Схема драйвера светодиодной лампы 220 в: Схема драйвера для светодиодной лампы на 220В

Схема драйвера для светодиодной лампы на 220В

Неотъемлемой частью любой качественной лампы или светильника на светодиодах является драйвер. Применительно к освещению, под понятием «драйвер» следует понимать электронную схему, которая преобразует входное напряжение в стабилизированный ток заданной величины. Функциональность драйвера определяется шириной диапазона входных напряжений, возможностью регулировки выходных параметров, восприимчивостью к перепадам в питающей сети и эффективностью.

От перечисленных функций зависят качественные показатели светильника или лампы в целом, срок службы и стоимость. Все источники питания (ИП) для светодиодов условно разделяют на преобразователи линейного и импульсного типа. Линейные ИП могут иметь узел стабилизации по току или напряжению. Часто схемы такого типа радиолюбители конструируют своими руками на микросхеме LM317. Такое устройство легко собирается и имеет малую себестоимость. Но, ввиду очень низкого КПД и явного ограничения по мощности подключаемых светодиодов, перспективы развития линейных преобразователей ограничены.

Импульсные драйверы могут иметь КПД более 90% и высокую степень защиты от сетевых помех. Их мощность потребления в десятки раз меньше мощности, отдаваемой в нагрузку. Благодаря этому они могут изготавливаться в герметичном корпусе и не боятся перегрева.

Первые импульсные стабилизаторы имели сложное устройство без защиты от холостого хода. Затем они модернизировались и, в связи с бурным развитием светодиодных технологий, появились специализированные микросхемы с частотной и широтно-импульсной модуляцией.

Схема питания светодиодов на основе конденсаторного делителя

К сожалению, в конструкции дешёвых светодиодных ламп на 220В из Китая не предусмотрен ни линейный, ни импульсный стабилизатор. Мотивируясь исключительно низкой ценой готового изделия, китайская промышленность смогла максимально упростить схему питания. Называть её драйвером не корректно, так как здесь отсутствует какая-либо стабилизация.

Из рисунка видно, что электрическая схема лампы рассчитана на работу от сети 220В. Переменное напряжение понижается RC-цепочкой и поступает на диодный мост. Затем выпрямленное напряжение частично сглаживается конденсатором и через токоограничивающий резистор поступает на светодиоды. Данная схема не имеет гальванической развязки, то есть все элементы постоянно находятся под высоким потенциалом.

В результате частые просадки сетевого напряжения приводит к мерцанию светодиодной лампы. И наоборот, завышенное напряжение сети вызывает необратимый процесс старения конденсатора с потерей ёмкости, а, иногда, становится причиной его разрыва. Стоит отметить, что еще одной, серьезной отрицательной стороной данной схемы является ускоренный процесс деградации светодиодов вследствие нестабильного тока питания.

Схема драйвера на CPC9909

Современные импульсные драйверы для светодиодных ламп имеют несложную схему, поэтому ее можно легко смастерить даже своими руками. Сегодня, для построения драйверов, производится ряд интегральных микросхем, специально предназначенных для управления мощными светодиодами. Чтобы упростить задачу любителям электронных схем, разработчики интегральных драйверов для светодиодов в документации приводят типичные схемы включения и расчеты компонентов обвязки.

Общие сведения

Американская компания Ixys наладила выпуск микросхемы CPC9909, предназначенной для управления светодиодными сборками и светодиодами высокой яркости. Драйвер на основе CPC9909 имеет небольшие габариты и не требует больших денежных вложений. ИМС CPC9909 изготавливается в планарном исполнении с 8 выводами (SOIC-8) и имеет встроенный стабилизатор напряжения.

Благодаря наличию стабилизатора рабочий диапазон входного напряжения составляет 12-550В от источника постоянного тока. Минимальное падение напряжения на светодиодах – 10% от напряжения питания. Поэтому CPC9909 идеальна для подключения высоковольтных светодиодов. ИМС прекрасно работает в температурном диапазоне от -55 до +85°C, а значит, пригодна для конструирования светодиодных ламп и светильников для наружного освещения.

Назначение выводов

Стоит отметить, что с помощью CPC9909 можно не только включать и выключать мощный светодиод, но и управлять его свечением. Чтобы узнать обо всех возможностях ИМС, рассмотрим назначение ее выводов.

  1. VIN. Предназначен для подачи напряжения питания.
  2. CS. Предназначен для подключения внешнего датчика тока (резистора), с помощью которого задаётся максимальный ток светодиода.
  3. GND. Общий вывод драйвера.
  4. GATE. Выход микросхемы. Подает на затвор силового транзистора модулированный сигнал.
  5. PWMD. Низкочастотный диммирующий вход.
  6. VDD. Выход для регулирования напряжения питания. В большинстве случаев подключается через конденсатор к общему проводу.
  7. LD. Предназначен для задания аналогового диммирования.
  8. RT. Предназначен для подключения время задающего резистора.

Схема и ее принцип работы

Типичное включение CPC9909 с питанием от сети 220В показано на рисунке. Схема способна управлять одним или несколькими мощными светодиодами или светодиодами типа High Brightness. Схему можно легко собрать своими руками даже в домашних условиях. Готовый драйвер не нуждается в наладке с учетом грамотного выбора внешних элементов и соблюдением правил их монтажа.

Драйвер для светодиодной лампы на 220В на базе CPC9909 работает по методу частотно-импульсной модуляции. Это означает, что время паузы является постоянной величиной (time-off=const). Переменное напряжение выпрямляется диодным мостом и сглаживается емкостным фильтром C1, C2. Затем оно поступает на вход VIN микросхемы и запускает процесс формирования импульсов тока на выходе GATE. Выходной ток микросхемы управляет силовым транзистором Q1. В момент открытого состояния транзистора (время импульса «time-on») ток нагрузки протекает по цепи: «+диодного моста» – LED – L – Q1 – RS – «-диодного моста». За это время катушка индуктивности накапливает энергию, чтобы отдать её в нагрузку во время паузы. Когда транзистор закрывается, энергия дросселя обеспечивает ток нагрузки в цепи: L – D1 – LED – L. Процесс носит циклический характер, в результате чего ток через светодиод имеет пилообразную форму. Наибольшее и наименьшее значение пилы зависит от индуктивности дросселя и рабочей частоты. Частота импульсов определяется величиной сопротивления RT. Амплитуда импульсов зависит от сопротивления резистора RS. Стабилизация тока светодиода происходит путем сравнения внутреннего опорного напряжения ИМС с падением напряжения на RS. Предохранитель и терморезистор защищают схему от возможных аварийных режимов.

Расчет внешних элементов

Частотозадающий резистор

Длительность паузы выставляют внешним резистором RT и определяют по упрощенной формуле:

tпаузы=RT/66000+0,8 (мкс).

В свою очередь время паузы связано с коэффициентом заполнения и частотой:

tпаузы=(1-D)/f (с), где D – коэффициент заполнения, который представляет собой отношение времени импульса к периоду.

Рекомендованный производителем диапазон рабочих частот составляет 30-120 кГц. Таким образом, сопротивление RT можно найти так: RT=(tпаузы-0,8)*66000, где значение tпаузы подставляют в микросекундах.

Датчик тока

Номинал сопротивления RS задает амплитудное значение тока через светодиод и рассчитывается по формуле: RS=UCS/(ILED+0.5*IL пульс), где UCS – калиброванное опорное напряжение, равное 0,25В;

ILED – ток через светодиод;

IL пульс – величина пульсаций тока нагрузки, которая не должна превышать 30%, то есть 0,3*ILED.

После преобразования формула примет вид: RS=0,25/1.15*ILED (Ом).

Мощность, рассеиваемая датчиком тока, определяется формулой: PS=RS*ILED*D (Вт).

К монтажу принимают резистор с запасом по мощности 1,5-2 раза.

Дроссель

Как известно, ток дросселя не может измениться скачком, нарастая за время импульса и убывая во время паузы. Задача радиолюбителя в том, чтобы подобрать катушку с индуктивностью, обеспечивающей компромисс между качеством выходного сигнала и её габаритами. Для этого вспомним об уровне пульсаций, который не должен превышать 30%. Тогда потребуется индуктивность номиналом:

L=(USLED*tпаузы)/ IL пульс, где ULED – падение напряжения на светодиоде (-ах), взятое из графика ВАХ.

Фильтр питания

В цепи питания установлены два конденсатора: С1 – для сглаживания выпрямленного напряжения и С2 – для компенсации частотных помех. Так как CPC9909 работает в широком диапазоне входного напряжения, то в большой ёмкости электролитического С1 нет нужды. Достаточно будет 22 мкФ, но можно и больше. Емкость металлопленочного С2 для схемы такого типа стандартная – 0,1 мкФ. Оба конденсатора должны выдерживать напряжение не менее 400В.

Однако, производитель микросхемы настаивает на монтаже конденсаторов С1 и С2 с малым эквивалентным последовательным сопротивлением (ESR), чтобы избежать негативного влияния высокочастотных помех, возникающих при переключении драйвера.

Выпрямитель

Диодный мост выбирают, исходя из максимального прямого тока и обратного напряжения. Для эксплуатации в сети 220В его обратное напряжение должно быть не менее 600В. Расчетная величина прямого тока напрямую зависит от тока нагрузки и определяется как: IAC=(π*ILED)/2√2, А.

Полученное значение необходимо умножить на два для повышения надежности схемы.

Выбор остальных элементов схемы

Конденсатор C3, установленный в цепи питания микросхемы должен быть ёмкостью 0,1 мкФ с низким значением ESR, аналогично C1 и C2. Незадействованные выводы PWMD и LD также через C3 соединяются с общим проводом.

Транзистор Q1 и диод D1 работают в импульсном режиме. Поэтому выбор следует делать с учетом их частотных свойств. Только элементы с малым временем восстановления смогут сдержать негативное влияние переходных процессов в момент переключения на частоте около 100 кГц. Максимальный ток через Q1 и D1 равен амплитудному значению тока светодиода с учетом выбранного коэффициента заполнения: IQ1=ID1= D*ILED, А.

Напряжение, прикладываемое к Q1 и D1, носит импульсный характер, но не более, чем выпрямленное напряжение с учетом емкостного фильтра, то есть 280В. Выбор силовых элементов Q1 и D1 следует производить с запасом, умножая расчетные данные на два.

Предохранитель (fuse) защищает схему от аварийного короткого замыкания и должен длительно выдерживать максимальный ток нагрузки, в том числе импульсные помехи.

IFUSE=5*IAC, А.

Установка терморезистора RTH нужна для ограничения пускового тока драйвера, когда фильтрующий конденсатор разряжен. Своим сопротивлением RTH должен защитить диоды мостового выпрямителя от пробоя в начальные секунды работы.

RTH=(√2*220)/5*IAC, Ом.

Другие варианты включения CPC9909

Плавный пуск и аналоговое диммирование

При желании CPC9909 может обеспечить мягкое включение светодиода, когда его яркость будет постепенно нарастать. Плавный пуск реализуется при помощи двух постоянных резисторов, подключенных к выводу LD, как показано на рисунке. Данное решение позволяет продлить срок службы светодиода.

Также вывод LD позволяет реализовывать функцию аналогового диммирования. Для этого резистор 2,2 кОм заменяют переменным резистором 5,1 кОм, тем самым плавно изменяя потенциал на выводе LD.

Импульсное димирование

Управлять свечением светодиода можно путем подачи импульсов прямоугольной формы на вывод PWMD (pulse width modulation dimming). Для этого задействуют микроконтроллер или генератор импульсов с обязательным разделением через оптопару.

Кроме рассмотренного варианта драйвера для светодиодных ламп, существуют аналогичные схемные решения от других производителей: HV9910, HV9961, PT4115, NE555, RCD-24 и пр. Каждая из них имеет свои сильные и слабые места, но в целом, они успешно справляются с возложенной нагрузкой при сборке своими руками.

Схема драйвера светодиодной лампы 220 в

Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя. С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на В получиться совсем простой:. Я уже приводил схему подключение светодиодной ленты к сети В так вот её можно упростить выкинуть стабилизатор тока.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.
ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: САМАЯ ПРОСТАЯ СХЕМА ПИТАНИЯ СВЕТОДИОДНОЙ ЛАМПЫ ! ЭВОЛЮЦИЯ !

Схема и устройство светодиодной лампы на 220 вольт


В отличие от обычных ламп накаливания, полупроводниковые лед светильники потребляют намного меньшие объёмы электроэнергии и относятся в связи с этим к категории экономичных.

При этом долговечность их эксплуатации для некоторых моделей осветителей возрастает в несколько раз. С образцами современных моделей светодиодных лед ламп можно ознакомиться на рисунке, приводимом ниже.

Схема светодиодной лампы на в спроектирована таким образом, что напряжение на её выходе посредством драйвера понижается до требуемой величины, которая, как правило, не превышает 1,,0 Вольта на каждом из светодиодов.

Светодиодная лампочка представляет собой полупроводниковый элемент, содержащий в своём составе несколько слоёв, ответственных за преобразование текущего через них тока в видимый свет.

При изменении состава этого слоя в нём генерируется излучение определенного цвета красного, зелёного, жёлтого или синего. Поскольку лампы, в состав которых входят светодиоды, должны обеспечивать получение чистого дневного света, их разработчикам пришлось применить небольшую хитрость, заключающуюся в покрытии синего излучателя жёлтым люминофором.

В такой конструкции под воздействием фотонов синего диапазона жёлтый люминофор начинает испускать собственное бесцветное излучение. За счёт различных подходов к сборке полупроводниковых чипов удалось создать следующие разновидности светодиодных излучателей:.

Дополнительная информация. Такие светодиоды по большей части применяются в автомобилестроении. Обратите внимание! Особенность перечисленных выше исполнений состоит в том, что в случае перегорания светодиода его придётся менять полностью, поскольку отремонтировать эти изделия путём замены отдельного чипа невозможно.

Ещё один недостаток таких светодиодов — их маленький размер, что вынуждает собирать их в группы по несколько штук. Кроме того, встроенный в них кристалл постепенно стареет, вследствие чего яркость лед излучателя со временем снижается.

Далее будет рассмотрено устройство светодиодной лампы на в. Устройство светодиодной лампы на вольт не отличается большой сложностью и вполне может быть рассмотрено даже на любительском уровне. Классическая светодиодная лампа на вольт включает в свой состав следующие обязательные элементы:. Этот светодиодный прибор изготавливается как единое целое и содержит в своей конструкции большое количество однородных кристаллов, распаиваемых при сборке с образованием многочисленных контактов.

Для его подключения к драйверу достаточно присоединить всего одну из контактных пар остальные кристаллы подключены параллельно. По своей форме эти изделия могут быть круглыми и цилиндрическими, а к сети они подсоединяются посредством специального резьбового или штырькового цоколя. Для светодиодной системы общего пользования, как правило, выбираются светильники, показатель цветовой температуры которых составляет К, К или К при этом градации спектра могут принимать любые значения.

Такие приборы довольно часто применяются в декоративных целях и для освещения рекламных баннеров и щитов. В упрощённом виде схема драйвера, используемого для питания лампы от сети Вольт, выглядит, как это изображено на рисунке ниже. Количество деталей в этом устройстве, выполняющем согласовательную функцию, относительно невелико, что объясняется особенностями схемного решения.

Его электрическая схема содержит в своём составе два гасящих резистора R1, R2 и подключённые к ним по встречно-параллельному принципу светодиоды HL1и HL2.

Помимо этого, в результате такого включения частота поступающего на лампы сигнала возрастает вдвое до Гц. Сетевое напряжение питания с действующим значением Вольт подаётся в схему через ограничительный конденсатор С1, с которого оно поступает на выпрямительный мостик, а затем — непосредственно на лампу.

На заметку. Простота схемы согласующего устройства драйвера допускает возможность его ремонта своими руками. Эта часть осветительного прибора выполнена в виде отдельного блока и поэтому может свободно извлекаться из корпуса с целью её ремонта своими руками, например. На входе схемы имеется выпрямительный электролит конденсатор , после которого пульсации с частотой Герц частично исчезают.

Резистор R1 необходим для образования цепочки разряда конденсатора при отключении схемы от источника питания. В случае выхода из строя простейшего LED-осветителя, изготовленного на основе отдельных светодиодных элементов, его ремонт может быть осуществлён своими руками. Самостоятельный ремонт светодиодных ламп и устройств, электрические схемы которых были рассмотрены ранее, сводится к простой замене неисправных блоков и деталей. Внутри конструкции располагается плата с рабочими светодиодами, количество которых отличается у разных моделей смотрите фото ниже.

Для того чтобы получить доступ к печатной плате с размещенными на ней диодами, достаточно удалить защитную стеклянную линзу, аккуратно поддев её хорошо отточенной отверткой. После разборки корпуса светодиодного изделия необходимо будет предпринять следующие шаги:. Проверить исправность остальных элементов, которые содержит данная электросхема, можно путём подачи на них напряжения величиной от 1,5 до 2,5 Вольт исправные диоды при подаче такого потенциала должны загораться.

Для того чтобы убедиться в этом, следует проверить его номинальную ёмкость тем же мультиметром о том, как это сделать, можно узнать в инструкции по применению прибора. Другой подход к решению данной проблемы предполагает простую замену конденсатора другим, заведомо исправным элементом, рассчитанным на напряжение не менее Вольт. Проще сделать это, воспользовавшись уже отработавшим свой ресурс старым светильником подобного типа.

В этом случае самодельная светодиодная лампа будет набрана из новых элементов, запаянных на демонтированную из старого устройства или отремонтированную плату. Если на ней остались рабочие диоды, нужно будет заменить сгоревшие элементы новыми желательно того же типа и конструкции.

При изготовлении фирменных ламп из соображений выгодности продаж рабочий ток отдельных светодиодов выбирается с предельно большим значением. При переделке такого устройства желательно впаять последовательно с каждым элементом ограничительное сопротивление порядка 1 Ком. При необходимости для изготовления лампы своими руками можно использовать старую плату со схемой драйвера, заменив в ней все неисправные детали. При отсутствии необходимых плат и деталей драйвер можно изготовить, ориентируясь на рассмотренную выше схему блока питания, совмещённого с преобразователем смотрите рисунок выше.

При доработке к ней следует добавить ещё один резистор обозначим его как R3 , используемый для разрядки конденсатора С2. В результате получится приведённая ниже схема. Помимо резистора, в неё добавлены два типовых стабилитрона VD2,VD3 , обеспечивающих его шунтирование при обрыве цепи нагрузки.

Если грамотно подобрать напряжение стабилизации ограничивающего диода, вполне можно будет обойтись одним стабилитроном. Данная схема драйверного устройства рассчитана для подключения ти бесцветных светодиодов определённого типа. Если их класс или общее количество будет иным, следует изменить номинал конденсатора С1 таким образом, чтобы нагрузочный ток в диодной цепочке был не менее ти мА.

Указанное его значение гарантирует достаточную яркость свечения этих приборов. Отсутствие трансформатора существенно упрощает сборку модуля и сокращает его размеры. Но в этом случае реальна угроза попадания высокого напряжения на выход схемы в случае пробоя ряда последовательно включённых элементов, например.

Единственное утешение состоит в том, что такое случается крайне редко. В заключительной части обзора отметим, что принципиальные схемы большинства из поступающих в продажу светодиодных изделий почти не отличаются одна от другой.

Определённые различия наблюдаются лишь в типе используемых в них компонентов, а также в способе формирования выходного напряжения, осуществляемого драйвером. Добавим к этому, что лампы на светодиодах, оснащённые специальными драйверами, надёжно защищаются от колебаний напряжения в сети, а входящий в их состав радиатор обеспечивает защиту изделия от перегрева.

Применение самостоятельно изготовленных модулей за счёт их дополнительной доработки может существенно продлить сроки эксплуатации осветительных устройств, собранных на их основе. Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками LED намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше.

Схема светодиодной лампы работает при подаче вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов.

Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком. По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

Под общее освещение выбираются светильники с цветовой температурой К, К и К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях. Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2.

Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до Гц. Напряжение питания вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после — на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой Гц. Резистор R1 разряжает конденсатор при отключении питания. В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов.

Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой.

Порой эту операцию сделать довольно трудно. Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене. Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор. Если светильники моргают, причиной может быть выход из строя конденсатора С1.

Его следует заменить на другой, с номинальным напряжением В. Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия — это один процесс.


Ремонт светодиодных LED ламп на примерах

Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками LED намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера. Светодиод — это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа — кристалла с площадкой для подключения проводников питания. При излучении кристалла люминофор испускает собственное.

LED-лампы не предназначены для работы напрямую от сети В, поэтому внутри устройства заключен драйвер, являющийся одновременно блоком.

Ремонт светодиодной лампы на 220в своими руками

Подробно: ремонт светодиодной лампы на в своими руками от настоящего мастера для сайта olenord. При многообразии осветительных приборов на прилавках страны, светодиоды остаются вне конкуренции по причине экономичности и долговечности. Однако не всегда приобретается качественное изделие, ведь в магазине товар не разберешь для осмотра. Да и в этом случае не факт, что каждый определит, из каких деталей она собрана. Лампы перегорают, а покупать новые становится накладно. Выходом становится ремонт светодиодных ламп своими руками. Работа эта под силу даже начинающему домашнему мастеру, а детали недороги. Сегодня разберемся, как проверить осветительный прибор, в каких случаях изделие ремонтируется и как это сделать. Известно, что светодиоды не могут работать напрямую от сети В. Для этого им нужно дополнительное оборудование, которое, чаще всего, и выходит из строя.

Драйверы для светодиодных лампочек.

Сегодняшняя статья — первая в этом году, и первая в Конкурсе статей года. На этот раз Алексей расскажет про устройство и электрические схемы светодиодных ламп, и расскажет про 4 простых способа доработки схем светодиодных ламп. Идеи, изложенные в статье — его собственные. Только идея с уменьшением тока светодиодов не новая, остальное он сам придумал, сам опробовал и применил.

В отличие от обычных ламп накаливания, полупроводниковые лед светильники потребляют намного меньшие объёмы электроэнергии и относятся в связи с этим к категории экономичных. При этом долговечность их эксплуатации для некоторых моделей осветителей возрастает в несколько раз.

Ремонт светодиодных ламп своими руками без особых познаний в электрике

Источники света этой категории очень востребованы современным рынком. Они расходуют небольшое количество энергии, отличаются долговечностью и устойчивостью к различным внешним воздействиям. Однако любое техническое устройство может выйти из строя в процессе эксплуатации. Нельзя исключить и заводской брак, который может проявится после завершения официального гарантийного срока. В данной статье приведены технологии восстановления работоспособности устройств в домашних условиях с пошаговыми инструкциями и пояснениями. Следует сразу отметить, что лампы с такими светодиодами филаментными ремонту не подлежат.

Как устроена светодиодная лампа на 220 вольт

Сайт помогает найти что-нибудь интересное в огромном ассортименте магазинов и сделать удачную покупку. Если Вы купили что-то полезное, то, пожалуйста, поделитесь информацией с другими. Также у нас есть DIY сообщество , где приветствуются обзоры вещей, сделанных своими руками. Xiaomi MI9 SE. Зарегистрироваться Логин или эл.

Внимание, электрические схемы драйверов светодиодных ламп . Напряжение В с цоколя лампы через резистор — предохранитель FU подается на.

Схема светодиодной лампы на 220 в

Светодиодные источники света быстро завоевывают популярность и вытесняют неэкономичные лампы накаливания и опасные люминесцентные аналоги. Они эффективно расходуют энергию, долго служат, а некоторые из них после выхода из строя подлежат ремонту. Чтобы правильно произвести замену или починку сломанного элемента, потребуется схема светодиодной лампы и знание конструкционных особенностей.

Особенности устройства и схема светодиодных ламп на 220 В

За последние годы многие люди стали гораздо охотнее переходить с обычных ламп накаливания и улучшенных галогенок на экономичные и качественные светодиоды. Такие источники света позволяют существенно сократить расходы на электроэнергию. И это неудивительно, ведь при одинаковой интенсивности свечения лампа накаливания в раз мощнее светодиодной. Аналогичная ситуация наблюдается при сравнении led-диодов и галогенок. В процессе монтажа могут возникнуть определенные трудности.

Сегодня, наверное, ни одна квартира или частный дом не обходится без светодиодного освещения. Да и уличное освещение постепенно меняется на экономичные и долговечные LED-элементы.

Cхема светодиодной лампы на 220 В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче. Про подключение светодиодов к 12 и В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых. Количество подключаемых LED диодов ограничено только его мощностью.

Драйверы для светодиодных лампочек.

Светодиодные светильники уже не считаются новинкой, их используют в общественных зданиях, офисах, на производственных предприятиях и улицах, в театрах и концертных залах, в частных домах и квартирах. Схема светодиодной лампы достаточно сложная, состоящая из полупроводника, установленного на подложку, оптической систему, блока питания и корпуса. В магазинах предлагается широкий ассортимент от различных производителей, не зная, как устроены светодиодные источники света, ориентироваться бывает сложно.


Схема драйвера для светодиодов 220

Для того чтобы светодиодные лампы работали максимально ярко и эффективно, используются специальные модули – драйверы. Собрать самостоятельно схему драйвера для светодиодов сможет каждый, если, конечно, имеются познания в электротехнике. Смысл работы прибора – преобразовать переменное напряжение, протекающее в сети, в постоянное (пониженное). Но прежде чем приступать к сборке, нужно определиться с тем, какие требования к устройству предъявляются – проанализируйте характеристики и виды приборов.

Для чего нужны драйверы?

Основное назначение драйверов – это стабилизация тока, который проходит через светодиод. Причем нужно учесть, что сила тока, который проходит по кристаллу полупроводника, должна быть точно такой же, как и у светодиода по паспорту. Благодаря этому обеспечивается устойчивое освещение. Кристалл в светодиоде намного дольше прослужит. Чтобы узнать напряжение, необходимое для питания светодиодов, нужно воспользоваться вольт-амперной характеристикой. Это график, показывающий зависимость между напряжением питания и током.

Если планируется проводить освещение светодиодными лампами жилого или офисного помещения, то драйвер должен питаться от бытовой сети переменного тока с напряжением 220 В. Если же светодиоды используются в автомобильной или мототехнике, нужно использовать драйверы, питающиеся от постоянного напряжения, значение 9-36 В. В некоторых случаях (если светодиодная лампа небольшой мощности и питается от сети 220 В) допускается убрать схему драйвера светодиода. От сети если запитано устройство, достаточно включить в схему постоянный резистор.

Параметры драйверов

Прежде чем приобрести устройство или самостоятельно его изготовить, нужно ознакомиться с тем, какие у него имеются основные характеристики:

  1. Номинальный ток потребления.
  2. Мощность.
  3. Выходное напряжение.

Напряжение на выходе преобразователя напрямую зависит от того, какой выбран способ подключения источника света, числа светодиодов. Ток имеет прямую зависимость от яркости и мощности элементов.

Преобразователь должен обеспечивать ток, при котором светодиоды будут работать с одинаковой яркостью. На PT4115 схема драйвера светодиодов реализуется довольно просто – это самый распространенный преобразователь напряжения для использования с LED-элементами. Изготовить прибор на его основе можно буквально «на коленке».

Мощность драйвера

Мощность прибора – это самая важная характеристика. Чем мощнее драйвер, тем большее число светодиодов можно подключить к нему (конечно, придется проводить простые расчеты). Обязательное условие – мощность драйвера должна быть больше, чем у всех светодиодов в сумме. Выражается это такой формулой:

Р = Р(св) х N,

где Р, Вт – мощность драйвера;

Р(св), Вт – мощность одного светодиода;

N – количество светодиодов.

Например, при сборке схемы драйвера для светодиода 10W вы можете смело подключать в качестве нагрузки LED-элементы мощностью до 10 Вт. Обязательно нужно иметь небольшой запас по мощности – примерно 25%. Поэтому, если планируется подключение светодиода 10 Вт, драйвер должен обеспечивать мощность не менее 12,5-13 Вт.

Цвета светодиодов

Обязательно нужно учитывать то, какой цвет испускает светодиод. От этого зависит то, какое падение напряжения будет у них при одинаковой силе тока. Например, при токе питания 0,35 А, падение напряжения у красных LED-элементов примерно 1,9-2,4 В. Мощность в среднем 0,75 Вт. Аналогичная модель с зеленым цветом будет уже иметь падение в интервале 3,3-3,9 В, а мощность 1,25 Вт. Поэтому, если вы применяете схему драйвера светодиода 220В с преобразованием в 12 В, к нему можно подключить максимум 9 элементов с зеленым цветом или 16 с красным.

Типы драйверов

Всего можно выделить два типа драйверов для светодиодов:

  1. Импульсные. С помощью таких устройств создаются в выходной части устройства высокочастотные импульсы. Функционирование основывается на принципах ШИМ-модуляции. Среднее значение тока зависит от коэффициента заполнения (отношения длительности одного импульса к частоте его повторения). Ток на выходе меняется за счет того, что коэффициент заполнения колеблется в интервале 10-80%, а частота остается постоянной.
  2. Линейные – типовая схема и структура выполнены в виде генератора тока на транзисторах с р-каналом. С их помощью можно обеспечить максимально плавную стабилизацию питающего тока в случае, если напряжение на входе неустойчиво. Отличаются дешевизной, но у них малая эффективность. При работе выделяется большое количество тепла, поэтому можно использовать только для маломощных светодиодов.

Импульсные получили большее распространение, так как у них КПД намного выше (может достигать 95%). Устройства компактные, диапазон входного напряжения достаточно широкий. Но есть один большой недостаток – высокое влияние различного рода электромагнитных помех.

На что обратить внимание при покупке?

Покупку драйвера обязательно нужно совершать при выборе светодиодов. На PT4115 схема драйвера светодиодов позволяет обеспечить нормальное функционирование системы освещения. Устройства, использующие ШИМ-модуляторы, построенные по схемам с одной микросхемой, применяются по большей части в автомобильной технике. В частности, для подключения подсветки и ламп головного освещения. Но качество у таких простейших приборов довольно низкое – для использования в бытовых системах они не годятся.

Диммируемый драйвер

Практически все конструкции преобразователей позволяют регулировать яркость свечения LED-элементов. С помощью таких устройств можно выполнять следующие действия:

  1. Уменьшать интенсивность освещенности днем.
  2. Скрывать или же подчеркивать определенные элементы интерьера.
  3. Зонировать помещение.

Благодаря этим качествам можно существенно сэкономить на электроэнергии, увеличить ресурс элементов.

Разновидности диммируемых драйверов

Типы диммируемых драйверов:

  1. Подключаются между БП и источником света. Они позволяют управлять энергией, которая поступает на LED-элементы. В основе конструкции находятся ШИМ-модуляторы с микроконтроллерным управлением. Вся энергия идет к светодиодам импульсами. От длины импульсов напрямую зависит энергия, которая поступит на светодиоды. Такие конструкции драйверов применяются в основном для работы модулей со стабилизированным питанием. Например, для лент или бегущих строк.
  2. Второй тип устройств позволяет проводить управление блоком питания. Управление производится при помощи ШИМ-модулятора. Также изменяется величина тока, который протекает через светодиоды. Как правило, такие конструкции применяются для питания тех устройств, которым необходим стабилизированный ток.

Нужно обязательно учесть тот факт, что ШИМ-регулирование плохо влияет на зрение. Лучше всего использовать схемы драйверов для питания светодиодов, в которых регулируется величина тока. Но вот один нюанс – в зависимости от величины тока свечение будет различным. При низком значении элементы будут излучать свет с желтым оттенком, при увеличении – с синеватым.

Какую микросхему выбрать

Если нет желания искать готовое устройство, можно сделать его самостоятельно. Причем произвести расчет под конкретные светодиоды. Микросхем для изготовления драйверов довольно много. Вам потребуется только умение читать электрические схемы и работать с паяльником. Для простейших устройств (мощностью до 3 Вт) можно использовать микросхему PT4115. Она дешевая, и достать очень просто. Характеристики элемента такие:

  1. Регулирование яркости.
  2. Напряжение питания – 6-30 В.
  3. Выходной ток – 1,2 А.
  4. Допустимая погрешность при стабилизации тока – не более 5%.
  5. Защита от отключения нагрузки.
  6. Выводы для диммирования.
  7. КПД – 97%.

Обозначение выводов микросхемы:

  1. SW – подключение выходного коммутатора.
  2. GND – отрицательный вывод источников питания и сигнала.
  3. DIM – регулятор яркости.
  4. CSN – датчик входного тока.
  5. VIN – положительный вывод, соединяемый с источником питания.

Варианты схем драйверов

Варианты исполнения устройств:

  1. Если имеется источник питания с постоянным напряжением 6-30 В.
  2. Питание от переменного напряжения 12-18 В. В схему вводится диодный мост и электролитический конденсатор. По сути, «классическая» схема мостового выпрямителя с отсечением переменной составляющей.

Нужно отметить тот факт, что электролитический конденсатор не сглаживает пульсации напряжения, а позволяет избавиться от переменной составляющей в нем. В схемах замещения (по теореме Кирхгофа) электролитический конденсатор в цепи переменного тока является проводником. А вот в цепи постоянного тока он заменяется разрывом (нет никакого элемента).

Собрать схему драйвера светодиодов 220 своими руками можно только в том случае, если использовать дополнительный блок питания. В нем обязательно задействован трансформатор, которым понижается напряжение до необходимого значения в 12-18 В. Учтите, что нельзя подключать драйверы к светодиодам без электролитического конденсатора в блоке питания. При необходимости установки индуктивности необходимо произвести ее расчет. Обычно величина составляет 70-220 мкГн.

Процесс сборки

Все элементы, которые используются в схеме, нужно подбирать, опираясь на даташит (техническую документацию). Обычно в нем приводятся даже практические схемы использования устройств. Обязательно использовать в схеме выпрямителя низкоимпедансные конденсаторы (значение ESR должно быть низким). Применение иных аналогов снижает эффективность регулятора. Емкость должна быть не менее 4,7 мкФ (в случае использования схемы с постоянным током) и от 100 мкФ (для работы в цепи переменного тока).

Собрать по схеме драйвер для светодиодов своими руками можно буквально за несколько минут, потребуется только наличие элементов. Но нужно знать и особенности проведения монтажа. Катушку индуктивности желательно располагать возле вывода микросхемы SW. Изготовить ее можно самостоятельно, для этого необходимо всего несколько элементов:

  1. Ферритовое кольцо – можно использовать со старых блоков питания компьютеров.
  2. Провод типа ПЭЛ-0,35 в лаковой изоляции.

Старайтесь все элементы располагать максимально близко к микросхеме, это позволит исключить появление помех. Никогда не проводите соединения элементов при помощи длинных проводов. Они не только создают множество помех, но и способны принимать их. В результате микросхема, неустойчивая к этим помехам, будет работать неправильно, нарушится регулировка тока.

Вариант компоновки

Разместить все элементы можно в корпусе от старой лампы дневного света. В ней уже все имеется – корпус, патрон, плата (которую можно повторно использовать). Внутри расположить все элементы блока питания и микросхему можно без особого труда. А с внешней стороны установить светодиод, который планируете запитывать от устройства. Схемы драйверов для светодиодов 220 В можно использовать практически любые, главное – понизить напряжение. Сделать это легко простейшим трансформатором.

Монтажную плату желательно использовать новую. А лучше вообще обойтись без нее. Конструкция очень простая, допустимо применить навесной монтаж. Обязательно удостоверьтесь в том, что на выходе выпрямителя напряжение в допустимых пределах, в противном случае микросхема сгорит. После сборки и подключения произведите замер потребляемого тока. Учтите, что в случае снижения тока питания увеличится ресурс светодиодного элемента.

Тщательно выбирайте схему драйвера для питания светодиодов, рассчитывайте каждый компонент конструкции – от этого зависит срок службы и надежность. При правильном подборе драйверов характеристики светодиодов останутся максимально высокими, а ресурс не пострадает. Схемы драйверов для мощных светодиодов отличаются тем, что в них большее число элементов. Зачастую применяется ШИМ-модуляция, но в домашних условиях, что называется, «на коленке», такие устройства уже сложно собрать.

Как устроена светодиодная лампа и принцип ее работы. Устройство и принцип работы светодиодной лампы

Задача снижения количества потребляемой энергии перестала быть только технической проблемой и перешла в область стратегического направления политики государств. Для рядового потребителя эта титаническая борьба выливается в то, что его просто насильно заставляют переходить от привычной и простой как яйцо лампы накаливания к другим источникам света. Например, к светодиодным лампам. Для большинства людей вопрос о том, как устроена светодиодная лампа сводится только к возможности ее практического применения – можно ли ее вкрутить в стандартный патрон и подключить к бытовой сети 220 вольт. Небольшой экскурс по принципам ее действия и устройству поможет сделать вам осознанный выбор.

Принцип работы светодиодной лампы основан на гораздо более сложных физических процессах, чем той, которая испускает свет посредством раскаленной металлической нити. Он настолько интересен, что есть смысл познакомиться с ним поближе. В его основе феномен испускания света, возникающем в точке соприкосновения двух разнородных веществ при прохождении через них электрического тока.

Самое парадоксальное в этом то, что материалы, используемые для провокации эффекта излучения света, вообще не проводят электрического тока. Один из них, например, кремний – вещество вездесущее и перманентно попираемое нашими ногами. Эти материалы пропустят ток, да и то в одну сторону (потому они и названы полупроводниками), только если их соединить вместе. Для этого в одном из них должны преобладать положительно заряженные ионы (дырки), а в другом – отрицательные (электроны). Их наличие или отсутствие зависит от внутренней (атомной) структуры вещества и неспециалисту не стоит заморачиваться вопросом разгадывания их природы.
Возникновение электрического тока в соединении веществ с преобладанием дырок или электронов – только половина дела. Процесс перехода одного в другое сопровождается выделением энергии в виде тепла. Но в середине прошлого века были найдены такие механические соединения веществ, у которых выделение энергии сопровождалось еще и свечением. В электронике устройство, которое пропускает ток в одном направлении, принято называть диодом. Полупроводниковые приборы, созданные на основе материалов, которые умеют испускать свет, названы светодиодами.

Первоначально эффект испускания фотонов из соединения полупроводников был возможен лишь в узкой части спектра. Они светились красным, зеленым или желтым. Сила этого свечения была чрезвычайно мала. Светодиод использовался лишь как индикаторная лампа очень долго. Но сейчас найдены материалы, соединение которых излучает свет гораздо большей силы и в широком диапазоне, почти полном видимом спектре. Почти, потому что какая-то длина волны в их свечении преобладает. Поэтому есть лампы с преобладанием синего (холодного) и желтого или красного (теплого) свечения.

Теперь, когда вам в общих чертах понятен принцип работы светодиодной лампы, можно перейти к ответу на вопрос про устройство светодиодных ламп на 220 В.

Конструкция ламп на светодиодах

Внешне источники света, использующие эффект испускания фотонов при прохождении электрического тока через полупроводник, почти не отличаются от ламп накаливания. Главное то, что у них есть привычный металлический цоколь с резьбой, который в точности повторяет все типоразмеры ламп накаливания. Это позволяет ничего не менять в электрооборудовании помещения для их подключения.
Однако внутреннее устройство светодиодной лампы 220 вольт очень сложное. Она состоит из следующих элементов:

1) контактного цоколя;

2) корпуса, одновременно играющего роль радиатора;

3) платы питания и управления;

4) платы со светодиодами;

5) прозрачного колпака.

Плата питания и управления

Разбираясь как устроены светодиодные лампы 220 вольт, в первую очередь стоит понять, что полупроводниковые элементы не могут быть запитаны от переменного тока и напряжения такой величины. Иначе они попросту сгорят. Поэтому в корпусе этого источника света обязательно находится плата, которая снижает напряжение и выпрямляет ток.

От устройства этой платы во многом зависит долговечность лампы. Точнее, какие элементы стоят на ее входе. В дешевых, кроме резистора перед выпрямляющим диодным мостом, ничего нет. Нередко случаются чудеса (обычно в лампах из Поднебесной), когда нет даже этого резистора и диодный мост напрямую подключен к цоколю. Такие лампы светят очень ярко, но срок их службы чрезвычайно низок, если они не подключены через стабилизирующие устройства. Для этого можно использовать, например, балластные трансформаторы.

Наиболее распространены схемы, в которых в цепи питания управляющей схемы лампы создан сглаживающий фильтр из резистора и конденсатора. В самых дорогих светодиодных лампах блок питания и управления построен на микросхемах. Они хорошо сглаживают броски напряжений, но их рабочий ресурс не слишком высок. В основном, из-за невозможности наладить эффективное охлаждение.

Плата светодиодов

Как бы ученые ни старались, изобретая все новые вещества с высокой эффективностью излучения в видимой части спектра, принцип работы светодиодной лампы остается прежним, и каждый её отдельный светящийся элемент очень слаб. Чтобы достичь требуемого эффекта, их группируют по несколько десятков, а иногда и сотен штук. Для этого используется плата из диэлектрика, на которую нанесены металлические токопроводящие дорожки. Она очень похожа на те, что используются в телевизорах, материнских платах компьютеров и других радиотехнических устройствах.
Плата светодиодов выполняет еще одну важную функцию. Как вы уже заметили, в блоке управления нет понижающего трансформатора. Поставить его, конечно, можно, но это приведет к увеличению габаритов лампы и ее стоимости. Проблема понижения питающего напряжения до номинала, являющегося безопасным для светодиода, решается просто, но экстенсивно. Все светящиеся элементы включены последовательно, как в елочной гирлянде. Например, если в цепь 220 вольт включить последовательно 10 светодиодов, то каждому достанется 22 V (правда, величина тока при этом останется прежней).
Недостатком этой схемы является то, что перегоревший элемент обрывает всю цепь и лампа перестает светить. У нерабочей лампы из десятка светодиодов могут быть неисправными лишь один или два. Есть умельцы, которые перепаивают их и живут спокойно дальше, но большинство неискушенных пользователей выбрасывают всё устройство на помойку.

Кстати, утилизация светодиодных ламп – отдельная головная боль, поскольку смешивать их с обычным бытовым мусором нельзя.

Прозрачный колпак

В основном этот элемент играет роль защиты от пыли, влаги и шаловливых ручек. Однако есть у него и утилитарная функция. Большинство колпаков светодиодных ламп выглядят матовыми. Это решение могло бы показаться странным, ведь сила излучения светодиода ослабляется. Но его полезность для специалистов очевидна.

Колпак матовый потому, что на его внутреннюю стороны нанесен слой люминофора – вещества, начинающего светиться под воздействием квантов энергии. Казалось бы, тут, что называется, масло масляное. Но люминофор имеет спектр излучения в несколько раз более широкий, чем у светодиода. Он приближен к естественному солнечному. Если оставить светодиоды без такой «прокладки», то от их свечения глаза начинают уставать и болеть.

В чем выгода таких ламп

Теперь, когда вы уже многое знаете о том, как работает светодиодная лампа, стоит остановиться и на ее преимуществах. Главное и бесспорное – низкое энергопотребление. Десяток светодиодов дает излучение той же силы, что и традиционная лампа накаливания, но при этом полупроводниковые приборы потребляют в несколько раз меньше электричества. Есть и еще одно преимущество, но оно не столь очевидно. Лампы с таким принципом работы более долговечны. Правда, при условии, что питающее напряжение будет максимально стабильно.

Нельзя не упомянуть и о недостатках таких ламп. В первую очередь это касается спектра их излучения. Он значительно отличается от солнечного – того, что человеческий глаз привык воспринимать тысячелетиями. Поэтому для дома выбирайте те лампы, которые светят желтым или красноватым (теплым) и имеют матовые колпаки.

Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя.

С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на 220 В получиться совсем простой:

Список номиналов:

  • C1 – значение емкости по таблице, 275 В или больше
  • C2 – 100 мкФ (напряжение должно быть больше чем падает на диодах
  • R1 – 100 Ом
  • R2 – 1 MОм (для разряда конденсатора C1)
  • VD1 .. VD4 – 1N4007

Я уже приводил схему подключение светодиодной ленты к сети 220В так вот её можно упростить выкинуть стабилизатор тока. Упрощенная схема не будет работать в широком диапазоне напряжений, это плата за упрощение.

Конденсатор C1 является тем компонентом, который ограничивает ток. И выбор его значения очень важен, его величина зависит от напряжения питания, напряжения на последовательно включенных светодиодах и требуемого тока через светодиоды.

количество светодиодов последовательно, шт 1 10 20 30 50 70
напряжение на сборке из светодиодов, В 3,5 35 70 105 165 230
ток через светодиоды, мА (С1=1000нФ) 64 57 49 42 32 20
ток через светодиоды, мА (С1=680нФ) 44 39 34 29 22 14
ток через светодиоды, мА (С1=470нФ) 30 27 24 20 15
ток через светодиоды, мА (С1=330нФ) 21 19 17 14
ток через светодиоды, мА (С1=220нФ) 14 13 11

Для 1 светодиода в сборке фильтрующий конденсатор C2 следует увеличить до 1000мкФ, а для 10 светодиодов, до 470мкФ.

По таблице можно понять, что для получения максимальной мощности (чуть более 4 Вт) нужен конденсатор на 1мкФ и 70 последовательно включенных светодиодов на 20мА. Для более мощных источников света лучше подойдет схема светодиодной лампы на 220 в использующая широтноимпульсную модуляцию для преобразования и стабилизации тока через светодиоды.

Схемы на основе широтноимпульсной более сложные, но зато обладают преимуществами: им не требуется большой ограничивающий конденсатор, эти схемы обладают высоким КПД и широким диапазоном работы.

Я заказал несколько светодиодных светильников в Китае. В основе преобразователей этих ламп лежат микросхемы драйверов разработанных в том же Китае, конечно качество работы этих схем ещё не дотягивает до западных стандартов, но вот стоимость более чем демократичная.


Итак, конкретно в последних светодиодных лампах была установлена микросхема WS3413D7P, являющаяся светодиодным драйвером с активным корректором коэффициента мощности.


Что же мы видим на схеме? Все тот же диодный мост VD1 — VD4, сглаживающий конденсатор С1. Остальные же компоненты работают нужны для работы микросхемы D1. Резистор R1 нужен для питания самой микросхемы в начальный момент времени, а после запуска микросхема начинает питаться со своего выхода через цепочку R5, VD5. Конденсатор С2 фильтрует питания собственных нужд. Конденсатор С3 служит для задания частоты преобразования. Резистор R2 нужен для измерения тока через светодиоды. Делитель на резисторах R3, R4 позволяет микросхеме получать информацию о напряжении на светодиодной сборке. Катушка индуктивности L1 и конденсатор C4 нужны для преобразования импульсной энергии в постоянную.

Существует куча других разновидностей микросхем, но основных типов высоковольтных драйверов светодиодов всего три: на основе емкостного гасящего сопротивления, активный гасящий стабилизатор тока и импульсный стабилизатор тока.

Навигация по записям

14 thoughts on “Схема светодиодной лампы на 220 в ”

  1. Игорь

    Даже с «выброшенным» стабилизатором, светодиодная лампочка для подъезда получается слишком дорогой. Там лучше вкрутить обычную лампочку «Ильича Эдисона» с диодом, который монтируется в слегка модернизированный патрон.

    1. Валерий

      Не в патрон, в выключатель, там больше места.

  2. Greg

    Не знаю, что слишком дорогого увидел здесь Игорь, но, уж если экономить по полной, то можно выкинуть сопротивления и мост. Останутся: С1, как реактивное сопротивление, один диод для выпрямления переменки и С2 (емкость увеличить в 2-3 раза) для сглаживания пульсаций. Затраты на питание и замену ламп накаливания гораздо выше, чем, даже первоначальный вариант схемы. Очень уж они неэкономичны, причем, во всех ракурсах. От них и избавляются поэтому везде, где только можно. А в подъездах — это архиважно и архинужно, как говаривал Ильич.

  3. admin Автор записи

    У лампы накаливая маловат ресурс, на коробке пишут 1000ч, при круглосуточной работе это 42 дня. В лучшем случае лампочка прослужит несколько месяцев.
    Питание лампы однополупериодным напряжением должно значительно увеличить ресурс (якобы до 100 раз), вот только светоотдача упадет больше чем в два раза. И лампочка будет мерцать с частотой 50Гц.
    Чтобы вернуть частоту к 100Гц, достаточно включить две одинаковых лампочки последовательно — и ресурс возрастет и частота не снизиться.

  4. олександр

    В первой схеме конденсатор С1 надо брать на большее допустимое напряжение в сети 220 в это действующее напряжение Максимальное 220*1,42= примерно 320 в к тому же как правило На конденсаторе указывается на постоянное напряжение а в сети 50 герц. Я рекомендую брать не меньше 450 В. Один диод как пишет Greg не пойдет так на светодиоды или выпрямительный диод будет действовать обратное напряжение.Я рекомендую Выкинуть диодный мост и С2 параллейно светодиодам в обратной полярности поставить диол один период пойдет через светодиод другой через силовой диод. Светодиод можно взять из не исправных фонариков.

  5. Greg

    Ну, обратное напряжение светодиоды должны выдержать, но идея хороша. Зачем терять один период? С2 — выбрасываем, да, а вместо предложенного Олександром силового, ставим еще один световой — пусть моргают попеременно, усиливая общий световой поток и защищая друг дружку от обратного напряжения. А учитывая, что сверхъярких светодиодов, в некоторые фонарики тулят штук по 20, наковырять можно много. Можно и целиком взять, у многих ручных фонарей — ручка выполнена в виде удлиненной лампочки кругового рассеивания.

  6. олександр

    Данную схему можно не только в подъезде как предполагает (Игорь) но где угодно, например освещение приусадебного участка по схеме Greg через понижающий трансформатор для безопасности и две группы светодиодов включенных параллейно и в противоположной полярности.или освещение кессона, душа летнего.

  7. Анатолий

    Я часто видел в подъездах мерцающие лампочки накаливания, где использовался «хитрый» патрон с одним диодом. По моему самое то для подъезда, экономия энергии и непрезентабельный вид. Вот для дома схема №1 вполне подойдёт, скопирую её себе.

  8. Николай

    разобрал «замолчавшую» светодиодную лампу на 11 ватт(100 эквивалента к накаливанию). То что автор называет драйвером, обычный инвертор, схема которого вошла в быт повсеместно, от лампочек до компьютеров и сварочных аппаратов. Так вот на моей лампе стоит 20 диодных светоизлучающих элементов. Исследуя их я пришел к выводу, что они включены как елочная гирлянда — последовательно. Обнаружить неисправный диод не составило труда. Припаяв перемычку из резистроа порядка 50 ом, лампа восстановилась. Так что светоизлучатели работают не при 9.8 иольтах а на всё напряжение выдаваемое инвертором. То есть 220 вольт.
    Дале — у меня есть фонарь ЭРА летучая мышь, с 6 вольтовым АКБ и люминесцентной лампой. Эта лампа светит очень гумозно при своих 7 ваттах. А АКБ хватает на 4 часа. Что я сделал — выпаял из схемы «драйвера» диодный мост и плату со светоизлучателями. В точки пайки проводов от инвертора обозначенные + и — , впаял этот мост соблюдая полярность. На вход моста подал переменное напряжение которое вырабатывал штатный генератор «Эры». Лампа заработала как надо. Светоотдача осталась той же как и от сети 220 вольт. Поскольку холостой ход генератора обеспечивал это напряжение на светоизлучателях.
    Как то вот так.

Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

Светодиодные светильники на 220 В

Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

Типы светодиодов

Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

  1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
  2. «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
  3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
  4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

Устройство LED-лампы

В состав лампы входят:

  • корпус;
  • цоколь;
  • рассеиватель;
  • радиатор;
  • блок светодиодов LED;
  • бестрансформаторный драйвер.

Устройство LED-лампы на 220 вольт

На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

Под общее освещение выбираются светильники с 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

Простейшая схема подключения LED-лампы в сеть 220 вольт

Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

Классическая схема включения LED-лампы в сеть 220 В

На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

своими руками

В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

Лампа светодиодная на 220 вольт

Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но «вечные» устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену. Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

Драйвер LED-лампы

Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно. Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.

Благодаря малому энергопотреблению, теоретической долговечности и снижению цены стремительно вытесняют лампы накаливания и энергосберегающие. Но, несмотря на заявленный ресурс работы до 25 лет, зачастую перегорают, даже не отслужив гарантийный срок.

В отличие от ламп накаливания, 90% перегоревших светодиодных ламп можно успешно отремонтировать своими руками, даже не имея специальной подготовки. Представленные примеры помогут Вам отремонтировать отказавшие светодиодные лампы.

Прежде, чем браться за ремонт светодиодной лампы нужно представлять ее устройство. Вне зависимости от внешнего вида и типа применяемых светодиодов , все светодиодные лампы, в том числе и филаментные лампочки, устроены одинаково. Если удалить стенки корпуса лампы, то внутри можно увидеть драйвер, который представляет собой печатную плату с установленными на ней радиоэлементами.


Любая светодиодная лампа устроена и работает следующим образом. Питающее напряжение с контактов электрического патрона подается на выводы цоколя . К нему припаяны два провода, через которые напряжение подается на вход драйвера. С драйвера питающее напряжение постоянного тока подается на плату, на которой распаяны светодиоды.

Драйвер представляет собой электронный блок – генератор тока, который преобразует напряжение питающей сети в ток, необходимый для свечения светодиодов.

Иногда для рассеивания света или защиты от прикосновения человека к незащищенным проводникам платы со светодиодами ее закрывают рассеивающим защитным стеклом.

О филаментных лампах

По внешнему виду филаментная лампа похожа на лампу накаливания. Устройство филаментных ламп отличается от светодиодных тем, что в качестве излучателей света в них используется не плата со светодиодами, а стеклянная герметичная заполненная газом колба, в которой размещены один или несколько филаментных стержней. Драйвер находится в цоколе.


Филаментный стержень представляет собой стеклянную или сапфировую трубку диаметром около 2 мм и длиной около 30 мм, на которой закреплены и соединены последовательно покрытые люминофором 28 миниатюрных светодиодов. Один филамент потребляет мощность около 1 Вт. Мой опыт эксплуатации показывает, что филаментные лампы гораздо надежнее, чем изготовленные на базе SMD светодиодов. Полагаю, со временем они вытеснят все другие искусственные источники света.

Примеры ремонта светодиодных ламп

Внимание, электрические схемы драйверов светодиодных ламп гальванически связаны с фазой электрической сети и поэтому следует соблюдать предельную осторожность. Прикосновение не защищенным участком тела человека к оголенным участкам схемы подключенной к электрической сети может нанести серьезный урон здоровью, вплоть до остановки сердца.

Ремонт светодиодной лампы


ASD LED-A60, 11 Вт на микросхеме SM2082

В настоящее время появились мощные светодиодные лампочки, драйверы которых собраны на микросхемах типа SM2082. Одна из них проработала менее года и попала мне в ремонт. Лампочка бессистемно гасла и опять зажигалась. При постукивании по ней она отзывалась светом или гашением. Стало очевидно, что неисправность заключается в плохом контакте.


Чтобы добраться к электронной части лампы нужно с помощью ножа подцепить рассеивающее стекло в месте соприкосновения его с корпусом. Иногда отделить стекло трудно, так как при его посадке на фиксирующее кольцо наносят силикон.


После снятия светорассеивающего стекла открылся доступ к светодиодам и микросхеме – генератора тока SM2082. В этой лампе одна часть драйвера была смонтирована на алюминиевой печатной плате светодиодов, а вторая на отдельной.


Внешний осмотр не выявил дефектных паек или обрывов дорожек. Пришлось снимать плату со светодиодами. Для этого сначала был срезан силикон и плата поддета за край лезвием отвертки.

Чтобы добраться до драйвера, расположенного в корпусе лампы пришлось его отпаять, разогрев паяльником одновременно два контакта и сдвинуть вправо.


С одной стороны печатной платы драйвера был установлен только электролитический конденсатор емкостью 6,8 мкФ на напряжение 400 В.

С обратной стороны платы драйвера был установлен диодный мост и два последовательно соединенных резистора номиналом по 510 кОм.


Для того, чтобы разобраться в какой из плат пропадает контакт пришлось их соединить, соблюдая полярность, с помощью двух проводков. После простукивания по платам ручкой отвертки стало очевидным, что неисправность кроется в плате с конденсатором или в контактах проводов, идущих из цоколя светодиодной лампы.

Так как пайки не вызывали подозрений сначала проверил надежность контакта в центральном выводе цоколя. Он легко вынимается, если поддеть его за край лезвием ножа. Но контакт был надежным. На всякий случай залудил провод припоем.

Винтовую часть цоколя снимать сложно, поэтому решил паяльником пропаять пайки подходящих от цоколя проводов. При прикосновении к одной из паек провод оголился. Обнаружилась «холодная» пайка. Так как добраться для зачистки провода возможности небыло, то пришлось смазать его активным флюсом «ФИМ», а затем припаять заново.


После сборки светодиодная лампа стабильно излучала свет, не смотря за удары по ней рукояткой отвертки. Проверка светового потока на пульсации показала, что они значительны с частотой 100 Гц. Такую светодиодную лампу допустимо устанавливать только в светильники для общего освещения.

Электрическая схема драйвера

светодиодной лампы ASD LED-A60 на микросхеме SM2082

Электрическая схема лампы ASD LED-A60, благодаря применению в драйвере для стабилизации тока специализированной микросхемы SM2082 получилась довольно простой.


Схема драйвера работает следующим образом. Питающее напряжение переменного тока через предохранитель F подается на выпрямительный диодный мост, собранный на микросборке MB6S. Электролитический конденсатор С1 сглаживает пульсации, а R1 служит для его разрядки при отключении питания.

С положительного вывода конденсатора питающее напряжение подается непосредственно на последовательно включенные светодиоды. С вывода последнего светодиода напряжение подается на вход (вывод 1) микросхемы SM2082, в микросхеме ток стабилизируется и далее с ее выхода (вывод 2) поступает на отрицательный вывод конденсатора С1.

Резистор R2 задает величину тока, протекающего через светодиоды HL. Величина тока обратно пропорциональна его номиналу. Если номинал резистора уменьшить, то ток увеличится, если номинал увеличить, то ток уменьшится. Микросхема SM2082 допускает регулировать резистором величину тока от 5 до 60 мА.

Ремонт светодиодной лампы


ASD LED-A60, 11 Вт, 220 В, E27

В ремонт попала еще одна светодиодная лампа ASD LED-A60 похожая по внешнему виду и с такими же техническими характеристиками, как и выше отремонтированная.

При включении лампа на мгновенье зажигалась и далее не светила. Такое поведение светодиодных ламп обычно связано с неисправностью драйвера. Поэтому сразу приступил к разборке лампы.

Светорассеивающее стекло снялось с большим трудом, так как по всей линии контакта с корпусом оно было, несмотря на наличие фиксатора, обильно смазано силиконом. Для отделения стекла пришлось по всей линии соприкосновения с корпусом с помощью ножа искать податливое место, но все равно без трещины в корпусе не обошлось.


Для получения доступа к драйверу лампы на следующем шаге предстояло извлечь светодиодную печатную плату, которая была по контуру запрессована в алюминиевую вставку. Несмотря на то, что плата была алюминиевая, и можно было извлекать ее без опасения появления трещин, все попытки не увенчались успехом. Плата держалась намертво.

Извлечь плату вместе с алюминиевой вставкой тоже не получилось, так как она плотно прилегала к корпусу и была посажена внешней поверхностью на силикон.


Решил попробовать вынуть плату драйвера со стороны цоколя. Для этого сначала из цоколя был поддет ножом, и вынут центральный контакт. Для снятия резьбовой части цоколя пришлось немного отогнуть ее верхний буртик, чтобы места кернения вышли из зацепления за основание.

Драйвер стал доступен и свободно выдвигался до определенного положения, но полностью вынуть его не получалось, хотя проводники от светодиодной платы были отпаяны.


В плате со светодиодами в центре было отверстие. Решил попробовать извлечь плату драйвера с помощью ударов по ее торцу через металлический стержень, продетый через это отверстие. Плата продвинулась на несколько сантиметров и в что-то уперлась. После дальнейших ударов треснул по кольцу корпус лампы и плата с основанием цоколя отделились.

Как оказалось, плата имела расширение, которое плечиками уперлось в корпус лампы. Похоже, плате придали такую форму для ограничения перемещения, хотя достаточно было зафиксировать ее каплей силикона. Тогда драйвер извлекался бы с любой из сторон лампы.


Напряжение 220 В с цоколя лампы через резистор — предохранитель FU подается на выпрямительный мост MB6F и после него сглаживается электролитическим конденсатором. Далее напряжение поступает на микросхему SIC9553, стабилизирующую ток. Параллельно включенные резисторы R20 и R80 между выводами 1 и 8 MS задают величину тока питания светодиодов.


На фотографии представлена типовая электрическая принципиальная схема, приведенная производителем микросхемы SIC9553 в китайском даташите.


На этой фотографии представлен внешний вид драйвера светодиодной лампы со стороны установки выводных элементов. Так как позволяло место, для снижения коэффициента пульсаций светового потока конденсатор на выходе драйвера был вместо 4,7 мкФ впаян на 6,8 мкФ.


Если Вам придется извлекать драйвера из корпуса данной модели лампы и не получится извлечь светодиодную плату, то можно с помощью лобзика пропилить корпус лампы по окружности чуть выше винтовой части цоколя.


В конечном итоге все мои усилия по извлечению драйвера оказались полезными только для познания устройства светодиодной лампы. Драйвер оказался исправным.

Вспышка светодиодов в момент включения была вызвана пробоем в кристалле одного из них в результате броска напряжения при запуске драйвера, что и ввело меня в заблуждение. Надо было в первую очередь прозвонить светодиоды.

Попытка проверки светодиодов мультиметром не привела к успеху. Светодиоды не светились. Оказалось, что в одном корпусе установлено два последовательно включенных светоизлучающих кристалла и чтобы светодиод начал протекать ток необходимо подать на него напряжение 8 В.

Мультиметр или тестер, включенный в режим измерения сопротивления, выдает напряжение в пределах 3-4 В. Пришлось проверять светодиоды с помощью блока питания, подавая с него на каждый светодиод напряжение 12 В через токоограничивающий резистор 1 кОм.

В наличии небыло светодиода для замены, поэтому вместо него контактные площадки были замкнуты каплей припоя. Для работы драйвера это безопасно, а мощность светодиодной лампы снизиться всего на 0,7 Вт, что практически незаметно.

После ремонта электрической части светодиодной лампы, треснувший корпус был склеен быстро сохнущим супер клеем «Момент», швы заглажены оплавлением пластмассы паяльником и выровнены наждачной бумагой.

Для интереса выполнил некоторые измерения и расчеты. Ток, протекающий через светодиоды, составил 58 мА, напряжение 8 В. Следовательно мощность, подводимая на один светодиод составляет 0,46 Вт. При 16 светодиодах получается 7,36 Вт, вместо заявленных 11 Вт. Возможно производителем указана общая мощность потребления лампы с учетом потерь в драйвере.

Заявленный производителем срок службы светодиодной лампы ASD LED-A60, 11 Вт, 220 В, E27 у меня вызывает большие сомнения. В малом объеме пластмассового корпуса лампы, с низкой теплопроводностью выделяется значительная мощность — 11 Вт. В результате светодиоды и драйвер работают на предельно допустимой температуре, что приводит к ускоренной деградации их кристаллов и, как следствие, к резкому снижению времени их наработки на отказ.

Ремонт светодиодной лампы


LED smd B35 827 ЭРА, 7 Вт на микросхеме BP2831A

Поделился со мной знакомый, что купил пять лампочек как на фото ниже, и все они через месяц перестали работать. Три из них он успел выбросить, а две, по моей просьбе, принес для ремонта.


Лампочка работала, но вместо яркого света излучала мерцающий слабый свет с частотой несколько раз в секунду. Сразу предположил, что вспучился электролитический конденсатор, обычно если он выходит из строя, то лампа начинает излучать свет, как стробоскоп.

Светорассеивающее стекло снялось легко, приклеено небыло. Оно фиксировалось за счет прорези на его ободке и выступу в корпусе лампы.


Драйвер был закреплен с помощью двух паек к печатной плате со светодиодами, как в оной из выше описанных ламп.

Типовая схема драйвера на микросхеме BP2831A взятая с даташита приведена на фотографии. Плата драйвера была извлечена и проверены все простые радиоэлементы, оказались все исправны. Пришлось заняться проверкой светодиодов.

Светодиоды в лампе были установлены неизвестного типа с двумя кристаллами в корпусе и осмотр дефектов не выявил. Методом последовательного соединения между собой выводов каждого из светодиодов быстро определил неисправный и заменил его каплей припоя, как на фотографии.

Лампочка проработала неделю и опять попала в ремонт. Закоротил следующий светодиод. Через неделю пришлось закоротить очередной светодиод, и после четвертого лампочку выкинул, так как надоело ее ремонтировать.

Причина отказа лампочек подобной конструкции очевидна. Светодиоды перегреваются из-за недостаточной поверхности теплоотвода, и ресурс их снижается до сотен часов.

Почему допустимо замыкать выводы сгоревших светодиодов в LED лампах

Драйвер светодиодных ламп, в отличие от блока питания постоянного напряжения, на выходе выдает стабилизированную величину тока, а не напряжения. Поэтому вне зависимости от сопротивления нагрузки в заданных пределах, ток будет всегда постоянным и, следовательно, падение напряжения на каждом из светодиодов будет оставаться прежним.

Поэтому при уменьшении количества последовательно соединённых светодиодов в цепи будет пропорционально уменьшаться и напряжение на выходе драйвера.

Например, если к драйверу последовательно подключено 50 светодиодов, и на каждом из них падает напряжение величиной 3 В, то напряжение на выходе драйвера составлял 150 В, а если закоротить 5 из них, то напряжение снизится до 135 В, а величина тока не изменится.


Но коэффициент полезного действия (КПД) драйвера, собранного по такой схеме будет низкий и потери мощности, составят более 50%. Например, для LED лампочки MR-16-2835-F27 понадобится резистор номиналом 6,1 кОм мощностью 4 ватта. Получится, что драйвер на резисторе будет потреблять мощность, превышающую мощность потребления светодиодами и его разместить в маленький корпус LED лампы, из-за выделения большего количества тепла, будет недопустимо.

Но если нет другого способа отремонтировать светодиодную лампу и очень надо, то драйвер на резисторе можно разместить в отдельном корпусе, все равно потребляемая мощность такой LED лампочки будет в четыре раза меньше, чем лампы накаливания. При этом надо заметить, что чем больше будет в лампочке последовательно включенных светодиодов, тем выше будет КПД. При 80 последовательно соединенных светодиодов SMD3528 понадобится уже резистор номиналом 800 Ом мощностью всего 0,5 Вт. Емкость конденсатора С1 нужно будет увеличить до 4,7 µF.

Поиск неисправных светодиодов

После снятия защитного стекла появляется возможность проверки светодиодов, без отклеивания печатной платы. В первую очередь проводится внимательный осмотр каждого светодиода. Если обнаружена даже самая маленькая черная точка, не говоря уже о почернении всей поверхности LED, то он точно неисправен.

При осмотре внешнего вида светодиодов, нужно внимательно осмотреть и качество паек их выводов. В одной из ремонтируемых лампочек оказалось плохо припаянных сразу четыре светодиода.

На фотографии лампочка, у которой на четырех LED были очень маленькие черные точки. Я сразу пометил неисправные светодиоды крестами, чтобы их было хорошо видно.

Неисправные светодиоды могут и не иметь изменений внешнего вида. Поэтому необходимо каждый LED проверить мультиметром или стрелочным тестером , включенным в режим измерения сопротивления.

Встречаются светодиодные лампы, в которых установлены по внешнему виду стандартные светодиоды, в корпусе которых смонтировано сразу два последовательно включенных кристалла. Например, лампы серии ASD LED-A60. Для прозвонки таких светодиодов необходимо приложить к его выводам напряжение более 6 В, а любой мультиметр выдает не более 4 В. Поэтому проверку таких светодиодов можно выполнить только подав на них с источника питания напряжение более 6 (рекомендуется 9-12) В через резистор 1 кОм.

Светодиод проверяется, как и обычный диод, в одну сторону сопротивление должно быть равно десяткам мегаом, а если поменять щупы местами (при этом меняется полярность подачи напряжения на светодиод), то небольшим, при этом светодиод может тускло светиться.

При проверке и замене светодиодов лампу необходимо зафиксировать. Для этого можно использовать подходящего размера круглую банку.

Можно проверить исправность LED и без дополнительного источника постоянного тока. Но такой метод проверки возможен, если исправен драйвер лампочки. Для этого необходимо подать на цоколь LED лампочки питающее напряжение и выводы каждого светодиода последовательно закорачивать между собой перемычкой из провода или, например губками металлического пинцета.

Если вдруг все светодиоды, засветятся, значит, закороченный точно неисправен. Этот метод пригоден, если неисправен только один светодиод из всех в цепи. При таком способе проверки нужно учесть, что если драйвер не обеспечивает гальванической развязки с электросетью, как например, на приведенных выше схемах, то прикосновение рукой к пайкам LED небезопасно.

Если один или даже несколько светодиодов оказались неисправны и, заменить их нечем, то можно просто закоротить контактные площадки, к которым были припаяны светодиоды. Лампочка будет работать с таким же успехом, только несколько уменьшится световой поток.

Другие неисправности светодиодных ламп

Если проверка светодиодов показала их исправность, то значит, причина неработоспособности лампочки заключается в драйвере или в местах пайки токоподводящих проводников.

Например, в этой лампочке была обнаружена холодная пайка проводника, подающего питающее напряжение на печатную плату. Выделяемая из-за плохой пайки копоть даже осела на токопроводящие дорожки печатной платы. Копоть легко удалилась протиркой ветошью, смоченной в спирте. Провод был выпаян, зачищен, залужен и вновь запаян в плату. С ремонтом этой лампочки повезло.

Из десяти отказавших лампочек только у одной был неисправен драйвер, развалился диодных мостик. Ремонт драйвера заключался в замене диодного моста четырьмя диодами IN4007, рассчитанными на обратное напряжение 1000 В и ток 1 А.

Пайка SMD светодиодов

Для замены неисправного LED его необходимо выпаять, не повредив печатные проводники. С платы донора тоже нужно выпаять на замену светодиод без повреждений.

Выпаивать SMD светодиоды простым паяльником, не повредив их корпус, практически невозможно. Но если использовать специальное жало для паяльника или на стандартное жало надеть насадку , сделанную из медной проволоки, то задача легко решается.

Светодиод имеют полярность и при замене нужно правильно его установить на печатную плату. Обычно печатные проводники повторяют форму выводов на LED. Поэтому допустить ошибку можно только при невнимательности. Для запайки светодиода достаточно установить его на печатную плату и прогреть паяльником мощностью 10-15 Вт его торцы с контактными площадками.

Если светодиод сгорел на уголь, и печатная плата под ним обуглилась, то прежде чем устанавливать новый светодиод нужно обязательно очистить это место печатной платы от гари, так как она является проводником тока. При очистке можно обнаружить, что контактные площадки для пайки светодиода обгорели или отслоились.

В таком случае светодиод можно установить, припаяв его к соседним светодиодам, если печатные дорожки ведут к ним. Для этого можно взять отрезок тонкого провода, согнуть его вдвое или трое, в зависимости от расстояния между светодиодами, залудить и припаять к ним.

Ремонт светодиодной лампы серии «LL-CORN» (лампа-кукуруза)


E27 4,6 Вт 36x5050SMD

Устройство лампы, которая в народе называется лампа-кукуруза, изображенной на фотографии ниже отличается, от выше описанной лампы, поэтому и технология ремонта другая.


Конструкция ламп на LED SMD подобного типа очень удобна для ремонта, так как есть доступ для прозвонки светодиодов и их замены без разборки корпуса лампы. Правда, я лампочку все равно разобрал для интереса, чтобы изучить ее устройство.

Проверка светодиодов LED лампы-кукурузы не отличается от выше описанной технологии, но надо учесть, что в корпусе светодиода SMD5050 размещено сразу три светодиода, обычно включаемые параллельно (на желтом круге видны три темные точки кристаллов), и при проверке должны светиться все три.


Неисправный светодиод можно заменить новым или закоротить перемычкой. На надежность работы лампы это не повлияет, только незаметно для глаза, уменьшится немного световой поток.

Драйвер этой лампы собран по простейшей схеме, без развязывающего трансформатора, поэтому прикосновение к выводам светодиодов при включенной лампе недопустимо. Лампы такой конструкции недопустимо устанавливать в светильники, к которым могут добраться дети.

Если все светодиоды исправны, значит, неисправен драйвер, и чтобы до него добраться лампу придется разбирать.

Для этого нужно снять ободок со стороны, противоположной цоколю. Маленькой отверткой или лезвием ножа нужно, пробуя по кругу, найти слабое место, где ободок хуже всего приклеен. Если ободок поддался, то работая инструментом, как рычагом, ободок нетрудно отойдет по всему периметру.


Драйвер был собран по электрической схеме, как и у лампы MR-16, только С1 стоял емкостью 1 µF, а С2 — 4,7 µF. Благодаря тому, что провода, идущие от драйвера к цоколю лампы, были длинными, драйвер легко вынулся из корпуса лампы. После изучения его схемы, драйвер был вставлен обратно в корпус, а ободок приклеен на место прозрачным клеем «Момент». Отказавший светодиод заменен исправным.

Ремонт светодиодной лампы «LL-CORN» (лампа-кукуруза)


E27 12 Вт 80x5050SMD

При ремонте более мощной лампы, 12 Вт, такой же конструкции отказавших светодиодов не оказалось и чтобы добраться до драйверов, пришлось вскрывать лампу по выше описанной технологии.

Эта лампа преподнесла мне сюрприз. Провода, идущие от драйвера к цоколю, оказались короткими, и извлечь драйвер из корпуса лампы для ремонта было невозможно. Пришлось снимать цоколь.


Цоколь лампы был сделан из алюминия, закернен по окружности и держался крепко. Пришлось высверливать точки крепления сверлом 1,5 мм. После этого поддетый ножом цоколь легко снялся.

Но можно обойтись и без сверления цоколя, если острием ножа по окружности поддевать и немного отгибать его верхнюю кромку. Предварительно следует нанести метку на цоколе и корпусе, чтобы цоколь было удобно устанавливать на место. Для надежного закрепления цоколя после ремонта лампы, достаточно будет надеть его на корпус лампы таким образом, чтобы накерненные точки на цоколе попали на старые места. Далее продавить эти точки острым предметом.

Два провода были подсоединены к резьбе прижимом, а другие два запрессованные в центральный контакт цоколя. Пришлось эти провода перекусить.


Как и ожидалось, драйверов было два одинаковых, питающих по 43 диода. Они были закрыты термоусаживающейся трубкой и соединены вместе скотчем. Для того, чтобы драйвер можно было опять поместить в трубку, я обычно ее аккуратно разрезаю вдоль печатной платы со стороны установки деталей.


После ремонта драйвер окутывается трубкой, которая фиксируется пластмассовой стяжкой или заматывается несколькими витками нитки.


В электрической схеме драйвера этой лампы уже установлены элементы защиты, С1 для защиты от импульсных выбросав и R2, R3 для защиты от бросков тока. При проверке элементов сразу были обнаружены на обоих драйверах в обрыве резисторы R2. Похоже, что на светодиодную лампу было подано напряжение, превышающее допустимое. После замены резисторов, под рукой на 10 Ом не оказалось, и я установил на 5,1 Ом, лампа заработала.

Ремонт светодиодной лампы серии «LLB» LR-EW5N-5

Внешний вид лампочки этого типа внушает доверие. Алюминиевый корпус, качественное исполнение, красивый дизайн.

Конструкция лампочки такова, что разборка ее без применения значительных физических усилий невозможна. Так как ремонт любой светодиодной лампы начинается с проверки исправности светодиодов, то первое что пришлось сделать, это снять пластмассовое защитное стекло.

Стекло фиксировалось без клея на проточке, сделанной в радиаторе буртиком внутри него. Для снятия стекла нужно концом отвертки, которая пройдет между ребрами радиатора, опереться за торец радиатора и как рычагом поднять стекло вверх.

Проверка светодиодов тестером показала их исправность, следовательно, неисправен драйвер, и надо до него добраться. Плата из алюминия была прикручена четырьмя винтами, которые я открутил.

Но вопреки ожиданиям, за платой оказалась плоскость радиатора, смазанная теплопроводящей пастой. Плату пришлось вернуть на место и продолжить разбирать лампу со стороны цоколя.


В связи с тем, что пластмассовая часть, к которой крепился радиатор, держалась очень крепко, решил пойти проверенным путем, снять цоколь и через открывшееся отверстие извлечь драйвер для ремонта. Высверлил места кернения, но цоколь не снимался. Оказалось, он еще держался на пластмассе за счет резьбового соединения.


Пришлось отделять пластмассовый переходник от радиатора. Держался он, так же как и защитное стекло. Для этого был сделан запил ножовкой по металлу в месте соединения пластмассы с радиатором и с помощью поворота отвертки с широким лезвием, детали были отделены друг от друга.


После отпайки выводов от печатной платы светодиодов драйвер стал доступен для ремонта. Схема драйвера оказалась более сложной, чем у предыдущих лампочек, с разделительным трансформатором и микросхемой. Один из электролитических конденсаторов 400 V 4,7 µF был вздутый. Пришлось его заменить.


Проверка всех полупроводниковых элементов выявила неисправный диод Шоттки D4 (на фото внизу с лева). На плате стоял диод Шоттки SS110, заменил имеющимся аналогом 10 BQ100 (100 V, 1 А). Прямое сопротивление у диодов Шоттки в два раза меньше, чем у обыкновенных диодов. Светодиодная лампочка засветила. Такая же неисправность оказалась и у второй лампочки.

Ремонт светодиодной лампы серии «LLB» LR-EW5N-3

Эта светодиодная лампа по внешнему виду очень похожа на «LLB» LR-EW5N-5, но конструкция ее несколько отличается.

Если внимательно присмотреться, то видно, что на стыке между алюминиевым радиатором и сферическим стеклом, в отличие от LR-EW5N-5, имеется кольцо, в котором и закреплено стекло. Для снятия защитного стекла достаточно небольшой отверткой подцепить его в месте стыка с кольцом.

На алюминиевой печатной плате установлено три девяти кристальных сверх ярких LED. Плата прикручена к радиатору тремя винтами. Проверка светодиодов показала их исправность. Следовательно, нужно ремонтировать драйвер. Имея опыт ремонта похожей светодиодной лампы «LLB» LR-EW5N-5, я не стал откручивать винты, а отпаял токоподводящие провода, идущие от драйвера и продолжил разбирать лампу со стороны цоколя.


Пластмассовое соединительное кольцо цоколя с радиатором снялось с большим трудом. При этом часть его откололась. Как оказалось, оно было прикручено к радиатору тремя саморезами. Драйвер легко извлекся из корпуса лампы.


Саморезы, прикручивающие пластмассовое кольцо цоколя закрывает драйвер, и увидеть их сложно, но они находятся на одной оси с резьбой, к которой прикручена переходная часть радиатора. Поэтому тонкой крестообразной отверткой к ним можно добраться.


Драйвер оказался собран по трансформаторной схеме. Проверка всех элементов, кроме микросхемы, не выявила отказавших. Следовательно, неисправна микросхема, в Интернете даже упоминание о ее типе не нашел. Светодиодную лампочку отремонтировать не удалось, пригодится на запчасти. Зато изучил ее устройство.

Ремонт светодиодной лампы серии «LL» GU10-3W

Разобрать перегоревшую светодиодную лампочку GU10-3W с защитным стеклом оказалось, на первый взгляд, невозможно. Попытка извлечь стекло приводила к его надколу. При приложении больших усилий, стекло трескалось.

Кстати, в маркировке лампы буква G означает, что лампа имеет штыревой цоколь, буква U, что лампа относится к классу энергосберегающих лампочек, а цифра 10 – расстояние между штырями в миллиметрах.

Лампочки LED с цоколем GU10 имеют особые штыри и устанавливаются в патрон с поворотом. Благодаря расширяющимся штырям, LED лампа защемляется в патроне и надежно удерживается даже при тряске.

Для того чтобы разобрать эту LED лампочку пришлось в ее алюминиевом корпусе на уровне поверхности печатной платы сверлить отверстие диаметром 2,5 мм. Место сверления нужно выбрать таким образом, чтобы сверло при выходе не повредило светодиод. Если под рукой нет дрели, то отверстие можно проделать толстым шилом.

Далее в отверстие продевается маленькая отвертка и, действуя, как рычагом приподымается стекло. Снимал стекло у двух лампочек без проблем. Если проверка светодиодов тестером показала их исправность, то далее извлекается печатная плата.


После отделения платы от корпуса лампы, сразу стало очевидно, что как в одной, так и в другой лампе сгорели токоограничивающие резисторы. Калькулятор определил по полосам их номинал, 160 Ом. Так как резисторы сгорели в светодиодных лампочках разных партий, то очевидно, что их мощность, судя по размеру 0,25 Вт, не соответствует выделяемой мощности при работе драйвера при максимальной температуре окружающей среды.


Печатная плата драйвера была добротно залита силиконом, и я не стал ее отсоединять от платы со светодиодами. Обрезал выводы сгоревших резисторов у основания и к ним припаял более мощные резисторы, которые оказались под рукой. В одной лампе впаял резистор 150 Ом мощностью 1 Вт, во второй два параллельно 320 Ом мощностью 0,5 Вт.


Для того чтобы исключить случайное прикосновение вывода резистора, к которому подходит сетевое напряжение с металлическим корпусом лампы, он был заизолирован каплей термоклея. Он водостойкий, отличный изолятор. Его я часто применяю для герметизации, изоляции и закрепления электропроводов и других деталей.

Термоклей выпускается в виде стержней диаметром 7, 12, 15 и 24 мм разных цветов, от прозрачного до черного. Он плавится в зависимости от марки при температуре 80-150°, что позволяет его расплавлять с помощью электрического паяльника. Достаточно отрезать кусок стержня, разместить в нужном месте и нагреть. Термоклей приобретет консистенцию майского меда. После остывания становится опять твердым. При повторном нагреве опять становиться жидким.

После замены резисторов, работоспособность обеих лампочек восстановилась. Осталось только закрепить печатную плату и защитное стекло в корпусе лампы.

При ремонте светодиодных ламп для закрепления печатных плат и пластмассовых деталей я использовал жидкие гвозди «Монтаж» момент. Клей без запаха, хорошо прилипает к поверхностям любых материалов, после засыхания остается пластичным, имеет достаточную термостойкость.

Достаточно взять небольшое количество клея на конец отвертки и нанести на места соприкосновения деталей. Через 15 минут клей уже будет держать.

При приклейке печатной платы, чтобы не ждать, удерживая плату на месте, так как провода выталкивали ее, зафиксировал плату дополнительно в нескольких точках с помощью термоклея.

Светодиодная лампа начала мигать как стробоскоп

Пришлось ремонтировать пару светодиодных ламп с драйверами, собранными на микросхеме, неисправность которых заключалась в мигании света с частотой около одного герца, как в стробоскопе.

Один экземпляр светодиодной лампы начинал мигать сразу после включения в течении первых нескольких секунд и затем лампа начинала светить нормально. Со временем продолжительность мигания лампы после включения стала увеличиваться, и лампа стала мигать беспрерывно. Второй экземпляр светодиодной лампы стал мигать беспрерывно внезапно.


После разборки ламп оказалось, что в драйверах вышли из строя электролитические конденсаторы, установленные сразу после выпрямительных мостов. Определить неисправность было легко, так как корпуса конденсаторов были вздутые. Но даже если по внешнему виду конденсатор выглядит без внешних дефектов, то все равно ремонт светодиодной лампочки со стробоскопическим эффектом нужно начинать с его замены.

После замены электролитических конденсаторов исправными стробоскопический эффект исчез и лампы стали светить нормально.

Онлайн калькуляторы для определения номинала резисторов


по цветовой маркировке

При ремонте светодиодных ламп возникает необходимость в определении номинала резистора. По стандарту маркировка современных резисторов производиться путем нанесения на их корпуса колец разного цвета. На простые резисторы наносится 4 цветных кольца, а на резисторы повышенной точности – 5 колец.

Устройство и принцип работы светодиодных ламп . Основные части осветительного прибора:

Светодиоды;
— драйвер;
— цоколь;
— корпус.

Принцип его работы полностью повторяет процессы, происходящие в обыкновенном полупроводниковом диоде с p-n переходом из кремния или германия: при подаче положительного потенциала к аноду, а отрицательного к катоду в материалах начинается движение отрицательно заряженных электронов к аноду, а дырок к катоду. В итоге, диод пропускает электрический ток только одного прямого направления.

Однако, светодиод выполнен из других полупроводниковых материалов, которые при бомбардировке в прямом направлении носителями зарядов (электронами и дырками) осуществляют их рекомбинацию с переводом на другой энергетический уровень. В итоге происходит выделение фотонов — элементарных частиц электромагнитного излучения светового диапазона.

Даже в электрических схемах в качестве их обозначений используются обозначения обычных диодов, только с добавлением двух стрелочек, обозначающих излучение света.

Полупроводниковые материалы обладают разными свойствами выделения фотонов. Такие вещества, как арсенид галия (GaAs) и нитрид галлия (GaN), являясь прямозонными полупроводниками, одновременно прозрачны для видимого спектра световых волн. При замене ими слоев p-n перехода происходит выделение света.

Расположение слоев, используемых в светодиоде, показано на рисунке ниже. Их маленькая толщина порядка 10÷15 нм (наномикрон) создается специальными методами химического осаждения из газовой фазы. В слоях размещены контактные площадки для анода и катода.

Как при любом физическом процессе, во время преобразования электронов в фотоны существуют потери энергии, обусловленные следующими причинами:

Часть световых частиц просто теряется внутри даже такого тонкого слоя;
— при выходе из полупроводника возникает оптическое преломление световых волн на границах кристалл/воздух, искажающее длину волны.

Применение специальных мер, например, использование сапфировой подложки, позволяет создать бо́льший световой поток. Такие конструкции применяются для установки в лампы освещения, но не для обычных светодиодов, используемых в качестве индикаторов, показанных на рисунке ниже.

Они имеют линзу, выполненную из эпоксидной смолы и рефлектор для направления света. В зависимости от назначения свет может распространяться в широких диапазонах угла 5-160°.

Дорогие светодиоды, выпускаемые для ламп освещения, производители изготавливают с ламбертовской диаграммой. Это означает, что их яркость постоянна в пространстве, не зависит от направления излучения и угла наблюдения.

Габариты кристалла весьма маленькие и от одного источника можно получить небольшой поток света. Поэтому для ламп освещения такие светодиоды объединяют довольно большими группами. При этом, создать от них равномерное освещение во все стороны весьма проблематично: каждый светодиод является точечным источником.

Частотный спектр световых волн от полупроводниковых материалов значительно уже, чем от обычных ламп накаливания или солнца, что утомляет глаза человека, создает определенный дискомфорт. С целью исправления этого недостатка в отдельные конструкции светодиодов для освещения вводится слой люминофора.

Величина излучаемого светового потока полупроводниковых материалов зависит от тока, проходящего через p-n переход. Чем больше ток, тем выше излучение, но до определенного значения.

Маленькие габариты, как правило, не позволяют использовать токи, превышающие 20 миллиампер для индикаторных конструкций. У мощных осветительных ламп применяется теплоотвод и дополнительные меры защиты, использование которых, однако, строго ограничено.

При запуске световой поток лампы пропорционально возрастает с увеличением тока, но затем из-за образования тепловых потерь начинает снижаться. Следует понимать, что процесс выделения фотонов из проводника не связан с тепловой энергией, светодиоды относятся к источникам холодного света.

Однако, проходящий через светодиод ток в местах контактов различных слоев и электродов преодолевает переходное сопротивление этих участков, вызывающее нагрев материалов. Выделяемое тепло вначале только создает потери энергии, но при увеличении тока может повредить конструкцию.

Количество светодиодных кристаллов, установленных в одну лампу, может превышать сотню работающих элементов. На каждый из них необходимо подвести оптимальный ток. Для этого создают стеклотекстолитовые платы с токопроводящими дорожками. Они могут иметь самую различную конструкцию.

К контактным площадкам плат припаиваются светодиодные кристаллы. Чаще всего их формируют в определенные группы и запитывают последовательно друг с другом. Через каждую созданную цепочку пропускают один и тот же ток.

Такую схему проще реализовать технически, но она обладает одним главным недостатком — при нарушении одного любого контакта вся группа перестает светить, что является основной причиной поломки лампы.

Драйверы . Подвод постоянного напряжения к каждой группе светодиодов выполняется от специального устройства, которое раньше называли блоком питания, а сейчас — термином “драйвер”.

Данное устройство несет функции преобразования входного напряжения сети, например, ~220 Вольт квартирной или 12 Вольт автомобильной сети в оптимальную величину питания каждой последовательной группы.

Подвод одного стабилизированного тока к каждому кристаллу по параллельной схеме технически сложен и применяется в редких случаях. Работа драйвера может проводиться на основе трансформаторной или иной схемы. Среди них распространены следующие варианты. В зависимости от конфигурации и количества примененных элементов они могут быть разными:

Самые простые и дешевые драйверы рассчитаны на питание от стабилизированного напряжения, сеть которого защищена от бросков и импульсов перенапряжений. У них даже может отсутствовать токоограничивающий резистор в выходной цепи питания, что характерно для аккумуляторных фонариков, светодиоды которых зачастую подключены непосредственно к выходу АКБ .

В результате, пиолучается, что они питаются завышенным током и хотя светят довольно ярко, очень часто перегорают. При использовании дешевых ламп с драйверами без защиты от перенапряжений осветительной сети светодиоды тоже часто выгорают, не выработав заявленного ресурса.

Качественно сконструированные блоки питания практически не выделяют тепло при работе, а у дешевых или перегруженных драйверов часть электроэнергии расходуется на нагрев. Причем, такие бесполезные потери электрической мощности могут быть сопоставимы, а в отдельных случаях превышать энергию, расходуемую на выделение фотонов.

назначение, принцип работы, схема и ремонт

Сейчас уже можно разделить светодиоды на два основных подтипа: индикаторные и осветительные. Осветительные светодиоды – относительно новые элементы светотехники. Первые модели применялись как индикаторы еще лет 30 назад. Но прогресс на месте не стоит. Инженерам удалось получить большую яркость при минимальном размере и потребляемом токе в сравнение с лампами. Кроме того, светодиоды имеют намного большую механическую прочность. Как лампочку их уже не разобьешь.

Светодиодная осветительная продукция серьезно потеснила практически все другие источники света. Светодиоды могут обеспечить освещение не хуже лампового. А их энергоэффективность намного выше. Обычно источники света на основе светодиодов окупаются в течение года. Сейчас их можно встретить в качестве домашнего освещения, уличных фонарей. Они устанавливаются в световое оборудование автомобилей. Даже в мониторах и телевизорах они заменили лампы подсветки.

Назначение.

Светодиод весьма чувствителен к качеству электропитания. Если пониженное напряжение ему не сделает ничего плохого, то повышенные напряжения и токи очень быстро снижают ресурс этих перспективных источников света. Многие видели, наверное, как на автомобилях хаотично моргают огни. Этот светодиод уже отслужил.

Для обеспечения стабильного электропитания (поддержания заданного напряжения и тока) необходима дополнительная электронная схема – блок питания или драйвер питания. Часто его называют led driver.

Принцип работы.

Электронная схема должна обеспечить строго стабилизированные напряжение и ток, подводимые к кристаллу. Небольшое превышение в цепи питания существенно снижает ресурс светоизлучателя.

В простейшем и самом дешевом случае просто ставят ограничительный резистор.

Питание диода через ограничивающий резистор.

Это простейшая линейная схема. Она не способна автоматически поддерживать ток. С ростом напряжения, он будет расти, при превышение допустимого значения произойдет разрушение кристалла от перегрева. В более сложном случае управление реализуется через транзистор. Недостаток линейной схемы – бесполезное рассеивание мощности. С ростом напряжения будут расти и потери. Если для маломощных LED-источников света такой подход еще допустим, то при использовании мощных светоизлучающих диодов такие схемы не используются. Из плюсов только простота реализации, низкая себестоимость, достаточная надежность схемы.

Можно применить импульсную стабилизацию. В простейшем случае схема будет выглядеть так:

Пример.Импульсная стабилизация (упрощенно)

При нажатии на кнопку происходит заряд конденсатора, при отпускании, он отдает накопленную энергию полупроводнику, а тот излучает свет.  При росте напряжения время на зарядку сокращается, при падении – увеличивается. Вот так на кнопку и надо нажимать, поддерживая свечение. Естественно, сейчас это все делает электроника. В источниках питания роль кнопки выполняет транзистор, либо тиристор. Это — принцип ШИМ — широтно-импульсная модуляция. Замыкание происходит десятки, а то и тысячи раз в секунду. КПД ШИМ может достигать 95%.

Категорически не стоит путать светодиодный драйвер и ПРА для люминесцентных ламп, у них разные принципы работы.

Характеристики драйверов, их отличия от блоков питания LED ленты.

Если сравнивать драйвер и блок питания, то у них есть различия в работе. Драйвер – это источник тока. Его задача поддерживать именно определенную силу тока через кристалл или светодиодную линейку.

Задача стабилизированного блока питания в выдаче именно стабильного напряжения. Хотя блок питания – понятие обобщенное.

Источник напряжения применяется в основном со светодиодной лентой, где диоды включены в параллель. Соответственно через них должен проходить равный ток, при неизменном напряжении. При использовании одного светодиода важно обеспечить определенную силу тока через него. Отличия есть, но оба выполняют одну и туже задачу – обеспечение стабильного питания.

Для подключения светодиодной ленты необходимы, как правило, блоки питания, выдающие 12, либо 24 В. Второй параметр – это мощность. Блок питания должен выдавать мощность не равную, а несколько большую, чем мощность подключаемой светодиодной линейки. В противном случае, яркость свечения будет недостаточна. Обычно запас по мощности рекомендуется в пределах 20-30 процентов от суммарной мощности.

При выборе драйвера нужно учесть:

  • Мощность,
  • Напряжение,
  • Предельный ток.

Кроме того, существуют и регулируемые источники питания. Их задача – регулировка яркости освещения. Но различаются принципы – регулировка напряжения, либо силы тока.

Для подключения led-линейки потребуется большая сила тока при неизменном напряжении.

Суммарная мощность будет рассчитываться по формуле P = P(led) × n, где Р – мощность, Р(led) – мощность единичного диода в линейке, n – их количество.

Сила тока через линейку будет рассчитываться по аналогичной формуле.

Если есть желание самостоятельно изготовить источник питания для светодиодов, то самый простой вариант – импульсный без гальванической развязки.

Схема простого led-драйвера без гальванической развязки.

Схема проста и надежна. Делитель основан на емкостном сопротивлении. Выпрямление производится при помощи диодного моста. Электролитический конденсатор (перед L7812) сглаживает пульсации после выпрямления. Конденсатор после L7812 сглаживает пульсации на светодиодах. На работу схемы он не влияет. L7812 – собственно сам стабилизатор. Это импортный аналог советских микросхем серии КРЕНхх. Та же самая схема включения. Характеристики несколько улучшены. Однако предельный ток составляет не более 1.2А. Это не позволит создать мощный светильник. Существуют неплохие варианты готовых источников питания.

Как выбрать драйвер для светодиодов.

От выбора драйвера зависит срок службы светодиодов. При этом светодиод достигает своих номинальных характеристик, так как получает необходимую ему мощность.

В зависимости от степени защиты драйвер можно применять либо дома, либо на улице. Внешне драйвер может быть открытым, в корпусе из перфорированного металла, либо – закрытый, размешенный в герметичной металлической коробке. Для дома достаточно негерметизированного пластикового корпуса, в котором расположен электронный блок.

Сразу стоит учесть, что ограничивающий резистор – это не самый лучший вариант. Он не избавит ни от скачков питающей сети, ни от импульсных помех. Любое изменение напряжения приведет в скачку тока. Линейные стабилизаторы также не являются достойным средством запитки светоизлучающих диодов. Его способности ограничиваются низкой эффективностью.

Выбор драйвера производится только после того, как известна суммарная мощность, схема подключения и количество светодиодов.

Сейчас много подделок и одни и те же по типоразмерам диоды могут обеспечивать разные мощности. Лучше использовать только известные марки электротехнической продукции.

На корпусе драйвера для подключения светодиодов, всегда размещена спецификация. Она включает:

  • класс защищенности от пыли и жидкости,
  • мощность,
  • номинальный стабилизированный ток,
  • рабочее входное напряжение,
  • диапазон выходного напряжения.

Достаточно популярны бескорпусные led-драйверы. Плату потребуется разместить в корпусе. Это необходимо для безопасного использования. Платы больше подходят для радиолюбителей-энтузиастов. У них входное напряжение может быть либо 12 В, либо 220 В.  

Также стоит продумать о размещении драйвера. Температура и влажность влияют на надежность системы освещения.

Не стоит пытаться выжать из источника тока максимум. Это приводит к работе на предельных режимах, соответственно возникает повышенный нагрев. Превышение может вывести стабилизатор из строя.

Виды драйверов.

По типу их можно подразделить на:

Линейные. Они наиболее подходящие, если входное напряжение не стабильно. Отличаются улучшенной стабилизацией. Распространены мало по причине низкого КПД. Выделяет большее количество тепла, подходит для маломощной нагрузки.

Внутреннее устройство драйвера

Внешний вид и схема драйвера LED 1338G7.

Импульсные. Основаны на микросхемах ШИМ. Обладают высоким КПД. Отличаются малым нагревом и длительным сроком службы.

ШИМ-драйвер Recom.

Микросхемы ШИМ создают значительный уровень электромагнитных помех. Людям с кардиостимуляторами не рекомендовано находится в помещениях, где применяются такие драйвера для питания светодиодов.

Драйвер, работающий с диммером. Принцип основан на использовании ШИМ-контроллера. Принцип состоит в том, что регулируется сила тока на светодиодах. Низкокачественные изделия дают эффект мерцания.

Драйвер с диммером.

LED драйвер на 220 В.

Существует немало уже готовых светодиодных драйверов промышленного производства. Естественно, они обладаю различными характеристиками. Их особенность в том, что они питаются от сети 220 В переменного напряжения и могут работать в широком диапазоне питающего напряжения. Задача, у них все та же. Выдать определенную силу тока. Многие промышленные изделия уже имеют гальваническую развязку. Гальваническая развязка предназначена для передачи электроэнергии без непосредственного соединения входной и выходной частей схемы. Это дополнительные очки в плане электробезопасности (простейшей и исторически первой гальванической развязкой считается обычный трансформатор). Обычно они имеют нестабильность не более 3 %. В подавляющем большинстве сохраняют работоспособность от 90-100 Вольт и до 260 Вольт. В магазинах очень часто их могут называть:

  • блок питания (БП),
  • источник тока,
  • адаптер питания,
  • источник питания.

Это все одно и тоже устройство. Продавцы не обязаны обладать техническим образованием.

Рекомендуемые производители светодиодных драйверов.

Многие светодиодные энергосберегающие лампы уже имеют встроенный драйвер. Тем не менее лучше не приобретать безымянную продукцию родом из Китая. Хотя временами и попадаются достойные внимания экземпляры, что в прочем явление редкое. Существует огромное количество поддельных осветителей. Многие модели не имеют гальванической развязки. Это представляет опасность для светодиодов. Такие источники тока при выходе из строя могут дать импульс и сжечь led-ленту.

Но тем не менее рынок в основном занят именно китайской продукцией. Российские поставщики известны не широко. Из них можно ответить продукцию фирм Аргос, Тритон ЛЕД, Arlight, Ирбис, Рубикон. Большинство моделей может работать и в экстремальных условиях.

Из иностранных можно смело выбрать источники тока от Helvar, Mean Well, DEUS, Moons, EVADA Electronics.

Led-драйвер Helvar.

Led-драйвер Mean Well.

Led-драйвер DEUS.

Led-драйвер «Ирбис».

Led-драйвер MOSO.

Из китайских можно доверять MOSO. Возможно появление новых брендов, которые производят конкурентоспособные устройства.

Хорошие рекомендации имеют Texas Instruments (США) и Rubicon (Япония, не путать с «Рубикон» Россия. Это разные марки). Но пока они дороги. 

Схема подключения драйвера к светодиодам.

Перед подключением светодиодов к драйверу необходимо уметь определять его полярность, иными словами, распознавать, где анод (+), где катод (-). Без этого света не будет.

Индикаторные диоды, а также некоторые маломощные осветительные, имеют два вывода.

Выводы светодиода.

Светодиоды в исполнении SMD (поверхностный монтаж) имеют либо 2, либо 4 вывода. В любом случае это анод и катод.

Выводы светодиодов в SMD-исполнении.

В первом случае выводы 3 и 4 могут быть не задействованы. Во втором случае косой срез расположен ближе к катоду. Обратите внимание, единого стандарта нет и возможны различия в полярности.

Поэтому можно либо обратиться к datasheet, либо использовать низковольтный источник постоянного тока и резистор ограничитель. В случае неправильной полярности светодиод не может загореться.

При использовании источника тока схема драйвера для светодиодов будет следующая:

Схема подключения светодиода.

Если у нас источник напряжения, то подключение осуществляется через ограничивающий резистор.

Схема подключения светодиода к источнику
напряжения через ограничитель.

Классическая светодиодная лента построена по такой схеме:

Схема светодиодной линейки.

В этом случае расчет производится по формулам:

Формула связи тока, напряжения, сопротивления.

При подключении важно учитывать:

  • При малой силе тока, мы теряем в яркости, при большой в сроке службы.
  • Напряжение из datasheet указывает падение напряжения при прохождении номинального тока. Этот параметром не основной.
  • Мощным светодиодам требуется и качественное питание, и хорошее охлаждение.

Схемы (микросхемы) светодиодных драйверов.

Как правило драйвера светодиодов строятся на интегральных стабилизаторах (КРЕНхх, либо импортные аналоги) или ШИМ. Схемы достаточно просты.

Использовании микросхем для стабилизации.

Принципиальные схемы светодиодных драйверов.

Существует схема самодельного источника тока на советской микросхеме К142ЕН12А.  Резистор R2 позволяет менять яркость свечения.

Принципиальная схема на отечественных компонентах.

Линейный светодиодный драйвер своими руками.

Эта часть статьи посвящена радиолюбителям.

Оригинальный линейный источник тока на компараторе.

Это весьма интересная схема. В качестве ключевого элемента выступает униполярный (полевой) транзистор. Степенью его открытия управляет микросхема – квадрантный компаратор напряжения. Возможно, эта схема покажется сложной, но тем не менее ее можно смело отнести к линейным источникам тока, так как управление током осуществляется через соединение «исток-сток». Степень открытия зависит от приложенного к затвору напряжения. Регулировка достигается за счет связи одного из входов компаратора и напряжения со стока. VD1 выполняет функцию защиты.

Срок службы светодиодных драйверов.

Как такового определенного срока службы нет, но многие производители готовы дать гарантию сроком в пять лет на свою продукцию. Естественно, при согласовании мощностей. Для того, чтобы источник питания прослужил дольше не следует давать нагрузку, при которой он будет отдавать предельные токи. Если он собран из качественных комплектующих, то он будет стабильно работать достаточно долгое время. Но рабочие температуры могут быть близки к критическим (зависит от схемотехнических решений). Оптимально, если мощность потребителей будет меньше на 20-30 процентов.

Если говорим о самодельном изготовлении, то многое зависит от качества сборки, качества радиодеталей. Интегральные стабилизаторы желательно закреплять на радиатор для обеспечения теплового режима, не следует забывать о про теплопроводящую пасту между корпусом стабилизатора и теплоотводом.


 

инструкция со схемами, фото и видео

Время чтения 8 мин.Просмотры 460Опубликовано

Конструкция светодиодной лампы включает в себя несколько элементов, совместная работа которых обеспечивает энергоэффективность, экономичность и безопасность. Устройство LED источников света сложнее, чем обычных ламп накаливания.

Как устроена светодиодная лампа?

Светодиодная лампа потребляет намного меньше электроэнергии, чем лампочка накаливания. Относится к экономичным приборам, имеющим долгий срок службы.

Принцип действия светодиодной лампы (СЛ) основан на понижении напряжения входящего тока с помощью драйвера.

Сколько Вольт поступает на диоды? В зависимости от схемы светодиодной лампы на 220 В это значение может колебаться от 1,8 до 4В.

Выпускают большое количество модификаций таких ламп, которые отличаются размером, конструкцией и формой:

  • груши;
  • свечи;
  • ленты;
  • софиты;
  • капсулы;
  • шары.

Единственной одинаковый элемент в конструкции светодиодной лампы 220 В с лампой накаливания – цоколь. Он необходим для вкручивания осветительного прибора в патрон.

Устройство светодиодной лампы на 220 вольт:

  • основание цоколя;
  • драйвер для питания светодиодов;
  • радиатор;
  • печатная плата;
  • светодиоды;
  • рассеиватель.

Через цоколь с помощью двух контактов напряжение поступает на драйвер. Он питает последовательно соединенные диоды. Его функция – понизить входящее напряжение и выпрямить ток. В дешевых лампах ток не стабилизируется и напрямую подается к диодам. В дорогих вариантах стабилизация происходит через полупроводники. Такие лампы надежнее в использовании и прослужат дольше.

Роль теплоотвода может выполнять корпус, выполненный из ребристого металла. В СЛ с пластиковым корпусом радиатор может быть выполнен отдельно и располагаться внутри конструкции.

Рассеиватель одновременно выполняет функцию защитного колпачка. Он может быть глянцевым или матовым, белым или цветным.

После включения СЛ начинается нагрев кристаллов диодов и их термическое расширение. Из тонких нитей золота делают токопроводящие выводы от светодиодов. Это пластичный металл, мало подверженный деформациям.

Типы светодиодов

Все светодиоды для лампы можно разделить на 2 группы:

  • индикаторные;
  • осветительные.

Индикаторные светодиоды называются DIP. Они используются в панелях приборов, елочных гирляндах, световых табло. Выпускаются разными по форме и цвету, потребляют очень мало электричества и имеют долгий срок службы.

Самые распространенные виды осветительных светодиодов в лампах на 220 В:

  • СОВ;
  • SMD;
  • PCB Star;
  • Filament.

Диоды СОВ имеют большое количество миниатюрных кристаллов на одной подложке. Соединяются кристаллы с помощью последовательно-параллельной схемы, сверху покрываются люминофором. Применяются для получения яркого света в фонарях и других осветительных приборах. Сильно нагреваются при длительном использовании, поэтому в качестве защиты используется силикон.

Имеют следующие преимущества:

  • хороший поток света;
  • легкий монтаж;
  • разная форма сборки.

Недостатки:

  • высокая стоимость;
  • гарантированный срок службы меньше, чем у SMD.

SMD-светодиоды самые распространенные. Широко используются в светодиодных лампочках 220В и светильниках. Полупроводниковый чип или кристалл располагается на подложке, к которой присоединены контакты подключения.

Линейка SMD отличается широким спектром мощности и напряжения.

Преимущества:

  • надежность;
  • маленькая стоимость;
  • долгий срок службы;
  • высокая светоотдача.

Диоды PCB Star состоят из одного кристалла большой площади. Он монтируется на алюминиевую подложку в форме звездочки. Используется при производстве ярких фонарей и мощных прожекторов. PCB Star имеют самый большой световой поток.

Светодиоды Filament – это наклеенные на стеклянные полоски кристаллы. С обеих сторон полосы металлизируют. Корпус конструкции – стеклянная колба, как в лампе накаливания. Внутри находится гелий, он используется для охлаждения. Используются при производстве светотехнического оборудования, их недостаток – менее долгий срок службы, чем у SMD.

Разновидности схем и их особенности

Существует 3 схемы драйверов светодиодных ламп, это варианты создания оптимального напряжения в устройствах на светодиодах. Они отличаются сборкой драйвера. Он может быть собран на основе схемы с понижающим трансформатором, такой вариант применяется в мощных и ярких лампах.

Более дешевый вид – сборка по схеме с конденсатором.

А третий вариант используется для схем с большим количеством диодов или при сборке диммируемых ламп. Их называют инверторные схемы.

Вариант N1 — с конденсаторами для снижения напряжения

Это самый распространенный тип сборки, который используется в бытовых лампочках. Основными элементами для снижения напряжения выступают конденсаторы С2, С3 и резистор R1. Во время включения лампы резисторы R2 и R3 предохраняют прибор от короткого замыкания и ограничивают ток. Встроенный защитный диод VD1 нужен для преобразования напряжения.

Резистор R4 разряжает прибор, когда ток перестает поступать. В некоторых конструкциях для светодиодных ламп используются не все 4 резистора, а других их комбинации. Такую схему можно сделать и своими руками, используя новые и старые детали.

Проверить работоспособность конденсатора можно с помощью мультиметра или LC-метра.

Преимущества схемы светодиодных ламп с конденсатором:

  • невысокая стоимость;
  • разнообразные значения напряжения на выходе;
  • простая сборка.

Недостатки:

  1. Поскольку гальваническая развязка отсутствует, есть вероятность удара током. Поэтому во время ремонта ламп запрещено прикасаться к токоведущим частям, находящимся под фазой.
  2. Напряжение на нагрузке диодов зависит от напряжения входящего тока. Светодиоды могут перегореть, потому что нет стабильной величины подачи электричества.
  3. Из-за достаточно малой емкости конденсаторов не получится достичь большого светового потока.

Вариант N2 — с импульсным драйвером

Импульсный драйвер гарантированно защищает диоды от помех в подаче тока и перепадов напряжения. Это его главное отличие от драйвера с конденсатором. В данной схеме используются конденсаторы, резисторы и мостовой выпрямитель.

Практически у каждого производителя светотехнического оборудования существует своя схема устройства. Рассмотрим для примера микросхему СРС9909 компании Clare. Она используется для энергосберегающих и экономичных приборов, эффективность применения составляет 98%.

Для сборки своими руками такая схема может использоваться при мощности светильников не более 25В. Широко применяется в электросетях резервного и аварийного освещения.

Преимущества:

  1. Питание схемы может происходить напрямую от 550В.
  2. Драйвер комплектуется встроенным стабилизатором.
  3. Возможность работы в сети с переменным напряжением. Входной диапазон в зависимости от типа модели может быть от 5 до 65В.
  4. Широкий температурный диапазон применения: от -55°С до +85°С.
  5. Компактность.
  6. Высокий КПД в сочетании с низким уровнем пульсации.

Недостатки:

  1. Более сложная схема, чем с применением линейной конструкции.
  2. Более высокая стоимость по сравнению с вариантом с конденсатором.
  3. Нагревается при работе, значительные длительные перегревы могут приводить к уменьшению срока эксплуатации.
  4. Для предотвращения электромагнитных помех, источником которых является импульсный драйвер, необходимо устанавливать дополнительный фильтр. В дешевых вариантах он не используется.
  5. Образует нелинейную нагрузку на сеть.

Вариант N3 — с диммируемым драйвером

Схема подключения светодиодной лампы с диммируемым драйвером позволяет регулировать яркость свечения. С помощью ламп с использованием такой схемы можно варьировать степень освещенности помещения или рабочей зоны. Такие схемы широко используются в интерьерном освещении.

Помимо удобства настройки лампы позволяют также экономить потребление электроэнергии, они отличаются и увеличенным сроком службы.

Различают 2 основных варианта диммируемых драйверов. Первый работает с ШИМ-управлением. Он монтируется между блоком питания и лампой. В этом случае электричество подается в виде разных по длительности импульсов. Часто такие схемы используются в бегущих строках.

Второй вариант используется для приборов со стабилизированным током, в этом случае драйвер воздействует напрямую на источник тока. Изменение цвета свечения происходит при регулировании подаваемого тока. При увеличении подачи электричества белые диоды начинают светиться синеватым, а при уменьшении излучают желтоватый свет.

По виду управления устройства с диммером могут быть:

  • кнопочные;
  • механические;
  • дистанционные.

Преимущества:

  1. Простота реализации.
  2. Возможность регулирования освещения.
  3. Приемлемая стоимость.

Недостатки:

  1. Некоторые диммеры с ШИМ-управлением имеют стробоскопические эффекты, которые могут быть очень опасными в промышленности.
  2. Высокий уровень излучаемых помех.
  3. Повышенная утомляемость зрения.

Основные неисправности светодиодных ламп

Средняя продолжительность гарантированной работы светодиодной лампы составляет 15 000-20 000 часов. Причинами того, что лампочка не зажигается, чаще всего бывают следующие:

  • Производственный брак. Особенно актуален этот вариант для ламп производителей низкой ценовой категории.
  • Ошибки в эксплуатации. В данном случае причиной может быть постоянный перегрев лампы в закрытом светильнике, влажность, пыль и грязь, выключатель с подсветкой.
  • Проблемы с питанием. Скачки напряжения, завышенные показатели напряжения или же его регулярные выбросы не лучшим образом воздействуют на работоспособность приборов.

  • Светодиоды вышли из строя. Диоды в конструкции подключены последовательно, если возникает поломка в одном из них, образуется обрыв цепи и лампа перестает работать. Можно починить такую неисправность самостоятельно. Найти поврежденный диод с помощью мультиметра. Этим устройством проверяют все диоды по очереди, подавая «-» на катод, «+» на анод. Сгоревшие диоды можно определить визуально, на них появляется темное пятно.

  • Диодный мост вышел из строя. В данном случае виноват заводской брак. С помощью мультиметра также можно проверить диодный мост и заменить его самостоятельно. При замене моста требуется также проверить работоспособность всех диодов.

  • Выводные концы плохо запаяны. Такая проблема характерна для дешевых лампочек. Если вы планируете исправить ее самостоятельно, потребуется пропаять все компоненты и детали паяльником.

Устройство светодиодной лампы — конструкция и принцип работы

Прежде чем понять, как устроена светодиодная лампа на 220 вольт, нужно разобраться, что она собой представляет и в чем ее преимущество перед лампами накаливания или люминесцентными светильниками. Конечно же, основной их плюс – это долговечность в работе и минимальное потребление электроэнергии. Почему так недолго работают обычные лампы, объяснять не приходится. И так понятно, что вольфрамовая нить – не слишком надежный материал. Но все же до недавнего времени лампы на основе этого материала практически не имели конкуренции. Сейчас же, хотя цена светодиодных ламп выше, чем у их предшественников, они быстро завоевывают рынок, пользуясь у потребителя все большим спросом.

 Что же такое светодиод?

По своему строению это многослойный полупроводниковый кристалл, который преобразует электроэнергию в обычный свет. А как это происходит, нужно разобрать более детально.

При различных вариациях компоновки чипов можно создать четыре варианта светодиодов:

Схема светодиодной лампы

Поняв суть устройства светодиодной лампы, легко разобраться в особенностях работы и даже изготовить ее самому (схема светодиодной лампы на 220 вольт представлена на рисунке ниже). Естественно, в любом из магазинов можно приобрести такой светильник, но иногда бывает трудно подобрать таковой именно с необходимыми параметрами. А кому-то просто не интересно покупать, а куда более привлекательно изготовить самому. Главное – решить вопросы расположения схемы и светодиодов, изолирования системы, а также обеспечения теплообмена.

Итак, с чего следует начать сборку? Есть множество систем, позволяющих этим осветительным приборам функционировать от сети 220 V. У всех них существует 3 главные цели:

  1. Получение пульсирующего тока из сети 220 V.
  2. Выравнивание тока до постоянного.
  3. Трансформирование тока до 12 V.

Для этого можно воспользоваться 2 вариантами – изготовить либо плату с диодным мостом, либо резисторную схему. При втором варианте необходимо использование четко определенного количества светодиодов. Нужно понять, какие плюсы и минусы есть у каждого из этих вариантов.

Схема с диодным мостом

Схема с диодным мостом

Устройство этой схемы включает в себя четыре диода, подключенных разнонаправлено. По своему принципу диодный мост должен ток из сети 220 V трансформировать в пульсирующий. Суть действия в следующем: синусоидальные полуволны при проходе по двум диодам изменяются, в результате минус теряет полярность. При сборке нужно подключить к плюсовому выходу конденсатор до моста в месте подачи переменного тока. Сопротивление в 100 Ом присоединяется перед минусом. Для сглаживания перепадов напряжения сзади моста нужен еще один конденсатор.

Такую схему несложно собрать, даже любитель при минимальных навыках справится с этой работой. Саму плату лучше позаимствовать от отработавшего свое светильника. Главное запомнить – светодиоды нужно соединять по 10 шт. последовательно, после получившиеся несколько цепей соединить параллельно.

Резисторная схема

Ее тоже совершенно несложно изготовить. При даже небольших навыках вполне по силам собрать подобную лампу даже новичку. Собирается эта схема из 2 резисторов и 2 цепочек светодиодов, состоящих из одинакового числа элементов, соединенных последовательно, но имеющих разную направленность. От первого резистора соединение идет от одной полосы светодиодов к катоду, от другой – к аноду. От второго резистора – наоборот. Оптимальное число диодов в полосе – 10-20. Вывод: изготовить самодельный драйвер и в последующем лампу на светодиодах – совершенно несложная задача.

Устройство LED-лампы на 220 V.

Устройство LED-ламп

Основные 6 частей LED-лампы – это корпус, цоколь, рассеиватель, радиатор, блок светодиодов LED и бестрансформаторный драйвер (на картинке представлено устройство светодиодной лампы на 220 V). Эти лампы вполне подлежат ремонту, если один или несколько кристаллов прогорели. Вообще в LED-светильниках обычно горит драйвер, для которого чаще всего используются такие микросхемы, как bp 3122, bp 2832а или bp 2831а. Помимо прочего, драйвер стабилизирует скачки напряжения.

На рисунке сверху изображена лампа варианта СОВ. Ее светодиод представляет собой единую пластину, в которую включено множество чипов. Если у такой лампы перегорает светодиод, то он меняется целиком, т. к. отдельные чипы невозможно поменять.

Схема светодиодного драйвера

Схема драйвера светодиодной лампы (можно понять на примере MR-16) настолько проста, насколько это возможно (драйвер LED-лампы ничем от него не отличается). Она работает так: переменный ток в 220 V проходит на мост (диодный) через конденсатор С1. Далее уже прямой ток идет на светодиоды НL1–НL27, которые подключены последовательно. Число их может достигать 80 шт. Ну а более ровного света, без мерцания, добиваются как раз при помощи конденсатора С2. Желательно, чтобы он был как можно большей емкости. Схема драйвера для светодиодов от сети 220 V представлена на рисунке.

Простейшая схема драйвера MR-16

Ремонт LED–лампы

Устройство светодиодного светильника представляет собой обычную LED-лампу, и если светодиоды в ней отдельные, а не единой пластиной с кристаллами, то ее возможно отремонтировать, заменив сгоревшие (прогоревшие) элементы. Ее с легкостью можно разобрать. Нужно разделить корпус с цоколем. Если для примера взять лампу МR-16, то как раз внутри будет находиться 27 светодиодов. Подобраться к плате с элементами можно путем снятия защитного стекла. Делается это при помощи обычной отвертки.

Иногда именно этот этап становится самым трудным. Если светодиод прогорел, то это сразу видно. Сгоревшие элементы придется поискать при помощи тестера, либо подавая на них по 1.5 V. Неисправные светодиоды необходимо заменить. Причиной мигания лампы может быть поломка конденсатора С1. При этом нужно поставить другой, с напряжением 400 V.

Особенности ламп со штыревым цоколем

По сути, лампа со штыревым цоколем практически ничем не отличается. Единственное, что необходимо знать, это маркировку, которая наносится на корпус. Относится она именно к особенностям цоколя.

  • G – это как раз указывает на то, что у лампы штыревой цоколь.
  • U – маркер того, что лампа энергосберегающая.
  • 10 – расстояние от одного до другого штыря в миллиметрах.

Как проверить светодиодную лампу при покупке?

Светодиодная лампа с цоколем Е-27

Примером послужит лампа с цоколем Е-27 и питанием в 220 V. Как при покупке не ошибиться, выбрав качественный товар? Необходимо внимательно осмотреть всю конструкцию светодиодной лампы. Изначально нужно посмотреть на радиатор. Он должен быть литым, а не наборным, т. к. в том числе и от него зависит долговечность работы выбранной лампы. Радиатор стоит в прямой зависимости от мощности, следовательно, чем мощнее лампочка, тем больше охладитель. Очень хорошо себя показывают алюминиевые, керамические либо графитовые.

Наилучший вариант – термопластиковое покрытие радиатора. После необходимо убедиться в отсутствии люфтов в цоколе, а также видимых механических повреждений. В любом магазине электротоваров имеется возможность включения лампы в сеть для проверки. При подаче питания на лампу нужно обратить внимание на исходящий от нее свет. Даже если мерцания не видно, необходимо посмотреть на прибор через камеру сотового телефона. На экране будет четко видно наличие или отсутствие мерцания. Если же имеется пульсация, такую лампу покупать не стоит. Что касается маркировки, то она должна быть четкой и хорошо читаемой, т. к. именно на основе этой информации выбирается тип светодиодной лампы.

Общие сведения

Применение светодиодных ламп необычайно широко. Это и бытовое освещение, и промышленное, и даже уличное. По своей сути такие световые приборы являются самыми экологически чистыми, т. к. не содержат опасных веществ (таких, как ртуть и т. п.) в отличие от люминесцентных или ртутных (ДРЛ) ламп. Световые приборы, имеющие в основе нить из вольфрама, дают много света, но их эффективность весьма сомнительна, т. к. 95 процентов уходит на выработку тепла, в чем и состоит отличие от принципа работы светодиодной лампы. Очень интересно, что после того, как было запрещено продавать лампы мощностью свыше 100 Ватт, их все равно не перестали выпускать. Только теперь они называются не лампочки, а «теплоизлучатели», что по своей сути правильно. Есть различные корпуса светодиодных ламп, а также различные типы цоколя. На картинке указаны маркировки, по которым можно определить, какая именно лампа нужна для того или иного прибора. Интересен также и цвет таких ламп. С первого взгляда может показаться, что он просто белый, однако это не так. Есть специальный индекс цветопередачи – CRI. Если он низок, то освещение будет казаться неприятным, хотя будет непонятно почему, ведь оно визуально не отличается. Если брать за пример солнце или обычную лампочку, то их CRI будет равен 100. Качественная светодиодная лампа имеет CRI 90. Ну а если CRI менее 80, то такие световые приборы не рекомендуется использовать в местах проживания.

Виды светодиодных ламп

Так что же в итоге? Конечно, личное дело каждого, какие осветительные приборы использовать, но то, что светодиодные лампы помимо своей экологичности еще и очень экономичны – это неоспоримый факт, а значит, они будут продолжать завоевывать рынок электротехники до тех пор, пока не появится что-то новое.

Бестрансформаторная схема драйвера светодиодов постоянного тока

В этом посте мы узнаем, как всего одна микросхема MBI6001 может использоваться в качестве бестрансформаторной схемы драйвера светодиодов постоянного тока для освещения цепочки из множества светодиодов, соединенных последовательно.

ИС серии MBI6001 предназначены для работы с сетевым входом переменного тока и преобразования его в выходное напряжение постоянного тока с более низким напряжением, которое можно использовать для управления группой последовательно соединенных светодиодов.

Микросхема оснащена импульсным токовым ШИМ-выходом, который позволяет устанавливать ток на точном уровне в соответствии с номиналом светодиодов.

ИС с маркировкой N1x предназначены для работы с входами 110 В переменного тока, а серия N2x — с входами 220 В.

Использование IC MBI6001

Что касается стандартной бестрансформаторной схемы драйвера светодиодов постоянного тока с использованием IC MBI6001, мы почти не видим никаких внешних компонентов, кроме нескольких резисторов.

Здесь резисторы R1, R2 и R3 помогают определить правильную настройку ШИМ для достижения предполагаемого постоянного тока на выходе микросхемы.

Значения резисторов рекомендованы производителем и могут использоваться в соответствии с данными инструкциями.Об этом мы поговорим в следующей части статьи.

Сколько светодиодов можно использовать на выходе.

Количество светодиодов, которое можно смело использовать на выходе этой ИМС, на самом деле не критично. Можно использовать любое количество светодиодов на показанных выходных контактах ИС, напряжение на последовательностях автоматически регулируется внутренней схемой ИС.

Однако максимальное суммарное прямое напряжение подключенной серии светодиодов не может превышать значение входного переменного напряжения, в противном случае свет от светодиодов может уменьшиться и стать тусклым.

Выбор ограничения постоянного тока для светодиодов

Как объяснялось ранее, микросхема использует ШИМ для управления током светодиода, и это может быть установлено в соответствии с требованиями или максимальным безопасным пределом цепочки светодиодов.

Вышеупомянутое определяется различными резисторами, включенными снаружи в ИС, и реализуется либо за счет увеличения рабочего цикла ШИМ, либо за счет уменьшения рабочего цикла ШИМ.

Однако 90 мА является максимальным значением тока, которое может быть достигнуто с помощью этой ИС, что означает, что светодиоды высокой мощности не могут использоваться с этой бестрансформаторной схемой драйвера светодиодов постоянного тока.

Кроме того, при токе выше 23 мА микросхема может начать нагреваться, снижая общую эффективность схемы, поэтому при превышении этого предела микросхема должна быть заклеена алюминиевым радиатором, чтобы поддерживать оптимальную реакцию.

Таблица спецификаций светодиодов

В следующей таблице показаны значения R2, ​​которые могут быть правильно выбраны пользователем в соответствии с предпочтительными характеристиками светодиодов.

Резистор R1 может быть заменен резистором 1K и не очень критичен, хотя его назначение предназначено для тонкой настройки интенсивности подключенной светодиодной цепочки, поэтому может быть немного изменено для получения желаемой интенсивности от светодиодов.

R3 является необязательным и может быть просто опущен, его использование ограничено некоторыми дополнительными требованиями и может быть проигнорировано для общего применения, как описано выше.

Использование полевого МОП-транзистора

Если вы считаете, что вышеупомянутая микросхема устарела, вы можете попробовать следующую универсальную схему бестрансформаторного драйвера светодиодов постоянного напряжения и постоянного тока на основе полевого МОП-транзистора.

ПОЖАЛУЙСТА, СНИМИТЕ C1 С УКАЗАННОГО ПОЗИЦИИ И ПОМЕСТИТЕ ЕГО ПЕРЕКРЕЗНО ВЫХОДНЫЕ КЛЕММЫ ЦЕПИ

Последовательная лампа может быть исключена, если ток нагрузки находится в пределах допустимой нагрузки МОП-транзистора.

R2 можно рассчитать по следующей формуле:

R2 = (напряжение питания после моста — общее прямое напряжение светодиода) / ток светодиода

В этом проекте мы разработали простую схему драйвера светодиодов на 230 В, которая может управлять светодиодами напрямую от сети.

Светодиод — это особый тип диода, используемый в качестве оптоэлектронного устройства. Подобно диоду с PN-переходом, он проводит ток при прямом смещении.Однако особенностью этого устройства является его способность излучать энергию в видимом диапазоне электромагнитного спектра, т.е. видимый свет.

Основной проблемой при управлении светодиодом является обеспечение почти постоянного входного тока. Часто светодиод приводится в действие с помощью батарей или устройств управления, таких как микроконтроллеры. Однако у них есть свои недостатки, например — малое время автономной работы и т. д.

Возможным подходом было бы управление светодиодом с помощью источника питания переменного тока в постоянный. Хотя преобразование переменного тока в постоянный с использованием трансформатора довольно популярно и широко используется, для таких приложений, как управление нагрузками, такими как светодиоды, оно оказывается довольно дорогостоящим, и, кроме того, с помощью трансформатора невозможно получить слаботочный сигнал.

Принимая во внимание все факторы, здесь мы разработали простую схему питания светодиода от сети 230 В переменного тока. Это достигается с помощью блока питания на основе конденсатора. Это недорогая и эффективная схема, которую можно использовать дома.

Связанная статья: Схема драйвера биполярного светодиода

Принцип работы драйвера светодиодов 230 В

Основным принципом схемы драйвера светодиодов 230 В является бестрансформаторное питание. Основным компонентом является конденсатор переменного тока с рейтингом X, который может снизить ток питания до подходящей величины.Эти конденсаторы подключаются между линиями и предназначены для высоковольтных цепей переменного тока.

Конденсатор с рейтингом X снижает только ток, а напряжение переменного тока может выпрямляться и регулироваться в более поздних частях цепи. Переменный ток высокого напряжения и слабого тока выпрямляется в постоянный ток высокого напряжения с помощью мостового выпрямителя. Этот постоянный ток высокого напряжения затем выпрямляется с помощью стабилитрона в постоянный ток низкого напряжения.

Наконец, низкое напряжение и малый ток постоянного тока подаются на светодиод.

Схема драйвера светодиодов 230 В

Необходимые компоненты

  • 2.Полиэфирный пленочный конденсатор 2 мкФ (225 Дж – 400 В)
  • Резистор 390 кОм (1/4 Вт)
  • Резистор 10 Ом (1/4 Вт)
  • Мостовой выпрямитель (W10M)
  • Резистор 22 кОм (5 Вт)
  • Поляризованный конденсатор 4,7 мкФ / 400 В
  • Резистор 10 кОм (1/4 Вт)
  • Стабилитрон 4,7 В (1N4732A) (1/4 Вт)
  • Поляризованный конденсатор 47 мкФ / 25 В
  • Светодиод 5 мм (красный — рассеянный)

Как спроектировать схему драйвера светодиодов на 230 В?

Во-первых, 2.2 мкФ / 400 В X — Номинальный конденсатор подключен к сети. Важно выбрать конденсатор с номинальным напряжением выше, чем напряжение питания. В нашем случае напряжение питания составляет 230 В переменного тока. Следовательно, мы использовали конденсатор с номинальным напряжением 400 В.

Резистор 390 кОм подключен параллельно этому конденсатору для его разрядки при отключении питания. Резистор 10 Ом, который действует как предохранитель, подключен между источником питания и мостовым выпрямителем.

Следующая часть схемы представляет собой двухполупериодный мостовой выпрямитель.Мы использовали однокристальный выпрямитель W10M. Он способен выдерживать ток до 1,5 Ампер. Выход мостового выпрямителя фильтруется с помощью конденсатора 4,7 мкФ / 400 В.

Для регулирования постоянного тока мостового выпрямителя мы используем стабилитрон. Для этой цели используется стабилитрон 4,7 В (1N4732A). Перед стабилитроном мы подключили последовательный резистор 22 кОм (5 Вт) для ограничения тока.

Регулируемый постоянный ток подается на светодиод после его фильтрации с помощью конденсатора 47 мкФ / 25 В.

Как работает схема драйвера светодиода 230 В?

В этом проекте построена простая бестрансформаторная схема драйвера светодиодов на 230 В. Основными компонентами этого проекта являются конденсатор с рейтингом X, стабилитрон и резистор, который ограничивает ток в стабилитроне. Давайте посмотрим, как работает этот проект.

Во-первых, конденсатор с номиналом X 2,2 мкФ (225 Дж — 400 В) будет ограничивать переменный ток от сети. Чтобы рассчитать этот ток, вы должны использовать емкостное реактивное сопротивление конденсатора с номиналом X.

Формула для расчета емкостного реактивного сопротивления приведена ниже.

Итак, для конденсатора 2,2 мкФ X C можно рассчитать следующим образом.

Итак, по закону Ома ток, который пропускает конденсатор, определяется как I = V/R.

Следовательно, ток через конденсатор = 230/1447,59 = 0,158 Ампер = 158 мА.

Это общий ток, поступающий на мостовой выпрямитель. Теперь выход мостового выпрямителя фильтруется с помощью конденсатора.Важно выбрать соответствующее номинальное напряжение для этого конденсатора.

Входное напряжение мостового выпрямителя составляет 230 В переменного тока, что соответствует среднеквадратичному напряжению. Но максимальное напряжение на входе мостового выпрямителя дается

.

В МАКС. = В СКЗ x √2 = 230 x 1,414 = 325,26 В.

Следовательно, вам необходимо использовать фильтрующий конденсатор с номинальным напряжением 400 В. Выпрямленное напряжение постоянного тока составляет около 305 В. Это должно быть доведено до полезного диапазона для освещения светодиода. Следовательно, в проекте используется стабилитрон.

Для этой цели используется стабилитрон 4,7 В. Есть три важных фактора, связанных со стабилитроном, который действует как регулятор: резистор серии А, номинальная мощность этого резистора и номинальная мощность стабилитрона.

Во-первых, серийный резистор. Этот резистор будет ограничивать ток, протекающий через стабилитрон. При выборе последовательного резистора можно использовать следующую формулу.

Здесь V IN — входное напряжение стабилитрона, равное 305 В.

В Z — это напряжение Зенера (которое совпадает с напряжением нагрузки V L ) = 4,7 В.

I L — это ток нагрузки, т. е. ток через светодиод, который равен 5 мА.

I Z — это ток через стабилитрон и равен 10 мА.

Таким образом, номинал последовательного резистора R S можно рассчитать следующим образом.

Теперь номинальная мощность этого резистора. Номинальная мощность последовательного резистора очень важна, так как она определяет количество мощности, которое может рассеивать резистор.Для расчета номинальной мощности резистора серии R S можно использовать следующую формулу.

Наконец, номинальная мощность стабилитрона. Вы можете использовать следующую формулу для расчета номинальной мощности стабилитрона.

Основываясь на вышеприведенных расчетах, мы выбрали последовательный резистор сопротивлением 22 кОм, рассчитанный на 5 Вт, и стабилитрон на 4,7 В, рассчитанный на 1 Вт (на самом деле стабилитрона на четверть ватта будет достаточно).

На светодиод подается выпрямленное и стабилизированное напряжение с ограниченным током.

Преимущества

  • С помощью этой схемы драйвера светодиодов на 230 В мы можем управлять светодиодами напрямую от основного источника питания.
  • Этот проект основан на бестрансформаторном источнике питания. Следовательно, окончательная сборка не будет большой.
Применение схемы драйвера светодиодов 230 В
  1. Эту схему можно использовать для домашних систем освещения.
  2. Может использоваться как индикаторная схема.
  3. Можно починить эту цепь с дверным звонком для индикации.
Ограничения схемы драйвера светодиодов 230 В
  1. Поскольку здесь напрямую используется питание 230 В переменного тока, эта цепь может быть опасной.
  2. Эта схема лучше всего подходит для бытовых применений с однофазным питанием. Это связано с тем, что в случае трехфазного питания, если какая-либо из фаз случайно коснется входной клеммы, это может оказаться весьма опасным.
  3. Конденсатор может создавать всплески при колебаниях сети.

Общие сведения о драйверах светодиодов от LEDSupply

Драйверы светодиодов

могут быть запутанной частью светодиодной технологии.Существует так много разных типов и вариаций, что иногда это может показаться немного ошеломляющим. Вот почему я хотел написать краткий пост с объяснением разновидностей, их различий и вещей, на которые следует обращать внимание при выборе драйвера(ов) светодиодов для освещения.

Что такое светодиодный драйвер, спросите вы? Драйвер светодиода — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов. Это важная часть схемы светодиодов, и работа без нее приведет к сбою системы.

Использование одного из них очень важно для предотвращения повреждения ваших светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение — это количество вольт, которое требуется светоизлучающему диоду, чтобы проводить электричество и загораться. По мере повышения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока, пока не сгорит, это также известно как тепловой разгон.Драйвер светодиода представляет собой автономный источник питания с выходами, соответствующими электрическим характеристикам светодиода(ов). Это помогает избежать теплового разгона, поскольку драйвер светодиода с постоянным током компенсирует изменения прямого напряжения, подавая на светодиод постоянный ток.

На что обратить внимание перед выбором драйвера светодиодов

  • Какой тип светодиодов используется и сколько?
    • Узнайте прямое напряжение, рекомендуемый управляющий ток и т. д.
  • Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
    • Здесь мы рассматриваем постоянный ток и постоянное напряжение.
  • Какой тип питания будет использоваться? (постоянный ток, переменный ток, батареи и т. д.)
  • Каковы ограничения по объему?
    • Работаете в ограниченном пространстве? Не так много напряжения для работы?
  • Каковы основные цели приложения?
    • Размер, стоимость, эффективность, производительность и т. д.
  • Требуются ли какие-либо специальные функции?
    • Диммирование, пульсация, микропроцессорное управление и т. д.

Во-первых, вы должны знать…

Существует два основных типа драйверов: те, которые используют входную мощность постоянного тока низкого напряжения (обычно 5–36 В постоянного тока), и те, которые используют входную мощность переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, использующие питание переменного тока высокого напряжения, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиодов с низким напряжением постоянного тока.Даже если ваш вход представляет собой высоковольтный переменный ток, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуется использовать низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше вариантов диммирования и вывода по сравнению с высоковольтными драйверами переменного тока, поэтому у вас больше возможностей для работы в вашем приложении. Однако, если у вас есть большой проект общего освещения для жилых или коммерческих помещений, вы должны увидеть, как драйверы переменного тока могут быть лучше для этого типа работы.

Вторая вещь, которую вы должны знать

Во-вторых, вам нужно знать ток привода, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для работы света. Важно знать характеристики вашего светодиода, чтобы вы знали рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или избыточным теплом. Наконец, полезно знать, что вы ищете в своем приложении для освещения.Например, если вы хотите диммировать, вам нужно выбрать драйвер с возможностью диммирования.

Немного о затемнении

Затемнение светодиодов зависит от того, какую мощность вы используете; поэтому я рассмотрю варианты затемнения как постоянного, так и переменного тока, чтобы мы могли лучше понять, как затемнять все приложения, будь то постоянный или переменный ток.

Диммирование постоянного тока

Низковольтные драйверы с питанием от постоянного тока можно легко диммировать двумя различными способами. Самым простым решением для диммирования для них является использование потенциометра.Это дает полный диапазон диммирования от 0 до 100%.

Потенциометр 20 кОм

Это обычно рекомендуется, когда в вашей схеме есть только один драйвер, но если есть несколько драйверов, регулируемых одним потенциометром, значение потенциометра можно найти из – KΩ/N – где K – значение вашего потенциометра, а N это количество драйверов, которые вы используете. У нас есть проводные BuckPucks, которые поставляются с потенциометром поворотной ручки 5K для затемнения, но у нас также есть этот потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock.Просто подключите заземляющий провод диммирования к центральному контакту, а диммирующий провод — к одной или другой стороне (выбор стороны просто определяет, в какую сторону вы повернете ручку, чтобы сделать ее тусклой).

Вторым вариантом диммирования является использование настенного диммера 0–10 В, например, нашего регулятора яркости низкого напряжения A019. Это лучший способ диммирования, если у вас несколько устройств, так как диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммирующие провода прямо к входу драйвера, и все готово.

Диммирование переменного тока

Для высоковольтных драйверов переменного тока есть несколько вариантов затемнения, в зависимости от вашего драйвера. Многие драйверы переменного тока работают с диммированием 0-10 В, как мы рассмотрели выше. Мы также предлагаем драйверы светодиодов Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими диммерами с передним и задним фронтом. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами диммирования в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов можно запустить с драйвером?

Максимальное количество светодиодов, которое вы можете запустить от одного драйвера, определяется путем деления максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов.При использовании драйверов LuxDrive максимальное выходное напряжение определяется путем вычитания 2 вольт из входного напряжения. Это необходимо, потому что драйверам требуется 2 вольта для питания внутренней схемы. Например, при использовании драйвера BuckPuck Wired 1000 мА с входным напряжением 24 вольта максимальное выходное напряжение составит 22 вольта.

Что мне нужно для Силы?

Это подводит нас к тому, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно нашему максимальному выходному напряжению для нашего драйвера после того, как мы примем во внимание служебное напряжение схемы драйвера.Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы будем использовать проводной BuckPuck 1000 мА, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.

V o + (V f x LED n ) = V в

Где:

В o = дополнительное напряжение для драйверов – 2, если вы используете драйвер DC LuxDrive, или 4, если вы используете драйвер AC LuxDrive

В f = прямое напряжение светодиодов, которые вы хотите запитать

LED n = Количество светодиодов, которые вы хотите подключить

В в = Входное напряжение драйвера

Спецификации продукта со страницы продукта Cree XPG2

Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока и вы используете описанный выше Wired BuckPuck, то напряжение V в должно быть не менее 20 В постоянного тока на основе следующего расчета.

2 + (3,0 х 6) = 20

Определяет минимальное входное напряжение, которое необходимо обеспечить. Нет никакого вреда в использовании более высокого напряжения вплоть до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания 20 В постоянного тока, вы, вероятно, будете использовать блоки питания 24 В постоянного тока для работы этих светодиодов.

Теперь это помогает нам убедиться, что напряжение работает, но чтобы найти правильный источник питания, нам также нужно найти мощность всей светодиодной схемы.Расчет мощности светодиода:

В f x Ток привода (в амперах)

Используя 6 светодиодов XPG2 сверху, мы можем найти наши ватты.

3,0 В x 1 А = 3 Вт на светодиод

Общая мощность цепи = 6 x 3 = 18 Вт

При расчете подходящей мощности источника питания для вашего проекта важно предусмотреть 20-процентную «амортизацию» при расчете мощности. Добавление этой 20-процентной подушки предотвратит перегрузку источника питания.Перегрузка блока питания может привести к мерцанию светодиодов или преждевременному выходу из строя блока питания. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего приведенного выше примера нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт с выходным напряжением 24 В.

Что делать, если у меня недостаточно напряжения?

Использование повышающего драйвера светодиодов (FlexBlock)

Драйверы светодиодов FlexBlock являются повышающими драйверами, что означает, что они могут выдавать более высокое напряжение, чем то, которое на них подается.Это позволяет подключать больше светодиодов с помощью одного драйвера светодиодов. Это чрезвычайно полезно в приложениях, где ваше входное напряжение ограничено, и вам нужно получить

ФлексБлок

больше мощности светодиодам. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которое вы можете подключить с помощью одного драйвера, определяется путем деления максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и различаться по входному напряжению.В режиме Buck-Boost (стандартный) FlexBlock может работать со светодиодными нагрузками, которые выше, ниже или равны напряжению источника питания. Максимальное выходное напряжение драйвера в этом режиме находится по формуле:

48 В постоянного тока – В в

Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы можем работать с 700 мА FlexBlock? Ваше максимальное выходное напряжение составляет 36 В постоянного тока (48-12), а прямое напряжение XPG2, работающего при 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы увидим, что этот драйвер может питать 12 светодиодов.В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока всего от 10 В постоянного тока. Таким образом, если бы вы были в режиме Boost-Only, вы могли бы включить до 16 светодиодов (48/2,9). Здесь мы подробно рассмотрим использование повышающего драйвера FlexBlock для питания ваших светодиодов.

Проверка мощности драйверов переменного тока высокой мощности

Теперь с входными драйверами переменного тока они выделяют определенное количество ватт для работы, поэтому вам нужно найти мощность ваших светодиодов. Вы можете сделать это, используя эту формулу:

[Vf x ток (в амперах)] x LEDn = мощность

Таким образом, если мы попытаемся запитать те же 6 светодиодов Cree XPG2 при токе 700 мА, ваша мощность будет…

[2.9 х 0,7] х 6 = 12,18

Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, например, наш светодиодный драйвер Phihong 15 Вт.

ПРИМЕЧАНИЕ. При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 вольт. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), вам потребуется соединить не менее 6 таких светодиодов последовательно для работы с этим конкретным драйвером.

Инструменты для понимания и поиска правильного светодиодного драйвера

Итак, теперь у вас должно быть довольно хорошее представление о том, что такое драйвер светодиодов, и о том, на что следует обращать внимание при выборе драйвера с источником питания, достаточным для вашего приложения. Я знаю, что еще будут вопросы, и для этого вы можете связаться с нами по телефону (802) 728-6031 или по электронной почте [email protected]

У нас также есть этот инструмент выбора драйвера, который помогает рассчитать, какой драйвер будет лучше всего, введя характеристики вашей схемы.

Если для вашего приложения требуется нестандартный размер и мощность, свяжитесь с LEDdynamics. Их подразделение LUXdrive быстро спроектирует и изготовит индивидуальные светодиодные драйверы прямо здесь, в Соединенных Штатах.

Спасибо за внимание, и я надеюсь, что этот пост поможет всем тем, кто интересуется, что такое светодиодные драйверы.

светодиод%20драйвер%20220v%2030v%2050w%20схема%20верхний лист данных и примечания по применению

2009 — Драйвер 1 Вт 350 мА для светодиодов LM PWM 12 В

Резюме: TDK sepic pfc LM3429 LM3409 GA3252-AL Драйвер светодиодов 12 В, 350 мА par38 LM3401 LM3405A LM3407
Текст: нет доступного текста файла


Оригинал
PDF 350 мА IF350мА 03-5639-7300www 550264-006-ДжП 1 Вт 350 мА светодиодный драйвер IC LM PWM 12 В ТДК сепик пфк LM3429 LM3409 GA3252-AL Драйвер светодиода 12 В, 350 мА пар38 LM3401 LM3405A LM3407
2012 — 8X8 СВЕТОДИОДНЫЙ МАТРИЧНЫЙ ДИСПЛЕЙ

Аннотация: 11-контактный 7-сегментный светодиодный дисплей 0.56 4-разрядный 7-сегментный светодиодный дисплей SMD 3528 RGB LED piranha super flux Piranha RGB LED 11-контактный 7-сегментный светодиодный дисплей BL-FL7680 BL-S100D-12 2-РАЗРЯДНЫЙ 7-СЕГМЕНТНЫЙ СВЕТОДИОДНЫЙ ДИСПЛЕЙ
Текст: нет доступного текста файла


Оригинал
PDF BL-AC1Z10 BL-AC1Z18x2 БЛ-AC1Z18x4 БЛ-AC1Z20 БЛ-АР02З1212 БЛ-АР02З1407 БЛ-АР03З2207 БЛ-АР05З3007 БЛ-АР05З3707 БЛ-АР05З5706 8X8 СВЕТОДИОДНЫЙ МАТРИЧНЫЙ ДИСПЛЕЙ 11-контактный 7-сегментный светодиодный дисплей 0,56 4-разрядный 7-сегментный светодиодный дисплей СМД 3528 РГБ LED пиранья супер флюс RGB-светодиод Пиранья 11-контактный 7-сегментный светодиод BL-FL7680 БЛ-С100Д-12 2-ЗНАЧНЫЙ 7-СЕГМЕНТНЫЙ СВЕТОДИОДНЫЙ ДИСПЛЕЙ
Г2ЗМФ11

Реферат: Рондо 1000ВА 24-240В
Текст: нет доступного текста файла


Оригинал
PDF G2ZMF11 4-240В 10 минут 30 минут 150 мс 500 мс 1500 мс Рондо 1000ВА 24-240В
2009 — Драйвер 1 Вт 350 мА для светодиодов LM PWM 12 В

Резюме: 3Вт светодиодный драйвер TDK sepic pfc LM3406HV LED1012 LM3409 3Вт светодиод SMB4001 LM3404HV LM3405A
Текст: нет доступного текста файла


Оригинал
PDF 350 мА IF350мА 03-5639-7300www 550264-006-ДЖП-201004-1 1 Вт 350 мА светодиодный драйвер IC LM PWM 12 В 3Вт светодиодный драйвер ТДК сепик пфк ЛМ3406ХВ LED1012 LM3409 3 Вт светодиод SMB4001 ЛМ3404ХВ LM3405A
2004 — CLD-AP05

Аннотация: xlamp 7090 mcpcb
Текст: нет доступного текста файла


Оригинал
PDF -AP05 CLD-AP05 хлампа 7090 mcpcb
2006 — ТОО-14

Реферат: AN1187 AN-1187 JESD51-7 LM27952
Текст: нет доступного текста файла


Оригинал
PDF LM27952 LM27952 ТОО-14 DS201480-02-JP ТОО-14 АН1187 Ан-1187 ДЖЭСД51-7
2007 — Ан-1187

Реферат: LM27965 LM27965SQ LM27965SQ-M диод D3B en3b
Текст: нет доступного текста файла


Оригинал
PDF дс201550 LM27965 180 мА 25мм2 LM27965SQ) LM27965SQ-М) Ан-1187 LM27965 LM27965SQ LM27965SQ-М диод Д3Б en3b
3528 Светодиод

Реферат: 5050 LED Led 5050 5050led T25-1157-13led DIP LED T10-BA9S-1led LED DIP h4-25led-3528 led 3528
Текст: нет доступного текста файла


Оригинал
PDF DC12/24 Т5-1лед-5050 Т25-1157-13лед Т25-1157-20лед Т25-1157-4лед-4Вт T20-7443-3led-3W DC12/24 Т25-1157-12лед 3528 светодиод 5050 светодиодов Светодиод 5050 5050светодиод Т25-1157-13лед DIP-светодиод T10-BA9S-1led ДИП-светодиод h4-25led-3528 светодиод 3528
2009 — плиобонд 20

Резюме: Dow Corning 1-2577 Dow Corning 3-1953 1B73 HUmiseal 1B51NS Радиостанция со светодиодами Loctite сумо NC-SMQ92J Windex с уксусом
Текст: нет доступного текста файла


Оригинал
PDF XL4550xx-xx-xxxx XR7090xx-xx-xxxx CLD-AP16 плиобонд 20 Доу Корнинг 1-2577 Доу Корнинг 3-1953 1Б73 HUMISEAL 1Б51НС радиорубка светодиодная локтайт сумо NC-SMQ92J виндекс с уксусом
1985 — ИС управления ШИМ 07

Резюме: LM3429 АНАЛОГОВЫЙ DIMMING DAP 6A lm3429 N mosfet 100v 200A d11510 JESD22-A114-C LED 10A pwm LM3429Q1 DAP 07
Текст: нет доступного текста файла


Оригинал
PDF LM3429 LM3429Q1 AEC-Q100 LM3429Q1 ДС300944-07-ДжП ИС управления ШИМ dap 07 LM3429 АНАЛОГОВОЕ ЗАТЕМНЕНИЕ ДАП 6А лм3429 МОП-транзистор N 100 В 200 А д11510 ДЖЭСД22-А114-С светодиод 10A ШИМ ДАП 07
2006 — smd диод B4

Реферат: smd диод a7 smd диод a5 AN1112 LM27953 micro smd диод a7 led smd 50 w
Текст: нет доступного текста файла


Оригинал
PDF LM27953 100 Гц СМД-18 DS201280-01-JP LM27953 smd-диод B4 смд диод а7 смд диод а5 АН1112 микро smd диод а7 светодиод смд 50 Вт
2009 — 1Вт HB LED

Резюме: драйвер светодиода 90 В, 350 мА PAR38 luminus, техническое описание Q5, схема драйвера светодиода 12 В постоянного тока, 350 мА, LM3409 PT39 LEDMR16 LM3407
Текст: нет доступного текста файла


Оригинал
PDF 350 мА IF350мА 03-5639-7300www 1803485-005-ДжП 1Вт HB-светодиод Драйвер светодиода 90В, 350мА ПАР38 техническое описание люминуса Светодиод Q5 Схема драйвера светодиода 12В постоянного тока 350мА LM3409 ПТ39 LEDMR16 LM3407
ДИММЕР IC

Аннотация: SM8131B SM8131B00B диммер LED
Текст: нет доступного текста файла


Оригинал
PDF SM8131B SM8131B 00МАКС. 15 мА/ч, 20 мА/канал) КФН-20 NC0322C ДИММЕР IC СМ8131Б00Б диммер LED
2007 — ЖК-печатная плата

Реферат: Светодиодный телевизор RGBLED LP5521 LP5520 SMD-25 LP5527 LP5526 LP5522
Текст: нет доступного текста файла


Оригинал
PDF LP5521 LP5520 ЖК-печатная плата светодиод RGB светодиодный телевизор RGBLED LP5520 СМД-25 LP5527 LP5526 LP5522
2007 — драйвер постоянного тока lm317

Резюме: HV9910 L6902 HV9910B преобразователь постоянного тока 12 В конструкция HV9910B TLE4242G hv9910b повышающий преобразователь AN3639 драйвер постоянного тока постоянного тока hv9910 700 мА hv9910 замечание по применению
Текст: нет доступного текста файла


Оригинал
PDF АВ01-0660ЕН АВ02-0532ЕН драйвер постоянного тока lm317 ХВ9910 L6902 Преобразователь постоянного тока в постоянный HV9910B, дизайн 12 В ХВ9910Б TLE4242G повышающий преобразователь hv9910b АН3639 драйвер постоянного тока hv9910 700ma примечание к применению hv9910
Недоступно

Резюме: нет абстрактного текста
Текст: нет доступного текста файла


Оригинал
PDF 1000 мА АМЛДЛ-3030Z DIP14 АМЛДЛ-3035Z АМЛДЛ-3050Z DIP16 АМЛДЛ-3060Z
СМ8135ББ

Аннотация: SM8135B
Текст: нет доступного текста файла


Оригинал
PDF СМ8135Б 20 мА/канал) NC0707A SM8135BB СМ8135Б
2011 — 230 В перем. тока до 12 В пост. тока ic

Реферат: 230В переменного тока в 12В постоянного тока без трансформатора 230В переменного тока в 5В постоянного тока ic МОСТ-ВЫПРЯМИТЕЛЬ 12В 5А трансформатор от 230В переменного тока в 5В постоянного тока 230В переменного тока в 12В постоянного тока без трансформатора для светодиода 230В переменного тока в 12В постоянного тока без трансформаторной схемы 3А, 50В МОСТ- ВЫПРЯМИТЕЛЬ МОСТ-ВЫПРЯМИТЕЛЬ 12v ,5A МОСТ-ВЫПРЯМИТЕЛЬ
Текст: нет доступного текста файла


Оригинал
PDF МАКС16840L МАКС16840 МАКС16840 от 230 В переменного тока до 12 В постоянного тока 230В переменного тока в 12В постоянного тока без трансформатора от 230 В переменного тока до 5 В постоянного тока МОСТ-ВЫПРЯМИТЕЛЬ 12v 5A трансформатор с 230В переменного тока на 5В постоянного тока Цепь от 230 В переменного тока до 12 В постоянного тока без трансформатора для светодиода 230 В переменного тока на 12 В постоянного тока без схемы трансформатора 3А, 50В МОСТ-ВЫПРЯМИТЕЛЬ МОСТ-ВЫПРЯМИТЕЛЬ 12В ,5А МОСТ-ВЫПРЯМИТЕЛЬ
2002 — SE012

Реферат: sta474a SE140N диод SE115N 2SC5487 SE090 sanken SE140N STA474 UX-F5B
Текст: нет доступного текста файла


Оригинал
PDF 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 SE012 sta474a SE140N диод SE115N 2SC5487 SE090 Санкен SE140N СТА474 UX-F5B
светодиод питания

Реферат: TL12W01-D TL12W02-D TL12 tl1202 TL12W02-L TL1201
Текст: нет доступного текста файла


Оригинал
PDF TL12W01-D TL12W01-D) TL12W02-D) TL12W02-D TL1203 ТЛ12В03-ДТЛ12В03-НТЛ12В03-Л TL12W03-D светодиод питания TL12W01-D TL12W02-D TL12 tl1202 TL12W02-L TL1201
2001 — СЭЛ5023

Аннотация: круглый инфракрасный светодиод
Текст: нет доступного текста файла


Оригинал
PDF SEL1010 СЭЛ1010М SEL1010XM СЭЛ1050М Узкий-dir02 SEC2004 СИД1010М СИД1050М СИД300/1003 SID2010 SEL5023 круглый инфракрасный светодиод
НТ1632

Реферат: HT48R30A-1 HA0127S LM7805 5V HT48F50E HT48F70E LM7805 ht48f50
Текст: нет доступного текста файла


Оригинал
PDF HT1632 HA0127S HT1632 HT48F50E HT48F70E ХТ48Р30А-1 HA0127S LM7805 5В HT48F50E HT48F70E LM7805 ht48f50
2008 — Недоступно

Резюме: нет абстрактного текста
Текст: нет доступного текста файла


Оригинал
PDF CDT3338 CDT3338-01 CDT3338-02 CDT3338-03 CDT3338-04 CDT3338-05 CDT3338-06
2009 — светодиодный драйвер 20 Вт

Аннотация: светодиодный драйвер STR12 MSL9082 STR14 «Драйвер подсветки» STR11 Atmel LED Driver DLFS140 EEPROM I2C atmel
Текст: нет доступного текста файла


Оригинал
PDF Драйвер-MSLB9082 Драйвер-MSL3162 160 мА 20w светодиодный драйвер светодиодный драйвер STR12 МСЛ9082 STR14 «Драйвер подсветки» STR11 Светодиодный драйвер Atmel ДЛФС140 ЭСППЗУ I2C atmel
ПЛАВАТЬ

Резюме: LIS331DLH 4K7A STM8S STM8S207R6T C1210K 3V316 LED24 LED10 LED30
Текст: нет доступного текста файла


Оригинал
PDF LED30 LED29 LED28 LED27 LED26 470 нФ LED10 LIS331DLH 100 нФ СТЭВАЛЬ-МКИ030В1 ПЛАВАТЬ LIS331DLH 4К7А СТМ8С СТМ8С207Р6Т C1210K 3В316 LED24 LED10 LED30

Основы драйвера светодиодов и его схема

Теплые подсказки: слово в этой статье составляет около 3800 слов, а время чтения составляет около 23 минут.

Введение

Светодиод считается источником зеленого света четвертого поколения. Это надежный источник холодного света. Он имеет много преимуществ, таких как высокая эффективность, длительный срок службы, безопасность и защита окружающей среды, небольшой размер, высокая надежность, быстрая скорость отклика и так далее. В настоящее время достигается тот же световой эффект. Потребляемая мощность светодиодов составляет около 1/10 от ламп накаливания и 1/2 от люминесцентных ламп. Многие страны и регионы внедрили различные политики для поддержки развития светодиодной промышленности, так что эта отрасль стала важной частью важных отраслей страны, открывая огромные возможности для бизнеса.Схема драйвера светодиода очень важна для светодиодов, а управление яркостью светодиодов может экономить энергию. Управление и диммирование белых светодиодов высокой яркости являются горячими темами в последние годы.

Каталог

I Основы драйверов светодиодов

1. 1 Что такое драйвер светодиодов Как правило, на вход драйвера светодиода подается высоковольтный переменный ток промышленной частоты (т.е., городское электричество), низкое напряжение постоянного тока, высокое напряжение постоянного тока, низкое напряжение и высокочастотный переменный ток (например, выход электронного трансформатора). Выход питания светодиодного драйвера в основном представляет собой источник постоянного тока, который может изменять напряжение с изменением прямого падения напряжения светодиода. Основные компоненты источника питания светодиодов включают в себя контроллер переключателя, индуктор, компонент переключателя (MOSFET), резистор обратной связи, устройство входного фильтра, выходной фильтр и так далее. В соответствии с требованиями различных случаев должна быть схема защиты от перенапряжения на входе, схема защиты от пониженного напряжения на входе, защита от обрыва цепи светодиода, схема защиты от перегрузки по току и так далее.

1.2 Характеристики источника питания светодиодного драйвера

В частности, мощность привода светодиодного уличного фонаря устанавливается на большой высоте, поэтому обслуживание неудобно, а стоимость обслуживания также велика.

Светодиод

является энергосберегающим продуктом с высокой эффективностью привода. Очень важно, чтобы мощность была установлена ​​в светильнике. Эффективность источника питания высока, но потребляемая мощность невелика, а тепловыделение светильника мало, поэтому повышение температуры лампы также снижается.В результате задержка затухания светодиода выгодна.

Коэффициент мощности — это потребность энергосистемы в нагрузке. В целом обязательных показателей для электроприборов мощностью менее 70 Вт не существует. Хотя коэффициент мощности отдельного электроприбора низок, он мало влияет на энергосистему; однако в вечернее время электросеть будет серьезно загрязнена большим количеством освещения и концентрацией однотипной нагрузки. В ближайшем будущем могут появиться некоторые индексы требований к коэффициенту мощности для драйвера светодиодов мощностью 30–40 Вт.

Теперь есть два вида трафика: один источник постоянного напряжения для нескольких источников постоянного тока, и каждый источник постоянного тока подается на каждый светодиод индивидуально. Таким образом, комбинация является гибкой, и все отказы светодиодов не влияют на работу других светодиодов, но стоимость будет немного выше. Другой источник питания постоянного тока, то есть режим привода «Keke Hui Bao», который управляется светодиодом в последовательной или параллельной работе. Он имеет преимущество низкой стоимости, но плохой гибкости, а также не влияет на другие проблемы, связанные с работой светодиодов, при устранении неисправности светодиода.Обе формы сосуществуют во времени. Способ многосторонней выходной мощности постоянного тока будет лучше с точки зрения стоимости и производительности. Может быть, это основное направление в будущем.

Способность светодиодов противостоять перенапряжению относительно низкая, особенно способность противостоять обратному напряжению. Также важно усилить защиту в этой сфере. Некоторые светодиодные фонари устанавливаются на открытом воздухе, например, светодиодные уличные фонари. Из-за сброса нагрузки и индукции молнии все виды скачков напряжения будут проникать из электросети, а некоторые скачки напряжения могут привести к повреждению светодиодов.Таким образом, анализ движущей силы «Чжунке Хуэй Бао» должен быть недостаточным для защиты от перенапряжения. Что касается частой замены питания и ламп, драйвер светодиода должен иметь возможность гасить скачки напряжения и защищать светодиод от повреждения.

Для удовлетворения требований безопасности и электромагнитной совместимости лучше всего увеличить отрицательную обратную связь по температуре светодиода на выходе постоянного тока в дополнение к обычной защите.

II Типы драйверов светодиодов

2.1 светодиодный драйвер постоянного тока

В зависимости от режима вождения распространенные на рынке драйверы ламп делятся на два типа. Одним из них является привод постоянного тока. Характеристика привода постоянного тока заключается в том, что выходной ток является постоянным. Выходное напряжение изменяется в одном диапазоне. Таким образом, мы часто видим, что приводная оболочка выделена (выход: DC**V — **V * * * mA+-5%) на рынке. Это означает, что выходное напряжение находится в одном из выходных напряжений. Диапазон, ток сколько мА.

  • А. Выходной ток схемы привода постоянного тока постоянен, но выходное постоянное напряжение изменяется в определенном диапазоне в зависимости от величины нагрузки. Сопротивление нагрузки мало, выходное напряжение низкое, чем больше сопротивление нагрузки, тем выше выходное напряжение.

  • B. Цепь постоянного тока не боится коротких замыканий нагрузки, но категорически запрещается полностью размыкать нагрузку.

  • С.Схема привода постоянного тока идеально подходит для управления светодиодом, но, условно говоря, цена выше.

  • D. Следует обратить внимание на максимальный выдерживаемый ток и используемое напряжение, что ограничивает количество используемых светодиодов.

2.2 Драйвер постоянного напряжения для светодиодов

И другой драйвер постоянного напряжения. Характеристика постоянного напряжения , управляющая характеристикой , заключается в том, что выходное напряжение является фиксированным, а ток ограничен максимальным значением при смене ламп и фонарей.В этом случае оболочка обычно указывает (выход: DC**V **A) выходное фиксированное напряжение и количество доступных максимальных выходных токов. Наиболее распространенными выходными напряжениями на рынке светодиодов являются 5 В, 12 В, 24 В и так далее.

  • А. При определении параметров в цепи стабилизации напряжения выходное напряжение фиксируется, а выходной ток изменяется при увеличении или уменьшении нагрузки.

  • B. Цепь стабилизации напряжения не боится обрыва нагрузки, но короткие замыкания нагрузки категорически запрещены.

  • C. Регулируемая схема привода питает светодиод. Для каждой цепочки требуется соответствующий резистор для усреднения яркости светодиодов каждой цепочки.

  • D. Изменения выпрямленного напряжения повлияют на яркость.

III Применение драйвера светодиодов

Применение драйверов светодиодов определяется параметрами светодиодов, которыми мы хотим управлять. Входное напряжение и ток являются двумя наиболее важными параметрами.Лампа распространения поставляется с отдельным объяснением того, как рассчитать входное напряжение и ток светодиодной лампы. Это только описание входа светодиодной лампы. Люди смогут увидеть исходные параметры вождения (обязательно определите некоторые ложные цели вождения!!!).

 

Мы выбираем соответствующий драйвер светодиода на основе входного напряжения и тока платы лампы. Например, если входное напряжение платы лампы составляет 37-40 В, а входной ток составляет 300 мА, можно выбрать выходное напряжение драйвера светодиода, чтобы включить его, и ток будет почти таким же.Должна быть включена формула поверхности, а также напряжение больше или меньше всего. В противном случае будет мерцание. Допустим низкий ток.

Наконец, нам нужно только нажать на положительный и отрицательный полюс, отмеченный пластиной лампы, чтобы сварить привод или соединительную линию. Необходимо отметить, что у обычной светодиодной выходной линии красный цвет является положительным полюсом. Черный — отрицательный полюс… Если это серая линия, то серая — положительный полюс, белая — отрицательный… Сине-коричневая линия, синяя линия — отрицательный полюс, синяя линия — отрицательный полюс и т. д.…

Рис. 1. Пример стандартного драйвера светодиодов, схема

Давайте посмотрим видео о том, как сделать драйвер светодиода:

Как сделать драйвер светодиода

Основы схемы драйвера светодиода В

5.1 Что такое схема драйвера светодиода

Драйвер светодиода представляет собой электрическое устройство, которое регулирует мощность светодиоды.Драйвер светодиода реагирует на меняющиеся потребности светодиода или схемы светодиода, обеспечивая постоянное количество энергии для светодиода, поскольку его электрические свойства меняются в зависимости от температуры.

5.2 Типы схем драйверов светодиодов и их классификация

Схема подкачки заряда также является схемой преобразователя постоянного тока в постоянный. Схема накачки заряда использует эффект накопления конденсатора при заряде для накопления электрической энергии. Он использует конденсатор в качестве элемента связи по энергии и управляет силовым электронным устройством для выполнения высокочастотного переключения, позволяя конденсатору накапливать энергию в течение части периода, а конденсатор высвобождает энергию в течение оставшегося времени.Этот тип схемы получает разные выходные напряжения за счет разных режимов подключения, когда конденсатор заряжается и разряжается, и вся схема не нуждается в какой-либо индуктивности.

 

Схема нагнетательного насоса относительно небольшая, с меньшим количеством компонентов и более низкой стоимостью. Однако в нем используется относительно много переключающих элементов. При условии определенного входного напряжения диапазон изменения выходного напряжения относительно невелик. Выходное напряжение в основном в 1/3-3 раза превышает входное напряжение, а мощность схемы невелика, а эффективность зависит от выходной мощности.Соотношение между напряжением и входным напряжением меняется. Когда есть несколько светодиодов, они должны управляться параллельно. Для предотвращения неравномерного распределения тока в ответвлении необходимо использовать балластный резистор, что сильно снизит КПД системы.

Цепь импульсного источника питания представляет собой схему преобразования постоянного тока в постоянный, которая изменяет выходное напряжение, изменяя соотношение времени между переключением и выключением. С точки зрения схемы, по сравнению со схемой зарядового насоса, она содержит магнитные компоненты, то есть индуктор или высокочастотный трансформатор.Импульсный источник питания делится на два типа преобразователей постоянного тока в постоянный, а именно вход и выход без изоляции, а именно «прямое подключение» и «вход и выход».

 

Типичные схемы «прямого» DC/DC преобразователя включают Buck, Boost, Buck-Boost и Cuk.

 

Типичные схемы изолированных DC/DC преобразователей с входом и выходом: несимметричный прямой, несимметричный обратноходовой, двухтактный, полумостовой и полный мост. Схема импульсного источника питания может обеспечить широкий диапазон выходного напряжения, а выходное напряжение регулируется непрерывно, выходная мощность велика, поэтому диапазон применения шире, особенно в ситуациях средней и большой мощности.

Линейная схема управления рассматривает полупроводниковое силовое устройство, работающее в линейной области, как динамический резистор и реализует привод постоянного тока посредством управления уровнем управления. Недостатком линейной схемы управления является низкий КПД, но она имеет быструю реакцию на изменение входного напряжения и нагрузки. Схема относительно проста. Легко контролировать ток светодиода напрямую, и легко контролировать высокую точность тока.

VI Новый дизайн схемы драйвера

Фактическое управление обратной связью импульсного источника питания — это выходное напряжение, а контроль выходного тока не является точным, и светодиодная лампа легко повреждается при управлении переключением питание смещено; КПД линейной схемы невысок.

 

На основе вышеуказанных причин разработана новая схема привода светодиодов. В схеме используется односторонний импульсный источник питания обратного хода в качестве управления передней ступенью, а источник постоянного тока с линейным управлением давлением используется в качестве управления постуровнем. После преобразования несимметричного обратноходового источника питания можно получить выходное напряжение постоянного тока, которое используется в качестве входа источника постоянного тока, управляемого напряжением после каскада. Поскольку входное напряжение источника постоянного тока контролируется высокоэффективным импульсным источником питания с обратным ходом, источник постоянного тока с контролем давления может точно управлять светодиодом и может изменять входное напряжение источника постоянного тока в большом диапазоне, поэтому эффективность и точность гарантированы, а электроснабжение может быть обеспечено городом.В то же время двухуровневое управление не так просто повредить светодиодную лампу.

Рис. 2. Новая конструкция схемы драйвера

Схема системы показана на рис. 2. Трансформатор T1, переключающая трубка Q1, диод D1 и конденсатор C1 составляют однотактный импульсный источник питания с обратным ходом, а операционные усилители U1, U2 и силовой транзистор Q2 составляют управляемый по давлению источник постоянного тока, а MCU STC89C51 является основным устройством управления.

 

При изменении значения серого микроконтроллер генерирует соответствующее напряжение управления яркостью на основе полученного значения серого. Напряжение управления яркостью добавляется к тому же фазному входу U1. Обратный вход U1 — это сигнал тока светодиода, полученный U2, а R12 — это резистор обнаружения тока. Выходное напряжение U1 является управляющим напряжением МОП-лампы Q2, которое известно по понятию дефицита операционного усилителя.Обратное входное напряжение U1 равно напряжению на его прямом входе, то есть ток на R12 управляется напряжением управления яркостью, и не меняется при изменении нагрузки.

 

Single-chip выдает соответствующее напряжение управления яркостью в соответствии с получаемым значением серого, а также вырабатывает ШИМ-сигнал. Сигнал ШИМ соответствует сигналу TL431 для управления переключателем Q1. Затем MCU изменяет коэффициент заполнения сигнала ШИМ в соответствии с полученным сигналом тока светодиода и изменяет выходное напряжение импульсного источника питания , то есть для изменения константы.Входное напряжение источника потока снижает напряжение на силовой трубке Q2, так что она работает в зоне регулируемого сопротивления или вблизи зоны регулируемого сопротивления в случае постоянного выходного тока, чтобы повысить эффективность. TL431 — это трехконтактный регулируемый шунт, где наличие TL431 и соответствующей ему электрической фазы ограничивает максимальное выходное напряжение импульсного источника питания и дополнительно повышает безопасность системы.

 

Когда свет относительно хороший, MCU регулирует выход напряжения управления яркостью в соответствии с полученным значением серого, так что выходной ток источника постоянного тока относительно мал, и может быть достигнут эффект энергосбережения.На рис. 2 выходное напряжение микроконтроллера регулируется цифро-аналоговым аналогом для питания источника постоянного тока. На рис. 2 цифро-аналоговая часть не показана.

VII Основные рекомендации по проектированию драйвера светодиода

Проектировать драйвер светодиода несложно, но у нас должна быть хорошая идея. Пока мы выполняем отладку перед расчетом, отладку и старение после отладки, мы считаем, что каждый может преуспеть в светодиодах.

7.1 Текущий размер светодиода

Всем известно, что слишком большая пульсация светодиода влияет на срок службы светодиода.Что касается воздействия, то конкретного показателя пока нет.

7.2 Chip Fever

В основном это микросхема высоковольтного драйвера со встроенным модулятором мощности, который не только снижает энергопотребление микросхемы, но и не вносит дополнительного расхода энергии на отвод тепла.

7.3 Power Tube Fever

Потребляемая мощность Power Tube делится на две части: потери при переключении и потери проводимости. Светодиод — это приложение для электропривода, и повреждение переключателя намного больше, чем потери проводимости.Потери при переключении связаны с CGD и CGS силовой трубы, а также с возможностью управления и рабочей частотой микросхемы. Таким образом, решение тепловой проблемы силовой трубы может быть решено со следующих аспектов:

 

A. Мощная МОП-лампа не может быть выбрана на основе размера сопротивления проводимости. Чем меньше внутреннее сопротивление, тем больше емкость CGS и CGD.

 

B. Остальное — частота и возможности привода чипа. Здесь мы говорим только о влиянии частоты.Частота прямо пропорциональна потерям проводимости. Поэтому, когда силовая лампа нагревается, мы должны сначала подумать, не слишком ли высок выбор частоты. Когда частота уменьшается, чтобы получить ту же нагрузочную способность, пиковый ток должен быть больше или индуктивность становится больше, что может привести к попаданию индуктора в область насыщения. Если ток насыщения индуктивности достаточно велик, CCM (режим непрерывного тока) можно изменить на DCM (режим прерывистого тока), что требует увеличения емкости нагрузки.

7.4 Снижение частоты рабочей частоты

Снижение частоты в основном вызвано двумя аспектами. Отношение входного напряжения к напряжению нагрузки мало, а системные помехи велики. В первом случае будьте осторожны, чтобы не установить слишком высокое напряжение нагрузки, хотя напряжение нагрузки высокое, эффективность будет высокой.

 

Для последнего мы можем попробовать следующие аспекты: А, наименьший ток установить наименьшую точку; B, чистая точка проводки, особенно ключевой путь смысла; C, выбор катушки индуктивности или индуктивности замкнутого магнитопровода; D, фильтр низких частот RC, этот эффект немного плох.C не очень хорошая консистенция, отклонение немного великовато, но для освещения должно хватить.

7.5 Выбор катушки индуктивности или трансформатора

Поскольку рабочее напряжение мощного светодиода составляет всего 3 В, мостовой выпрямитель превращает 220 В переменного тока в постоянный, падение напряжения на полном мосту составляет около 1,8 В. . А эффективность использования мощности только одного светодиода составляет всего 60%. Мы должны соединить более 3-х светодиодов вместе, чтобы общая эффективность использования электроэнергии превышала 80%.

 

В соответствии с принципом синтеза трех основных цветов белого света, мощные светодиоды мощностью 31 Вт с красным, зеленым и синим цветом соединены последовательно, и можно получить яркость светодиода, эквивалентную белому свету 3 Вт. В то же время можно комбинировать 6 видов цветного света, чтобы удовлетворить предпочтения людей в преобразовании цвета.

 

VIII Заключение

Схема привода светодиодов использует импульсный источник питания в качестве первого уровня управления и источник постоянного тока с регулированием давления в качестве второго уровня управления.Сочетание этих двух преимуществ может обеспечить эффективность и точность управления. Более того, он напрямую обеспечен электричеством от города, двухуровневым приводом, высокой безопасностью, а повредить дорогие светодиодные фонари непросто. Эксперименты показывают, что КПД системы может достигать более 83%, а мощность такая же, как у импульсного источника питания с однотактным обратным ходом, который достоин продвижения.

 

Часто задаваемые вопросы об основах драйверов светодиодов

1.Для чего используется светодиодный драйвер?

Драйверы светодиодов

— это устройства, которые регулируют и обеспечивают мощность, используемую для «привода» светодиодных лент. Подобно традиционным трансформаторам, они преобразуют переменный ток сетевого напряжения (240 В переменного тока) в более низкое напряжение.

 

2. Нужен ли мне драйвер для светодиодных фонарей?

Для каждого светодиодного источника света требуется драйвер. … Некоторые светодиоды уже имеют встроенный драйвер внутри лампы. Светодиоды, предназначенные для бытового использования (лампы с цоколем E26/E27 или GU24/GU10 и работающие от сети 120 В), как правило, уже имеют драйвер.Однако низковольтные светодиодные источники света, такие как некоторые MR-лампы (MR GU5.

 

3. В чем разница между трансформатором и драйвером светодиодов?

В чем разница между светодиодным драйвером и светодиодным трансформатором? Трансформатор обычно представляет собой устройство с двойной обмоткой, только переменный ток на входе и выходе. Драйверы более сложны и обычно дают выход постоянного тока с использованием импульсной системы, а также в них есть схемы регулирования и контроля тока.

 

4.Можно ли использовать светодиодный драйвер в качестве источника питания?

Драйвер для светодиодов с постоянным напряжением s. Драйверы постоянного тока и постоянного напряжения являются жизнеспособными вариантами источника питания для светодиодных источников света, разница заключается в способе подачи питания.

 

5. Сколько светодиодов может питать драйвер?

Если у вас есть драйвер с выходной мощностью 60 Вт, он должен работать только со светодиодами, потребляющими в сумме 48 Вт (60 Вт x 80% = 48 Вт).Сколько ламп может включить один водитель? Водители не ограничены количеством светодиодов, которые они включают. Они ограничены общей мощностью светодиодов, которые они питают.

 

6. Каков срок службы светодиодного драйвера?

А именно, срок службы схемы управления истекает до того, как светодиод перестанет излучать свет или его яркость упадет. Типичный номинальный срок службы этих элементов зачастую в разы меньше 25 000 часов, тогда как срок службы самого светодиода может достигать 50 000-100 000 часов.

 

7. Нагреваются ли драйверы светодиодов?

Тепло — враг электроники, и это касается и светодиодных драйверов. Это не означает, что светодиодные драйверы не могут работать в жарких условиях, они могут. … Выходная мощность импульсного источника питания, включая драйверы светодиодов, уменьшается с повышением температуры.

 

8. Как выбрать драйвер светодиода?

Используйте драйвер светодиода, по крайней мере, с тем же значением, что и ваши светодиоды.Драйвер должен иметь более высокую выходную мощность, чем требуется вашим светодиодам для дополнительной безопасности. Если выходная мощность эквивалентна требованиям к мощности светодиода, он работает на полную мощность. Работа на полной мощности может привести к сокращению срока службы драйвера.

 

9. Как я узнаю, что мои светодиодные драйверы неисправны?

Драйверы светодиодов

преобразовывают переменный ток высокого напряжения в низкое напряжение. Если у вас есть хороший светодиод и плохой работающий светодиодный драйвер, ваши светодиодные фонари с высокими отсеками не будут работать долго.Большинство отказов светодиодов происходит не из-за светодиода, а из-за драйвера. Обычно схемы перегорают и выходят из строя.

 

10. Как работает схема драйвера светодиодов?

В электронике схема светодиода или драйвер светодиода представляет собой электрическую цепь, используемую для питания светоизлучающего диода (СИД). … Падение напряжения на светодиоде примерно постоянно в широком диапазоне рабочего тока; следовательно, небольшое увеличение приложенного напряжения значительно увеличивает ток.


Рекомендации по книгам

— Ассоциация производителей электрического оборудования и медицинских изображений (Автор)

—ЧЖОУ ЧЖИ МИНЬ ДЭН (Автор)

Совершенно очевидно, что экономический рост тесно связан с доступностью энергии.К доступности энергии можно подойти двумя способами; первый способ — построить больше электростанций, чтобы удовлетворить возросший спрос. Второй способ – снизить энергопотребление. Светодиодное освещение имеет много преимуществ, таких как высокая надежность, низкие затраты на техническое обслуживание, диммирование, в дополнение к основному преимуществу энергосбережения и значительного ожидаемого повышения производительности. С другой стороны, недостатки в основном связаны с первоначальными затратами на замену систем освещения в дополнение к необходимости специальной схемы силовой электроники для управления ими с регулируемой интенсивностью и яркостью.Цель проекта — замена галогенных ламп (50 Вт) на встроенные светодиодные лампы (10 Вт). Светодиоды имеют много преимуществ по сравнению с другими источниками света, такими как лампы накаливания или люминесцентные лампы. Наиболее существенными преимуществами являются быстрое включение, меньшее тепловыделение, меньшее энергопотребление и больший срок службы. Светодиоды должны правильно управляться, чтобы обеспечить оптимальную производительность и долгий срок службы. Драйвер должен быть экономически эффективным, что обычно не достигается с помощью отдельных компонентов, но может быть реализовано с помощью интегрированных решений.

— Айя Гебрил Ахмед (автор), Махмуд Нассари Абд аль-Фаттах (автор), Ая Бакр Абд аль-Вахаб (автор)


Соответствующая информация о «Основах драйвера светодиодов и его схеме»

О статье «Основы драйвера светодиодов и его схемотехника». Если у вас есть идеи получше, не стесняйтесь писать свои мысли в следующей области комментариев. Вы также можете найти дополнительные статьи об электронных полупроводниках через поисковую систему Google или обратиться к следующим связанным статьям.

Альтернативные модели

Деталь Сравнить Производители Категория Описание
ПроизводительДеталь №: S25FL512SAGMFIR10 Сравните: Текущая часть Производители: Cypress Semiconductor Категория: Флэш-память Описание: серийный номер NOR Flash 3V/3.3V 512M-bit 512M/256M/128M x 1/2Bit/4Bit 8ns 16Pin SOIC W Tray
№ производителя: S25FL512SAGMFIG13 Сравните: S25FL512SAGMFIR10 VS S25FL512SAGMFIG13 Производители: Cypress Semiconductor Категория: Флэш-память Описание: серийный номер NOR Flash 3V/3.3V 512M-бит 512M/256M/128M x 1/2Bit/4Bit 8ns 16Pin SOIC W T/R
№ производителя: S25FL512SDPMFIG10 Сравните: S25FL512SAGMFIR10 VS S25FL512SDPMFIG10 Производители: Cypress Semiconductor Категория:Чип памяти Описание: NOR Flash Serial-SPI 3V 512Mbit 512M x 1Bit 8ns 16Pin SOIC Tray
ПроизводительНомер детали: S25FL512SDPMFI010 Сравните: S25FL512SAGMFIR10 VS S25FL512SDPMFI010 Производители: Cypress Semiconductor Категория:Чип памяти Описание: NOR Flash Serial-SPI 3V 512Mbit 512M/256M/128M x 1Bit/2Bit/4Bit 8ns 16Pin SOIC Tray

Что это такое и как это работает?

Разработка и внедрение технологии светодиодов (LED) во всем спектре осветительных приборов за последние несколько лет были захватывающими дух.Несмотря на присущую светодиодам высокую эффективность электрооптического преобразования, качество светодиодного светильника зависит от его драйвера. Потенциал этой революционной технологии освещения может быть раскрыт только тогда, когда показатели производительности драйверов светодиодов постоянно соответствуют электрическим характеристикам светодиодного источника света. Система светодиодного освещения представляет собой синергетическую комбинацию источника света, драйверов светодиодов, систем управления температурным режимом и оптики. Будучи единственным компонентом, который характерным образом влияет на фотометрические характеристики и качество света светодиодов в системе освещения, драйверы играют решающую роль в более обширных и интенсивных применениях светодиодной технологии.

Что такое светодиодный драйвер?

Драйвер светодиодов — это электронное устройство, которое регулирует мощность светодиода или цепочки (или цепочек) светодиодов. Светодиоды представляют собой твердотельные полупроводниковые устройства, пропитанные или легированные слоями для создания p-n перехода. При протекании тока через легированные слои дырки из p-области и электроны из n-области инжектируются в p-n-переход. Они рекомбинируют, генерируя фотоны, которые мы воспринимаем как видимый свет. Преобразование тока в световой выход почти линейно, увеличение входного тока позволяет большему количеству электронов и дырок рекомбинировать в p-n переходе и, таким образом, генерируется больше фотонов.

В отличие от обычных источников света, которые питаются непосредственно от источника питания переменного тока (AC), светодиоды работают на входе постоянного тока или на входе модулированной прямоугольной волны, поскольку диоды имеют полярность. Вход сигнала переменного тока приведет к тому, что светодиод загорится только примерно в половине случаев, когда сигнал переменного тока имеет правильную полярность, и сразу же погаснет при отрицательном смещении. Следовательно, постоянная подача постоянного электрического тока при фиксированном выходе или переменном выходе в допустимом диапазоне должна применяться к светодиодной матрице для стабильного немерцающего освещения.

Драйверы светодиодов

обеспечивают интерфейс между источником питания (линии) и светодиодом (нагрузкой), преобразуя входящее питание переменного тока с частотой 50 Гц или 60 Гц при таких напряжениях, как 120 В, 220 В, 240 В, 277 В или 480 В, в регулируемый постоянный ток на выходе. Существуют драйверы, предназначенные для работы с другими типами источников питания, например, питание постоянного тока от микросетей постоянного тока или питание через Ethernet (PoE). Схема драйвера светодиода должна быть невосприимчива к скачкам напряжения и другим помехам в сети переменного тока в заданном расчетном диапазоне, а также отфильтровывать гармоники в выходном токе, чтобы они не влияли на качество выходного сигнала светодиодного источника света.Драйвер — это не просто преобразователь энергии. Некоторые типы драйверов светодиодов имеют дополнительную электронику, обеспечивающую точное управление светоотдачей или поддержку интеллектуального освещения.

Постоянный ток или постоянное напряжение?

Электрическая цепь, которая регулирует поступающую мощность для обеспечения постоянного выходного напряжения, обычно называется источником питания, тогда как драйвер светодиода в строгом смысле относится к электрической цепи, обеспечивающей постоянный выходной ток. Сегодня «драйвер светодиода» и «источник питания светодиода» — очень неоднозначные термины, которые используются взаимозаменяемо.Несмотря на терминологическую неоднозначность, мы не можем позволить себе пренебрегать внутренними различиями между схемами постоянного тока (CC) и постоянного напряжения (CV) для регулирования нагрузки светодиодов.

Драйверы светодиодов постоянного тока

обеспечивают постоянный ток (например, 50 мА, 100 мА, 175 мА, 350 мА, 525 мА, 700 мА или 1 А) независимо от нагрузки по напряжению для светодиодного модуля в определенном диапазоне напряжений. Драйвер может питать один модуль со светодиодами, соединенными последовательно, или несколько светодиодных модулей, соединенных параллельно.Последовательное соединение предпочтительнее в схемах CC, потому что оно гарантирует, что все светодиоды имеют одинаковый ток, протекающий через их полупроводниковые переходы, и световой поток одинаков для всех светодиодов. Для параллельной работы нескольких светодиодных модулей требуется резистор в каждом светодиодном модуле, что приводит к снижению эффективности и плохому согласованию токов. Большинство драйверов CC можно запрограммировать на работу в диапазоне выходного тока для точного сопряжения между драйвером и конкретным светодиодным модулем. Драйверы светодиодов постоянного тока используются, когда световой поток не должен зависеть от колебаний входного напряжения.Они используются во многих типах продуктов общего освещения, таких как потолочные светильники, трофферы, настольные/торшеры, уличные фонари и светильники для высоких пролетов, для которых приоритетными являются высокое качество тока и точный контроль выходной мощности. Драйверы CC поддерживают диммирование как с широтно-импульсной модуляцией (PWM), так и с уменьшением постоянного тока (CCR). Работа источника питания в режиме CC обычно требует защиты от перенапряжения только в случае обнаружения чрезмерного сопротивления нагрузки или при отключении нагрузки.

Драйверы светодиодов с постоянным напряжением

предназначены для работы светодиодных модулей с фиксированным напряжением, обычно 12 В или 24 В.Каждый светодиодный модуль имеет свой собственный линейный или импульсный регулятор тока для ограничения тока и поддержания постоянной мощности. Обычно предпочтительнее подавать постоянное напряжение на несколько светодиодных модулей или светильников, соединенных параллельно. Максимальное количество светодиодов или светодиодных модулей и прямое напряжение на них не должны превышать мощность источника электроэнергии постоянного тока. Цепь CV должна выдерживать рассеивание мощности при коротком замыкании нагрузки. Ограничители тока обычно имеют тепловое отключение для защиты цепи, когда на ограничитель тока подается напряжение выше максимально допустимого.Драйверы CV часто используются в низковольтных светодиодных осветительных приборах, требующих простоты группового подключения при параллельном управлении, например, для управления светодиодными лентами, модулями светодиодных вывесок для лайтбоксов. Драйверы постоянного напряжения могут быть затемнены только ШИМ.

Импульсный источник питания (SMPS)

Поскольку светодиоды очень чувствительны к колебаниям тока и напряжения, одной из наиболее важных функций драйвера светодиодов является уменьшение колебаний прямого напряжения на полупроводниковом переходе светодиодов.Импульсные источники питания работают путем модуляции электрического сигнала с использованием одного или нескольких переключающих элементов, таких как силовые МОП-транзисторы, на высокой частоте, тем самым генерируя заданную величину мощности постоянного тока при изменении напряжения питания или нагрузки. Импульсные преобразователи, используемые в драйверах светодиодов, требуют накопления энергии в виде тока с помощью катушек индуктивности и/или в виде напряжения с помощью конденсаторов, чтобы поддерживать выходной ток или напряжение на нагрузке во время цикла включения/выключения. Драйвер светодиодов AC-DC SMPS выпрямляет мощность переменного тока в мощность постоянного тока, которая затем преобразуется в мощность постоянного тока, способную правильно управлять светодиодами.

Для импульсного преобразования мощности в драйверах светодиодов доступны различные топологии схемы, отвечающие требованиям светодиодной нагрузки. Среди всех топологий SMPS наиболее часто используемыми типами являются buck, boost, buck-boost и flyback.

Понижающая схема, также известная как понижающий преобразователь, регулирует входное постоянное напряжение до требуемого постоянного напряжения, используя ряд методов управления током, включая синхронное переключение, гистерезисное управление, управление пиковым током и управление средним током.Понижающая топология разработана для драйверов светодиодов с питанием от сети, которые необходимы для управления длинной цепочкой светодиодов, при этом напряжение нагрузки поддерживается ниже напряжения питания. Понижающие схемы также часто встречаются в устройствах с низким напряжением, где входное напряжение питания относительно низкое (например, 12 В постоянного тока для автомобильного освещения) и работает только один светодиод. Понижающая топология позволяет проектировать схемы с меньшим количеством компонентов, сохраняя при этом высокую эффективность (90–95%). Однако напряжение нагрузки понижающей цепи должно быть менее 85 % от напряжения питания.Более того, понижающие драйверы светодиодов не обеспечивают развязки между входной и выходной цепями.

Повышающий преобразователь предназначен для повышения входного напряжения до более высокого выходного напряжения примерно на 20 % или более. Для цепей повышения обычно требуется один индуктор, и они работают либо в режиме непрерывной проводимости (CCM), либо в режиме прерывистой проводимости (DCM), что определяется формой волны тока индуктора. В маломощных повышающих преобразователях может использоваться зарядный насос, а не индуктор, в котором используются конденсаторы и переключатели для повышения выходного напряжения выше напряжения питания.Преобразователи на основе индуктора предлагают преимущество малого количества компонентов и высокой эффективности работы (более 90%). Недостатком этой топологии является отсутствие изоляции между входными и выходными цепями. Повышающий преобразователь выдает импульсный сигнал, поэтому для уменьшения пульсаций тока требуется большой выходной конденсатор. ШИМ-управление яркостью затруднено из-за большого выходного конденсатора, а также управления с обратной связью, которое требует широкой полосы пропускания для стабилизации преобразователя.

Понижающе-повышающие преобразователи

могут обеспечить выходное напряжение выше или ниже входного, что делает их идеальными для приложений, где входное напряжение возрастает и падает с большими колебаниями (не более 20%).Колебания входного напряжения такого типа обычно возникают в осветительных приборах с батарейным питанием, например, автомобильное освещение строительной и сельскохозяйственной техники (вилочные погрузчики, тракторы, комбайны, экскаваторы, снегоочистители и т. д.), а также грузовиков и автобусов. Два типа преобразователей, которые часто используются в повышающе-понижающих устройствах, известны как SEPIC (однотактный преобразователь первичной индуктивности) и Cuk. Преобразователь SEPIC характеризуется использованием двух катушек индуктивности, предпочтительно катушки индуктивности с двумя обмотками, которая имеет небольшую площадь основания, низкую индуктивность рассеяния и возможность увеличения связи обмоток для повышения эффективности схемы.В архитектуре SEPIC повышающая секция обеспечивает коррекцию коэффициента мощности (PFC), а понижающая секция создает напряжение, равное, ниже или выше входного напряжения, в то время как выходная полярность обеих секций остается одинаковой. Топология Cuk сочетает в себе непрерывный выходной ток понижающего преобразователя и непрерывный входной ток повышающего преобразователя, что дает Cuk наилучшие характеристики электромагнитных помех и позволяет по мере необходимости уменьшать емкость. Понижающе-повышающий преобразователь представляет собой неизолированную схему драйвера.Как и повышающие преобразователи, повышающе-понижающие преобразователи требуют защиты от перенапряжения, чтобы предотвратить повреждения от чрезмерно высокого напряжения в случае разомкнутой нагрузки.

Обратноходовая коммутационная схема представляет собой преобразователь с прерывистым режимом проводимости, который обеспечивает изоляцию сети переменного тока, накопление энергии и масштабирование напряжения. Он очень похож на повышающе-понижающий преобразователь, но с раздельной индуктивностью, образующей трансформатор. Трансформатор обратного хода не менее чем с двумя обмотками обеспечивает не только полную изоляцию между его входной и выходной цепями, но и допускает более одного выходного напряжения с разной полярностью.Первичная обмотка подключена к вводу питания, вторичная обмотка подключена к нагрузке. Магнитная энергия накапливается в трансформаторе, пока переключатель включен, и в то же время диод смещен в обратном направлении (т. е. заблокирован). Когда переключатель выключен, диод смещен в прямом направлении, и магнитная энергия высвобождается током, протекающим из вторичной обмотки. В некоторых обратноходовых схемах для питания микросхемы управления используется третья обмотка, называемая вспомогательной или вспомогательной обмоткой. Для более точного управления средним напряжением на конденсаторе, которое используется для поддержания протекания тока в светодиодной нагрузке, когда преобразователь находится на первой ступени, требуется изолированная обратная связь, обычно через оптопару.Схемы обратноходового переключения могут быть рассчитаны на очень широкий диапазон питающих и выходных напряжений с изоляцией от опасно высоких напряжений. Однако эти схемы менее эффективны (75 — 85 %, более высокий КПД возможен при использовании дорогих деталей).

Линейный источник питания

В линейном источнике питания используется управляющий элемент (например, резистивная нагрузка), который работает в своей линейной области для регулирования выходного сигнала. В схемах управления светодиодами этого типа напряжение, протекающее через чувствительный к току резистор, сравнивается с опорным напряжением в контуре обратной связи для получения управляющего сигнала.Контроллер, работающий в линейной области замкнутой системы обратной связи, регулирует выходное напряжение до тех пор, пока ток, протекающий через измерительный резистор, не совпадет с напряжением обратной связи. Таким образом, ток, подаваемый на цепочку светодиодов, сохраняется до тех пор, пока прямое напряжение не превышает выходное напряжение, ограниченное падением напряжения. Линейные драйверы обеспечивают только понижающее преобразование, что означает, что напряжение нагрузки должно быть ниже напряжения питания. Если напряжение нагрузки выше, чем напряжение питания, или напряжение питания колеблется в широких пределах, необходим импульсный стабилизатор.

В устройствах с питанием от сети переменного тока, в которых предъявляются высокие требования к регулированию напряжения, обычно используются импульсные линейные стабилизаторы для управления светодиодными лампами с длинной цепочкой светодиодов, соединенных последовательно. Импульсные линейные регуляторы представляют собой комбинацию нескольких линейных регуляторов, которые либо интегрированы, либо каскадированы в модульной форме. Эти линейные регуляторы, обычно разрабатываемые в корпусах ИС для поверхностного монтажа, используются для интеллектуальной регулировки количества светодиодов, подключенных к нагрузке, в цепочке во время цикла питания, чтобы напряжение нагрузки соответствовало мгновенному напряжению сети переменного тока.

Линейные драйверы светодиодов

представляют собой чрезвычайно простое решение, которое устраняет необходимость в громоздких и дорогостоящих катушках, конденсаторах и реактивных (например, индуктивных и/или емкостных) входных фильтрующих элементах EMI/EMC. Значительно меньшее количество деталей и использование полупроводниковых компонентов позволяют уменьшить размер переключаемого линейного регулятора до компактной микросхемы. Это делает линейные драйверы конкурентоспособными для светодиодных ламп, стоимость и физический размер которых являются важными факторами при проектировании.Благодаря способности генерировать резистивную диммерную нагрузку, аналогичную лампе накаливания, линейные драйверы светодиодов имеют общую совместимость с устаревшими диммерами с фазовой отсечкой (TRIAC), которые были разработаны для диммирования резистивных нагрузок.

Топология линейного привода, отличающаяся конкурентоспособностью по цене, устойчивостью к электромагнитным помехам/электромагнитным помехам, компактностью и простотой конструкции, вызывает все больший интерес в отрасли. Тем не менее, линейные драйверы борются с присущими им недостатками, которые мешают им войти в основные приложения во многих категориях продуктов.

1. Линейный драйвер светодиодов может иметь низкий КПД, если напряжение питания существенно превышает напряжение нагрузки.

2. Избыточная мощность высвобождается в виде тепловой энергии, что приводит к увеличению тепловой нагрузки на схему драйвера и, весьма вероятно, на светодиоды, если тепло не рассеивается эффективно.

3. Ограничение, связанное с необходимостью поддерживать напряжение нагрузки ниже напряжения питания в определенном диапазоне, приводит к еще одному недостатку, заключающемуся в разрешении только ограниченного диапазона напряжения питания.

4. Доступные на рынке линейные драйверы представляют собой в основном недорогие схемы, в которых не уделяется особого внимания устранению мерцания.

5. Неизолированная топология не обеспечивает электрической изоляции от сети переменного тока.

Переключенный Против. Линейный

Конструкция драйвера светодиодов включает в себя множество компромиссов. При выборе между импульсными и линейными драйверами необходимо учитывать стоимость, эффективность, управление, срок службы, диммирование, размер, коэффициент мощности, мерцание, вход/выход, изоляцию от сети переменного тока и различные другие факторы.

Импульсные источники питания явно более эффективны, чем линейные, из-за их модуляции «0/1» (переключение ВКЛ/ВЫКЛ). Они могут быть спроектированы так, чтобы обеспечить высокую энергоэффективность, а также освещение без мерцания при сохранении высокого коэффициента мощности и низкого общего гармонического искажения (THD). В то время как линейные драйверы светодиодов рассматривались как перспективное решение для управления светодиодами, в обозримом будущем импульсные источники питания по-прежнему остаются предпочтительным решением для управления светодиодами для приложений, в которых эффективность, управление освещением, качество света и электрическая безопасность имеют первостепенное значение.В частности, цифровая управляемость драйверов SMPS, оснащенных технологией интеллектуальных датчиков и беспроводной связью, обещает обеспечить возможность использования различных приложений Интернета вещей (IoT). Цифровая модуляция позволяет кодировать данные в двоичном формате для высокоскоростной оптической беспроводной связи (LiFi), что значительно расширяет возможности применения драйверов SMPS.

Тем не менее, привлекательные характеристики драйверов SMPS достигаются за счет их зависимости от громоздких, дорогих и ненадежных реактивных компонентов, таких как трансформаторы, катушки индуктивности и конденсаторы.Высокоскоростная коммутация вызывает много шума, что приводит к относительно высокому уровню электромагнитных помех, которые необходимо фильтровать и экранировать с помощью дополнительных цепей. Эти дополнительные схемы могут значительно увеличить физические размеры и удвоить общую стоимость драйвера светодиода.

Самым большим недостатком драйверов SMPS, который также является наиболее привлекательной чертой линейных драйверов, является их надежность. В цепи управления SMPS используется большое количество компонентов, включая фильтры, выпрямители, схемы корректора коэффициента мощности (PFC) и т. д.Сложная конструкция может снизить надежность схемы. Широкое использование алюминиевых электролитических конденсаторов в ККМ в качестве компонента для накопления энергии вызывает наибольшую озабоченность по поводу надежности драйвера SMPS. Электролитические конденсаторы известны своей высокой емкостью и высоким напряжением. Тем не менее, электролит в конденсаторе со временем испарится. Скорость испарения линейно коррелирует с температурой. Высокая температура ускорит испарение электролита, что приведет к уменьшению емкости и увеличению ESR (эквивалентного последовательного сопротивления).Повышенное ESR приводит к высоким пульсациям выходного напряжения и шуму. А конденсатор в итоге выходит из строя при высыхании электролита, что приводит к преждевременному выходу из строя всей системы освещения. Высокоскоростное переключение может создавать электромагнитные помехи (EMI), которые отрицательно влияют на окружающие элементы схемы. Это создает дополнительную проблему проектирования, которую необходимо решить. Использование шумового фильтра приводит к увеличению объема и веса, а также стоимости производства.

С другой стороны, линейные драйверы обладают большим потенциалом благодаря ранее упомянутым преимуществам.Как правило, они переживают драйверы SMPS, упрощают конструкцию лампы, снижают затраты и значительно сокращают спецификацию. Однако сложно разработать линейный драйвер с эффективностью преобразования и подавлением мерцания, сравнимой с схемами SMPS. Эта технология в настоящее время используется не по назначению. Большинство производителей освещения рассматривают его только как недорогое решение для вождения. Хотя допустимо использовать линейные драйверы в светодиодных светильниках для приложений, где высокое качество света и изоляция от сети переменного тока не являются главным приоритетом (например,грамм. наружное освещение), некоторые производители пытаются внедрить это недорогое решение для управления светодиодами в визуально требовательных, чувствительных к безопасности приложениях внутреннего освещения, не улучшая качество выходного сигнала драйвера (контроль мерцания) и не повышая электрическую безопасность и рассеивание тепла в системе освещения.

Бортовой водитель (DOB)

DOB является типичной реализацией топологии линейного привода. Светодиодный модуль DOB, также называемый светодиодным двигателем переменного тока, содержит светодиоды и всю электронику драйвера на печатной плате с металлическим сердечником (MCPCB).Технология DOB использует преимущества возможности монтажа на MCPCB микросхем высоковольтных драйверов (импульсные линейные регуляторы). В отличие от схемы драйвера SMPS, которая должна быть установлена ​​на печатной плате FR4 с разводкой, эти микросхемы драйвера для поверхностного монтажа могут быть припаяны к MCPCB, установленной на светодиоде, без разводки схемы. Это полностью устраняет необходимость в специальном блоке драйверов и, таким образом, обеспечивает компактный форм-фактор. Еще одним преимуществом конструкции DOB является то, что отличная теплопроводность MCPCB может способствовать быстрому рассеиванию тепла, выделяемого из-за неэффективного преобразования линейного драйвера.

Энергопотребление

Обработка мощности, происходящая внутри SMPS, обычно приводит к неравномерному потреблению мощности из-за модуляции импульсов тока. То, как импульсные регуляторы потребляют импульсы тока от электросети коммунального предприятия, может привести к перегибам и искажениям формы волны тока в линии электропередачи, а также к срабатыванию предохранителей и автоматических выключателей при уровнях мощности ниже, чем возможности линии электропередачи. Наличие этих гармонических искажений и нелинейных нагрузок может привести к различным проблемам, таким как перегрев нейтральных проводников и распределительных трансформаторов, отказ или неисправность оборудования для производства и распределения электроэнергии, помехи в цепях связи и т. д.С точки зрения коммунальных услуг эти разрушительные помехи от нижележащего электрического оборудования должны быть запрещены. Поэтому коммунальные предприятия предъявляют нормативные требования к коэффициенту мощности (PF) и полному гармоническому искажению (THD) электрооборудования, в том числе светодиодных светильников с питанием от сети.

Коэффициент мощности представляет собой отношение потребляемой мощности к отдаваемой мощности и выражается числом от 0 до 1. Чисто резистивная нагрузка имеет коэффициент мощности 1, поскольку потребляет ток точно в фазе с линейным напряжением.Тем не менее, реактивные элементы, такие как конденсаторы и катушки индуктивности драйвера светодиодов, потребляют дополнительный реактивный ток, который трудно измерить и, следовательно, коммунальные предприятия не могут получать от него доход. Что наиболее важно, эта реактивная мощность приведет к тому, что отдаваемая мощность (полная мощность) будет больше, чем мощность, фактически требуемая светодиодным светильником. Это может привести к тому, что инфраструктура коммунального предприятия будет работать с превышением пропускной способности, и может привести к потенциальному ущербу, если не будут приняты меры для защиты инфраструктуры от перегрузки дополнительной реактивной мощностью.Чем ближе коэффициент мощности к 1, тем более точно совпадают формы сигналов тока и напряжения. По мере уменьшения коэффициента мощности больше энергии тратится впустую в виде реактивной мощности. В коммерческом и промышленном секторах коммунальные предприятия часто взимают дополнительную плату с конечных пользователей, которые работают с электрическим оборудованием с низким коэффициентом мощности, чтобы компенсировать возросшие затраты на генерацию и передачу.

Коэффициент мощности светодиодной лампы или светильника стал требованием спецификаций на многих рынках. Директива ЕС требует, чтобы светодиодный продукт с потребляемой мощностью более 25 Вт имел PF выше 0.9. В США и Design Light Consortium (DLC), и Energy Star имеют правила PF, аналогичные европейским. В штате Калифорния действуют четкие правила для значения PF, которое должно быть больше 0,9 для всех уровней мощности бытового и коммерческого светодиодного освещения. Чтобы соответствовать нормативным значениям коэффициента мощности, драйверы светодиодов с питанием от сети, предназначенные для сетей переменного тока, должны использовать некоторую форму коррекции коэффициента мощности для поддержания высокого коэффициента мощности в широком диапазоне входного напряжения. Схема коррекции коэффициента мощности (PFC) обычно используется для минимизации реактивной мощности и максимизации доступной мощности от источника и распределительных кабелей.Цепи PFC, которые включают в себя активные и пассивные PFC, формируют и синхронизируют входной ток в синусоидальную форму волны, которая находится в фазе с линейным напряжением.

Общее гармоническое искажение (THD) часто ставится на одном дыхании с проблемой низкого коэффициента мощности. THD — это измерение искажения формы волны тока, вызванного нелинейными электрическими нагрузками, такими как нагрузки выпрямителя. Искаженные формы сигналов тока могут уменьшить коэффициент мощности, а также создать гармонические искажения. Гармонические искажения также возникают, когда нагрузка потребляет ток, который не похож на настоящую синусоиду.THD представлен в процентах. Чем ниже значение, тем лучше. Высокий коэффициент нелинейных искажений может вызвать проблемы в оборудовании распределения электроэнергии. Поэтому важно, чтобы драйверы светодиодов соответствовали нормативным значениям THD (обычно менее 20%) во всем диапазоне входного напряжения. Коэффициент нелинейных искажений подавляется схемой коррекции коэффициента мощности, которая должна эффективно формировать входной ток, чтобы обеспечить генерацию минимальной энергии на более высоких частотах.

Диммирование может влиять как на PF, так и на THD. Следовательно, необходимо измерять PF и THD на полном и диммированном выходах.

Управление затемнением

Переход от традиционной технологии освещения к полупроводниковому освещению обусловлен необходимостью большей эффективности, контроля и взаимодействия. В основе управления освещением лежит технология диммирования, которая является неотъемлемой частью систем управления освещением. Одним из преимуществ светодиодов является способность мгновенно реагировать на изменения потребляемой мощности, которая регулируется драйвером светодиода. Эффективность диммирования светодиодного драйвера становится все более важной, поскольку освещение становится все более связанным и адаптивным к потребностям и предпочтениям пользователя.Наиболее часто используемые элементы управления диммером-драйвером включают симистор (триод для переменного тока), 0–10 В и DALI (цифровой адресуемый интерфейс освещения). Широтно-импульсная модуляция (PWM) и подавление постоянного тока (CCR) являются наиболее распространенными методами, используемыми для диммирования светодиодных нагрузок от драйвера.

Диммеры с управлением фазой работают, отключая части цикла переменного напряжения для управления светоотдачей. Цепи управления фазой включают 2-проводное управление прямой фазой (передний фронт), 2-проводное управление обратной фазой (задний фронт) и 3-проводное управление прямой фазой (передний фронт).Диммирование с фазовым управлением часто используется при модернизации, когда прокладка новой или дополнительной проводки ответвленной цепи или внутренней проводки управления может быть сложной и дорогостоящей. Однако драйвер светодиода должен быть спроектирован так, чтобы распознавать и реагировать на сигналы напряжения от схемы диммирования. Неспособность интерпретировать выходной сигнал переменного фазового угла при управлении фазой затемнения, вероятно, приведет к мерцанию и уменьшению диапазона затемнения.

0–10 В — это 4-проводной (горячий и нейтральный, плюс 2 низковольтных управляющих провода) метод диммирования, который иногда называют диммированием 1–10 В, поскольку большинство типичных драйверов с диммированием 0–10 В можно диммировать только от 100 % ( 10В) до 10% (1В), а 0В выключает лампу.В этом методе драйвер является источником тока для сигнала постоянного тока и, таким образом, надежен при диммировании, происходящем в драйвере. Схема управления посылает управляющие сигналы низкого напряжения для регулировки входного сигнала драйвера путем изменения напряжения в диапазоне от 1 В до 10 В постоянного тока. Поскольку управляющий сигнал представляет собой низкое аналоговое напряжение, длинные провода могут привести к падению напряжения и снижению уровня сигнала. 0-10V — это универсальный протокол управления в светотехнической промышленности, который пользуется популярностью в коммерческих приложениях освещения.Однако стандарты диммирования 0–10 В для архитектурных приложений в США не определяют значение минимального светоотдачи и не касаются формы кривой диммирования. Это может привести к несовместимости элементов управления и устройств разных производителей.

DALI, способный обеспечить адресацию отдельных приборов и обратную связь о состоянии от нагрузок, обеспечивает большую гибкость в управлении освещением с помощью 4-проводной системы (горячий и нейтральный плюс 2 низковольтных канала передачи данных без топологии) системы.DALI обычно используется, когда стратегия управления требует, чтобы осветительная арматура реагировала более чем на один контроллер (например, ручной переключатель управления и датчик присутствия). DALI является двунаправленным протоколом, и система освещения DALI может управлять до 64 точками управления (драйверы, диммеры, реле) без использования центрального блока управления. Протокол DALI использует логарифмическое затемнение, которое обеспечивает 256 ступеней яркости со стандартизированной кривой затемнения в диапазоне от 0,1% до 100%.

PWM управляет яркостью светодиода, изменяя рабочий цикл постоянного тока с частотой импульсов, достаточно высокой, чтобы быть незаметным для человеческого глаза.Отношение времени включения ко времени выключения определяет воспринимаемую интенсивность света. Широтно-импульсная модуляция поддерживает постоянный прямой ток, что устраняет проблему сдвига цвета и, таким образом, является преимуществом для приложений, требующих постоянной CCT в широком диапазоне диммирования. ШИМ-диммирование обычно используется как для статической, так и для динамической регулировки интенсивности источников белого света, а также светодиодов RGB. В приложениях для смешивания цветов RGB ШИМ-затемнение позволяет точно регулировать яркость отдельных источников для получения желаемого цвета.Однако высокоскоростное переключение может создавать электромагнитные помехи. Драйверы ШИМ не могут быть установлены удаленно от источника света, потому что увеличенное расстояние передачи от драйвера до источника света может мешать высокочастотным, чувствительным ко времени рабочим циклам.

CCR или аналоговое затемнение регулирует интенсивность света, изменяя ток привода постоянного тока, протекающий через светодиод. Поскольку ток изменяется линейно, CCR практически не мерцает. Диммирование с постоянным током также может работать в более широком диапазоне светоотдачи, чем обычное диммирование с отсечкой фазы.К недостаткам CCR относятся низкая производительность при малых токах (менее 10%), изменение цвета светодиодов при уменьшении яркости светодиодов до 20% от номинальной мощности и асинхронный отклик при более высоких токах из-за эффекта спада. Схема диммирования CCR может управляться с помощью различных протоколов, таких как 0-10 В, DALI и ZigBee. CCR и PWM можно комбинировать для обеспечения гибридного затемнения, чтобы можно было использовать преимущества обоих методов.

Подавление мерцания

Мерцание — это амплитудная модуляция светового потока, которая может быть вызвана колебаниями напряжения в сети переменного тока, остаточными пульсациями выходного тока, подаваемого на светодиодную нагрузку, или несовместимым взаимодействием между цепями диммирования и источниками питания светодиодов.Мерцание может вызывать другие временные световые артефакты (TLA), в том числе стробоскопический эффект (неправильное восприятие движения) и фантомный массив (рисунок появляется при движении глаз). TLA бывают как видимыми, так и невидимыми. Мерцание, возникающее на частотах 80 Гц и ниже, непосредственно видно глазу, а невидимое мерцание — это временные вариации, возникающие на частотах 100 Гц и выше. Стробоскопический эффект и фантомный массив обычно возникают в диапазоне частот от 80 Гц до 2 кГц, их видимость варьируется в зависимости от населения.Хотя невидимые TLA не воспринимаются человеческим глазом, они все же могут иметь ряд негативных последствий.

Мерцание и другие TLA представляют собой нежелательные временные паттерны светоотдачи, которые могут вызывать напряжение глаз, нечеткость зрения, зрительный дискомфорт, снижение зрительной работоспособности и, в некоторых случаях, даже мигрень и светочувствительные эпилептические припадки. Поэтому они являются одним из ключевых соображений при оценке качества света. Играет роль предполагаемое использование искусственного освещения. Различные сценарии освещения могут допускать разный уровень временных световых артефактов.TLA могут быть менее опасны для проезжей части, парковки и наружного архитектурного освещения или других приложений, где продолжительность воздействия искусственного света ограничена. Искусственный свет с высоким процентом мерцания не следует использовать как для общего освещения, так и для рабочего освещения в домах, офисах, учебных классах, гостиницах, лабораториях и производственных помещениях. Освещение без мерцания имеет решающее значение не только для визуальных задач, требующих точного позиционирования глаз, и в условиях, где восприимчивые люди проводят значительное время, но и для вещания HDTV, цифровой фотографии и замедленной записи в студиях, на стадионах и в спортзалах.Видеокамеры могут улавливать TLA так же, как человеческий глаз обнаруживает эти эффекты.

Ключ к уменьшению мерцания лежит в драйвере светодиодов, который предназначен для преобразования переменного тока в постоянный ток и фильтрации любых нежелательных пульсаций тока. Достаточно большие пульсации, которые обычно возникают при удвоенной частоте сетевого напряжения переменного тока, в постоянном токе, подаваемом на светодиодную нагрузку, приводят к мерцанию и другим визуальным аномалиям на частоте 100/120 Гц. Таким образом, допустимый уровень пульсаций тока в светодиодах, например пульсации ±15% (всего 30%), должен быть определен в драйверах светодиодов для различных приложений, где мерцание имеет значение.Пульсации можно сгладить с помощью фильтрующего конденсатора. Одной из основных задач при разработке драйвера является фильтрация пульсаций и гармоник без использования громоздких недолговечных высоковольтных электролитических конденсаторов на первичной стороне. Двигатели со светодиодами переменного тока по своей природе подвержены мерцанию, потому что светодиоды на самом деле работают от того, что по сути является промежуточным напряжением постоянного тока, которое было бы в системе светодиодного освещения на основе SMPS. Быстрое изменение полярности вызывает мерцание интенсивности с частотой, вдвое превышающей синусоидальную частоту переменного тока.Несмотря на простоту схемотехники, для эффективного уменьшения временных колебаний источника питания требуются дополнительные схемы.

Стандарты ограничения мерцания для различных приложений еще не установлены. Компания IES установила две метрики для количественной оценки мерцания. Мерцание в процентах измеряет относительное изменение модуляции света (глубину модуляции). Индекс мерцания — это показатель, который характеризует изменение интенсивности по всему периодическому сигналу (или рабочему циклу для сигналов прямоугольной формы).Процентное мерцание более известно широкому потребителю. В целом, мерцание 10% или менее при частоте 120 Гц или мерцание 8% или менее при частоте 100 Гц допустимо для большинства людей, за исключением групп риска, мерцание 4% или менее при частоте 120 Гц или мерцание 3% или менее при 100 Гц. считается безопасным для всех групп населения и очень желательным в приложениях с интенсивным зрением. К сожалению, большое количество светодиодных ламп и светильников, поставляемых в настоящее время на рынок, имеют высокий процент мерцания. В частности, светодиодные лампы переменного тока имеют мерцание, обычно превышающее 30 процентов при частоте 120 Гц.

Защита цепи

В зависимости от топологии драйвера, конструкции схемы и условий применения драйверы светодиодов могут столкнуться с аномалиями нагрузки и ненормальными условиями работы, такими как перегрузка по току, перенапряжение, пониженное напряжение, короткое замыкание, обрыв цепи, неправильная полярность, потеря нейтрали, перегрев и т. д. Таким образом, драйверы светодиодов должны включать механизмы защиты для решения этих проблем.

Выходное напряжение некоторых драйверов постоянного тока, особенно импульсных повышающих преобразователей, может значительно превышать номинальное напряжение привода из-за отключения нагрузки или чрезмерного сопротивления нагрузки.Защита от обрыва цепи или защита от перенапряжения на выходе (OOVP) обеспечивает механизм отключения, который использует стабилитрон для обеспечения обратной связи и направления выходного тока на землю, когда выходное напряжение превышает определенный предел. Более предпочтительным методом защиты от обрыва цепи является использование схемы активной обратной связи по напряжению для отключения питания при достижении точки срабатывания по перенапряжению.

Защита от перенапряжения на входе (IOVP) предназначена для разгрузки цепи управления от перенапряжения в результате коммутационных операций/изменения нагрузки в электросети, ударов молнии поблизости, ударов молнии непосредственно в систему освещения или электростатического разряда.В сетях переменного тока небольшое, но продолжительное перенапряжение может вызвать высокие токи (энергетические импульсы) в драйвере светодиодов и светодиодах, что может привести к отказу драйвера светодиодов и интерфейсов управления, а также к преждевременному старению светодиодов. Металлооксидный варистор (MOV) или ограничитель переходного напряжения (TVS) могут быть размещены на входе для поглощения энергии путем ограничения напряжения. Конденсатор из пластиковой пленки, который обычно подключается к линии переменного тока для снижения электромагнитных помех, также помогает поглощать часть энергии импульсов перенапряжения.

Драйверы светодиодов

обычно имеют ограниченный уровень защиты от перенапряжения благодаря встроенным схемам защиты от перенапряжения. В некоторых приложениях, таких как уличное освещение, к драйверу должны быть добавлены дополнительные устройства защиты от перенапряжения, способные выдерживать множественные перенапряжения или удары, чтобы защитить последующие компоненты от высоких перенапряжений. УЗИП должен быть рассчитан на снижение или разряд высокой энергии импульса минимум 10 кВ и 10 кА в соответствии с ANSI C136.2.

Короткое замыкание на нагрузке линейного источника питания может привести к перегреву, но не влияет на ток, подаваемый на каждый светодиод, поскольку схемы ограничения тока обеспечивают автоматическую защиту от короткого замыкания.Однако в импульсном понижающем стабилизаторе короткое замыкание приведет к выходу из строя светодиода или всего модуля, в зависимости от схемы. Выход из строя одного светодиода обычно оказывает минимальное влияние на общий световой поток. Изменение напряжения можно компенсировать с помощью саморегулирующейся схемы распределения тока, которая по-прежнему равномерно распределяет ток. С другой стороны, короткое замыкание на нагрузке светодиодной цепочки может существенно повлиять на общий световой поток. Механизм обнаружения отказа защиты от короткого замыкания может быть реализован путем контроля рабочего цикла.Короткое замыкание обычно приводит к очень короткому рабочему циклу.

Защита от перегрева для светодиодных систем включает в себя защиту от перегрева модуля (MTP) и ограничение температуры драйвера (DTL). DTC использует резистор NTC (отрицательный температурный коэффициент) для снижения выходного тока, когда максимальная температура точки корпуса драйвера в приложении превышает заданный предел. МТС отслеживает температуру светодиодного модуля и взаимодействует с драйвером, который автоматически снижает ток, подаваемый на светодиоды, когда МТС обнаруживает пороговую температуру.DTL также может использоваться как альтернатива MTP, если точка TC драйвера и температура светодиодного модуля могут быть связаны.

Электромагнитные помехи и электромагнитная совместимость

Электромагнитные помехи (EMI), также называемые радиочастотными помехами (RFI), воздействуют на другие электрические цепи вследствие либо электромагнитной проводимости, либо электромагнитного излучения, испускаемого электронными устройствами, например драйверами светодиодов, радиоприемниками CB и сотовыми телефонами. Любой светодиодный драйвер, подключенный к сети переменного тока, должен соответствовать стандартам излучения, например, определенным в IEC 61000-6-3.В схеме управления светодиодом переключение полевого МОП-транзистора обычно является основным источником электромагнитных помех. Компоновка печатной платы с короткими и компактными путями для коммутационных токов также важна для ограничения электромагнитных помех. В некоторых приложениях требуется входной фильтр для снижения высокочастотных гармоник, и конструкция этой схемы имеет решающее значение для поддержания низкого уровня электромагнитных помех. Заземляющий слой на печатной плате должен оставаться непрерывным, чтобы избежать создания токовой петли, вызывающей высокие уровни электромагнитных помех. Металлический экран может быть установлен над зоной коммутации, чтобы обеспечить ограждение, препятствующее электромагнитному излучению.

Электромагнитная совместимость (ЭМС) — это способность устройства или системы работать в своей электромагнитной среде, не создавая электромагнитных помех, которые мешают соседнему оборудованию, или не подвергаясь воздействию электромагнитных помех, излучаемых соседним оборудованием. Характеристики электромагнитной совместимости драйвера светодиодов часто автоматически обеспечиваются хорошей конструкцией электромагнитных помех. Однако электростатический разряд (ЭСР) и устойчивость к импульсным перенапряжениям, которые не учитываются в методах защиты от электромагнитных помех, также влияют на характеристики ЭМС.

Вопросы безопасности

Безопасность всегда должна оставаться приоритетом номер один при оценке водителя и системы освещения, которой он управляет.Крайне желателен драйвер светодиодов с питанием от сети с диэлектрической изоляцией, например, 1500 В RMS (50 или 60 Гц) от входа до выхода. Изоляция входной/выходной цепи может быть выполнена только с помощью трансформатора, имеющего первичную и вторичную обмотки с хорошей гальванической развязкой. Выходное напряжение должно поддерживаться ниже предела безопасного сверхнизкого напряжения (SELV) 60 В постоянного тока в соответствии с IEC 61140. Однако растет число продуктов светодиодного освещения, которые реализуют неизолированную топологию с целью снижения затрат.Риск поражения электрическим током является серьезной проблемой для светодиодных продуктов, управляемых недорогими линейными стабилизаторами. Эти цепи не обеспечивают изоляцию между входными и выходными цепями, а электрическая изоляция систем освещения может быть недостаточно проверена.

Для изделий с питанием от переменного тока необходимо учитывать пути утечки и воздушные зазоры. Путь утечки между первичной и вторичной цепями должен соответствовать требованиям по расстоянию, в противном случае может произойти поражение электрическим током или возгорание.Зазор, который определяется как кратчайшее расстояние между двумя токопроводящими частями, должен учитываться для предотвращения искрения между электродами, вызванного ионизацией воздуха. Поскольку размеры электронных схем продолжают уменьшаться, хорошая конструкция печатной платы имеет важное значение для схемы драйвера, чтобы не только уменьшить излучение электромагнитных помех, но и уменьшить проблемы с утечкой тока и зазорами.

Все токопроводящие и осязаемые части драйвера светодиодов класса защиты I с питанием от сети должны быть заземлены.Драйверы светодиодов, предназначенные для управления системами светодиодного освещения для жилых и коммерческих помещений, обычно относятся к классу II. Для драйверов светодиодов класса II нет заземления корпуса, но все проводники внутри драйверов класса II должны иметь двойную или усиленную изоляцию, чтобы обеспечить хорошую изоляцию между цепью питания от сети и выходной стороной или металлическим корпусом драйвера.

Тепловые аспекты

Драйвер светодиода настроен на максимально эффективное преобразование сетевого напряжения переменного тока в постоянное, а любая энергия, потерянная в процессе преобразования, будет преобразована в тепло.Это означает, что драйверу светодиодов с КПД 90% требуется входная мощность 100 Вт/0,9 = 111 Вт для управления нагрузкой 100 Вт. Среди входной мощности 11 Вт есть потери мощности, которые улетучиваются в виде тепла. Это создает высокую тепловую нагрузку на схему драйвера светодиода. Когда драйвер находится внутри корпуса светильника, тепловая нагрузка от светодиодов приводит к дополнительному повышению температуры драйвера. В дополнение к использованию компонентов, рассчитанных на высокие температуры, драйвер должен быть спроектирован так, чтобы отводить тепло от термочувствительных компонентов.Избыточное накопление тепла вызовет проблемы с надежностью компонентов, включая электролитические конденсаторы, которые высыхают при воздействии тепла. Поэтому температура, при которой работает светодиодный драйвер, принципиально важна для определения срока его службы. Для облегчения рассеивания тепла в светодиодных драйверах для светодиодных светильников высокой мощности используются алюминиевые корпуса, которые могут поставляться с ребрами высокой плотности и теплопроводной заливкой.

Пылевлагозащита

Драйверы светодиодов

для дорожного, уличного, наружного и ландшафтного освещения должны быть герметизированы для защиты от попадания пыли, влаги, воды и других предметов, которые могут проникнуть внутрь изделий.Высокая степень защиты от проникновения (IP) для светодиодных драйверов имеет решающее значение для внутренних помещений, таких как автомойки, чистые помещения, заводы по розливу и консервированию, предприятия пищевой промышленности, фармацевтические заводы или любое промышленное применение, требующее ежедневной мойки под высоким давлением. Автономные светодиодные драйверы для влажных помещений обычно заливаются силиконом для повышения целостности корпуса, а также для обеспечения электрической изоляции и управления температурой. Эти драйверы обычно имеют степень защиты от проникновения IP65, IP66 или IP67.

Место воздействия

Драйверы светодиодов

могут устанавливаться удаленно или совместно с корпусами ламп или светильников. В совмещенных системах без DOB драйвер должен быть термически изолирован от светодиодов, которые выделяют огромное количество тепла. При проектировании корпуса светильника необходимо учитывать техническое обслуживание драйвера. В удаленно установленных системах драйверы ШИМ могут испытывать потери производительности на большом расстоянии. Таким образом, CCR является предпочтительным методом диммирования для удаленно установленных систем.

Бестрансформаторная схема драйвера светодиодов для надежных и недорогих конструкций светодиодных ламп

Говорят, что светодиодные лампы на 80 % более эффективны, чем другие традиционные варианты освещения, такие как люминесцентные лампы и лампы накаливания. Быстрая адаптация светодиодных ламп уже заметна вокруг нас, и глобальная рыночная стоимость светодиодных ламп достигла примерно 5,4 миллиарда долларов в 2018 году. Проблема при разработке этих светодиодных ламп заключается в том, что светодиодный свет, как мы знаем, работает от постоянного напряжения и сети. Источником питания является переменный ток, поэтому нам необходимо спроектировать схему драйвера светодиода , которая могла бы преобразовывать сетевое напряжение переменного тока в подходящий уровень постоянного напряжения, необходимого для светодиодной лампы.В этой статье мы разработаем такую ​​ практичную недорогую схему драйвера светодиодов , используя LNK302 Switching IC для питания четырех светодиодов (последовательно), которые могут обеспечить 200 люмен, работая при 13,6 В и потребляя около 100-150 мА.

 

Предупреждение: Прежде чем двигаться дальше, очень важно убедиться, что вы работаете с максимальной осторожностью вблизи сети переменного тока. Схема и детали, представленные здесь, были протестированы и обработаны экспертами. Любые несчастные случаи могут привести к серьезным повреждениям, а также могут привести к летальному исходу.Работайте на свой страх и риск. Вы были предупреждены.

 

Цепь бестрансформаторного источника питания

Очень грубая схема драйвера светодиода может быть построена с использованием метода конденсаторной капельницы, точно так же, как мы делали это в нашем предыдущем проекте бестрансформаторного источника питания. Хотя эти схемы все еще используются в некоторых очень дешевых электронных продуктах, они имеют множество недостатков, которые мы обсудим позже. Следовательно, в этом уроке мы не будем использовать метод конденсаторной капельницы, вместо этого создадим надежную схему драйвера светодиода с использованием переключающей ИС.

 

Недостаток схемы бестрансформаторного источника питания с падением конденсатора

Этот тип схемы бестрансформаторного источника питания дешевле стандартного импульсного источника питания из-за малого количества компонентов и отсутствия магнитов (трансформатора). Он использует схему конденсатора , которая использует реактивное сопротивление конденсатора для снижения входного напряжения.

 

Хотя этот тип бестрансформаторных конструкций оказывается очень полезным в некоторых случаях, когда стоимость производства конкретного продукта должна быть ниже, конструкция не обеспечивает гальваническую изоляцию от сети переменного тока и, следовательно, должна использоваться только в продуктах, которые не входят в комплект поставки. в непосредственном контакте с человеком.Например, его можно использовать в мощных светодиодных светильниках , корпус которых изготовлен из твердого пластика, а после установки ни одна часть схемы не подвергается воздействию пользователя. Проблема с этими типами схем заключается в том, что если блок питания выйдет из строя, он может отразить высокое входное переменное напряжение на выходе, что может стать смертельной ловушкой.

 

Другим недостатком является то, что эти схемы ограничены низким номинальным током . Это связано с тем, что выходной ток зависит от номинала используемого конденсатора, для более высокого номинального тока необходимо использовать очень большой конденсатор.Это проблема, потому что громоздкие конденсаторы также увеличивают пространство на плате и увеличивают стоимость производства. Кроме того, схема не имеет схемы защиты , такой как защита от короткого замыкания на выходе, защита от перегрузки по току, тепловая защита и т. д. Если их необходимо добавить, это также увеличивает стоимость и сложность. Даже если все сделано хорошо, они ненадежны .

 

Итак, вопрос в том, есть ли решение, которое может быть более дешевым, эффективным, простым и меньшим по размеру вместе со всеми схемами защиты, чтобы сделать неизолированную схему драйвера светодиодов высокой мощности переменного тока в постоянный? Ответ положительный, и это именно то, что мы собираемся построить в этом уроке.

 

Выбор правильного светодиода для вашей светодиодной лампы

Первым шагом в разработке схемы драйвера светодиодной лампы является выбор нагрузки, то есть светодиода, который мы собираемся использовать в наших лампах. Те, которые мы используем в этом проекте, показаны ниже.

 

Светодиоды в вышеуказанной ленте представляют собой 5730 упаковок 0,5 Вт холодных белых светодиодов со световым потоком 57лм. Прямое напряжение составляет 3,2 В минимум на 3.Максимум 6 В при прямом токе от 120 до 150 мА . Таким образом, для получения 200 люмен света можно последовательно использовать 4 светодиода. Требуемое напряжение этой полосы будет 3,4 х 4 = 13,6В и ток 100-120мА будет протекать через каждый светодиод.

 

Вот схема последовательного подключения светодиодов —

 

LNK304 — ИС драйвера светодиодов

Для этого приложения выбрана микросхема драйвера LNK304 .Он может успешно обеспечить требуемую нагрузку для этого приложения наряду с автоматическим перезапуском, защитой от короткого замыкания и тепловой защитой. Особенности можно увидеть на изображении ниже —

 

Выбор других компонентов

Выбор других компонентов зависит от выбранной микросхемы драйвера. В нашем случае эталонный проект, приведенный в техническом описании, использует однополупериодный выпрямитель с двумя стандартными восстанавливающими диодами. Но в этом приложении мы использовали диодный мост для двухполупериодного выпрямления.Это может увеличить стоимость производства, но, в конце концов, конструктивные компромиссы также имеют значение для надлежащей подачи мощности на нагрузку. Принципиальную схему без значений можно увидеть на изображении ниже, теперь давайте обсудим, как выбрать значения

.

 

Итак, для данного применения выбран диодный мост BR1 DB107 . Однако для этого приложения также можно выбрать диодный мост 500 мА. После диодного моста используется фильтр pi , где требуются два электролитических конденсатора вместе с катушкой индуктивности.Это исправит постоянный ток, а также уменьшит электромагнитные помехи. Значения конденсаторов, выбранные для этого приложения, представляют собой электролитические конденсаторы 10 мкФ 400 В. Значения должны быть выше, чем 2,2 мкФ 400 В. В целях оптимизации затрат лучшим выбором может быть от 4,7 мкФ до 6,8 мкФ.

Для катушки индуктивности рекомендуется более 560 мкГн с номинальным током 1,5 А. Поэтому C1 и C2 выбраны на 10 мкФ 400 В, а L1 на 680 мкГн и диодный мост DB107 на 1,5 А для DB1.

 

Выпрямленный постоянный ток подается на микросхему драйвера LNK304 .Вывод байпаса должен быть соединен с источником конденсатором 0,1 мкФ 50 В. Следовательно, C3 — керамический конденсатор 0,1 мкФ 50 В. D1 нужен сверхбыстрый диод с временем обратного восстановления 75 нс. Он выбран как UF4007.

 

FB — это контакт обратной связи, а резисторы R1 и R2 используются для определения выходного напряжения. Опорное напряжение на выводе FB составляет 1,635 В, микросхема переключает выходное напряжение до тех пор, пока не получит это опорное напряжение на своем выводе обратной связи. Таким образом, с помощью простого калькулятора делителя напряжения можно выбрать номинал резисторов.Итак, для , получающего 13,6 В на выходе , значение резистора выбирается на основе приведенной ниже формулы

.
  Vout = (Напряжение источника x R2) / (R1 + R2)  

 

В нашем случае Vout 1,635В, Source voltage 13,6В. Мы выбрали значение R2 как 2,05k. Итак, R1 составляет 15 тыс. В качестве альтернативы вы можете использовать эту формулу для расчета напряжения источника. Конденсатор С4 выбран на 10мкФ 50В. D2 — стандартный выпрямительный диод 1N4007. L2 такой же, как L1, но ток может быть меньше.L2 также составляет 680 мкГн с номиналом 1,5 А.

 

 

Конденсатор выходного фильтра С5 выбран на 100мкФ 25В. R3 – это минимальная нагрузка, используемая для целей регулирования. Для регулирования нулевой нагрузки выбрано значение 2,4k. Обновленная схема вместе со всеми значениями показана ниже.

 

Работа схемы бестрансформаторного драйвера светодиодов

Вся схема работает в режиме MDCM (режим преимущественно прерывистой проводимости) Топология переключения индуктивности .Преобразование переменного тока в постоянный осуществляется диодным мостом и фильтром pi . После получения выпрямленного постоянного тока этап обработки мощности выполняется LNK304 и D1, L2 и C5. Падение напряжения на D1 и D2 почти одинаковое, конденсатор C3 проверяет выходное напряжение и в зависимости от напряжения на конденсаторе C3 измеряется LNK304 с помощью делителя напряжения и регулирования коммутируемого выхода на выводах истока.

 

Сборка схемы драйвера светодиода

Все компоненты, необходимые для построения схемы, кроме катушек индуктивности.Следовательно, мы должны намотать наш собственный дроссель , используя эмалированный медный провод. Теперь существует математический подход для расчета типа сердечника, толщины провода, количества витков и т. д. Но для простоты мы просто сделаем несколько витков с имеющейся катушкой и медным проводом и воспользуемся измерителем LCR , чтобы проверить, достигли необходимого значения. Так как наш проект не очень чувствителен к номиналу катушки индуктивности, а номинальный ток низкий, этот грубый способ будет работать нормально. Если у вас нет измерителя LCR, вы также можете использовать осциллограф для измерения значения индуктора методом резонансной частоты.

 

На изображении выше показано, что катушки индуктивности проверены, и значение превышает 800 мкГн. Используется для L1 и L2. Для светодиодов также изготовлена ​​простая медная плата. Схема построена на макетной плате.

 

Проверка схемы драйвера светодиода

Схема сначала тестируется с использованием VARIAC (переменного трансформатора), а затем проверяется при универсальном входном напряжении, которое составляет 110 В/220 В переменного тока. Мультиметр слева подключен к входу переменного тока, а другой мультиметр справа подключен к одному светодиоду для проверки выходного напряжения постоянного тока.

 

Показания берутся для трех различных входных напряжений. Первый слева показывает входное напряжение 85 В переменного тока, а на одном светодиоде он показывает 3,51 В, тогда как напряжение светодиода на разных входных напряжениях немного меняется. Подробное рабочее видео можно найти ниже.

.

0 comments on “Схема драйвера светодиодной лампы 220 в: Схема драйвера для светодиодной лампы на 220В

Добавить комментарий

Ваш адрес email не будет опубликован.