Калькулятор мощности постоянного тока • Электротехнические и радиотехнические калькуляторы • Онлайн-конвертеры единиц измерения
Определения и формулы
Этот калькулятор используется для расчета мощности постоянного тока и всё, о чем тут говорится, относится, в основном, к постоянному току. Намного более сложный случай расчета мощности в цепях переменного тока рассматривается в нашем Калькуляторе мощности переменного тока. См. также Калькулятор пересчета ВА в ватты.
Электрический разряд
Линия электропередачи — пример устройства для передачи энергии от места, где она вырабатывается, до места, где она потребляется.
Электрический заряд или количество электричества — скалярная физическая величина, определяющая способность тел создавать электромагнитные поля и принимать участие в электромагнитном взаимодействии. На электрически заряженное тело, помещенное в электромагнитное поле, действует сила, при этом заряды противоположного знака притягиваются друг к другу, а одноименные заряды — отталкиваются.
Единицей измерения электрического заряда в системе СИ является кулон, равный заряду, проходящему через поперечное сечение проводника с током один ампер в течение одной секунды. Несмотря на то, что мы наблюдаем перемещение зарядов в любой электрической схеме, количество заряда не изменяется, так как электроны не создаются и не разрушаются. Электрический заряд в движении представляет собой электрический ток, рассматриваемый ниже. При перемещении заряда из одного места в другое мы осуществляем передачу электрической энергии.
Подробнее об электрическом заряде, линейной плотности заряда, поверхностной плотности заряда и объемной плотности заряда и единицах их измерения.
Сила тока
Сила тока — физическая величина, представляющая собой скорость перемещения заряженных частиц или носителей заряда (электронов, ионов или дырок) через некоторое сечение проводящего материала, который может быть металлом (например, проводом), электролитом (например, нейроном) или полупроводником (например транзистором). Если говорить более конкретно, это скорость потока электронов, например в схеме, показанной на рисунке выше.
В системе СИ единицей измерения силы тока является ампер (символ А). Один ампер — это ток, возникающий при движении заряженных частиц со скоростью один кулон в секунду. Обозначается электрический ток символом I и происходит от французского intensité du courant («интенсивность тока»).
Электрический ток может протекать в любом направлении — от отрицательной к положительной клемме электрической схемы и наоборот, в зависимости от типа заряженных частиц. Положительные частицы (положительные ионы в электролитах или дырки в полупроводниках) движутся от положительного потенциала к отрицательному и это направление произвольно принято за направление электрического тока. Такое направление можно рассматривать как движение заряженных частиц от более высокого потенциала к более низкому потенциалу или более высокой энергии к более низкой энергии. Это определение направления электрического тока сложилось исторически и стало популярным до того, как стало понятно, что электрический ток в проводах определяется движением отрицательных зарядов.
Такое произвольно принятое направление электрического тока можно также использовать для объяснения электрических явлений с помощью гидравлической аналогии. Мы понимаем, что вода движется из точки с более высоким давлением в точку с более низким давлением. Между точками с одинаковыми давлениями потока воды быть не может. Поведение электрического тока аналогично — он движется от точки с более высоким электрическим потенциалом (положительной клеммы) к точке с более низким потенциалом (отрицательной клемме).
Труба с водой ведет себя как проводник, а вода в ней — как электрический ток. Давление в трубе можно сравнить с электрическим потенциалом. Мы также можем сравнить основные элементы электрических схем с их гидравлическими аналогами: резистор эквивалентен сужению в трубе (например, из-за застрявших там волос), конденсатор можно сравнить с установленной в трубе гибкой диафрагмой. Катушку индуктивности можно сравнить с тяжелой турбиной, помещенной в поток воды, а диод можно сравнить с шариковым обратным клапаном, который позволяет потоку жидкости двигаться только в одном направлении.
В системе СИ сила тока измеряется в амперах (А) и названа в честь французского физика Андре Ампера. Ампер — одна из семи основных единиц СИ. В мае 2019 г. было принято новое определение ампера, основанное на использовании фундаментальных физических констант. Ампер также можно определить как один кулон заряда, проходящий через определенную поверхность в одну секунду.
Подробную информацию об электрическом токе можно найти в наших конвертерах Электрический ток и Линейная плотность тока.
Скорость передачи заряда можно изменять, и эта возможность используется для передачи информации. Все системы передачи связи, такие как радио (конечно, сюда относятся и смартфоны) и телевидение, основаны на этом принципе.
Электрическое напряжение
Электрическое напряжение или разность потенциалов в статическом электрическом поле можно определить как меру работы, требуемой для перемещения заряда между выводами элемента электрической схемы. Элементом может быть, например, лампа, резистор, катушка индуктивности или конденсатор. Напряжение может существовать между двумя выводами элемента независимо от того протекает между ними ток или нет. Например, у 9-вольтовой батарейки имеется напряжение между клеммами даже если к ней ничего не присоединено и ток не протекает.
Единицей напряжения в СИ является вольт, равный одному джоулю работы по переносу одного кулона заряда. Вольт назван в честь итальянского физика Алессандро Вольта.
В Северной Америке для обозначения напряжения обычно используется буква V, что не слишком удобно. Фактически, это так же неудобно, как и использование футов и дюймов. Сравните, например, V = 5 V or U = 5 V. Что бы вы выбрали? Во многих других странах, считают, что для обозначения напряжения лучше использовать букву U — потому что так удобнее. В немецких, французских и русских учебниках используется U. Считается, что эта буква происходит от немецкого слова Unterschied, означающего разницу или разность (напряжение — разность потенциалов).
Мы знаем, что энергия, которая была использована для перемещения заряда через элемент схемы, не может исчезнуть и должна где-то появиться в той или иной форме. Это называется принципом сохранения энергии.
Например, если этим элементом был конденсатор или аккумулятор, то энергия будет храниться в форме электрической энергии, готовой для немедленного использования. Если же этот элемент был, например, нагревательным элементом в духовке, то электроэнергия была преобразована в тепловую. В громкоговорителе электрическая энергия преобразуется в акустическую, то есть механическую энергию, и тепловую энергию. Практически вся энергия, которую потребляет работающий компьютер, превращается в тепло, которое нагревает помещение, в котором он находится.
Теперь рассмотрим электрический элемент в форме автомобильной аккумуляторной батареи, подключенной к генератору для зарядки. В этом случае энергия подается в элемент. Если же двигатель не работает, но работает акустическая система автомобиля, то энергия подается самим элементом (батареей). Если ток входит в одну из двух клемм аккумулятора и внешний источник тока (в нашем случае — генератор) должен расходовать энергию, чтобы получить этот ток, то такая клемма называется положительной по отношению к другой клемме аккумулятора, которая называется отрицательной. Отметим, что эти знаки «плюс» и «минус» выбраны условно и позволяют нам обозначить напряжение, существующее между двумя клеммами.
Подробнее об электрическом потенциале и напряжении
USB тестер с соединителями типа USB-C, подключенный к зарядному устройству и смартфону (см. Пример 2 выше)
На рисунке выше показан рассмотренный в Примере 2 USB тестер с соединителями USB Type C, подключенный к зарядному устройству USB (слева). Справа к тестеру подключен заряжаемый смартфон. Тестер измеряет потребляемый смартфоном ток. Красной стрелкой на тестере показано текущее направление тока. Иными словами, на дисплее тестера показано, что нагрузка (смартфон) подключена к правому порту и заряжается. Отметим, что если вместо зарядного устройства к левому порту подключить какое-нибудь USB-устройство, например, флэш-накопитель (флэшку), то данный тестер покажет обратное направление движения тока и потребляемый флэшкой ток.
Электрическое сопротивление
Электрическое сопротивление — физическая величина, характеризующая свойство тел препятствовать прохождению электрического тока. Оно равно отношению напряжения на выводах элемента к протекающему через него току:
Эта формула называется законом Ома. Многие проводящие материалы имеют постоянную величину сопротивления R, поэтому U и I связаны прямой пропорциональной зависимостью. Сопротивление материалов определяется, в основном, двумя свойствами: самим материалом и его формой и размерами. Например, электроны могут свободно двигаться через золотой или серебряный проводник и не так легко через стальной проводник. Они совсем не могут двигаться по изоляторам любой формы. Конечно, и другие факторы влияют на сопротивление, однако в значительной меньшей мере. Такими факторами являются, например, температура, чистота проводящего материала, механическое напряжение проводящего материала (используется в тензорезистивных датчиках) и его освещение (используется в фоторезисторах).
Подробнее об электрическом сопротивлении, проводимости and удельной проводимости and удельном сопротивлении.
Электрическая мощность
Мощность представляет собой скалярную физическую величину, равную скорости изменения, передачи или потребления энергии в физической системе. В электродинамике мощность — физическая величина, характеризующая скорость передачи, преобразования или потребления электрической энергии. В системе СИ единицей электрической мощности является ватт (Вт), определяемый как 1 джоуль в секунду. Скорость передачи электрической энергии равна одному ватту, если один джоуль энергии расходуется на перемещение одного кулона заряда в течение одной секунды.
Более подробную информацию о мощности вы найдете в нашем Конвертере единиц мощности.
Расчет электрической мощности на постоянном токе
Мощность, необходимая для перемещения определенного числа кулонов в секунду (то есть для создания тока I в амперах) через элемент схемы с разностью потенциалов U пропорциональна току и напряжению, то есть
В правой части этого уравнения находится произведение джоулей на кулоны (напряжение в вольтах) на кулоны в секунду (ток в амперах), в результате получаются джоули в секунду, как и ожидалось. Это уравнение определяет мощность, поглощенную в нагрузке, выраженную через напряжение на выводах нагрузки и протекающий через нее ток. Это уравнение используется в нашем калькуляторе вместе с уравнением закона Ома.
Лабораторный блок питания, показывающий напряжение на нагрузке и протекающий через нее ток
Автор статьи: Анатолий Золотков
Расчёт сопротивления нескольких динамиков.
Последовательное соединение динамиков
При последовательном соединении ( рис. 1) динамики подключаются последовательно, один за другим. Очень важно правильно фазировать динамики, подключая плюс одного динамика к минусу другого. При последовательном подключении общее сопротивление возрастает, а выходная мощность уменьшается. Этот метод можно использовать для уменьшения выходной мощности канала, который поддерживает звучание других — например, тыловой или центральный каналы. Последовательно лучше соединять не более двух динамиков, поскольку большее их количество сильно уменьшит выходную мощность. Нельзя соединять динамики с разным сопротивлением, например, четырех- и восьмиомный, так как в этом случае каждый из них будет иметь разную громкость. Последовательным способом можно подключать только совершенно одинаковые динамики, ведь у разных динамиков может также различаться сопротивление в диапазоне 0.5 Ом.
При последовательном соединении сопротивление динамиков рассчитывается по формуле:
R = R1 + R2,
где R — сопротивление, которое мы получим в результате такого соединения, а R1 и R2 — сопротивление динамиков 1 и 2. Сопротивление большего количества динамиков рассчитывается аналогично: R = R1 + R2 + R3 + … + Rn, т.е. сопротивления суммируются.
Уменьшение мощности из-за увеличенной нагрузки рассчитывается по формуле:
P = Preal (Rreal/Rcurrent),
где P — мощность при измененной нагрузке, Preal — паспортная мощность усилителя при стандартном сопротивлении, Rreal — сопротивление нагрузки, при котором проводились измерения реальной мощности усилителя (паспортное сопротивление нагрузки), Rcurrent — суммарное сопротивление динамиков, которое мы получили. Эту формулу можно использовать при любом из трех описанных видов подключения, и с ее помощью легко рассчитывается увеличение или уменьшение мощности усилителя из-за нестандартной нагрузки.
Параллельное соединение динамиков
При параллельном подключении динамиков ( рис. 2) растет выходная мощность, а сопротивление уменьшается. При подключении двух четырехомных динамиков таким способом их совместное сопротивление станет равным 2 Ом, и необходимо узнать, сможет ли усилитель работать на такой низкой нагрузке. Значительно чаще попадаются усилители, которые могут нормально работать при сопротивлении в 2 Ом, чем на 1 или 0.5 Ом — последние уже большая редкость.
При подключении к усилителю более низкого сопротивления нагрузки, чем его паспортное значение, может привести к повреждению устройства. Но если усилитель раньше работал с сопротивлением в четыре Ом, и может работать на два Ом, то теперь на такую нагрузку он будет давать намного больше мощности и, возможно, ему потребуется более мощный блок питания! Например, если раньше усилителю вполне хватало четырех ампер для питания, то теперь для повышения мощности в два раза ему потребуется около восьми ампер (т.е. в два раза больше).
Вычислить сопротивление, которое будет после параллельного соединения динамиков, можно по формуле:
R = (R1 R2) / (R1 + R2),
где R — сопротивление нагрузки при параллельном соединении, которое мы ищем, а R1 и R2 — сопротивления динамиков, которые соединены данным способом. Например, сопротивление при параллельном соединении двух восьмиомных динамиков составит 4 Ом [(88)/(8+8) = 4 Ом]. При параллельном подключении двух динамиков выходная мощность усилителя на такую нагрузку будет в два раза больше.
Комбинированное соединение динамиков
Эту схему подключения ( рис. 3) используют для того, чтобы получить нужное сопротивление для усилителя. Например, для того, чтобы подключить четыре динамика с общим сопротивлением 4 Ом. Для вычисления сопротивления нагрузки по этому способу подключения используется формула:
R = (R1+2 R3+4) / (R1+2 + R3+4),
где R12 — общее сопротивление динамиков 1 и 2, которые подключены последовательно, а R34 — аналогично для динамиков 3 и 4. Если у вас есть четыре 30-ваттных 4-Омных динамика, то по такой схеме подключения общая мощность составит 120 Вт и сопротивление будет все тех же 4 Ом. А мощность, подводимая от усилителя, будет поровну делиться на четыре динамика.
Для большего количества динамиков используем формулу
1/Rпар=1/ R1+1/R2+1/R3+1/R4+1/R5……. для параллельного соединения динамиков с одинаковым сопротивлением можно посчитать по ф.
Rпар= Rном./ n , где n- количество динамиков
Пример расчета: Надо подключить 2 динамика имеющие по две катушки в 2 Ом
1 вариант, (самый хороший) подключаем обе катушки одного динамика параллельно получаем 2/2= 1Ом , соединяем последовательно со вторым динамиком у которого также подключены параллельно катушки и получаем 2Ом . 2/2+2/2= 2Ом
2вариант: подключаем все катушки и динамики последовательно 2+2+2+2=8 Ом,
3 вариант: катушки подключаем последовательно а сами динамики параллельно, (2+2)/2= 2Ом.
4 вариант: все катушки обоих динамиков параллельно ,2/4= 0,5Ом, тут уже сами думайте, чтобы так подключить, необходимо очень хорошее питание усилителя.
Рекомендации :
не используйте разные динамики в таких подключениях, тем более с разным сопротивлением!
Простой расчет сопротивления нескольких динамиков.xlsx
Расчет сопротивления нагревательного элемента
БОДПО (ПК) С «Чувашский республиканский институт образования»
Кафедра естественнонаучных дисциплин
XXVI методический фестиваль «Уроки физики в современной школе»
Методическая разработка
Урок-практикум
Расчет сопротивления нагревательного элемента (урок физики в 8 классе)
Разработал: учитель физики 1 категории МБОУ «Кильдюшевская COШ Яльчикского района Чувашской Республики» Чернов Николай Александрович
2013 год
Тема урока: Расчет сопротивления нагревательного элемента
Урок-практикум
Цель урока: создание условий для изготовления нагревательного элемента Задачи урока
Обучающая: Закрепление знаний по теме и умения решать качественные задачи. Систематизация знаний основных формул и единиц измерения физических величин. Формирование умения использовать полученные знания па практике.
Развивающая: Развивать элементы творческого поиска на основе приема обобщения знаний, умение анализировать, наблюдать, развивать навыки практической работы, интерес к предмету путём выполнения разных заданий.
Воспитательная: Воспитание мировоззренческих понятий; познаваемость окружающего мира и человечества; воспитание чувства товарищеской взаимовыручки, чувство ответственности, этики совместной работы.
Оборудование: персональной компьютер, проектор, экран, штатив лабораторный, нихромовая проволока, измерительная лента, штангенциркуль, соединительные провода.
Ход урока 1. Организационный момент. Мотивация деятельности учащихся.
(На доске записывается тема урока)
Здравствуйте, ребята. Меня зовут Николай Александрович. Я очень рад встрече с вами. Итак, тема нашего урока «Расчет сопротивления нагревательного элемента».
Беседа с учащимися.
Вопросы:
Какими электроприборами вы пользуетесь дома? Назовите их.
Теперь назовите бытовые приборы, которые относятся к электронагревательным приборам.
Что их объединяет?
На каком явлении основан принцип работы электронагревательных приборов?
Каковы мощности электронагревательных приборов?
Чтобы самим смастерить нагревательный элемент, нам надо уметь рассчитать его сопротивление. Как его рассчитать? Вот об этом и пойдет наша речь с вами на уроке.
2. Сообщение цели и задач урока
Нам с вами предстоит:
• Выяснить, каково сопротивление нагревательных элементов бытовых приборов. Узнать, из каких материалов изготавливают нагревательные элементы.
Изготовить нагревательный элемент и испытать его на деле.
3. Повторение и обобщение изученного материала
Вопросы:
Как вычислить работу электрического тока?
Работа электрического тока А пропорциональна силе тока I. напряжению U и времени прохождения тока t
А = UIt
Единица измерения работы электрического тока 1Дж
Как вычислить мощность электрического тока?
Чтобы найти мощность электрического тока надо его работу, разделить на время
За единицу измерения мощности принят 1 ватт. 1 Вт=1В*1А.
Если применить закон Ома, то выражение для мощности можно получить в других формах.
Практическое применение изученного материала.
На основании формулы R=U2/P рассчитываем сопротивление нагревательных элементов электроприборов, применяемых в быту (слайд)
№ | Электронагревательный прибор | Потребляемая мощность, Вт | Сопротивление, Ом |
1 | Утюг | 400-1000 | 48,4 |
2 | Кипятильный | 1250 | 38,72 |
3 | Чайник tefal | 2000 | 24,2 |
4 | Электроплита | 1250 | 38,72 |
5 | Тепловентилятор | 1250-2000 | 24,2 — и |
Вывод: чем больше мощность прибора, тем меньше его сопротивление.
Вопрос:
От чего зависит электрическое сопротивление проводников?
Для изготовления электрических приборов используют материал, который называется нихромом.
Что такое нихром? Какого его удельное сопротивление?
Постановка проблемного вопроса: Как подобрать нужное нам сопротивление.
Решение задачи на определение длины нихромовой проволки для нужного нам сопротивления.
(1 ученик работает у доски, остальные работают на местах).
Дано: Решение:
R = 39 Ом l = S =
ρ = 1,1
d = 0,5 мм
l — ?
Практическая работа по изготовлению нагревательного элемента
Группа учащихся под руководством учителя изготавливает нагревательный элеме! спираль. Остальные решают задачу на определение силы тока (слайд).
Демонстрация нагревательного элемента в работе. Инструктаж по ТБ (слайд)
(2 штатива, соединительные провода)
Подведение итогов урока
Что нового узнали на уроке?
От чего зависит электрическое сопротивление проводников?
Как зависит мощность от сопротивления проводника?
Спасибо вам за активную работу на уроке.
Измерение сопротивления двигателя — Блог Режимщика
Как известно, обычный мультиметр не может нормально измерить сопротивление порядка 1 ома и ниже. Такое сопротивление имеют измерительные шунты и … обмотки двигателей. И не мудрено. Длина провода одной обмотки двигателя мощностью 260 Вт составляет всего-лишь 30 см.
Для тех, кто любит побыстрее ролик на 1 мин.
Что есть сопотивление двигателя?
Лично у меня сразу возник этот вопрос. Ведь оттуда торчит 3-4 провода (4-й средняя точка звезды). Ответ лежит на поверхности — это сопротивление между любыми двумя проводами (для 3х проводных). Обычно мотают 3 обмотки и соединяют в общем случае либо в звезду, либо в треугольник. На самом деле вариантов тьма тьмущая, но смысл один — сопротивление обмоток, соединенных в треугольник меньше, чем соединеных в звезду. Поэтому для них нужно меньшее напряжение, а ток получается выше. А мы помним, что момент пропорционален току. Чтобы не перегревать обмотки их соединяют в звезду, но при этом падает мощность, поэтому повышают напряжение. Также, двигатели «со звездой» в 1.73 раза крутятся медленнее чем «с треугольником» при одинаковом напряжении. Схему выбирают в зависимоти от нужного момента и требуемой скорости вращения при заданном напряжении. Подробнее неплохо расписано тут.
Как и чем измерять?
И здесь нам опять поможет закон Ома R = U/I. В зависимости от диаметра провода обмотки (которую, обычно, видно), можно прикинуть максимальный ток и отсюда определить максимальное напряжение источника питания. В моем случае имеется двигатель с неизвестными параметрами. На глазок, диаметр провода 0.5 мм, тогда по табличке определяем примерное сопротивление R=0,1 Ом на 1 м, а также длительно допустимый ток не более Iдоп = 1А. В моторе 12 зубьев, т.е. по 4 зуба на обмотку. Можно очень примерно прикинуть кол-во витков и средний диаметр зуба чтобы грубо вычислить длину провода. При соединении в звезду на 2 обмотки в моем моторе больше 1 м вряд-ли влезет, поэтому в первом приближении буду ориентироваться на величину сопротивления 0,1 Ом.
Далее вспомним про кратность пускового тока порядка K = 7 для переменного тока, а для постоянного импульсного можно вполне взять K = 10 (это почти наобум, но с хорошим запасом — см. список в конце статьи). Отсюда делаем вывод, что при измерении сопротивления нужно обеспечить кратковременный ток около I = Iдоп*K = 1*10 = 10А. Это значит, что нам нужно подать напряжение U = I*R = 10 * 0,1 = 1В. Довольно маленькое напряжение при довольно большом токе. Выбор пал на пару оставшихся в живых Ni-Cd аккумуляторов от шуруповерта. Они обеспечивают большой ток разряда при номинальном напряжении 1.2В. В прошлый раз я измерил их внутреннее сопротивление и получил 0.13 и 0.22 Ома соответственно. Остальные 10 штук совсем дохлые. Соединенные параллельно они должны дать около I = U/(Re+R) = 1.2/(0.13*0.22/(0.13+0.22) + 0.1) = 6.6 А. Не много, но ничего мощнее под рукой не оказалось. Если под рукой нет подходящего источника питания можно попробовать подобрать токоограничивающий резистор достаточной мощности чтобы погасить на себе излишки. Если есть источник 5В (например, компьютерный БП обычно дает 12А и более), то в моем случае потребуется шунт Rш = U/I — R = 5/10 — 0.1 = 0.4 Ом. Найти такое сопротивление будет не просто, тем более что оно должно быть мощностью 40W или хотябы кратковременно пропускать такую мощность. Можно посмотреть в сторону ламп накаливания…
Ну а дальше все просто. Кратковременно подключаем нашу батарею к любым двум выводам двигателя. Быстро замеряем напряжение и ток. Делим одно на другое и получаем искомое сопротивление.
Само собой, для измерения я задействовал свой приборчик на Arduino. Честно говоря, изначально именно для этого измерения он и был собран.
Перед измерением хорошенько накачал аккумуляторы. Батарея выдала аж 20 мОм, видимо немного раскачались. А измеренное сопротивление нашего подопытного бесколлекторного двигателя 112 мОм оказалось очень близким к прикидочному и косвенно подтвердило предположение о соединении обмоток в звезду. Так что способ подсчета кол-ва витков также работает, но тут нет гарантии, что намотка не проводилась жгутом из нескольких проводов, да и при малом диаметре и большой плотности навивки подсчитать кол-во витков бывает очень затруднительно.
Зачем вообще это надо?
Знать сопротивление нужно чтобы исходя из диаметра проводов обмоток определить допустимую электрическую мощность двигателя или если проще, то какое максимальное напряжение можно подать на двигатель чтобы он не перегрелся. В современных двигателях постоянного тока все чаще применяют неодимовые магниты (привет, электрокары). Известны случаи построения кулибиными ветрогенераторов мощностью до 5 кВт с использованием этих магнитов. Но есть и недостаток — при температуре выше 90°С он теряет свои суперсвойства, поэтому контроль нагрева таких двигателей очень важен, а значит важно знать сопротивление обмоток.
Тут конечно еще много неизвестных. Нужно определить максимальный ток провода при импульсном питании. Есть такие данные:
1А — 0.05мм, 3А — 0.11мм, 10А — 0.25мм, 15А — 0.33мм,
20А — 0.4мм, 30А — 0.52мм, 40А — 0.63мм, 50А — 0.73мм,
60А — 0.89мм, 70А — 0.92мм, 80А — 1.00мм, 90А — 1.08мм, 100А — 1.16мм
Вроде бьются с моими параметрами, но откуда они я пока не разбирался. Похоже на ток плавкого предохранителя, т.е. прям край-край. Если руководствоваться ими, то в моем случае диаметр 0,4мм «по меди» даст 20А, а мощность при 3S Li-Po батареии составит P = 3*3,7*20 = 222 Вт; при 4S составит P = 4*3,7*20 = 296 Вт. Какое максимальное напряжение можно подать зависит от теплового баланса, т.е. от условий охлаждения, а это посчитать уже проблематично — проще измерить, но это, возможно, тема отдельной статьи.
P.S.
Лично мне измерение сопротивления моего двигателя помогло убедиться в том, что найденные в интернете характеристики мотора, внешне похожего на мой, заслуживают доверия. Его заводские характеристики: ток без нагрузки 0.4А, максимальный ток 22 А, мощность 260 Вт (механическая в соответствии с ГОСТ Р 52776-2007). А в другом месте нашел, что у подобного мотора сопротивление 0.119 Ом, что в принципе, близко к моим результатам.
Купон на 15% скидку на радиоуправляемые игрушки на Алиэкспресс.
Как рассчитать мощность, подаваемую на резистор, используя сопротивление | Физика
Как рассчитать мощность, подаваемую на резистор, используя сопротивление
Шаг 1: Определите сопротивление резистора и напряжение батареи.
Шаг 2: Используя сопротивление и напряжение из Шаг 1 , рассчитайте мощность, подаваемую на резистор.
Какая мощность передается на резистор?
Мощность, подаваемая на резистор: Мощность — это скорость подачи электроэнергии в единицу времени.2}{Р} $$
Где {экв}P {/экв} — мощность, {экв}В {/eq} — напряжение, а {eq}R {/eq} — сопротивление резистора.
Используя эту формулу, давайте потренируемся на двух примерах задач, решаемых шаг за шагом.
Примеры расчета мощности, подаваемой на резистор, используя сопротивление
Пример 1
12-вольтовая батарея подключена к резистору на 200 Ом. Какая мощность поступает на резистор?
Шаг 1: Определите сопротивление резистора и напряжение батареи.2}{200} $$$$P=0,72\ \mathrm{Ватт} $$
Мощность через резистор составляет {экв}0,72\ \mathrm{Ватт} {/eq}, чтобы увеличить мощность, вам нужно увеличить напряжение или уменьшить сопротивление.
Пример 2
Высоковольтная батарея имеет напряжение 350 вольт. Он подключен к грузу, который приводит в движение тележку. Эта тележка имеет сопротивление 1000 Ом. Какая мощность передается тележке?
Шаг 1: Определите сопротивление резистора и напряжение батареи.2{1000} $$$$P=122,5\\mathrm{Ватт} $$
Мощность через тележку составляет {eq}122,5\ \mathrm{ватт} {/экв}. Эта сила используется для управления тележкой.
Получите доступ к тысячам практических вопросов и пояснений!Электрическая мощность — Сопротивление — OCR Gateway — GCSE Combined Science Revision — OCR Gateway
Мощность — это скорость передачи энергии между накопителями энергии.
Один ватт равен одному джоулю в секунду (Дж/с).
Передаваемая энергия
Передаваемая энергия может быть рассчитана по формуле:
Передаваемая энергия = мощность × время
Это когда:
- энергия измеряется в джоулях (Дж)
- мощность измеряется в ваттах (Вт )
- время измеряется в секундах (с)
Пример
Лампа мощностью 50 Вт включается на 60 с. Рассчитайте переданную энергию.
передаваемая энергия = мощность × время
= 50 × 60
= 3000 Дж (или 3 кДж)
Передаваемая энергия может быть рассчитана с использованием того же уравнения, но в других единицах:
- энергия измеряется в киловаттах- часы (кВтч)
- мощность измеряется в киловаттах (кВт)
- время измеряется в часах (ч)
Пример
Телевизор мощностью 500 Вт включается на 4 часа.Рассчитайте переданную энергию.
500 Вт = 500/1000 = 0,5 кВт
переданная энергия = мощность × время
= 0,5 × 4
= 2 кВтч
мощность = разность потенциалов × ток
Это когда:
- мощность измеряется в ваттах (Вт)
- разность потенциалов измеряется в вольтах (В)
- ток измеряется в амперах (А)
Пример
Ток протекает через 2.0 Электродрель при разности потенциалов 230 В. Рассчитайте рассеиваемую мощность.
мощность = разность потенциалов × ток
= 230 × 2,0
= 460 Вт
Мощность, ток и сопротивление
Электрическая мощность также может быть рассчитана по формуле:
Это когда:
- мощность измеряется в ваттах (Вт)
- ток измеряется в амперах (А)
- сопротивление измеряется в омах (\(\Омега\))
Пример
мощность = (ток) 2 × сопротивление
= 3 2 × 10