Устройство компьютерного блока питания: Устройство компьютерных блоков питания и методика их тестирования

Анатомия. Из чего состоит блок питания? — i2HARD

Он есть в каждом компьютере, ноутбуке и приставке. Он не влияет на вашу частоту кадров и майнинг биткоинов. У него нет миллиардов транзисторов, и в его производстве не используются новейшие полупроводниковые техпроцессы. Звучит скучно? Ничуть! Без этой штуки наши компьютеры абсолютно ничего бы не сделали.

БП, они же блоки питания (англ. PSU, Power Supply Units), не взрывают заголовки журналов как новейшие процессоры, но это интереснейшие технологии, заслуживающие нашего внимания. Так что надевайте белые халаты, маски, перчатки и приступим к вскрытию нашего скромного парнишки – блока питания, разберём его на части и рассмотрим, чем занимается каждый его орган.

И да, совсем недавно мы разбирались как правильно выбрать Блок питания. Рекомендуем к прочтению.

Что это и с чем это едят?

Многие компьютерные компоненты имеют названия, требующие чуточку технических знаний, чтобы понять, что это и зачем (например, твердотельный накопитель), но в случае блока питания всё довольно очевидно. Это блок, обеспечивающий питание.

Но мы же не можем на этом поставить точку, с гордостью заявив «статья готова». Наш цикл статей посвящен внутреннему строению, и на операционном столе у нас лежит подопытный – Cooler Master G650M. Это довольно типичный представитель, с характеристиками, подобными десяткам других моделей, но у него есть одна особенность, встречающаяся не во всех блоках питания.


Официальное фото блока питания Cooler Master.

Это блок питания стандартного размера, соответствующий форм-фактору ATX 12V v2.31, поэтому он подходит для многих компьютерных корпусов.

Есть и другие форм-факторы – например, для малых корпусов, либо вовсе уникальные по спецзаказу. Не каждый блок соответствует точным размерам, установленным стандартными форм-факторами – они могут быть одинаковой ширины и высоты, но отличаться по длине.


Этот блок питания от Cisco специально спроектирован для серверных стоек

В маркировке PSU обычно указывается их основной параметр – максимально обеспечиваемая мощность. В случае с нашим Cooler Master, это 650 Вт. Позже мы поговорим, что это на самом деле значит, а пока лишь заметим, что есть и менее мощные БП, поскольку не всем компьютерам требуется именно столько, а некоторым достаточно даже на порядок меньше. Но всё-ж большинство настольных компьютеров обеспечены питанием в диапазоне от 400 до 600 Вт.

Блоки питания вроде нашего собираются в прямоугольных, зачастую неокрашенных, металлических корпусах, отчего бывают достаточно увесистые. У ноутбуков блок питания практически всегда внешний, в пластиковом корпусе, но его внутренности очень схожи с тем, что мы увидим у рассматриваемого нами БП.


Источник фотографии nix.ru

Большинство типичных блоков питания оснащены сетевым выключателем и кулером для активной терморегуляции, хотя в ней не все БП нуждаются. И не у всех из них есть вентиляционная решётка – у серверных версий, в частности, это редкость.

Ну что-ж, как вы можете видеть на фото выше, мы уже вооружены отверткой и готовы приступить к вскрытию нашего экземпляра.

Немного теории

Но прежде чем мы начнем копаться во внутренностях, давайте зададимся вопросом, действительно ли блок питания настолько необходим? Почему нельзя подключить компьютер напрямую к розетке? Ответ заключается в том, что компьютерные комплектующие рассчитаны на совсем другое напряжение, нежели сетевое.

На графике ниже показано, каким должно быть электричество сети (в США = синяя и зеленая кривые; Великобритания = красная кривая). Ось X представляет время в миллисекундах, а ось Y – напряжение (voltage) в вольтах. Проще всего понять, что такое напряжение, глядя на разность энергий между двумя точками.

Если напряжение приложено к проводнику (например, к металлической проволоке), разница в энергии заставит электроны в материале проводника течь от более высокого энергетического уровня к более низкому. Электроны – составляющие атомов, из которых состоит проводник, и металлы имеют много электронов, которые могут свободно перемещаться. Этот поток электронов называется током (current) и измеряется в амперах.

Хорошую аналогию можно провести с садовым шлангом: напряжение сродни давлению, которое вы используете, а расход воды – это ток. Любые ограничения и препятствия в шланге – по сути как электрическое сопротивление.


Мы видим, что электричество в сети варьируется с течением времени, из-за чего оно называется напряжением переменного тока (AC, alternating current). В США сетевое напряжение меняется 60 раз в секунду, достигая пиковых значений 340 В или 170 В, в зависимости от местоположения и способа подключения. В Великобритании пиковые напряжения пониже, и частота этих колебаний также немного отличается. Большинство стран придерживаются схожих стандартов сетевого напряжения, и лишь в немногих странах пиковые напряжения более низкие или более высокие.

Потребность в блоке питания заключается в том, что компьютеры не работают с переменным током: им нужно постоянное напряжение, которое никогда не меняется, и кроме того – гораздо более низкое. На том же графике оно будет выглядеть примерно вот таким:


Но современному компьютеру требуется не одно постоянное напряжение, а четыре: +12 вольт, -12 вольт, +5 вольт и +3,3 вольта. И поскольку эти значения не меняются, такой ток называется постоянным (DC, direct current). Преобразование тока из переменного в постоянный (т.н. выпрямление) – одна из основных функций блока питания. Пришло время вскрыть его и посмотреть, как он это делает!

Преобразование тока из переменного в постоянный – одна из основных функций PSU. Пришло время посмотреть, как он это делает!

Здесь мы должны предупредить вас, что в блоке питания есть элементы, накапливающие электричество, в том числе смертельное. Поэтому разбирать PSU потенциально опасно.


Официальное фото блока питания Cooler Master.

Принцип работы этого блока питания аналогичен многим другим, и хоть маркировки на различных деталях внутри будут отличаться, принципиальных различий это не делает.

Разъём сетевого шнура находится в верхнем левом углу фотографии, и ток по сути идет по часовой стрелке, пока не достигнет выхода из блока питания (пучок цветных проводов, нижний левый угол).


Источник фото techspot.com

Если мы перевернем плату, мы увидим, что по сравнению с материнской платой, проводники и соединения на ней более широкие и массивные – это потому, что они рассчитаны на более высокие токи. Также, бросается в глаза широкая полоса в середине, будто текущая по равнине река.

Это снова говорит о том, что все блоки питания имеют два четко разделённых узла: первичный и вторичный. Первый – это настройка входного напряжения, чтобы его можно было эффективно понижать; второй – это все настройки уже выпрямленного и пониженного напряжения.

Фильтрация

Первое, что блок питания делает с сетевым электричеством, это не выпрямление и не понижение, а выравнивание входного напряжения. Поскольку в наших домах, офисах и на предприятиях имеется множество электрических устройств и приборов, постоянно включающихся-выключающихся, а также излучающих электромагнитные помехи, переменный ток в сети часто бывает «скомканный» и со случайными скачками и перепадами (частота также не постоянна). Это не только затрудняет блоку питания выполнять преобразования, но может вывести из строя некоторые элементы внутри него.

Наш БП имеет две ступени так называемых входных фильтров (transient filter), первая из которых построена сразу на входе с помощью трёх конденсаторов. Она выполняет роль, похожую на роль «лежачего полицейского» на дороге – только вместо скорости, этот фильтр гасит внезапные скачки входного напряжения.


Источник фото techspot.com

Вторая ступень фильтра более сложная, но в сущности делает то же самое.

Желтые кирпичики – это снова конденсаторы, а вот зеленые кольца, обмотанные медным проводом, это индуктивные катушки (хотя при таком использовании их обычно называют дросселями). Катушки накапливают электрическую энергию в магнитном поле, но энергия при этом не теряется, а за счет самоиндукции плавно возвращается обратно. Таким образом, внезапно появившийся высокий импульс (скачок) поглощается магнитным полем дросселя, чтобы на выходе дать ровное напряжение без всяких скачков.

Два маленьких синих диска – ещё одни представители многообразия конденсаторов, а чуть ниже них (зелёный, с длинными ножками, обтянутыми черными изоляторами) – металлооксидный варистор (MOV). Они также используются для защиты от скачков входного напряжения. Подробнее о различных типах входных фильтров можно прочитать здесь.


Источник фото techspot.com

По этому узлу блока питания часто можно определить, насколько производитель сэкономил, или к какому бюджетному классу принадлежит девайс. Более дешевые будут иметь упрощённую фильтрацию входа, а самые дешёвые и вовсе не иметь таковой (избегайте таких!).

Теперь, когда напряжение выровнено и причёсано, ему дозволяется идти дальше – собственно, к преобразованию.

Преобразование

Как мы уже сказали, блоку питания нужно изменить напряжение переменного тока, которое в американских розетках обычно в районе 120 вольт (технически, это среднеквадратичные 120 вольт, но мы не будем так язык выламывать), получив на выходе постоянное напряжение 12, 5 и 3,3 вольт.

Первым делом осуществляется преобразование переменного тока в постоянный, и наш блок использует для этого выпрямительный мост. На фото ниже это плоский черный элемент, приклеенный к радиатору.


Источник фото techspot.com

Это еще одно место, где производитель блоков питания может сократить расходы, поскольку более дешевые выпрямители хуже справляются со своей задачей (например, сильнее греются). Теперь, если пиковое входное напряжение составляет 170 В (что имеет место для сети 120 В), то пройдя через выпрямительной мост, оно станет 170 В, но уже постоянного тока.

В таком виде оно поступает на следующую стадию, и в нашем блоке это активный модуль коррекции коэффициента мощности (APFC или Active PFC, Active Power Factor Correction converter). Этот узел также стабилизирует напряжение, сглаживая «провалы» за счет накапливающих конденсаторов; кроме того, он защищает от скачков выходной мощности.

Пассивные корректоры (PPFC или Passive PFC) выполняют по сути ту же работу. Они менее эффективны, но хороши для маломощных блоков питания.


Источник фото techspot.com

APFC на фото выше представлен в виде пары больших цилиндров слева – это конденсаторы, которые накапливают выровненный ток, прежде чем отправить его дальше по цепочке процессов в нашем блоке питания.

За APFC находится ШИМ, широтно-импульсный модулятор (PWM, Pulse Width Modulator). Его предназначение заключается в том, чтобы с помощью нескольких быстро переключающихся полевых транзисторов преобразовать постоянный ток обратно в переменный. Это нужно сделать потому, что на следующем шаге нас ждёт понижающий трансформатор. Эти устройства, основанные на электромагнитной индукции, состоят из двух обмоток с разным количеством витков на металлическом сердечнике, необходимых для понижения напряжения, и работают трансформаторы только с переменным током.

Частота переменного тока (скорость, с которой он изменяется; в герцах, Гц) значительно влияет на эффективность трансформатора – чем выше, тем лучше, поэтому частота исходного питания 50/60 Гц увеличивается примерно в тысячу раз. А чем эффективнее трансформатор, тем меньше его размер. Такой тип устройств, который использует эти сверхбыстрые частоты постоянного тока, называется импульсным источником питания (Switched Mode Power Supply, SMPS).

На фото ниже вы можете видеть 3 трансформатора – самый большой имеет на единственном выходе 12 вольт, а тот, что поменьше – 5 вольт (чуть поговорим ещё о нём позже). В других БП вы можете встретить один большой трансформатор сразу на все напряжения, то есть с несколькими выходами. А самый маленький трансформатор предназначен для защиты транзисторов ШИМ и подавления его помех.

|
Источник фото techspot.com

Можно по-разному реализовать получение необходимых напряжений, защиту ШИМ, и так далее. Всё зависит от бюджетного сегмента и мощности устройства. Однако, всем одинаково необходимо снять напряжения с трансформаторов и снова выпрямить.

На фото ниже мы видим алюминиевый радиатор низковольтных диодов, выполняющих это выпрямление. А также, конкретно в этом PSU, мы видим небольшую дополнительную плату в центре фото – это узел модулей регулирования напряжения (VRM, Voltage Regulation Modules), обеспечивающий выходы 5 и 3,3 вольт.


Источник фото techspot.com

И тут нам стоит поговорить о том, что такое пульсация.

В идеальном мире, с идеальными блоками питания, переменный ток будет преобразован в абсолютно ровный, без малейших колебаний, постоянный ток. В действительности же, такой 100%-ой точности не достигается, и напряжение постоянного тока имеет хоть и незначительные, но колебания.

Этот эффект называется пульсирующим напряжением, и в наших блоках питания мы бы хотели, чтобы оно было как можно меньше. Cooler Master не предоставляет информации о величине пульсирующего напряжения в спецификации к нашему подопытному PSU, поэтому мы прибегли к сторонним результатам тестирования. Один из таких анализов был выполнен JonnyGuru.com, и они установили, что максимальное пульсирующее напряжение выхода +12 В – 0,042 В (42 милливольт).

График ниже демонстрирует отклонение фактически получаемого напряжения (синяя кривая; при этом её форма, конечно, не такая идеальная синусоида – ведь сама пульсация не постоянна) от требуемого ровного напряжения +12 В постоянного тока (красная прямая).


Это отклонение, по большей части, лежит на совести конденсаторов во всём PSU. Некачественные, дешёвые конденсаторы приводят к увеличению этой не нужной нам пульсации. Если она слишком большая, то некоторые электронные узлы компьютера, наиболее чувствительные к качеству питания, могут начать работать нестабильно. К счастью, в нашем примере 40 с лишним милливольт это нормально. Не супер, но и не плохо.

Но на получении приемлемых выходных напряжений дело ещё не заканчивается. Необходимо обеспечить управление выходами, чтобы питание на каждом из них было всегда полноценным и стабильным, независимо от мощности нагрузок на других выходах.


Источник фото techspot.com

Микросхема, которую вы видите на этом фото, называется супервизор (supervisor) и она следит за тем, чтобы на выводах не оказалось слишком высокого или низкого напряжения и тока. Работает бесхитростно – просто отключает блок питания при возникновении таких проблем.

Более дорогие PSU могут оснащаться ЦПОС, цифровым процессором обработки сигналов (DSP, Digital Signal Processor), который не только мониторит напряжения, но и может отрегулировать их при необходимости, а также отправлять подробные данные о состоянии БП на компьютер, его использующий. Для рядового пользователя эта функция достаточно спорная, но для серверов и рабочих станций – весьма желательная.

Выходы

Все блоки питания поставляются с длинными пучками проводов, торчащими сзади. Количество проводов и доступных разъёмов для запитывания устройств будут отличаться от модели к модели, но некоторые стандартные подключения должны обеспечивать все БП без исключения.

Так как напряжение – это величина разности потенциалов, то каждый выход подразумевает два провода: один для указанного напряжения (например, +12 В) и провод, относительно которого измеряется разность потенциалов. Этот провод называется заземлением, «землёй», «reference wire» или «общим» проводом, и два этих провода образуют петлю: от блока питания до устройства-потребителя, а затем обратно в БП.

Поскольку в некоторых таких замкнутых контурах токи небольшие, они могут использовать общие провода заземления.


Официальное фото блока питания Cooler Master.

Главным из обязательных разъёмов является 24-pin ATX12V v. 2.4, обеспечивающий основное питание с помощью нескольких выводов различных напряжений, а также имеющий ряд специальных выводов.


Из этих специальных отметим лишь вывод «+5 standby» – дежурное питание компьютера. Это напряжение подаётся на материнскую плату всегда, даже когда компьютер выключен, при условии, что он остаётся включен в розетку и его БП исправен. Дежурное питание нужно материнской плате для того, чтобы оставаться активной.

Большинство PSU также имеют дополнительный 8-pin разъём для материнской платы с двумя линиями +12 В, и по крайней мере один 6 или 8-pin разъём питания для PCI Express.

Со слота PCI Express видеокарты могут взять максимум 75 Вт, поэтому этот разъем обеспечивает дополнительную мощность для современных GPU.

Конкретно наш рассматриваемый блок питания по соображениям экономии фактически использует два разъема питания PCI Express на одной и той же линии. Поэтому, если у вас действительно мощная видеокарта, старайтесь выделить ей независимую линию питания, не делите её с другими устройствами.

Разница между 6 и 8-pin разъемами PCI Express – два дополнительных провода заземления. Это позволяет повысить силу тока, удовлетворяя потребности наиболее прожорливых видеокарт.

Последние несколько лет мы всё чаще стали замечать блоки питания с гордой припиской «модульный» (modular PSU). Это просто означает, что у них отстегивающиеся кабели, что позволяет использовать только необходимое количество кабелей и разъёмов, не подключая всё ненужное, освободив тем самым пространство внутри блока.


Источник фотографии nix.ru

Наш Cooler Master, как и большинство, использует довольно простую систему подключения модульных кабелей.


Каждый разъем имеет по одному проводу +12В, +5В и +3,3В, а также два провода заземления, и в зависимости от того, к какому устройству будет подключен кабель, разъем на другом конце будет использовать либо соответствующую, либо упрощённую распайку.

Представленный на фото выше разъем Serial ATA (SATA) используется для подключения питания жестких дисков, твердотельных накопителей и таких периферийных устройств, как DVD-приводы.

Этот всем знакомый разъём называется замысловато: «разъём питания AMP MATE-N-LOK 1-480424-0». Но все называют его просто Molex, невзирая на то, что это всего лишь название компании-разработчика этого разъёма. Он предоставляет по одному выводу +12В и +5В, и два провода заземления.

На выходных проводах производители тоже могут сэкономить или накрутить цену за счет более ярких или более мягких проводов. Сечение провода также играет важную роль, поскольку более толстые провода обладают меньшим сопротивлением, чем тонкие, поэтому меньше греются при прохождении тока по ним.

На что обращать внимание при выборе

В начале нашей статьи мы говорили, что большинство блоков питания имеют в названии значение своей максимальной мощности. Простым языком, электрическая мощность – это напряжение, умноженное на силу тока (например, 12 вольт x 20 ампер = 240 ватт). И хотя такое утверждение не совсем технически точное, для наших целей оно удовлетворительное.

Как и на большинстве моделей, на нашем блоке питания есть шильдик, содержащий основную информацию о том, сколько мощности может обеспечить каждая линия напряжения.


Источник фотографии nix.ru

Здесь мы видим, что суммарная максимальная мощность всех +12 В линий составляет 624 Вт. Приплюсовав все остальные мощности, мы в итоге получим 760 Вт, а не 650. Что тут не так? А дело просто в том, что линии +5 В (кроме дежурной) и +3,3 В создаются через VRM, используя одну из линий +12 В.

Ну и конечно, все выходные напряжения поступают из одного источника: сетевой розетки. Таким образом, мощность в 650 Вт – это максимум, который блок питания может обеспечить в целом по всем линиям. То есть, если у вас на линиях +12 В висит нагрузка в 600 Вт, то на все остальные линии у вас остается всего 50 Вт. К счастью, большинство оборудования в любом случае бо́льшую часть мощности берёт от линий 12 В, поэтому проблема неправильно подобранного БП встречается редко.

Правее от таблицы со спецификациями мощности на шильдике присутствует значок «80 Plus Bronze». Это рейтинг эффективности, используемый в отрасли в соответствии с требованиями к производителям блоков питания. Эффективность также отражает величину общей нагрузки, которую блок питания способен обслуживать.


20%, 50% и 100% – процент нагрузки по отношению к максимальной мощности для стандартных систем

Если наш Cooler Master нагрузить ровно на половину его максимальной мощности, то есть на 325 Вт, то его ожидаемый КПД будет в пределах 80-85% в зависимости от напряжения в сети (115/230 В).

Это означает фактическую нагрузку блока питания на сеть от 382 до 406 Вт. Более высокий рейтинг 80 PLUS не означает, что блок питания даст вам больше энергии, он просто более экономичный – меньше энергии теряет на всех этапах фильтрации, выпрямления и преобразования.

Также обратите внимание, что максимальная эффективность достигается в диапазоне между 50 и 100% нагрузки. Некоторые производители предоставляют графики, показывающие, какой КПД можно ожидать от их устройства при различных нагрузках и напряжениях в сети.


Официальное изображение Cooler Master.

График эффективности для блока питания Cooler Master V1300 Platinum. Вертикальная шкала – эффективность (КПД), горизонтальная – % нагрузки по отношению к максимальной мощности.

Иногда полезно обращать внимание на эту информацию, особенно если собираетесь раскошелиться на киловаттный блок питания. Если ваш компьютер будет потреблять близко к этому пределу мощности, то КПД блока питания будет несколько снижен.

Вы можете наткнуться на некие «одноканальные» и «многоканальные» (либо комбинированные – снабжённые переключателем) блоки питания. Термин «канал» в данном случае – просто другое слово для определенного напряжения, выдаваемого PSU. Наш Cooler Master имеет один канал 12 В и всевозможные разъёмы питания, обеспечивающие +12 В линии от этого канала. Многоканальный блок питания имеет две или более систем, обеспечивающих линии 12 вольт, однако существует большая разница в том, как это реализовано.

Многоканальные блоки питания широко применяются для серверов или дата-центров в целях отказоустойчивости – при выходе из строя одного из каналов, работоспособность системы не нарушится. Для обычных компьютеров тоже могут предлагаться многоканальные PSU, но скорее всего, вы столкнетесь с псевдо-многоканальностью, когда производитель просто разделит единственный канал на два или три якобы независимых канала. Например, наш подопытный выдает до 52 ампер по линии +12В, что эквивалентно 624 Вт электроэнергии. Дешевая «многоканальная» версия такого БП будет иметь в спецификации якобы два канала +12 В, но на самом деле это лишь два полуканала, каждый из которых будет обеспечивать только 26 А (или 312 Вт).

Хороший блок питания для настольного компьютера, использующий качественные компоненты, вовсе не требует многоканальности на +12 В, так что не беспокойтесь об этом!

Стоит ли переплачивать?

Блоки питания поставляются во всех ценовых диапазонах. Каталог на Amazon начинается с моделей от 15$ для стандартного блока 400 Вт, и доходит до полномодульных киловаттных PSU за 180-240$ от EVGA или Seasonic, и не заканчивается даже на этом. Что же вы получите за свои деньги? Что действительно стоит больше 200 долларов?

Очевидно, что чем мощнее, тем лучше, но вопрос ещё в том, как эта мощность реализована. Самые дешёвые 300 Вт модели выдают до 25 А на линиях +12В, в то время как киловаттная модель обеспечит втрое больше энергии. Современные процессоры и видеокарты практически все свои потребности удовлетворяют линиями +12 В. Уверены, что вам хватит 25 А?


Официальное фото блока питания Seasonic.

Учитывая, что актуальные аппетиты растут вместе с актуальным железом, то ваш новенький компьютер с 32-ядерным процессором в паре с 300-ваттной топовой видеокартой дешёвый блок питания явно не «затащит». С другой стороны, самые дорогие PSU легко справятся и будут иметь ещё приличный запас мощности. Ну а поскольку совокупная цена такого процессора и видеокарты может легко превысить 3500$, то стоит ли экономить ещё парой-другой сотен баксов сверху на обеспечение нормального питания для такого монстра.

Но на самом деле вы платите за качество компонентов в блоке питания. Взгляните на внутренности нашего Cooler Master в начале статьи. Вы не увидите там безумного количества всяких «шабашек», а поскольку каждый из тех немногочисленных элементов – критически важный компонент в работе устройства, нетрудно понять, почему не стоит гоняться за дешевизной.

На этом наше препарирование PSU закончено. Это очень интересное семейство устройств с на удивление сложным уровнем инженерии на всех этапах разработки и производства. Если у вас есть какие-либо вопросы о блоках питания в целом, или конкретно о вашем, смело спрашивайте в комментариях ниже. До новых встреч в нашем анатомическом кружке.

Схема бп из компьютерного блока питания

Русский: English:. Бесплатный архив статей статей в Архиве. Справочник бесплатно. Параметры радиодеталей бесплатно.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам. ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: переделка однотактного блока питания компьютера подробно

Зарядное устройство из блока питания компьютера


Версия для печати Переопубликовать обзор. Неотъемлемой частью каждого компьютера является блок питания. Он важен так же, как и остальные части компьютера. При этом покупка блока питания осуществляется достаточно редко, так как хороший БП может обеспечить питанием несколько поколений систем.

Учитывая все это к приобретению блока питания необходимо отнестись очень серьезно, так как судьба компьютера в прямой зависимости от работы блока питания.

Основное назначение блока питания — формирование напряжения питания, которое необходимо для функционирования всех блоков ПК. Существуют также дополнительное напряжение: В и -5В.

Еще блок питания осуществляет гальваническую развязку между сетью В и компонентами компьютера. Это необходимо для устранения токов утечек, например чтобы корпус ПК не бился током, а также препятствует возникновению паразитных токов при сопряжении устройств.

Для осуществления гальванической развязки достаточно изготовить трансформатор с необходимыми обмотками. Но для питания компьютера нужна немалая мощность, особенно для современных ПК.

Для питания компьютера пришлось бы изготовлять трансформатор, который имел бы не только большой размер, но и очень много весил. Однако с ростом частоты питающего тока трансформатора для создания того же магнитного потока необходимо меньше витков и меньше сечение магнитопровода. В блоках питаниях, построенных на основе преобразователя, частота питающего напряжения трансформатора в и более раз выше. Это позволяет создавать компактные и легкие блоки питания. Рассмотрим блок-схему простого импульсного блока питания, который лежит в основе всех импульсных блоков питания.

Первый блок осуществляет преобразование переменного напряжения сети в постоянное. Такой преобразователь состоит из диодного моста, выпрямляющего переменное напряжение, и конденсатора, сглаживающего пульсации выпрямленного напряжения. В этом боке также находятся дополнительные элементы: фильтры сетевого напряжения от пульсаций генератора импульсов и термисторы для сглаживания скачка тока в момент включения. Однако эти элементы могут отсутствовать с целью экономии на себестоимости. Следующий блок — генератор импульсов, который генерирует с определенной частотой импульсы, питающие первичную обмотку трансформатора.

Частота генерирующих импульсов разных блоков питания различна и лежит в пределах 30 — кГц. Трансформатор осуществляет главные функции блока питания: гальваническую развязку с сетью и понижение напряжения до необходимых значений. Переменное напряжение, получаемое от трансформатора, следующий блок преобразует в постоянное напряжение. Блок состоит из диодов выпрямляющих напряжение и фильтра пульсаций. В этом блоке фильтр пульсаций намного сложнее, чем в первом блоке и состоит из группы конденсаторов и дросселя.

С целью экономии производители могут устанавливать конденсаторы малой емкости, а также дроссели с малой индуктивностью. Первый импульсный блок питания представлял собой двухтактный или однотактный преобразователь. Двухтактный означает, что процесс генерации состоит из двух частей. В таком преобразователе по очереди открываются и закрываются два транзистора.

Соответственно в однотактном преобразователе один транзистор открывается и закрывается. Схемы двухтактного и однотактного преобразователей представлены ниже. В начальный момент включения первой схемы транзистор немного приоткрыт, так как к базе через резистор R1 приложено положительное напряжение.

Через приоткрытый транзистор протекает ток, который также протекает и через II обмотку трансформатора. Ток, протекающий через обмотку, создает магнитное поле. Магнитное поле создает напряжение в остальных обмотках трансформатора. В следствии на обмотке III создается положительное напряжение, которое еще больше открывает транзистор. Процесс происходит до тех пор, пока транзистор не попадет в режим насыщения.

Режим насыщения характеризуется тем, что при увеличении приложенного управляющего тока к транзистору выходной ток остается неизменным.

Так как напряжение в обмотках генерируется только в случае изменения магнитного поля, его роста или падения, то отсутствие роста тока на выходе транзистора, следовательно, приведет к исчезновению ЭДС в обмотках II и III. Пропадание напряжения в обмотке III приведет к уменьшению степени открытия транзистора. И выходной ток транзистора уменьшится, следовательно, и магнитное поле будет уменьшаться.

Уменьшение магнитного поля приведет к созданию напряжения противоположной полярности. Отрицательное напряжение в обмотке III начнет еще больше закрывать транзистор. Процесс будет длиться до тех пор, пока магнитное поле полностью не исчезнет. Когда магнитное поле исчезнет, отрицательное напряжение в обмотке III тоже исчезнет.

Процесс снова начнет повторяться. Двухтактный преобразователь работает по такому же принципу, но отличие в том, что транзисторов два, и они по очереди открываются и закрываются. То есть когда один открыт — другой закрыт. Схема двухтактного преобразователя обладает большим преимуществом, так как использует всю петлю гистерезиса магнитного проводника трансформатора.

Использование только одного участка петли гистерезиса или намагничивание только в одном направлении приводит к возникновению многих нежелательных эффектов, которые снижают КПД преобразователя и ухудшают его характеристики.

Поэтому в основном везде применяется двухтактная схема преобразователя с фазосдвигающим трансформатором. В схемах, где нужна простота, малые габариты, и малая мощность все же используется однотактная схема. Блоки питания форм-фактора АТХ без коррекции коэффициента мощности. Преобразователи, рассмотренные выше, хоть и законченные устройства, но в практике их использовать неудобно.

Но если ключами управлять контроллером, который бы мог осуществлять стабилизацию и различные дополнительные функции, то можно использовать схему для питания устройств. Схема блока питания с применением ШИМ-контроллера довольно проста, и, в общем, представляет собой генератор импульсов, построенный на ШИМ-котроллере. ШИМ — широтно-импульсная модуляция.

Она позволяет регулировать амплитуду сигнала прошедшего ФНЧ фильтр низких частот с изменением длительности или скважности импульса. Данная схема блока питания имеет небольшую мощность и в качестве ключа использует полевой транзистор, что позволяет упростить схему и избавиться от дополнительных элементов, необходимых для управления транзисторных ключей.

В качестве выходных ключей в блоках питаниях большой мощности используются IGBT-транзисторы. Сетевое напряжение в данной схеме преобразуется в постоянное напряжение и чрез ключ поступает на первую обмотку трансформатора.

Вторая обмотка служит для питания микросхемы и формирования напряжения обратной связи. ШИМ-котроллер генерирует импульсы с частотой, которая задана RC-цепочкой подключенной к ножке 4. Импульсы подаются на вход ключа, который их усиливает.

Длительность импульсов изменяется в зависимости от напряжения на ножке 2. Рассмотрим реальную схему АТХ блока питания. Она имеет намного больше элементов и в ней присутствуют еще дополнительные устройства.

Красными квадратами схема блока питания условно поделена на основные части. На схеме он обозначен как блок 2. Как видно он выполнен по схеме однотактного преобразователя. Во втором блоке также есть дополнительные элементы.

В основном это цепочки поглощения всплесков напряжений, которые генерируются трансформатором преобразователя. Зачастую в блоке формирования дежурного напряжения установлены некачественные или дефектные компоненты, что вызывает снижение частоты преобразователя до звукового диапазона.

В результате чего из блока питания слышен писк. Так как блок питания питается от сети переменного напряжения В, а преобразователь нуждается в питании постоянным напряжением, напряжение необходимо преобразовать. Первый блок осуществляет выпрямление и фильтрацию переменного сетевого напряжения. В этом блоке также находится заграждающий фильтр от помех, генерируемых самим блоком питания. Он осуществляет все основные функции блока питания. Защищает блок питания от коротких замыканий, стабилизирует выходные напряжения и формирует ШИМ-сигнал для управления транзисторными ключами, которые нагружены на трансформатор.

Четвертый блок состоит из двух трансформаторов и двух групп транзисторных ключей. Первый трансформатор формирует управляющее напряжение для выходных транзисторов. Поскольку ШИМ-контроллер TL генерирует сигнал слабой мощности, первая группа транзисторов усиливает этот сигнал и передает его первому трансформатору.

Вторая группа транзисторов, или выходные, нагружены на основной трансформатор, который осуществляет формирование основных напряжений питания. Такая более сложная схема управления выходными ключами применена из-за сложности управления биполярными транзисторами и защиты ШИМ-контроллера от высокого напряжения.

Пятый блок состоит из диодов Шоттки, выпрямляющих выходное напряжение трансформатора, и фильтра низких частот ФНЧ. ФНЧ состоит из электролитических конденсаторов значительной емкости и дросселей.

На выходе ФНЧ стоят резисторы, которые нагружают его. Эти резисторы необходимы для того, чтобы после выключения емкости блока питания не оставались заряженными. Также резисторы стоят и на выходе выпрямителя сетевого напряжения. Этими цепочками осуществляется работа защиты блока питания от короткого замыкания или контроль исправности выходных напряжений.

Теперь посмотрим, как на печатной плате блока питания мощностью Вт расположены элементы. На рисунке показаны:. Блок питания Вт устроен эквивалентно. Сразу бросается в глаза больших размеров плата, увеличенные радиаторы и большего размера трансформатор преобразователя. Рассмотренная схема долго применялась в блоках питаниях и сейчас иногда встречается.

Блоки питания формата АТХ с коррекцией коэффициента мощности. В рассмотренных схемах нагрузкой сети служит конденсатор, подключаемый к сети через диодный мост. Заряд конденсатора происходит только в том случае если на нем напряжение меньше чем сетевое.


Устройство и принципиальная схема блока питания для компьютера

Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману. Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов. Собирают такие блоки питания радиолюбители, как правило из компьютерных БП АТХ , которые везде доступны и дешевы. В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Как правильно переделать компьютерный блок питания ATX в Давайте рассмотрим типовую схему блока питания АТХ, мощностью Вт. У блоков .

Лабораторный источник питания из блока ATX компьютера. Блок питания для питания схемы

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие. Сайт для электриков и домашних мастеров, а также для всех, кто интересуется электротехникой, электроникой и автоматикой. Категории: Практическая электроника , Как это устроено Количество просмотров: Комментарии к статье: 4. Как устроен компьютерный блок питания и как его запустить без компьютера. Во всех современных компьютерах используются блоки питания стандарта ATX. Ранее использовались блоки питания стандарта AT, в них не было возможности удаленного запуска компьютера и некоторых схемотехнических решений.

Пошаговый ремонт компьютерного блока питания своими руками

Дорогие друзья, я расскажу вам о простом способе переделки компьютерного блока питания в зарядное устройство для автомобильных аккумуляторов своими руками. Для переделки подойдут любые компьютерные блоки питания собранные на микросхемах TL или КА с любым буквенным индексом в конце. Модель, дата производства, цвет и размер блока питания никакого значения не имеют. Самое главное, это наличие в блоке питания микросхемы TL или ее аналога КА

By Andrev , February 25, in Схемотехника для начинающих.

Устройство и принципиальная схема блока питания для компьютера

Войдите , пожалуйста. Хабр Geektimes Тостер Мой круг Фрилансим. Войти Регистрация. Сегодня хотел бы рассказать Вам о своём опыте переделки самого обычного китайского БП ATX в регулируемый источник питания со стабилизацией тока и напряжения А, В. В этой статье мы подробно рассмотрим работу ШИМ контроллера TL, обратной связи и пробежимся по модернизации схемы БП и разработке самодельной платы усилителей ошибок по напряжению и току. Честно признаться, сейчас я даже не могу назвать модель подопытного БП.

Ремонт компьютерного блока питания — пошаговые фото и видео

Сегодня комплектующие для десктопного ПК устаревают очень быстро. Единственным исключением является блок питания БП. Конструкция этого устройства не претерпела серьезных изменений за последние 15 лет, когда на рынке появились БП форм-фактора ATX. Принцип работы и принципиальная схема блока питания для компьютера мало чем отличаются у всех производителей. Типовая схема компьютерного блока питания стандарта ATX показана ниже. Сигнал к началу работы этого элемента поступает с материнской платы. До формирования управляющего импульса активным остается лишь источник дежурного питания, выдающий напряжение в 5 В. Чтобы было проще разобраться с устройством блока питания компьютера и принципом его работы, нужно рассмотреть отдельные структурные элементы.

Речь пойдёт о технологии переделки компьютерного блока питания (БП) в Схема включения БП (PS_ON) выполнена на двух транзисторах и также.

ATX БЛОК ПИТАНИЯ — СХЕМА

Войти Регистрация. Логин: Пароль Забыли? Популярные ICO. Обзор ICO Agrotechfarm: цели, преимущества, токены.

Ремонт блока питания компьютера своими руками

ВИДЕО ПО ТЕМЕ: Зарядное устройство из компьютерного блока питания (ПОДРОБНО).

С каждым днём всё более популярны среди радиолюбителей компьютерные блоки питания ATX. При относительно небольшой цене, они представляют собой мощный, компактный источник напряжения 5 и 12 В — ватт. Схемотехника этих блоков питания примерно одинакова практически у всех производителей. Главное различие между ними заключается в том, что БП в AT не поддерживает программно стандарт расширенного управления питанием.

Прежде, чем приступать к ремонту блока питания компьютера необходимо убедиться в его неисправности, так как невозможность запуска компьютера может быть обусловлена другими причинами.

Переделка компьютерного блока питания в лабораторный на ШИМ UC3843

Поиск по сайту. Источники питания. Усилители мощности. Сотовая связь. Data кабели. Бытовая техника.

Схемы компьютерных блоков питания ATX, AT и ноутбуков

Не редко при ремонте или переделке блока питания ATX в автомобильное зарядное устройство необходима схема этого блока. С учетом того, что на данный момент, моделей блоков огромное количество, мы решили собрать небольшую подборку из сети, где будут размещены типовые схемы компьютерных блоков питания ATX. На данном этапе подборка далеко не полная и будет постоянно пополняться. Если у Вас есть схемы компьютерных блоков питания ATX, которые не вошли в данную статью и желание поделиться, мы всегда будем рады добавить новые и интересные материалы.


Как устроен компьютерный блок питания и как его запустить без компьютера

  Начнем мы с Вами изучение компьютерных комплектующих, пожалуй, с блока питания. Почему бы и нет, собственно? Блоку питания часто не удаляют должного внимания, хотя он является одной из главных составляющих системного блока персонального компьютера. Ведь если с ним проблемы, то ни о какой стабильной работе ПК не может быть и речи!

  Основная функция блока питания состоит в том, чтобы преобразовывать сетевое переменное напряжение в бытовой электросети (220 V) в постоянное, номиналом в 12 (двенадцать), 5 (пять) и 3.3 (три) Вольта, которое и потребляют различные компоненты нашего компьютера.

  Блок питания компьютера отвечает за бесперебойное снабжение электроэнергией всего системного блока. Выход из строя данного узла полностью обесточивает компьютер и он перестает включаться.

Либо начинает «глючить» самым непредсказуемым образом, что тоже не кошерно 🙂 Неисправно работающий блок питания компьютера может быть причиной различных «зависаний», ошибок операционной системы и других программ, короче говоря — нестабильного и не прогнозируемого поведения системы в целом. Ниже по тексту — несколько фотографий разных блоков питания:

  Блок питания компьютера, представленный на фото выше, хорош тем, что имеет большой 12-ти сантиметровый кулер (вентилятор), расположенный снизу. При той же продуктивности работы он вращается медленнее, чем стандартные 8-ми сантиметровые вентиляторы, расположенные на задней стенке защитного кожуха блока, что приводит к меньшему шуму (при той же мощности воздушного потока).

  Поскольку при установленном блоке питания внутри системного блока его вентилятор располагается сразу над процессором и работает на выдув, — происходит дополнительный отвод тепла из зоны центрального процессора и горячий воздух выбрасывается за пределы корпуса компьютера через круглые отверстия на задней стенке блока. Долговечность таких вентиляторов (12 см) также больше именно за счет меньших оборотов и меньшего же износа подшипника. 

  На задней стенке есть также кнопка выключения подачи питания (при покупке выбирайте именно такой). Во первых, это удобно: не надо для обесточивания отсоединять шнур 220V. Во вторых, исключает самопроизвольное включение компьютера при перепадах напряжения в электросети (согласитесь, будет неприятно, если компьютер сам включится а Вы в это время отдыхаете на море! 🙂

  На фото выше тоже неплохой блок для питания компьютера. Посмотрите какой у него запас разъемов (сколько различных устройств можно одновременно запитать). Также присутствует кнопка полного отключения электропитания, а вот 8-ми сантиметровый вентилятор расположен уже с тыльной стороны корпуса устройства. 

  Качественные блоки питания имеют различные схемы и режимы защиты. Перечислим наиболее популярные из них:

  • UVP — (Under Voltage Protection — защита от понижения напряжения в сети) Срабатывает при достижении падении на 20-25%
  • OVP — (Over Voltage Protection — защита от повышения напряжения в сети) Те же 25% на любом из каналов, но в другую строну.
  • SCP — (Short Circuit Protection — защита от короткого замыкания) Часто это просто плавкий предохранитель, но есть и более серьезные решения, основанные на цифровых схемах защиты
  • OPP или  OLP  — (Over Power Protection — защита от перегрузки) Превышение суммарной нагрузки по всем каналам.
  • OCP — (Over Current Protection — защита от скачков и перепадов тока в сети, перенапряжения) Аварийно отключает БП
  • OTP — (Over Temperature Protection — защита от повышения температуры) Максимальная температура внутри блока питания не должна превышать 50 градусов Цельсия.
  • AFC — (Automatic Control Fan — автоматический контроль скорости вентилятора) Отдельная микросхема, которая часто крепится к одному из радиаторов
  • MTBF (Mean time Between Failures — среднее время безотказной работы) У качественных изделий оно составляет более 100.000 часов  

  А вот так выглядит обычный дешевый китайский блок питания без верхней защитной крышки:

  Запомните: одним из признаков качественного блока является его… вес! Ведь это логично: чем увесистее блок питания компьютера, тем больше внутри него комплектующих.

Производитель не сэкономил на количестве фильтрующих конденсаторов, на дросселях, резисторах, полевых транзисторах и не заменил большую их часть перемычками.

Опять же, толщина стенок изделия, количество и разнообразие разъемов, возможно, наличие дополнительных переходников в комплекте поставки.

  Качественный блок питания компьютера очень важен! Приведу пример: в нашем IT отделе стоит шесть компьютеров (в одном помещении). Два новых, с брендовыми блоками, остальные — так себе и один совсем устаревший (для набора документов).

И вот, при эпизодических скачках напряжения в электросети (когда свет, что называется, «мигает») мы наблюдаем одну и ту же картину: самый старый компьютер моментально перезагружается, те что поновее в 50% случаев, а два новых практически никогда.

  В чем тут секрет? Исключительно в хорошем блоке питания! Дело в том, что качественные изделия (при кратковременной просадке напряжения в электросети) могут в течение нескольких десятых миллисекунды поддерживать работу всей системы за счет разрядки конденсаторных емкостей, расположенных в них.

 При наличии напряжения, электролитические конденсаторы накапливают заряд (заряжаются), а при его падении разряжаются (отдают накопленный заряд), восполняя потерю энергии. Именно благодаря этому явлению компьютер может благополучно «пережить» кратковременную просадку напряжения.  

  О блоках питания компьютера можно добавить следующее: многие из современных изделий имеют разъем (который вставляется в материнскую плату) не на 20 контактов (пинов), как модели предыдущего поколения, а на «24 pin». Он наращивается за счет дополнительного модуля на четыре контакта, но бывает и цельным.

  Зачем это нужно? Дело в том, что развитие разъема для видеокарт стандарта PCI-Express привело к повышению силы тока, подающегося на него. Хотя для питания большинства внешних видеокарт хватает возможностей и 20-ти контактного варианта подключения, но разработчики предусмотрели дальнейшее развитие технологий и рынка и учли будущее возрастание потребляемой мощности.  

  Дополнительная мощность, подаваемая на шину PCI-Express, при использовании дополнительного 4-х контактного разъема равна 76-ти Ваттам. Но реальность сегодняшнего дня состоит в том, что для современных графических ускорителей топового уровня этого все равно не достаточно.

  Многие мощные блоки питания сейчас используют модульное подключение кабелей к одноименным разъемам. Чем это удобно? Прежде всего тем, что отпадает необходимость держать неиспользуемые кабели внутри самого системного блока. Это, в свою очередь, способствует меньшей путанице с проводами внутри корпуса (нужный кабель просто добавляется по мере необходимости).

 Отсутствие лишних кабелей, также улучшает циркуляцию воздуха в корпусе. Обычно в таких блоках питания несъемными остаются только разъемы для питания материнской платы и центрального процессора.  

  А вот, для примера, какую партию блоков питания для компьютеров мы недавно получили на нашу фирму:

  Внутри коробки также находится и силовой кабель. Сам блок «запаян» в плотный герметический целлофан. Кейс, как видите, имеет удобную ручку для транспортировки. Короче говоря, — очень функционально и элегантно! 🙂

 Есть еще один класс устройств, — это блоки питания ноутбуков. В массе своей, это элементы с постоянным питающим напряжением от 12-ти до 24-х Вольт (встречаются и 10-ти Вольтовые). 

  •   Поскольку особо тут описывать нечего, то предлагаю воспользоваться случаем и разобрать ситуацию (не столь уникальную), когда в блоке питания ноутбука перебит кабель питания. Недавно мы в нашем IT отделе проводили ремонт подобной поломки и я это событие увековечил при помощи цифрового фотоаппарата 🙂
  •   Итак, на фото ниже мы видим стандартный блок питания ноутбука, а красным отмечено то место, где чаще всего переламываются проводники в кабеле.

  Что мы должны сделать в подобной ситуации?

  1. Разобрать устройство
  2. Обрезать поврежденный участок кабеля
  3. Очистить от изоляции и припаять к плате оставшуюся часть

  Поскольку блоки питания данного типа (чаще всего) не разборные, то нам придется вскрыть наш при помощи подручных средств. В данном случае мы воспользовались обычным канцелярским ножом.

 

  Делаем разрезы по всей длине шва с обеих сторон блока в направлении, указанном стрелкой. Полностью разрезав пластмассу, и, приложив достаточное усилие, растягиваем корпус в разные стороны. Обнаруживаем защитный кожух из тонкого металла.

 

  Сдвигаем его вверх и откладываем в сторону. Под ним будет изолирующая прокладка из прозрачного пластика. Она должна препятствовать соприкосновению электрических элементов блока питания ноутбука и металла защитного кожуха.

 

  Снимаем и ее. Обрезаем поврежденную часть кабеля. После этого наш блок питания выглядит следующим образом:

 

  Теперь нам нужно с помощью паяльника выпаять из печатной платы остатки кабеля, очистить место пайки от старого припоя и подпаять туда остаток целого кабеля, предварительно сняв изоляцию с соответствующей его части. Как правильно паять, мы разбирали вот в этой статье, так что не будем повторяться.

  Очищенная контактная площадка должна выглядеть следующим образом:

 

  После завершения процесса пайки нам остается только аккуратно и внимательно собрать конструкцию обратно. А для ее надежной фиксации мы использовали обычный широкий скотч.

 

  Теперь подсоединяем блок питания к нашему ноутбуку и включаем питание. Как видите, все прошло успешно и наш ноутбук прекрасно работает!

 

  В завершении нашей статьи хочу представить Вашему вниманию две программы-калькулятора для расчета мощности блока питания компьютера.

Они в достаточно наглядной форме позволяют произвести расчет нужной мощности БП, исходя из типа различных комплектующих, которые можно подобрать тут же из удобных раскрывающихся меню, указать количество и модель жестких дисков, вентиляторов, конфигурацию оперативной памяти и т.д.

  Программа «Power Watts PC» позволяет достаточно точно рассчитать необходимую потребляемую мощность комплектующих от блока питания компьютера и поможет сориентироваться перед его покупкой.

  Внизу окна (обведено красным) нам будет показано приблизительное количество ватт, потребляемых нашей конфигурацией.

 

  Хочу представить Вам еще один очень полезный онлайн сервис. Поскольку рассмотренный нами выше калькулятор базы устаревшего «железа» не имеет, то этот его онлайн аналог Вам также может пригодиться.

  Программа и сервис просты в использовании, так что описывать работу с ними смысла нет. Главная их задача — подобрать для Вас блок питания компьютера. А вот ссылка на загрузку программы: «Power Watts PC».

  Ниже можете посмотреть небольшое видео о том, как самостоятельно заменить блок питания компьютера.

Как включить блок питания без компьютера — пошаговая инструкция + схемы и видео

Навык запуска блока питания без компьютера и материнской платы может пригодиться не только системным администраторам, но и обычным пользователям. Когда возникают неполадки с ПК, важно проверить на работоспособность отдельные его части. С этой задачей под силу справиться любому человеку. Как же включить БП?

Как включить блок питания без компьютера (без материнской платы)

Раньше были блоки питания (сокращённо БП) стандарта АТ, которые запускались напрямую. С современными устройствами АТХ такой фокус не получится. Для этого понадобится небольшой провод или обычная канцелярская скрепка, чтобы замкнуть контакты на штекере.

Слева — штекер на 24 контакта, справа — более старый штекер на 20 контактов

В современных компьютерах используется стандарт АТХ. Существует два вида разъёмов для него. Первый, более старый, имеет 20 контактов на штекере, второй — 24. Чтобы запустить блок питания, нужно знать, какие контакты замыкать. Чаще всего это зелёный контакт PS_ON и чёрный контакт заземления. 

Обратите внимание! В некоторых «китайских» версиях БП цвета проводов перепутаны, поэтому лучше ознакомиться со схемой расположения контактов (распиновкой) перед началом работы.

Пошаговая инструкция

Итак, когда вы ознакомились со схемой расположения проводов, можно приступать к запуску.

  1. Если блок питания находится в системнике — отключите все провода и вытащите его.

    Аккуратно вытащите БП из системного блока

  2. Старые 20-контактные блоки питания очень чувствительны, и их ни в коем случае нельзя запускать без нагрузки. Для этого нужно подключить ненужный (но рабочий) винчестер, кулер или просто гирлянду. Главное, чтобы БП не работал вхолостую, иначе его срок службы сильно сократится.

    Подключите к блоку питания что-нибудь для создания нагрузки, например, винчестер

  3. Внимательно посмотрите на схему контактов и сравните её с вашим штекером. Нужно замкнуть PS_ON и COM. Так как их несколько, выберите наиболее удобные для себя.

    Внимательно сравните расположение контактов на своем штекере и на схеме

  4. Изготовьте перемычку. Это может быть короткий провод с оголёнными концами или канцелярская скрепка.

    Изготовьте перемычку

  5. Замкните выбранные контакты.

    Замкните контакты PS_ON и COM

  6. Включите блок питания.

    Лампочка горит, вентилятор шумит — блок питания работает

Как запустить компьютерный блок питания — видео

Проверка работоспособности блока питания — простая задача, с которой справится обычный пользователь ПК. Достаточно только внимательно следовать инструкции. Удачи!

  • Марина Кардополова
  • Распечатать

Правильная проверка блока питания компьютера — 4 метода

Если с БП что-то не так, другие элементы компьютерной начинки не способны работать корректно. Периодическая проверка блока поможет выявить проблему на ранней стадии и быстро с ней разобраться.

Основные симптомы и неисправности

Блок питания весьма редко сбоит. Наиболее часто ломаются низкокачественные БП, которые обычно выпускают марки-ноунеймы. Нестабильное напряжение в электросети — еще одна причина поломки. В этом случае весь девайс может вообще «сгореть»‎.

Кроме того, одной из самых главных причин нестабильной работы БП является неправильно рассчитанная мощность. Каждый компонент компьютера нуждается в питании, и если необходимый минимум не соблюден — проблем избежать не получится: новый девайс не выдержит нагрузки.

Конкретных признаков того, что работоспособность потерял именно блок, по сути, нет. Но есть косвенные симптомы:

  • Не реагирует на включение: кулеры остаются без движения, лампочки не светятся, звука нет.
  • ПК не всегда получается запустить с первого раза.
  • Компьютер отключается сам на этапе загрузки ОС, тормозит.
  • Ошибка памяти.
  • Перестал работать винчестер.
  • Незнакомый шум во время работы ПК.

Для самостоятельной сборки: Совместимость процессора и материнской платы — как подобрать комплектующие: гайд в 3 разделах

Как проверить блок питания компьютера: варианты

Есть четыре работающих метода диагностики. Они описаны ниже.

Осмотр блока

Прежде, чем делать выводы и углубляться в технические дебри, первым делом стоит проверить все визуально.

Что для этого нужно:

1. Полностью обесточить системник, надеть электростатический браслет или же перчатки в целях безопасности.

2. Открыть корпус.

3. Отключить все компоненты от БП: хранилище, материнку, видеоадаптер и т. д.

Совет: перед отключением комплектующих лучше все сфотографировать, чтобы потом быстро и без проблем собрать компьютер обратно.

4. Вооружившись отверткой, отсоединить блок и разобрать его.

Нужно посмотреть, не запылился ли девайс, не вздулись ли его конденсаторы. Также стоит обратить внимание на ход вентилятора. Он должен быть свободным. Если все, на первый взгляд, в порядке — переходим к следующему пункту.

Как узнать чипсет материнской платы — 3 способа

Проверка питания

Так называемый метод скрепки — простой и эффективный способ диагностики. Естественно, перед выполнением этой процедуры тоже необходимо обесточить PC, при этом БП необходимо отключить не только от розетки, но и с помощью кнопки off/on, расположенной на самом устройстве, и отключить от него все комплектующие.

Что потом:

  • Взять скрепку для бумаги, она сыграет роль перемычки, загнуть ее дугой.
  • Найти 20-24 пиновый разъем, идущий от БП. Узнать его нетрудно: от него уходит 20 или 24 цветных проводка. Именно он служит для подсоединения к системной плате. 
  • Найти два обозначенных цифрами 15 и 16. Или же это могут быть черный и зеленый проводки, которые находятся рядом друг с другом. Как правильно, первых — несколько, а второй — один. Они свидетельствуют о подключении к материнке.
  • Плотно вставить скрепку в эти контакты для имитации процесса подключения к материнке.

  • Выпустить перемычку из рук, так как по ней может проходить ток. 
  • Снова подать питание на БП: если его кулер запустился — все в порядке.

Повысить производительность ПК: Как настроить оперативную память в БИОСе: инструкция в 4 простых разделах

Проверка с помощью мультиметра

Если способ ничего не дал и переменный ток подается на БП, стоит узнать, корректно ли он преобразует переменный ток в постоянный, необходимый внутренним частям ПК. Для этого понадобится мультиметр.

Для этого нужно: 

1. Подключить что-нибудь к БП: дисковод, HDD, кулеры и т. д.

2. Отрицательный щуп мультиметра присоединить к черному контакту пинового разъема. Это будет заземление.

3. Плюсовой вывод следует подсоединять к контактам с разноцветными проводками и сравнивать значения с референсными показателями.

Оптимальное напряжение
Розовый 3,3 В
Красный 5 В
Желтый 12 В
Допустимая погрешность ±5%

Узнайте: Как вылечить жесткий диск (HDD) и исправить битые сектора: 7 хороших программ для диагностики

Программная проверка

Кроме аппаратных решений, есть немало софта, с помощью которого можно протестировать состояние комплектующих, выполнить диагностику и получить необходимую информацию о девайсе. Одна из таких утилит — OCCT Perestroika, которая доступна на официальном сайте бесплатно. 

Достоинства программы:

  • Точное диагностирование.
  • Простой и понятный интерфейс.
  • Несложная установка.
  • Работает как с 32-, так и с 64-битными ОС.

Советы по пользованию блоком питания

От того, какой БП стоит в компьютере, зависит стабильность работы системы. На этом компоненте уж точно не стоит экономить, и уж тем более не следует доверять фирмам-ноунеймам.

Дело в том, что в этом случае заявленные характеристики, скорее всего, не совпадут с реальными. Как уже говорилось выше, при выборе блока питания необходимо правильно рассчитывать его мощность.

Для этого есть довольно удобные онлайн-калькуляторы.

Интересно: у CTG-750C-RGB есть подсветка, а еще — лишние провода от него можно отсоединить.

Не стоит создавать слишком большую нагрузку на БП. Например, даже если пользователь выбрал подходящий по мощности вариант, после апгрейда блок может не потянуть новые компоненты. Чтобы не покупать другой БП, лучше выбирать устройство с запасом в 20-30%.

Используя блок питания, важно помнить о возможных перепадах напряжения, замыкании и прочих неполадках в электросети, которые могут возникнуть неожиданно. Лучше обратить внимание на защищенные варианты: они служат дольше. Например, PS-SPR-0850FPCBEU-R не страшны перегрузки, перепады напряжения. Он также не боится короткого замыкания.

Геймерам: Игровые видеокарты для ПК: 5 критериев, как выбирать

Провести медосмотр компьютерного БП — нетрудно. Однако это требует сноровки, ведь придется разбирать корпус PC, а также сам компонент.

Как включить компьютерный блок питания без компьютера

Все компьютерные компоненты предназначены для работы в связке друг с другом, но есть один элемент системы, который в некотором роде самодостаточный и может работать сам по себе.

Речь идет о блоке питания компьютера.

Действительно, не смотря на то, что его проектируют для совместной работы с другими комплектующими компьютера, их наличие вовсе не является обязательным для его работы в отличии, например от видеокарты.

С другой стороны возникает вопрос, а зачем вообще включать компьютерный блок питания без подсоединения к компьютеру. Есть две основные причины. Во первых, чтобы проверить его работоспособность.

Допустим, вы нажимаете на кнопку включения на корпусе компьютера, а он не включается. Самое простое, что можно сделать в такой ситуации, убедиться в работоспособности блока питания.

Так же можно проверить выдаваемые напряжения под нагрузкой, если есть сбои в работе компьютера и подозрение падает на блок питания.

Во вторых, его можно использовать как мощный универсальный источник питания с разными напряжениями. Таким образом, старому блоку питания компьютера можно найти новое применение.

Зачем нам может понадобиться запустить компьютерный блок питания без помощи компьютера мы разобрались, осталось выяснить, как это сделать. Кажется логичным просто включить его в электрическую розетку. Мысль конечно верная, но этого недостаточно, он не заработает, поскольку управляется материнской платой компьютера.

Значит, нам нужно сымитировать команды от материнки, благо делается это элементарно. Для этого нам потребуется кусочек провода или кусочек гибкого металла, например канцелярская скрепка. Наша задача замкнуть два контакта в колодке, которая подает питание на материнку. Это и будет для блока питания компьютера командой на запуск.

Берем разъем для питания материнской платы и замыкаем зеленый провод (PS_ON) с любым проводом черного цвета (COM) с помощью перемычки. Штекер бывает в двух вариантах: 20-ти контактный (старый стандарт) и  24-х контактный (бывает разборным 20+4).

В данном случае это не на что не влияет, однако в блоках питания от неизвестных производителей цвета проводов могут оказаться перепутанными. Поэтому рекомендуем на всякий случай свериться со схемой ниже, чтобы случайно не замкнуть что-нибудь другое.

Нужно отметить, что компьютерные блоки питания не любят работать без нагрузки, поэтому рекомендуется всегда подключать какого-нибудь потребителя.

Проще всего взять кулер, ненужный винчестер или лампочку соответствующего напряжения и мощности.

Подключаем к блоку питания нагрузку, в данном случае корпусной кулер и кусочком красного провода с зачищенными концами соединяем зеленый и соседний черный провода.

Теперь если включить блок питания в розетку, то он сразу заработает. Чтобы отключить блок питания можно не выключать его из розетки, а просто разомкнуть сделанную нами перемычку.

Тем людям, кто собирается использовать блок питания компьютера в качестве отдельного источника питания, рекомендуется обеспечить надежный контакт в колодке с помощью пайки, ответной колодки или иным способом.

Так же для повышения удобства использования в перемычку можно встроить кнопку, которая будет управлять включением и выключением блока питания.

Блоки питания для ПК: принципы работы и основные узлы

Современные блоки питания для ПК являются довольно сложными устройствами. При покупке компьютера мало кто обращает внимание на марку предустановленного в системе БП.

Впоследствии некачественное или недостаточное питание может вызвать ошибки в программной среде, стать причиной потери данных на носителях и даже привести к выходу из строя электроники ПК.

Понимание хотя бы базовых основ и принципов функционирования блоков питания, а также умение определить качественное изделие позволит избежать различных проблем и поможет обеспечить долговременную и бесперебойную работу любого компьютера.

Структура типичного блока питания

Компьютерный блок питания состоит из нескольких основных узлов. Детальная схема устройства представлена на рисунке. При включении сетевое переменное напряжение подается на входной фильтр [1], в котором сглаживаются и подавляются пульсации и помехи. В дешевых блоках этот фильтр часто упрощен либо вообще отсутствует.

Далее напряжение попадает на инвертор сетевого напряжения [2]. В сети проходит переменный ток, который меняет потенциал 50 раз в секунду, т. е. с частотой 50 Гц.

Инвертор же повышает эту частоту до десятков, а иногда и сотен килогерц, за счет чего габариты и масса основного преобразующего трансформатора сильно уменьшаются при сохранении полезной мощности.

Для лучшего понимания данного решения представьте себе большое ведро, в котором за раз можно перенести 25 л воды, и маленькое ведерко емкостью 1 л, в котором можно перенести такой же объем за то же время, но воду придется носить в 25 раз быстрее.

Импульсный трансформатор [3] преобразовывает высоковольтное напряжение от инвертора в низковольтное. Благодаря высокой частоте преобразования мощность, которую можно передать через такой небольшой компонент, достигает 600–700 Вт. В дорогих БП встречаются два или даже три трансформатора.

Рядом с основным трансформатором обычно имеются один или два меньших, которые служат для создания дежурного напряжения, присутствующего внутри блока питания и на материнской плате всегда, когда к БП подключена сетевая вилка. Этот узел вместе со специальным контроллером отмечен на рисунке цифрой [4].

Пониженное напряжение поступает на быстрые выпрямительные диодные сборки, установленные на мощном радиаторе [5]. Диоды, конденсаторы и дроссели сглаживают и выпрямляют высокочастотные пульсации, позволяя получить на выходе почти постоянное напряжение, которое идет далее на разъемы питания материнской платы и периферийных устройств.

Типичная информационная наклейка БП. Основная задача – информирование пользователя о максимально допустимых токах по линиям питания, максимальных долговременной и кратковременной мощностях, итоговой комбинированной мощности, которую способен отдать БП Конструкция модульных разъемов блоков питания может быть самой разной. Их применение допускает отключение силовых кабелей, не востребованных в отдельно взятом системном блоке

В недорогих блоках применяется так называемая групповая стабилизация напряжений. Основной силовой дроссель [6] сглаживает только разницу между напряжениями +12 и +5 В. Подобным образом достигается экономия на количестве элементов в БП, но делается это за счет снижения качества стабилизации отдельных напряжений.

Если возникает большая нагрузка на каком-то из каналов, напряжение на нем снижается. Схема коррекции в блоке питания, в свою очередь, повышает напряжение, стараясь компенсировать недостачу, но одновременно возрастает напряжение и на втором канале, который оказался малонагруженным. Налицо своеобразный эффект качелей.

Отметим, что дорогие БП имеют выпрямительные цепи и силовые дроссели, полностью независимые для каждой из основных линий.

Кроме силовых узлов в блоке есть дополнительные – сигнальные.

Это и контроллер регулировки оборотов вентиляторов, часто монтируемый на небольших дочерних платах [7], и схема контроля за напряжением и потребляемым током, выполненная на интегральной микросхеме [9].

Она же управляет работой системы защиты от коротких замыканий, перегрузки по мощности, перенапряжения или, наоборот, слишком низкого напряжения.

Кожух блока питания с установленным 120-миллиметровым вентилятором. Часто для формирования необходимого воздушного потока используются специальные вставки-направляющие

Зачастую мощные БП оснащены активным корректором коэффициента мощности. Старые модели таких блоков имели проблемы совместимости с недорогими источниками бесперебойного питания.

В момент перехода подобного устройства на батареи напряжение на выходе снижалось, и корректор коэффициента мощности в БП интеллектуально переключался в режим питания от сети 110 В. Контроллер бесперебойного источника считал это перегрузкой по току и послушно выключался.

Так вели себя многие модели недорогих ИБП мощностью до 1000 Вт. Современные блоки питания практически полностью лишены данной «особенности».

Многие БП предоставляют возможность отключать неиспользуемые разъемы, для этого на внутренней торцевой стенке монтируется плата с силовыми разъемами [8].

При правильном подходе к проектированию такой узел не влияет на электрические характеристики блока питания.

Но бывает и наоборот, некачественные разъемы могут ухудшать контакт либо неверное подключение приводит к выходу комплектующих из строя.

Для подключения комплектующих к БП используется несколько стандартных типов штекеров: самый крупный из них – двухрядный – служит для питания материнской платы.

Ранее устанавливались двадцатиконтактные разъемы, но современные системы имеют большую нагрузочную способность, и в результате штекер нового образца получил 24 проводника, причем часто добавочные 4 контакта отсоединяются от основного набора.

Кроме силовых каналов нагрузки, на материнскую плату передаются сигналы управления (PS_ON#, PWR_OK), а также дополнительные линии (+5Vsb, -12V). Включение проводится только при наличии на проводе PS_ON# нулевого напряжения. Поэтому, чтобы запустить блок без материнской платы, нужно замкнуть контакт 16 (зеленый провод) на любой из черных проводов («земля»).

Исправный БП должен заработать, и все напряжения сразу же установятся в соответствии с характеристиками стандарта ATX. Сигнал PWR_OK служит для сообщения материнской плате о нормальном функционировании схем стабилизации БП. Напряжение +5Vsb используется для питания USB-устройств и чипсета в дежурном режиме (Standby) работы ПК, а -12 – для последовательных портов RS-232 на плате.

На данном рисунке показана распиновка контактов блоков питания, традиционно используемых в современных ПК

Стабилизатор процессора на материнской плате подключается отдельно и использует четырех- либо восьмиконтактный кабель, подающий напряжение +12 В. Питание мощных видеокарт с интерфейсом PCI-Express осуществляется по одному 6-контактному либо по двум разъемам для старших моделей.

Существует также 8-контактная модификация данного штекера. Жесткие диски и накопители с интерфейсом SATA используют собственный тип контактов с напряжениями +5, +12 и +3,3 В.

Для старых устройств подобного рода и дополнительной периферии имеется 4-контактный разъем питания с напряжениями +5 и +12 В (так называемый molex).

Основное потребление мощности всех современных систем, начиная с Socket 775, 754, 939 и более новых, приходится на линию +12 В. Процессоры могут нагружать данный канал токами до 10–15 А, а видеокарты до 20–25 А (особенно при разгоне). В итоге мощные игровые конфигурации с четырехъядерными CPU и несколькими графическими адаптерами запросто «съедают» 500–700 Вт.

Материнские платы со всеми распаянными на РСВ контроллерами потребляют сравнительно мало (до 50 Вт), оперативная память довольствуется мощностью до 15–25 Вт для одной планки. А вот винчестеры, хоть они и неэнергоемкие (до 15 Вт), но требуют качественного питания.

Чувствительные схемы управления головками и шпинделем легко выходят из строя при превышении напряжения +12 В либо при сильных пульсациях.

Качественное тестирование современных блоков питания можно провести лишь на специализированных стендах. На фото показана электронная начинка одного из них. Для теплового рассеивания больших мощностей применяется массивный радиатор, обдуваемый скоростными вентиляторами

На наклейках блоков питания часто указывают наличие нескольких линий +12 В, обозначаемых как +12V1, +12V2, +12V3 и т. д. На самом деле в электрической и схемотехнической структуре блока они в абсолютном большинстве БП представляют собой один канал, разделенный на несколько виртуальных, с различным ограничением по току.

Данный подход применен в угоду стандарту безопасности EN-60950, который запрещает подводить мощность свыше 240 ВА на контакты, доступные пользователю, поскольку при возникновении замыкания возможны возгорания и прочие неприятности. Простая математика: 240 ВА/12 В = 20 А.

Поэтому современные блоки обычно имеют несколько виртуальных каналов с ограничением по току каждого в районе 18–20 А, однако общая нагрузочная способность линии +12 В не обязательно равна сумме мощностей +12V1, +12V2, +12V3 и определяется возможностями используемого в конструкции преобразователя.

Все заявления производителей в рекламных буклетах, расписывающие огромные преимущества от множества каналов +12 В, – не более чем умелая маркетинговая уловка для непосвященных.

Многие новые блоки питания выполнены по эффективным схемам, поэтому выдают большую мощность при использовании маленьких радиаторов охлаждения. Примером может служить распространенная платформа FSP Epsilon (FSPxxx-80GLY/GLN), на базе которой построены БП нескольких производителей (OCZ GameXStream, FSP Optima/Everest/Epsilon).

Современные мощные видеокарты потребляют большое количество энергии, поэтому давно подключаются отдельными кабелями к БП независимо от материнской платы. Новейшие модели оснащаются шести- и восьмиконтактными штекерами. Часто последний имеет отстегивающуюся часть, для удобства подсоединения к меньшим разъемам питания видеокарт.

Надеемся, что после рассмотрения основных узлов блоков питания читателям уже понятно: за последние годы конструкция БП стала значительно сложнее, она подверглась модернизации и сейчас для полноценного всестороннего тестирования требует квалифицированного подхода и наличия специального оборудования.

Невзирая на общее повышение качества доступных рядовому пользователю блоков, существуют и откровенно неудачные модели. Поэтому при выборе конкретного экземпляра БП для вашего компьютера нужно ориентироваться на подробные обзоры данных устройств и внимательно изучать каждую модель перед покупкой.

Ведь от блока питания зависит сохранность информации, стабильность и долговечность работы компонентов ПК в целом.

Суммарная мощность – долговременная мощность потребления нагрузкой, допустимая для блока питания без его перегрева и повреждений. Измеряется в ваттах (Вт, W).

Конденсатор, электролит – устройство для накопления энергии электрического поля. В БП используется для сглаживания пульсаций и подавления помех в схеме питания.

Дроссель – свернутый в спираль проводник, обладающий значительной индуктивностью при малой собственной емкости и небольшом активном сопротивлении. Данный элемент способен запасать магнитную энергию при протекании электрического тока и отдавать ее в цепь в моменты больших токовых перепадов.

Полупроводниковый диод – электронный прибор, обладающий разной проводимостью в зависимости от направления протекания тока. Применяется для формирования напряжения одной полярности из переменного. Быстрые типы диодов (диоды Шоттки) часто используются для защиты от перенапряжения.

Трансформатор – элемент из двух или более дросселей, намотанных на единое основание, служащий для преобразования системы переменного тока одного напряжения в систему тока другого напряжения без существенных потерь мощности.

ATX – международный стандарт, описывающий различные требования к электрическим, массогабаритным и другим характеристикам корпусов и блоков питания.

Пульсации – импульсы и короткие всплески напряжения на линии питания. Возникают из-за работы преобразователей напряжения.

Коэффициент мощности, КМ (PF) – соотношение активной потребляемой мощности от электросети и реактивной. Последняя присутствует всегда, когда ток нагрузки по фазе не совпадает с напряжением сети либо если нагрузка является нелинейной.

Активная схема коррекции КМ (APFC) – импульсный преобразователь, у которого мгновенный потребляемый ток прямо пропорционален мгновенному напряжению в сети, то есть имеет только линейный характер потребления. Этот узел изолирует нелинейный преобразователь самого БП от электросети.

Пассивная схема коррекции КМ (PPFC) – пассивный дроссель большой мощности, который благодаря индуктивности сглаживает импульсы тока, потребляемые блоком. На практике эффективность подобного решения довольно низкая.

Как работает блок питания компьютера | Блоки питания компьютера | Блог

Большинство рассказов про блоки питания начинается с подчеркивания их важнейшей и чуть ли не главенствующей роли в составе компьютера. Это не так. БП — просто один из компонентов системы, без которого она не будет работать. Он обеспечивает преобразование переменного напряжения из сети в необходимые для работы ПК стабилизированные напряжения. Все блоки можно разделить на импульсные и линейные. Современные компьютерные блоки выполнены по импульсной схеме. 

Линейные блоки питания

Сетевое напряжение поступает на первичную обмотку трансформатора, а со вторичной мы снимаем уже пониженное до нужных пределов переменное напряжение. Далее оно выпрямляется, следом стоит фильтр (в данном случае нарисован обычный электролитический конденсатор) и схема стабилизации. Схема стабилизации необходима, так как напряжение на вторичной обмотке напрямую зависит от входного напряжения, а оно только по ГОСТу может меняться в пределах ±10 %, а в реальности — и больше.


Основные достоинства линейных блоков питания — простая конструкция и низкий уровень помех (поэтому аудиофилы часто используют их в усилителях). Недостаток таких БП — габариты и невысокий КПД. Собрать БП мощностью 400 и более Вт по такой схеме возможно, но он будет иметь устрашающие размеры, вес и стоимость (медь нынче дорогая).

Импульсные блоки питания

Далее в тексте сократим название «импульсный источник питания» до ИИП. Такие блоки питания более сложны, но гораздо более компактны. Для примера на фото ниже показана пара трансформаторов.

Слева — отечественный сетевой с номинальной мощностью 17 Вт, справа — выпаянный из компьютерного БП мощностью 450 Вт. Кстати, отечественный еще и весит раз в 5 больше.

В ИИП сетевое напряжение сначала выпрямляется и сглаживается фильтром, а потом опять преобразуется в переменное, но уже гораздо более высокой частоты (несколько десятков килогерц). А затем оно понижается трансформатором. 

Так выглядит плата вживую:

Фильтр

Фильтр в блоке питания двунаправленный: он поглощает разного рода помехи: как созданные самим БП, так и приходящие из сети. В самых бюджетных БП предприимчивые китайцы вместо дросселей распаивали перемычки (или, как их называют ремонтники, «пофигисторы»), а конденсаторы не ставили вообще. Чем это плохо: помехи будут влиять на другую аппаратуру, подключенную к данной сети, а напряжение на выходе получится с «мусором». Сейчас таких блоков уже немного. Встречается также экономия на размерах: фильтр как бы есть, но работать он будет кое-как.

Фильтр работает эффективнее, когда он находится как можно ближе к источнику помех. Поэтому часть фильтра зачастую располагают прямо на сетевой розетке.

На картинке изображен фильтр в минимальной комплектации. F1 — предохранитель, VDR1 — варистор, N1 — термистор, Х2 — Х-конденсатор, Y1 — Y-конденсаторы, L1 — синфазный дроссель. Резистор R1 служит для разряда конденсатора Х2.

Еще одна опасная для жизни пользователей экономия — когда вместо специальных Х- и Y-конденсаторов ставят обычные. Впрочем, встречается она редко. Автор видел такое всего один раз и очень давно. Экономия очень незначительна, а риск для пользователей очень велик, так как, например, Y-конденсаторы подключаются одной «ногой» на фазу, а другой — на корпус. В случае пробоя конденсатора можно получить опасное для жизни напряжение на корпусе.

Корректор коэффициента мощности

Не будем вдаваться в подробности, поскольку статьи на эту тему уже были: раз и два. Скажем только, что корректор коэффициента мощности должен быть во всех компьютерных БП, желательно активного типа (A-PFC). 

Плюсы корректора:
1) Снижается нагрузка на сеть.
2) Повышенный диапазон входного напряжения (чаще всего, но не всегда).
3) Улучшение работы инвертора.

Минусы:
1) Увеличивается сложность конструкции, соответственно, снижается надежность.
2) Возможны проблемы при работе с UPS.

Преобразователь

Обычно используется мостовая или полумостовая схема. Чаще всего встречается полумост. На картинке ниже он изображен в упрощенном виде.

Как видно по схеме, транзисторы открываются поочередно с небольшой задержкой, чтобы не случилось ситуации, когда оба окажутся открыты. В таком случае получаем на первичной обмотке переменный ток высокой частоты, а на вторичной — уже пониженный до нужной величины.

В топовых блоках применяются резонансные преобразователи (LLC), которые имеют более высокий КПД, но они технически сложнее.

Выпрямление и стабилизация выходных напряжений

На выходе БП имеется четыре напряжения:
1) 12 В — отвечает за питание процессора, видеокарты, HDD, вентиляторов.
2) 5 В — питание логики материнской платы, накопителей, USB.
3) 3,3 В — питание оперативной памяти.
4) -12 В — считается атавизмом и не используется в современных компьютерах. 

По способу выпрямления и стабилизации блоки можно поделить на четыре группы:

1) Выпрямление с помощью диодов Шоттки (полупроводниковый прибор, у которого при прямом включении падение напряжения будет в три-четыре раза меньше, чем у обычных кремниевых), групповая стабилизация.

Внешне их можно определить по двум крупным дросселям. На одном — три обмотки (12 В, 5 В и тонкий провод -12 В). 


Второй имеет меньший размер. Это отдельная стабилизация канала 3,3 В. Сейчас такие БП часто встречаются в основном в бюджетном сегменте. Например:

Вот, например, фото такого блока. Очень бюджетно:

2) Выпрямление с помощью диодов Шоттки, раздельная стабилизация на магнитных усилителях. Внешне их можно отличить по наличию в выходных цепях трех крупных дросселей. Данная схема в современных БП не используется: ее вытеснили более производительные решения. Пик такой схемотехники — начало 2000-х годов.

3) Выпрямление канала 12 В с помощью диодов Шоттки. Напряжения 5 В и 3,3 В получают из 12 В с помощью преобразователей DC-DC. Развитие электроники позволило производить недорогие и эффективные преобразователи такого рода. БП будет ненамного эффективнее обычных с групповой стабилизацией (так как нагрузка на низковольтные каналы небольшая), но стабильность напряжений выше. 

4) Канал 12 В — синхронный выпрямитель на MOSFET (полевой транзистор с изолированным затвором), остальные напряжения получают при помощи преобразователей DC-DC.


Это наиболее эффективная и точная, но и более сложная схемотехника. В соответствии с ней делают все топовые блоки питания. Отклонения выходных напряжений у таких блоков укладываются в один-два процента при допустимых 5 %.  

Дежурный источник питания

Представляет из себя маломощный ИИП с напряжением на выходе 5 В. Он работает все время, пока БП подключен к сети. Обеспечивает питание микросхем внутри блока и питание логики на материнской плате, а также подает питание на порты USB при выключенном компьютере.

Супервизор

Микросхема обеспечивает функционирование основных защит в блоке (превышения выходных напряжений, превышение выходного тока и прочее), управляет включением и выключением блока по сигналам с материнской платы.


Теперь вы представляете, как обстоит дело со схемотехникой в наши дни. А что нас ждет в будущем? В мае 2020 года компания Интел выпустила новый ATX12VO (12 V Only) Desktop Power Supply Disign Guide в котором описывает совершенно новые БП: у блока осталось только одно напряжение — 12 В. Нужные напряжения будет преобразовывать материнская плата. Дежурный источник питания с напряжения 5 В перейдет на 12 В. При этом размеры блоков АТХ остаются такими же. Это сделано для того, чтобы сохранить совместимость со старыми корпусами. Правда, пока производители не торопятся переходить на этот формфактор. 

Блок питания — Системный блок

Компьютерный блок питания (или, сокращенно, блок питания, БП) — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электроэнергией постоянного тока, путём преобразования сетевого напряжения до требуемых значений.

Основной принцип работы блока питания

Основной принцип работы импульсных блоков питания заключается в выпрямлении сетевого напряжения с последующим преобразованием его в переменное высокочастотное напряжение прямоугольной формы, которое понижается трансформатором до нужных значений, выпрямляется и фильтруется.Таким образом, основную часть схемы любого компьютерного блока питания, можно разделить на несколько узлов, которые производят определённые электрические преобразования. 

Основные узлы блока питания

  • Сетевой выпрямитель. Выпрямляет переменное напряжение электросети (110/230 вольт).

  • Высокочастотный преобразователь (Инвертор). Преобразует постоянное напряжение, полученное от выпрямителя в высокочастотное напряжение прямоугольной формы. К высокочастотному преобразователю отнесём и силовой понижающий импульсный трансформатор. Он понижает высокочастотное переменное напряжение от преобразователя до напряжений, требуемых для питания электронных узлов компьютера.

  • Узел управления. Является «мозгом» блока питания. Отвечает за генерацию импульсов управления мощным инвертором, а также контролирует правильную работу блока питания (стабилизация выходных напряжений, защита от короткого замыкания на выходе и пр.).

  • Промежуточный каскад усиления. Служит для усиления сигналов от микросхемы ШИМ-контроллера и подачи их на мощные ключевые транзисторы инвертора (высокочастотного преобразователя).

  • Выходные выпрямители. С помощью выпрямителя происходит выпрямление — преобразование переменного низковольного напряжения в постоянное. Здесь же происходит стабилизация и фильтрация выпрямленного напряжения.

Это основные части блока питания компьютера. Их можно найти в любом импульсном блоке питания, начиная от простейшего зарядника для сотового телефона и заканчивая мощными сварочными инверторами. Отличия заключаются лишь в элементной базе и схемотехнической реализации устройства.

Характеристики блока питания.

Основной характеристикой БП является его мощность. Она должна быть равна суммарной мощности, которую потребляют комплектующие ПК при максимальной вычислительной нагрузке, а при нормальном выборе, т.е при адекватном покупателе, хорошо, если она превышает этот показатель на 100 Вт и более. В противном случае компьютер может выключаться в моменты пиковой нагрузки, перезагружаться или, что гораздо хуже, блок питания сгорит, а если, сгорая, подаст (на материнку, винчестеры, DVD±RW) высокое напряжение, то в «мир иной» он отойдет не один, а обязательно в дружной кампании этих устройств (частая практика).

Одна из таких программ — Power Watts PC, бесплатная, русскоязычная и вполне адекватнаяВы можете самостоятельно сделать ориентировочные расчеты мощности, которая необходима для питания Вашего компьютера. Каждый компонент системы потребляет какое-то количество энергии, сложив значения энергопотребления для всех комплектующих внутри корпуса ПК, и добавив 20% про запас, Вы получите желаемую мощность блока питания. Кроме того, в Интернете можно найти специальные «программы-калькуляторы», для расчетов такого рода.Как уже говорилось и Вы сами поняли, этот калькулятор позволяет  рассчитать мощность блока питания для ПК любой конфигурации.Интерфейс программы прост и понятен, поэтому Вы без труда разберетесь в ней и рассчитаете необходимую мощность.

  • КПД(Коэффициент полезного действия)

Высокая мощность, сама по себе не гарантирует качественной работы. Помимо нее, имеют значение и другие параметры, например – КПД. Этот показатель говорит о том, какая доля потребляемой блоком питания энергии из электрической сети достается комплектующим компьютера. Чем выше КПД, тем меньше греется блок питания (и нет необходимости усиленного охлаждения с помощью шумного вентилятора), т.е. более эффективно преобразует энергию из электрической розетки в заявленные ватты и, конечно, тем меньше расходует энергии впустую, на обогрев.

КПД блока питания оценивается своей системой медалей — стандарт «80 PLUS»

.Этот стандарт подразумевает несколько уровней эффективности: Platinum, Gold, Silver и Bronze, и спецификации каждого из них, имеют собственный набор требований. Разумеется, блоки питания «80 PLUS Platinum» или «80 PLUS Gold» будут более эффективными (КПД 90% и выше), чем их обычные собратья, но они и стоят дороже. Поэтому здесь лучше воспользоваться правилом — выбирайте модель с сертификацией «80 PLUS», а уровень «медали» подбирайте, исходя из вашего бюджета (но не ниже бронзы).Кроме всего прочего, информация по всем модулям стандарта «80 PLUS», доступна на сайте организации 80plus.org. Производители сертифицируют по нему заведомо качественные модели, поскольку блоки питания с дешёвой схемотехникой просто не пройдут по критериям. Именно по этой причине данный сертификат является дополнительной гарантией качества, т.е ищите БП с ним.

Power Factor Correction

Значительно поднять КПД («бэпэшника») позволяет модуль PFC, что по-русски означает «коррекция фактора мощности». Модуль PFC — специальный элемент, предназначенный для коррекции коэффициента мощности и направленный на защиту сети. PFC условно делится на активный (Active) и пассивный (Passive).Рекомендуем покупать блоки питания с PFC (они позволяют добиться высокого уровня КПД — до 95%), причем активным (Active), ибо APFC, дополнительно выравнивает входное напряжение, что в свою очередь позволяет стабильно работать всем устройствам, выводящим аналоговый сигнал из компьютера.Заметим, что модели с APFC немного дороже, чем их «пассивные собратья», но разница в эффективности, позже отразится в Ваших счетах за электроэнергию.

  • Максимальная сила тока на отдельных линиях

Общая мощность блока питания складывается из мощностей, которые он может обеспечить на отдельных линиях питания. Если нагрузка на одну из них превысит допустимый предел, то система потеряет стабильность, даже если суммарная потребляемая мощность будет далека от номинала. Всего (как Вы уже знаете) существуют три линии 12В; 5В и 3.3В; чуть подробнее о них.12-вольт подается, прежде всего, на мощные потребители электроэнергии – видеокарту и центральный процессор. Блок питания должен обеспечивать на этой линии как можно большую мощность. Для питания высокопроизводительных видеокарт используются две 12-вольтовые линии. Линии с напряжением 5В снабжают питанием материнскую плату, жесткие диски и оптические приводы ПК. Линии на 3.3В, идут только на материнскую плату и обеспечивают питанием оперативную память.Также стоит сказать, что нагрузка на линии в современных системах, как правило, неравномерна и здесь стоит учитывать, что «тяжелее» всех приходится 12-вольтовому каналу, особенно в конфигурациях с мощными видеокартами, однако про линии 5В/3.3В также забывать не стоит, их суммарный ток не должен превышать 30% от общего тока блока питания.

При указании габаритов БП производители, как правило, ограничиваются обозначением форм-фактора, который должен отвечать стандарту ATX 2.X. Смотрите это на самом блоке питания (стрелка 1 на изображении) или на прилагающейся к нему документации. Также при покупке советуем сравнивать его габариты с размерами «посадочного места» в корпусе вашего ПК. Обратите внимание, если на корпусе стоит надпись «noise killer» (стрелка 2 на изображении), то вентилятор вращается по возможности медленно, что снижает уровень звука. Скорость же вращения регулируется специальным температурным датчиком.

Старый блок питания (стандарт АТ), который включает и выключает компьютер при помощи обычного сетевого выключателя, далеко не самый лучший вариант. Сейчас его покупку можно оправдать только тем, что у вас дома «древняя» машина, в которую физически нельзя вставить более современный модуль.Лучше выбирать АТХ-устройство, которое работает только после команды материнской платы. Такая технология дает возможность убрать из блока высоковольтный провод и улучшить безопасность. Даже если блок АТХ сгорит, вероятность, что пострадает что-то еще, намного ниже. В свою очередь АТХ стандарт насчитывает несколько разных модификаций. Версия АТХ 2.03, выпускается для мощных компьютеров с большим потреблением энергии.

  • Система Cable-managment.

Это название объединяет способ подключения кабелей к блоку питания. Суть технологии в том, что к модулю подключаются только нужные кабели, идущие в комплекте поставки.

Например, блок обладает множеством кабелей, которые позволяют подключить, скажем, от 3 до 5 жестких дисков, до 2—3 видеокарт и т.п. Но ведь обычно в компьютере установлено максимум три винчестера и одна видеокарта. В этом случае получается, что все эти неиспользуемые кабели просто висят в системном блоке и только мешают охлаждению, т.к. затрудняют циркуляцию воздуха.  Технология модульного подключения кабелей позволяет, по мере необходимости, подключать только нужные в данный момент кабели, а ненужные оставлять «вне». У таких модулей несъемными являются только основные кабели, например, для питания системной платы, процессора и один кабель для дополнительного питания видеокарты.

БП должен не только обеспечивать необходимую мощность, но и правильно подводить напряжение ко всем компонентам, а для этого нужны соответствующие разъемы.Например, разъемов Molex должно быть хотя бы не меньше шести штук (хотя можно расширять спец.разветвителем, но его надо покупать). В компьютере с двумя жесткими дисками и парой оптических приводов уже задействованы четыре таких разъема, а к Molex могут подключаться и другие устройства – например, корпусные вентиляторы и «древние» видеокарты с интерфейсом AGP.  Длина кабелей питания должна быть достаточной для того, чтобы они могли дотянуться до всех необходимых разъемов. Еще одна немаловажная дополнительная опция, наличие которой крайне желательно, – оплетка у кабеля.Она, во-первых, существенно упрощает монтаж компьютера и подключение новых устройств, а во-вторых, позволяет избежать зажимов и переломов кабелей вследствие их запутывания.

  • Охлаждение и шум

Во время работы, компоненты блока питания сильно нагреваются и требуют усиленного охлаждения. Для этого используются вентиляторы (встроенные в его корпус) и радиаторы. Большинство используют один вентилятор размера 80 или 120 мм (которые работают довольно шумно), причем, чем выше мощность БП, тем более интенсивный поток воздуха требуется для того, чтобы его охладить. Для снижения уровня шума в качественных системах используются схемы контроля скорости вращения вентиляторов в соответствии с температурой внутри модуля блока.

Некоторые модели позволяют пользователю самому определять скорость вращения вентилятора с помощью регулятора на задней стенке, также есть модели, которые продолжают «прокачивать» воздух спустя некоторое время после выключения компьютера. Благодаря этому, компоненты компьютера быстрее остывают после работы.

Качественные блоки питания оснащаются различными системами для защиты от скачков напряжения, перегрузки, перегрева и короткого замыкания. Эти функции защищают не только блок питания, но и другие компоненты компьютера.Заметим, что наличие таких систем в блоке питания не исключает необходимости использования источников бесперебойного питания и сетевых фильтров.

  • Время наработки на отказ

Как правило, гарантия в N-ое количество часов работы – один из признаков качественного изделия. Да, такие модели стоят несколько дороже, но зато производитель определяет гарантированное время работы устройства. Оптимальным вариантом здесь является срок 3—5 лет. Информация об этом содержится в руководстве по эксплуатации, а так же продублирована на упаковке.

Принцип работы компьютерного блока питания

Статья написана на основе книги А.В.Головкова и В.Б Любицкого»БЛОКИ ПИТАНИЯ ДЛЯ СИСТЕМНЫХ МОДУЛЕЙ ТИПА IBM PC-XT/AT» Материал взят с сайта интерлавка. Переменное напряжение сети подается через сетевой выключатель PWR SW через сетевой предохранитель F101 4А, помехоподавляющие фильтры, образованные элементами С101, R101, L101, С104, С103, С102 и дроссели И 02, L103 на: 
• выходной трехконтактный разъем, к которому может подстыковываться кабель питания дисплея;
• двухконтактный разъем JP1, ответная часть которого находится на плате.
С разъема JP1 переменное напряжение сети поступает на:
• мостовую схему выпрямления BR1 через терморезистор THR1;
• первичную обмотку пускового трансформатора Т1.

На выходе выпрямителя BR1 включены сглаживающие емкости фильтра С1, С2. Терморезистор THR ограничивает начальный бросок зарядного тока этих конденсаторов. Переключатель 115V/230V SW обеспечивает возможность питания импульсного блока питания как от сети 220-240В, так и от сети 110/127 В.

Высокооомные резисторы R1, R2, шунтирующие конденсаторы С1, С2 являются симметрирующими (выравнивают напряжения на С1 и С2), а также обеспечивают разрядку этих конденсаторов после выключения импульсного блока питания из сети. Результатом работы входных цепей является появление на шине выпрямленного напряжения сети постоянного напряжения Uep, равного +310В, с некоторыми пульсациями. В данном импульсном блоке питания используется схема запуска с принудительным (внешним) возбуждением, которая реализована на специальном пусковом трансформаторе Т1, на вторичной обмотке которого после включения блока питания в сеть появляется переменное напряжение с частотой питающей сети. Это напряжение выпрямляется диодами D25, D26, которые образуют со вторичной обмоткой Т1 двухполупериодную схему выпрямления со средней точкой. СЗО — сглаживающая емкость фильтра, на которой образуется постоянное напряжение, используемое для питания управляющей микросхемы U4. 

В качестве управляющей микросхемы в данном импульсном блоке питания традиционно используется ИМС TL494.

Питающее напряжение с конденсатора СЗО подается на вывод 12 U4. В результате на выводе 14 U4 появляется выходное напряжение внутреннего опорного источника Uref=-5B, запускается внутренний генератор пилообразного напряжения микросхемы, а на выводах 8 и 11 появляются управляющие напряжения, которые представляют собой последовательности прямоугольных импульсов с отрицательными передними фронтами, сдвинутые друг относительно друга на половину периода. Элементы С29, R50, подключенные к выводам 5 и 6 микросхемы U4 определяют частоту пилообразного напряжения, вырабатываемого внутренним генератором микросхемы. 

Согласующий каскад в данном импульсном блоке питания выполнен по бестранзисторной схеме с раздельным управлением. Напряжение питания с конденсатора СЗО подается в средние точки первичных обмоток управляющих трансформаторов Т2, ТЗ. Выходные транзисторы ИМС U4 выполняют функции транзисторов согласующего каскада и включены по схеме с ОЭ. Эмиттеры обоих транзисторов (выводы 9 и 10 микросхемы) подключены к «корпусу». Коллекторными нагрузками этих транзисторов являются первичные полуобмотки управляющих трансформаторов Т2, ТЗ, подключенные к выводам 8, 11 микросхемы U4 (открытые коллекторы выходных транзисторов). Другие половины первичных обмоток Т2, ТЗ с подключенными к ним диодами D22, D23 образуют цепи размагничивания сердечников этих трансформаторов.

Трансформаторы Т2, ТЗ управляют мощными транзисторами полумостового инвертора. 

Переключения выходных транзисторов микросхемы вызывают появление импульсных управляющих ЭДС на вторичных обмотках управляющих трансформаторов Т2, ТЗ. Под действием этих ЭДС силовые транзисторы Q1, Q2 попеременно открываются с регулируемыми паузами («мертвыми зонами»). Поэтому через первичную обмотку силового импульсного трансформатора Т5 протекает переменный ток в виде пилообразных токовых импульсов. Это объясняется тем, что первичная обмотка Т5 включена в диагональ электрического моста, одно плечо которого образовано транзисторами Q1, Q2, а другое — конденсаторами С1, С2. Поэтому при открывании какого-либо из транзисторов Q1, Q2 первичная обмотка Т5 оказывается подключена к одному из конденсаторов С1 или С2, что и обуславливает протекание через нее тока в течение всего времени, пока открыт транзистор.
Демпферные диоды D1, D2 обеспечивают возврат энергии, запасенной в индуктивности рассеяния первичной обмотки Т5 за время закрытого состояния транзисторов Q1, Q2 обратно в источник (рекуперация).

Цепочка С4, R7, шунтирующая первичную обмотку Т5, способствует подавлению высокочастотных паразитных колебательных процессов, которые возникают в контуре, образованном индуктивностью первичной обмотки Т5 и ее меж-витковой емкостью, при закрываниях транзисторов Q1, Q2, когда ток через первичную обмотку резко прекращается. 

Конденсатор СЗ, включенный последовательно с первичной обмоткой Т5, ликвидирует постоянную составляющую тока через первичную обмотку Т5, исключая тем самым нежелательное подмагничивание его сердечника.

Резисторы R3, R4 и R5, R6 образуют базовые делители для мощных транзисторов Q1, Q2 соответственно и обеспечивают оптимальный режим их переключения с точки зрения динамических потерь мощности на этих транзисторах. 

Протекание переменного тока через первичную обмотку Т5 обуславливает наличие знакопеременных прямоугольных импульсных ЭДС на вторичных обмотках этого трансформатора.
Силовой трансформатор Т5 имеет три вторичные обмотки, каждая из которых имеет вывод от средней точки.
Обмотка IV обеспечивает получение выходного напряжения +5В. Диодная сборка SD2 (полумост) образует с обмоткой IV двухполупериодную схему выпрямления со средней точкой (средняя точка обмотки IV заземлена).
Элементы L2, СЮ, С11, С12 образуют сглаживающий фильтр в канале +5В.
Для подавления паразитных высокочастотных колебательных процессов, возникающих при коммутациях диодов сборки SD2, эти диоды за-шунтированы успокаивающими RC-цепочками С8, R10nC9, R11.

Диоды сборки SD2 представляют собой диоды с барьером Шоттки, чем достигается необходимое быстродействие и повышается КПД выпрямителя. 

Обмотка III совместно с обмоткой IV обеспечивает получение выходного напряжения +12В вместе с диодной сборкой (полумостом) SD1. Эта сборка образует с обмоткой III двухполупериодную схему выпрямления со средней точкой. Однако средняя точка обмотки III не заземлена, а подключена к шине выходного напряжения +5В. Это даст возможность использовать диоды Шоттки в канале выработки +12В, т.к. обратное напряжение, прикладываемое к диодам выпрямителя при таком включении, уменьшается до допустимого для диодов Шоттки уровня.

Элементы L1, С6, С7 образуют сглаживающий фильтр в канале +12В. 

Резисторы R9, R12 предназначены для ускорения разрядки выходных конденсаторов шин +5В и +12В после выключения ИБП из сети.
RC-цепочка С5, R8 предназначена для подавления колебательных процессов, возникающих в паразитном контуре, образованном индуктивностью обмотки III и ее межвитковой емкостью.
Обмотка И с пятью отводами обеспечивает получение отрицательных выходных напряжений -5В и-12В.
Два дискретных диода D3, D4 образуют полумост двухполупериодного выпрямления в канале выработки -12В, а диоды D5, D6 — в канале -5В.
Элементы L3, С14 и L2, С12 образуют сглаживающие фильтры для этих каналов.
Обмотка II, также как и обмотка III, зашунтиро-вана успокоительной RC-цепочкой R13, С13.

Средняя точка обмотки II заземлена. 

Стабилизация выходных напряжений осуществляются разными способами в разных каналах.
Отрицательные выходные напряжения -5В и -12В стабилизируются при помощи линейных интегральных трехвыводных стабилизаторов U4 (типа 7905) и U2 (типа 7912).
Для этого на входы этих стабилизаторов подаются выходные напряжения выпрямителей с конденсаторов С14, С15. На выходных конденсаторах С16, С17 получаются стабилизированные выходные напряжения -12В и -5В.
Диоды D7, D9 обеспечивают разрядку выходных конденсаторов С16, С17 через резисторы R14, R15 после выключения импульсного блока питания из сети. Иначе эти конденсаторы разряжались бы через схему стабилизаторов, что нежелательно.
Через резисторы R14, R15 разряжаются и конденсаторы С14, С15.

Диоды D5, D10 выполняют защитную функцию в случае пробоя выпрямительных диодов. 

Если хотя бы один из этих диодов (D3, D4, D5 или D6) окажется «пробитым», то в отсутствие диодов D5, D10 ко входу интегрального стабилизатора U1 (или U2) прикладывалось бы положительное импульсное напряжение, а через электролитические конденсаторы С14 или С15 протекал бы переменный ток, что привело бы к выходу их из строя.
Наличие диодов D5, D10 в этом случае устраняет возможность возникновения такой ситуации, т.к. ток замыкается через них.
Например, в случае, если «пробит» диод D3, положительная часть периода, когда D3 должен быть закрыт, ток замкнется по цепи: к-а D3 — L3 -D7- D5- «корпус».
Стабилизация выходного напряжения +5В осуществляется методом ШИМ. Для этого к шине выходного напряжения +5В подключен измерительный резистивный делитель R51, R52. Сигнал, пропорциональный уровню выходного напряжения в канале +5В, снимается с резистора R51 и подается на инвертирующий вход усилителя ошибки DA3 (вывод 1 управляющей микросхемы). На прямой вход этого усилителя (вывод 2) подается опорный уровень напряжения, снимаемый с резистора R48, входящего в делитель VR1, R49, R48, который подключен к выходу внутреннего опорного источника микросхемы U4 Uref=+5B. При изменениях уровня напряжения на шине +5В под воздействием различных дестабилизирующих факторов происходит изменение величины рассогласования (ошибки) между опорным и контролируемым уровнями напряжения на входах усилителя ошибки DA3. В результате ширина (длительность) управляющих импульсов на выводах 8 и 11 микросхемы U4 изменяется таким образом, чтобы вернуть отклонившееся выходное напряжение +5В к номинальному значению (при уменьшении напряжения на шине +5В ширина управляющих импульсов увеличивается, а при увеличении этого напряжения -уменьшается).
Устойчивая (без возникновения паразитной генерации) работа всей петли регулирования обеспечивается за счет цепочки частотно-зависимой отрицательной обратной связи, охватывающей усилитель ошибки DA3. Эта цепочка включается
между выводами 3 и 2 управляющей микросхемы U4 (R47, С27).

Выходное напряжение +12В в данном ИБП не стабилизируется. 

Регулировка уровня выходных напряжений в данном ИБП производится только для каналов +5В и +12В. Эта регулировка осуществляется за счет изменения уровня опорного напряжения на прямом входе усилителя ошибки DA3 при помощи подстроечного резистора VR1.
При изменении положения движка VR1 в процессе настройки ИБП будет изменяться в некоторых пределах уровень напряжения на шине +5В, а значит и на шине +12В, т.к. напряжение с шины +5В подается в среднюю точку обмотки III.

Комбинированная зашита данного ИБП включает в себя: 

• ограничивающую схему контроля ширины управляющих импульсов;
• полную схему защиты от КЗ в нагрузках;
• неполную схему контроля выходного перенапряжения (только на шине +5В).

Рассмотрим каждую из этих схем. 

Ограничивающая схема контроля использует в качестве датчика трансформатор тока Т4, первичная обмотка которого включена последовательно с первичной обмоткой силового импульсного трансформатора Т5.
Резистор R42 является нагрузкой вторичной обмотки Т4, а диоды D20, D21 образуют двухпо-лупериодную схему выпрямления знакопеременного импульсного напряжения, снимаемого с нагрузки R42.

Резисторы R59, R51 образуют делитель. Часть напряжения сглаживается конденсатором С25. Уровень напряжения на этом конденсаторе пропорционально зависит от ширины управляющих импульсов на базах силовых транзисторов Q1, Q2. Этот уровень через резистор R44 подается на инвертирующий вход усилителя ошибки DA4 (вывод 15 микросхемы U4). Прямой вход этого усилителя (вывод 16) заземлен. Диоды D20, D21 включены так, что конденсатор С25 при протекании тока через эти диоды заряжается до отрицательного (относительно общего провода) напряжения. 

В нормальном режиме работы, когда ширина управляющих импульсов не выходит за допустимые пределы, потенциал вывода 15 положителен, благодаря связи этого вывода через резистор R45 с шиной Uref. При чрезмерном увеличении ширины управляющих импульсов по какой-либо причине, отрицательное напряжение на конденсаторе С25 возрастает, и потенциал вывода 15 становится отрицательным. Это приводит к появлению выходного напряжения усилителя ошибки DA4, которое до этого было равно 0В. Дальнейший рост ширины управляющих импульсов приводит к тому, что управление переключениями ШИМ-ком-паратора DA2 передается к усилителю DA4, и последующего за этим увеличения ширины управляющих импульсов уже не происходит (режим ограничения), т.к. ширина этих импульсов перестает зависеть от уровня сигнала обратной связи на прямом входе усилителя ошибки DA3. 

Схема защиты от КЗ в нагрузках условно может быть разделена на защиту каналов выработки положительных напряжений и защиту каналов выработки отрицательных напряжений, которые схемотехнически реализованы примерно одинаково.
Датчиком схемы защиты от КЗ в нагрузках каналов выработки положительных напряжений (+5В и +12В) является диодно-резистивный делитель D11, R17, подключенный между выходными шинами этих каналов. Уровень напряжения на аноде диода D11 является контролируемым сигналом. В нормальном режиме работы, когда напряжения на выходных шинах каналов +5В и +12В имеют номинальные величины, потенциал анода диода D11 составляет около +5,8В, т.к. через делитель-датчик протекает ток с шины +12В на шину +5В по цепи: шина +12В — R17- D11 — шина +56.

Контролируемый сигнал с анода D11 подается на резистивный делитель R18, R19. Часть этого напряжения снимается с резистора R19 и подается на прямой вход компаратора 1 микросхемы U3 типа LM339N. На инвертирующий вход этого компаратора подается опорный уровень напряжения с резистора R27 делителя R26, R27, подключенного к выходу опорного источника Uref=+5B управляющей микросхемы U4. Опорный уровень выбран таким, чтобы при нормальном режиме работы потенциал прямого входа компаратора 1 превышал бы потенциал инверсного входа. Тогда выходной транзистор компаратора 1 закрыт, и схема ИБП нормально функционирует в режиме ШИМ. 

В случае КЗ в нагрузке канала +12В, например, потенциал анода диода D11 становится равным 0В, поэтому потенциал инвертирующего входа компаратора 1 станет выше, чем потенциал прямого входа, и выходной транзистор компаратора откроется. Это вызовет закрывание транзистора Q4, который нормально открыт током базы, протекающим по цепи: шина Upom — R39 — R36 -б-э Q4 — «корпус».

Открывание выходного транзистора компаратора 1 подключает резистор R39 к «корпусу», и поэтому транзистор Q4 пассивно закрывается нулевым смещением. Закрывание транзистора Q4 влечет за собой зарядку конденсатора С22, который выполняет функцию звена задержки срабатывания защиты. Задержка необходима из тех соображений, что в процессе выхода ИБП на режим, выходные напряжения на шинах +5В и +12В появляются не сразу, а по мере зарядки выходных конденсаторов большой емкости. Опорное же напряжение от источника Uref, напротив, появляется практически сразу же после включения ИБП в сеть. Поэтому в пусковом режиме компаратор 1 переключается, его выходной транзистор открывается, и если бы задерживающий конденсатор С22 отсутствовал, то это привело бы к срабатыванию защиты сразу при включении ИБП в сеть. Однако в схему включен С22, и срабатывание защиты происходит лишь после того как напряжение на нем достигнет уровня, определяемого номиналами резисторов R37, R58 делителя, подключенного к шине Upom и являющегося базовым для транзистора Q5. Когда это произойдет, транзистор Q5 открывается, и резистор R30 оказывается подключен через малое внутреннее сопротивление этого транзистора к «корпусу». Поэтому появляется путь для протекания тока базы транзистора Q6 по цепи: Uref — э-6 Q6 — R30 — к-э Q5 -«корпус». 

Транзистор Q6 открывается этим током до насыщения, в результате чего напряжение Uref=5B, которым запитан по эмиттеру транзистор Q6, оказывается приложенным через его малое внутреннее сопротивление к выводу 4 управляющей микросхемы U4. Это, как было показано ранее, ведет к останову работы цифрового тракта микросхемы, пропаданию выходных управляющих импульсов и прекращению переключении силовых транзисторов Q1, Q2, т.е. к защитному отключению. КЗ в нагрузке канала +5В приведет к тому, что потенциал анода диода D11 будет составлять всего около +0.8В. Поэтому выходной транзистор компаратора (1) окажется открыт, и произойдет защитное отключение.
Аналогичным образом построена защита от КЗ в нагрузках каналов выработки отрицательных напряжений (-5В и -12В) на компараторе 2 микросхемы U3. Элементы D12, R20 образуют диодно-резистивный делитель-датчик, подключаемый между выходными шинами каналов выработки отрицательных напряжений. Контролируемым сигналом является потенциал катода диода D12. При КЗ в нагрузке канала -5В или -12В, потенциал катода D12 повышается (от -5,8 до 0В при КЗ в нагрузке канала -12В и до -0,8В при КЗ в нагрузке канала -5В). В любом из этих случаев открывается нормально закрытый выходной транзистор компаратора 2, что и обуславливает срабатывание защиты по приведенному выше механизму. При этом опорный уровень с резистора R27 подается на прямой вход компаратора 2, а потенциал инвертирующего входа определяется номиналами резисторов R22, R21. Эти резисторы образуют двуполярно запитанный делитель (резистор R22 подключен к шине Uref=+5B, а резистор R21 — к катоду диода D12, потенциал которого в нормальном режиме работы ИБП, как уже отмечалось, составляет -5,8В). Поэтому потенциал инвертирующего входа компаратора 2 в нормальном режиме работы поддерживается меньшим, чем потенциал прямого входа, и выходной транзистор компаратора будет закрыт.

Защита от выходного перенапряжения на шине +5В реализована на элементах ZD1, D19, R38, С23. Стабилитрон ZD1 (с пробивным напряжением 5,1В) подключается к шине выходного напряжения +5В. Поэтому, пока напряжение на этой шине не превышает +5,1 В, стабилитрон закрыт, а также закрыт транзистор Q5. В случае увеличения напряжения на шине +5В выше +5,1В стабилитрон «пробивается», и в базу транзистора Q5 течет отпирающий ток, что приводит к открыванию транзистора Q6 и появлению напряжения Uref=+5B на выводе 4 управляющей микросхемы U4, т.е. к защитному отключению. Резистор R38 является балластным для стабилитрона ZD1. Конденсатор С23 предотвращает срабатывание защиты при случайных кратковременных выбросах напряжения на шине +5В (например, в результате установления напряжения после скачкообразного уменьшения тока нагрузки). Диод D19 является развязывающим. 

Схема образования сигнала PG в данном импульсном блоке питания является двухфункциональной и собрана на компараторах (3) и (4) микросхемы U3 и транзисторе Q3. 

Схема построена на принципе контроля наличия переменного низкочастотного напряжения на вторичной обмотке пускового трансформатора Т1, которое действует на этой обмотке лишь при наличии питающего напряжения на первичной обмотке Т1, т.е. пока импульсный блок питания включен в питающую сеть.
Практически сразу после включения ИБП в питающую сеть появляется вспомогательное напряжение Upom на конденсаторе СЗО, которым запитывается управляющая микросхема U4 и вспомогательная микросхема U3. Кроме того, переменное напряжение со вторичной обмотки пускового трансформатора Т1 через диод D13 и то-коограничивающий резистор R23 заряжает конденсатор С19. Напряжением с С19 запитывается резистивный делитель R24, R25. С резистора R25 часть этого напряжения подается на прямой вход компаратора 3, что приводит к закрыванию его выходного транзистора. Появляющееся сразу вслед за этим выходное напряжение внутреннего опорного источника микросхемы U4 Uref=+5B за-питывает делитель R26, R27. Поэтому на инвертирующий вход компаратора 3 подается опорный уровень с резистора R27. Однако этот уровень выбран меньшим, чем уровень на прямом входе, и поэтому выходной транзистор компаратора 3 остается в закрытом состоянии. Поэтому начинается процесс зарядки задерживающей емкости С20 по цепи: Upom — R39 — R30 — С20 — «корпус».
Растущее по мере зарядки конденсатора С20 напряжение подается на инверсный вход 4 микросхемы U3. На прямой вход этого компаратора подается напряжение с резистора R32 делителя R31, R32, подключенного к шине Upom. Пока напряжение на заряжающемся конденсаторе С20 не превышает напряжения на резисторе R32, выходной транзистор компаратора 4 закрыт. Поэтому в базу транзистора Q3 протекает открывающий ток по цепи: Upom — R33 — R34 — 6-э Q3 — «корпус».
Транзистор Q3 открыт до насыщения, а сигнал PG, снимаемый с его коллектора, имеет пассивный низкий уровень и запрещает запуск процессора. За это время, в течение которого уровень напряжения на конденсаторе С20 достигает уровня на резисторе R32, импульсный блок питания успевает надежно выйти в номинальный режим работы, т.е. все его выходные напряжения появляются в полном объеме.
Как только напряжение на С20 превысит напряжение, снимаемое с R32, компаратор 4 переключится, него выход ной транзистор откроется.
Это повлечет за собой закрывание транзистора Q3, и сигнал PG, снимаемый с его коллекторной нагрузки R35, становится активным (Н-уровня) и разрешает запуск процессора.
При выключении импульсного блока питания из сети на вторичной обмотке пускового трансформатора Т1 переменное напряжение исчезает. Поэтому напряжение на конденсаторе С19 быстро уменьшается из-за малой емкости последнего (1 мкф). Как только падение напряжения на резисторе R25 станет меньше, чем на резисторе R27, компаратор 3 переключится, и его выходной транзистор откроется. Это повлечет за собой защитное отключение выходных напряжений управляющей микросхемы U4, т.к. откроется транзистор Q4. Кроме того, через открытый выходной транзистор компаратора 3 начнется процесс ускоренной разрядки конденсатора С20 по цепи: (+)С20 — R61 — D14 — к-э выходного транзистора компаратора 3 — «корпус».

Как только уровень напряжения на С20 станет меньше, чем уровень напряжения на R32, компаратор 4 переключится, и его выходной транзистор закроется. Это повлечет за собой открывание транзистора Q3 и переход сигнала PG в неактивный низкий уровень до того, как начнут недопустимо уменьшаться напряжения на выходных шинах ИБП. Это приведет к инициализации сигнала системного сброса компьютера и к исходному состоянию всей цифровой части компьютера. 

Оба компаратора 3 и 4 схемы выработки сигнала PG охвачены положительными обратными связями с помощью резисторов R28 и R60 соответственно, что ускоряет их переключение.
Плавный выход на режим в данном ИБП традиционно обеспечивается при помощи формирующей цепочки С24, R41, подключенной к выводу 4 управляющей микросхемы U4. Остаточное напряжение на выводе 4, определяющее максимально возможную длительность выходных импульсов, задается делителем R49, R41.
Питание двигателя вентилятора осуществляется напряжением с конденсатора С14 в канале выработки напряжения -12В через дополнительный развязывающий Г-образный фильтр R16, С15.

Принципы устройства, основные элементы и характеристики блоков питания ПК

Содержание:

Введение

Разъемы

Делятся на:

  • питание материнской платы
  • питание процессора CPU
  • питание графического адаптера GPU
  • питание периферийных устройств HDD, SSD и др.

Питание материнской платы

Изначально блоки питания формата ATX имели 20-ти контактный разъем питания материнской платы. Он имел один контакт +12 V по которому возможно подача тока до 6 А (при использовании стандартных контактов Molex. Так же есть контакты Molex HCS — 9 А и Molex Plus HCS — 11 А. Кроме названия информации о них никакой не нашел. Какие контакты используются в современных комплектующих пока не известно). Этого вполне хватало до появления слотов PCI-E. В связи с этим основное питание было увеличено до 24 контактов. Добавили еще по одной линии +3.3 V, +5 V, +12 V и земля.

Рисунок Виды разьёмов

Последние 4 контакта 11,12,23 и 24 сделаны съемными и не используются при подключении к 20-ти контактной розетке материнской платы. Это сделано для совместимости. Так же можно подключить 20-ти контактный разъем блока питания к 24 контактному на материнской плате в случае новой платой и старого блока. В этом случае лучше обойтись встроенным в процессор видео, т.к. при использовании дискретного графического адаптера возможна нехватка питания для слота PCI-E со всеми вытекающими последствиями вплоть до возможности купить новый компьютер.

Рисунок Пример видов разъема

+3.3 V Sense (Коричневый) — контакт предназначенный для обратной связи. С помощью него блок питания регулирует напряжение +3.3 V.

-5 V (Белый) — в современных блоках питания не используется и исключен из 24-х контактного разъема. Использовался для обратной совместимости шины ISA.

Power ON (Зеленый) — контакт позволяющий современным операционным системам управлять блоком питания. При выключении компьютера через меню «Пуск» система с Power ON отключит блок питания. Системы без контакта Power ON способны лишь вывести сообщение, что компьютер можно выключить.

Power good (Серый) — имеет напряжение +5 V и может колебаться в допустимых пределах от +2,4 V до +6 V. При нажатии на кнопку POWER (включение компьютера)  блок питания включается и производит самотестирование и стабилизацию напряжений на выходе +3.3 V, +5 V и +12 V. Этот процесс занимает 0,1-0,5 с. После чего блок питания посылает материнской плате сигнал Power good. Этот сигнал принимает чип управления питанием процессора и запускает последний. При скачках или пропадании напряжения на входе блока питания материнская плата не получает сигнал Power good и останавливает процессор. При возобновлении питания на входе так же восстанавливается сигнал Power good и происходит запуск системы. Таким образом, благодаря сигналу Power good, компьютер гарантировано получит только качественное питание, что в свою очередь позволяет повысить надежность и работоспособность всей системы.

Питание процессора

Питание процессора осуществляется через устройство называемое Voltage Regulator Module (VRM). Модуль преобразует напряжение с +12 V до необходимого процессору и имеет коэффициент полезного действия (КПД) около 80%. Изначально, когда процессоры потребляли минимум энергии и питались от +5 V, достаточно было питания через материнскую плату. Было всего 12 контактов (2 по 6). С ростом производительности выросла и потребляемая мощность. Современные процессоры потребляют до 130 Вт и это без разгона. Задача стояла следующая, обеспечить питание процессора, не расплавив при этом контакты на материнской плате. Для этого перешли с +5 V на +12 V, т.к. это дало возможность снизить ток более чем на 50% сохраняя мощность. Через один контакт +12 V на материнской плате можно было передавать до 6 А (2-ая линия +12 V питает слоты PCI-E). Решение было позаимствовано как обычно из серверного сегмента. Для процессора сделали отдельный разъем напрямую от блока питания.

Рисунок 3 Voltage Regulator Module (VRM) (схема)

Разъем состоял из 4-х контактов 2-ва +12 V и 2 — земля. По спецификации имелась возможность подачи до 8 А на контакт.

Рисунок 4 Voltage Regulator Module (VRM)

Для  топовых процессоров использовалось несколько VRM модулей. Что бы лучше распределить нагрузку между ними было принято решение использовать два 4-х контактных разъема объединенных физически в один 8-ми контактный

Рисунок Разъем 4 линии +12v

Как видно из рисунка 3 разъем содержит 4 линии +12 V, что обеспечивает стабильным питанием самые мощные процессоры. Разъем может быть разделен на 2 по 4 контакта.

Рисунок Разъём разделенный на 2 по 4 контакта

Так же стоит отметить что особо мощные блоки питания (мне попадались от 1000 Вт и выше) имеют два 8-ми контактных разъема. Вероятно для питания систем включающих два процессора

Рисунок 8 контактный разъём

Питание графического адаптера

24-х контактный разъем питания материнской платы обеспечивает 75 Вт для слота PCI-E. Этого хватаем лишь для графических адаптеров начального уровня. Для более продвинутых решений используется дополнительный 6-ти контактный разъем

Рисунок Разъём для графического адаптера

 Этот разъем подводит дополнительно 75 Вт и в результате 150 Вт для графического адаптера.

В 2008 году ввели 8-ми контактный разъем питания видеокарт

Рисунок 8-ми контактный разъем питания видеокарт

Сие обеспечивает  дополнительно 150 Вт, что в сумме дает 225 Вт. Оба разъема обратно совместимы. Это значит, что 6-ти контактный разъем питания можно подключить к 8-ми контактному на графическом адаптере сдвинув его  в сторону. И наоборот 8-ми контактный разъем блока питания компьютера можно подключить к 6-ти контактному на графическом адаптере. Конструкция разъема исключает некорректное подключение.

Рисунок 6-ти контактный разъём

Кроме линий +12 V и земли на обоих разъемах присутствуют контакты Sense. Графический адаптер использует их для определения какой (6-ти или 8-ми контактный) разъем подключен к видеоадаптеру и подключен ли вообще разъем. Если разъем не подключен система на запустится. Если вместо 8-ми контактного разъема подключен 6-ти контактный в зависимости от прошивки графической карты система может не запуститься вообще либо запуститься с ограниченной функциональностью

Рисунок «PCI-Express»

8-ми контактный разъем питания графического адаптера и 8-ми контактное питание процессора имеют разные ключи благодаря чему вы не имеете возможности подключить разъемы не корректно. Так же эти разъемы по разному разделены: для питания графического адаптера 6+2, для питания процессора 4+4 или слитно 8 контактов.

В некоторых блоках питания разъемы PCI-E, для лучшей идентификации, маркируются наклейкой с надписью «PCI-Express»

Важно! Все разъемы блока питания подключаются без особого усилия!

У графических адаптеров среднего и высшего ценового сегмента присутствуют сразу два разъема. В зависимости от мощности: 2х6, 1х6 и 1х8,  2х8.

Бывают случаи когда блок питания не имеет достаточно разъемов питания PCI-E. В таких ситуациях используют Y-образные переходники

Рисунок Y-образные переходники

Переходник использует два «молекcа» для подключения периферии, т.к. необходимо две линии +12 V для одного 6-ти контактного разъема.

Рисунок Пример подключения Y-образных переходников

При подключении графического адаптера через переходник убедитесь что линия +12 V выдержит. То есть, найдите в обзорах или на официальном сайте информацию по энергопотреблению видеокарты. После посмотрите характеристику блока питания (на наклейке БП или на сайте производителе) по линии +12 V

Рисунок Характеристика блока питания

Сложите максимальную мощность графических адаптеров и TDP процессора, полученную сумму я умножаю на 1.5 и сравниваю с цифрой в характеристике блока питания. Если полученное значение мощности больше приведенного в характеристике, то возможны проблемы, если меньше — можно пробовать. Если же у вас современный блок питания и цифра получается впритык или даже чуть меньше чем в характеристике, то можно пробовать видеокарту в своих приложениях. Маловероятно, что вы загрузите ее на 100%. Если же у вас старый блок питания, лучше не рисковать.

Питание периферийных устройств

Практически все периферийные устройства питаются от следующий разъемов:

  • питание периферийных устройств
  • питание флоппи-дисковода
  • питание Serial ATA

Питание периферийный устройств. Обычно называется Molex так как производится фирмой с одноименным названием

Рисунок Питание периферийного устройства Molex (схема)

Имеет 4 контакта: +5 V, +12 V и 2 земля. Рассчитан на ток 11 А на контакт. Используется для подключения старых жестких дисков, оптических приводов, вентиляторов и других устройств использующих питание +5 V или +12 V

Рисунок Питание периферийного устройства Molex

Конструкция вилки предусматривает ключи (срезанные углы) препятствующие некорректному подключению периферийный устройств. Некоторые производители (Sirtec в частности) изготавливают данный разъем со специальными полукруглыми приспособлениями для более легкого отсоединения от устройств.

Питание флоппи-дисковода. Питание менее мощных периферийных устройств. Имеет так же 4 контакта. Расстояние между контактами, по сравнению с предыдущим разъемом уменьшено в 2 раза и составляет 2.5 мм

Рисунок Питание флоппи-дисковода (схема)

Каждый контакт рассчитан на ток 2 А, что определят максимальную мощность разъема в 34 Вт

Рисунок Питание флоппи-дисковода

В отличии от вилки для питания периферийных устройств в этом контакты +5 V и +12 V перевернуты. Флоппи-дисковод можно подключать «на ходу». Для этого сначала необходимо подключить кабель данных, а затем кабель питания. Отключение происходит в обратной последовательности. Убедитесь, что не используете FDD-дисковод, отключите питание затем шнур данных. Вилка флоппи-дисковода содержит ключ для корректного подключения, но при соединении необходимо быть внимательным (особенно на «ходу»), можно легко сместить контакты при подключении.

Питание Serial ATA. Все современные накопители как HDD так и SSD подключаются этим разъемом

Рисунок Питание Serial ATA (схема)

Это 15 контактная вилка для подключения периферии где на каждую линию питания приходится по 3 контакта

Рисунок Питание Serial ATA

Обеспечивает такую же мощность как и стандартный разъем для периферии. Так же  на одной стороне присутствует ключ препятствующий некорректному подключению. Для устаревших блоков питания применяются переходники следующего типа, позволяющие подключить одно или два устройства SATA

Рисунок Разъёмы для устаревших блоков питания

 В переходниках отсутствует линия питания +3.3 V, т. к. современные HDD и SSD ее не используют.

КПД

Любое устройство питающееся от сети переменного тока имеет свой коэффициент полезного действия (КПД). Блоки питания компьютера не исключение. КПД — это то количество энергии которое выполняет полезную функцию (питание компьютера). Все остальное преобразуется в тепло. На данный момент существуют уровни эффективности представленные в таблице ниже

Рисунок Уровни эффективности

Преимущества высокого КПД блока питания:

  • меньшее потребление энергии в сравнении с блоком питания без соответствующей сертификации. Например блок питания 500 Вт с сертификацией 80 Plus Gold (КПД 90%) и без сертификации (КПД порядка 75%). При нагрузке в 50% (250 Вт) сертифицированный блок питания будет расходовать от сети 277 Вт, не сертифицированный — 333 Вт.
  • меньший нагрев так как значительно меньше тепла необходимо рассеять
  • более продолжительный срок работы блока питания за счет более низких температур
  • меньше шум, так как для отвода небольшого количества тепла требуется вентилятор работающий на более низких оборотах
  • более качественное питание для комплектующих, следовательно более надежная и стабильная работа всего компьютера
  • минимальное искажение характеристик сети питания. Каждое устройство питающееся от сети переменного тока вносит свои помехи. В сертифицированных блоках питания применяется специальное устройство APFC (Active Power Factor Correction) повышающее КПД и практически исключающее помехи от блока питания компьютера.

Недостаток один — цена, с лихвой компенсируется преимуществами.

Устройство и принцип работы

Коротко опишем принцип работы компьютерного блока питания

Рисунок Короткое описание принцип работы компьютерного блока питания

На вход подается питание 220 V / 50 Гц (в идеальном случае). В противном случае работает фильтр (1) который убирает пульсации и помехи сети. После питание подается на инвертор сетевого напряжения (2), который увеличивает частоту с 50 Гц до 100 Кгц и выше. Благодаря чему имеется возможность использовать дешевые трансформаторы (3) малых габаритов. Этот трансформатор благодаря высокой частоте может передать огромную мощность при преобразовании высоковольтного напряжения в низковольтное. Рядом с основным трансформатором располагается так же трансформатор дежурного напряжения. Последнее присутствует всегда при подаче питания к блоку. Далее в работу вступают диодные сборки (5), которые вместе с конденсаторами и дросселями сглаживают высокочастотные пульсации и выдают постоянные напряжения подающиеся непосредственно компонентам компьютера.

Основной дроссель групповой стабилизации (6). Применяется в блоках питания среднего ценового диапазона и отвечает за стабилизацию всех выходных напряжений. Если нагрузка на одном из каналов резко увеличивается — напряжение проседает. При такой схеме блок питания повышает напряжения сразу на всех линиях. Качественные, дорогие блоки питания, имеют полностью независимые линии питания, благодаря чему этого эффекта не возникает.

Схема управления частотой вращения вентилятора (7). Позволяет регулировать обороты «карлсона». Так же присутствует плата контроля напряжения и  потребляемого тока. Она отвечает за защиту блока от коротких замыканий и перегрузки.

Блоки питания высокого уровня преимущественно изготавливают с модульным подключением кабелей. В этом случае присутствует плата с силовыми разъемами (8) куда непосредственно подключаются провода.

Модульное подключение позволяет использовать только необходимые кабеля. В  следствии чего возможно добиться более качественного распределения кабелей в корпусе, что в свою очередь положительно скажется на охлаждении компьютера.

ЗАКЛЮЧЕНИЕ

И в заключение хочется сказать, что, качественный блок питания — основа стабильной работы всей системы. Блок питания также является важной составляющей вентиляции.

Для производителей блоков питания главной целью должно являться не создание самых мощных моделей, а увеличение эффективности. Конечно, есть пользователи, кому действительно нужны 600-ваттные блоки питания, но их доля очень мала. В общем, если знать кое-что о блоках питания и уметь выполнять несложные подсчёты, то можно сэкономить деньги, как при покупке, так и при дальнейшем использовании.

Из всего вышесказанного ясно, что блок питания является очень важной частью системного блока, без которого функционирование компьютера практически невозможно.

СПИСОК ЛИТЕРАТУРЫ

  1. Мюллер С. Модернизация и ремонт ПК = Upgrading and Repairing PCs / Скотт Мюллер. — 17-е изд. — М.: «Вильямс», 2007. — С. 1181-1256. — ISBN 0-7897-3404-4.
  2. Головков А. В., Любицкий В. Б. Блоки питания для системных модулей типа IBM PC-XT/AT. — М.: «ЛАД и Н», 1995.

Блоки питания для компьютеров | Newegg.com

Блоки питания для компьютеров преобразуют электричество переменного тока (AC) из настенной розетки в постоянный ток (DC), который используется вашим компьютером. Они питают все остальные компоненты ПК с помощью специальных разъемов, которые ограничивают потребность в дополнительных розетках. Блоки питания ATX имеют 20-контактный разъем, а версии ATX12V имеют 24-контактный разъем питания для подключения совместимых материнских плат. Материнские платы ATX12V имеют двойные шины 12 В, которые распределяют силу тока для дополнительной безопасности.Меньшие блоки питания занимают мало места в небольших корпусах ноутбуков. Многие модели блоков питания (PSU) имеют сертификат 80 PLUS® для обеспечения оптимальной энергоэффективности.

Правильный блок питания повышает производительность вашего компьютера

При сборке серверных блоков питания учитывайте потребности компьютеров, подключенных к системе. Мощность компьютера должна быть равна или превышать мощность, требуемую всеми компонентами вашего ПК, и вы можете использовать простые онлайн-инструменты для расчета этого значения.Вам нужно только ввести модель вашего процессора, графического процессора, материнской платы и других компьютерных аксессуаров, и эти инструменты автоматически рассчитают минимальную требуемую мощность. Использование блока питания компьютера с немного большей мощностью, чем необходимо, обеспечивает защиту ваших компонентов. Мощность блока питания меньше максимальной, что может предотвратить перегрев внутри корпуса компьютера. Компьютерные блоки питания более высокой мощности позволяют в будущем модернизировать ЦП или ГП, не беспокоясь о энергопотреблении.Блок питания потребляет только то количество электроэнергии, которое потребляют компоненты вашего компьютера, поэтому вам не придется беспокоиться о счетах за электроэнергию, даже если вы выберете модель с более высокой мощностью. Если у вас ограниченный бюджет, выберите отремонтированный блок питания, который обеспечивает такую ​​же производительность, как и новый, но по более низкой цене.

Блоки питания 80 PLUS обеспечивают оптимальную энергоэффективность

Многие блоки питания имеют сертификат 80 PLUS, который классифицирует их энергоэффективность. Блоки питания со стандартной сертификацией 80 PLUS обеспечивают эффективность 80 % при нагрузке 20 %, 50 % и 100 %.Существуют также блоки питания Bronze, Silver, Gold, Platinum и Titanium 80 PLUS с более высокой энергоэффективностью, чем стандартные варианты 80 PLUS. Это помогает максимизировать эффективность даже в условиях высокой нагрузки.

Блоки питания ATX для подключения накопителей

Компьютерные блоки питания

ATX оснащены 20-контактным основным разъемом питания и разъемами SATA для накопителей, которым требуется внешний источник питания. Блоки питания ATX12V имеют 24-контактный основной разъем и не требуют дополнительного разъема питания.Этот стандарт блока питания поддерживает двойные шины 12 В для безопасного и эффективного питания современных компьютерных компонентов. Блоки питания EPS12V используют 8-контактный разъем питания для подключения непосредственно к процессору. Многие серверы или настольные компьютеры высокого класса используют эти блоки питания для эффективного энергопотребления. Существуют также блоки питания меньшего размера, которые легко помещаются в корпусах ноутбуков.

Модульные блоки питания

предлагают гибкость

Многие блоки питания оснащены проводными кабелями для питания всех аксессуаров ЦП.Модульные компьютерные блоки питания обеспечивают гибкость, поскольку они позволяют добавлять или удалять кабели по мере необходимости. Удаление ненужных кабелей обеспечивает оптимальный поток воздуха внутри корпуса компьютера для защиты от перегрева.

Блоки питания для серверов

| Newegg.com

Основной задачей блока питания для сервера является преобразование переменного тока (AC) в постоянный ток (DC). Причина в том, что компьютеры и серверы используют постоянный ток, а не переменный ток, который поступает из розетки. Блок питания — это аппаратная часть, которая питает все остальные компоненты сервера с помощью специальных разъемов.

Резервный источник питания предотвращает простои

При настройке резервного источника питания ваш сервер работает с двумя или более источниками питания. Каждый блок питания может запустить сервер самостоятельно, если другой выйдет из строя. В нормальных условиях каждый блок питания обеспечивает половину мощности, необходимой для работы сервера. Большинство резервных блоков питания поддерживают горячую замену, т. е. вы можете заменить блок питания, не выключая сервер. Горячая замена предотвращает простои, что особенно важно для веб-серверов и критически важных бизнес-сред, где вам необходимо поддерживать поток информации и работы.Пока вы заменяете один из блоков питания, другой поддерживает работу сервера. Рекомендуется устанавливать каждый резервный блок питания в отдельную электрическую цепь, чтобы система продолжала работать даже во время отключения цепи или операций по техническому обслуживанию.

Линейные и импульсные серверные блоки питания

При рассмотрении источников питания линейный сервер и блок питания ПК имеют более простую конструкцию и требуют меньшего количества компонентов для преобразования переменного тока в постоянный. Они, как правило, довольно тихие, что является важным фактором в некоторых рабочих условиях.Как и серверные процессоры, эти блоки питания хорошо работают в системах с эффективным охлаждением. Источники питания импульсного типа имеют внутренний переключатель, который управляет электричеством. Это приводит к меньшему потреблению энергии. По сравнению с линейным блоком питания, импульсный имеет меньшие компоненты. Однако он также производит больше шума.

Сертификаты Определите энергоэффективность вашего блока питания для сервера

80 PLUS® — это программа добровольной сертификации, которая классифицирует блоки питания для серверов и ПК, включая разветвители, по их энергоэффективности.Вы можете получить значение энергоэффективности, разделив количество энергии, которую обеспечивает блок питания, на количество энергии, которое он потребляет из розетки. Блоки питания 80 PLUS Titanium являются наиболее эффективными, поскольку они обеспечивают энергоэффективность 92% при нагрузке 20%, эффективность 94% при нагрузке 50% и эффективность 90% при нагрузке 100%. Блоки питания 80 PLUS Platinum обеспечивают КПД 90 % при нагрузке 20 %, КПД 92 % при нагрузке 50 % и КПД 89 % при нагрузке 100 %. Блоки питания 80 PLUS Gold для ПК обеспечивают КПД 87 % при нагрузке 20 %, КПД 90 % при нагрузке 50 % и КПД 87 % при нагрузке 100 %.Существуют и другие сертификаты 80 PLUS с более низкими требованиями к эффективности, но они менее распространены в серверных блоках питания.

Серверные блоки питания поставляются с различными типами разъемов

Серверные блоки питания поставляются с различными типами основных разъемов ATX. Самый распространенный разъем на старых материнских платах — 20-контактный. Вместо этого большинство современных материнских плат имеют 24-контактный разъем. Вы также можете найти блоки питания с разъемом 20+4, которые работают с любой материнской платой, независимо от того, имеет ли она 20-контактный или 24-контактный разъем.

Что такое блок питания?

Обновлено: 07.10.2019, автор: Computer Hope

Сокращенно PS или P/S , блок питания или PSU (блок питания ) — аппаратный компонент компьютера, который питает все остальные компоненты. Блок питания преобразует 110–115 или 220–230 вольт переменного тока (переменный ток) в устойчивый низковольтный постоянный ток (постоянный ток), пригодный для использования компьютером и рассчитанный на количество генерируемых им ватт.На изображении показан блок питания Antec True 330 мощностью 330 Вт.

Осторожность

Никогда не открывайте корпус блока питания. Он содержит конденсаторы, способные удерживать сильный электрический заряд, даже если компьютер выключен и отключен от сети в течение длительного периода времени.

Совет

Вы можете защитить свой блок питания и компьютер от скачков и перепадов напряжения, купив ИБП (источник бесперебойного питания). Если вы не можете позволить себе ИБП, убедитесь, что компьютер хотя бы подключен к сетевому фильтру.

Где в компьютере находится блок питания?

Блок питания расположен на задней панели компьютера, обычно вверху. Однако во многих более поздних компьютерных корпусах Tower источник питания находится в нижней задней части корпуса. В корпусе настольного компьютера (моноблок) блок питания расположен сзади слева или сзади справа.

Детали, обнаруженные на задней панели блока питания

Ниже приведен список деталей, которые вы можете найти на задней панели блока питания.

  • Разъем для подключения шнура питания к компьютеру.
  • Отверстие вентилятора для обогрева блока питания.
  • Красный переключатель для изменения напряжения питания.
  • Кулисный переключатель для включения и выключения питания.

На передней панели блока питания, которая не видна, если компьютер не открыт, вы найдете несколько кабелей. Эти кабели подключаются к материнской плате компьютера и другим внутренним компонентам. Блок питания подключается к материнской плате с помощью разъема типа ATX и может иметь один или несколько следующих кабелей для подключения питания к другим устройствам.

Детали, обнаруженные внутри блока питания

Ниже приведен список деталей внутри блока питания.

  • Выпрямитель, преобразующий переменный ток в постоянный.
  • Фильтр, сглаживающий постоянный ток, поступающий от выпрямителя.
  • Трансформатор, который регулирует входное напряжение, повышая или понижая его.
  • Регулятор напряжения, который управляет выходом постоянного тока, обеспечивая правильное количество энергии, вольт или ватт, для подачи на компьютерное оборудование.

Порядок работы этих внутренних компонентов блока питания следующий.

  1. Трансформатор
  2. Выпрямитель
  3. Фильтр
  4. Регулятор напряжения

Какие элементы питаются от блока питания компьютера?

Все, что находится в корпусе компьютера, питается от источника питания. Например, материнская плата, оперативная память, ЦП, жесткий диск, дисководы и большинство видеокарт (если они есть на компьютере) потребляют энергию от блока питания.Любые другие внешние устройства и периферийные устройства, такие как монитор компьютера и принтер, имеют источник питания или получают питание по кабелю передачи данных, как и некоторые USB-устройства.

Всегда ли вентилятор работает от источника питания?

Когда компьютер включен, вентилятор(ы) внутри блока питания всегда должны работать. Если вентилятор не работает (крутится), то либо компьютер не работает, либо вентилятор вышел из строя, и блок питания следует заменить.

Примечание

Некоторые блоки питания имеют регулируемые регуляторы, которые могут увеличивать или уменьшать скорость вращения вентилятора в зависимости от его температуры.Однако он всегда должен вращаться.

Адаптер переменного тока, Компьютерные аббревиатуры, Аппаратные термины, Питание, Шнур питания, Порт питания, Выключатель питания, Термины питания, Резервный источник питания, SMPS

Лучший блок питания для игр на ПК в 2022 году

Лучший блок питания (PSU) обеспечит эффективное питание вашего ПК и обеспечит защиту всех ваших дорогостоящих компонентов. Каждой сборке ПК нужен приличный блок питания, а современным игровым системам нужны мощные блоки, поскольку процессоры и графические процессоры требуют огромной мощности. Лучшие блоки питания работают безупречно, и их можно использовать в будущих сборках.Дешевые блоки питания того не стоят, поэтому мы выбрали те, на которые вы хотите потратить немного больше, чтобы быть в безопасности.

Не бойтесь переборщить: несколько лет назад блоки питания большой емкости были менее эффективны при небольших нагрузках, но сейчас это не так. Если вы выберете современный Gold или выше, он будет эффективен при более легких нагрузках, независимо от его емкости (что хорошо). Intel установила некоторые требования к эффективности при низкой нагрузке в своей новейшей спецификации блока питания ATX (v2.53), при этом планка теперь составляет 70% эффективности и 10 Вт (мощность <500 Вт), или 2% от максимальной номинальной нагрузки.

Помимо требований к низкой эффективности, последняя спецификация Intel включает некоторые требования к синхронизации блока питания, которые относятся к альтернативному спящему режиму (ASM), который позволяет системе сверхбыстро выходить из спящего режима. Modern Standby от Microsoft является примером ASM. Хотя на момент написания этих строк материнские платы, совместимые с ASM, отсутствуют, блоки питания подходят для многих системных сборок, но всегда стоит быть готовым к будущему.

Если вы все еще не знаете, с чего начать, когда дело доходит до блоков питания, не переживайте, мы протестировали десятки блоков питания и вручную отобрали наши любимые, указав, в каких сборках они должны быть.

Лучший блок питания для компьютерных игр

(Изображение предоставлено Corsair)

1. Corsair RM750x (2021)

Лучший блок питания для видеокарт высокого класса CWT

Макс. Выход постоянного тока: 750 Вт

Эффективность: 80 PLUS Gold

Форм-фактор: ATX12V v2.4, EPS 2.92

Уровень шума: Cybenetics A- (25–30 дБА)

Охлаждение: 140-мм вентилятор Mag Lev (NR140ML3 Modular) 9000 : Полностью модульный

Разъемы EPS: 2

Разъемы PCIe: 4 (на двух кабелях)

Гарантия: 10 лет

Лучшие предложения сегодняшнего дня

Полностью модульный

+

Десятилетняя гарантия

Причины, по которым следует избегать

Точки срабатывания высокого OCP на второстепенных шинах

Профиль скорости вращения вентилятора мог бы быть более плавным

Конденсаторы в кабелях

внести некоторые изменения в свою популярную линейку блоков питания RMx, поскольку конкуренция в этом сегменте рынка стала намного более жесткой со стороны таких производителей, как Seasonic Focus GX, XPG Core Reactor, Super Flower Leadex V и т. д.

Действительно, задача не из легких, так как существующие блоки RMx производились всего три года и продемонстрировали превосходную производительность и бесшумную работу. В большинстве случаев, когда вы пытаетесь улучшить что-то уже хорошее, многое может пойти не так, но, к счастью, это не относится к новой линейке Corsair RMx.

Новая линейка Corsair RMx (2021) состоит из пяти моделей мощностью от 550 Вт до 1000 Вт, основными отличиями от предыдущих моделей являются: 

  • Вентилятор на магнитной подушке для увеличения срока службы при высоких рабочих температурах совместимость для быстрого выхода из спящего режима
  • Высокая эффективность при легких и очень легких нагрузках
  • Три разъема EPS с блоками питания 1000 Вт и 850 Вт
  • Сертификация 80 PLUS Gold

Новый RM750x значительно превосходит своего предшественника по производительности, хотя и проигрывает средний уровень шума абсолютно бесшумной работе старшей модели.Тем не менее, вы не можете назвать новую модель шумной, потому что она достигает рейтинга Cybenetics A-, а ее средний уровень шума приближается к 28 дБА.

Единственная область, требующая небольшого улучшения, — это эффективность при высоких нагрузках, что является основной причиной не очень конкурентоспособной средней эффективности. Тем не менее, эффективность при небольших нагрузках заоблачная.

Наконец, обновление вентилятора очень приветствуется. Это повышает надежность даже в суровых условиях, когда у большинства вентиляторов винтовок и гидродинамических подшипников могут возникнуть проблемы в долгосрочной перспективе.С двумя разъемами EPS и четырьмя разъемами PCIe в двух кабелях этот блок питания сможет работать с мощной игровой системой с достаточной мощностью, чтобы справиться с GeForce RTX 3080 (открывается в новой вкладке).

(Изображение предоставлено Seasonic)

2. Seasonic Prime Titanium TX-1000

Лучший блок питания мощностью 1 кВт

Технические характеристики

Производитель (OEM): Seasonic

Макс. Выход постоянного тока: 1000 Вт

Эффективность: 80 PLUS Titanium

Форм-фактор: ATX12V v2.4, EPS 2.92

Шум: Cybenetics A- (25–30 дБА)

Охлаждение: 135-мм вентилятор FDB (HA13525M12F-Z)

Модульность: Полностью модульный

Разъемы EPS: 2

90:002 специальные кабели)

Гарантия: 12 лет

Причины для покупки
+

Высокая производительность и бесшумная работа

+

Высококачественные компоненты и высочайшее качество сборки

+

Полностью модульная конструкция

+

12-летняя гарантия

Причины, по которым следует избегать

Высокие настройки OCP на всех шинах, особенно на второстепенных

Высокий пусковой ток при 115 В

Компания Seasonic сорвала джек-пот со своей платформой Prime, которая начинается с эффективности Gold и достигает эффективности Titanium.Несколько известных брендов уже использовали базовую платформу Seasonic в своих собственных блоках питания, в том числе Asus со своим ROG Thor 1200W, линейкой Corsair AX и Antec со своей легендарной линейкой Signature.

Если бы Seasonic могла производить больше таких устройств, я бы ожидал, что больше брендов встанут в очередь за ними, несмотря на их высокие цены. Большинство покупателей, к сожалению, предпочитают малоэффективные и более доступные блоки питания. Тем не менее, когда OEM-производитель достаточно уверен, чтобы предоставить платформу с двенадцатилетней гарантией, вы знаете, что это пуленепробиваемый продукт.

Seasonic TX-1000 — отличный блок питания с первоклассным качеством сборки. Помимо отличной пайки, он также везде использует японские конденсаторы, включая множество полимерных крышек, помимо электролитических, и вентилятор на гидродинамическом подшипнике.

Инженеры Seasonic сделали все возможное, чтобы обеспечить невероятно высокую эффективность во всех областях нагрузки и в то же время бесшумную работу, а также повышенную надежность. С точки зрения производительности, этот блок питания относится к высшей лиге, поскольку он обеспечивает жесткое регулирование нагрузки на всех шинах, он имеет потрясающее подавление пульсаций без использования раздражающих встроенных конденсаторов, а его время удержания велико.Вдобавок ко всему, эффективность шины 5VSB высока, и при небольших нагрузках блок питания достигает одних из самых высоких показателей эффективности, которые мы когда-либо видели.

Еще одним достоинством TX-1000 является наличие шести разъемов PCIe на выделенных кабелях. У вас не возникнет проблем с питанием энергоемких видеокарт, где следует избегать использования одного кабеля с двумя разъемами PCIe.

(Изображение предоставлено Corsair)

3. Corsair CX450

Самый дешевый блок питания

Технические характеристики

Производитель (OEM): CWT или Great Wall

Макс.Выходная мощность постоянного тока: 450 Вт

Эффективность: 80 PLUS Bronze

Форм-фактор: ATX12V v2.4, EPS 2.92

Уровень шума: Cybenetics A- (25–30 дБА — CWT) | Standard+ (35–40 дБА — Great Wall)

Охлаждение: 120-мм вентилятор на винтовых подшипниках (HA1225M12F-Z [CWT] или D12SM-12 [Great Wall])

Модульность: Нет

Разъемы EPS: 1

Разъемы PCIe: 1

Гарантия: 5 лет

Причины для покупки
+

Современная платформа

+

Полный комплект защиты

+

Нарезной подшипник вентилятора

+

Пятилетняя гарантия СХ450.Все модели CX производятся двумя разными OEM-производителями: Great Wall или Channel Well Technology (CWT), каждый из которых использует отдельную платформу.

Единственный способ отличить их друг от друга — это номера RPS, позиционные обозначения, присвоенные каждой модели. Обе конфигурации имеют фиксированные кабели, чтобы максимально снизить цену. Тем не менее, они используют современные платформы с резонансными преобразователями LLC и модулями регулирования напряжения для создания второстепенных шин и высококачественных вентиляторов.

Редко можно найти такую ​​современную платформу в этом ценовом диапазоне.Самое странное, что устройства Corsair CXM, которые оснащены полумодульными кабелями, поэтому кто-то может подумать, что они принадлежат к более высокой категории, на самом деле используют платформу с более низкой производительностью.

Из двух версий Corsair CX450 модель Great Wall более эффективна, чем CWT, особенно при небольших нагрузках, и имеет более эффективную шину 5VSB. С другой стороны, у него более агрессивный профиль вентилятора, поэтому его шумность увеличивается.

На рынке США вы найдете только версию CWT, сделанную во Вьетнаме, а не в Китае, что позволяет избежать тарифов и снизить цену.В других регионах также доступна платформа GW. В целом Corsair CX450 в обоих вариантах предлагает высокое соотношение производительности и цены и является отличным выбором для массовых сборок со встроенными или маломощными видеокартами. В этом ценовом диапазоне вы не найдете такой современной и мощной платформы.

Лучший процессор для игр (открывается в новой вкладке) | Лучшая видеокарта (откроется в новой вкладке) | Лучшие игровые материнские платы (открывается в новой вкладке)
Лучший твердотельный накопитель для игр (открывается в новой вкладке) | Лучшая оперативная память DDR4 (открывается в новой вкладке) | Лучшие корпуса для ПК (открывается в новой вкладке)

(Изображение предоставлено XPG)

4.XPG Core Reactor 650 Вт

Лучший блок питания мощностью 650 Вт

Технические характеристики

Производитель (OEM): CWT

Макс. Выход постоянного тока: 650 Вт

Эффективность: 80 PLUS Gold

Форм-фактор: ATX12V v2.4, EPS 2.92

Уровень шума: Cybenetics A (20–25 дБА)

Охлаждение: 120-мм вентилятор на гидродинамическом подшипнике (HA1225h20F03)

Модульность: Полностью модульная

Разъемы EPS: 2

Разъемы PCIe: 4 (на двух кабелях)

Гарантия: 10 лет

Причины для покупки
+

Высокая производительность и бесшумная работа

+

2 +

Хорошее качество сборки Полностью модульный

+

Десятилетняя гарантия

Причины, по которым следует избегать

Два разъема EPS на одном кабеле

XPG потрясла лодку своей линейкой Core Reactor, впечатляющим набором блоков питания, использующих компетентную платформу, предоставленную Channel Well Technology .XPG взяла платформу CSE компании и обеспечила ей эксклюзивные права, поэтому вы не увидите другого OEM-производителя, использующего CSE (кодовое название платформы).

Пока что только крупные бренды блоков питания, такие как Corsair и be quiet! обладают эксклюзивными правами на OEM-платформы, поэтому этим шагом XPG показывает, что у нее серьезные намерения в отношении лучшего рынка блоков питания.

XPG Core Reactor мощностью 650 Вт должен противостоять сильным противникам, таким как Corsair RM650x, Seasonic GX-650 и Asus Rog Strix 650.Тем не менее, ему удается лидировать в гонке, и это впечатляет. Тем более, что XPG исторически не была такой сильной на этом рынке, она, по-видимому, наняла подходящих людей для этой работы.

Core Reactor 650 отличается не только высокой производительностью, но и абсолютной бесшумностью со средним выходным уровнем шума около 23 дБА. Более того, его средний КПД при напряжении 115 В близок к 89,5%, что соответствует категории эффективности Gold 650 Вт.

Еще одним существенным преимуществом этого блока питания является компактность, что делает процесс установки более управляемым.В этом также помогут полностью модульные кабели. Говоря о кабелях, у них нет встроенных конденсаторов, что делает укоренение кабеля более сложным, чем должно быть.

Единственным реальным недостатком этого устройства является пара разъемов EPS, размещенных на одном кабеле. Обычно разъемы EPS должны быть установлены на выделенных кабелях для снижения перепадов напряжения и повышения безопасности, но на платформе не было достаточного количества разъемов для этого.

(Изображение предоставлено Corsair)

5. Corsair AX1600i

Лучший блок питания мощностью более 1 кВт

Технические характеристики

Производитель (OEM): Flextronics

Макс.Выход постоянного тока: 1600 Вт

Эффективность: 80 PLUS Titanium

Форм-фактор: ATX12V v2.4, EPS 2.92

Уровень шума: Cybenetics A (20–25 дБА) : Полностью модульный

Разъемы EPS: 2

Разъемы PCIe: 10 (на восьми кабелях)

Гарантия: 10 лет

Лучшие предложения сегодняшнего дня качество сборки

+

Бесшумная работа

+

Программное управление

Причины, по которым следует избегать

Очень дорого

Малое расстояние между разъемами периферийных устройств

но даже через несколько лет после его первоначального выпуска немногие другие блоки питания используют его.Короче говоря, в AX1600i используется преобразователь коэффициента мощности с тотемным полюсом, использующий GaN MOSFET, который может обеспечить КПД до 99% по сравнению с уровнями эффективности 96%, которые могут обеспечить самые современные традиционные преобразователи APFC. Хорошо, это технические детали, но что вам действительно нужно знать, так это то, что это примерно так же эффективно, как источники питания.

Помимо PFC с тотемным полюсом, AX1600i также использует два контроллера цифровых сигналов (DSC) для управления своими цепями. Одиночный микроконтроллер (MCU) представляет собой коммуникационный мост между системой и блоком питания, позволяя пользователям также управлять некоторыми жизненно важными функциями блока питания (например, профилем скорости вращения вентилятора и выбором между несколькими и одиночными линиями +12 В, настройкой лимиты OCP и т. д.) помимо задач мониторинга.

AX1600i — достойный наследник легендарного AX1500i. Оба устройства изготовлены компанией Flextronics с использованием передовых технологий и предлагают наилучшую производительность, которую сегодня можно купить за деньги, благодаря их цифровой платформе. Помимо высокой эффективности, AX1600i также предлагает превосходную регулировку нагрузки, отличные переходные характеристики, длительное время удержания и отличное подавление пульсаций.

Несмотря на свою высокую производительность, он остается впечатляюще тихим в работе благодаря свободному профилю вентилятора и высококачественному вентилятору FDB.Наконец, с помощью программного обеспечения Corsair Link вы можете выбрать один из трех режимов работы вентилятора: производительный, сбалансированный и бесшумный, поэтому каждый пользователь сможет настроить блок питания в соответствии со своими потребностями. Вы много заплатите, чтобы получить в свои руки Corsair AX1600i, но ничто другое не может сравниться с этим блоком питания, когда речь идет об общей производительности.

(Изображение предоставлено Fractal Design)

6. Fractal Design Ion SFX 650 Gold

Лучший блок питания малого форм-фактора

Технические характеристики

Производитель (OEM): Seasonic

Макс.Выход постоянного тока: 650 Вт

Эффективность: 80 PLUS Gold

Форм-фактор: SFX-L

Уровень шума: Cybenetics Standard+ (35–40 дБА)

Охлаждение: 120-мм вентилятор FDB (S1201512HB) ​​

Fully 900 EPS 2 Modular 9000 EPS

9000 разъемы: 1

Разъемы PCIe: 4 (на два кабеля)

Гарантия: 10 лет

Лучшие предложения сегодняшнего дня

Причины купить
+

Мощный

+

Высокая общая производительность, полностью модульный

+ 9 гибких и

кабелей

Десятилетняя гарантия

Причины, по которым следует избегать

Агрессивный профиль скорости вентилятора

Один разъем EPS

Высокие пусковые токи при входном напряжении 230 В категории в последнее время, область, которая начала привлекать гораздо больший интерес со стороны геймеров.Несколько лет назад блоки питания малого форм-фактора были нишевыми продуктами, но появление элегантных компактных корпусов и потребность в системах меньшего размера усилили конкуренцию в этой категории.

Первым брендом, который серьезно отнесся к блокам питания малого форм-фактора, был SilverStone, у которого богатейший портфель сопутствующих товаров. Тем временем Fractal нечего было показывать в этой категории, пока не были выпущены эти устройства SFX Gold.

Однако использование термина «SFX» не является точным, поскольку оба устройства Fractal Ion соответствуют неофициальному форм-фактору SFX-L, впервые представленному SilverStone.Благодаря большей, чем у SFX, глубине — на 30 мм — блоки SFX-L позволяют использовать более крупные охлаждающие вентиляторы и улучшать воздушный поток. Это означает, что они могут иметь более спокойные профили скорости вентилятора и быть тише, чем их стандартные аналоги SFX. Кроме того, более крупные печатные платы также позволяют использовать блоки большей мощности, до 1000 Вт.

Преимущества Ion SFX 650G по сравнению с конкурентом Corsair SFX заключаются в более крупном 120-мм вентиляторе, поскольку он соответствует формату SFX-L, а также в очень гибких модульных кабелях, которые действительно имеют значение при прокладке кабелей и процессах установки.Более того, в комплекте с ним вы найдете переходную планку SFX-to-ATX, которая пригодится, если вы захотите использовать этот блок питания вместе с корпусом ATX.

(Изображение предоставлено Corsair)

Как мы тестируем блоки питания

Помимо опыта и обширных знаний в области электроники, для оценки блоков питания также требуется безумно дорогое оборудование , до которого не каждый может дотянуться. Вдобавок ко всему, даже если у вас есть надлежащее оборудование, вам нужно знать, как им управлять, и, прежде всего, вы должны правильно его обслуживать (то есть калибровать его через частые промежутки времени, чтобы убедиться, что ваши результаты верны).

Вот почему так мало рецензентов блоков питания, и еще меньше тех, кто может дать хорошие обзоры блоков питания. Рекомендации, которые мы перечисляем в этой статье, основаны на данных, которые мы собрали с помощью показанного ниже оборудования:

(Изображение предоставлено Аристейдисом Битциопулосом)

Мы используем самое современное оборудование для тестирования блоков питания, включая Chroma electronic нагрузки, источники переменного тока Keysight, измерители мощности N4L, осциллографы Keysight и Picoscope для синхронизации блоков питания и измерения пульсаций, а также другое специализированное оборудование.

Мы проводим полные измерения при нормальных рабочих температурах, 28-32 градуса Цельсия, и при высоких рабочих температурах (>40С), которые выявляют малейшие проблемы, которые могут возникнуть в блоке питания. Тестирование блока питания только при комнатной температуре не дает полной картины, и именно здесь страдает большинство обзоров блоков питания.

Когда дело доходит до измерения шума, помимо высокоточного анализатора звука, в нашем распоряжении имеется полубезэховая камера с минимальным уровнем шума около 6 дБА.Схема измерения шума показана на фотографиях ниже.

Изображение 1 из 2

(Изображение предоставлено Aristeidis Bitziopoulos) Изображение 2 из 2

(Изображение предоставлено Aristeidis Bitziopoulos)

Лучший блок питания Часто задаваемые вопросы

Блок питания какой мощности мне нужен для моего ПК?

Вам не нужна степень в области ракетостроения, чтобы определить требования к мощности вашей системы. Рекомендуемое системное энергопотребление, указанное в списке спецификаций для вашей текущей или будущей видеокарты, — отличное место для начала.Тем не менее, мы рекомендуем использовать онлайн-калькулятор мощности, чтобы получить наиболее точную цифру. Калькулятор источника питания OuterVision — это наш выбор.

Какой рейтинг эффективности лучше всего подходит для блока питания?

После того, как вы определили мощность, необходимую для вашего ПК, вам нужно решить, какую эффективность вы можете себе позволить. Все производители блоков питания склонны соглашаться с одной и той же системой оценки эффективности блоков питания: 80 Plus.

Существует шесть рейтингов, на которые следует обращать внимание при выборе блока питания:

  • Бронза
  • Серебро
  • Золото
  • Платина
  • Титан

Блок питания, сертифицированный по стандарту 80 Plus Titanium, более эффективен, чем блок питания Bronze, а это означает, что внутренние детали тратят меньше энергии (тепла) при преобразовании переменного тока в постоянный.Они часто измеряются для трех уровней нагрузки: 20%, 50% и 100%. Большинство блоков питания, как правило, оцениваются как наиболее эффективные при 50%, хотя блоки питания Titanium, как правило, работают так же хорошо, если не лучше, при большой нагрузке.

Более высокая эффективность также означает, что внутренние компоненты подвергаются меньшему нагреву и, вероятно, имеют более длительный срок службы. Они могут стоить немного дороже, но более сертифицированные источники питания, как правило, более надежны, чем другие. К счастью, большинство производителей предлагают гарантии.

Что мы ищем в блоке питания?

Надежность, поддержка клиентов, гарантия и репутация производителя — это первое, на что следует обращать внимание при выборе лучших блоков питания.Поскольку не существует единого решения, подходящего для каждой сборки, мы выбрали несколько категорий, чтобы удовлетворить потребности большинства геймеров на ПК. Для каждого мы также учитывали бюджет, совместимость, уникальные функции и дизайн.

Наш лучший выбор был сделан на основе комбинации перечисленных выше критериев и общей оценки эффективности. Хотя это ни в коем случае не исчерпывающее решение для производительности блока питания, программа сертификации 80 PLUS обеспечивает некоторую форму стандартизации и ожидания эффективности.Более эффективные блоки питания означают меньшее выделение тепла и меньшее потребление энергии.

Нужен ли модульный блок питания?

Это выгодно для будущих обновлений. Модульный блок питания позволит вам добавлять дополнительные кабели по мере необходимости или удалять неиспользуемые, чтобы освободить ценное пространство внутри вашего корпуса. Это удобно, если вы настроены на более мощную видеокарту или вам нужна гибкость, позволяющая позже добавить другие периферийные соединения.

Тем не менее, вы вполне можете обойтись без него, так как даже полумодульные или фиксированные кабельные конструкции будут работать так же хорошо, если только несколько дополнительных кабелей будут лежать поблизости.Обычно вы можете засунуть их в заднюю часть корпуса вашего ПК, чтобы они не попадали в поле зрения.

В качестве предупреждения: совместимость является важным фактором, когда речь идет о блоках питания. Использование кабелей от разных блоков питания может подвергнуть риску весь ваш компьютер, поэтому придерживайтесь тех, которые есть в комплекте. Даже если они от одного и того же производителя, не все кабели блока питания будут универсальными, что еще больше усложняет ситуацию. Если вам абсолютно необходимо разорвать прилагаемые кабели, взгляните на штыревые разъемы вашего блока питания и убедитесь, что в вашем наборе кабелей есть подходящие, чтобы избежать ненужных разочарований и поломок.

Обзор лучших предложений сегодняшнего дня

Блок питания

Блок питания компьютера (PSU) преобразует бытовое напряжение сети переменного тока (ac) (220-240 вольт в Европе) в различные регулируемые низковольтные постоянного тока (dc) выходы, требуемые компонентами, которые составляют компьютерную систему.

Блок питания обычно представляет собой металлический ящик шириной 150 мм, высотой 86 мм и глубиной (обычно) 140 мм.Он крепится внутри корпуса системы с помощью четырех винтов в стандартном месте таким образом, чтобы выключатель питания и гнездо шнура питания, расположенные на задней панели блока питания, были доступны через отверстие в задней части корпуса. Это же отверстие позволяет воздуху поступать в охлаждающий вентилятор блока питания.

В некоторых случаях может быть переключатель выбора напряжения, позволяющий пользователю выбирать напряжение в соответствии с его географическим положением (например, в Соединенных Штатах внутренний источник питания работает с номинальным напряжением 120 вольт).Внутри корпуса из передней части блока питания выходит пучок кабелей. Кабели часто группируются и имеют цветовую маркировку в зависимости от типа устройства, к которому они будут подключены.

Хотя в прошлом для блока питания использовалось несколько форм-факторов, некоторые из них довольно тяжелые и громоздкие, сейчас в большинстве настольных персональных компьютеров используются блоки питания, соответствующие стандарту ATX формата , самая последняя версия которого — 2 .3.1, выпущенный в 2008 году. На приведенном ниже рисунке показан типичный блок питания ATX.


Типичный блок питания ATX


Блоки питания ATX разработаны специально для работы с материнскими платами семейства ATX и помещаются в системный корпус ATX, и их можно включать и выключать (или переводить в режим ожидания) с помощью сигналов, генерируемых материнской платой. Максимальная номинальная выходная мощность блока питания может варьироваться от 250 Вт до 2 кВт, в зависимости от типа системы, для которой он предназначен.

Компьютерные системы малого форм-фактора, как правило, имеют низкие требования к источнику питания порядка 300 Вт или меньше. Системы, используемые для игр, имеют гораздо более высокие требования к мощности (обычно от 450 до 800 Вт), главным образом потому, что в них используются высокопроизводительные графические адаптеры, которые потребляют большое количество энергии. Наибольшее энергопотребление наблюдается у коммерческих сетевых серверов или высокопроизводительных персональных компьютеров с несколькими процессорами, несколькими дисками и несколькими видеокартами.

Количество энергии, необходимой для конкретной компьютерной системы, будет зависеть от требований к мощности материнской платы, процессора и оперативной памяти, а также от количества дополнительных карт и периферийных устройств, потребляющих энергию от блока питания. В действительности лишь немногим персональным компьютерам в настоящее время требуется мощность более 350 Вт.

Тем не менее, при выборе блока питания следует соблюдать осторожность, поскольку номинальная максимальная выходная мощность, заявленная некоторыми производителями, не всегда отражает реальную выходную мощность, которая может быть достигнута при различных условиях нагрузки.В результате, производители и поставщики систем ПК и системных компонентов (особенно графических карт высокого класса) склонны завышать минимальные требования к мощности, когда речь идет о рекомендациях по мощности блока питания для использования с их продуктами.

Несмотря на то, что неподходящий источник питания может выйти из строя в случае перегрузки, не рекомендуется использовать источник питания с высокой выходной мощностью независимо от фактических требований к мощности.Наоборот, вам следует выбрать блок питания с выходной мощностью, отражающей требования системы к питанию. Энергоэффективность максимальна, когда нагрузка на блок питания составляет от 50% до 75% от максимальной выходной мощности. Это означает, что блок питания рассеивает меньше энергии в виде тепла.

Если скорость вращения вентилятора блока питания регулируется материнской платой, как это часто бывает, система будет работать тише, поскольку для охлаждения блока питания требуется меньший поток воздуха.При низких нагрузках (менее 20 % мощности) энергоэффективность значительно падает, и в виде тепла будет рассеиваться больше энергии, чем в случае блока питания с более подходящим номиналом. Хуже того, если нагрузка упадет ниже 15% мощности, блок питания может работать неправильно, и есть большая вероятность, что он вообще отключится.

Информация, указанная на этикетке или табличке, прикрепленной к источнику питания, содержит техническую информацию об источнике питания, которая будет включать в себя напряжение сети переменного тока, силу тока и частоты, с которыми может использоваться устройство, максимальную общую выходную мощность в ваттах и Доступны различные выходы постоянного напряжения и тока.На нем также будут отображаться предупреждения об опасности и необходимая информация о сертификации безопасности (в Европе это знак CE). Типичная этикетка блока питания показана ниже.


Пример информации, представленной на блоке питания


Предоставляемые разъемы могут варьироваться от одной модели к другой, но обычно они включены в таблицу ниже.

Стандартные выходные напряжения

Положительные выходные напряжения, создаваемые блоком питания, равны +3.3В, +5В и +12В. Также предусмотрены отрицательные напряжения -5 В и -12 В, а также напряжение +5 В в режиме ожидания . Различные напряжения (иногда называемые шинами ) используются для питания различных компонентов, и краткое описание того, какие напряжения и (и токи) используются для каких целей, приведено ниже.

Для тех, кто не знаком с концепцией отрицательного напряжения в цепях постоянного тока, это просто означает, что разность потенциалов измеряется от земли до сигнала, а не наоборот (земля обычно используется в качестве точки отсчета для измерения напряжения).Требования к току различных компонентов системы значительны, поскольку мощность является произведением напряжения и тока. Таким образом, общая потребляемая мощность системы зависит от требований к напряжению и току ее отдельных компонентов.

Сводка напряжений блока питания
Напряжение Назначение
-12 В Используется в некоторых старых типах схем усилителей последовательного порта.
Обычно не используется в новых системах.
Ток обычно ограничен 1А.
-5V Используется на некоторых ранних персональных компьютерах для контроллеров гибких дисков
и некоторых дополнительных карт ISA.
Обычно не используется в новых системах.
Ток обычно ограничен 1А.
0 В Заземление при нулевом напряжении (также называемое общим или заземлением ) и опорной точкой
для других системных напряжений.
+3.3V Используется для питания процессора, некоторых типов памяти
, некоторых видеокарт AGP и других цифровых схем
(для большинства этих компонентов требовалось питание +5 В в более старых системах
).
+5 В По-прежнему используется для питания материнской платы и некоторых компонентов
на материнской плате. Обратите внимание, что
также имеется резервное напряжение 5 В, когда система
выключена, и ее можно заземлить (например,
пользователем, нажав выключатель питания на передней панели корпуса), чтобы
восстановить питание системы.
+12 В В основном используется для таких устройств, как дисководы и охлаждающие вентиляторы
с двигателями того или иного типа. Эти устройства
имеют собственные разъемы питания, которые идут
напрямую от блока питания.

Как работает блок питания

Тип блока питания, используемый в современном ПК, называется импульсным блоком питания (SMPSU).По сути, это означает, что переменное сетевое напряжение, поступающее в блок питания, выпрямляется для получения постоянного напряжения без использования сетевого трансформатора (обычно они довольно тяжелые из-за необходимости в катушке с ферритовым сердечником). Полученное таким образом напряжение затем включается и выключается с очень высокой скоростью с использованием электронной схемы переключения, эффективно создавая высокочастотное прямоугольное напряжение (фактически, серию импульсов постоянного тока). Затем можно использовать легкий и относительно недорогой высокочастотный трансформатор для получения требуемого выходного постоянного тока.

Выходное напряжение постоянного тока и ток регулируются (поддерживаются постоянными) с использованием контроллера обратной связи, который увеличивает или уменьшает выходную мощность в соответствии с изменениями тока нагрузки. Он делает это, увеличивая или уменьшая рабочий цикл (по сути, это означает увеличение или уменьшение количества импульсов напряжения, создаваемых коммутационной схемой в заданный период времени).

Обратите внимание, что большинство блоков питания могут отключаться, если ток нагрузки превышает определенный порог, что снижает вероятность повреждения компьютерной системы (или ее пользователя) в случае электрической неисправности, такой как короткое замыкание.Тот же принцип применим к отсутствию тока нагрузки (или очень низкому току нагрузки), поскольку блок питания не может правильно работать ниже определенного уровня выходной мощности и отключится при обнаружении недостаточного тока нагрузки.

При первом включении может потребоваться полсекунды или около того, чтобы источник питания стабилизировался и начал генерировать правильное постоянное напряжение, требуемое компьютером. Таким образом, блок питания отправляет на материнскую плату сигнал, называемый сигналом Power Good , после того, как он выполнил свои внутренние тесты и убедился, что выходная мощность соответствует норме.Материнская плата должна дождаться этого сигнала перед включением системы.

Скачок напряжения или кратковременный сбой питания иногда вызывают кратковременное прерывание сигнала Power Good, что приводит к перезагрузке системы при возобновлении работы. Также обратите внимание, что из практических соображений различные напряжения, создаваемые блоком питания, на самом деле вырабатываются несколькими различными импульсными источниками, которые связаны вместе в блоке питания, каждый из которых изменяет свою выходную мощность в соответствии с требованиями к мощности компонента.

Одной из последних тенденций в разработке блоков питания стала концепция модульного блока питания , в котором кабели могут подключаться к блоку питания через разъемы на конце блока питания , что позволяет пользователю устанавливать только те кабели, которые ему действительно нужны. Идея состоит в том, что отсутствие ненужных кабелей уменьшит беспорядок внутри корпуса и улучшит вентиляцию. Кроме того, пользователь может выбрать тип силового кабеля (например, кабель питания).грамм. Serial ATA или Molex для жестких дисков).

Критики этой разработки указывали, что электрическое сопротивление будет увеличено из-за большего количества электрических соединений. Сторонники указывают, что увеличение сопротивления очень мало. Однако с практической точки зрения проблемы могут возникнуть только в том случае, если разъемы старые и изношенные (в этом случае соединение может быть ослаблено) или соединение было выполнено неправильно во время установки.Очевидный ответ — заменить старые кабели и проверить все соединения перед первым использованием. Основные разъемы блока питания и их выводы показаны на схеме ниже.


Общие разъемы блока питания и их выводы


Выход из строя блока питания неизменно потребует замены БП, так как без него компьютер работать явно не будет.Такие поломки часто возникают в результате перегрева из-за поломки вентилятора охлаждения. После этого система отключается и не может быть перезагружена или, как это иногда случается, постоянно перезагружается через явно случайные промежутки времени.

В критических компьютерных системах, таких как сетевые серверы, нередко можно найти резервные источники питания, действующие в качестве резервных для основного источника питания. Резервный блок берет на себя работу в случае отказа основного источника питания, который затем можно заменить во время запланированного периода обслуживания.

С другой стороны, портативные компьютеры, такие как ноутбуки и нетбуки, требуют гораздо меньше энергии (200 Вт или меньше), что позволяет им питаться от съемной перезаряжаемой батареи, которую при необходимости можно легко заменить. Внешний источник питания используется для зарядки аккумулятора и может подавать питание на систему, пока она подключена. Этот внешний блок питания обычно обеспечивает постоянный ток 19,5 В.

Возможность включения или выключения питания компьютера путем заземления резервного напряжения +5 В означает, что система может включаться или выключаться по сигналу, генерируемому материнской платой в ответ на программное прерывание (или системный вызов — сигнал, генерируемый операционной системой) или аппаратное прерывание (сигнал, генерируемый аппаратным компонентом системы).

Возможность управления питанием с помощью системного вызова означает, что пользователь может выключить систему, щелкнув значок или пункт меню, вместо того, чтобы физически выключать систему с помощью выключателя питания. Это также означает, что программное обеспечение для управления питанием можно настроить на отключение компьютера при отсутствии действий пользователя в течение заданного периода времени. Систему можно настроить на повторное включение в случае некоторого заранее определенного события, такого как нажатие пользователем клавиши на клавиатуре или активация сетевого соединения.


Что такое блок питания? Что такое блок питания ATX?

Блок питания — это аппаратное обеспечение, которое преобразует мощность, подаваемую из розетки, в полезную мощность для многих компонентов внутри корпуса компьютера.

Он преобразует переменный ток из настенной розетки в непрерывную форму питания, называемую постоянным током, который требуется компонентам компьютера. Он также регулирует перегрев, контролируя напряжение, которое может изменяться автоматически или вручную в зависимости от источника питания.

Блок питания является важной частью, потому что без него остальная часть внутреннего оборудования не может работать. Материнские платы, корпуса и блоки питания бывают разных размеров, называемых форм-факторами. Все три должны быть совместимы для правильной совместной работы.

CoolMax, CORSAIR и Ultra — самые популярные производители блоков питания, но большинство из них включены в комплект поставки компьютера, поэтому при замене блока питания вы имеете дело только с производителями.

Блок питания обычно не обслуживается пользователем.В целях безопасности никогда не открывайте блок питания.

Блок питания Описание

Блок питания Corsair Enthusiast TX650 V2 ATX12V EPS12V. © Корсар

Блок питания монтируется прямо в задней части корпуса. Если вы проследите за кабелем питания компьютера, вы обнаружите, что он подключается к задней части блока питания. Это задняя сторона, как правило, единственная часть блока питания, которую большинство людей когда-либо увидят.

В задней части блока питания также есть отверстие для вентилятора, которое направляет воздух из задней части корпуса компьютера.

Сторона блока питания, обращенная к корпусу, имеет штекерный трехштырьковый порт, к которому подключается кабель питания, подключенный к источнику питания. Также часто есть выключатель питания и переключатель напряжения питания.

Большие пучки цветных проводов идут с противоположной стороны блока питания в компьютер. Разъемы на противоположных концах проводов соединяются с различными компонентами внутри компьютера, обеспечивая их питанием. Некоторые из них специально предназначены для подключения к материнской плате, в то время как другие имеют разъемы, которые подходят для вентиляторов, дисководов, жестких дисков, оптических приводов и даже некоторых мощных видеокарт.

Блоки питания оцениваются по мощности, чтобы показать, сколько энергии они могут обеспечить компьютеру. Поскольку каждая часть компьютера требует определенного количества энергии для правильной работы, важно иметь блок питания, который может обеспечить нужное количество энергии. Очень удобный инструмент Cooler Master Supply Calculator поможет вам определить, сколько вам нужно.

Сравнение блоков питания

ATX и ATX12V

ATX и ATX12V — это спецификации конфигурации, которые важно различать при работе с блоками питания.Для большинства людей заметные различия просто связаны с физическим штекером на материнской плате. Выбор одного над другим зависит от типа используемой материнской платы.

Новейший стандарт ATX12V v2.4 используется с 2013 года. Материнские платы, использующие ATX12V 2.x, используют 24-контактный разъем. Материнские платы ATX используют 20-контактный разъем.

Одна из ситуаций, когда количество выводов вступает в игру, — это когда решается, работает ли конкретный блок питания с вашей системой. Блоки питания, совместимые с ATX12V, хотя и имеют 24 контакта, на самом деле могут использоваться на материнской плате ATX с 20-контактным разъемом.Оставшиеся неиспользуемые четыре контакта просто отсоединяются от разъема. Если в корпусе вашего компьютера есть место, это вполне выполнимая установка.

Однако это не работает наоборот. Если у вас есть блок питания ATX с 20-контактным разъемом, он не будет работать с более новой материнской платой, для которой требуется подключение всех 24 контактов. В этой спецификации были добавлены дополнительные четыре контакта для обеспечения дополнительной мощности через шины 12 В, поэтому 20-контактный блок питания не может обеспечить достаточную мощность для работы материнской платы такого типа.

Что еще отличает блоки питания ATX12V от ATX, так это разъемы питания, которые они предоставляют. Стандарт ATX12V (начиная с версии 2.0) требует 15-контактного разъема питания SATA. Если вам необходимо использовать устройство SATA, но блок питания не имеет разъема питания SATA, вам понадобится переходник Molex с 4 контактов на 15 контактов SATA (например, этот).

Еще одно различие между ATX и ATX12V заключается в рейтинге энергоэффективности, который определяет, сколько энергии потребляется от стены по сравнению с выходной мощностью компьютера.Некоторые старые блоки питания ATX имеют рейтинг эффективности ниже 70 процентов, в то время как стандарт ATX12V требует минимального рейтинга 80 процентов.

Другие виды источников питания

Описанные выше блоки питания — это те, которые находятся внутри настольного компьютера. Другой тип – внешний источник питания.

Например, в некоторых игровых консолях блок питания подключен к кабелю питания, который должен располагаться между консолью и стеной. Вот пример блока питания Xbox One, который выполняет ту же функцию, что и блок питания для настольных ПК, но является внешним и, следовательно, полностью подвижным, и его гораздо проще заменить, чем блок питания для настольных ПК:

Блок питания Xbox One.

Другие аналогичны, например, блок питания, встроенный в некоторые внешние жесткие диски, которые необходимы, если устройство не может получать достаточно энергии от компьютера через USB.

Внешние источники питания выгодны, потому что они позволяют устройству быть меньше и привлекательнее. Однако некоторые из этих типов блоков питания крепятся к кабелю питания и, поскольку они, как правило, довольно большие, иногда затрудняют размещение устройства у стены.

Источник бесперебойного питания (ИБП) — это еще один тип источника питания.Они похожи на резервные источники питания, которые обеспечивают питание, когда основной блок питания отключен от обычного источника питания. Поскольку блоки питания часто становятся жертвами скачков напряжения и скачков напряжения, потому что именно через них устройство получает электроэнергию, вы можете подключить устройство к ИБП (или устройству защиты от перенапряжений).

Спасибо, что сообщили нам!

Расскажите нам, почему!

Другой Недостаточно подробностей Сложно понять

лучших блоков питания для ПК: Holiday 2021

В нашей серии руководств для покупателей в отпуске представлено последнее обновление списка рекомендуемых блоков питания.Все цифры в тексте обновлены, чтобы отражать цены на момент написания.

Лучшие блоки питания для ПК: праздник 2021

Теперь, когда вы выбрали ЦП, пришло время выбрать остальные компоненты вашей системы. И, пожалуй, самым скромным, но упускаемым из виду из этих компонентов является блок питания (БП). Существует множество отличных блоков питания, доступных в широком диапазоне размеров и мощностей, но выбор между ними может быть проблемой. Итак, сегодня мы представляем вам наш ежегодный справочник по блокам питания для ПК, чтобы помочь вам разобраться, какие варианты лучше всего, будь то маломощный блок для ПК с малым форм-фактором или массивный киловаттный блок для самого мощного ПК. .

Рекомендации AnandTech по блоку питания для ПК: 2021
(Цены указаны с 29 ноября или MSRP)
Выходной диапазон Значение Опция Опция повышения производительности
АТХ
До 450 Вт ЕВГА 450 БР $35 EVGA SuperNOVA 450 GM 80 долларов
500-600 Вт ЕВГА 510 БП 40 долларов Fractal Design Ion+ 2 560 Вт $111
650-800 Вт молчи! Чистая мощность 11 600 Вт $70 Сезонный фокус PX-750 150 долларов
850-950 Вт Корсар RM850x $110 Сезонный ПРАЙМ TX-850 200 долларов
1000+ Вт EVGA Supernova 1000 G6 150 долларов Корсар HX1200 240 долларов
Звуковой сигнал
До 450 Вт EVGA SuperNOVA 450 GM $80 Корсар SF450 115 долларов
500+ Вт Сезонный фокус SGX-650  $130 SilverStone SX800-LTI 220 долларов

При покупке блока питания очень важно учитывать энергопотребление вашей системы и учитывать любые запланированные обновления.Все современные компьютерные блоки питания предназначены для обеспечения оптимальной производительности при (или почти при) половинной нагрузке. С другой стороны, распространено заблуждение, что более мощный блок питания будет лучшим выбором, поскольку качество электроэнергии и эффективность всех современных блоков питания ухудшаются при очень низких нагрузках. Это особенно верно в нижней части кривой нагрузки, обычно ниже 15% от номинальной мощности устройства, когда эффективность резко падает. На самом деле только рекомендации 80Plus Titanium диктуют стандарт низкой нагрузки, а это требование эффективности 90 % при 10 % нагрузке.Следовательно, выбор слишком мощного блока питания приведет к ухудшению производительности, которая может быть значительно хуже, чем то, что может обеспечить продукт подходящего размера за небольшую часть цены.

В целом, мы разделили наши рекомендации на пять основных категорий мощности, по крайней мере, по две единицы для каждой. Один выбор будет основываться на максимально возможной ценности (например, выгода за вложенные деньги), а другой будет сосредоточен на наилучшей общей производительности.

Если смотреть в целом на рынок блоков питания, то в последнее время технология блоков питания несколько устарела, поскольку производители изо всех сил стараются значительно улучшить свои конструкции, не увеличивая свои затраты.Поскольку блоки питания стали очень эффективными и теперь используют передовые топологии конструкции, любые дальнейшие обновления в значительной степени зависят от материаловедения, например, от использования относительно дорогих деталей на основе нитрида галлия. Кроме того, существует практический предел того, насколько существующая конструкция может быть модернизирована за счет использования более качественных деталей, не делая ее слишком дорогой для чувствительного к цене рынка, поэтому разработки блоков питания развивались очень медленно в течение последних нескольких лет.

В конечном счете, за последний год было выпущено очень мало продуктов с низкой производительностью, и лишь несколько производителей выпустили новые платформы высшего уровня, фактически монополизировав рынок high-end.В следующих параграфах подробно рассказывается о правильном выборе блока питания и подробно рассказывается, почему именно эти блоки являются нашими рекомендациями.

Сколько энергии мне действительно нужно?

В целом, лучший способ выбора блока питания основывается как на объективных (например, мощность, производительность), так и на субъективных (например, дизайн, модульные кабели) параметрах. Это, по общему признанию, требует, чтобы каждый сборщик был способен сделать хотя бы обоснованное предположение о требованиях к питанию системы. Однако именно здесь вступают в действие наше руководство и советы.

Возможно, самая большая ошибка, которую совершают многие пользователи при выборе блоков питания, — это завышение требований к мощности своих систем. Нередко люди — даже продавцы магазинов и опытные сборщики — рекомендуют устройство мощностью 1 кВт пользователю всего с двумя (или даже одним) высокопроизводительными графическими процессорами. Система с одним основным процессором и соответствующей видеокартой редко требует более 350 Вт. Современная система на базе AMD Ryzen с одной картой AMD RX 6600/NVIDIA RTX 3060 вряд ли дотянет до 275 Вт, тогда как в простое она обычно составляет 45-55 Вт.И даже в более экстремальном сценарии — скажем, довольно прожорливый Ryzen 9 5950X в паре с GeForce RTX 3090 — не дотянет до 650 Вт даже при патологических нагрузках.

Между тем, «калькуляторы мощности», хотя и являются усовершенствованием слепого угадывания, обычно являются простыми инструментами, которые получают свои числа из спецификаций расчетной мощности (TDP) компонентов. TDP компонента не отражает фактических требований к питанию компонента — в лучшем случае это общая рекомендация — и также почти невозможно одновременно подвергнуть каждый отдельный компонент системы максимальной нагрузке.Однако имейте в виду, что для оптимальной производительности блок питания должен работать примерно при половинной нагрузке. Имея это в виду, хотя рекомендации онлайн-инструментов и калькуляторов могут быть переоценены, они не слишком. Выбор единицы мощности, которую они рекомендуют, обычно не является плохой идеей, поскольку рекомендация обычно вдвое превышает фактическую потребность системы в мощности. Распространенной ошибкой является то, что пользователи обычно стремятся купить значительно более мощный блок, думая, что дополнительная мощность помогает, и в конечном итоге получают слишком большой блок питания для своей системы, который будет более дорогим в покупке и неспособным работать должным образом.

Если вы можете измерить фактическую потребляемую мощность вашей системы, имейте в виду, что вам не следует покупать устройство, которое часто будет работать на пределе своих возможностей. Точно так же, как вы не стали бы постоянно водить машину возле красной линии, блок питания не должен находиться под максимальным напряжением в течение длительного времени. Качественный блок питания может это выдержать, но то, что он может, не означает, что он должен. Опять же, все импульсные блоки питания обеспечивают максимальную эффективность примерно при 50% номинальной мощности. Работа блока питания с нагрузкой более 90 % в течение длительного периода времени не только снизит его производительность, но и сделает его более горячим и громким, а также уменьшит ожидаемый срок службы.

Блоки питания ATX

До 450 Вт             

EVGA 450 BR 450 Вт (35 долларов США)

EVGA 450 GM 450 Вт (80 долларов США)

Seasonic PRIME Fanless PX-450 Platinum (217 долл. США)

Наша основная рекомендация в этой категории — EVGA 450 BR. Хотя это довольно простой блок с самым низким стандартом сертификации 80Plus, он все же является шагом вперед по сравнению с прошлогодним EVGA N1 400W. Это базовая, но проверенная конструкция от известного производителя, который поддерживает ее хорошей 3-летней гарантией.В настоящее время он продается по цене 35 долларов – на 5 долларов меньше, чем N1 продавался в прошлом году, что делает его исключительным предложением для систем с низким энергопотреблением.

Для тех, кто ищет нечто большее, чем просто базовый блок питания, розничная цена на нечто приемлемое почти удваивается. Мы снова рекомендуем блок питания EVGA, 450 GM. Несмотря на то, что он имеет ту же выходную мощность, что и 450 BR, 450 GM значительно более эффективен, модульен, и EVGA покрывает его 7-летней гарантией.Это также блок питания SFX, в отношении которого мы уверены, что наша рекомендация вызовет немало удивлений, но объяснение простое — просто нет других продвинутых блоков питания мощностью 450 Вт, которые могли бы сравниться с ценой 450 GM за 80 долларов (или любой разумной ценой). цена, если на то пошло). По крайней мере, EVGA 450 GM имеет в упаковке переходник SFX-ATX, что позволяет устанавливать его в любой корпус ATX.

В этом диапазоне мощностей очень мало высокопроизводительных блоков питания, что сильно ограничивает наши потенциальные рекомендации.Одного быстрого поиска достаточно, чтобы понять, что блоки питания с высокой эффективностью практически не существуют в этом диапазоне мощностей, поскольку производители не хотят сосредотачивать свои исследования и разработки на продуктах, которые мало выигрывают от высокой эффективности.

Среди нескольких кандидатов, представленных здесь, Seasonic PRIME Fanless PX-450 — одна из очень немногих конструкций с сертификатом очень высокой эффективности, проверенными электрическими характеристиками, безвентиляторной работой, отличным качеством и длительной гарантией. На наш взгляд, это лучший блок питания мощностью 450 Вт, доступный в настоящее время.Единственным недостатком здесь является то, что розничная цена в 217 долларов США смехотворна даже для безвентиляторного устройства, сертифицированного 80Plus Platinum. Но если в деньгах нет предела, то победить ПРАЙМ сложно.

от 500 до 600 Вт

EVGA 510 BP 510 Вт (40 долларов США)

Fractal Design Ion+ 2 Platinum, 560 Вт (111 долл. США)

В отличие от недостаточно обслуживаемой линейки блоков питания мощностью менее 500 Вт, существует значительный спрос на блоки питания мощностью от 500 до 600 Вт, и, следовательно, имеется более широкий ассортимент продукции. Это разумный диапазон мощности для типичного домашнего развлекательного/игрового ПК с одной основной видеокартой.

Пожалуй, самый экономичный выбор в этом диапазоне мощностей в этом году сделал EVGA с их новым блоком EVGA 510 BP 500+10 Вт, который в настоящее время продается всего за 40 долларов. Хотя его характеристики не так уж велики, а его производительность чуть лучше, чем посредственная, он поставляется с 3-летней гарантией и продается всего за 40 долларов, что делает его невероятно выгодным.

На другом конце спектра производительности находится блок питания Fractal Design Ion+ 2 Platinum мощностью 560 Вт.Это очень эффективный блок питания, сертифицированный по стандарту 80Plus Platinum, с отличной общей производительностью, модульной конструкцией и очень надежной конструкцией. Опять же, розничная цена почти утроилась: Ion+ 2 560 Вт продается по цене 111 долларов, но это, несомненно, гораздо лучшая инвестиция, если вы планируете сохранить свое оборудование на долгие годы.

от 600 до 800 Вт

молчи! Чистая мощность 11 600 Вт (70 долларов США)

Seasonic FOCUS PX-750 (150 долларов США)

Блоки питания

мощностью от 600 до 800 Вт очень популярны среди геймеров и оверклокеров.Они обеспечивают достаточную мощность для высокопроизводительных компонентов, таких как 16-ядерные процессоры и видеокарты мощностью 350 Вт, а также предлагают большой запас для разгона. Этот диапазон мощности, как правило, популярен в целом, поскольку накладные расходы мощности обеспечивают чувство безопасности.

Существует очень мало недорогих продуктов приемлемого качества в этом диапазоне мощностей, так как большинство компаний сосредотачивают свои усилия на разработке модных и/или высокопроизводительных устройств. Мы рекомендуем этой осенью Be Quiet! Блок питания Pure Power 11 мощностью 600 Вт.Большинство может задаться вопросом, почему мы рекомендуем устройство с сертификацией 80Plus Gold в нашем ценовом диапазоне — потому что в настоящее время оно продается всего за 70 долларов, что ниже, чем у устройств с более низким рейтингом той же серии. Pure Power 11 — это полумодульный высокопроизводительный блок питания с отличной общей производительностью, поэтому было бы неразумно пытаться сэкономить 5–10 долларов, чтобы в конечном итоге купить что-то, что намного ниже его лиги.

Для пользователей, стремящихся к еще большей производительности, SeaSonic предлагает одну из своих самых легендарных платформ в этом диапазоне мощностей — Focus PX-750.Это сертифицированное устройство 80Plus Platinum с электрическими характеристиками и надежностью мирового класса, на которое распространяется 10-летняя гарантия. Его розничная цена высока, сегодня она составляет 150 долларов, но не слишком высока для тех, кто готов платить такую ​​цену за высококачественную деталь.

от 800 до 950 Вт

Корсар RM850x (110 долларов США)

Seasonic PRIME TX-850 (200 долларов США)

Диапазон мощности от 800 до 950 Вт обычно зарезервирован для пользователей, которые хотят питать сильно разогнанные ПК, а также компьютеры с несколькими графическими процессорами, ориентированные на рабочие станции.Недорогие альтернативы от известных производителей здесь становятся редкостью — мы не можем позволить себе очень дешево в этом диапазоне мощностей, потому что мы считаем, что долгосрочная надежность является абсолютной необходимостью, независимо от того, рассматриваем ли мы высококлассную игровую систему или профессиональную рабочую станцию.

Удерживая ту же позицию, что и в прошлом году, обновленная серия Corsair RMx, вероятно, предлагает лучшее соотношение цены и качества в этом диапазоне мощностей. Они очень хорошо сделаны, эстетичны, мощны и эффективны, с отличными показателями качества электроэнергии.Версия серии мощностью 850 Вт сертифицирована по стандарту 80Plus Gold, а ее цена по сравнению с прошлым годом снизилась со 135 до 110 долларов, что делает ее еще более разумным выбором для пользователей, которые ценят долгосрочную надежность и приемлемую общую производительность.

Для тех, кто хочет приобрести что-то, что значительно лучше, чем и без того отличный RM850x, SeaSonic снова приходит на помощь с Prime TX-850, одним из лучших устройств в этом диапазоне мощности. TX-850 предлагает непревзойденные электрические характеристики, он имеет сертификат 80Plus Titanium и на него распространяется смехотворная 12-летняя гарантия.Он продается по цене 200 долларов, что почти вдвое превышает цену среднего уровня RM850x, но, опять же, это не является необоснованной ценой, чтобы платить за лучшее качество и производительность, которые в настоящее время существуют на розничном рынке.

Более 1000 Вт

EVGA Supernova 1000 G6 (150 долларов США)

Corsair HX1200 (240 долларов США)

молчи! Dark Power Pro 12 1500 Вт (450 долларов США)

Если вам требуется блок питания с выходной мощностью более 1000 Вт, скорее всего, у вас есть как минимум пара высокопроизводительных графических процессоров и/или очень мощная двухпроцессорная система с большим количеством устройств.Эти блоки питания также находят применение в продвинутых серверах и системах майнинга криптовалюты. При этом блок питания будет питать довольно дорогую систему, функция которой зачастую очень важна. Устройств в этом диапазоне мощности в этом году также немного не хватает, что говорит о том, что лихорадка майнинга криптовалют оказывает влияние не только на рынок графических процессоров и на нашу планету.

Учитывая вышеизложенное, определение «стоимостного» блока питания в этом диапазоне мощности довольно расплывчато.Любой такой блок питания должен соответствовать хотя бы базовым стандартам надежности и производительности. Продукт, который соответствует минимуму наших ожиданий, — это блок EVGA G6 Supernova мощностью 1000 Вт. Он основан на относительно простой платформе, но собран из качественных деталей, что дает ему сертификат эффективности 80Plus Gold и очень длительную 10-летнюю гарантию. В настоящее время он продается по цене 150 долларов США, что является более чем разумной ценой, учитывая характеристики и выходную мощность.

Тем не менее, учитывая вид дорогих систем, которые в конечном итоге будет питать блок мощностью более 1000 Вт, было бы неплохо использовать блок питания с более высоким КПД — небольшие потери не так уж малы при мощности 1 кВт — а также зацепить что-то, созданное для более высокий стандарт качества в целом.Единственная загвоздка в том, что переход на что-то значительно лучшее, чем G6 Supernova, добавляет к цене очень существенные 100 долларов, что является большой разницей для небольшой экономии энергии. Например, самым дешевым в настоящее время сертифицированным устройством 80Plus Platinum, которое мы рекомендуем, является Corsair HX1200, который в настоящее время продается по цене 240 долларов США. Тем не менее, более эффективный Corsair HX1200 также выделяет меньше тепла и работает с более низким уровнем шума, что может быть важным моментом для некоторых пользователей.

Для тех, кто жаждет еще большей мощности, если стоимость не является проблемой, Corsair AX1600i по-прежнему является чемпионом по производительности среди блоков питания для ПК. Тем не менее, его розничная цена увеличилась с момента его выпуска в 2018 году, и в настоящее время он продается по нереальной цене в 850 долларов, что делает его неразумным выбором для любого человека, который знает приблизительную оценку своего сберегательного счета. Те, кому действительно нужна мощность более 1,5 кВт, могут выбрать Be quiet! Dark Power Pro 12 1500 Вт, еще один блок питания высшего уровня, который находится на том же уровне, что и AX1600i, но в настоящее время продается по цене 450 долларов, что почти вдвое меньше.

Блоки питания SFX

Поскольку блоки SFX становятся все более популярными с каждым новым поколением, будет справедливо включить их в руководство покупателя блока питания этого года. На рынке SFX все еще есть несколько достойных претендентов, но существует здоровая конкуренция, и в последние годы стало доступно несколько усовершенствованных устройств.

До 450 Вт

EVGA SuperNOVA 450 GM (80 долларов США)

Corsair SF450 Platinum (115 долларов США)

Этот диапазон мощностей должен соответствовать потребностям большинства пользователей, создающих стандартные развлекательные системы на основе звуковых эффектов.350-450 Вт более чем достаточно для эффективной системы, даже если в ней установлена ​​видеокарта среднего класса.

В этом диапазоне мощностей мы собираемся рекомендовать тот же блок SFX, который мы рекомендовали сборщикам систем ATX, — EVGA 450 GM. С его ценой в 80 долларов это самый разумный выбор в этом диапазоне мощности, особенно с учетом его хорошей сертификации 80Plus Gold, тогда как почти все устройства SFX по аналогичной цене имеют сертификат 80Plus Bronze. Эффективность имеет большое значение в ограниченных пропорциях блоков SFX, поэтому EVGA 450 GM значительно опережает своих конкурентов.

Corsair очень уверенно вышла на рынок SFX с серией SF пару лет назад. Последняя версия SF450 может похвастаться сертификацией эффективности 80 Plus Platinum, модульной конструкцией, хорошим качеством электроэнергии и разумной ценой, что затрудняет конкуренцию. SF450, вероятно, является одним из лучших вариантов блока питания SFX мощностью 450 Вт, если сравнивать его надежность и производительность с приемлемой ценой в 115 долларов, что также на 10 долларов ниже, чем в прошлом году.

500+ Вт       

Сезонный фокус SGX-650 (130 долларов США)

SilverStone SX800-LTI (220 долларов США)

Устройства

SFX мощностью более 450 Вт обычно зарезервированы для тех, кто хочет создавать мощные, но компактные игровые автоматы для гостиной с установленной хотя бы одной высококачественной видеокартой.Более мощные блоки питания SFX в наши дни могут работать даже с самой энергоемкой видеокартой, что делает сборку таких игровых машин дорогостоящим, но возможным делом.

Увы, когда нужен мощный блок питания SFX, дешевых вариантов не бывает. Самый дешевый блок питания, который мы бы порекомендовали пользователям, рассчитывающим установить с ним более мощную видеокарту, — это SeaSonic Focus SGX-650. SeaSonic — это производитель, у которого никто не осмеливается сомневаться в компетентности и качестве его продукции, а розничная цена в 130 долларов США является разумной, учитывая уровень конкуренции.

SilverStone — традиционный и крупный игрок на рынке звуковых эффектов. В конце концов, компания сильно сосредоточена на дизайне и маркетинге корпусов SFX, поэтому вполне разумно, что они также потратят много исследований и разработок на блоки питания SFX. SilverStone предлагает множество блоков SFX, от самых простых продуктов до чудовищного блока питания SX800-LTI мощностью 800 Вт. Обладая сертификацией 80Plus Titanium и показателями производительности, которые затмят большинство блоков ATX, SX800-LTI, несомненно, является одним из лучших и самых мощных существующих блоков SFX.Розничная цена высока и составляет 220 долларов, но мы настоятельно рекомендуем ее пользователям, которые хотят создавать игровые установки с несколькими графическими процессорами.

.

0 comments on “Устройство компьютерного блока питания: Устройство компьютерных блоков питания и методика их тестирования

Добавить комментарий

Ваш адрес email не будет опубликован.