты | Электронные компоненты и устройства

    Керамический материал с высокой диэлектрической проницаемостью, если оставить его при комнатной температуре без какого-либо смещения, имеет тенденцию уменьшать свою емкость почти линейно до логарифмического времени.Это явление вызвано переходом диэлектрической керамики в более стабильную фазу, и это неизбежные характеристики. Поэтому предлагается учитывать изменение емкости во времени при использовании конденсаторов в таких схемах, как схема с постоянной времени.

    Большинство керамических диэлектриков, используемых для керамических конденсаторов, обладают сегнетоэлектрическими характеристиками и имеют температуру Кюри. Выше этой температуры диэлектрики имеют высокосимметричную кубическую кристаллическую структуру, тогда как ниже температуры Кюри кристаллическая структура менее симметрична.Хотя в монокристаллах этот фазовый переход очень резкий, в практической керамике он часто распространяется на конечный диапазон температур. Во всех случаях это связано с пиком на кривой емкость/температура.

    Под действием тепловых колебаний ионы в кристаллической решетке продолжают двигаться в позиции с более низкой потенциальной энергией в течение длительного времени после остывания диэлектрика ниже температуры Кюри. Это вызывает старение емкости, в результате чего емкость конденсатора постоянно уменьшается.(Линия А на графике ниже) Однако, если конденсатор нагревается до температуры выше температуры Кюри, происходит замедление старения и восстанавливается емкость, потерянная в результате старения. (точка B на графике ниже) Старение возобновляется, когда конденсатор остывает ниже температуры Кюри. (Линия C на графике ниже)

    Это явление перехода в более низкое энергетическое состояние, при котором керамический диэлектрик становится более стабильным. Поэтому учитывайте старение емкости при использовании конденсатора с керамическим диэлектриком класса 2 или класса 3 для цепи с узким диапазоном допустимой емкости. изменения, такие как цепь с постоянной времени.

    Поскольку эффекты этого старения можно обратить вспять, емкость диэлектрика можно вернуть к исходному значению, подвергая его воздействию более высокой температуры, чем его точка Кюри, например, 125°C для BaTiO3. Явления можно заметить сразу после пайки или после доработки/ремонта паяльником.

     

    Что такое конденсатор SMD? Общие номиналы конденсаторов

    Конденсаторы поверхностного монтажа наиболее широко используются для требований к конденсаторам на печатных платах, которые идеально подходят для крупномасштабного производства.Конденсатор SMD — одно из производных SMT (технология поверхностного монтажа) , имеющее небольшие и легко размещаемые компоненты, что увеличивает скорость производства.

    Керамические, танталовые, электролитические конденсаторы — это лишь немногие из доступных вариантов, когда речь идет о конденсаторах SMD. керамические конденсаторы просты и экономичны в производстве и поэтому наиболее широко используются.
    Если вы хотите подробно ознакомиться с конденсатором и их типами, а также с его работой, нажмите здесь!

    Что такое SMD конденсатор? Конденсатор

    SMD представляет собой не что иное, как конденсатор компактного размера и без длинного провода.Он разработан таким образом, что дает преимущество при массовом производстве электронных устройств и оборудования, а также некоторое техническое преимущество в работе высокочастотных устройств.

    Преимущество конденсатора SMD:

    • Конденсатор SMD не имеет выводов или очень короткий вывод, что позволяет избежать индуктивного эффекта выводов ( его важность проявляется, когда мы работаем с высокочастотными цепями и радиоцепями «ВЧ-диапазон ‘).
      Например, .при проектировании контура резервуара с использованием LC, если выводы конденсатора не будут короткими, он будет колебаться на частотах, отличных от тех, которые мы разработали.
    • Размер конденсатора для поверхностного монтажа меньше, чем традиционное место для конденсатора, и устройство может быть ограничено меньшим пространством, что полезно в портативных устройствах.
    • Увеличение скорости изготовления, следовательно, возможно снижение стоимости.
    • Благодаря стандартному размеру с ним гораздо проще обращаться и размещать его на печатной плате с помощью роботизированного процесса сборки.

    Недостаток конденсатора SMD:

    Его преимущества перевешивают недостатки. Почему мы говорим, что его недостатков очень мало и ими можно пренебречь.

    • Одним из недостатков является его размер, когда дело доходит до ремонта. Предположим, вы планируете заменить его, тогда это немного тяжелая работа.
    • Более низкая теплоемкость конденсатора меньшего размера может привести к его повреждению, если не будет обеспечена надлежащая охлаждающая вентиляция. Компоненты для поверхностного монтажа имеют более низкие рабочие температуры, чем традиционные компоненты.4 = 10000.
      Таким образом, получается значение 100000 пф = 0,1 мкФ

      Существует определенный диапазон конденсаторов, которые очень часто используются с печатными платами и в цепях. Общий код конденсатора приведен ниже, чтобы его было легче вспомнить при необходимости при изучении или проектировании схем:

      47 PF 1 1
      Конденсатор (104) Конденсатор (108)
      100 нФ 900 1 нФ
      Конденсатор (154) Конденсатор (158)
      150 нФ 0.15 pf
      40014
      Конденсатор (224) Конденсатор (224)
      220 NF 0.22 PF
      Конденсатор (334) Конденсатор (338) Конденсатор (338)
      330 NF 0.33 PF
      40014
      Конденсатор (474) Конденсатор (478)
      470 NF 0.47 PF
      Конденсатор (684) Конденсатор (684) Конденсатор (688)
      680 NF 0.68 PF
      40014
      Конденсатор (105) Конденсатор (109)
      1,0 мкФ 1.0 PF
      Конденсатор (155) Конденсатор (159)
      1,5 мкФ 1.5 PF
      40014
      Конденсатор (479) Конденсатор (229) 4,7 PF 2,2 PF
      Конденсатор (689) Конденсатор (689) Конденсатор (339)
      6.8 PF 3.3 PF
      40014
      Конденсатор (100) Конденсатор (103)
      10 PF 10 NF
      Конденсатор (150) Конденсатор (153)
      15 PF 15 NF
      Конденсатор (220) Конденсатор (223) 22 PF 22 NF
      Конденсатор (330) Конденсатор (333)
      33 PF 33 NF
      Конденсатор (470) конденсатор (473)
      47 NF 47 NF
      Конденсатор (680) Конденсатор (683) 40019 68 PF 68 NF
      Конденсатор (101) Конденсатор (681)
      100 PF 680 PF
      Конденсатор (151) Конденсатор (102)
      150 PF 1000 P Ф [1.0 NF]
      конденсатор (221) конденсатор (152)
      220 PF 1500 PF [1.5 NF]
      Конденсатор (331) Конденсатор (222)
      330 PF 2200 PF [2.2 NF]
      40014
      Конденсатор (471) Конденсатор (682)
      470 PF 6800 PF [6.8 NF]
      Конденсатор (332) Конденсатор (472 )
      3300 пФ [3.3 NF] 4700 PF [4.7 NF]
      40014
      Конденсатор (225) Конденсатор (225) Конденсатор (335)
      2,2 мкФ [2200 NF] 3,3 мкФ [3300 NF]
      Конденсатор (475 ) Конденсатор (685)
      4,7 мкФ [4700 NF] 6,8 мкФ [6800 NF]
      1 3 SMD Конденсатор Размер:

      Размер конденсатора SMD, безусловно, зависит от их типов, их размер другой электролитический конденсатор и керамический конденсатор.Ниже приведены некоторые стандарты размеров конденсаторов SMD для различных типов конденсаторов SMD:

      2
      Код размера (мм) Размер (в мм) Код размера (дюймы) Размер (в дюймах)
      1005 1005 1.0 × 0.5 04001 0,04 × 0,02
      1608 0603 0,06 × 0,03
      2012 2012 2,0 × 1.2 0805 0 .08 × 0,05
      3216 3.2 × 1.6 1206 0,126 × 0,063
      3225 3.2 × 2.5 1210 0,12 × 0,10
      4520 4.5 × 2.0 1808 0,18 × 0,08
      4532 4.5 × 3.2 1812 1,8 × 0,12
      5750 5.7 × 5.0 2220 0,22 × 0,20

      Аре SMD конденсатор полярный?

      ДА, конденсаторы SMD поляризованы, но не все конденсаторы SMD поляризованы.Электролитический конденсатор SMD обязательно поставляется с полярностью и имеет свое специальное применение.
      Обычно они желто-черного цвета с маркировкой на нем.

      Как определить полярность конденсатора SMD?

      Полярность конденсаторов для поверхностного монтажа отмечена белой или черной линией на одном из концов устройства. Обратите внимание, что на закругленном конденсаторе для поверхностного монтажа маленький черный угол указывает на отрицательную сторону. Эта линия/полоса указывает на положительный вывод конденсаторов, как показано на рисунке выше.

      Откуда вы знаете, что конденсатор неполярный?

      Если на конденсаторе нет индикации в виде полосы или цветного тире, то это неполярный конденсатор. Этот неполярный керамический конденсатор обычно коричневого, желтовато-коричневого или серого цвета. Резисторы SMD
      обычно имеют черный цвет.

      Как проверить конденсатор SMD?

      Если на конденсаторе для поверхностного монтажа не написан код, выполните следующие действия:

      Шаг 1 — Снимите конденсатор с печатной платы (невозможно проверить компонент, не снимая его с платы). )

      Шаг 2 — Установите мультиметр на мегаомный диапазон.И подключите плюс мультиметра к плюсу конденсатора, а минус к минусу конденсатора (если это поляризованный конденсатор).

0 comments on “Емкость конденсатора код 101: Конденсатор 101 емкость

Добавить комментарий

Ваш адрес email не будет опубликован.