Цифровая шкала для fm приемников: Цифровая шкала для FM-приёмниковна микросхемах

Схема стерео приемника с цифровой шкалой 65-110МГц

Предлагаемая схема предназначена для сборки громкоговорящего стереоприемника с цифровой шкалой, позволяющего принимать широкополосные ЧМ-станции в диапазоне 65… 110 МГц. Приемник имеет пять фиксированных настроек на принимаемые станции и встроенные часы с будильником. Приемник отличается высокой чувствительностью, простотой и хорошими характеристиками, не содержит дефицитных деталей.

Технические характеристики

Диапазон принимаемых частот, МГц……………………..65…110

Фиксированные настройки……………………………………………..5

Чувствительность, мкВ………………………………………………….2

Потребляемый ток, мА………………………………………………….20

Напряжение питания, В………………………………………………….6

Выходная мощность, Вт…………………………………………….0,25

Коэффициент гармоник, %…………………………………………..0,2

Сопротивление нагрузки, Ом……………………………………..4…8

Ангенна телескопическая, см…………………………………30…60

Принцип работы стереоприемника

На рис. 1 приведена электрическая принципиальная схема приемника. Основу приемника составляет микросхема DA1 TDA7021, которая представляет собой супергетеродин с одним преобразованием частоты и низким значением промежуточной частоты (ПЧ). Микросхема содержит усилитель высокой частоты, смеситель, гетеродин, усилитель промежуточной частоты, усилитель-ограничитель, ЧМ-детектор, устройство бесшумной настройки (БШН) и буферный усилитель ЗЧ. На микросхеме DA2 TDA7040 выполнен стереодекодер с пилот-тоном. В качестве стереоусилителя звуковой частоты применена микросхема DA3 К174УН23. Цифровая шкала и электронные часы выполнены на микросхеме DA4 SC3610 с ЖК-дисплеем.

Сигнал с антенны поступает на внешний УВЧ, выполненный на транзисторе VT2 КТ368, через конденсатор С15. Усиленный сигнал высокой частоты и сигнал гетеродина, контуром которого являются катушка индуктивности L1, варикап VD1 и конденсатор C3, поступают

на смеситель внутри микросхемы. Сигнал ПЧ (около 70 кГц) с выхода смесителя выделяется полосовыми фильтрами, элементами коррекции которых являются конденсаторы С5 и С6, и поступает на вход усилителя-ограничителя. Усиленный и ограниченный сигнал ПЧ поступает на ЧМ-детектор. Демодулированный сигнал, пройдя через фильтр НЧ-кор-рекции, внешним элементом которого является конденсатор С1, поступает на устройство БШН, режимом работы которого можно управлять, изменяя емкость конденсатора С2.

 

Рис. 1. Схема приемника

С выхода устройства БШН звуковой сигнал поступает на буферный усилитель. Подключение блокировочного конденсатора С7 способствует увеличению выходного напряжения ЗЧ и более устойчивой работе буферного усилителя. Комплексный стереосигнал (КСС; с выхода буферного усилителя микросхемы DA1 TDA7021 через корректирующую цепь С12, R10, определяющую тембр звучания и качество разделения каналов, поступает на вход стереодекодера, собранного на микросхеме DA2 TDA7040. Резистором R11 устанавливают режим работы опорного генератора, внешними элементами которого являются Р12, С13, С14. При наличии КСС на выходе микросхемы DA1 TDA7021 напряжение с выхода микросхемы DA2 TDA7040 уменьшается, закрывая транзистор ѴТЗ и зажигая светодиод VD2. Декодированные сигналы с левого и правого каналов микросхемы DA2 TDA7040 через фильтр С16…С19 поступают на соответствующие входы стререоусилителя звуковой частоты, собранного на микросхеме DA3 К174УН23. Усиленные сигналы левого и правого каналов поступают на динамические головки ВА1 и ВА2.

Сигнал гетеродина с варикапа VD1 поступает на вход ВЧ-усилите-ля на транзисторе ѴТ1 и далее на вход цифрового индикатора частоты настройки на микросхеме DA4 SC3610. ZQ1, R18, R19, С24, С25, С26 — внешние элементы опорного генератора цифровой шкалы DA4 SC3610. Когда приемник выключен, эта микросхема работает в режиме часов, а когда включен — в режиме цифровой шкалы. Это достигается подачей напряжения питания через резистор R17 на микросхему DA4 SC3610. С вывода 28 этой микросхемы сигнал будильника поступает на транзистор VT4, нагрузкой которого является дроссель L2 и пьезокерамический звукоизлучатель ZQ2.

 

Настройка стереоприемника

Выбор фиксированной настройки осуществляется переключателем SA1, который подключает к гетеродину микросхемы DA1 TDA7021 один из пяти переменных резисторов. Настройка в каждом канале выполняется переменным резистором, который подает управляющее напряжение на варикап. Под воздействием этого напряжения меняется емкость варикапа, что приводит к изменению резонансной частоты контура гетеродина, и приемник настраивается на радиостанцию. Настройка стереодекодера заключается в установке резистором R11 наилучшего разделения каналов при приеме радиостанции. Громкость звучания регулируют по двум каналам одним переменным резистором R14. На этом настройка приемника закончена.

Микросхему TDA7021 можно заменить на ее отечественный аналог К174ХА34. Вместо микросхемы К174УН23 подойдет любой низковольтный сереофонический усилитель мощности, но с соответствующей схемой включения. Транзистор КТ368 можно заменить на любой малошумящий ВЧ-транзистор с граничной частотой не менее 600 МГц. Транзистор КТ315 можно заменить на любой НЧ-транзистор. Варикап VD1 — КВ109, КВ132 или любой аналогичный, обеспечивающий полное перекрытие диапазона 65…110 МГц. Диоды КД503 можно заменить на КД522 и другие. Динамические головки можно использовать любые сопротивлением 4…8 Ом. Пьезоизлучатель в приемнике можно использовать ЗП-1, ЗП-З или импортный. Для питания приемника используют стабилизированный блок питания на напряжение 6 В. Применение нестабилизированного источника питания неприемлемо, так как при этом будет “плавать” частота настройки. В качестве кварцевого резонатора ZQ1 подойдет любой часовой кварц на частоту 32768 Гц. Катушка L1 содержит 3…4 витка провода ПЭВ диаметром 0,6 мм, намотанного на каркасе диаметром 5 мм с латунным или ферритовым подстрочником. Величину индуктивности дросселя L2 подбирают по максимальной громкости звучания пьезоизлучателя. Для управления часами используют пять кнопок: SA2 — включение звонка; SA3 — настройка времени звонка; SA4 — настройка текущего времени; SA5 -подстройка минут; SA6 — подстройка часов.

Если нет в наличии микросхем цифровой шкалы DA4 SC3610 и ЖК-дисплея, то в схеме стереоприемника их можно не использовать. Но тогда он лишится таких сервисных функций, как цифровая шкала и электронные часы с будильником.

Литература

1.    Шумилов А. Простой радиотелефон // Радиолюбитель. 2001. №7.

2.    Шумилов А. Простой радиотелефон Ѵег 1.0 // Радиолюбитель, 2002. №1.

3.    Шумилов А. УКВ-приемник с расширенным диапазоном // Радиолюбитель. 2002. №3.

4.    Шумилов А. Простой радиотелефон Ѵег 2.0 // Радиолюбитель, 2002. №5.

5.    Шумилов А. Возвращаясь к напечатанному // Радиолюбитель. 2002. №6.

6.    Шумилов А. Простой радиотелефон Ѵег 2.1 // Радиолюбитель. 2002. №9.

7.    Шумилов А. Универсальная радиосигнализация // Радиолюбитель. 2003. №2.

Автор статьи — А. Шумилов. Статья опубликована в РЛ, №5,2003 г.

LB3500 + LC7265. Цифровая шкала для УКВ/FM-приёмника

1. Что такое цифровая шкала?

В современных приёмниках и тюнерах есть много дополнительных сервисных устройств, которые упрощают процесс настройки на радиостанцию. Одним из таких устройств является цифровая шкала. Это, как правило, 4-5 разрядный цифровой индикатор, на котором отображается непосредственная частота принимаемой радиостанции.

2. Как это работает?

Для этого нужно немного вспомнить теорию супергетеродинного приёма. В таком приёмнике есть входной контур с УВЧ (усилителем высокой частоты), гетеродин и смеситель (или преобразователь, что суть одно и то же). Гетеродин – это встроенный ВЧ-генератор, который вырабатывает (генерирует) напряжение высокой частоты. Частота этого напряжения может быть выше или ниже частоты принимаемого сигнала на вполне определённую величину (обычно 6,5 или 8,4 или 10,7 МГц). Т.е., например, при настройке на станцию, которая работает на частоте 100,0 МГц (при частоте ПЧ = 10,7 МГц), гетеродин будет вырабатывать сигнал частотой 89,3 МГц (если его частота ниже частоты сигнала станции) или 110,7 МГц (если выше). Второй вариант на практике используется чаще.

Содержание / Contents

Камрад, рассмотри датагорские рекомендации

🌼 Полезные и проверенные железяки, можно брать

Опробовано в лаборатории редакции или читателями.

При перестройке по диапазону частота настройки УВЧ и гетеродина меняется одновременно. Для этого используется сдвоенный агрегат настройки (КПЕ, вариометр или варикапы). Принятый сигнал и сигнал от гетеродина подаются на смеситель, который выделяет разность этих частот. Эта частота называется промежуточной (ПЧ). Дальнейшее (основное) усиление принятого сигнала производится именно на ПЧ. Это упрощает конструкцию приёмника, так как не нужно делать перестраиваемые контуры, а основное усиление сигнала любой принятой станции производится на одной и той же частоте. Это основное преимущество супергетеродина.

Измерять непосредственно частоту принимаемого сигнала сложно, поскольку его величина очень незначительна и подвержена влиянию внешних факторов. А вот гетеродин – это «местный» генератор. Частоту и амплитуду вырабатываемого гетеродином напряжения можно стабилизировать (что и делается в хороших приёмниках), а раз они относительно стабильны, то и измерить их значительно проще. Вот именно для измерения частоты гетеродина и используется цифровая шкала
.
Цифровая шкала – это, по сути, цифровой частотомер, но довольно «специфический». Например, если к гетеродину подключить «обычный» частотомер, то он нам покажет не частоту принимаемой станции, а частоту самого гетеродина. Пользоваться такой шкалой будет неудобно, так как придётся «в уме» отнимать (или прибавлять) величину ПЧ к показаниям индикатора. Что бы не обременять радиослушателя такими «математическими вычислениями», их производят непосредственно в самой цифровой шкале. В этом и заключается её «специфика».
Как это происходит? В общем-то, довольно просто – с помощью предустановки (предварительной записи) значения частоты ПЧ в микросхемы счётчика в начале каждого цикла измерения. Так, при частоте ПЧ = 10,7 МГц и при условии, что частота гетеродина выше частоты принимаемой станции, в счётчики предварительно записывается число «9893». В приведённом выше примере частота, вырабатываемая гетеродином, будет 110, 7 МГц. Подаём этот сигнал на вход счётчика (естественно, предварительно поделив её на 100 000). Он сначала отсчитает 107 импульсов (это частота ПЧ), что приведёт к «обнулению» предустановленных счетчиков и далее они начнут считать непосредственно частоту станции «как бы» с нуля. Вот и весь «фокус».
Именно на таком принципе работает ЦШ на дискретных элементах, которую я построил ещё в 90-е годы. В основе – схема ЦШ тюнера «Ласпи-005», которая была основательно переделана. Для её изготовления потребовалось 18 ИМС, в том числе 3 шт. — из серии К500 (ЭСЛ-логика), большое количество «обвязки», сложная печатная плата.


В то же время, уже тогда существовали ИМС иностранных фирм, которые позволяли построить очень простую ЦШ с использованием всего 1…2 корпусов микросхем. Понятное дело, что в то время они были недоступны. Один из таких «комплектов» выпустила фирма Sanyo. Он состоит из микросхемы прескалера (предварительного делителя частоты на «8») LB3500 и, собственно, ИМС ЦШ LC7265. Существует так же «модификация» этой ИМС –
LC7267
, которая, кроме ЦШ, содержит ещё и электронные часы. Но цоколёвка у этих ИМС совершенно разная. Этот комплект использовался в автомагнитолах и бытовой аудиоаппаратуре. В настоящее время эти ИМС являются сильно устаревшими. Тем не менее, их до сих пор можно купить в магазинах, стоят они относительно недорого и позволяют построить простую, хорошо работающую ЦШ для лампового или полупроводникового УКВ приёмника. Эта же ИМС может работать и с АМ приёмником, но эта функция в данной конструкции не реализована и не проверялась автором на практике. Делитель частоты на «8». Рекомендуемое напряжение питания + 4,5 … 5,5 В. Максимальное напряжение питания +8 В. Может работать в диапазоне частот от 30 до 150 МГц. Диапазон входных напряжений ВЧ – от 100 до 600 мВ. Потребляемый ток 16 … 24 мА. Выполнена в корпусе SEP9 (однорядный, 9 ножек с шагом 2,54 мм).
От себя добавлю, что некоторые экземпляры этой ИМС довольно капризны к напряжению питания и начинают нормально работать только при напряжении +5,5 … 6,0 В. Именно поэтому на плате для неё разведён отдельный регулируемый стабилизатор на ИМС
LM317LZ
.Цифровая шкала для АМ/ЧМ приёмников. Рекомендуемое напряжение питания + 4,5 … 10 В. Максимальное напряжение питания +11 В. Может работать в диапазоне частот от 1 до 18 МГц (по входу ЧМ) и от 0,5 до 3 МГц (по входу АМ). Входное напряжение ВЧ (по всем входам) – не более 0,9 Uпит. Максимальная потребляемая мощность – 550 мВт. Выполнена в корпусе DIP42S (двухрядный, 42 ножки с шагом 1,778 мм).

К ИМС можно подключить 4 или 5 семисегментных светодиодных индикаторов с общим анодом для отображения частоты. Индикация статическая (ножки 1-5, 23-34, 36-42), а так же индикаторы КГц и МГц (ножки 7 и 6). Выходы на индикаторы сделаны на полевых транзисторах с открытым стоком, максимальный ток нагрузки для каждого сегмента – 15 мА, для выходов, к которым подключаются сразу 2 сегмента – 30 мА. Это позволяет подключить к ним большинство современных индикаторов без ключей на транзисторах. Достаточно подобрать токоограничивающие резисторы.

В режиме ЧМ на индикаторе может отображаться частота от 00,00 МГц до 199,95 МГц (если подключено 5 индикаторов) или до 199,9 МГц (если 4 индикатора) с шагом 50 КГц. В режиме АМ – от 000 КГц до 1999 КГц с шагом 1 или 10 КГц. Если подключено 5 индикаторов, то в режиме ЧМ в младшем разряде будет отображаться либо «0», либо «5» (десятки КГц). Устанавливать этот индикатор, как мне кажется, совершенно не нужно. На схеме он обведён пунктиром, а на плате не разведён.
Переключение режимов АМ/ЧМ осуществляется подачей на 20-ю ножку «0» (АМ) или «1» (ЧМ). Входы для АМ и ЧМ раздельные (ножки 9 и 8).

Для работы встроенного тактового генератора к ИМС подключается кварц на 7,2 МГц (ножки 18 и 19). Так же имеется выход 50 Гц (22 ножка) с делителя частоты, который можно использовать, например, для ИМС часов. (Многие дешёвые импортные ИМС часов используют для этого частоту сети 50 или 60 Гц и не отличаются высокой точностью хода).

Есть два служебных входа. HLD (16 ножка) – удержание. Если подать на него «0», то показания дисплея не будут меняться, хотя сама ЦШ продолжает работать. Можно использовать, например, во время автоматической настройки приёмника. BLC (17 ножка) – гашение дисплея. Можно использовать, например, при включении, пока не закончатся все переходные процессы. Или при использовании этого же индикатора совместно с другой ИМС, например, часов (при условии, что у часовой ИМС выходы сделаны с открытым стоком и то же есть режим BLC).

Наконец, имеется 5 выводов для установки частоты ПЧ: 3 вывода для ЧМ и 2 вывода для АМ (ножки с 11 по 15). Используя таблицы, приведённые в datasheet, можно в небольших пределах «подстроить» величину частоты ПЧ (для ЧМ – от 10,675 до 10,75 МГц), а так же выбрать «знак» — прибавлять или отнимать частоту ПЧ. Это нужно для случаев, когда УПЧ настроен не точно на 10,7 МГц. А «знак» — для случаев, когда частота гетеродина выше или ниже частоты сигнала станции.

В Интернете и радиолюбительской литературе можно найти много различных схем ЦШ на основе этого комплекта. Все они были тщательно изучены и проанализированы. С не меньшим вниманием были изучены справочные листки (datasheet) на эти ИМС. На основании этого был разработан и изготовлен первый вариант ЦШ.

Именно на этой плате я проверял многие найденные схемотехнические решения, пробовал различные варианты «обвески» обеих микросхем, нашел несколько ошибок и неточностей, которые «кочуют» по Инету из статьи в статью (честное слово, иногда казалось, что авторы никогда «живьём» эти микросхемы не видели…), экспериментировал с буферным каскадом. Именно здесь обнаружил, что некоторые экземпляры LB3500 довольно «капризны» к напряжению питания, что общий токоограничивающий мощный резистор лучше заменить отдельными резисторами на каждый сегмент индикатора, что бы устранить неприятное мерцание при смене показаний шкалы… Одним словом, эта плата была «полигоном», на котором отрабатывались многие решения, которые впоследствии вошли в окончательный вариант. Цена за все «эксперименты» — одна «убитая» LC7265 и две «убиенных» LB3500

На основании «экспериментов», был разработан окончательный вариант схемы ЦШ. Основная задача, которая при этом ставилась – сделать ЦШ, в которой были бы учтены все недостатки первоначальных вариантов, максимально универсальную, компактную, с минимальным количеством соединительных проводов, с возможностью подстройки напряжения питания отдельно для каждой ИМС. В результате «родилась» вот такая схема (см. ниже).
Для неё были разработаны два варианта печатных плат.

В первом варианте плата индикаторов «жёстко» крепится перпендикулярно основной плате с помощью гребёнки-уголка с шагом 2,54 мм.

Во втором варианте плата индикаторов соединяется с основной платой при помощи шлейфа. Это позволяет разместить платы в разных местах, что бывает очень полезным при конструировании передней панели приёмника.



Одно из самых нелюбимых моих занятий — распаивать шлейфы. Поэтому, что бы избежать этой неприятной операции, использованы 34-контактные разъемы и готовые компьютерные шлейфы от НГМД («флоппиков» FDD). Этого «добра» сейчас хватает у любого компьютерщика, а даже если покупать, то стоит это все очень недорого.

Используется та часть шлейфа, где провода в середине не перекручены. Так же стоит обратить внимание на 3-й контакт — в некоторых шлейфах он «заглушен» пластиковой вставкой («защита от дурака») и используется как дополнительный ключ. Излишки обрезаем обычными ножницами. Если длина шлейфа все равно велика, то покупаем «маму на кабель» и укорачиваем его до нужной длины. Разъемы («папы») на платы можно выпаять из плат старых FDD, а можно и прикупить, благо они стоят очень недорого. Они бывают прямые и угловые, с защелками и без. Поэтому выбираем то, что больше нравится или подходит по конструкции.

В остальном оба варианта ничем не отличаются, имеют абсолютно одинаковые схемы и применяются одинаковые типы деталей.

Исключён фрагмент. Полный вариант доступен меценатам и полноправным членам сообщества.

В ней устранены все недостатки, которые замечены мной в других схемах.

Исключён фрагмент. Полный вариант доступен меценатам и полноправным членам сообщества.

Исключён фрагмент. Полный вариант доступен меценатам и полноправным членам сообщества.

Для изготовления плат использовался импортный односторонний фольгированный стеклотекстолит толщиной 1,5 мм. Платы изготовлены по ЛУТ. После травления и обрезки «в размер», просверлены все отверстия, дорожки зачищены «нулёвкой», обезжирены спиртом и полностью залужены.

Исключён фрагмент. Полный вариант доступен меценатам и полноправным членам сообщества.

Сборка никаких особенностей не имеет. После монтажа, перед первым включением, желательно очистить платы от наплывов канифоли и промыть спиртом или ацетоном. Внимательно осмотреть пайку, особенно ИМС LC7265, поскольку расстояние между ножками у неё маленькое. Потом, не устанавливая ИМС шкалы, подать на платы +12 В (БП должен обеспечивать ток не менее 250 … 300 мА) и на обоих стабилизаторах выставить напряжения +5 В. Выключить БП, установить обе ИМС и включить снова. На индикаторе будет светиться какое-то число (обычно 111,4 … 112,9 МГц). Если есть ВЧ-генератор (например, Г4-116), то можно подать на вход шкалы напряжение частотой 100 МГц и амплитудой 0,3 … 0,5 В. При этом на индикаторе должно отобразиться число 89,3 (при условии, что все джамперы ЧМ установлены в «0»). При частоте генератора 110,7 МГц, на индикаторе будет отображаться «100,0».Для проверки работы шкалы в «реальных» условиях проще всего использовать готовый блок УКВ, у которого есть выход на ЦШ (обычно на импортных схемах и блоках он обозначается как «OSC»). Например, типа KCF-201. Такие блоки широко использовались в импортных автомагнитолах в 80-90 годах. Практически все они имеют одинаковую «распиновку», найти их несложно:

Исключён фрагмент. Полный вариант доступен меценатам и полноправным членам сообщества.


Шкала будет работать при подключении к этому блоку и без буферного каскада – он уже установлен в этом блоке УКВ штатно. Нужно собрать простейшую схему (Рис. 16, расположение выводов указано при виде на блок сзади), выход «OSC» блока УКВ соединить коаксиальным кабелем со входом ЦШ и подать питание. Выход «To IF AMP» («К усилителю ПЧ») можно никуда не подключать, как и вход АРУ («AFC»). Таким способом можно легко убедиться в работоспособности шкалы, перестраивая блок с помощью переменного резистора на 47 … 100 КОм от начала до конца диапазона.

В других же случаях подключение шкалы к блоку УКВ – это отдельная тема. Задача, на самом деле, непростая. Дело в том, что шкала обладает своим входным сопротивлением и входной ёмкостью. Поэтому, при подключении шкалы к гетеродину приёмника, мы внесём дополнительную ёмкость в гетеродин, изменим режим его работы и сместим диапазон («вниз»), в котором он генерирует. Что бы минимизировать это влияние (но не устранить полностью), между гетеродином и ЦШ необходимо включить буферный каскад – эмиттерный или истоковый повторитель, который обладает большим входным и малым выходным сопротивлениями и имеет маленькую входную ёмкость. В любом случае, подстраивать гетеродин придётся. Желательно разместить буферный каскад в непосредственной близости от гетеродина, на отдельной маленькой платке, а уже к ней подключить провода, идущие к ЦШ. Если приёмник разрабатывается «с нуля», то имеет смысл недалеко от гетеродина разместить и прескалер LB3500, а на ЦШ подавать уже сигнал с частотой, поделенной на «8». Именно так я поступил в самодельном ламповом блоке УКВ:

Универсальные рекомендации здесь дать сложно. Простую схеку буферного каскада можно «подсмотреть», например, в книге: Б.Ю. Семёнов «Современный тюнер своими руками», «Солон-Р», М., 2001 г, стр. 183. Это узел R5R6R7VT1C5 на полевом транзисторе КП303. Я проверял работу этого каскада с однокристальными приёмниками на микросхемах ТЕА5710 и СХА1238. В обоих случаях всё работало прекрасно. Пришлось только немного подстроить частоту гетеродина.

К сожалению, для приёмников, у которых частота ПЧ отличается от 10,7 МГц (например, как в старых советских ламповых приёмниках с их ПЧ = 8,4 или 6,5 МГц) эта шкала не годится. Хотя в Интернете мне встречались варианты доработки шкалы на этой ИМС для приёмников с ПЧ = 500 КГц (в режиме АМ). Там автор просто подобрал кварц с другой частотой. Не знаю, насколько корректно при этом будет работать ИМС, но такой вариант существует.

Чертежи всех печатных плат в формате .lay
🎁pcb-dig-scale.7z  173.86 Kb ⇣ 206


Сергей Вицан

 

Универсальная цифровая шкала для УКВ приёмника. Атмега-8 + ИН-8-2.

Как говорится, не прошло и трёх лет… 🙂

Цифровая шкала (далее — ЦШ) предназначена для индикации частоты настройки вещательного УКВ приёмника. Никаких других сервисных функций (автопоиск, память настроек и т.д.) в ней не предусмотрено – это просто специализированный частотомер, не более того. При разработке ставилась задача – сделать максимально гибкую, универсальную ЦШ, которую легко можно было бы подключить к любому типу блоков УКВ. В результате многочисленных проб и экспериментов, получилась шкала со следующими характеристиками:
— диапазон измеряемых частот:   10 … 150 МГц
— чувствительность:  30 … 50 мВ
— 4-х разрядный индикатор
— тип индикаторов – газоразрядные (ИН8-2, ИН-16, ИН-2, ИН-14  и т.д.)
— тип индикации – статическая
ЦШ может работать как с транзисторными, так и с ламповыми блоками УКВ. Агрегат настройки, который применяется в блоке УКВ (будь это КПЕ, вариометр или варикапы) значения не имеет. Её можно подключать к блокам УКВ, которые работают как в «нижнем» УКВ диапазоне (64 … 73 МГц), так  и в «верхнем» (87,5 … 108 МГц). Частота гетеродина у блока УКВ может быть и выше частоты принимаемой станции, и ниже. Частоту ПЧ для пересчёта можно предустановить в одно из 3-х «стандартных» значений: 6,5 МГц, 8,4 МГц, 10,7 МГц. Ну и, наконец, если гетеродин работает на 2-й гармонике (как это сделано в некоторых ламповых советских блоках УКВ типа «УКВ-ИП2» иже с ними), то можно и тут заставить шкалу считать «правильно», включив соответствующий режим работы (F*2).  Все эти режимы работы ЦШ задаются очень просто – при помощи  5 перемычек («джамперов») на основной плате.

Принципиальная схема ЦШ.

ЦШ построена на основе МК «Атмега-8». Индикация выполнена на газоразрядных индикаторах (типа «ИН-хх»). Для подключения этих индикаторов в трёх младших разрядах применяются дешифраторы К155ИД1. В старшем разряде («сотни МГц») отображается либо «1» (когда частота выше 100,0 МГц), либо он погашен (для частот 99,9 МГц и ниже), поэтому,  для упрощения схемы,  его «дешифратор» выполнен на высоковольтном транзисторе КТ940А.
В качестве предварительного делителя частоты (прескалера)  применяется микросхема МС12080, коэффициент деления которой выставлен равным «40». Сигнал от гетеродина на вход прескалера подаётся через двухкаскадный усилитель-формирователь. Он построен на 2-х ВЧ-транзисторах типа КТ368А. Для согласования уровней между  ИМС прескалера и МК установлен дополнительный каскад на транзисторе КТ315Г. На плате собран выпрямитель и стабилизатор +5 В на микросхеме КРЕН5А (7805), потребляемый ток всей шкалы по цепи +5 В – порядка 100 мА.

Возможны 2 варианта питания шкалы (при установке в ламповый приёмник):

1. Если есть «лишняя» обмотка силового трансформатора напряжением  ~6 … 10 В и номинальным током нагрузки  порядка 100 … 200 мА или цепь накала в приёмнике не заземлена – в  этом случае на плате устанавливается диодный мост, который подключаем к этой обмотке.
2. Если нет «лишней» обмотки или цепь накала одним концом «заземлена» — в этом случае на плате вместо моста устанавливается один диод и перемычка в другое «плечо» моста (показано условно на чертеже платы).

Для питания анодов индикаторов «ИН-хх» можно использовать трансформатор со вторичной обмоткой на 200 … 220 В. Далее – однополупериодный выпрямитель (диод КД226 (В, Г, Д)) и пленочный конденсатор на 1…2 мкФ х 250…400 В (например, К73-17) после диода. Второй вывод обмотки подключаем на общий провод ЦШ. Либо можно подключиться к анодной цепи приёмника через RC-фильтр.

Настоятельно НЕ РЕКОМЕНДУЕТСЯ подключать индикаторы к сети 220 В, без гальванической развязки с сетью! Это вредно и для устройства, и, особенно, для здоровья!

Для подключения к гетеродину на плате предусмотрена возможность установки гнезда BNC для печатного монтажа (типа BNC-144, BNC-JR и т.д.).

Конструкция.

ЦШ собрана на плате размером 130 х 75 мм из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм. Плата изготовлена методом «ЛУТ». На ней устанавливаются все элементы, кроме индикаторов.

Сначала запаиваем все перемычки и резисторы. Потом остальные детали. На фото — плата в процессе монтажа.

Плата рассчитана на установку  микросхем в корпусах DIP (кроме ИМС прескалера ). ИМС желательно  установить в цанговые панельки.

ИМС прескалера MC12080 выполнена в планарном корпусе и припаивается со стороны дорожек, в самую последнюю очередь, после проверки стабилизатора +5 В на плате. Над узлом прескалера возможна установка экрана (при необходимости), для чего в плате предусмотрены соответствующие отверстия в «земляной» шине под проволочные «стойки».

На плате смонтированы  5 тройных штыревых колодок, на которых устанавливаются перемычки («джамперы»). С их помощью задаются нужные режимы работы шкалы.  На фото – перемычками выставлена «ПЧ=10,7 МГц» (красный джампер) и режим «частота гетеродина выше частоты принимаемой станции» (голубой джампер). На втором фото – узлы прескалера и стабилизатора +5 В крупно.

Индикаторы можно припаять прямо к плате (если у них проволочные выводы, как, например, у ИН-14, ИН-8-2, ИН-16 и т.д.). Но это не очень удобно. Или изготовить для них дополнительную печатную плату, установить её на стойках над «основной» и соединить проволочными перемычками. Я так и поступил. Использовал индикаторы «ИН-8-2». Мне, прежде всего, нравится в них то, что цифра «5» там «нормальная», а не перевёрнутая «2». J Плата индикаторов размером 130 х 69 мм изготовлена из одностороннего фольгированного стеклотекстолита толщиной 1,5 мм.

Перед установкой на плату, проверил все индикаторы с помощью «пробника» — тороидальный трансформатор со вторичной обмоткой на 220 В, диод КД226 и резистор на 56 КОм. От диода через резистор подал питание на анод индикатора, а вторым выводом вторичной обмотки поочерёдно зажёг все цифры индикатора. Как бы то ни было, но «старичкам» уже по 35 лет… J (индикаторы 1980 года выпуска). Все индикаторы оказались рабочими.  Далее, уже без опаски, распаял их на плате, используя тонкий фторопластовый кембрик для изоляции выводов. Потом прихватил колбы проволочными хомутами к плате индикаторов. Для этого в плате предусмотрены отверстия. Получается всё ровно и неподвижно.

Для индикаторов с жесткими выводами (например, для ИН-1, ИН-2, ИН-8, ИН-12 и т.д.) существуют соответствующие панельки. В этом случае индикаторы можно установить «навесным» монтажом.  Либо сделать так, как нравится вам – это не принципиально. Для других типов индикаторов нужно  подобрать номиналы токоограничивающих резисторов в цепях анодов  в соответствии с их паспортными данными.
Следующий этап – соединение плат между собой. Для этого из обрезков повода МГШВ-0,2 нарезал перемычки и припаял их сначала к плате индикаторов, а потом к основной плате.

В результате этого платы могут раскладываться, как книга, что удобно при настройке и ремонте.

А потом такая «книга» собирается в «этажерку» с помощью резьбовых стоек. Кроме того, на плате, рядом с индикаторами, предусмотрено ещё 4 отверстия, в которых на стойках можно закрепить светофильтр для индикаторов. Для улучшения контрастности газоразрядных индикаторов хорошо подходит органическое стекло грязно-зелёного, «болотного» цвета.

Ну и, наконец, проверка работы устройства. Проверил ЦШ во всех возможных режимах и комбинациях, которые могут встретиться на практике. Всё работает хорошо. В качестве «сигнала от гетеродина» использовал ВЧ-генератор «Г4-116». С помощью его шкалы так же проверил правильность «сложения» и «вычитания» частот ПЧ во всех режимах.

Подключение ЦШ к приёмнику.

Подключить шкалу к приёмнику, точнее, к блоку УКВ, а ещё точнее, к его гетеродину, можно двумя способами.
Первый способ — через буферный каскад с гальванической связью со схемой гетеродина. Это потребует подстройки частоты гетеродина, поскольку мы внесём в схему  дополнительную ёмкость и частота гетеродина «уплывёт» вниз.  Например, вот так я подключал ЦШ к приёмнику на микросхеме ТЕА5710. Здесь на КП303 выполнен буферный каскад для ЦШ. Он через конденсатор малой ёмкости (С12 на 5,1 пФ) подключён к гетеродину (вывод 18 ИМС). ЦШ подключается к истоку КП303. Схема буферного каскада позаимствована из книги Б. Семёнова «Современный тюнер своими руками».

В некоторых промышленных блоках УКВ такой буферный каскад уже есть. Вот, например, в таком (это модуль из автомагнитолы). Выход такого буферного каскада  обычно обозначается, как «VOsc» или что-то подобное. В этом случае достаточно просто подключить вход ЦШ к этому выводу блока УКВ и она будет работать. Вот фото такого блока УКВ (жестяная коробочка) и фрагмент схемы подобного блока «KST-F102VA»:

    

Второй способ – с помощью катушки связи, которая располагается недалеко от контура гетеродина. В этом случае ЦШ не оказывает никакого влияния на работу гетеродина. Точнее, почти никакого.  По крайней мере, на практике подстраивать контур гетеродина при этом не приходилось. Такой вариант более подходит для ламповых блоков УКВ, поскольку у них гетеродин вырабатывает сигнал порядка 2 … 3 В. Для этого мотаем катушку, примерно 10 … 12 вит. провода ПЭЛШО-0,5 на оправке 4,0 мм. Эту катушку подпаиваем к выводам коаксиального кабеля и подключаем кабель на вход ЦШ. Катушку подносим параллельно контуру гетеродина и располагаем её на небольшом расстоянии (примерно 2 … 5 мм, подбираем экспериментально) от контура гетеродина. В некоторых самодельных блоках УКВ такую катушку я установил постоянно и подключил её к разъёму BNC на корпусе. Работает шкала при таком подключении надёжно и стабильно:

Можно использовать и «контактный» способ подключения. В качестве примера можно привести замечательный блок УКВ Эрнста Ресслера, который был описан в «Балаганчике»:

http://www.jogis-roehrenbude.de/UKW-Projekt/Mischteil/Ernst/Beschreibung.htm

Здесь сигнал гетеродина подаётся в катод смесителя «бесконтактно», посредством катушки связи с контуром гетеродина. А уже к этой катушке подключается шкала. Несколько лет тому  я построил этот блок УКВ, но вместо прескалера U813BS (как у автора), применил LB3500 (т.к. такой был в наличие). Всё работает без проблем.
Ну а для данной шкалы ИМС прескалера  устанавливать не нужно, а просто подать сигнал на вход ЦШ с делителя R15 R16.

О проекте.

В заключении хотелось бы отметить, что работа над этим устройством шла неспешно и довольно долго. J Началась она ещё в 2012 году. За это время было на практике проверено три варианта схем и плат,  а так же несколько вариантов прошивки. Попутно «выловили» несколько ошибок и сделали несколько доработок. На фото – все три изготовленных варианта шкалы.

Автор схемы устройства и прошивки МК – мой товарищ и коллега telefunkin. Его ЖЖ:
http://telefunkin.livejournal.com

Я разрабатывал и изготавливал платы.

В архиве – все материалы, включая фотографии, схему, прошивку МК и чертежи плат (в формате Sprint Layout-5) (10,6 мБ):

https://cloud.mail.ru/public/8vat/dLnbnmhF7

Видео работы шкалы есть, но старое, ещё самый первый вариант. Если интересно, то посмотрите по ссылке. Когда сделаю новый ролик — сообщу, но, видимо, это будет нескоро.

АМ-ЧМ Приемник. Цифровая шкала » Вот схема!


В настоящее время, наиболее перспективными в плане самостоятельного конструирования радиовещательной приемной техники, являются KB и УКВ (FM) радиовещательные диапазоны. На УКВ диапазонах можно получить очень высокие характеристики выходного аудиосигнала, но только при приеме местных или неудаленных мощных радиостанций. На KB возможен круглосуточный прием, причем используя качественную аппаратуру и антенны можно получить, практически неограниченную дальность приема.

Обычно, качественные приемники строятся по схемам с растянутыми диапазонами, это два УКВ ЧМ диапазона и более десяти KB радиовещательных поддиапазонов.

За многие годы радиолюбительской практики накоплен большой опыт в построении качественных трактов для радиовещательного приема на КВ. Поэтому, постройка качественного приемника, в настоящее время, обычно не вызывает затруднений.

В любом случае можно найти такой компромиссный вариант, который не потребует существенных капиталовложений и позволит получить оптимальные характеристики. Что же касается УКВ диапазонов, то можно воспользоваться более свежими идеями, используя отечественную и импортную элементную базу.

В большинстве же, механическая часть оказывается более трудоемкой, особенно сложно сделать в домашних условиях «на табуретке» точную и красивую механическую шкалу настройки и верньерное устройство. Даже если отказаться от переменных конденсаторов и заменить их варикапами, все равно требуется хороший многооборотный резистор, на который ещё нужно пристроить и шкалу, или делать веревочный или шестеренчатый верньер со всеми шкивами и люфтами, который ещё и должен быть достаточно надежным.

В связи с этим, в радиолюбительских условиях более простой вариант, — это цифровая электронная шкала, управляемая кнопками («+» и «—»), сделанная на двоичных реверсивных счетчиках и многоразрядном электролюминесцентном индикаторе типа ИВ27М. Если использовать три счетчика типа К561ИЕ11 и резистивную матрицу для формирования напряжения настройки, можно получить дискретность изменения напряжения 4096 равных ступеней, что более чем достаточно для очень точной настройки на УКВ диапазонах и на растянутых KB поддиапазонах.

Опираясь на схему, показанную на рисунке, можно за один-два вечера не прибегая к слесарным и токарным работам сделать электронную шкалу настройки, которая по своей точности и удобству пользования будет не хуже фабричной шкалы профессионального приемника. В основе лежит схема предложенная в J1.1, в которую внесены изменения с целью повышения числа ступеней изменения напряжения настройки и введения точной настройки.

тактовый генератор выполнен на элементах D1.1 и D1.2. Генератор управляется уровнем, поступающим на вывод 2 D1.1. Если там единица он не работает, а на его выходе (выход D1.2) держится единица. При нуле на выводе 2 D1.1 мультивибратор запускается и на его выходе имеются прямоугольные импульсы. Частота этих импульсов может быть около 1000 Гц или около 200 Гц. Кнопка S1 служит для изменения частоты.

Когда она замкнута (не нажата) мультивибратор вырабатывает 1000 Гц и всю шкалу светящийся штрих проходит примерно за 4 секунды. Это режим грубой настройки. При нажатии на кнопку S1 частота уменьшается до 200 Гц и на прохождение всей шкалы уже требуется около 20 секунд. Это режим точной настройки.

Управляется шкала кнопками S2 (+) и S3 (—), нажатие на любую из этих кнопок приводит к подаче логического нуля на вывод 2 D1.1 и запуску мультивибратора, который работает все время, пока кнопка нажата. Разница между этими кнопками в том, что при нажатии на S2 происходит только запуск мультивибратора и счетчики D2-D4 работают в обычном прямом направлении, а штрих на шкале перемещается слева на право.

Мой самодельный частотомер из китайского вещательного радиоприемника ECB EC-9708A

В давние времена я приобрел вот такой СВ-КВ-УКВ радиоприемник ECB EC-9708A:

Достоинством такого приемника является его цифровая шкала частоты. Как оказалось, такое устройство легко превратить в весьма точный частотомер для диапазона десятков-сотен мегагерц!

Открутив несколько винтиков и отщелкнув защелки, можно открыть корпус приемника. Затем откручиваем еще винтики и снимаем плату. Итак, перед ними три части — задняя крышка с элементами питания (1), плата радиоприемника (2) и передняя крышка с платой индикации и частотомером(!) (3):

От платы индикации к плате собственно приемника идет группа из трех проводов, которые подписаны  » AM«, «FM» и «FM.G«.

Нас интересует провод с подписью «FM» — он на плате приемника подпаян к дисковому конденсатору. Этот провод и является входным проводом частотомера — аккуратно (!) отпаиваем его от конденсатора, ведь радиоприемник еще пригодится:

Теперь включаем режим «FM» (УКВ), перемещая ползунок, и можно через конденсатор емкостью несколько пикофарад подключить его к источнику сигнала, частоту которого требуется измерить. Также можно проверить частоту сигнала радиопередатчика, расположив его антенну рядом с проводом от частотомера.

Но есть один нюанс — частотомер рассчитан на измерение частоты гетеродина, которая в этом приемнике на 10,7 МГц выше частоты сигнала (промежуточная частота (IF) составляет 10,7 МГц). Поэтому для определения истинной частоты сигнала нужно прибавить к отображаемой частоте 10,7 МГц.

Я проверил работоспособность импровизированного частотомера, поднеся к нему передатчик с частотой сигнала 433,92 МГц:

Voi la 🙂 Как видим, отображается частота 423,3 МГц. Прибавляем 10,7 и получаем 423,3 + 10,7 = 434 МГц (отличие от 433,92 составляет 0,02 % !!!). Опыт преобразования приемника в частотомер оказался успешным!

Счетчик оказался кольцевым, т.е., например, показания приемника 998,0 МГц соответствуют частоте (998,0-1000) +10,7 = 8,7 МГц.

Archive — RECEIVER.BY

a quick search in the archives of amateur publications


Recent searches

polar [19], генератор  [163], DAEWOO  [330], Приципиальная [244], manual [1269], blaupunkt 4w6 [12], 432 [43], регулятор мощности [35], PANASONIC tc [145], monitor [8], усилитель [436], Onwa [15], Вольтметр универсальный В7-27 Электрическая схема Часть 1 [1], смрк [10], электроника [156], Электронные часы [2], трансивер [184], Усилитель мощности на КП904 [4], вега [105], simoco srp8000 [1], БПИ-411 [1], радиоприёмник [239], усилители  [43], кварц [100], радиомикрофон  [87], РЕЛЕ [82], радиостанция [64], daewoo [335], дмв [57], konka t2510 [1], 003 [53], JVC [436], виктория 003 [3], 144 [233], стерео [375], усилитель  [813], prology [10], panasonic tc-2150 документация [1], PANASONIC CQ-D50 [3], С1-79 [3], регулятор [189], SONY KV-FX29TD [2], ic-706 [16], mfj [128], lemm [1], VEF [32], ишим [5], Aiwa c [62], КВ ЧМ радиостанция [5], sony kv- [53], осциллограф [130], частотомер [67], yaesu ft-40r [1], Казахстан-1 [12], Настройка [37], телефон [653], Трансивер «YES-93» [1], Радиолюбительский трансивер DM /D-2002 [1], SIEMENS [76], sony KV [58], Усилитель мощности 430-440 Мгц [52], Преобразователь Е829 [1], Б5-43а, Б5-44а, Б5-45а [1], Регулятор оборотов для коллекторного двигателя [1], Двухкаскадный хаотический генератор Колпитца [1], Основная плата КВ-трансивера [2], Усилитель мощности [396], SONY SDM-X202 [1], радио [1424], 100 [333], vcr [28], china [67], Блок питания для трансивера [6], Clarion ARX-4670 [1], 430 [142], Россия 105 стерео (1-ЭПУ-95СМ) [2], Вольтметр [64], tda [101], alinco dr-610 [1], 230 [41], LG 500 Series (Repair Manual), PPT [1], микрофонный усилитель [30], вольтметр  [41], panasonic [725], укв [172], интерфейс [66], Blaupunkt 11W79 [1], grundig cuc4510 [1], ц4314 [2], ANTENNA [136], loewe q4140 [1], зарядное [107], Зарядное устройство «Квант» [1], цифровая [50], ra3ao [11], alinco dj [53], alinco dj-195 [1], УНЧ  [28], vertex [17], Dragon [26]

Супергетеродин. Как я собрал коротковолновый радиоприемник на STM32 и Si5351 — «Хакер»

Да­же в сов­ремен­ном мире радио оста­ется эффектив­ным спо­собом при­ема и переда­чи информа­ции, который поз­воля­ет миновать гра­ницы и лиш­них пос­редни­ков. Прос­той и мак­сималь­но надеж­ный, сиг­нал ради­останций мож­но при­нять вне зависи­мос­ти от наличия вышек сетей 5G в тво­ей мес­тнос­ти. Как соб­рать свой при­емник из рос­сыпи мик­росхем и деталей, ты узна­ешь из это­го матери­ала.

 

Происхождение

Ис­тория при­емни­ков прин­ципи­аль­но нового типа началась в 1901 году, ког­да Ред­жинальд Фес­сенден показал воз­можность при­ема сиг­нала на биениях. Суть револю­цион­ного метода зак­лючалась в том, что в при­емник, помимо ради­осиг­нала из антенны, подавал­ся вспо­мога­тель­ный сиг­нал близ­кой час­тоты, в резуль­тате чего на выходе мож­но было обна­ружить биения — сиг­нал с час­тотой, рав­ной раз­ности час­тот при­нима­емо­го сиг­нала и выхода вспо­мога­тель­ного генера­тора. Эти биения были слыш­ны в телефон­ных аппа­ратах, при­чем, как показа­ли нес­коль­ко поз­днее, ампли­туда этих биений ока­залась замет­но выше ампли­туды полез­ного сиг­нала.

Вспо­мога­тель­ный генера­тор иссле­дова­тель наз­вал «гетеро­дином» (от гре­чес­кого ἕτερος — иной или внеш­ний и δύναμις — сила), а сам при­емник «гетеро­дин­ным». На тот момент это был новый спо­соб детек­тирова­ния, который поз­волял при­нимать телег­рафный ради­осиг­нал тоном на слух.

Здесь бук­вой O обоз­начен гетеро­дин, а сам при­емник пред­став­лял собой две индуктив­но свя­зан­ные катуш­ки на общем сер­дечни­ке. При этом сиг­нал биений зас­тавлял колебать­ся метал­личес­кую мем­бра­ну D (надо полагать, диф­фузор). В общем, как ты понима­ешь, все было сурово, впол­не в духе того далеко­го вре­мени. Поз­днее при­емник модер­низиро­вали, повысив чувс­тви­тель­ность.

Вни­матель­ное изу­чение схе­мы поз­воля­ет заметить здесь крис­талли­чес­кий диод — да, пред­ставь себе, эта шту­ка была сде­лана уже в 1913 году! Одна­ко боль­шого успе­ха эта конс­трук­ция не снис­кала, так как в то вре­мя генера­тор вспо­мога­тель­ного сиг­нала был гро­моз­дкой, слож­ной и очень дорогой в изго­тов­лении шту­кой. Тог­да наиболь­шее рас­простра­нение получи­ли механи­чес­кие генера­торы, а до изоб­ретения пер­вой ради­олам­пы оста­валось еще нес­коль­ко лет.

Сле­дующей ите­раци­ей стал ге­теро­дин­ный при­емник Ген­ри Раун­да, соз­данный в том же 1913 году. В этом устрой­стве генера­тор был уже на элек­трон­ной лам­пе, которая выпол­няла сра­зу три фун­кции: уси­лива­ла при­нима­емый сиг­нал, генери­рова­ла вспо­мога­тель­ный, а так­же работа­ла в качес­тве мик­шера, перем­ножая сиг­налы. Из‑за такой обиль­ной фун­кци­ональ­нос­ти автор дал при­емни­ку наз­вание «авто­дин», намекая, что генера­ция вспо­мога­тель­ного сиг­нала здесь про­исхо­дит в при­емно‑уси­литель­ных цепях.

А даль­ше слу­чилась вой­на, которая ярко показа­ла, нас­коль­ко ради­освязь полез­на. Но тре­бова­лись надеж­ные, более чувс­тви­тель­ные и селек­тивные при­емни­ки, ведь к тому вре­мени ради­останций ста­ло замет­но боль­ше. У тог­дашних ради­опри­емни­ков было три серь­езные проб­лемы: недос­таточ­ные чувс­тви­тель­ность, что нап­рямую свя­зано с даль­ностью свя­зи, селек­тивность, то есть спо­соб­ность выделить сиг­нал нуж­ной ради­останции из нес­коль­ких при­нятых, и устой­чивость к атмосфер­ным помехам.

Изу­чая эти проб­лемы, три иссле­дова­теля незави­симо друг от дру­га приш­ли к кон­цепту­аль­но похожим решени­ям. Пер­вым с нез­начитель­ным отры­вом был фран­цуз Люсь­ен Леви, который пред­положил, что если в при­емни­ке пре­обра­зовы­вать сиг­нал при­нима­емой стан­ции не сра­зу в зву­ковую час­тоту, а в некото­рую про­межу­точ­ную час­тоту (выше слы­шимой), то на этой про­межу­точ­ной час­тоте будет про­ще изба­вить­ся от атмосфер­ных помех, пос­ле же ее мож­но пре­обра­зовать в слы­шимую (зву­ковую).

Та­кое решение тре­бует вве­дения в конс­трук­цию при­емни­ка допол­нитель­ного гетеро­дина. В резуль­тате получил­ся при­бор, говоря сов­ремен­ным язы­ком, с двой­ным пре­обра­зова­нием час­тоты. Леви наз­вал свой при­емник «супер­гетеро­дин­ным», то есть содер­жащим допол­нитель­ный гетеро­дин. Веро­ятно, имен­но это и объ­ясня­ет про­исхожде­ние столь замыс­ловато­го наз­вания.

Впро­чем, сущес­тву­ет и дру­гая вер­сия, которая пред­полага­ет, что прис­тавка «супер» переко­чева­ла от про­межу­точ­ной час­тоты, которая была выше слы­шимой, или, как было при­нято писать в то вре­мя, supersonic (уль­траз­вук). В любом слу­чае надо понимать, что супер­гетеро­дин­ный при­ем под­разуме­вает наличие про­межу­точ­ной час­тоты.

Схе­ма пер­вого супер­гетеро­дин­ного при­емни­ка Леви

Здесь h2 и h3 — точ­ки под­клю­чения пер­вого и вто­рого гетеро­дина. Нес­коль­ко с дру­гой сто­роны к проб­леме под­сту­пились незави­симо друг от дру­га Эд­вин Армстронг и Валь­тер Шот­тки. Их боль­ше занима­ла идея уве­личе­ния чувс­тви­тель­нос­ти, для чего тре­бовал­ся уси­литель на ради­олам­пах. Одна­ко надо понимать, что ради­олам­пы в 1918 году были несовер­шенны­ми и кап­ризны­ми устрой­ства­ми и пос­тро­ить уси­литель с боль­шим коэф­фици­ентом, спо­соб­ный работать на час­тотах КВ‑диапа­зона (2–30 МГц), было прос­то невоз­можно.

Для решения этой проб­лемы иссле­дова­тели пред­ложили пре­обра­зовать полез­ный сиг­нал высокой час­тоты в про­межу­точ­ную (на которой лам­пы мог­ли эффектив­но работать) и уже на этой час­тоте уси­лить сиг­нал, что тех­нологии того вре­мени впол­не поз­воляли. Более того, авто­ры ука­зыва­ли, что такое пре­обра­зова­ние мож­но выпол­нять в нес­коль­ко эта­пов, что повысит устой­чивость работы уси­лите­ля.

И если изыс­кания нем­ца Шот­тки носили теоре­тичес­кий харак­тер, то инже­нер Армстронг в Аме­рике уже в 1918 году пос­тро­ил работа­ющий про­тотип сво­его супер­гетеро­дина на вось­ми лам­пах (на самом деле безум­ное количес­тво для того вре­мени). Выг­лядело это как‑то так.

Ран­ний вари­ант супер­гетеро­дина

Тем не менее тог­да супер­гетеро­дины не наш­ли широко­го при­мене­ния, и при­чиной тому была в пер­вую оче­редь высокая цена. В то вре­мя как раз появи­лись ре­гене­ратив­ные при­емни­ки, которые хоть и усту­пали супер­гетеро­динам по сво­им харак­терис­тикам, но зато поз­воляли пос­тро­ить при­емле­мого качес­тва при­емник, исполь­зуя все­го одну или две лам­пы. Любопыт­но, что регене­ратив­ный при­емник был изоб­ретен так­же Армстрон­гом и, что харак­терно, при­нес ему гораз­до боль­ший доход и извес­тность.

По‑нас­тояще­му эпо­ха су­пер­гетеро­дин­ных при­емни­ков началась лишь в 1930-х годах, ког­да лам­пы ста­ли гораз­до дос­тупнее и истек срок соот­ветс­тву­ющих патен­тов. В ито­ге к кон­цу Вто­рой мировой вой­ны супер­гетеро­дины прак­тичес­ки вытес­нили все осталь­ные типы при­емни­ков. В нас­тоящее вре­мя супер­гетеро­дин­ные при­емни­ки счи­тают­ся стан­дартом. Основное же пре­иму­щес­тво супер­гетеро­дина зак­люча­ется в том, что выб­рать при­нима­емый сиг­нал мож­но перес­трой­кой самого гетеро­дина.

При этом про­межу­точ­ная час­тота оста­ется пос­тоян­ной, так что мож­но при­менить высоко­эффектив­ные квар­цевые филь­тры в уси­лите­ле про­межу­точ­ной час­тоты. Это поз­воля­ет лег­ко получить жела­емую изби­ратель­ность по сосед­нему каналу.

Чувствительность, избирательность и полоса пропускания

Сре­ди всех харак­терис­тик любого при­емни­ка полез­но выделять ряд клю­чевых: чувс­тви­тель­ность, изби­ратель­ность и полоса про­пус­кания. Чувс­тви­тель­ность — это минималь­ный уро­вень ради­осиг­нала в мик­роволь­тах, поз­воля­ющий получить на выходе сиг­нал с задан­ным соот­ношени­ем сиг­нал/шум. Или, говоря про­ще, это минималь­ный уро­вень сиг­нала, при котором стан­цию еще мож­но услы­шать. Хорошие сов­ремен­ные при­емни­ки име­ют чувс­тви­тель­ность око­ло 1 мкВ.

Из­биратель­ность по сосед­нему каналу харак­теризу­ет спо­соб­ность при­емни­ка выделять нуж­ный сиг­нал при наличии близ­ко рас­положен­ных меша­ющих сиг­налов, изме­ряет­ся в децибе­лах. Допус­тим, есть две стан­ции рав­ной мощ­ности, отсто­ящие друг от дру­га на 10 кГц (типич­ная ширина канала на вещатель­ных КВ‑диапа­зонах). Изби­ратель­ность будет показы­вать, нас­коль­ко сла­бее будет при­нимать­ся сиг­нал сосед­ней стан­ции при нас­трой­ке на жела­емую.

На­конец, полоса про­пус­кания — это параметр, тес­но свя­зан­ный с изби­ратель­ностью, который показы­вает откло­нение час­тоты сиг­нала от час­тоты нас­трой­ки, ког­да сиг­нал осла­бева­ет на 3 дБ (это при­мер­но 0,7 для нап­ряжения и 0,5 для мощ­ности).

 

В чем профит?

Ко­неч­но, сей­час сбор­ка собс­твен­ного ради­опри­емни­ка лишена эко­номи­чес­кой целесо­образнос­ти. Более того, с раз­вити­ем интерне­та ради­ове­щание сегод­ня уже потеря­ло былую акту­аль­ность. Даже FM-диапа­зон замет­но поредел, не говоря уже о корот­ких вол­нах. И все же ради­опри­ем на корот­ких вол­нах, как сей­час при­нято выражать­ся, дает ощу­щение «теп­лой лам­повос­ти». Более того, сама идея «сво­бод­но» переда­вать информа­цию, минуя гра­ницы и пос­редни­ков, до сих пор выг­лядит весь­ма зло­бод­невно.

Так, фак­тичес­ки не вста­вая со сту­ла, мож­но про­бежать­ся если не по все­му миру, то как минимум по сво­ему матери­ку: тысячи километ­ров для корот­ких волн совер­шенно не проб­лема, даже в круп­ных городах, где ради­оэфир силь­но зашум­лен. Находясь в Мос­кве, мож­но без тру­да услы­шать Китай, Индию, Катар и дру­гие стра­ны. Сущес­тву­ет даже такое явле­ние, как DXing — «охо­та» на даль­ние ради­останции, сво­его рода сос­тязание. При­няв ради­останцию и отпра­вив соот­ветс­тву­ющий ответ, мож­но получить кар­точку QSL с эмбле­мой ради­останции.

В интерне­те на некото­рых форумах есть отдель­ные те­мы, пос­вящен­ные таким кар­точкам. Как пишут учас­тни­ки, китай­цы охот­но отправ­ляют кар­точки. Впро­чем, лич­но меня боль­ше инте­ресу­ет само соз­дание и нас­трой­ка при­емни­ка. Даль­ше я рас­ска­жу об отно­ситель­но нес­ложном при­емни­ке с циф­ровой шка­лой и квар­цевой ста­били­заци­ей час­тоты, впол­не при­год­ном для при­ема сиг­нала с даль­них стан­ций.

 

Почему именно супергетеродин

Ра­зуме­ется, для при­ема на корот­ких вол­нах мож­но исполь­зовать гораз­до более прос­тые решения. Нап­ример, регене­ратив­ные при­емни­ки, наибо­лее известен из которых, пожалуй, «Могика­нин» MFJ-8100. Его мож­но при­обрести готовым (дол­ларов за сто на популяр­ных онлай­новых пло­щад­ках) или в виде набора для сбор­ки, а мож­но и вов­се соб­рать самому — бла­го схе­ма откры­та. Но регене­ратор — это ско­рее «для баловс­тва», так как, прос­лушивая стан­цию, пос­тоян­но при­дет­ся подс­тра­ивать регене­рацию и атте­нюатор. Это про­исхо­дит из‑за того, что КВ‑сиг­нал прак­тичес­ки пос­тоян­но меня­ет свою интенсив­ность в широких пре­делах. Свя­зано это с атмосфер­ными явле­ниями, вли­яющи­ми на про­хож­дение. И это­го как раз регене­ратор очень не любит.

 

Практика

Итак, суть работы гетеро­динов в таком при­емни­ке зак­люча­ется в том, что вход­ной «высоко­час­тотный» сиг­нал пре­обра­зует­ся в про­межу­точ­ную час­тоту (мы будем исполь­зовать 455 кГц), на которой будет выпол­нять­ся основная селек­ция и уси­ление сиг­нала. Далее сле­дует детек­тор, выделя­ющий сиг­нал зву­ковой час­тоты, и уси­литель, необ­ходимый для гром­когово­ряще­го при­ема. Рас­смот­рим струк­турную схе­му супер­гетеро­дина.

 

Синтезатор

За осно­ву была взя­та конс­трук­ция, которую я уже исполь­зовал в SDR-при­емни­ке, одна­ко в дан­ном слу­чае я пос­читал, что исполь­зование мик­рокон­трол­лера STM32F103 избы­точ­но, и пор­тировал некото­рые кус­ки кода на STM32F030. Пос­ледний сла­бее по харак­терис­тикам, но нес­коль­ко дешев­ле и, кро­ме того, дос­тупен в более удоб­ном для самоде­лок кор­пусе LQFP32. Это один из нем­ногих МК c ядром Cortex-M и шагом меж­ду кон­такта­ми 0,8 мм. Впро­чем, у SI5351 шаг все рав­но 0,5 мм, поэто­му пол­ностью изба­вить­ся от мелочов­ки в про­екте не вый­дет.

Я добавил в схе­му ста­били­затор питания и опе­раци­онный уси­литель для отоб­ражения уров­ня при­нима­емо­го сиг­нала. ОУ работа­ет в режиме пов­торите­ля, а на его выходе сто­ит делитель нап­ряжения, что поз­воля­ет изме­рять нап­ряжение управля­юще­го сиг­нала АРУ (изме­няет­ся в диапа­зоне от 0,5 до 4,7 В). Так как управля­ющее нап­ряжение АРУ близ­ко к нап­ряжению питания, то при­менен rail-to-rail опе­раци­онный уси­литель MV358. Его здесь мож­но заменить на более рас­простра­нен­ный LM358, но тог­да вер­хний пре­дел изме­ряемо­го нап­ряжения сни­зит­ся до 4 В (при питании 5 В).

Так­же в схе­ме заложе­на воз­можность управлять варика­пами для авто­нас­трой­ки вход­ных цепей, одна­ко под­ходящих варика­пов я не нашел, поэто­му такую фун­кцию не реали­зовал. Схе­ма син­тезато­ра пред­став­лена на рисун­ке.

Amazon.com: цифровой FM-передатчик C. Crane FMT с адаптером переменного тока: все остальное

Описание продукта

FM-передатчик — это способ прослушивания потокового аудио или MP3-аудио. Просто подключите его к разъему для наушников динамиков компьютера или звуковой карты и слушайте любое FM-радио в любом месте дома. Он делает это, беря звук и превращая его в FM-радиопередачу. Используйте его для отправки спутникового радиосигнала, звука в формате MP3 и многого другого на близлежащие радиоприемники в вашем доме или на работе, даже в автомобиле.

От производителя

Наслаждайтесь беспроводной передачей любого звука на любой FM-приемник с помощью высококачественного цифрового FM-передатчика C. Crane. Устройство позволяет легко передавать спутниковое, компьютерное аудио или аудио с портативного MP3-плеера на домашнюю стереосистему или любое радио в вашем доме.

Поиск правильного способа подключения вашего MP3-плеера или аудиосистемы компьютера к стереосистеме может занять много времени и вызвать разочарование. Цифровой FM-передатчик C.Crane — это простое решение, позволяющее передавать сигнал с любого источника звука на стереосистему или портативное радио без проводов.FM-передатчик C. Crane:

— передает практически любой звук на любой FM-приемник.
— Цифровая петля фазовой автоподстройки частоты для настройки без дрейфа в режиме полного стерео.
— имеет исключительно хорошую частотную характеристику.

FM-передатчик прост в использовании. Просто подключите передатчик к линейному выходу или разъему для наушников любого аудиоустройства и установите его на частоту по вашему выбору (88-108 МГц). Теперь вы можете слушать MP3-плеер, портативное радио или компьютерное аудио — практически любое аудиоустройство — в другой комнате и без наушников.C. FM-передатчик Crane также:

— обеспечивает высочайшее качество, полный стереозвук на любой частоте FM по вашему выбору.
— Передает любой звук, от MP3 до потокового аудио или гитарных песен, на домашнее или автомобильное радио.
— Передает звук с вашего компьютера на кухонное радио.
— подключается к разъему для наушников или линейному выходу любого аудиоустройства и устанавливает частоту выбора.

Беспроводной передатчик и приемник для весов

Когда речь идет о беспроводных передатчиках и приемниках внутри весов, у нас действительно есть несколько вариантов, которые вы можете рассмотреть.В линейке весов Doran есть несколько вариантов связи, таких как беспроводной Ethernet или Bluetooth, которые позволяют отказаться от кабелей и проводов.

У нас также есть линейка продуктов Rice Lake, в которую входят такие продукты, как беспроводная радиосвязь ConnexLink™ 900 МГц, которая позволяет беспроводным трансиверам легко передавать данные между различными электронными устройствами в вашей системе весов. Например, допустим, у вас есть автомобильные весы, и вам нужно добавить удаленный дисплей на парковке. Вы не хотите копать асфальт, чтобы проложить провод, поэтому вы добавляете один из них к цифровому индикатору веса и подключаете его к новому удаленному дисплею.

Существуют также беспроводные весоизмерительные датчики SendIt и Transend, которые отлично подходят для многих приложений, от крупногабаритных и промышленных весов до подвесного взвешивания. Разумеется, передача данных имеет важное значение. SENDit считывает сигнал с тензодатчика и отправляет эти данные по беспроводной связи на приемный индикатор, устраняя необходимость в традиционных проводах. От начального взвешивания на весах до конечного числового значения на индикаторе эффективная коммуникация является ключом к успеху всей операции.Будь то подвесное взвешивание, взвешивание скота, резервуаров или тяжелых грузов, как только ваш традиционный канал поврежден или нуждается в замене, связь прекращается, как и ваша работа.

Наконец, Transcell Technology также предлагает балочные весы и напольные весы. Например, с их системой напольных весов платформы весов соединены с цифровым индикатором TI-500RF и откалиброваны на заводе для точного взвешивания, а платформы с опцией Bluetooth совместимы с Transcell IOS и приложением для Android.Как видите, есть несколько вариантов взвешивания и отправки данных о весе на ваши устройства.

Эта запись была опубликована в General автором Scale Man. Добавьте постоянную ссылку в закладки. Приемники AM/FM

, цифровые радиотюнеры соответствуют стандартам качества автомобилей

  Компания Silicon Labs представила самое масштабируемое, гибкое и экономичное решение для автомобильного радио для мирового рынка автомобильных информационно-развлекательных систем. Новое портфолио Silicon Labs, состоящее из AM/FM-приемников Global Eagle и Dual Eagle, цифровых радиотюнеров и сопроцессоров Digital Falcon, позволяет автопроизводителям и поставщикам первого уровня охватить все сегменты рынка, уровни затрат и производительности, а также стандарты цифрового радио, соблюдая при этом строгие автомобильные стандарты качества. .Конструкции радиоприемников OEM и вторичного рынка, основанные на новом портфолио Silicon Labs, могут масштабироваться от недорогих AM/FM-радиостанций с одним тюнером до высокопроизводительных систем с несколькими тюнерами и антеннами, что позволяет поставщикам автомобильных радиоприемников использовать свои исследования и разработки в нескольких линейках продуктов, все с общим программным API.

По данным IHS Markit, в этом году мировой рынок легковых автомобилей достигнет 93,5 млн единиц, при этом радиосистемы будут разделены на уровни функций начального, среднего и премиум-класса. Чтобы выйти на этот широкий рынок, поставщики радиооборудования должны разрабатывать различные радиосистемы, удовлетворяя при этом разные цели по затратам, часто в пределах одних и тех же моделей автомобилей.С существующими решениями требуются значительные инвестиции в исследования и разработки, чтобы охватить все сегменты рынка для многочисленных моделей автомобилей. Silicon Labs — единственный поставщик решений для автомобильных радиостанций, предлагающий масштабируемую аппаратно-программную платформу, которая позволяет поставщикам автомобильных радиоприемников выходить на несколько рынков с помощью общего радиооборудования и программного обеспечения. Эта исключительная гибкость помогает клиентам сократить расходы на проектирование, квалификацию, поиск поставщиков и запасы.

Семейства аналоговых AM/FM-приемников и цифровых радиотюнеров Global Eagle (Si4795x) и Dual Eagle (Si4796x и Si4797x) устанавливают новый стандарт масштабируемости и приема автомобильного вещания.Семейства Eagle расширяют проверенные на практике характеристики тюнеров и приемников Silicon Labs, которые используются ведущими автомобильными OEM-производителями и поставщиками первого уровня по всему миру. Устройства Si479xx используют запатентованную Silicon Labs цифровую архитектуру с низкой ПЧ, обеспечивающую превосходные радиочастотные характеристики и подавление помех. Кроме того, комплексные алгоритмы прошивки семейства Si479xx динамически регулируют прием сигнала в движущихся автомобилях, чтобы обеспечить оптимальный прием в самых суровых полевых условиях.

Аудиоподсистема обоих семейств Eagle представляет собой комплексное решение для синхронизации, обработки и распределения цифровых и аудиосигналов в автомобильном головном устройстве.Чтобы ускорить выход на рынок, Silicon Labs предлагает эталонные проекты четырех- и шестиканальной аудиопостобработки, поддерживающие выравнивание салона, компенсацию громкости, управление тоном, генерацию звукового сигнала и микширование источников звука. Эта гибкая архитектура позволяет интегрировать клиентские или сторонние алгоритмы.

Семейство цифровых радиосопроцессоров Digital Falcon (Si469x) обеспечивает демодуляцию канала и декодирование источника цифровых сигналов HD Radio и DAB/DAB+, передающих звук и данные.Сопроцессоры Digital Falcon упрощают проектирование системы и минимизируют спецификацию материалов (BOM), устраняя необходимость во внешнем модуле памяти RAM для декодирования каналов, который обычно требуется для цифровых радиопроцессоров сторонних производителей. Семейство Digital Falcon позволяет масштабировать проекты от бюджетных до высококлассных систем благодаря своим возможностям беспрепятственного смешивания для DAB/DAB+, а также поддержке автоматического выравнивания уровня и времени (ALTA) для систем HD.

«Когда 12 лет назад компания Silicon Labs представила свои первые однокристальные аудиоИС RF-in-CMOS, мы изменили представление о том, как AM/FM-приемники разрабатывались в продуктах бытовой электроники, сократив количество компонентов более чем на 90 процентов и пространство на плате более чем на 90%. 60 процентов», — сказал Брайан Миркин, генеральный менеджер по продуктам для вещания в Silicon Labs.«На сегодняшний день Silicon Labs поставила более 1,5 миллиарда интегральных микросхем «радио-на-чипе», включая более 50 миллионов автомобильных тюнеров OEM, кульминацией которых являются наши последние семейства Global Eagle, Dual Eagle и Digital Falcon, включающие в себя самые передовые, масштабируемые в отрасли решение для автомобильной радиосистемы».

Образцы и производственные партии приемников и тюнеров Global Eagle и Dual Eagle, а также сопроцессоров Digital Falcon уже доступны. Чтобы ускорить разработку, Silicon Labs предоставляет комплексные оценочные наборы для проектов, основанных на семействах Global Eagle, Dual Eagle и Digital Falcon.Для получения информации о ценах и заказе продуктов IC и оценочных комплектов обратитесь к местному торговому представителю Silicon Labs. Для получения дополнительной информации о продукте посетите сайт www.silabs.com/globaleagle.

Лучший стереоресивер | Обзоры Wirecutter

Наш выбор

Sony STR-Dh290

STR-Dh290 работает с фонокорректором, Bluetooth и другими функциями, и он обеспечивает большую мощность за свою цену.

Варианты покупки

*На момент публикации цена составляла 150 долларов США.

Наша группа по прослушиванию обнаружила, что Sony STR-Dh290 звучит так же хорошо, как и любой другой ресивер дешевле 200 долларов, и у него есть функции, которые мы считаем важными для большинства людей в стереоресивере: Bluetooth (для подключения портативных устройств), фонокорректор ( для подключения проигрывателя), и много энергии. Вы можете найти лучшую производительность и больше функций в другом месте, но только по гораздо более высокой цене. STR-Dh290 имеет удобный дизайн и пульт дистанционного управления, но он также идет на некоторые жертвы, чтобы достичь этой сверхнизкой цены: его разъемы кабеля динамика довольно хлипкие, его фирменный разъем FM-антенны раздражает, потому что он заставляет Вы можете использовать дешевую прилагаемую антенну Sony, у нее нет AM-тюнера, и она звучит не так гладко и естественно, как наш выбор для модернизации, Yamaha R-N303.

Выбор апгрейда

Yamaha R-N303

R-N303 передает потоковое видео через Wi-Fi и Bluetooth, имеет фоно и цифровые входы и звучит очень хорошо.

Варианты покупки

*На момент публикации цена составляла 300 долларов США.

Yamaha R-N303 — одно из немногих доступных по цене аудиоустройств, не лишенных важных функций и не снижающих качество звука. Он будет делать практически все, что вам может понадобиться: транслировать музыку и интернет-радио через Wi-Fi, работать в составе мультирумной аудиосистемы, воспроизводить звук с устройств Bluetooth и подключаться к проигрывателю и телевизору.Он также стал фаворитом в наших тестах на прослушивание, хотя звучал не намного лучше, чем наш лучший выбор, Sony STR-Dh290, и стоит намного дороже. Он не так удобен в использовании, как Sony, и настройка сети не так проста, как могла бы быть. R-N303 может показаться излишним для многих людей, но для тех, кто готов заплатить больше, чтобы получить великолепно звучащий сетевой стереоресивер, это лучший выбор.

Санкционная политика — наши внутренние правила

Эта политика является частью наших Условий использования.Используя любой из наших Сервисов, вы соглашаетесь с этой политикой и нашими Условиями использования.

Как глобальная компания, базирующаяся в США и осуществляющая деятельность в других странах, Etsy должна соблюдать экономические санкции и торговые ограничения, включая, помимо прочего, те, которые введены Управлением по контролю за иностранными активами («OFAC») Департамента США. казначейства. Это означает, что Etsy или любое другое лицо, использующее наши Сервисы, не может принимать участие в транзакциях, в которых участвуют определенные люди, места или предметы, происходящие из определенных мест, как это определено такими агентствами, как OFAC, в дополнение к торговым ограничениям, налагаемым соответствующими законами и правилами.

Эта политика распространяется на всех, кто пользуется нашими Услугами, независимо от их местонахождения. Ознакомление с этими ограничениями зависит от вас.

Например, эти ограничения обычно запрещают, но не ограничиваются транзакциями, включающими:

  1. Определенные географические области, такие как Крым, Куба, Иран, Северная Корея, Сирия, Россия, Беларусь, Донецкая Народная Республика («ДНР») и Луганская Народная Республика («ЛНР») области Украины, или любой отдельный или юридическое лицо, работающее или проживающее в этих местах;
  2. Физические или юридические лица, указанные в санкционных списках, таких как Список особо обозначенных граждан (SDN) OFAC или Список иностранных лиц, уклоняющихся от санкций (FSE);
  3. Граждане Кубы, независимо от местонахождения, если не установлено гражданство или постоянное место жительства за пределами Кубы; и
  4. Предметы, происходящие из регионов, включая Кубу, Северную Корею, Иран или Крым, за исключением информационных материалов, таких как публикации, фильмы, плакаты, грампластинки, фотографии, кассеты, компакт-диски и некоторые произведения искусства.
  5. Любые товары, услуги или технологии из ДНР и ЛНР, за исключением подходящих информационных материалов и сельскохозяйственных товаров, таких как продукты питания для людей, семена продовольственных культур или удобрения.
  6. Ввоз в США следующих товаров российского происхождения: рыбы, морепродуктов, непромышленных алмазов и любых других товаров, время от времени определяемых министром торговли США.
  7. Вывоз из США или лицом США предметов роскоши и других предметов, которые могут быть определены США.S. Министр торговли, любому лицу, находящемуся в России или Беларуси. Список и описание «предметов роскоши» можно найти в Приложении № 5 к Части 746 Федерального реестра.
  8. Товары, происходящие из-за пределов США, на которые распространяется действие Закона США о тарифах или связанных с ним законов, запрещающих использование принудительного труда.

Чтобы защитить наше сообщество и рынок, Etsy принимает меры для обеспечения соблюдения программ санкций. Например, Etsy запрещает участникам использовать свои учетные записи в определенных географических точках.Если у нас есть основания полагать, что вы используете свою учетную запись из санкционированного места, такого как любое из мест, перечисленных выше, или иным образом нарушаете какие-либо экономические санкции или торговые ограничения, мы можем приостановить или прекратить использование вами наших Услуг. Участникам, как правило, не разрешается размещать, покупать или продавать товары, происходящие из санкционированных районов. Сюда входят предметы, которые были выпущены до введения санкций, поскольку у нас нет возможности проверить, когда они были действительно удалены из места с ограниченным доступом. Etsy оставляет за собой право запросить у продавцов дополнительную информацию, раскрыть страну происхождения товара в списке или предпринять другие шаги для выполнения обязательств по соблюдению.Мы можем отключить списки или отменить транзакции, которые представляют риск нарушения этой политики.

В дополнение к соблюдению OFAC и применимых местных законов, члены Etsy должны знать, что в других странах могут быть свои собственные торговые ограничения и что некоторые товары могут быть запрещены к экспорту или импорту в соответствии с международными законами. Вам следует ознакомиться с законами любой юрисдикции, когда в сделке участвуют международные стороны.

Наконец, члены Etsy должны знать, что сторонние платежные системы, такие как PayPal, могут независимо контролировать транзакции на предмет соблюдения санкций и могут блокировать транзакции в рамках своих собственных программ соответствия.Etsy не имеет полномочий или контроля над независимым принятием решений этими поставщиками.

Экономические санкции и торговые ограничения, применимые к использованию вами Услуг, могут быть изменены, поэтому участникам следует регулярно проверять ресурсы по санкциям. Для получения юридической консультации обратитесь к квалифицированному специалисту.

Ресурсы: Министерство финансов США; Бюро промышленности и безопасности Министерства торговли США; Государственный департамент США; Европейская комиссия

Последнее обновление: 18 марта 2022 г.

%PDF-1.3 % 1 0 объект >поток конечный поток эндообъект 2 0 объект > эндообъект 3 0 объект > эндообъект 4 0 объект >/Parent 3 0 R/Contents[11 0 R]/Type/Page/Resources>/Shading>/XObject>/ProcSet[/PDF/Text/ImageC]/Font>>>/MediaBox[0 0 595.27563 841.88977]/BleedBox[0 0 595.27563 841.88977]/Анноты[48 0 R 49 0 R]>> эндообъект 11 0 объект >поток x}]o-~E=7p}

Локализованное FM-вещание цифрового аудио с использованием сетей Wi-Fi Mesh

Версия 2 (старая)

Версия 3 21.09.21, 20:39 Версия 2 12.01.21, 04: 07 Версия 1 20.12.20, 12:36

препринт

опубликовано 12.01.2021, 04:07, автор: Ashvin VermaAshvin Verma, Somesh Kar, Priyanshi Ahuja широко используется, несмотря на достижения в других беспроводных технологиях, благодаря своей доступности, особенно в сельской местности, где CRS помогают способствовать культурному самовыражению и доставке информации на местном уровне.Нынешние CRS дороги и энергоемки, но их сложно масштабировать, особенно в холмистой местности и на пересеченной местности. В этом документе сначала исследуется потребность в недорогой, масштабируемой CRS в 2 регионах, а именно в Индии и странах Африки, с использованием последних публикаций по социальным наукам и отчетов. Затем мы оцениваем производительность предлагаемой системы радиосетей сообщества по дальности, масштабируемости и качеству передачи. Система состоит из недорогих модульных FM-передатчиков, соединенных друг с другом через Wi-Fi MeshNet, который используется для передачи цифровых аудиосигналов от узла-концентратора.Затем каждый передатчик транслирует этот цифровой аудиосигнал в диапазоне VHF-II, поддерживаемом стандартными функциональными телефонами и другими FM-приемниками. Блоки передатчика состоят из компонентов COTS, работающих на программном обеспечении с открытым исходным кодом. Качество передачи было проанализировано с использованием объективных показателей, таких как отношение пикового сигнала к шуму, и интерпретировано на основе спектрограмм PSD и выходных данных дискретных преобразований Фурье. Несмотря на то, что необходимы полевые испытания и дальнейшие исследования, этот подход кажется многообещающим для развертывания средних и крупных общественных радиоячеистых систем.


История

Оркида отправки автора

0000-0001-7905-7234

Отправка авторского учреждения

Дели государственная школа, R.

0 comments on “Цифровая шкала для fm приемников: Цифровая шкала для FM-приёмниковна микросхемах

Добавить комментарий

Ваш адрес email не будет опубликован.