Основные принципы релейной защиты: Релейная защита: определение, функции и принципы работы

Релейная защита: определение, функции и принципы работы

Определение понятия Релейная защита

Релейная защита (РЗ) — это важнейший вид электрической автоматики, которая необходима для обеспечения бесперебойной работы энергосистемы, предотвращении повреждения силового оборудования, либо минимизации последствий при повреждениях. РЗ представляет собой комплекс автоматических устройств, которые при аварийной ситуации выявляют неисправный участок и отключают данный элемент от энергосистемы.

Во время работы РЗ постоянно контролирует защищаемые элементы, чтобы своевременно зафиксировать возникшее повреждение (или отклонение в работе энергосистемы) и должным образом отреагировать на случившееся.

При аварийных ситуациях релейная защита должна выявить и выделить неисправный участок, воздействуя на силовые коммутационные аппараты, предназначенные для размыкания токов повреждения (короткого замыкания, замыкания на землю и т.д.).

Релейная защита сопряжена с иными видами электрической автоматики, которые позволяют сохранять бесперебойную работы энергосистемы и электроснабжения потребителей.

На данный момент отрасль релейной защиты активно развивается и расширяется, уже сейчас используется микропроцессорная аппаратура и компьютерные программы не только для защиты, но и для комплексного управления оборудованием и системой в целом.

Функции релейной защиты

Главной задачей устройств РЗ является выявление ненормальных и аварийных режимов работы первичного (силового) оборудования, а именно фиксация следующих видов повреждений:

  • перегрузка электрооборудования;
  • двух и трех-фазных короткие замыкания;
  • замыкания на землю, включая двух и трех-фазные;
  • внутренние повреждения в обмотках двигателей, генераторов и трансформаторов;
  • защита от затянувшегося пуска;
  • асинхронный режим работы синхронных двигателей.

Принципы построения релейной защиты

Существует несколько видов реле, каждый из которых соответствует характеристикам электроэнергии (в данном случае – реле тока, напряжения, частоты, мощности и т.д.). Такая система отслеживает несколько показателей, выполняя непрерывное сравнение величин с ранее определенными диапазонами, которые называются уставки.

В том случае, когда контролируемая величина превышает установленную норму, соответствующее реле срабатывает: тем самым осуществляя коммутацию цепи путем переключения контактов. В первую очередь, такие действия касаются подключенной логической части цепи. В соответствии с выполняемыми задачами эта логика настраивается на определенный алгоритм действий, оказывающих влияние на коммутационную аппаратуру. Возникшая неисправность окончательно ликвидируется силовым выключателем, прерывающим питание аварийной схемы. В любой релейной защите и автоматике настройка измерительного органа выполняется с учетом определенной уставки, разграничивающей зону охвата и срабатывания защитных устройств. Сюда может входить только один участков или сразу несколько, состоящих из основного и резервных.

Реакция защиты может проявляться на все повреждения, которые могут возникнуть в защищаемой зоне или только на отдельно взятые отклонения от нормального режима работы.

В связи с этим, защищаемый участок оснащен не одной защитой, а сразу несколькими, дополняющими и резервирующими друг друга. Основные защиты должны воздействовать на все неисправности, возникающие в рабочей зоне или охватывать их значительную часть. Они обеспечивают полную защиту всего участка, находящегося под контролем и должны очень быстро срабатывать при возникновении неисправностей. Все остальные защиты, не подходящие под основные условия, считаются резервными, выполняющими ближнее и дальнее резервирование. В первом случае резервируются основные защиты, работающие в закрепленной зоне. Второй вариант дополняет первый и резервирует смежные рабочие зоны на случай отказа их собственных защит.
 

Принципы построения схемы защитных устройств

Несмотря на то, что в данный момент рынок предлагает большое количество разнообразных устройств РЗ, базовый алгоритм процессов остается прежним, только модернизируется для каждого конкретного случая. Основные функции защиты демонстрирует структурная схема.

Более подробно ознакомиться со структурной схемой защит и другими органами РЗ можно в нашей статье Основные органы релейной защиты.

Шкафы РЗА

Современные микропроцессорные устройства РЗА выполняют не только свою прямые задачи защиты, но и другие смежные функции. Таким образом, сегодня большое количество устройств можно укомплектовать в одном шкафу, что значительно упрощает монтаж оборудования, непосредственную эксплуатацию, а также значительно освобождает пространство.

Типовые шкафы защиты имеют еще ряд дополнительных преимуществ: так как шкафы выполняются по стандартным схемам, проверенным в эксплуатации, вероятность ошибок в работе значительно снижается, а удобство в наладке и монтаже возрастает. Узнайте еще больше о РЗА и типовых решениях на нашем сайте.

 

Релейная защита и автоматика электроснабжения, устройство, виды и принцип работы систем

электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД), инженерно технические системы (ИТС)

Термин «релейная защита» относится к очень широкому кругу устройств, применяемых в электроэнергетике.

К основным функциям защитных релейных устройств (РЗ), относятся:

  • выявление повреждений элементов систем электроснабжения;
  • локализация и отключение повреждённого участка или электроустановки для сохранения работоспособности остальной части системы;
  • определение отклонений от нормального режима отдельных электроустановок и частей энергосистемы, в результате которых может произойти повреждение оборудования или потеря устойчивости системы электроснабжения;
  • автоматическое выполнение действий, направленных на восстановление нормального режима (отключение части электрооборудования, включение устройств компенсации).

Таким образом, в одних случаях защитная аппаратура на основе реле способна предотвратить опасность выхода из строя установок и элементов энергосистем, в других – среагировать на факт повреждения и остановить дальнейшее развитие аварийной ситуации.

Эти действия релейной автоматики позволяют минимизировать ущерб, нанесённый в результате повреждения оборудования и ущерб от недоотпуска электрической энергии потребителям.

Необходимый уровень укомплектованности сетей и систем электроснабжения устройствами релейной защиты и автоматики (УРЗА) определён действующими нормативными документами в области энергетики.

Ни одна электроустановка не может быть введена в работу, не будучи укомплектованной защитными устройствами в минимальном объёме, определённом действующими правилами.

На каждом предприятии, имеющем на балансе электрооборудование, оснащённое защитными релейными устройствами, должен быть составлен график регулярной проверки и обслуживания релейной автоматики. Контроль выполнения плановых работ по проверке, испытаниям и обслуживанию релейной защиты осуществляется органами государственного энергетического надзора.

ОБЩИЕ ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ ЗАЩИТНЫХ РЕЛЕЙНЫХ УСТРОЙСТВ

Защитные устройства на базе реле разнообразны и могут быть построены по отличающимся принципиальным схемам, реализованным на различной элементной базе.

Общим для всех устройств релейной защиты является наличие одних и тех же функциональных блоков:

  • измерительных органов;
  • логики;
  • исполнительных устройств;
  • сигнализации.

Измерительный орган реле получает в непрерывном режиме информацию о состоянии контролируемого объекта, которым может быть отдельная установка, элемент или участок электрической сети. Существует несколько подходов к классификации структурных блоков релейных защит.

Измерительные релейные органы иногда называют пусковыми, но это не меняет сути. Контроль состояния объекта заключается в получении и обработке технических параметров электроснабжения – тока, напряжения, частоты, величины и направления мощности, сопротивления.

В зависимости от значения этих параметров, на выходе релейного органа измерения формируется дискретный логический сигнал («да», «нет»), который поступает в блок логики.

Логический орган, получив дискретную команду релейного блока измерения, в соответствии с заданной программой или логической схемой формирует необходимую команду исполнительному блоку или механизму.

Блок сигнализации обеспечивает работу сигнальных устройств, которые отображают факт срабатывания релейного защитного комплекта или отдельного его органа.

Для успешного выполнения своего предназначения, УРЗА должны обладать определёнными качествами. Выделяют четыре основных требования, которые предъявляются к аппаратуре РЗ. Рассмотрим их по отдельности.

Селективность.

Это свойство защитных систем заключается в выявлении повреждённого участка электрической сети и выполнении отключений в необходимом и достаточном объёме с целью его отделения. Если в результате работы защитной автоматики произошло излишнее отключение оборудования системы электроснабжения, такое срабатывание автоматики называется неселективным.

Различают системы защитной автоматики с абсолютной и относительной селективностью. К первому типу относятся устройства, реагирующие только на нарушения режима строго в пределах защищаемого участка.

Примером такой защитной системы может служить дифференциальный токовый защитный комплект, срабатывающая только при повреждениях между точками сети, в которых контролируется разность токов.

Относительной селективностью обладают системы максимального тока, которые, как правило, реагируют на нарушения режима на участках, смежных с непосредственно защищаемой ими зоной. Обычно во избежание неселективного срабатывания, такие системы автоматики имеют искусственную выдержку времени, превосходящую время срабатывания защитных комплектов на смежных участках.

Примечание. Искусственной называют выдержку времени, создаваемую специальными органами задержки срабатывания (реле времени).

Быстродействие.

Отключение повреждённого участка или элемента сети должно быть осуществлено как можно быстрее, что обеспечивает устойчивость работы остальной части системы и минимизирует время перерыва питания потребителей.

Главным показателем быстродействия служит время срабатывания защищающего устройства, которое отсчитывается от момента возникновения аварийного режима до момента подачи защитой сигнала на отключение выключателя.

Иногда время срабатывания системы автоматики трактуют как время между возникновением повреждения и отключением повреждённого участка, то есть, включают в него время работы выключателя.

Это не совсем верно, так как выключатель не является частью УРЗА и по его параметрам нельзя оценивать эффективность релейной защиты сетей и систем электроснабжения.

То есть, учитывать время отключения выключателя необходимо, но следует помнить, что это не характеристика РЗ. Для справки можно заметить, что время отключения выключателя значительно больше времени срабатывания собственно реле автоматики (без учёта искусственной задержки).

Чувствительность.

Данное качество характеризует способность системы автоматики к гарантированному срабатыванию во всей зоне её действия при всех видах нарушений режима, на которые данная автоматика рассчитана. Чувствительность системы автоматики является точным численным показателем, значение которого проверяется в расчётных режимах с минимальными значениями параметров её срабатывания.

Надёжность.

Универсальная характеристика всех технических устройств, заключающаяся в способности РЗ функционировать длительно и безотказно. В соответствии со своим основным предназначением.

ОСНОВНЫЕ ВИДЫ УСТРОЙСТВ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ

Типы УРЗА можно классифицировать по параметрам режима работы сети, на которые они реагируют.

Токовые защиты.

Наибольшее распространение получили токовые защиты, поскольку именно повышенное значение тока является критерием такого частого вида нарушения режима работы как короткое замыкание. В основе токовой релейной защиты находится реле тока.

Традиционно используемыми являются реле электромеханического типа, состоящие из токовой катушки и подвижной электромагнитной системы, замыкающей контакты. На смену этим приборам пришли полупроводниковые устройства, а с развитием цифровых технологий и микропроцессорные системы релейной защиты.

Независимо от элементной базы, логика работы защит остаётся в принципе той же. Конечно, микропроцессорные системы способны реализовать более сложный и разветвлённый алгоритм действий.

В простейшем случае, на реле выставляется требуемая уставка – значение тока, при котором реле должно сработать. Первичными преобразователями тока являются измерительные трансформаторы или датчики тока.

К разновидности токовых защит относятся дифференциальные защиты, реле которых включается на разность токов. Дифференциальные токовые реле входят в комплект релейной защиты трансформаторов и шин подстанций.

Защиты по напряжению.

Среди самых распространённых представителей этого класса групповая секционная защита минимального напряжения.

Логика работы этой автоматики увязана с технологическим процессом, электропривод оборудования которого питается от одной секции подстанции. Автоматика минимального напряжения имеет двухступенчатое исполнение. Типовая последовательность работы выглядит следующим образом.

Секция, к которой подключены электродвигатели приводов механизмов технологического процесса (например, это могут быть механизмы котла тепловой электростанции), имеет два питания – от рабочего и резервного трансформаторов.

При отключении рабочего трансформатора срабатывает автоматика включения резерва (АВР). Через небольшой промежуток времени к секции подключается резервный трансформатор.

За время бестоковой паузы нагруженные механизмы успевают затормозиться. После подключения резервного трансформатора начинается самозапуск электродвигателей механизмов.

Повышенный ток, обусловленный групповым запуском двигателей, вызывает посадку напряжения на секции. При снижении напряжения до уставки первой ступени автоматики, происходит отключение наименее значимых для технологического процесса механизмов.

Делается это для того, чтобы облегчить запуск более важного оборудования и удержать станционный котёл (или другой агрегат) в работе.

Если это не помогает и напряжение, продолжая снижаться, достигает уставки второй ступени, отключается вторая группа оборудования. В этой ситуации в работе остаются только механизмы, обеспечивающие безаварийный останов всего технологического процесса (котла).

© 2012-2022 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Релейная защита. Виды и устройство. Работа и особенности

Согласно правилам эксплуатации электроустановок силовые устройства электрических сетей и электростанций должны быть обеспечены защитой от сбоев в эксплуатации и токов короткого замыкания. Средствами защиты являются специальные устройства, выполненные на основе реле, что оправдывает их название релейная защита и автоматика (РЗА). В настоящее время существует много различных устройств, способных в короткие сроки блокировать возникшую аварию в электрической сети, либо подать предупредительный сигнал о возникновении аварийного режима.

Виды релейной защиты

Релейная защита работает чаще всего совместно с автоматикой, и их устройство взаимосвязано со специфическими видами аварийных режимов сети:

  • Уменьшение частоты тока, возникающей при внезапной перегрузке генераторов вследствие короткого замыкания, либо отключения части других источников из сети.
  • Повышенное напряжение. Увеличение этого параметра на 10% уменьшает срок службы ламп освещения в два раза. Такой режим возникает при внезапной разгрузке сети.
  • Токовая перегрузка способствует излишнему нагреванию изоляции проводников и кабелей, создает искрообразование в контактных соединениях.
Реле классифицируются по определенным признакам:
  • Методу подключения: первичные, которые подключаются непосредственно в цепь устройства, и вторичные, которые подключаются посредством трансформатора.
  • Типу исполнения: электромеханические, состоящие из подвижных контактов, отключающих цепь, и электронные, обесточивающие цепь с использованием полупроводниковых элементов.
  • Назначению: измерительные, которые выполняют измерение параметров, и логические, которые подают сигналы и команды другим устройствам, выполняют задержку по времени.
  • Методу работы: прямого действия, которые связаны с устройством отключения механическим путем, и косвенного действия, которые управляют электрической цепью электромагнита, обесточивающего сеть питания.
Релейная защита и автоматика бывают различных видов:
  • Максимальная токовая защита, включается при достижении определенной величины тока, заданной при настройке.
  • Направленная наибольшая токовая защита, кроме настройки тока учитывает направление мощности.
  • Дифференциальная, применяется для защиты сборки генераторов, трансформаторов, шин путем сравнения величин токов на выходе и входе. При разнице, превышающей заданное значение, срабатывает релейная защита.
  • Газовая и струйная, применяется для обесточивания трансформатора и других устройств, работающих в емкостях с маслом. При возникновении неисправностей образуется повышенная температура, и из масла выделяются газы, снижается диэлектрическое свойство масла и разлагается его химический состав. На такие аварийные режимы срабатывают механические реле, которые действуют с учетом возникновения газа в емкости, а также веществ, образующихся при разложении масла. При срабатывании защиты подается команда на действие логической схемы.
  • Логическая, защищает шины, применяется для определения места короткого замыкания на питающих линиях, которые отходят от шин электростанции, и на шинах.
  • Дистанционная, имеющая блокировку по оптическому каналу, является более надежным способом защиты, в отличие от дистанционной защиты с ВЧ блокировкой, так как электрические помехи не оказывают большого влияния на оптический канал.
  • Дистанционная с ВЧ блокировкой, применяется для обесточивания воздушных линий при возникновении коротких замыканий.

  • Удаленная защита используется в сложных схемах сетей, где из-за чувствительности и быстродействия не могут применяться простые виды защит. Защита выявляет расстояние до места аварии или короткого замыкания, и в зависимости от расстояния срабатывает с большей или меньшей задержкой по времени. Современные новые системы защит обладают ступенчатыми свойствами времени. Они каждый раз не измеряют величину сопротивления для определения расстояния до аварийного участка, а только осуществляют контроль участка, на котором выявлена неисправность.
  • Дифференциально-фазная, используется для контроля фаз по концам линии питания. При превышении настроенного значения тока, реле обесточивает линию.
  • Защита минимального напряжения. В аварийных режимах, особенно при коротком замыкании, возможна просадка напряжения. Для обеспечения отключения электрооборудования при снижении напряжения ниже критического значения предназначена защита минимального напряжения. Такая защита в свою очередь делится на групповую и индивидуальную.
    — Групповая защита отключает группу потребителей с помощью реле минимального напряжения. Которое работает совместно с промежуточным реле, отключающим своими силовыми контактами целую группу потребителей нагрузки. Такая релейная защита используется чаще всего на электростанциях для создания надежности функционирования наиболее ответственного оборудования при кратковременном резком снижении напряжения. Она отключает на время падения напряжения менее ответственное оборудование, для создания более благоприятных условий ответственных электрических устройств.
    — Индивидуальная защита работает аналогичным образом, но отключает только один потребитель.
  • Защита максимального напряжения. Имеется два вида реле, защищающих потребители от повышенного напряжения. Первый вид – это защита, действующая по принципу отвода удара молнии по молниеотводу на контур заземления. Второй вид – это устройства, компенсирующие энергию рассеянным теплом во внешнюю среду. Они не применяют релейную основу, а действуют сразу в силовой схеме. Защита максимального напряжения проектируется по принципу минимальных, с такими же измерительными элементами. Реле настраивается на срабатывание по уставке повышения напряжения, превосходящей некоторый допустимый предел напряжения эксплуатации цепи.
Некоторые виды автоматики предназначены для подачи электроэнергии, в отличие от релейной защиты:
  • Автоматическая частотная разгрузка, выключает электрические устройства при снижении частоты тока в сети.
  • Автоматическое повторное включение, используется на линиях электропередач выше 1000 вольт, а также в сборках трансформаторов, электродвигателей и шин подстанций.
  • Автоматический ввод резерва, применяется при коммутации генератора в сеть в качестве резервного источника питания электроэнергией.
Устройство

Электромеханические конструкции релейной защиты постоянно модернизируются и совершенствуются. Внедряются инновационные технологические разработки и проекты. В новейших энергетических системах объединены статические, индукционные, электромагнитные устройства с микропроцессорными и полупроводниковыми элементами.

Однако основной смысл и порядок работы релейной защиты для всех новых устройств остается неизменным. Схема структуры релейной защиты показана на рисунке.

1 — Электрический сигнал
2 — Блок наблюдения электрических процессов
3 — Блок логики и анализа
4 — Исполнительный блок
5 — Сигнальный блок

Блок наблюдения

Главной функцией этого блока является мониторинг электрических процессов, происходящих в электрической системе, путем измерений такими устройствами, как трансформаторы напряжения и тока.

Сигналы выхода на блоке могут передаваться непосредственно логическому блоку для сравнения параметров с настроенными пользователем значениями отклонений от нормальных значений, которые называются уставками. Также сигналы блока наблюдения могут сначала преобразовываться в цифровой вид, а затем передаваться дальше.

Блок логики

В этом блоке выполняется сравнение поступивших сигналов с предельными значениями уставок. Даже незначительное совпадение этих параметров между собой приводит к возникновению команды на срабатывание защиты.

Исполнительный блок

Этот блок все время находится в состоянии, готовом к срабатыванию, при поступлении команды от блока логики. При срабатывании осуществляются переключения цепи электроустановки по запланированному алгоритму, который составлен по принципу недопущения неисправностей электрооборудования и удара электрическим током работников.

Сигнальный блок

В электрической системе все процессы происходят очень быстро, поэтому человек не в состоянии воспринимать их. Чтобы сохранить происходящие в системе события, применяют специальные сигнальные устройства. Которые работают путем звукового и визуального оповещения, а также сохраняют все происходящие события в памяти устройства.

Все виды устройств после их срабатывания переводятся в исходное состояние оператором вручную. Это позволяет гарантированно сохранить информацию о действии автоматики и релейной защиты.

Принципы работы
Релейная защита может иметь нарушения в своей работоспособности, которые выражаются следующими факторами:
  • Ложные срабатывания при исправной электрической системе и отсутствии каких-либо повреждений.
  • Излишние сработки, когда не требуется работа исполнительного блока.
  • Повреждения внутри устройства защит.
Чтобы исключить отказы при функционировании релейной защиты, вырабатываются специальные требования к ней при проектировании, установке, настройки с запуском в работу, и техническом обслуживании:
  • Надежность функционирования.
  • Чувствительность к моменту запуска оборудования.
  • Быстродействие (время сработки).
  • Селективность.
Принцип надежности
Этот принцип определяется:
  • Безотказностью в эксплуатации.
  • Пригодностью к ремонту.
  • Долгим сроком службы.
  • Сохраняемостью.

Каждый из этих факторов имеет свою оценку.

Обслуживание и эксплуатация релейной защиты имеет три варианта надежности по срабатыванию при:
  1. Внутренних КЗ в рабочей зоне.
  2. Возникновении внешних КЗ за границей рабочей зоны.
  3. Работе без неисправностей.
Надежность устройств защиты бывает:
  • Эксплуатационная.
  • Аппаратная.
Принцип чувствительности

Этот принцип дает возможность определить виды предполагаемых расчетных повреждений и ненормальных режимов энергетической системы в рабочей зоне защиты.

Кч = Iкз min/Iсз

Чтобы определить его числовое значение, используется коэффициент Кч. Коэффициент рассчитывается отношением наименьшего тока короткого замыкания рабочей зоны к величине тока срабатывания. Релейная защита работает в нормальном режиме при:

Iсз < Iкз min

Наиболее приемлемая величина коэффициента чувствительности находится в диапазоне 1,5-2.

Принцип быстродействия
Время обесточивания поврежденного участка состоит из двух составляющих:
  1. Сработки защиты.
  2. Действия привода выключателя.

Первую составляющую можно отрегулировать, начиная от наименьшего значения, которое зависит от устройства защиты и числа применяемых элементов. Задержка по времени на сработку формируется, путем внедрения в схему специальных реле, имеющих возможность регулировки. Она применяется для наиболее удаленных защит.

Устройства, находящиеся рядом с местом неисправности, должны настраиваться на действие с наименьшими возможными диапазонами времени на срабатывание.

Принцип селективности

Этот принцип по-другому называется избирательностью. С помощью нее можно найти и локализовать место возникшего повреждения в структуре сети любой сложности.

Например, генератор вырабатывает и подает электроэнергию различным потребителям, находящимся на участках 1, 2, 3, которые оснащены каждый своей защитой. При коротком замыкании внутри устройства потребителя на 3-м участке, ток будет протекать по всем устройствам защиты, начиная от источника питания.

Но в таком случае целесообразно будет отключить цепь участка, имеющего неисправность электродвигателя, при этом оставляя в работе остальные исправные потребители. Для этого существуют уставки релейной защиты, отдельно для каждой цепи, еще на стадии проектирования схемы защиты.

Устройства защиты 5, 3-го участка должны обнаружить ток неисправности раньше, и оперативнее сработать, отключив поврежденный участок от цепи генератора. Поэтому значения токовых и временных установок на каждом участке снижаются от генератора к потребителю, по принципу: чем дальше от неисправного места, тем ниже чувствительность.

В результате исполняется принцип резервирования. Который учитывает возможность поломки любых устройств, включая системы защиты более низкого уровня. Это означает, что при повреждении защиты 5 участка №3, при возникновении аварии должны сработать устройства защиты 3 или 4 участка 2. А эти участки в свою очередь подстрахованы устройствами защиты участка 1.

Особенности управления релейной защитой

Релейная защита как отдельный блок является самостоятельной схемой. Он входит в общие комплексы, которые составляют систему противоаварийного управления энергетической системы. В такой системе все элементы взаимосвязаны между собой и выполняют поставленные задачи в комплексе.

Коротко перечень защитных функций и работа автоматики изображены на схеме.

Изучив особенности эксплуатации автоматики и релейной защиты, можно сказать, что необходимо постоянно совершенствовать знания и практические навыки, которые требуются при поступлении в работу нового оборудования для защиты.

Похожие темы:

Основные принципы построения релейной защиты

Ни один элемент электроэнергетической системы (генератор, трансформатор, линия электропередачи, сборные шины и др.) не обладают абсолютной надёжностью. С большей или меньшей вероятностью он может быть повреждён, причём подавляющее большинство повреждений сопровождается возникновением короткого замыкания. Режим КЗ опасен для энергосистемы: устойчивая работа энергосистемы может быть нарушена, из-за существенного искажения параметров режима энергосистемы потребители электроэнергии теряют электропитание, длительное существование токов короткого замыкания разрушает повредившийся элемент энергосистемы до неремонтопригодного состояния.

Назначением релейной защиты является выявление повреждённого элемента и быстрейшее его отключение от энергосистемы. Кроме того, устройства релейной защиты должны предупреждать повреждение элемента энергосистемы в случае возникновения ненормального и опасного для него режима работы (перегрузка, неполнофазный режим и др.).

Функциональная схема защиты как устройства автоматического управления (рис. 1) состоит из отдельных функциональных элементов, связанных между собой общей схемой, предназначенных для решения стоящих перед ними задач.

Рис. 1. Функциональная схема защиты

Входной (воздействующей) величиной для РЗ является электрический параметр, определяемый типом релейной защиты. Так, например, для максимально токовых защит, таким параметром является ток (), проходящий через защищаемый элемент электроэнергетической системы (ЭЭС). Если величинапревысит установленное значение (), то происходит срабатывание пускового органа РЗ. Выходной сигнал с этого блока () поступает на логическую часть защиты (например, реле времени). При срабатывании логической части защиты вырабатывается сигнал, поступающий на исполнительную часть защиты, выполняющую функцию усилительного органа (например, промежуточное реле).

Устройства релейной защиты реагируют, естественно, на значения параметров режима защищаемого объекта (ток, напряжение, направление мощности и др.).

При реализации более сложных видов защит, в качестве входных параметров могут использоваться несколько воздействующих величин.

Релейная защита должна удовлетворять следующим требованиям:

  1. Селективность (избирательность) – способность РЗ отключать только защищаемый элемент ЭЭС, несмотря на то, что ток КЗ протекает и по другим неповреждённым элементам.

  2. Быстродействие – способность с минимально допустимым временем производить отключение повреждённого участка.

  3. Надёжность – способность защиты безотказно действовать в пределах установленной для неё зоны и не должна срабатывать ложно в режимах, при которых действие данной РЗ не предусмотрено.

  4. Чувствительность – способность РЗ реагировать на те отклонения от нормального режима, которые возникают в результате повреждения. Например. На рис. 2 изображён участок ЭЭС с установленными токовыми защитами РЗ1 и РЗ2, которые отличают нормальный режим от режима КЗ по возрастанию тока.

Рис.2. Схема участка ЭЭС и размещение токовых защит.

РЗ1 служит для защиты линии АВ, а РЗ2 – ВС. Однако в случае возникновения на шине С (в точке К2) КЗ и отказе защиты РЗ2 ликвидация повреждения должна осуществлять РЗ1, т.е. РЗ1 должна «чувствовать» КЗ в конце смежной линии, чтобы она смогла выполнить функции резервирования РЗ2.

Защиты подразделяют на основные и резервные:

Основной называется защита, предназначенная для работы при всех или части видов КЗ в пределах всего защищаемого элемента со временем, меньшим, чем у других установленных защит.

Резервной называется защита, предусматриваемая для работы вместо основной защиты данного элемента при её отказе или выводе из работы, а также вместо защит смежных элементов при их отказе или отказах выключателей смежных элементов.

В соответствии со способами обеспечения селективности при внешних КЗ различают две группы защит: с абсолютной селективностью и с относительной селективностью.

Относительную селективность имеют защиты, на которые по принципу действия можно возложить функции резервных при КЗ на смежных элементах. С учетом этого такие защиты в общем случае должны выполняться с выдержками времени.

Абсолютную селективность имеют защиты, селективность которых при внешних КЗ обеспечивается их принципом действия, т. е. защита способна сработать только при КЗ на защищаемом элементе. Поэтому защиты с абсолютной селективностью выполняются без выдержек времени.

Короткие замыкания, как правило, сопровождаются возрастанием тока. Поэтому первыми в энергосистемах появились токовые защиты, действующие в тех случаях, когда ток в защищаемом элементе превышает заданное значение. Такие защиты выполняются плавкими предохранителями и реле. Токовые защиты могут, кроме полных токов фаз, использовать также слагающие обратной и нулевой последовательностей тока, практически отсутствующие в нормальном режиме. Если сравнивать действующее значение тока (или его симметричных составляющих) с заданными значениями, то защита будет иметь относительную селективность. Если же сравнивать комплексы токов по концам защищаемого элемента, то указанную защиту называют дифференциальной токовой. Этот принцип позволяет выполнить защиту с абсолютной селективностью.

В качестве измерительных органов применяются также минимальные реле напряжения, которые срабатывают, когда значение воздействующей величины становится меньше заданного.

Защиты напряжения могут фиксировать повреждения и по появлению слагающих напряжения обратной и нулевой последовательностей. В этих случаях измерительные органы выполняются на основе максимальных реле напряжения.

В ряде случаев не удается выполнить защиты на основе отмеченных простейших принципов. Поэтому применяется дистанционный принцип, который предусматривает совместное использование тока и напряжения защищаемого объекта таким образом, что при КЗ в измерительном органе защиты (реле сопротивления) формируется сигнал, пропорциональный сопротивлению петли КЗ.

При реализации защит с относительной селективностью для элементов системы, получающих питание от двух или более источников питания, для обеспечения их селективности возникает необходимость фиксировать направление мощности КЗ и тем самым обеспечивать их действие при условии определённого направления этой мощности (например, от шин – в линию). В этих случаях рассмотренные токовые и дистанционные защиты выполняются направленными. Способность определять направление мощности обеспечивается применением специальных органов направления мощности (как правило, в токовых защитах) или приданием направленности действия измерительному органу (направленные реле сопротивления в дистанционных защитах).

как защищают от сбоев электросети и электрические станции

Силовое оборудование электросетей и электрических станций всегда должны быть защищены от сбоев при эксплуатации и короткого замыкания. Таким средством является релейная защита и автоматика (РЗА).

Производители предлагают огромное количество устройств, которые могут заблокировать внезапную аварию в электросети или, например, предупредить с помощью звукового либо светового сигнала о появлении аварийной ситуации.

Чаще всего релейная защита функционирует с автоматикой, а их совместная работа связана с различными типами аварийных ситуаций:

  1. уменьшение частоты электрического тока, которая появляется при возникшей перегрузке генератора из-за короткого замыкания или отсоединения определенной части разных устройств из сети.
  2. увеличенное напряжение появляется из-за возникшей разгрузки электросети.
  3. при токовой перегрузке возникает опасный нагрев изоляции кабеля, появляются искры.

Основные виды РЗА:

  • МТЗ – максимальная токовая защита. Срабатывает в тот момент, когда ток достигает определенного установленного значения.
    направленная МТЗ. Дополнительно осуществляет контроль за направлением мощности.
  • ГЗ – газовая защита. Необходима для отключения трансформатора при появлении различных повреждений в следствии образования опасных газов.
  • ЛЗШ – логическая защита шин. Необходима для поиска места, где происходит короткое замыкание.
  • дифференциальная защита. Необходима для предохранения трансформаторов, генераторов и шин, сравнивает величины тока на входе и выходе.
  • ДФЗ – дифференциально-фазная защита. Контролирует фазы тока с обеих сторон линии. Если они отклоняются от заданных параметров, то срабатывает защита.
  • ДЗ – дистанционная защита. При коротком замыкании срабатывает при снижении сопротивления сети.
  • ДЗ с ВЧ-блокировкой. При коротких замыканиях используется для отключения подачи тока на воздушных линиях.
  • удаленная защита. Применяется в ситуациях, когда требуется быстрая скорость реакции и особая чувствительность.
  • защита минимального напряжения. Отключает оборудование в том случае, когда напряжение падает ниже установленного минимального значения.
  • защита максимального напряжения. Срабатывает, когда напряжение увеличивается и начинает превышать допустимое значение.

Также релейная защита разделяется по основным признакам:

  1. По способу подключения: первичная и вторичная.
  2. По функциональным признакам: логические и измерительные.
  3. По типу исполнения: электронные и электромеханические.
  4. По способу воздействия: прямое или косвенное.

Особенности конструкции релейной защиты

Устройство РЗА непрерывно совершенствуется благодаря внедрению инновационных технологий. Но основные принципы и элементы конструкции остаются неизменными.

Структуру релейной защиты можно представить в виде схемы:

Электрический сигнал — Модуль наблюдения процессов — Узел логики и анализа — Исполнительный блок — Сигнальный блок

Блок наблюдения проводит мониторинг всех процессов в электрике за счет трансформаторов тока и напряжения, которые проводят измерения. В узле логики и анализа сравниваются поступившие сигналы с максимальным показателем уставок. Защита будет срабатывать, даже если имеется небольшое совпадение данных значений. Исполнительный блок всегда находится в состоянии готовности, ожидая сигнала от логического блока. Сигнальный блок функционирует при помощи света или звука.

Когда пройдет полный цикл срабатывания защиты, специалист ручным способом переводит устройство в первоначальное состояние.

Основные принципы работы

Бывают ситуации, когда нарушается работоспособность релейной защиты. Это происходит по разным причинам: ложное срабатывание, неисправности в самом реле и т.д. Чтобы не допускать снижения трудоспособности РЗА, изготовителями разрабатываются различные принципы и требования, которые необходимо соблюдать при установке, эксплуатации и обслуживании.

Существует несколько основных принципов:

  • принцип надежности. Релейная защита должна бесперебойно выполнять все задачи, заложенные производителем.
  • принцип селективности (избирательный принцип). Релейная защита должна безошибочно находить и устранять место, где произошло повреждение сети.
  • принцип быстродействия. Время от обнаружения повреждения до полного обесточивания должно быть максимально минимизировано.
  • принцип чувствительности. Он позволяет определять типы всевозможных повреждений с помощью коэффициента, величина которого должна соответствовать 1,5-2.

Требования к релейной защите: селективность, чувствительность, быстродействие, надежность

Пример HTML-страницы

К устройствам релейной защиты предъявляют 4 основных требования:

1. Селективность – способность отключать только поврежденный участок сети.

Основное условие для обеспечения надёжного электроснабжения потребителей.

2. Быстродействие – главное условие для сохранения устойчивости параллельной работы генераторов. Уменьшается время снижения напряжения у потребителей, повышается эффективность АПВ, уменьшается ущерб для оборудования.

Критерий – остаточное напряжение не менее 60 % от номинального. Кроме того, нужно учитывать и время срабатывания выключателей:

tоткл=tз+tв, (1.1)

где tз – время действия защиты,

tв – время отключения выключателя – 0,15…0,06 с.

Быстродействующей считается защита, имеющая диапазон срабатывания – 0,1…0,2 с, самые быстродействующие – 0,02…0,04 с.

В ряде случаев требование быстродействия является определяющим.

Быстродействующие защиты могут быть и неселективными, для исправления неселективности используется АПВ.

3. Чувствительность – для реагирования на отклонения от нормального режима.

Резервирование следующего участка – важное требование. Если защита по принципу своего действия не работает за пределами основной зоны, ставят специальную резервную защиту.

Чувствительность защиты должна быть такой, чтобы она действовала при КЗ в конце установленной зоны действия в минимальном режиме системы.

Чувствительность защиты характеризуется коэффициентом чувствительности kч:

где Iк.мин – минимальный ток КЗ,

Iс.з – ток срабатывания защиты.

4. Надежность. Защита должна безотказно работать при КЗ в пределах установленной для неё зоны и не должна ложно срабатывать в режимах, при которых её работа не предусматривается.

Релейная защита и автоматизация электроэнергетических систем

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Релейная защита и автоматизация электроэнергетических систем

Учебно-методическое пособие

Для направления подготовки 140400.62 Электроэнергетика и электротехника

Профиль подготовки Электроснабжение

 

 

 

 

Орел 2014 год

 

 

Рекомендовано к изданию кафедрой «Электроснабжение» Орловского государственного аграрного университета

Рецензент:

Виноградов В.А., заведующий кафедрой «Электроснабжение» Орловского государственного аграрного университета

 

Волчков Ю.Д.

Релейная защита иавтоматизация электроэнергетических систем

:

Учебно-методическое пособие.

 

Учебно — методическое пособие предназначено для студентов специальности 140400 «Электроэнергетика и электротехника» и соответствует учебной программе по дисциплине «Релейная защита и автоматизация электроэнергетических систем». Пособие состоит из подробной программы курса с краткими комментариями на все разделы программы, дается ссылка на конкретную учебную литературу и другие источники знаний в области релейной защиты и автоматики в системах электроснабжения. В пособии приведены исходные данные для выполнения контрольных заданий с примерами конкретных расчетов. Приведены необходимые справочные данные по вопросам электроэнергетики, типовые схемные исполнения. Предназначено для студентов всех форм обучения.


 

 

 

 

СОДЕРЖАНИЕ

1. Введение 4

2. Общие вопросы релейной защиты и автоматики 6

2.1. Основные понятия о релейной защите и автоматике 6

2.2. Измерительные преобразователи синусоидальных

напряжений и токов 7

2.3. Измерительные и логические органы релейной защиты. Реле 10

3. Релейная защита и автоматика в системах электроснабжения 11

3.1. Защита плавкими предохранителями и автоматами 11

3.2. Токовые защиты 12

3.2.1. Максимальная токовая защита 12

3.2.2. Токовые отсечки 13

3.2.3. Токовая направленная защита 14

3.3. Защита от замыканий на землю в сетях с глухозаземленной

нейтралью 15

3.4. Защита от замыканий на землю в сетях с изолированной

нейтралью 17

3.5. Дистанционная защита 18

3.6. Дифференциальные токовые защиты 20

4. Релейная защита и автоматика элементов СЭС 21

4.1. Защита и автоматика синхронных генераторов 21

4.2. Защита и автоматика трансформаторов 23

4.3. Защита и автоматика электродвигателей. Защита и автоматика

специальных электроустановок систем электроснабжения 24

5. Устройства системной автоматики 26

6. Список лабораторных работ 28

7. Вопросы выносимые на экзамен 28

8. Контрольные задания 32

8.1. Общие указания 32

8.2. Контрольная работа №1

8.3. Контрольная работа №2 38

Приложение I. Пример расчета МТЗ ЛЭП 10 кВ 40

Приложение II. Релейная защита силовых трансформаторов 59

Приложение III. Пример расчета защиты высоковольтного

асинхронного двигателя 82

Приложение IV. Контрольные вопросы 86

 

Введение

Надежность энергоснабжения потребителей невозможно обеспечить без автоматического управления элементами системы электроснабжения и их защиты от аварийных и ненормальных режимов.

Системы электроснабжения (СЭС) являются сложными производственными объектами, элементы которых участвуют в едином производственном процессе, особенностью которого является быстротечность явлений, включая и повреждения аварийного характера. Поэтому надежная и экономичная работа систем электроснабжения возможна только при автоматическом управлении ими. Для этих целей используется комплекс автоматических устройств, среди которых первостепенное значение имеют устройства релейной защиты и электросетевой автоматики. Рост потребления электроэнергии и усложнение систем электроснабжения требуют постоянного совершенствования этих устройств. Сегодня этот процесс идет по пути более широкого использования микропроцессорной и цифровой техники. На базе микропроцессорных комплексов разрабатываются интегрированные системы управления электрическими станциями и подстанциями, где все функции релейной защиты, автоматики и оперативного управления совмещены, предусматривается фиксация параметров в действии релейной защиты доаварийного и аварийного режимов и передачи их на расстоянии.

Одновременно широко применяются и простейшие средства защиты и автоматики: предохранители, автоматы, магнитные пускатели, электротепловые элементы. Надежно работают простые токовые защиты на базе электромеханических реле, устройства автоматического повторного включения (АПВ), автоматического включения резервного питания (АВР) и автоматической частотной разгрузки (АЧР).

В соответствии с учебной программой дисциплины пособие включает три основные раздела. В первом предлагается изучить общие вопросы подхода по применению релейной защиты и требования к ней, вопросы аварийных и ненормальных режимов, возникающих в СЭС, устройство и конструкцию реле, работающих на электромагнитном и индукционном принципе (механические реле), полупроводниковые реле, реле на интегральных микросхемах, цифровые реле, параметры, характеризующие работу измерительных и вспомогательных реле. Во втором разделе изучаются виды защит, их схемное исполнение, определение параметров срабатывания и селективности, применение источников оперативного тока. В третьем — вопросы релейной защиты и автоматики оборудования СЭС и потребителей электроэнергии.

Методическое пособие составлено так, чтобы оказать помощь студентам при изучении теории, выполнения лабораторных работ и контрольных заданий. После каждой темы помещены вопросы для самопроверки. Представлены контрольные вопросы из экзаменационных билетов, вопросы для проверки остаточных знаний.

Пособие имеет приложение, где размещен справочный материал для выполнения контрольных работ , представлены примеры расчета защит элементов СЭС.

Изучив вышеназванный курс, студенты должны усвоить теоретические вопросы, научиться читать и составлять схемы различных устройств релейной защиты и автоматики, понимать принцип их действия, определять параметры срабатывания и селективной работы.

Методическое пособие составлено в соответствии с учебной программой дисциплины «Релейная защита и автоматизация электроэнергетических систем» по направлению 140400 «Электроэнергетика и электротехника».

Литература

Основная:

1.Кривенков В.В., Новелла В.Н. Релейная защита и автоматика систем электроснабжения. – М.: Изд. Дом «Додэка», 2008.- 438 с.

2.Релейная защита и автоматика электроэнергетических систем: учебное пособие. Под ред. Ершова Ю.А..-С-Пб.: ЛАНЬ, 2012 (ЭБС)

3.Дьяков А.Ф., Овчаренко Н.И. Микропроцессорная релейная защита и автоматика электроэнергетических систем. Изд. МЭИ, 2008, 199 с.

4.Андреев В.А. Релейная защита и автоматизация систем электроснабжения. – М.: Высш. школа, 2008.- 563 с.

Дополнительная:

1.Шабад М.А. Расчёты релейной защиты и автоматики распределительных сетей. –СПб.: Энергоатомиздат, 2006.- 295 с.

2.Басс Э.И. Релейная защита электроэнергетических систем: учебное пособие. Под ред. А.Ф. Дьякова М.: Изд. МЭИ, 2006. -296 с.

3.Соловьев А.Л., Шабад М.А. Релейная защита городских электрических сетей 6 и 10 кВ. СПб.: Политехника, 2007.-175 с.

4.Реле защиты / В.С. Алексеев и др.– М.: Энергоатомиздат, 2000.– 387 с.

5.Темкина Р.В., Ломов С.С. Измерительные органы микропрцессорных терминалов релейной защиты.- М.: Изд. Дом «Додэка», 2006.- 233 с.

6.Комплектное микропроцессорное устройства релейной защиты и автоматики 10 (6) кВ SPACOM. Техническое описание. – Чебоксары: АВВ-Реле, 2007. – 59 с.

7.Шабад М.А. Защита трансформаторов распределительных сетей. – СПб.: Энергоатомиздат, 2001. – 286 с.

8.Коваленский И.В. Релейная защита двигателей напряжением выше 1000 В. – М.: Энергоатомиздат, 1999. – 374 с.

9.Микропроцессорные защиты НТЦ «Радиус — Автоматика». – М.: Радиус, 2008. -174 с.

10.Цифровые токовые защиты электрических линий, электрических аппаратов и высоковольтных электродвигателей НПО «Механотроника». СПб.: Механотроника.2009 — 240 с.

11.Сайты: Сириус Челябинск http://sirius-chel.ru

НТЦ «Механотроника» http://www.mtra.ru

АББ Реле-Чебоксары http://www.promportal.ru/userinfo147

ЗАО « РАДИУС Автоматика» и ООО «НПФ» РАДИУС» http://www.rza.ru/production.htm

 

2. Общие вопросы релейной защиты и автоматики

Основные понятия о релейной защите и автоматике

Виды повреждений и ненормальных режимов работы элементов систем электроснабжения. Назначение релейной защиты (РЗ) и электросетевой автоматики. Основные требования, предъявляемые к релейной защите. Элементная база защит, реле и их разновидности. Способы изображения и включения реле. Способы воздействия защиты на выключатель. Основные принципы построения защит. Структурная схема релейных защит.

Оперативный ток. Оперативный постоянный ток. Оперативный переменный ток. Схемы источников оперативного тока. Блоки питания. [1, 2, 3, 4]

Методические указания

Анализ рабочих и аварийных режимов дает возможность правильно выбрать, рассчитать и оценить поведение релейной защиты и автоматики элементов электрической системы. Необходимо знать виды повреждений и ненормальных режимов, возникающих в элементах системы, уметь строить векторные диаграммы токов и напряжений при различных видах повреждений, устанавливать закономерность изменения различных электрических параметров режима в зависимости от вида и места короткого замыкания (к.з.), а так же от режима работы системы; разобраться с основными отличиями аварийных режимов в сетях с заземленными и изолированными нейтралями.

Следует твердо усвоить требования, предъявляемые к релейной защите, а так же возможные последствия при невыполнении их.

В настоящее время при выполнении релейной защиты и автоматики систем электроснабжения широкое применение находят различные источники оперативного тока. Надо знать эти источники, уметь применять их. Кроме того, следует иметь представление об источниках оперативного тока для полупроводниковых и цифровых защит.

Вопросы для самопроверки

1. Какие виды повреждений и ненормальных режимов могут возникнуть в электрических сетях?

2. Каковы функции релейной защиты и основные требования, предъявляемые к ней?

3. Каковы основные принципы построения защит, их структурное содержание?

4. Какие источники оперативного тока Вы знаете? Какова область их применения?

5. В чем заключаются достоинства и недостатки источников постоянного и переменного оперативного токов?

6. Какие требования предъявляют к источникам оперативного тока для полупроводниковых и цифровых защит?

Методические указания

Основное требование к ТТ – это более точная передача информации измерительным органам релейной защиты о величине и фазе тока, протекающего в первичной цепи защищаемого объекта при различных эксплуатационных режимах.

ТТ, работающие на линейной части характеристики намагничивания, могут являться источниками оперативного тока: при к.з. ток резко возрастает и мощность ТТ P2=I2·U2 становится достаточной для питания цепи оперативного тока.

Следует понять физическую природу возникновения погрешностей в ТТ и способы уменьшения их. Точность работы ТТ характеризуется полной токовой погрешностью ε. Нагрузка ТТ выбирается так, чтобы ε не превышала 10% при заданной вторичной нагрузке и предельной кратности (k10) ТТ. Под предельной кратностью понимают отношение максимального первичного тока к.з., протекающего через ТТ, к номинальному току ТТ. Основным недостатком кривых предельной кратности является их пригодность только для оценки погрешностей в установившемся режиме работы ТТ.

Следует знать, что расчетная нагрузка на ТТ зависит от схемы соединения ТТ, вида к.з., сочетания поврежденных фаз.

Основное назначение ТН состоит в том, чтобы к измерительным органам релейной защиты подводилась точная информация о величине и фазе напряжения в месте установки защиты. С этой точки зрения ТН должны работать с погрешностью, не превышающей некоторой допустимой величины.

Следует знать схемы соединения обмоток ТН и их назначение. Необходимо представлять для чего осуществляется контроль за исправностью вторичных цепей ТН.

В ряде случаев при отсутствии ТН применяют ёмкостные делители напряжения. Надо ознакомиться с принципом их действия и со способами отбора напряжения.

В электрических сетях широко применяются защиты, реагирующие на отдельные симметричные составляющие токов или напряжений – обратной и нулевой последовательности. Поэтому нужно представлять, как происходит их выделение из несимметричной системы трехфазных токов или напряжений, изучив устройство фильтров токов и напряжений обратной и нулевой последовательности: ZI2; ZU2; ZI0; ZU0.

При изучении преобразователей синусоидального тока в напряжение TAL (промежуточный трансформатор тока – трансреактор) и промежуточных трансформаторов напряжения TVL следует знать конструкцию магнитопровода, величину вторичной нагрузки, зависимость выходного напряжения от входных тока и напряжения. Рассмотреть способы экранирования от высокочастотных помех, согласования выходного напряжения с входным напряжением измерительного органа (ИО) реле, исключение гальванической связи.

Как конструктивно устроены магнитные датчики. Их преимущества и недостатки. Катушка Роговского, датчики Холла.

Изучить устройство и работу ОУ и их параметры по входу и выходу, передаточную характеристику. Оценить возможности применения ОУ в устройствах релейной защиты и автоматики (усилитель, компаратор, пороговый элемент с положительной обратной связью, формирователи модуля).

Разобраться в устройстве и работе аналого-цифрового преобразователя (АЦП) и цифро-аналогового преобразователя (ЦАП).

Изучить три основные логические функции и элементную базу для их реализации. Логические функции оперируют с двоичными переменными, которые могут принимать только два значения: 0 или 1. На основе простых логических функций И, ИЛИ, НЕ строят более сложные функции. Уяснить их устройство и работу. Графическое изображение логических элементов. Цифровая логика. Схемы, выполняющие операции И-НЕ либо ИЛИ-НЕ и функциональные схемы (триггеры, счетчики шифраторы, дешифраторы и др.)

Вопросы для самопроверки

1. Каково назначение измерительных трансформаторов?

2. Как маркируются выводы обмоток измерительных трансформаторов?

3. Чем обусловлены погрешности трансформаторов и каким образом можно уменьшить их величину?

4. Что понимается под номинальным и витковым коэффициентами ТТ и в чем отличие между ними?

5. Как выбрать ТТ для питания релейной защиты?

6. Каковы достоинства и недостатки схем соединения ТТ?

7. Почему не допустим холостой ход для ТТ?

8. Как определить расчетную нагрузку на ТТ?

9. Какие схемы соединения ТН применяются в релейной защите?

10. Для чего применяется контроль исправности цепей напряжения и как он осуществляется?

11. Как проверить ТТ по кривым предельной кратности?

12. Как можно получить симметричные составляющие тока или напряжения различной последовательности?

13. Как выглядит осциллограмма вторичного тока ТТ при глубоком насыщении

( активная нагрузка)?

14. Почему ток во вторичной обмотке ТТ не зависит от нагрузки и в каких пределах это справедливо?

15. Какие схемы соединения ТТ непригодны для защиты трансформаторов со схемами соединения Y/Δ и Y/Y с заземленной нейтралью?

16. Как устроены и работают фильтры тока и напряжения нулевой последовательности (ФТНП и ФННП)?

17. Как устроены согласующие преобразователи тока и напряжения?

18. Как работают компаратор, пороговый элемент, триггер Шмидта?

19. Какие требования предъявляются к АЦП в схемах РЗ?

20. Какие логические функции реализуются в схемах РЗ?

Методические указания

Изучая данную тему, следует обратить внимание на принцип действия и конструктивные особенности наиболее часто применяемых реле. Нужно хорошо знать характеристики основных типов реле и способы регулирования их параметров.

В последние годы все чаще применяют полупроводниковые реле, разрабатываются устройства защиты и автоматики на основе интегральных микросхем. Следует разобраться с основными достоинствами и недостатками полупроводниковых реле на интегральных микросхемах.

Для оптимального построения логической части защит целесообразно привлечение методов теории релейных устройств. Основными элементарными логическими операциями являются дизъюнкция (ИЛИ), конъюнкция (И) и инверсия (НЕ). Эти операции дают возможность реализации любой более сложной функции. Следует разобраться с основными понятиями алгебры логики, а также со способами выполнения логических элементов. В этом разделе еще раз стоит вернуться к цифровым микросхемам, выполняющим логические функции, и к функциональным схемам (триггеры, счетчики АЦП, ЦАП, шифраторы, дешифраторы и др.)

Вопросы для самопроверки

1. Каков принцип действия электромагнитного и индукционного реле?

2. Что такое коэффициент возврата реле, от чего он зависит и как можно регулировать его величину?

3. Чем отличаются характеристики срабатывания реле тока РТ-40 и РТ-80?

4. Из-за чего наблюдается вибрация подвижной системы электромагнитных реле при питании их обмоток переменным током и как она устраняется?

5. Каково назначение промежуточных и указательных реле?

6. Чем определяется время срабатывания и возврата промежуточных реле и каким образом можно воздействовать на этот параметр?

7. Какова конструкция реле переменного тока типов РП-340 и РВМ?

8. Каков принцип действия поляризованного реле, магнитоэлектри­ческого реле? Почему они реагируют на направление тока в обмотке?

9. Чем объясняется зависимость времени срабатывания индукционного реле типа РТ-80 от тока в его обмотке?

10. Как изменяется вращающий момент в реле направления мощности при изменении угла сдвига фаз между подведенными к нему током и напряжением?

11. Каков принцип действия реле с магнитоуправляемыми контактами, каковы его основные достоинства?

12. Как можно сравнить две электрические величины по модулю?

13. Какие способы выполнения логических элементов Вы знаете?

14. Статические реле тока, напряжения, мощности, устройство и работа (РСТ, РСН, PCM, РВО)

15. Для выполнения каких органов РЗ используются аналоговые ИМС, а для каких – цифровые?

16. Преимущества РЗ, выполненных на базе ИМС, по сравнению с электромеханическими реле.

17. Особенности цифровых реле и их настройка. Структурная схема цифровых (программных) защит. Требования к АЦП.

Методические указания

Предохранитель (автомат) совмещает одновременно функции выключателя и релейной защиты. Основными характеристиками его являются: номинальный ток плавкой вставки IВСном; номинальный ток предохранителя IПРном; предельный ток отключения предохранителя IПРоткл; защитная (времятоковая) характеристика предохранителя. При выборе предохранителя следует исходить из условия его надежной работы в аварийных и нормальных режимах, а плавкая вставка не должна перегорать при кратковременных перегрузках защищаемого объекта. Известно, что для селективной работы предохранителей необходимо выбирать плавкие вставки с номинальными токами, отличающимися по шкале, или совмещать защитные характеристики. Недостатки предохранителя (нестабильность защитной характеристики, невозможность в ряде случаев выполнить защиту от перегрузки и др.) ограничивают область его применения.

Автоматы снабжаются специальным устройством релейной защиты – расцепителем, которое в зависимости от типа автомата выполняется в виде токовой отсечки или максимальной токовой защиты. При малых токах автомат отключается с выдержкой времени, а при больших – мгновенно. Защитные устройства автомата (расцепители) позволяют выполнить токовую защиту без ТТ и без оперативного тока. По сравнению с предохранителями автоматы имеют более устойчивые защитные характеристики и производят одновременно отключение всех трех фаз защищаемого элемента. Кроме того, они являются аппаратами многократного действия, что позволяет с их помощью выполнять схемы сетевой автоматики.

Вопросы для самопроверки

1. Каково назначение предохранителя и автомата?

2. Почему не удается всюду успешно применить предохранители и автоматы для защиты от к.з.?

3. Как выбираются предохранители и автоматы?

4. Как обеспечивается селективная работа предохранителей или автоматов?

5. Какое назначение имеет механизм свободного расцепления?

6. Как обеспечивается необходимая выдержка времени срабатывания автомата?

Токовые защиты

3.2.1. Максимальная токовая защита

Назначение и принцип действия максимальной токовой защиты (МТЗ). Схемы исполнения защит. Расчет тока срабатывания защиты (Iср). Определение коэффициента чувствительности (kч) в зависимости от схемы соединения ТТ и обмоток реле при к.з. в зоне основного и резервного действий защиты.

Селективная работа максимальных токовых защит. Определение времени срабатывания защит, ступень селективности Δt.

Оценка и область применения МТЗ. [1, 2, 3, 4, 5]

Методические указания

Одним из признаков возникновения к.з. является увеличение тока в цепи по сравнению с максимальным током нагрузки. Этот признак положен в основу работы защит, называемых токовыми. Они делятся на максимальные токовые защиты и токовые отсечки. Основное отличие между этими защитами заключается в способе обеспечения селективности. Селективность действия МТЗ обеспечивается с помощью выдержки времени. Выдержка времени срабатывания МТЗ tср выбирается по так называемому ступенчатому принципу, используя ступень селективности Δt. Защита приходит в действие, если ток в защищенном элементе превышает ее ток срабатывания. МТЗ не должна срабатывать при самозапуске электродвигателей после ликвидации внешнего к.з. или после АПВ защищаемой линии. В то же время она должна надежно работать при к.з. не только на своем участке (зона основного действия), но и на соседнем (зона резервного действия) при отказе защиты или выключателя этого участка. Чувствительность МТЗ характеризуется коэффициентом чувствительности (kч), определяемым как отношение минимального тока в реле при металлическом к.з. в конце защищаемой зоны к току срабатывания реле. Нужно уметь оценить kч различных схем защиты при различных видах к.з. до и за силовым трансформатором с соединением обмоток Y/Δ и Y/Y с заземленной нейтралью.

Следует обратить особое внимание на особенности расчета МТЗ с дешунтированием катушек отключения выключателей, обусловленные различными требованиями к ТТ при работе в режимах до и после срабатывания дешунтирующих реле. Необходимо знать достоинства и недостатки МТЗ. Цифровые защиты и их исполнение.

Вопросы для самопроверки

1. Из каких органов состоит МТЗ, какова функциональная схема защиты?

2. Как выбираются ток срабатывания и время срабатывания МТЗ?

3. Как определить kч защиты при к.з. на защищаемом и резервируемом участках?

4. Каким образом обеспечивается селективность действия МТЗ с зависимыми характеристиками?

5. Как работает защита по схеме с дешунтированием катушек отключения выключателей?

6. Какова векторная диаграмма токов в месте установки защиты при двухфазном к.з. за трансформатором с соединением обмоток Y/Δ, при однофазном к.з. за трансформатором с соединением обмоток Y/Y с заземленной нейтралью?

7. Каковы достоинства и недостатки МТЗ?

8. Особенность МТЗ с пуском по напряжению.

9. Особенности МТЗ с магнитными датчиками.

10. Цифровые токовые защиты, выпускаемые предприятиями России.

3.2.2. Токовые отсечки

Назначение и принцип действия. Выбор тока срабатывания мгновенной отсечки. Неселективные отсечки. Отсечки на линиях с двусторонним питанием. Отсечка с выдержкой времени. Токовая ступенчатая защита, область ее применения. [1, 2, 3, 4]

Методические указания

Для обеспечения селективности мгновенной токовой отсечки (ТО) ее ток срабатывания выбирается больше максимального тока, проходящего по защищаемой линии при к.з. в конце линии. Определение тока срабатывания защиты производят, исходя из действующего значения периодической слагающей начального тока трехфазного к.з. (для времени t=0). Поэтому нужно учитывать влияние на работу защиты апериодической слагающей в первичном токе. Зона действия ТО определяется графически при построении зависимости тока к.з. от длины линии Iк.з.=f(lЛЭП) . Поскольку ТО имеет мертвую зону, она не может быть основной защитой.

Однако в некоторых случаях отсечка линий может являться основной защитой, например, при защите в схеме «блок ЛЭП – трансформатор», где в зону защиты входит вся ЛЭП и первичная сторона силового трансформатора при к.з. за трансформатором.

ТО могут быть использованы и на линиях с двусторонним питанием. Комплекты защиты устанавливаются с обеих сторон защищаемой линии. Ток срабатывания защиты этих комплектов выбирается одинаковым, равным максимальному току внешнего к.з., а также максимального уравнительного тока при качаниях в системе.

Основное назначение отсечки с выдержкой времени — защита зоны, в которую входит конец защищаемого участка и шины приемной подстанции. Для предотвращения срабатывания при КЗ на смежном элементе зона и время действия отсечки с выдержкой времени согласуются с зоной и временем действия мгновенной отсечки смежного элемента.

Если на линии установить мгновенную ТО, отсечку с выдержкой времени и МТЗ, то получим трехступенчатую токовую защиту. Нужно знать выбор параметров срабатывания и уметь оценить чувствительность каждой из ступеней защиты. Цифровые защиты и их исполнение.

Вопросы для самопроверки

1. Как обеспечивается селективность действия мгновенной ТО?

2. С какой целью применяются неселективные ТО?

3. Как выбираются параметры срабатывания отсечки с выдержкой времени и какова зона их действия?

4. Как выбирается ток срабатывания ТО на линиях с двусторонним питанием?

5. Каковы недостатки ТО и как они устраняются в трехступенчатой токовой защите?

6. Почему при расчете тока срабатывания как мгновенной ТО, так и ТО с выдержкой времени не учитывается kвоз?

7. Как выбираются параметры срабатывания всех ступеней трехступен­чатой токовой защиты, как проверяется их чувствительность?

 

3.2.3. Токовая направленная защита

Максимальная токовая направленная защита: схемное исполнение, расчет и принцип действия. 90° схема включения реле направления мощности на междуфазные напряжения и токи фаз. Токовые направленные отсечки. Селективная работа направленных защит. Область применения токовой направленной защиты. [1, 2, 3, 4]

Методические указания

Токовой направленной называют защиту, реагирующую на значение тока и направление мощности к.з. в месте ее установки. Рассматриваемая защита представляет собой токовую защиту, дополненную реле направления мощности. Она применяется в сложных сетях – сетях с двусторонним питанием, а также в кольцевых сетях с одним источником питания. Комплекты защиты устанавливаются с обеих сторон защищаемой линии и приходят в действие, если мощность к.з. для каждого из комплектов направлена от шин в защищаемую линию, а ток превышает ток срабатывания. Выдержка времени максимальных токовых направленных защит выбираются по встречно-ступенчатому принципу. При выборе тока срабатывания защиты в общем случае учитываются те же основные условия, что и для МТЗ. Однако имеются особенности в выборе тока срабатывания при использовании защиты в кольцевых сетях, а также в сети с глухозаземленной нейтралью, с которыми следует разобраться.

Под схемой включения реле направления мощности понимается определенное сочетание фаз тока и напряжения, подводимых к его обмоткам. Наибольшее распространение получила 90° схема включения реле. Для выявления свойств схемы необходимо уметь анализировать работу реле направления мощности при различных видах к.з.

Выполнение направленной отсечки дает возможность при выборе ее тока срабатывания учитывать только ток внешнего к.з. в направлении действия ее реле мощности. В этом основное отличие направленной отсечки от ненаправленной.

Недостатком направленных токовых защит является наличие мертвой зоны, определяемой минимальным напряжением при трехфазном к.з. вблизи места установки защиты.

Вопросы для самопроверки

1. Каков принцип действия токовой направленной защиты?

2. Чем отличается выбор тока срабатывания направленных защит (МТЗ и ТО) от ненаправленных?

3. В каких точках кольцевой сети с одним источником питания, а также сети с двусторонним питанием можно отказаться от установки реле направления мощности?

4. Как рассчитать выдержки времени направленных защит?

5. Чем обусловлено наличие мертвой зоны токовых направленных защит, как она рассчитывается, при каких видах к.з. возникает?

Методические указания

С глухозаземленными нейтралями работают сети напряжением 110кВ и выше. Для защиты линий этих сетей от к.з. на землю оказывается более целесообразным использовать отдельный комплект реле. Реле тока защиты подключается к фильтру токов нулевой последовательности. Следовательно, защита реагирует только на к.з., сопровождающиеся токами нулевой последовательности. В остальном схема защиты аналогична рассматри­ваемым выше схемам МТЗ и ТО от междуфазных к.з.

В общем случае защита выполняется ступенчатой. Ток срабатывания МТЗ нулевой последовательности отстраивается от тока небаланса Iнб в нормальном режиме, если выдержки времени t0, рассматриваемой защиты, больше времени действия tмф защит от междуфазных к.з., установленных на следующем участке. Если t0 < tмф, то защиту нужно отстраивать от Iнб при трехфазном к.з. в начале следующего участка. Наличие Iнб в симметричных режимах обусловлено неравенством токов намагничивания ТТ. Время действия защиты выбирается по ступенчатому принципу Δt, Δt – ступень селективности. При этом обычно получается t0 < tмф.

Принцип действия и условия настройки отсечек нулевой последова­тельности практически такие же, как и отсечек, реагирующих на полные токи фаз.

В сетях с двумя и более заземленными нейтралями, расположенными в разных точках сети, применяются направленные защиты. К органу направления мощности подводятся 3U0 и 3I0. Ток срабатывания мгновенных отсечек, установленных на параллельных линиях, необходимо выбирать с учетом наличия взаимоиндукции.

Направленные защиты нулевой последовательности не имеют мертвой зоны по напряжению, так как 3U0 максимально в месте к.з. и равно нулю в заземленной нейтрали трансформаторов. Цифровые защиты и их исполнение.

Вопросы для самопроверки

1. На каком принципе работает токовая защита нулевой последовательности?

2. Как влияют на распределение 3I0 схемы соединения обмоток и режимы работы нейтралей силовых трансформаторов?

3. В каких случаях применяются направленные токовые защиты нулевой последовательности?

4. Почему реле направления мощности нулевой последовательности не имеет мертвой зоны?

5. Как выбираются параметры срабатывания трехступенчатой токовой защиты (направленной) нулевой последовательности и как проверяется чувствительность различных ступеней защиты?

6. Каковы преимущества рассматриваемой защиты по сравнению с токовой защитой от междуфазных к.з.?

7. Какова область применения токовой защиты нулевой последовательности?

8. Как рассчитать ток 3I0 при различных к.з. на землю?

9. Как определить 3I0 в месте установки защиты при к.з. на землю в удаленной точке?

Методические указания

В сетях с изолированной нейтралью замыкания одной фазы на землю не вызывает к.з., так как в этом случае ЭДС поврежденной фазы не шунтируется накоротко, а только закорачивается емкостью (фаза – земля) этой фазы. Возникающий при этом в месте повреждения ток замыкается через емкость проводов «здоровых» фаз относительно земли и имеет небольшую величину (до нескольких десятков ампер). Поэтому снижения напряжения в сети не происходит. Однако фазное напряжение «здоровых» фаз относительно земли повышается до междуфазного. Линейные напряжения остаются неизменными. Чтобы все это усвоить и представить наглядно, нужно разобраться в векторных диаграммах токов и напряжений в нормальном и ненормальном режимах.

Однофазное замыкание на землю не отражается на работе потребителей и не нарушает синхронной работы генераторов. Поэтому в отличие от к.з. замыкания на землю не требуют немедленной ликвидации. Однако этот вид повреждения создает перенапряжение, что представляет опасность с точки зрения нарушения изоляции «здоровых» фаз и возможность перехода однофазного замыкания в междуфазное к.з. Защиту от рассматриваемых повреждений принято выполнять с действием на сигнал.

Известна общая селективная сигнализация замыкания на землю в сети без указания поврежденного участка, реагирующая на появление (3U0). В качестве селективных защит от замыканий на землю, указывающих поврежденный участок, применяются токовые, реагирующие на 3I0. Для выполнения защиты в качестве фильтра нулевой последовательности используется специальный ТТ нулевой последовательности (ТТНП) особой конструкции. В таком однотрансформаторном фильтре, выполняемом с помощью ТТНП, ток 3I0 получается магнитным суммированием от первичных токов трех фаз.

Нужно усвоить, что ток 3I0 в поврежденном присоединении (фидере) отличается от тока 3I0в неповрежденных фидерах абсолютным значением и направлением.

Если собственные емкостные токи нулевой последовательности отдельных присоединений соизмеримы с полным емкостным током сети, то токовая защита неприменима. В этом случае используются направленные защиты. В качестве подведенных к реле направления мощности величин используются 3U0 и 3I0. Нужно хорошо усвоить выбор параметров рассматриваемых защит, проверку чувствительности и размещение комплектов защиты, как для радиальных сетей, так и для кольцевых.

Иногда используются защиты, реагирующие на токи неустановивше­гося режима, а также на высшие гармонические в токе нулевой последовательности.

В компенсированных сетях результирующий ток 3I0 поврежденного участка содержит больше гармоник, чем ток в неповрежденных присоединениях. Именно на этом различии основаны защиты в таких сетях.

В последнее время нашел применение способ защиты с наложенным током частотой более 50 Гц. Цифровые защиты и их исполнение.

 

Вопросы для самопроверки

1. В чем заключается основная особенность защиты сетей с изолированной нейтралью?

2. Постройте векторные диаграммы токов и напряжений в нормальном режиме и при замыканиях на землю.

3. Какие принципы действия защит от замыканий на землю Вы знаете?

Релейная защита — принципы и применение

Принципы и применение релейной защиты (фото предоставлено: timpanoelectrical.com)

Типовые соединения реле и автоматических выключателей

Реле защиты, использующие электрические величины, подключаются к энергосистеме через трансформатор тока (CT) или Трансформатор напряжения (ТН). Эти входные устройства или измерительные трансформаторы обеспечивают изоляцию от системных напряжений большой мощности и снижают величины до практически вторичных уровней для реле.

На принципиальных схемах и схемах они представлены так, как показано на рисунке 1.9.

На этой схеме показана типичная однолинейная схема переменного тока и схема отключения постоянного тока.

Система релейной защиты подключается к сети переменного тока через трансформаторы тока, обычно связанные с автоматическим выключателем, и, при необходимости, с трансформаторами напряжения.

Рисунок 1.9 – Типовые однолинейные соединения переменного тока реле защиты с его цепью отключения по постоянному току. Уплотнение CS в ячейке не требуется с полупроводниковыми ячейками и меньшими токами цепи срабатывания с современными автоматическими выключателями.

Они показаны подключенными к шине переменного тока станции, но часто при более высоком напряжении устройства напряжения подключаются к линии передачи. Автоматический выключатель обозначается как устройство 52 в соответствии с системой нумерации устройств ANSI/IEEE ( IEEE C 37.2 ).

На схеме постоянного тока контакты всегда показаны в их обесточенном положении .

Таким образом, когда автоматический выключатель включен и находится в эксплуатации, его контакт 52a замкнут. Когда системная неисправность приводит в действие защитное реле, его выходной контакт замыкается, чтобы подать питание на катушку отключения автоматического выключателя 52T, которая размыкает главные контакты выключателя и обесточивает подключенную силовую цепь.


Основные задачи защиты системы

Основной целью защиты системы является обеспечение быстрой изоляции проблемной области в энергосистеме, чтобы свести к минимуму воздействие удара на остальную часть системы и максимально оставили нетронутым. В этом контексте существует пять основных аспектов применения реле защиты.

Прежде чем обсуждать их, следует отметить, что использование термина «защита» не указывает и не подразумевает, что защитное оборудование может предотвращать неисправности, такие как отказы и отказы оборудования , или поражения электрическим током из-за непреднамеренного вмешательства человека. контакты.Он не может предвидеть беду.

Защитные реле срабатывают только после возникновения нештатной или недопустимой ситуации при наличии достаточной индикации, позволяющей их срабатывание.

Таким образом, защита означает не предотвращение , а, скорее, минимизацию продолжительности неисправности и ограничение ущерба, времени простоя и связанных с этим проблем, которые могут возникнуть в противном случае.

Пять основных аспектов:

  1. Надежность: гарантия того, что защита будет работать правильно.
  2. Селективность: максимальная непрерывность обслуживания с минимальным отключением системы.
  3. Скорость работы: минимальная продолжительность неисправности и последующее повреждение оборудования и нестабильность системы.
  4. Простота: минимального защитного оборудования и связанных с ним схем для достижения целей защиты.
  5. Экономика: максимальная защита при минимальных общих затратах.

Поскольку это основные принципы любой защиты, необходимо дальнейшее обсуждение.

Релейная защита – принципы и применение

Что такое релейная защита? | Типы и работа

Что такое защитное реле?

Реле защиты было изобретено более 160 лет назад. За последние 60 лет он претерпел значительные изменения, наиболее очевидным из которых является его уменьшение в размерах.

Защитное реле — это распределительное устройство, которое обнаруживает неисправность и инициирует работу автоматического выключателя для изоляции неисправного элемента от остальной системы.

Это компактные и автономные устройства, способные обнаруживать нештатные ситуации. Защитные реле обнаруживают ненормальные состояния в электрических цепях, постоянно измеряя электрические величины, которые различаются в нормальных условиях и при неисправностях.

Электрические величины, которые могут измениться в условиях неисправности, это напряжение, ток, частота и фазовый угол. Через изменения одной или нескольких из этих величин неисправности сигнализируют о своем наличии, типе и местонахождении реле защиты .

Обнаружив неисправность, реле замыкает цепь отключения выключателя. Это приводит к размыканию выключателя и отключению неисправной цепи.

Релейная защита используется на электрических подстанциях для подачи аварийного сигнала или быстрого отключения любого элемента энергосистемы, когда этот элемент ведет себя ненормально.

Ненормальное поведение элемента может привести к повреждению или нарушению эффективной работы остальной части системы.Защитная релейная защита сводит к минимуму повреждение оборудования и перерывы в работе при сбоях в электроснабжении. Наряду с некоторым другим оборудованием реле помогают свести к минимуму ущерб и улучшить обслуживание

Схема релейной защиты включает защитные трансформаторы тока, трансформаторы напряжения, защитные реле, реле задержки времени, вспомогательные реле, вторичные цепи, цепи отключения и т. д. 

(сопутствующие компоненты от WIN SOURCE)

Каждый компонент играет свою роль, что очень важно в общей работе схемы.Релейная защита представляет собой совместную работу всех этих компонентов. Релейная защита также обеспечивает индикацию места и типа неисправности.

Прочтите зоны защиты в энергосистеме для более подробной информации

Схема реле

Типовая схема реле показана на рисунке ниже. На этой диаграмме для простоты показана одна фаза трехфазной системы.

Типовая схема реле

Соединения цепи реле можно разделить на три части, а именно.

  • Первая часть представляет собой первичную обмотку трансформатора тока (ТТ), который подключается последовательно с защищаемой линией.
  • Вторая часть состоит из вторичной обмотки трансформатора тока и автоматического выключателя и рабочей катушки реле.
  • Третья часть — это цепь отключения, которая может быть как переменного, так и постоянного тока. Он состоит из источника питания, отключающей катушки автоматического выключателя и неподвижных контактов реле.

Работа реле защиты

Работа электрического реле на основе приведенной выше схемы поясняется ниже.

Защитное реле работает

Когда в точке F на линии передачи происходит короткое замыкание, ток, протекающий по линии, увеличивается до огромной величины.

Это приводит к протеканию сильного тока через катушку реле, в результате чего реле срабатывает, замыкая свои контакты.

В свою очередь замыкает цепь отключения выключателя, отключая выключатель и изолируя неисправный участок от остальной системы.

Таким образом, реле обеспечивает сохранность схемного оборудования от повреждений и нормальную работу исправной части системы.

Требования к релейной защите

Основная функция релейной защиты состоит в том, чтобы вызвать оперативное отключение переднего плана любого элемента энергосистемы, когда он начинает работать ненормально или мешать эффективной работе остальной части системы.

Чтобы релейная система защиты могла удовлетворительно выполнять эту функцию, она должна обладать следующими качествами:

  1. селективность
  2. скорость
  3. чувствительность
  4. надежность
  5. простота
  6. эконом

Подробнее о каждом из них читайте в разделе «Основные характеристики и функциональные требования релейной защиты».

Основные типы реле защиты

Большинство реле, используемых сегодня в системе электроснабжения, относятся к электромеханическому типу.

Они работают по двум основным принципам работы:

  1. Электромагнитное притяжение
  2. Электромагнитная индукция

Реле электромагнитного притяжения работают благодаря тому, что якорь притягивается к полюсам электромагнита или плунжер втягивается в соленоид.Такие реле могут приводиться в действие постоянным током. или переменного тока количества.

Электромагнитные индукционные реле работают по принципу асинхронного двигателя и широко используются для целей релейной защиты с участием переменного тока. количества. Они не используются с величинами постоянного тока из-за принципа действия.

Функции защитных реле

Различные функции релейной защиты:

  1. Немедленное удаление компонента, который ведет себя ненормально, путем замыкания цепи отключения автоматического выключателя или подачи звукового сигнала.
  2. Отсоедините ненормально работающую часть, чтобы избежать повреждения или вмешательства в эффективную работу остальной части системы.
  3. Предотвратите последующие неисправности, отсоединив неисправную часть.
  4. Как можно быстрее отсоедините неисправную деталь, чтобы свести к минимуму повреждение самой неисправной детали. Например, если в машине есть неисправность обмотки и если она сохраняется в течение длительного времени, то существует вероятность повреждения всей обмотки.В отличие от этого, если его быстро отключить, то могут быть повреждены только несколько катушек, а не вся обмотка.
  5. Ограничьте распространение эффекта неисправности, вызывающей наименьшее влияние на остальную часть работоспособной системы. Таким образом, при отключении неисправной части последствия неисправности локализуются.
  6. Для повышения производительности системы, надежности системы, стабильности системы и непрерывности обслуживания.

Ошибок нельзя полностью избежать, но их можно свести к минимуму.

Таким образом, релейная защита играет важную роль в обнаружении неисправностей, минимизации последствий неисправностей и минимизации ущерба из-за неисправностей.

Что такое защитные реле? — Описание и принцип работы защитных реле

Защитное реле работает как сенсорное устройство, оно обнаруживает неисправность, затем узнает свое положение и, наконец, дает команду отключения на автоматический выключатель. Автоматический выключатель после получения команды от реле защиты отключает неисправный элемент.

Благодаря быстрому устранению неисправности с помощью быстродействующего защитного реле и соответствующего автоматического выключателя повреждение оборудования уменьшается, а возникающие в результате опасности, такие как пожар, риск для жизни снижаются за счет удаления особенно неисправной секции.

Но непрерывность питания сохраняется, несмотря на то, что секция остается исправной, благодаря быстрому устранению неисправности время возникновения неисправности сокращается, и, следовательно, система может быть восстановлена ​​в нормальное состояние быстрее. Следовательно, предел устойчивости системы в переходном состоянии значительно улучшен, необратимое повреждение оборудования исключено, а возможность развития самой простой неисправности, такой как однофазное замыкание на землю, в наиболее серьезную неисправность, такую ​​как двухфазное замыкание на землю. уменьшен.

Неисправность может быть уменьшена только в том случае, если защитное реле является надежным, ремонтопригодным и достаточно чувствительным, чтобы различать нормальное и ненормальное состояние. Реле должно срабатывать при возникновении неисправности и не должно срабатывать, если неисправности нет. Некоторые реле используются для защиты энергосистемы. Некоторые из них являются первичными ретрансляторами, что означает, что они являются первой линией защиты. Такие реле обнаруживают неисправность и посылают сигнал соответствующему автоматическому выключателю, чтобы отключить и устранить неисправность.

Неисправность не может быть устранена, если автоматический выключатель не размыкается или реле работает неправильно. Неисправность реле возникает по трем причинам, таким как неправильная настройка, плохие контакты и обрыв цепи в катушке реле. В таких случаях вторую линию защиты обеспечивают резервные ретрансляторы. Резервное реле имеет более длительное время работы, даже если оно определяет неисправность вместе с основными реле.

Для достижения желаемой надежности сеть энергосистемы разделена на две разные зоны защиты.Общая защита системы разделена на различные зоны защиты. Это защита генератора, защита трансформатора, защита шины, защита линии передачи и защита фидера. Реле, используемые для защиты аппаратуры и линий передачи, следующие:

  • Реле максимального тока
  • Реле пониженной частоты
  • Реле направления
  • Тепловые реле
  • Реле чередования фаз
    • Реле обратной последовательности фаз
    • Реле прямой последовательности
  • Реле расстояния или импеданса
    • Реле полного сопротивления фаз
    • Реле полного сопротивления угла
    • Ом (или реактивное сопротивление) Реле
    • Реле полного сопротивления угла
    • Смещение реле Mho или Restricted Relay
  • Пилотные реле
    • Реле пилот-сигнала несущего канала или пилот-сигнала микроволнового канала

Защитные реле не исключают возможность возникновения неисправности в энергосистеме, а их цепные действия начинаются только после возникновения неисправности в системе.Основными характеристиками хорошей релейной защиты являются ее надежность, чувствительность, простота, быстродействие и экономичность. Для знакомства с защитным реле мы должны понимать некоторые важные термины.

Активизирующая величина – это электрическая величина, представляющая собой совокупность напряжения или тока или только напряжения или тока, необходимая для работы реле.

Цепь отключения — это цепь, которая управляет автоматическим выключателем при размыкании и состоит из катушки отключения, контактов реле, источника питания вспомогательного выключателя и т. д.

Характеристика Количество – Предназначен для определения срабатывания реле. Некоторые реле имеют градуированную реакцию на одну или несколько величин, называемых характеристическими величинами.

Рабочая сила или крутящий момент – это сила, которая стремится замкнуть контакты реле.

Ограничивающая сила или крутящий момент – это сила или крутящий момент, противодействующие крутящему моменту и стремящиеся прервать замыкание контактов реле.

Настройка – это фактическое значение величины включения, при которой реле срабатывает в заданных условиях.

Потребляемая мощность реле – это значение мощности, потребляемой цепью реле при номинальном токе или напряжении, выраженное в ВА для переменного тока и ваттах для постоянного тока.

Подхват . Говорят, что реле срабатывает, когда оно перемещается из положения «выключено» в положение «включено», или действие реле называется срабатыванием реле.

Реле срабатывания или срабатывания – это значение управляющей величины (ток или напряжение), которая находится на пороге, выше которого реле срабатывает и замыкает свои контакты.Если ток в реле меньше значения срабатывания, то реле не срабатывает, и выключатель срабатывает от него, оставаясь во включенном положении.

Уровень сброса или сброса — это значение тока или напряжения и т. д., ниже которого реле размыкает свои контакты и возвращается в исходное положение. Отношение напряжения отпускания или значения сброса к пиковому или рабочему значению называется коэффициентом отпускания или сброса.

Quick Value – Задается временем, которое проходит между моментом, когда ток или напряжение превышают значения срабатывания в момент, когда контакты реле замкнуты.

Время сброса – Задается временем, которое проходит между моментом, когда ток или напряжение (величина срабатывания) становятся меньше значения сброса в момент, когда контакты реле замкнуты.

Уплотнение в катушке – Эта катушка не позволяет контактам реле размыкаться при протекании через них тока.

Overshoot Time – Это время, в течение которого рассеивается накопленная рабочая энергия после того, как характеристическая величина внезапно восстановилась от заданного значения до значения, которое она имела при начальном положении реле.

Время устранения неисправности- Это время между наличием неисправности и моментом окончательного гашения дуги в выключателе называется временем устранения неисправности.

Время выключателя – Это время между устранением неисправности и окончательным гашением дуги в выключателе называется временем выключателя.

Время реле – Интервал между наличием неисправности и замыканием контактов реле называется временем реле.

Досягаемость – Определяется как предельное расстояние, охватываемое защитой, неисправности за которым не находятся в пределах досягаемости защиты и должны быть охвачены другим реле.

Принцип работы защитных реле

Работа реле зависит либо от электромагнитного притяжения, либо от электромагнитной индукции. Реле электромагнитного притяжения имеет соленоид, который притягивается к полюсам электромагнита. Эти реле работают как от сети переменного, так и постоянного тока.

Реле электромагнитного индукционного типа использует асинхронный двигатель, внутри которого крутящий момент создается за счет процесса электромагнитной индукции.Такой тип реле работает только на переменном токе.

Принципы зон релейной защиты электроэнергетических систем

«Защитная зона» в электроэнергетической системе определяется как определенная область внутри системы, которая контролируется и защищается от сбоев с помощью защитных реле.

«Защитная зона» в электроэнергетической системе определяется как определенная область внутри системы, которая контролируется и защищается от неисправностей с помощью защитных реле.Эта зона устанавливается вокруг каждой крупной единицы оборудования в энергосистеме.

Когда в любой из зон защиты возникает неисправность, защитные реле вызывают размыкание автоматических выключателей в этой зоне. Это позволяет изолировать только затронутое оборудование, в то время как остальная часть системы остается под напряжением.

Схемы защиты

охватывают всю энергосистему, что означает, что ни одна часть распределительного оборудования не останется незащищенной. То, как определяется зона защиты в энергосистеме, в основном зависит от номинала аппарата, его расположения, вероятности отказов и нештатного состояния оборудования.

Пример защитных зон в системе распределения электроэнергии. Фото: ИТОН.

Если неисправность произойдет за пределами зоны защиты, она не будет обнаружена реле и не будет устранена до тех пор, пока не произойдет физический отказ оборудования или величина неисправности не станет достаточно большой, чтобы вызвать помехи в другой зоне. По этой причине каждая зона защиты предназначена для перекрытия соседней зоны для повышения надежности в случае отказа реле.

Вероятность отказа в перекрывающихся областях очень мала, но это может вызвать срабатывание дополнительных автоматических выключателей в зоне.Реле защиты, используемые в любой схеме защиты, должны быть спроектированы, изготовлены и применены в соответствии со следующими критериями:

  • Надежность Реле должны иметь возможность работать правильно, когда это необходимо (надежность) и избегать ненужных операций (безопасность).
  • Скорость Реле должны работать с минимальной продолжительностью неисправности и минимизировать повреждение оборудования.
  • Селективность Реле защиты должны обеспечивать максимальную непрерывность работы при минимальном отключении системы.
  • Экономика Лучшие реле обеспечивают максимальную защиту при минимальных затратах.
  • Простота Реле защиты должны содержать минимальное оборудование, схемы и последовательность операций.

Дополнительная литература

Принцип работы защитной системы

Основной принцип работы защитной системы:

Основной принцип работы системы защиты. Каждое реле в схеме защиты выполняет определенную функцию и определенным образом реагирует на определенный тип изменения величин в цепи.Например, один тип реле может срабатывать, когда ток превышает определенную величину, в то время как другой может сравнивать ток и напряжение и срабатывать, когда отношение V/1 меньше заданного значения. Первое реле известно как реле максимального тока , а второе реле минимального импеданса .

Точно так же различные комбинации этих электрических величин могут быть разработаны в соответствии с требованиями в конкретной ситуации, потому что для каждого типа и места отказа существует определенная разница в этих величинах, и существуют различные типы доступного защитного релейного оборудования, каждое из которых из которых предназначен для распознавания конкретного различия и действовать в ответ на него.

Экономические соображения:

В повседневной жизни нам хорошо известно, что существует экономический предел суммы, которую можно потратить на различные виды страхования для защиты жизни и имущества. Точно так же в энергосистеме существует экономический предел суммы, которую можно потратить на защиту системы. Обычно это очень сложное дело, поскольку вероятность отказа или неисправности зависит от компонента, местоположения, времени и т. д. Все эти факторы могут привести к различным альтернативам для одной и той же проблемы; и выбор должен быть сделан с учетом экономической целесообразности.

Стоимость защиты связана со стоимостью защищаемого растения и увеличивается вместе со стоимостью самого растения. Обычно защитное снаряжение не должно стоить более 5% от общей стоимости. Однако, когда защищаемое оборудование имеет первостепенное значение, например, генератор или главная линия электропередачи, экономические соображения часто уступают надежности. В таблице 1.3 показаны средние затраты в единицах на контур.

Основная терминология, используемая в защитных реле и коммутационных устройствах:

Ниже мы определяем некоторые важные термины, используемые при изучении защитных реле и распределительных устройств.

Защитное реле. Электрическое устройство, предназначенное для инициирования отключения части электроустановки или подачи сигнала тревоги в случае ненормального состояния или неисправности.

Блок или элемент. Автономный релейный блок, который в сочетании с одним или несколькими другими релейными блоками выполняет сложную релейную функцию, т.е. направленный блок в сочетании с блоком максимального тока дает направленное реле максимального тока.

Активизирующее количество. Электрическая величина, т.е. ток или напряжение отдельно или в сочетании с другими электрическими величинами, необходимыми для функционирования реле.

Характеристика Количество. Величина, на которую рассчитано реле, т.е. ток в реле максимального тока, импеданс в реле импеданса, фазовый угол в направленном реле и т. д. Некоторые реле имеют откалиброванную реакцию на одну или несколько величин, такие величины называются характеристическими величинами.

Настройка. Фактическое значение возбуждающей или характеристической величины, при которой реле рассчитано на работу в заданных условиях.

Потребляемая мощность (нагрузка). Мощность, потребляемая цепями реле при номинальном токе или напряжении. Выражается в вольт-амперах для переменного тока. и Вт для постоянного тока во включенное положение. Значение характеристической величины, выше которого происходит это изменение, называется значением срабатывания.

Отключение или сброс. Говорят, что реле отключается, когда оно переходит из положения «включено» в положение «выключено». Значение характеристической величины, ниже которого происходит это изменение, известно как значение сброса или сброса.

Время работы. Время, которое проходит между моментом приложения характеристической величины, равной значению срабатывания, и моментом, когда реле приводит в действие свои контакты.

Время сброса. Время, в течение которого сработавшее реле возвращается в исходное положение в результате заданного внезапного изменения характеристической величины, время отсчитывается от момента, когда происходит изменение.

Время превышения.  Время, в течение которого запасенная рабочая энергия рассеивается после внезапного восстановления характеристической величины от заданного значения до значения, которое она имела при начальном положении реле.

Характеристический угол. Фазовый угол, при котором заявлена ​​работоспособность реле.

Характеристики (реле в установившемся режиме). Геометрическое место срабатывания или сброса при отображении на графике. В некоторых реле две кривые совпадают и становятся точкой баланса или нулевого крутящего момента.

Усиливающее реле. Реле, на которое подается питание от контактов главного реле, а его контакты параллельны контактам главного реле, снимает с них токовую нагрузку. Впаянные контакты обычно имеют более высокий номинальный ток, чем контакты главного реле.

Пломба в реле. Аналогичен описанному выше усиливающему реле, за исключением того, что он остается включенным до тех пор, пока цепь его катушки не будет прервана переключателем на автоматическом выключателе.

Первичные реле. Те, которые подключены непосредственно к защищаемой цепи.

Вторичные реле. Те, которые подключены к защищаемой цепи через трансформаторы тока и напряжения ее рабочей цепи, чтобы помочь другому реле в выполнении его функции. Вспомогательное реле может быть мгновенным или иметь выдержку времени и может работать в больших пределах характеристической величины.

Резервное реле. Реле, которое обычно срабатывает с небольшой задержкой по времени, если обычное реле не отключает автоматический выключатель.Резервное реле действует как вторая линия защиты.

Консистенция. Точность, с которой реле может повторить свои электрические или временные характеристики.

Флаг или цель. Устройство, используемое для индикации работы реле, обычно с пружинным или гравитационным приводом.

Досягаемость. Удаленный предел зоны защиты, обеспечиваемой реле, используемый в основном в сочетании с дистанционными реле, чтобы указать, насколько вдоль линии простирается зона срабатывания реле.

Превышение или недосягаемость. Ошибки измерения реле, приводящие к неправильной работе или сбою соответственно.

Блокировка. Предотвращение срабатывания защитного реле либо по собственной характеристике, либо по дополнительному реле.

Что такое защитное реле? Принцип, преимущества, применение

Защитное реле — это электрическое устройство, которое контролирует напряжение и ток с помощью трансформаторов тока и трансформаторов тока.Таким образом, основной функцией защитного реле является отключение выключателя при нештатных режимах работы.

Принцип

Реле защиты сравнивает измеренные электрические величины с уставкой. Если измеренное значение превышает заданное значение, реле выдает команду на отключение выключателя.

Перед подачей команды на отключение также генерируется предварительный сигнал тревоги. Команда отключения реле поступает на отключающую катушку выключателя.И, таким образом, прерыватель изолирует неисправный участок.

Используем реле максимального тока для обнаружения неисправностей в электрической сети. Чувствительным элементом реле максимального тока является трансформатор тока класса защиты. Реле df/dt контролирует частоту электрической сети.

Таким образом, реле защиты является основой электрической сети. В любом случае реле защиты должно отключать выключатель в условиях отказа.

Работа защитного реле

Когда неисправность возникает в точке F, в электрической сети протекает огромный ток.Трансформатор тока (ТТ) воспринимает этот ток и подает его на защитное реле. Катушка реле защитного реле выдает команду на выключатель, который изолирует неисправный участок.

Характеристики реле защиты

Реле защиты должно быть всегда надежным. Реле защиты должно удовлетворять следующим рабочим характеристикам .

  1. Надежность
  2. Селективность
  3. Скорость
  4. Чувствительность

Надежность y

Реле защиты должно быть самым надежным.Он должен изолировать неисправную часть системы от исправной.

Селективность достигается двумя способами:

  1. Единичная система защиты
  2. Неблочная система защиты

Реле защиты состоит из многих компонентов. Надежность реле зависит от надежности всех компонентов реле.

Следовательно, все компоненты и цепи, участвующие в работе реле, играют важную роль; например, отсутствие подачи тока и напряжения на реле вызывает ненадежную работу.

Регулярное техническое обслуживание реле необходимо только потому, что защитные реле большую часть времени простаивают в энергосистеме.

Надежность реле защиты зависит от правильного учета надежных параметров на этапе проектирования.

  1. Простота
  2. Прочность конструкции
  3. Высокое контактное давление – обеспечивает минимальное сопротивление контактного сопротивления реле
  4. Непыльный корпус – увеличивает срок службы реле.
  5. Хороший материал контактов. Минимальное сопротивление и отсутствие искрения при переходе контактов.
  6. Хорошее качество изготовления.
  7. Бережное обслуживание. – Периодическое техническое обслуживание обеспечивает длительный срок службы реле
  8. Своевременная калибровка – Калибровка для точного измерения электрических величин

Селективность

Селективность означает способность реле определять место неисправности и выдавать команду на отключение выключателю.Реле отключает ближайший автоматический выключатель, чтобы устранить неисправность с минимальным повреждением или без него.

Реле должно понимать характеристики оборудования. Например, трансформатор под напряжением может потреблять пусковой ток, в 20 раз превышающий номинальный ток. В этом случае может сработать как реле максимального тока, так и дифференциальное реле.

Пусковые токи имеют большое содержание второй гармоники. Этот дискриминант запрещает срабатывание дифференциального реле во время пускового тока, тем самым повышая селективность защиты трансформатора

  1. Блочная система защиты
  2. Неблочная система защиты

Блочная система защиты

В системе защиты агрегата реле защиты реагирует только на неисправности в своей определенной области.Реле не срабатывает, если неисправность находится за пределами его области. Неисправность, возникающая в других местах, не приводит к срабатыванию реле защиты. Мы называем защиту зоны защиты агрегата или защиту агрегата.

Примерами устройств защиты являются дифференциальная защита трансформаторов, линий электропередач, сборных шин и генераторов.

Неблочная система защиты

При защите неблочного типа реле защиты срабатывает, если неисправность возникает в другом месте.Зона охраны не имеет границ.

Мы можем сделать селективность отключения путем координации реле защиты.

Безопасность

Реле безопасно, если оно не срабатывает при отсутствии неисправности. Безопасность – это степень уверенности в том, что реле не сработает при отсутствии неисправности.

Скорость

Реле защиты должно устранять неисправность как можно быстрее, чтобы обеспечить максимальную безопасность и свести к минимуму повреждение оборудования и нестабильность системы.Другими словами, реле должно отключить ближайший выключатель, чтобы изолировать неисправную секцию. Это зависит от времени срабатывания реле и времени срабатывания автоматического выключателя. Как правило, быстродействующий автоматический выключатель срабатывает примерно за два цикла.

Чувствительность

Работа реле зависит от потребности в вольтамперах. Огромный ток протекает при неисправности в электрической сети. Реле должно быть чувствительным, чтобы считывать ток, и отключать выключатель, когда ток превышает заданное значение.

Преимущества защитного реле
  • Реле защиты постоянно контролирует напряжение, ток, частоту, мощность.
  • Повышает стабильность системы за счет изоляции неисправного участка.
  • Реле защиты моментально устраняет неисправность и, таким образом, минимизирует ущерб.
  • Реле обнаруживает отказы системы и изолирует неисправные участки от остальной системы.
  • Минимизирует риск возгорания.
  • Обеспечьте электрическую безопасность и защитите людей, работающих с системой.
  • Предварительная тревога позволяет оператору действовать заранее.

Применение реле защиты

Защита от перегрузки по току

Мы используем реле защиты от перегрузки по току для защиты распределительных линий, больших двигателей, оборудования и т. д.

Дистанционная защита

Реле дистанционной защиты обеспечивает защиту линий передачи или субпередающих линий.

Дифференциальная защита

Используется для защиты трансформаторов, генераторов, двигателей очень больших размеров, шинных зон и т.д.

Читать далее :

  1. Основные концепции реле безопасности
  2. Отключающая способность автоматического выключателя
  3. Вопросы и ответы на собеседовании с автоматическим выключателем
  4. Почему ток включения больше, чем ток отключения?
  5. Использование PS класса CT
  6. Что такое номера устройств ANSI?
  7. Электрическое заземление, его типы и значение

Пожалуйста, подпишитесь на нас и поставьте лайк:

Похожие сообщения

Основной принцип работы реле

Реле — это переключатель, который обнаруживает неисправность в системе, и как только реле обнаруживает неисправность, оно выдает команду отключения на автоматический выключатель, CB, чтобы изолировать неисправный участок сети от исправного участка.

Реле обнаруживает ненормальное состояние, постоянно контролируя электрические величины, которые различаются для нормального и неисправного состояния. Электрические величины, которые могут измениться во время неисправности, это напряжение, ток, частота и фазовый угол. Если одна или несколько из вышеперечисленных электрических величин изменяются, это сигнализирует о наличии, типе и местоположении неисправности для Реле. После обнаружения неисправности, срабатывания реле, его контакт изменится с НО на НЗ или наоборот.Таким образом, мы можем подключить определенный тип контакта реле к цепи отключения выключателя. Таким образом, всякий раз, когда реле срабатывает, происходит отключение Размыкателя.

Вы можете прочитать, Почему вторичный трансформатор тока нельзя держать открытым?

Упрощенная схема реле показана на рисунке ниже. На рисунке ниже для простоты показана одна из трехфазных систем.

Как показано на рисунке выше, вторичная обмотка трансформатора тока ТТ напрямую соединена с катушкой реле.В нормальных условиях ток через катушку реле недостаточен, чтобы вытянуть плунжер и замкнуть цепь катушки отключения выключателя. Обратите внимание, что за отключение автоматического выключателя отвечает только катушка отключения выключателя. Если отключающая катушка выключателя выйдет из строя, отключения выключателя не произойдет. По этой причине в автоматических выключателях обычно предусмотрены две катушки отключения для обеспечения надежной работы выключателя. В CB предусмотрены не только две катушки отключения, но также используется реле контроля катушки отключения.В случае неисправности, т. е. в случае обрыва цепи в катушке отключения, реле контроля катушки отключения будет помечено, чтобы привлечь внимание оператора.

В случае неисправности ток через вторичную обмотку трансформатора тока увеличится, что приведет к увеличению тока через катушку реле. Если случится так, что ток через катушку реле превысит значение настройки или значение срабатывания, тогда катушка создаст достаточное магнитное притяжение к плунжеру, и, таким образом, плунжер замкнет цепь отключения выключателя.Как только цепь отключения выключателя замкнется, ток начнет течь в катушке отключения, которая, в свою очередь, потянет рычаг, чтобы отключить автоматический выключатель выключателя.

На приведенном выше рисунке показано, что катушка реле непосредственно вытягивает плунжер, чтобы замкнуть цепь катушки отключения выключателя, но на практике катушка реле при поднятии меняет состояние своего контакта. Допустим, нормально разомкнутый (НО) контакт реле подключен к цепи катушки отключения выключателя. Следовательно, когда катушка реле находится в обесточенном состоянии, цепь катушки отключения выключателя не замкнута и, следовательно, выключение выключателя не происходит.В состоянии неисправности, когда ток через катушку реле превышает значение срабатывания, катушка реле срабатывает, что, в свою очередь, приводит к переключению ее контакта, т. е. нормально замкнутый контакт (НЗ), тем самым замыкая цепь катушки отключения. Разрушителя.

 

Поскольку цепь катушки отключения выключателя замкнута, через катушку отключения будет протекать ток, что приведет к отключению выключателя.

0 comments on “Основные принципы релейной защиты: Релейная защита: определение, функции и принципы работы

Добавить комментарий

Ваш адрес email не будет опубликован.