К176: Маршрут к176: расписание, карты и остановки

Гипсовый карниз К176 с гладким профилем по цене 1109руб.

Описание

Карниз из гипса К176 с гладким профилем (гипсовый потолочный плинтус)

Данный гипсовый карниз изготавливается
кусками по 1.15м (минимальное количество заказа – 1.15м)

Карниз гипсовый – ПРЯМОЙ. Цена на сайте указана для прямого
карниза из расчета за 1 погонный метр.

Карниз гипсовый – РАДИУСНЫЙ. Цена данного карниза
выполненного по радиусу составит 200% от стоимости прямого, т.е. радиусный
карниз будет стоить в 2 раза больше чем прямой.

Карниз гипсовый – ЛЕКАЛЬНЫЙ. Цена карниза выполненного по
лекалу, т.е. криволинейного карниза для изготовления которого требуется снятие
(обрисовка) лекала со стены или потолка на месте, будет стоить 300-500% от
стоимости прямого. Другими словами цена криволинейного карниза из гипса по
лекалу будет в 3 раза больше чем цена прямого.

Монтаж карниза Вы можете осуществить сами, либо заказать в

нашей лепной мастерской. При заказе у нас, стоимость монтажа гипсового
карниза
 Вам обойдется примерно 100% от цены самого карниза. Дополнительно
оплачиваются угловые соединения, если в комнате более 4х углов. В стоимость
входят все расходные материалы.

 

По вопросам приобретения карнизов из гипса с декором или для помощи в подборе, пожалуйста звоните по телефону указанному в шапке сайта или на странице контакты.


Также, Вы можете выслать свой запрос на электронный адрес указанный на странице 
контакты – и мы свяжемся с Вами в кратчайшее время

С удовольствием проконсультируем и поможем подобрать карнизы и другие элементы лепнины.

3Д-модели лепнины из гипса скачать бесплатно.

Если Вы не нашли то, что искали , пожалуйста, дайте нам знать с помощью контактной формы.

Мы постараемся добавить желаемое изделие как можно быстрее.

Часы на к176. Простейшие схемы электронных часов на микросхемах серии к176

Лампа: ИН-12

Схема: есть

Плата:нет

Прошивка:не нужна

Исходник:нет

Описание: есть


Особенности: акустический датчик включения.

Схема:


Собрал уже кучу разных часов, захотелось нечто воздушное. В ход пошло оргстекло.. Часы построены на комплекте К176ИЕ18+ К176ИЕ13. Часы отличаются экономичностью, содержат небольшое количество деталей. Отлично смотрятся в полумраке.
При подаче питания на микросхемы в счетчик часов и минут и в регистр памяти будильника автоматически записываются нули. Для установки минут следует нажать кнопку М, показания минут начнут меняться с частотой 2 Гц от 00 до 59 и далее снова 00, в момент перехода от 59 к 00 показания часов увеличатся на единицу. Показания часов будут также изменяться с частотой 2 Гц от 00 до 23 и снова 00, если нажать кнопку Ч. Если нажать кнопку Б, на индикаторах появится время включения сигнала будильника. Кнопка К служит для пуска часов и коррекции хода в процессе эксплуатации. Если нажать кнопку К и отпустить ее спустя одну секунду после шестого сигнала поверки времени, установится правильное показание и точная фаза работы счетчика минут. Теперь можно установить показания счетчика часов, нажав кнопку Ч, при этом ход счетчика минут не будет нарушен. Если показания счетчика минут находятся в пределах 00…39, показания счетчика часов при нажатии и отпускании кнопки К не изменятся. Если же показания счетчика минут находятся в пределах 40…59, после отпускания кнопки К показания счетчика часов увеличиваются на единицу. Таким образом, для коррекции хода часов независимо от того, опаздывали часы или спешили, достаточно нажать кнопку К и отпустить ее спустя секунду после шестого сигнала поверки времени. Незначащий ноль в часах не светится.

Для экономии жизненной энергии индикаторов в отсутствии звука в помещении индикация отключается с задержкой 1.5 минуты (режим сна). Порог срабатывания регулируется R27. Ионистор 0.1F служит резервным источником питания часов. При пропадании напряжения сети VT10 закрывается, отключая высоковольтные ключи, вход V К176ИЕ13 переводит её выходы в высокоомное состояние. Часы допускают отключение от сети на время более 4-х часов, время при этом продолжает отсчитываться. В часах предусмотрено уменьшение яркости их свечения в темноте. Для этой цели в микросхеме К176ИЕ18 предусмотрен вход Q. Подав уровень 1 на этот вход, можно в 3,5 раза увеличить скважность импульсов на выходах T1—T4 и во столько же раз уменьшить яркость свечения индикаторов. Сигнал на вход Q подается с делителя напряжения, составленного из фоторезистора R15 и резистора R14 — 47 к0м. Последний подбирают так, чтобы при некотором уровне внешнего освещения происходило автоматическое переключение яркости. Следует помнить, что при уровне 1 на входе Q (т. е. при малой яркости свечения индикаторов) кнопки не действуют. Для надежного закрывания индикаторов по анодам скважность импульсов на выходах T1—T4 микросхемы К176ИЕ18 равна 32/7 (вместо четырех в К176ИЕ12). Поскольку выходы T1—T4 выполнены с «открытым» стоком, для надежного закрывания VT1, VT3, VT6, VT8 добавлены резисторы между их базой и эмиттером. Микросхема К176ИЕ18 имеет специальный формирователь звукового сигнала. При подаче на вход HS импульса положительной полярности с одноименного выхода микросхемы К176ИЕ13 на выходе HS микросхемы К176ИЕ18 появляются пачки отрицательных импульсов с частотой заполнения 2048 Гц и скважностью 2. Длительность пачек — 0,5 с. период повторения — 1с. Выход HS, выполнен с «открытым» стоком и позволяет подключать излучатели сопротивлением более 50 Ом. Сигнал длится до окончания очередного минутного импульса на выходе M микросхемы.

Микросхемы К176ИЕ13, К176ИЕ18 допускают напряжение питания такое же, как и микросхемы серии К561 — от 3 до 15 вольт. Для лучшего согласования К561ТМ3 и 133ИД1, напряжение питания последней понижено с помощью D8 до 3.5 вольт.
В часах применен простой трансформаторный узел высокого напряжения 170 вольт. Трансформатор T1 взят с китайской зарядки от мобилок. Оставлена первичная обмотка, вторичная 17+17 витков. В качестве блока питания часов использован 5-ти вольтовый адаптор от мобильного телефона.
Ток потребления часов в режиме, mA:
нормальной яркости …180
пониженной яркости … 100
режиме сна………… 20

11.

СХЕМЫ СЕРИЙНЫХ ЭЛЕКТРОННЫХ ЧАСОВ НА МИКРОСХЕМАХ СЕРИИ К176

В настоящее время электронная промышленность выпускает значитель-ное количество настольных и автомобильных часов, различных по схемам, ис-пользуемым индикаторам и конструктивному оформлению. Некоторое пред-ставление о серийно выпускаемых часах дает табл. 2. Рассмотрим особенности серийных решений некоторых из указанных часов.

«Электроника 2-05» — настольные часы, показывающие часы и минуты с возможностью выдачи звукового сигнала. Принципиальная схема часов приведе-на на рис. 47. Она содержит 11 микросхем серии К176 и четыре микросхемы-серии К161, один транзистор и 38 других дискретных элементов. В индикаторе используются четыре лампы ИВ-12 и одна лампа ИВ-1 (для мигающего тире).

Таблица 2

Обозначение

Тип инди-катора

Источник питания

Выполняемые функции

«Электроника 3/1» (настольные)

ижкц-6/7

Автономный 6 В

Часы, минуты, секунды с под-светкой

«Электроника 16/7» (настольные)

ИЖКЦ-6/7

Автономный 3 В

Часы, минуты, день недели, опре-. деление числа месяца

«Электроника 6/11» (настольные)

ИВЛ1-7/5

Сеть 220 В

Часы, минуты, с выдачей авуково-, го сигнала в заданное время (функция будильника). Может выполнять функцию секундомера или таймера

«Электроника 6/14» (настольные)

ИВ-6

Сеть 220 В

Часы, минуты с выдачей звуково-го сигнала в заданное время (функция будильника)

«Электроника 2-05

ИВ-12

Сеть 220 В

Часы, минуты с выдачей звуково-го сигнала в заданное время (функция будильника). Возмож-ность изменения яркости свечения индикатора

«Электроника 2-06» (настольные)

ИВЛ 1-7/5

Сеть 220 В

Часы, минуты с выдачей звуково-го сигнала в заданное время (функция будильника). Возмож-

ность изменения яркости свечения индикатора

«Электроника 2-07» (настольные с встроенным радио-приемником)

ИВЛ 1-7/5

Сеть 220 В

Часы, минуты с выдачей звуково-го сигнала,в заданное время (функция будильника). Включение радиоприемника в заданное вре-мя. Прием радиопрограммы в УКВ диапазоне на пяти фиксированных частотах в непрерывном или про-граммируемом режиме работы

«Электроника-12» (автомобильные)

АЛС-324Б

Бортсеть 12 В

Часы, минуты. Возможность изме-нения яркости и отключения ин-дикатора

Схема часов выполнена на микросхемах ИМС4, ИМС8, ИМС11 и отличается от обычной схемы двумя особенностями. Первая заключается в том, что вы-ходы дешифраторов микросхем К176ИЕЗ, К176ИЕ4 соединяются с сегментами-индикаторов через транзисторные ключи (микросхемы К161КН1). Это позволя-ет подавать на цифровые индикаторы напряжение 25 В, чем обеспечивается, более высокая яркость их свечения. Каждая микросхема К161КН1 имеет семь ключей. В часах использованы четыре таких микросхемы: 23 ключа коммути-руют сигналы дешифраторов, один ключ — сигнал частотой 1 Гц (мигающее ти-ре), один — сетку индикатора десятков часов (для выключения при индикации-цифры 0), один — для усиления сигнала 1024 Гц, подаваемого на динамическую-головку будильника, один — для развязки сигнала частотой следования 1 мин, подаваемого на контрольные выводы, один ключ — резервный.

Вторая особенность — система начальной установки времени часов. Для ус-тановки времени используется схема сигнального устройства. Переключатели 1 S 2 S 5 ставятся в положения, соответствующие требуемому времени, например-1200. По сигналу точного времени нажимается кнопка S 7 «Запись». При этом. все счетчики, в том числе сигнального устройства, устанавливаются в нулевое-состояние с помощью логических элементов 2И-НЕ ИМС7.1, ИМС7.2. После этого на схему часов вместо сигнала с частотой 1/60 Гц подается сигнал с частотой 32768 Гц. Даже при кратковременном нажатии кнопки S 7 счетчики; успевают «записать» нужное число, после чего срабатывает схема совпадения сигнального устройства (диоды VD 7 VD 10 и логический элемент 2ИЛИ-НЕ. ИМС5.2), которая прекращает поступление сигнала частотой 32768 Гц через ло-гический элемент 2И-НЕ ИМС6.4. На счетчики часов и сигнального устройства бу-дет в дальнейшем поступать сигнал с частотой 1/60 Гц (через элемент 2ИЛИ-НЕ ИМС6.1).

При включении питания все счетчики часов и сигнального устройства уста-навливаются в нуль с помощью схемы, собранной на транзисторе VT 1. При появлении напряжения на коллекторе транзистора и отсутствии напряжения на конденсаторе СЗ транзистор закроется. На выходе логического элемента 2И-НЕ ИМС7.2 появится положительный потенциал, который установит в 0 делители микросхемы К176ИЕ12. Одновременно через элемент 2И-НЕ ИМС7.1 установятся в 0 счетчики часов и сигнального устройства. При заряде конден-сатора СЗ через резистор R 7 транзистор откроется, на обоих входах элемента-ИМС7.2 появится положительный потенциал, а на выходе сигнал логического 0. Счетчики начнут работать.

Сигнальное устройство состоит из счетчиков часов и минут, переключателей-установки времени 52- — S 5, схем совпадения и звуковой сигнализации. Работа всех элементов сигнального устройства данных часов рассмотрена в § 7.

Питающее устройство состоит из сетевого трансформатора Т, обеспечиваю-щего переменное напряжение 1,2 В для питания цепей накала катодов ламп, а также напряжение 30 В для питания остальных элементов часов. После вы-прямления диодом VD 3 получается постоянное напряжение — 25 В, подаваемое-на катоды ламп. С помощью переключателя «Яркость» можно изменять яркость свечения индикаторов.

Из напряжения +25 В с помощью резистора R 4 и стабилитрона VD 5 соз-дается напряжение +9 В для питания микросхем. Для обеспечения работы ос-новной схемы часов при пропадании сети предусмотрено включение батареи G напряжением 6 — 9 В. Мощность, потребляемая часами, около 6 Вт.

«Электроника 2-06» — часы настольного типа с сигнальным устройством.

Рис. 48. Принципиальная схема часов «Электроника 2-06»

Принципиальная схема часов приведена на рис. 48. Она содержит три микро-схемы повышенного уровня интеграции серии К176, два транзистора и 36 дру-гих дискретных элементов. Индикатор — — плоский многоразрядный, катодолю-мннесцентный, с динамической индикацией ИВ Л1-7/5. Он имеет четыре цифры высотой 21 мм и две разделительные точки, расположенные вертикально.

Генератор секундных и минутных импульсов выполнен на микросхеме -ИМС1 К176ИЕ18. Кроме того, эта микросхема создает импульсы частотой сле-дования 1024 Гц (вывод 11), используемые для работы сигнального устройст-ва. Для создания прерывистого сигнала используются импульсы частотой следо-вания 2 Гц (вывод 6). Частота 1 Гц (вывод 4) создает эффект «мигания» раз-делительных точек.

Импульсы частотой следования 128 Гц, сдвинутые относительно друг друга по фазе на 4 мс (выводы 1, 2, 3, 15) подаются на сетки четырех цифр индика-тора, обеспечивая их последовательное свечение. Коммутация соответствующих счетчиков минут и часов осуществляется частотой 1024 Гц (вывод 11). Каж-дый импульс, подаваемый на сетки индикатора, равен по длительности двум периодам частоты 1024 Гц, т. е. сигнал, подаваемый на сетку со счетчиков, бу-дет дважды включен и выключен. Таким подбором частоты синфазных импуль-сов обеспечивается два эффекта: динамическая индикация и импульсная работа дешифратора и индикатора. Принцип динамической индикации подробнее рас-смотрен в § 1.

Интегральная микросхема ИМС2 К176ИЕ13 содержит счетчики минут и. часов основных часов, счетчики минут и часов для установки времени сигналь-ного устройства, а также коммутаторы для переключения входов и выходов» этих счетчиков. Выходы счетчиков через коммутатор подключаются к дешифра-тору двоичного кода в семиэлементный код индикатора. Этот дешифратор вы-полнен на микросхеме ИМСЗ К176ИДЗ. Выходы дешифратора подсоединяются к соответствующим сегментам всех четырех цифр параллельно.

При отжатой кнопке S 2 «Звонок» индикатор подключен к счетчикам ча-сов (для опознавания этого режима точка мигает с частотой 1 Гц). Нажав кноп-ку S 6 «Корр.», производят установку счетчиков часов (микросхема К176ИЕ13) и делителей генератора минутной последовательности импульсов (микросхема К176ИЕ18) в нулевое состояние. После отпускания кнопки S 6 часы будут работать как обычно. Затем нажатием кнопок S3 «Мин» и S 4 «Час» производят установку минут и часов текущего времени. В данном режи-ме возможно включение звукового сигнала.

При нажатой кнопке S 2 «Звонок» к дешифратору и индикатору подключа-ются счетчики сигнального устройства. В этом режиме также высвечивается че-тыре цифры, но мигающие точки гаснут. Нажав кнопку S 5 «Буд» и удерживая ее, нажимают последовательно на кнопки S3 «Мин» и S 4 «Час», устанавлива-ют необходимое время срабатывания сигнального устройства, наблюдая за показаниями индикатора.

Схема часов позволяет устанавливать пониженную яркость свечения инди-каторов с помощью кнопки S 1 «Яркость». Однако при этом следует помнить, что при пониженной яркости (кнопка S 1 нажата) включение звукового сигна-ла, а также установка времени часов и сигнального устройства невозможны.

Блок питания БП6-1-1 содержит сетевой трансформатор Т, создающий на-пряжение 5 В (со средней точкой) для питания накала катода индикатора и-напряжение 30 В для питания остальных цепей индикатора и микросхем. На-пряжение 30 В выпрямляется кольцевой схемой на четырех диодах (УД 10 VD 13), а затем с помощью стабилизатора на стабилитроне VD 16 относительно» корпуса создается напряжение +9 В для питания микросхем, а с помощью ста-билизатора на стабилитронах VD 14, VD 15 и транзистора VT 2 — напряжение +25 В (относительно катода) для питания сеток и анодов индикаторов. Мощ-ность, потребляемая часами, не более 5 Вт. Предусмотрено подключение резера-ного питания для сохранения времени часов при выключении сети. Может быть-использована любая батарея напряжением 6 В.

Автомобильные часы «Электроника-12». Часы позволяют определять вре-мя с точностью до 1 мин, изменять яркость свечения индикаторов, а также-выключать индикацию при длительной стоянке. Схема часов выполнена на вось-ми микросхемах и 29 транзисторах (рис. 49).


Рис. 49. Принципиальная схема автомобильных часов «Электроника-12»

Генератор секундных импульсов выполнен на интегральной микросхеме-ИМС1 и кварце на частоту 32768 Гц. Импульсы частотой следования 1 Гц используются для получения минутных импульсов, обеспечения работы «мига-ющей» точки, а также для установки времени.

Для получения минутных импульсов применяют микросхемы ИМС2„ ИМСЗ. Далее, с помощью микросхем ИМС4-ИМС7 производится счет минут и часов. Выходы дешифраторов этих микросхем через транзисторы VT 1 VT 25 подаются на светодиоды цифровых индикаторов. Транзисторы необходимы для согласования слаботочных выходов дешифраторов микросхем К176ИЕЗ,. К176ИЕ4 со светодиодами, требующими для получения нормальной яркости свечения тока около 20 мА.

Установка минут осуществляется подачей секундных импульсов на вход 4 микросхемы ИМС4 через контакты кнопки S3, установка часов — подачей се-кундных импульсов на вход 4 микросхемы ИМС6 с помощью кнопки S 2. Уста-новка состояния 0 делителей и счетчиков микросхем ИМС1 ИМС5 осуществля-ется с помощью кнопки S 4. В этом случае подвижный контакт кнопки подклю-чается к корпусу, что соответствует подаче на вход 8 логического элемента-ЗИ-НЕ (микросхема ИМС8 К176ЛА9) логического 0. Так как на два других входа 1 и 2 через резистор R 62 подается положительное напряжение источника питания, то на выходе 9 логического элемента появится положительный пере-пад, который произведет установку делителей и счетчиков в 0. Остальное время на выходе логического элемента будет напряжение, близкое к 0 В, что обеспе-чит нормальную работу микросхем.

Для установки счетчиков часов в состояние 0 при достижении числа 24 используются две другие логические схемы ЗИ-НЕ микросхемы ИМС8. Выво-ды 3 микросхемы ИМС6 и ИМС7 подаются на входы 3 и 5 логического элемен-та. На третий вход 4 постоянно поступают импульсы частотой следования 1 Гц. Так как логический элемент производит инверсию входных сигналов, то для получения положительного управляющего импульса используется второй логиче-ский элемент ЗИ-НЕ. На один его вход (11) подаются импульсы с выхода & первого логического элемента, а на два других (12 и 13) — положительное на-пряжение через резистор R 61. Поэтому на выходе 9 появятся секундные им-пульсы только в том случае, когда на выходах 3 микросхем ИМС6, ИМСТ будет положительное напряжение, что соответствует числу 24.

Питание светодиодов, а через них транзисторных ключей, осуществляется: через транзистор VT 29. В его базу включен переключатель S 5 «Яркость». Если подвижный контакт 2 переключателя замкнут с контактом 1, то на базу тран-зистора подается напряжение +8,5 В, транзистор будет открыт, на его эмитте-ре по отношению к корпусу будет напряжение +7,9 В, что обеспечит макси-мальную яркость свечения светодиодоз. Для уменьшения яркости (что увели-чивает срок службы индикаторов) переключатель ставится в другое положение. На базу транзистора VT 29 через резистор R 65 подается напряжение около 7 В, что приведет к уменьшению выходного напряжения до 6,5 В и снижения яр-кости свечения индикаторов.

Для выключения индикации переключателем S 1 на эмиттеры транзисторе» VT 1 VT 27 подается корпус вместо положительного напряжения, поступавше-го через резистор 12

РЕАЛИЗАЦИЯ ЭЛЕКТРОННЫХ ЧАСОВ НА МИКРОСХЕМАХ СЕРИИ К176

9.

ПРОСТЕЙШИЕ СХЕМЫ ЭЛЕКТРОННЫХ ЧАСОВ НА МИКРОСХЕМАХ СЕРИИ К176

Простейшие часы настольного или настенного типа. Структурная схе-ма представлена на рис. 30. Часы содержат генератор минутной последова-тельности импульсов, счетчики, дешифраторы и цифровые индикаторы минут » часов. Первоначальная установка времени производится подачей импульсов с частотой следования 2 Гц на вход счетчика десятков минут. Установка «нуля» осуществляется подачей положительного перепада на делители генератора им-пульсов и на счетчик единиц минут. Таким образом, точная установка времени часов возможна каждые 10 мин. При достижении показаний, соответствующих 24 ч, счетчики единиц и десятков часов устанавливаются в нулевое состояние отдельной схемой.

Принципиальная схема часов представлена на рис. 31. Часы реализованы на пяти микросхемах. Генератор минутной последовательности импульсов вы-полнен на микросхеме К176ИЕ12. Задающий генератор использует кварцевый резонатор РК-72 с номинальной частотой 32768 Гц. Кроме минутной микросхема позволяет получить последовательности импульсов с частотами следования 1, 2, 1024 и 32768 Гц. В данных часах используются последовательности импуль-сов с частотами следования: 1/60 Гц (вывод 10) — для обеспечения работы счетчика единиц минут, 2 Гц (вывод 6) — для первоначальной установки вре-мени, 1 Гц (вывод 4) — для «мигающей» точки. При отсутствии микросхемы К176ИЕ12 или кварца на частоту 32768 Гц генератор может быть выполнен на: других микросхемах и кварце на другую частоту. Варианты таких генераторов рассмотрены в § 5.

Счетчики и дешифраторы единиц минут и единиц часов выполнены на мик-росхемах К176ИЕ4, обеспечивающих счет до десяти и преобразование двоич-ного кода в семиэлементный код цифрового индикатора. Счетчики и дешифра-торы десятков минут и десятков часов выполнены на микросхемах К175ИЕЗ, обеспечивающих счет до шести и дешифрирование двоичного кода в код цифро-вого индикатора. Для работы счетчиков микросхем К176ИЕЗ, К176ИЕ4 необхо-димо, чтобы на выводы 5, 6 и 7 подавался логический 0 (напряжение, близкое к 0 В) или эти выводы были соединены с общим проводом схемы. Выводы(вывод 2) и входы (вывод 4) счетчиков минут и часов соединяются последова-тельно.

Рис. 30. Структурная схема простейших часов настольного (настенного) типа


Рис. 31. Принципиальная схема простейших часов настольного (настенного) типа

Установка 0 делителей микросхемы К176ИЕ12 и микросхемы К176ИЕ4 счетчика единиц минут осуществляется подачей на входы 5 а 9 (для микросхе-мы К176ИЕ12) и на вход 5 (микросхемы К176ИЕ4) положительного напряже-ния 9 В кнопкой S 1 через резистор R 3. Первоначальная установка времени ос-стальных счетчиков осуществляется подачей на вход 4 счетчика десятков ми-нут с помощью кнопки S 2 импульсов с частотой следования 2 Гц. Максималь-ное время установки времени не превышает 72 с.

Схема установки 0 счетчиков единиц и десятков часов при достижении зна-чения 24 выполнена на диодах VD 1 и VD 2 и резисторе R 4, реализующих ло-гическую операцию 2И. Установка в 0 счетчиков происходит тогда, когда на анодах обеих диодов появится положительное напряжение, что возможно толь-ко при появлении числа 24. Для создания эффекта «мигающей точки» импульсы с частотой следования 1 Гц с вывода 4 микросхемы К176ИЕ12 подаются на точку индикатора единиц часов или на сегмент г дополнительного индикатора.

Для часов целесообразно использовать семиэлементные люминесцентные цифровые индикаторы ИВ-11, ИВ-12, ИВ-22. Такой индикатор представляет собой электронную лампу с оксидным катодом прямого накала, управляющей сеткой и анодом, выполненным в виде сегментов, образующих цифру. Стеклян-ный балон индикаторов ИВ-11, ИВ-12 цилиндрической, ИВ-22 — прямоугольной формы. Выводы электродов у ИВ-11 — гибкие, у ИВ-12 и ИВ-22 — в виде ко-ротких жестких штырей. Отсчет номеров ведется по часовой стрелке от укоро-ченного гибкого вывода или от увеличенного расстояния между штырями.

На сетку и на анод должно подаваться напряжение до 27 В. В данной схе-ме часов на анод и сетку подается напряжение +9 В, так как использование более высокого напряжения требует дополнительно 25 транзисторов для согласования выходов микросхем, рассчитанных на питание 9 В с напряжением 27 В, подаваемым на сегменты анодов цифровых индикаторов. Снижение на-пряжения, подаваемого на сетку и анод, уменьшает яркость свечения индика-торов, однако она остается на достаточном для большинства случаев приме-нения часов уровне.

Если указанных индикаторов нет, то можно использовать индикаторы типа ИВ-ЗА, ИВ-6, имеющие меньшие размеры цифр. Напряжение накала нити катода лампы ИВ-ЗА 0,85 В (потребляемый ток 55 мА) ИВ-6 и ИВ-22 — 1,2 В (ток 50 и 100 мА соответственно), у ИВ-11, ИВ-12 — 1,5 В (ток 80 — 100 мА). Один из выводов катода, соединенный с токопроводящим слоем (экраном), ре-комендуется соединять с общим проводом схемы.

Номера выводов наиболее распространенных цифровых люминесцентных ин-дикаторов и соответствующих им выводов микросхем приведены в табл. 1. Обозначение сегментов индикатора русскими и латинскими буквами показано на рис. 31.

Таблица

Индикатор,

микросхема

Сегменты анода индикатора

Сетка

Катсд

Общий

а

а

б

b

в

с

г

g

д

f

е

d

ж

е

Точка

ИВ-З, ИВ-6

2

4

1

3

5

10

6

11

9

7

8

ИВ- ilH

6

8

5

7

9

3

10

4

2

11

1

ИВ-12

8

10

7

9

1

6

5

4

2

3

ИВ-22

7

8

4

3

10

2

11

1

6

12

5

К176ИЕЗ, К176ИЕ4

9

8

10

1

13

11

12

7

К176ИЕ12

4

8

Питающее устройство обеспечивает работу часов от сети переменного тока 220 В. Оно создает напряжение +9 В для питания микросхем и сеток ламп, а также переменное напряжение 0,85 — 1,5 В для накала катода и ламп индика-торов.

Питающее устройство содержит понижающий трансформатор с двумя вы-ходными обмотками, выпрямитель и фильтрующий конденсатор. Трансформатор и выпрямитель использован от питающего устройства ПМ-1, предназначенно-го для детских электрофицированных игрушек. Дополнительно устанавливается конденсатор С4 и наматывается обмотка для питания накальных цепей като-дов ламп. При напряжении накала катода 0,85 В необходимо намотать 17 вит-ков, при напряжении 1,2 В — 24 витка, при напряжении 1,5 В — 30 витков про-водом ПЭВ-0,31. Один из выводов соединяется с общим проводом (- 9 В), второй — с катодами ламп. Последовательное включение катодов ламп не ре-комендуется.

Конденсатор С4 емкостью 500 мкФ кроме уменьшения пульсаций питающе-го напряжения позволяет обеспечить работу счетчиков часов (сохранение вре-мени) примерно в течение 1 мин при выключении сети, например, при перено-се часов из одной комнаты в другую. Если возможно более длительное выклю-чение напряжения сети, то параллельно конденсатору следует включить батарейку «Крона» или аккумулятор типа 7Д-0Д с номинальным напряжение». 7,5 — 9 В.

Конструктивно часы выполнены в виде двух блоков: основного и питаю-щего. Основной блок имеет размеры 115X65X50 мм, питающее устройстве» 80X40X50 мм. Основной блок установлен на подставке от письменного при-бора.

Электронный секундомер может быть собран по схеме часов, приведенной на рис. 30. Отличие заключается лишь в том, что генератор выдает секундную последовательность импульсов, а также в схеме установки 0. Секундомер мо-жет иметь любое число разрядов, но в большинстве применений достаточно до 10 мин, что обеспечивается тремя счетчиками и тремя индикаторами.

Принципиальная схема секундомера приведена на рис. 32. Генератор се-кундной последовательности импульсов выполнен на интегральной микросхеме ИМС1 К176ИЕ5 и кварце на частоту 32768 Гц. Импульсы с периодом следова-ния 1 с подаются через переключатель SI в положении «Пуск» на вход 4 микросхемы ИМС2, которая обеспечивает счет импульсов до десяти и индика-цию единиц секунд. Далее производится счет и индикация десятков секунд и единиц секунд и единиц минут (микросхемы ИМСЗ, ИМС4). В положении «Стоп» поступление секундных импульсов на вход ИМС2 прекращается и на индика-торах отображается число секунд и минут, прошедших с момента пуска се-кундомера.

При повторной установке переключателя в положение «Пуск» контактами S 2 производится автоматическая установка нуля всех счетчиков схемы секун-домера. Для этого на входы установки нуля (вывод 3 микросхемы К176ИЕ5 и выводы 5 микросхем К176ИЕЗ, К176ИЕ4) подается импульс сброса, сфор-мированный цепочкой R 3, С4, R 4. Затем начинается счет секунд. В качестве пе-реключателей S 1 и S 2 может быть использован сдвоенный тумблер МТДЗ, сдвоенный кнопочный переключатель ПДМ-2-1 или любая кнопка с двумя па-рами контактов на замыкание.

Автомобильные часы могут быть выполнены по аналогичной схеме и будут отличаться лишь типом цифровых индикаторов и питающим устройством. Прин-ципиальная схема автомобильных часов приведена на рис. 33.

В простейших автомобильных часах целесообразно применять цифровые индикаторы ИВ-6. Для повышения яркости свечения индикаторов в данной схеме используется все напряжение, создаваемое генератором автомобиля при работающем двигателе (13,2 — 14,2 В), а питание микросхем осуществляется через стабилизатор, обеспечивающий напряжение 9 В. Это потребовало разде-ления цепей питания микросхем и индикаторов, причем общий провод микро-схем не должен соединяться с «массой» автомобиля. Кроме этого, для лучшей различимости цифр желательно часы размещать в глубине приборного щитка автомобиля, чтобы исключить внешнее прямое освещение индикаторов.


Рис. 32. Принципиальная схема электронного секундомера


Рис. 33. Принципиальная схема автомобильных часов

В данной схеме питание цепей накала катодов ламп осуществляется от по-стоянного напряжения бортовой сети автомобиля. Напряжение 1,2 В получа-ется с помощью гасящего резистора сопротивлением 60 Ом. Питание сеток ламп осуществляется параллельно через резистор R 8. Напряжение 9 В для пи-тания микросхем создается за счет стабилизатора напряжения VD 3, R 5, при-чем общий провод микросхем соединяется с катодом стабилитрона. Остальные элементы (генератор минутных импульсов, установка нуля, установка времени, установка нуля при 24 ч) аналогичны элементам, установленным в часах, при-веденных на рис. 31.

Конструктивно часы выполнены на плате из фольгированного гетинакса размером 90X50 мм. Цифровые индикаторы установлены перпендикулярно пла-те. Лампы закрывают плотной черной бумагой с отверстием размером 20Х Х60 мм, чтобы видны были только индицируемые цифры часов. Затем часы ус-танавливают в щиток автомобиля. В нижней части щитка крепят отдельно кноп-ки SJ и S 2, а также тумблер включения индикации S3. Так как при выклю-ченной индикации часы потребляют менее 1 мА, то при регулярной эксплуата-ции автомобиля (например, летом) целесообразно часы не отключать полно-стью, а только выключить индикацию. В этом случае время будет сохраняться.

Первой конструкцией на цифровых ИС, изготовляемой радиолюбителями, являются, как правило, электронные часы. На ИС серии К155 можно собрать часы, самые разнообразные по своим схемам. Одна из самых простых схем приведена на рис.
Часы включают в себя кварцевый генератор на ИС DD1 и кварцевом резонаторе Z1 на частоту 100 кГц, делитель частоты с коэффициентом деления 10s (DD2 — DD6), счетчики секунд (DD7, DD8), минут (DD9, DD10) и часов (DD11 — DD12), а также не показанные на рис. 40 дешифраторы и индикаторы. Интегральные микросхемы DD7, DD9, DD11 (К155ИЕ2) имеют коэффициент пересчета 10, а в ИС DD8 и DD10 (К155ИЕ4) для получения коэффициента деления 6 используются лишь первые три триггера, что обеспечивает необходимый для дешифраторов код 1 — 2 — 4.
Для пересчета на 24 в счетчике часов выходы 8 микросхем DD11 и DD12 подключены ко входам R этих же микросхем. При достижении состояния 4 ИС DD11 и состояния 2 ИС DD12 на обоих входах R этих счетчиков формируется уровень логической 1, и они переходят в нулевое состояние.
Выходы счетчиков секунд, минут и часов подключены ко входам дешифраторов, выходы дешифраторов — к соответствующим электродам индикаторов. В часах могут быть использованы самые разнообразные индикаторы и соответствующие им дешифраторы.
Эффектно выглядят электронные часы, если индикация секунд производится на индикаторах меньшего размера, чем индикация часов и минут. В этом случае индикаторы секунд меньше раздражают глаза своим постоянным; переключением. Хорошо смотрятся часы с газоразрядными индикаторами часов и минут и небольшими полупроводниковыми индикаторами секунд красного свечения, установленными между индикаторами часов и минут.
Для подключения полупроводниковых семисегментных индикаторов могут использоваться интегральные микросхемы преобразователей кода 1 — 2 — 4 — 8 в код семисегментного индикатора К514ИД1 и К514ИД2. Цоколевка этих микросхем одинакова.

Интегральная микросхема К514ИД1 служит для подключения индикаторов с общим катодом и содержит ограничительные резисторы, обеспечивающие выходной ток около 5 мА. Электроды индикатора, рассчитанного на указанный ток, подключают к выходам микросхемы, а общий катод соединяют с общим проводом.

Литература — С.А.БИРЮКОВ

ЦИФРОВЫЕ УСТРОЙСТВА
НА ИНТЕГРАЛЬНЫХ МИКРОСХЕМАХ

© Издательство «Радио и связь», 1984

  • Похожие статьи

Войти с помощью:

Случайные статьи
  • 16.11.2014

    Данный усилитель подойдет в качестве усилителя для звуковой карты компьютера, маленького радиоприемника. Максимальная мощность усилителя 2Вт. Он содержит минимум элементов и прост в настройке. Источник — http://www.techlib.com/electronics/audioamps.html

  • 06.10.2014

    Перегрузочная способность по входному сигналу 7,5В, при настройке желательно иметь вольтметр с дБ-шкалой, а сигнал подавать с синусоидального генератора, либо воспользоваться генератором Г3-110 с нормированным выходом. Резистором TR1 производим настройку уровня сигнала (регулировка коэф. усиления). Переключатель S1 меняет интенсивность свечения светодиодов. Элементная база R1-2=10Kohm C1=100uF 25V D1-19=LED 3 or 5mm …

  • 24.09.2014

    Качество фото отпечатков в своей основе зависит от правильной выдержки времени при фотопечати. Но при колебаниях напряжения сети в пределах 15% сила света лампы фотоувеличителя может меняться до 40%. Для обеспечения качественной фото печати при колебаниях напряжения сети необходимо автоматически корректировать выдержку. Устройство показанное на рисунке позволяет стабилизировать выдержку и …Подробнее… 19.03.2015

    На рисунке показана схема простого мигающего светодиода работающего от сетевого напряжения. Когда напряжение на конденсаторе С1 становится больше 32В (напряжение пробоя), симметричный динистор (diac) DO-35 открывается и светодиод загорается, дальше процесс поворотятся. Цикл всей цепи зависит от сопротивления R1 и емкости С1. При сборке схемы будьте внимательный, в схеме присутствует сетевое …Подробнее…

Принципиальная схема часов представлена на рис. Часы реализованы на пяти микросхемах. Генератор минутной последовательности импульсов выполнен на микросхеме К176ИЕ12. Задающий генератор использует кварцевый резонатор РК-72 с номинальной частотой 32768 Гц. Кроме минутной микросхема позволяет получить последовательности импульсов с частотами следования 1, 2, 1024 и 32768 Гц. В данных часах используются последовательности импульсов с частотами следования: 1/60 Гц (вывод 10) — для обеспечения работы счетчика единиц минут, 2 Гц (вывод 6) — для первоначальной установки времени, 1 Гц (вывод 4) — для «мигающей» точки. При отсутствии микросхемы К176ИЕ12 или кварца на частоту 32768 Гц генератор может быть выполнен на: других микросхемах и кварце на другую частоту.
Счетчики и дешифраторы единиц минут и единиц часов выполнены на микросхемах К176ИЕ4, обеспечивающих счет до десяти и преобразование двоичного кода в семиэлементный код цифрового индикатора. Счетчики и дешифраторы десятков минут и десятков часов выполнены на микросхемах К175ИЕЗ, обеспечивающих счет до шести и дешифрирование двоичного кода в код цифрового индикатора. Для работы счетчиков микросхем К176ИЕЗ, К176ИЕ4 необходимо, чтобы на выводы 5, 6 и 7 подавался логический 0 (напряжение, близкое к 0 В) или эти выводы были соединены с общим проводом схемы. Выводы(вывод 2) и входы (вывод 4) счетчиков минут и часов соединяются последовательно.

Установка 0 делителей микросхемы К176ИЕ12 и микросхемы К176ИЕ4 счетчика единиц минут осуществляется подачей на входы 5 а 9 (для микросхемы К176ИЕ12) и на вход 5 (микросхемы К176ИЕ4) положительного напряжения 9 В кнопкой S1 через резистор R3. Первоначальная установка времени остальных счетчиков осуществляется подачей на вход 4 счетчика десятков минут с помощью кнопки S2 импульсов с частотой следования 2 Гц. Максимальное время установки времени не превышает 72 с.
Схема установки 0 счетчиков единиц и десятков часов при достижении значения 24 выполнена на диодах VD1 и VD2 и резисторе R4, реализующих логическую операцию 2И. Установка в 0 счетчиков происходит тогда, когда на анодах обеих диодов появится положительное напряжение, что возможно только при появлении числа 24. Для создания эффекта «мигающей точки» импульсы с частотой следования 1 Гц с вывода 4 микросхемы К176ИЕ12 подаются на точку индикатора единиц часов или на сегмент г дополнительного индикатора.
Для часов целесообразно использовать семиэлементные люминесцентные цифровые индикаторы ИВ-11, ИВ-12, ИВ-22. Такой индикатор представляет собой электронную лампу с оксидным катодом прямого накала, управляющей сеткой и анодом, выполненным в виде сегментов, образующих цифру. Стеклянный балон индикаторов ИВ-11, ИВ-12 цилиндрической, ИВ-22 — прямоугольной формы. Выводы электродов у ИВ-11 — гибкие, у ИВ-12 и ИВ-22 — в виде коротких жестких штырей. Отсчет номеров ведется по часовой стрелке от укороченного гибкого вывода или от увеличенного расстояния между штырями.
На сетку и на анод должно подаваться напряжение до 27 В. В данной схеме часов на анод и сетку подается напряжение +9 В, так как использование более высокого напряжения требует дополнительно 25 транзисторов для согласования выходов микросхем, рассчитанных на питание 9 В с напряжением 27 В, подаваемым на сегменты анодов цифровых индикаторов. Снижение напряжения, подаваемого на сетку и анод, уменьшает яркость свечения индикаторов, однако она остается на достаточном для большинства случаев применения часов уровне.
Если указанных индикаторов нет, то можно использовать индикаторы типа ИВ-ЗА, ИВ-6, имеющие меньшие размеры цифр. Напряжение накала нити катода лампы ИВ-ЗА 0,85 В (потребляемый ток 55 мА) ИВ-6 и ИВ-22 — 1,2 В (ток 50 и 100 мА соответственно), у ИВ-11, ИВ-12 — 1,5 В (ток 80 — 100 мА). Один из выводов катода, соединенный с токопроводящим слоем (экраном), рекомендуется соединять с общим проводом схемы.
Питающее устройство обеспечивает работу часов от сети переменного тока 220 В. Оно создает напряжение +9 В для питания микросхем и сеток ламп, а также переменное напряжение 0,85 — 1,5 В для накала катода и ламп индикаторов.
Питающее устройство содержит понижающий трансформатор с двумя выходными обмотками, выпрямитель и фильтрующий конденсатор. Дополнительно устанавливается конденсатор С4 и наматывается обмотка для питания накальных цепей катодов ламп. При напряжении накала катода 0,85 В необходимо намотать 17 витков, при напряжении 1,2 В — 24 витка, при напряжении 1,5 В — 30 витков проводом ПЭВ-0,31. Один из выводов соединяется с общим проводом (— 9 В), второй — с катодами ламп. Последовательное включение катодов ламп не рекомендуется.
Конденсатор С4 емкостью 500 мкФ кроме уменьшения пульсаций питающего напряжения позволяет обеспечить работу счетчиков часов (сохранение времени) примерно в течение 1 мин при выключении сети, например, при переносе часов из одной комнаты в другую. Если возможно более длительное выключение напряжения сети, то параллельно конденсатору следует включить батарейку «Крона» или аккумулятор типа 7Д-0Д с номинальным напряжение»- 7,5 — 9 В.
Конструктивно часы выполнены в виде двух блоков: основного и питающего. Основной блок имеет размеры 115X65X50 мм, питающее устройстве» 80X40X50 мм. Основной блок установлен на подставке от письменного прибора.

Индикатор,

микросхема

Сегменты анода индикатора Сетка Катсд Общий
а б

b

в г д е ж Точка
ИВ-З, ИВ-6 2 4 1 3 5 10 6 11 9 7 8
ИВ- 1lH 6 8 5 7 9 3 10 4 2 11 1
ИВ-12 8 10 7 9 1 6 5 4 2 3
ИВ-22 7 8 4 3 10 2 11 1 6 12 5
К176ИЕЗ, К176ИЕ4 9 8 10 1 13 11 12 7
К176ИЕ12 4 8

Литература

2.1 Характеристика и особенности серии к176.

Номинальное напряжение питания микросхем серии К176 — 9 В ±5%, однако они, как правило, сохраняют работоспособность в диапазоне питающих напряжений от 5 до 12 В. Диапазон рабочих температур микросхем серии от -10 до +70 `С. Выходные уровни микросхем при работе на однотипные микросхемы практически не отличаются от напряжения питания и потенциала общего провода. Максимальный выходной ток большинства микросхем не стандартизирован и не превышает единиц миллиампер, что несколько затрудняет непосредственное согласование микросхем этих серий с какими-либо индикаторами и микросхемами ТТЛ-серий.

Напряжение питания на микросхемы подается на вывод с наибольшим номером, общий провод подключается к выводу с вдвое меньшим номером. Исключение составляют микросхемы К561ПУ4, а также микросхемы, требующие для своей работы два источника питания.

При использовании микросхем следует помнить, что защита входов микросхем диодами от статического электричества не является полной. Поэтому при монтаже устройств с микросхемами КМОП необходимо соблюдать следующие правила.

Применение микросхем КМОП-серий имеет свои особенности. Ни один из входов микросхем не может быть оставлен неподключенным, даже если логический элемент в микросхеме не использован. Свободные входы элементов должны бьггь или соединены с используемыми входами того же элемента или подключены к шине питания или к общему проводу в соответствии с логикой работы микросхемы. Напряжение источника питания должно подаваться ранее или одновременно с подачей входных сигналов.

Логика работы микросхем с одинаковым буквенноцифровым обозначением у серий К176, К561, КР1561 и 564 полностью совпадает, совпадают реальные электрические параметры у микросхем серий К561 и 564, хотя паспортные нормы у них различны [3].

Микросхема К176ИЕ12 (рис.3) предназначена для использования в электронных часах. [5]

рис. 3. Микросхема К176ИЕ12

Она состоит из кварцевого генератора с внешним кварцевым резонатором на частоту 32768 Гц, 15-разрядного делителя частоты и делителя частоты на 60 с индивидуальными входами сброса и тактирования. При подключении к микросхеме кварцевого резонатора с частотой 32768 Гц, она обеспечивает получение частот 32768, 1024, 128, 2, 1 и 1/60 Гц. Импульсы с частотой 128 Гц формируются на четырех выходах микросхемы и сдвинуты между собой по фазе на четверть периода, их скважность равна 4. Эти импульсы предназначены для коммутации знакомест индикатора часов при динамической индикации. Импульсы с частотой 1/60 Гц подаются на счетчик минут, импульсы с частотой 1 Гц могут использоваться для подачи на счетчик секунд и для зажигания разделительной точки. Частота 1024 Гц предназначена для звукового сигнала будильника.

Микросхема К176ИЕ13 (рис.4) предназначена для построения электронных часов с будильником. [5]

рис. 4. Микросхема К176ИЕ13.

Она содержит счетчики минут и часов, регистр памяти будильника, цепи сравнения и выдачи звукового сигнала, цепи динамической выдачи кодов цифр для подачи на индикаторы. Обычно микросхема К176ИЕ13 используется совместно с К176ИЕ12 (рис.5). На выходы Qa-Qd выдается поочередно двоично-десятичный код цифры (единицы и десятки минут и часов), на выходе C генерируется импульс записи в регистр запоминания цифры, а импульс на выходе K может быть использован для гашения индикаторов во время коррекции показаний часов. На выходе HS- выходной сигнал будильника, представляющий из себя импульсы длительностью 488 мкс и частотой повторения 128 Гц. Подача низкого потенциала на вход V переводит выходы Qa-Qd, C в состояние с высоким импедансом.

Рис.5 Схема включения К176ИЕ12 и К176ИЕ13.

Микросхема К176ИЕ17 (рис.6) предназначена для электронных часов с календарем. [5]

рис. 6 Микросхема К176ИЕ17.

Она содержит счетчики дней недели, чисел месяца и месяцев. Счетчик чисел считает от 1 до 29-31 в зависимости от месяца, счет дней недели производится от 1 до 7, счет месяцев- от 1 до 12. На выходы Qa-Qd выдается поочередно двоично-десятичный код цифры (единицы и десятки числа и месяца), а на выходах A-C постоянно присутствует двоичный код порядкового номера дня недели. Подача низкого потенциала на вход V переводит выходы Qa-Qd в состояние с высоким импедансом.

Микросхема К176ИД2 (рис.7) — преобразователь двоично-десятичного кода в код семисегментного индикатора, включает в себя также триггеры, позволяющие запомнить входной код. [5]

рис. 7. Микросхема К176ИД2.

Микросхема имеет четыре информационных входа для подачи кода 1-2-4-8 и три управляющих входа. Вход S определяет полярность выходных сигналов: при лог. 1 на входе S на выходах лог. 0 для зажигания сегментов, при лог. 0 на вхо-де S — лог. 1 для зажигания. При подаче лог. 1 на вход К происходит гашение индицируемого знака, лог. 0 на входе К разрешает индикацию. Вход С управляет работой триггеров памяти — при подаче на вход С лог. 1 триггеры превращаются в повторители и изменение входных сигналов на входах 1-2-4-8 вызывает соответствующее изме-нение выходных сигналов. Если же на вход С подать лог.0,запоминаются сигналы, имевшиеся на входах перед подачей лог. 0, микросхема на изменение сигналов на входах 1-2-4-8 не реагирует.

К176ие4 в устройствах отображения цифровой информации. Счетчики серии К176, К561. Принцип работы данной схемы

В состав рассматриваемых серий микросхем входит большое количество счетчиков различных типов, большинство из которых работает в весовых кодах.

Микросхема К176ИЕ1 (рис. 172) — шестиразрядный двоичный счетчик, работающий в коде 1-2-4-8-16-32. Микросхема имеет два входа: вход R — установки триггеров счетчика в 0 и вход С — вход для подачи счетных импульсов. Установка в 0 происходит при подаче лог. 1 на вход R, переключение триггеров микросхемы — по спаду импульсов положительной полярности, подаваемых на вход С. При построении


многоразрядных делителей частоты входы С микросхем следует подключать к выходам 32 предыдущих.

Микросхема К176ИЕ2 (рис. 173) — пятиразрядный счетчик, который может работать как двоичный в коде 1-2-4-8-16 при подаче лог. 1 на управляющий вход А, или как декада с подключенным к выходу декады триггером при лог. 0 на входе А. Во втором случае код работы счетчика 1-2-4-8-10, общий коэффициент деления — 20. Вход R служит для установки триггеров счетчика в 0 подачей на этот вход лог. 1. Первые четыре триггера счетчика могут быть установлены в единичное состояние подачей лог. 1 на входы SI — S8. Входы S1 — S8 являются преобладающими над входом R.

Микросхема К176ИЕ2 встречается двух разновидностей. Микросхемы ранних выпусков имеют входы СР и CN для подачи тактовых импульсов положительной и отрицательной полярности соответственно, включенные по ИЛИ. При подаче на вход СР импульсов положительной полярности на входе CN должна быть лог. 1, при подаче на вход CN импульсов отрицательной полярности на входе СР должен быть лог. 0. В обоих случаях счетчик переключается по спадам импульсов.

Другая разновидность имеет два равноправных входа для подачи тактовых импульсов (выводы 2 и 3), собранных по И. Счет происходит по спадам импульсов положительной полярности, подаваемых на любой из этих входов, причем на второй из этих входов должна быть подана лог. 1. Можно подавать импульсы и на объединенные выводы 2 и 3. Исследованные автором микросхемы, выпущенные в феврале и ноябре 1981 г., относятся к первой разновидности, выпущенные в июне 1982 г. и июне 1983 г., — ко второй.

Если на вывод 3 микросхемы К176ИЕ2 подать лог. 1, обе разновидности микросхем по входу СР (вывод 2) работают одинаково.

При лог. 0 на входе А порядок работы триггеров соответствует временной диаграмме, приведенной на рис. 174. В этом режиме на выходе Р, представляющем собой выход элемента И-НЕ, входы которого подключены к выходам 1 и 8 счетчика, выделяются импульсы отрицательной полярности, фронты которых совпадают со спадом каждого девятого входного импульса, спады — со спадом каждого десятого.

При соединении микросхем К176ИЕ2 в многоразрядный счетчик входы СР последующих микросхем следует подключать к выходам 8 или 16/10 непосредственно, на входы CN подавать лог. 1. В момент включения напряжения питания триггеры микросхемы К176ИЕ2 могут установиться в произвольное состояние. Если при этом счетчик включен в режим десятичного счета, то есть на вход А подан лог. 0, а это состояние более 11, счетчик «зацикливается» между состояния-ми 12-13 или 14-15. При этом на выходах 1 и Р формируются им-пульсы с частотой, в 2 раза меньшей частоты входного сигнала. Для того чтобы выйти из такого режима, счетчик необходимо установить в нулевое состояние подачей импульса на вход R. Можно обеспечить надежную работу счетчика в десятичном режиме, соединив вход А с выходом 4. Тогда, оказавшись в состоянии 12 или большем, счетчик переходит в режим двоичного счета и выходит из «запретной зоны», устанавливаясь после состояния 15 в нулевое. В моменты перехода из состояния 9 в состояние 10 на вход А с выхода 4 поступает лог. 0 и счетчик обнуляется, работая в режиме десятичного счета.


Для индикации состояния декад, использующих микросхему К176ИЕ2, можно использовать газоразрядные индикаторы, управляемые через дешифратор К155ИД1. Для согласования микросхем К155ИД1 и К176ИЕ2 можно использовать микросхемы К176ПУ-3 либо К561ПУ4 (рис. 175, а) или транзисторы р-n-р (рис. 175, б).

Микросхемы К176ИЕ3 (рис. 176), К176ИЕ4 (рис. 177) и К176ИЕ5 разработаны специально для использования в электронных часах с семисегментными индикаторами. Микросхема К176ИЕ4 (рис. 177) -декада с преобразователем кода счетчика в код семисегментного индикатора. Микросхема имеет три входа — вход R, установка триггеров счетчика в 0 происходит при подаче лог. 1 на этот вход, вход С — переключение триггеров происходит по спаду импульсов положительной


полярности на этом входе. Сигнал на входе S управляет полярностью выходных сигналов.

На выходах а, b, с, d, e, f, g — выходные сигналы, обеспечивающие формирование цифр на семисегментном индикаторе, соответствующих состоянию счетчика. При подаче лог. 0 на управляющий вход S лог. 1 на выходах а, Ь, с, d, e, f, g соответствуют включению соответствующего сегмента. Если же на вход S подать лог. 1, включению сегментов будет соответствовать лог. 0 на выходах а, Ь, с, d, e, f, g. Возможность переключения полярности выходных сигналов существенно расширяет область применения микросхем.

Выход Р микросхемы — выход переноса. Спад импульса положительной полярности на этом выходе формируется в момент перехода счетчика из состояния 9 в состояние 0.

Следует иметь в виду, что разводка выводов а, Ь, с, d, e, f, g в паспорте микросхемы и в некоторых справочниках приведена для нестандартного расположения сегментов индикаторов. На рис. 176, 177 дана разводка выводов для стандартного расположения сегментов, приведенного на рис. 111.

Два варианта подключения к микросхеме К176ИЕ4 вакуумных семисегментных индикаторов при помощи транзисторов приведено на рис. 178. Напряжение накала Uh выбирается в соответствии с типом используемого индикатора, подбором напряжения +25…30 В в схеме рис. 178 (а) и -15…20 В в схеме рис. 178 (б) можно в некоторых пределах регулировать яркость свечения сегментов индикатора. Транзисторы в схеме рис. 178 (6) могут быть любыми кремниевыми р-n-р с обратным током коллекторного перехода, не превышающим 1 мкА при напряжении 25 В, Если обратный ток транзис-торов больше указанной величины или используются германиевые транзисторы, между анодами и одним из выводов нити накала индикатора необходимо включить резисторы 30…60 кОм.

Для согласования микросхемы К176ИЕ4 с вакуумными индикаторами удобно, кроме того, использовать микросхемы К168КТ2Б или К168КТ2В (рис. 179), а также КР168КТ2Б.В, К190КТ1, К190КТ2, К161КН1, К161КН2. Подключение микросхем К161КН1 и К161КН2 проиллюстрировано на рис. 180. При использовании инвертирующей микросхемы К161КН1 на вход S микросхемы К176ИЕ4 следует подать лог. 1, при использовании неинвертирующей микросхемы К161КН2 — лог. 0.


На рис. 181 показаны варианты подключения к микросхеме К176ИЕ4 полупроводниковых индикаторов, на рис. 181 (а) с общим катодом, на рис. 181 (б) — с общим анодом. Резисторами R1 — R7 устанавливается необходимый ток через сегменты индикатора.

Самые маленькие индикаторы могут быть подключены к выходам микросхемы непосредственно (рис. 181, в). Однако из-за большого разброса тока короткого замыкания микросхем, не нормируемого техническими условиями, яркость свечения индикаторов может также иметь большой разброс. Частично его можно компенсировать подбором напряжения питания индикаторов.

Для согласования микросхемы К176ИЕ4 с полупроводниковыми индикаторами с общим анодом можно использовать микросхемы К176ПУ1, К176ПУ2, К176ПУ-3, К561ПУ4, КР1561ПУ4, К561ЛН2 (рис. 182). При использовании неинвертирующих микросхем на вход S микросхемы следует подать лог. 1, при использовании инвертирующих — лог. 0.


По схеме рис 181 (б), исключив резисторы R1 — R7, можно подключить и накальные индикаторы, при этом напряжение питания индикаторов необходимо установить примерно на 1 В больше номи-нального для компенсации падения напряжения на транзисторах Это напряжение может быть как постоянным, так и пульсирующим, полученным в результате выпрямления без фильтрации.

Жидкокристаллические индикаторы не требуют специального согласования, но для их включения необходим источник прямоугольных импульсов с частотой 30 100 Гц и скважностью 2, амплитуда импульсов должна соответствовать напряжению питания микросхем.


Импульсы подаются одновременно на вход S микросхемы и на общий электрод индикатора (рис. 183) В результате на сегменты, которые необходимо индицировать, относительно общего электрода индикатора подается напряжение меняющейся полярности, на сегментах, которые не надо индицировать, напряжение относительно общего электрода равно нулю

Микросхема К176ИЕ-3 (рис 176) отличается от К176ИЕ4 тем, что ее счетчик имеет коэффициент пересчета 6, а лог 1 на выходе 2 появляется при установке счетчика в состояние 2.

Микросхема К176ИЕ5 содержит кварцевый генератор с внешним резонатором на 32768 Гц и подключенным к нему девятиразрядным делителем частоты и шестиразрядный делитель частоты, структура микросхемы приведена на рис 184 (а) Типовая схема включения микросхемы приведена на рис 184 (б) К выводам Z и Z подключаются кварцевый резонатор, резисторы R1 и R2, конденсаторы С1 и С2 Выходной сигнал кварцевого генератора может быть проконтролирован на выходах К и R Сигнал с частотой 32768 Гц поступает на вход девятиразрядного двоичного делителя частоты, с его выхода 9 сигнал с частотой 64 Гц может быть подан на вход 10 шестиразрядного делителя На выходе 14 пятого разряда этого делителя формируется частота 2 Гц, на выходе 15 шестого разряда — 1 Гц. Сигнал с частотой 64 Гц может использоваться для подключения жидкокристаллических индикаторов к выходам микросхем К176ИЕ- и К176ИЕ4.

Вход R служит для сброса триггеров второго делителя и установки исходной фазы колебаний на выходах микросхемы. При подаче


лог. 1 на вход R на выходах 14 и 15 — лог. 0, после снятия лог. 1 на этих выходах появляются импульсы с соответствующей частотой, спад пер-вого импульса на выходе 15 происходит через 1 с после снятия лог. 1.

При подаче лог. 1 на вход S происходит установка всех триггеров второго делителя в состояние 1, после снятия лог. 1 с этого входа спад первого импульса на выходах 14 и 15 происходит практически сразу. Обычно вход S постоянно подключают к общему проводу.

Конденсаторы С1 и С2 служат для точной установки частоты кварцевого генератора. Емкость первого из них может находиться в пределах от единиц до ста пикофарад, емкость второго — -0…100 пф. При увеличении ёмкости конденсаторов частота генерации уменьшается. Точную установку частоты удобнее производить при помощи подстроечных конденсаторов, подключенных параллельно С1 и C2. При этом конденсатором, подключенным параллельно С2, осуществляют грубую настройку, подключенным параллельно С1 — точную.

Сопротивление резистора R 1 может находиться в пределах 4,7…68 МОм, однако при его значении менее 10 МОм возбуждаются


не все кварцевые резонаторы.

Микросхемы К176ИЕ8 и К561ИЕ8- десятичные счетчики с дешифратором (рис. 185). Микросхемы имеют три входа — вход установки исходного состояния R, вход для подачи счетных импульсов отрицательной полярности CN и вход для подачи счетных импульсов положительной полярности СР. Установка счетчика в 0 происходит при подаче на вход R лог. 1, при этом на выходе 0 появляется лог. 1, на выходах 1-9 — лог. 0.


Переключение счетчика происходит по спадам импульсов отрицательной полярности, подаваемых на вход CN, при этом на входе СР должен быть лог. 0. Можно также подавать импульсы положительной полярности на вход СР, переключение будет происходить по их спадам. На входе CN при этом должна быть лог. 1. Временная диаграмма работы микросхемы приведена на рис. 186.

Микросхема К561ИЕ9 (рис. 187) — счетчик с дешифратором, работа микросхемы аналогична работе микросхем К561ИЕ8


и К176ИЕ8, но коэффициент пересчета и число выходов дешифратора 8, а не 10. Временная диаграмма работы микросхемы приведена на рис. 188. Также, как и микросхема К561ИЕ8, микросхема:

К561ИЕ9 построена на основе сдвигающего регистра с перекрестными связями. При подаче напряжения питания и отсутствии импульса сброса. триггеры этих микросхем могут стать в произвольное состояние, не соответствующее разрешенному состоянию счетчика. Однако в указанных микросхемах есть спе-циальная цепь формирования разрешенного состояния счетчика, и при подаче тактовых импульсов счетчик через несколько тактов перейдет в нормамльный режим работы. Поэтому в делителях частоты, в которых точная фаза выходного сигнала не важна, допустимо не подавать на входы R микросхем К176ИЕ8, К561ИЕ8 и К561ИЕ9 импульсы начальной установки.

Микросхемы К176ИЕ8, К561ИЕ8, К561ИЕ9 можно объединять в многоразрядные счетчики с последовательным переносом, соединяя выход переноса Р предыдущей микросхемы с входом CN последующей и подавая на вход СР лог. 0. Возможно также соединение старшего


выхода дешифратора (7 или 9) со входом СР следующей микросхемы и подача на вход CN лог. 1. Такие способы соединения приводят к на-коплению задержек в многоразрядном счетчике. Если необходимо, чтобы выходные сигналы микросхем многоразрядного счетчика изменялись одновременно, следует использовать параллельный перенос с введением дополнительных элементов И-НЕ. На рис. 189 показана схема трехдекадного счетчика с параллельным переносом. Инвертор DD1.1 необходим лишь для того, чтобы компенсировать задержки в элементах DD1.2 и DD1.3. Если высокая точность одновременности переключения декад счетчика не требуется, входные счетные импульсы можно подать на вход СР микросхемы DD2 без инвертора, а на вход CN DD2 — лог.1. Максимальная рабочая частота многоразрядных счетчиков как с последовательным, так и с параллельным переносом не снижается относительно частоты работы отдельной микросхемы.

На рис. 190 приведен фрагмент схемы таймера с использованием микросхем К176ИЕ8 или К561ИЕ8. В момент пуска на вход CN микросхемы DD1 начинают поступать счетные импульсы. Когда микросхемы счетчика установятся в положения, набранные на переключателях, на всех входах элемента И-НЕ DD3 появятся лог. 1, элемент


DD3 включится, на выходе инвертора DD4 появится лог. 1, сигнализирующая об окончании временного интервала.

Микросхемы К561ИЕ8 и К561ИЕ9 удобно использовать в делителях частоты с переключаемый коэффициентом деления. На рис. 191 приведен пример трехдекадного делителя частоты. Переключателем SA1 устанавливают единицы необходимого коэффициента пересчета, переключателем SA2 — десятки, переключателем SA3 — сотни. При достижении счетчиками DD1 — DD3 состояния, соответствующего положениям переключателей, на все входы элемента DD4.1 приходит лог. 1. Этот элемент включается и устанавливает триггер на элементах DD4.2 и DD4.3 в состояние, при котором на выходе элемента DD4.3 появляется лог. 1, сбрасывающая счетчики DD1 — DD3 в исходное состояние (рис. 192). В результате на выходе элемента DD4.1 также появляется лог. 1 и следующий входной импульс отрицательной полярности устанавливает триггер DD4.2, DD4.3 в исходное состояние, сигнал сброса со входов R микросхем DD1 — DD3 снимается и счетчик продолжает счет.

Триггер на элементах DD4.2 и DD4.3 гарантирует сброс всех микросхем DD1 — DD3 при достижении счетчиком нужного состояния. При его отсутствии и большом разбросе порогов переключения микросхем


DD1 — DD3 по входам R возможен случай, когда одна из микросхем DD1 — DD3 устанавливается в 0 и снимает сигнал сброса со входов R остальных микросхем ранее, чем сигнал сброса достигнет порога их переключения. Однако такой случай маловероятен, и обычно можно обойтись без триггера, точнее, без элемента DD4.2.


Для получения коэффициента пересчета менее 10 для микросхемы К561ИЕ8 и менее 8 для К561ИЕ9 можно соединить выход дешифратора с номером, соответствующим необходимому коэффициенту пересчета, со входом R микросхемы непосредственно, например, как это показано на рис. 193 (а) для коэффициента пересчета, равного 6. Временная


диаграмма работы этого делителя приведена на рис. 193 (6). Сигнал переноса можно снимать с выхода Р лишь в случае, если коэффициент пересчета составляет 6 и более для К561ИЕ8 и 5 и более для К561ИЕ9. При любом коэффициенте сигнал переноса можно снимать с выхода дешифратора с номером, на единицу меньшим коэффициента пересчета.

Индикацию состояния счетчиков микросхем К176ИЕ8 и К561ИЕ8 удобно производить на газоразрядных индикаторах, согласуя их при помощи ключей на высоковольтных транзисторах n-р-n, например, серий П307 — П309, КТ604, КТ605 или сборках К166НТ1 (рис. 194).


Микросхемы К561ИЕ10 и КР1561ИЕ10 (рис. 195) содержат по два раздельных четырехразрядных двоичных счетчика, каждый из которых имеет входы СР, CN, R. Установка триггеров счетчиков в исходное состояние происходит при подаче на вход R лог. 1. Логика работы входов СР и CN отлична от работы аналогичных входов микросхем К561ИЕ8 и К561ИЕ9. Триггеры микросхем К561ИЕ10 и КР561ИЕ10 срабатывают по спаду импульсов положительной полярности на входе СР при лог. 0 на входе CN (для К561ИЕ8 и К561ИЕ9 на входе CN должна быть лог. 1) Возможна подача импульсов отрицательной полярности на вход CN, при этом на входе СР должна быть лог 1 (для К561ИЕ8 и К561ИЕ9 — лог. 0). Таким образом, входы СР и CN в микросхемах К561ИЕ10 и КР1561ИЕ10 объединены по схеме элемента И, в мик-росхемах К561ИЕ8 и К561ИЕ9 — ИЛИ.

Временная диаграмма работы одного счетчика микросхемы приве-дена на рис. 196. При соединении микросхем в многоразрядный счет-чик с последовательным переносом выходы 8 предыдущих счетчиков соединяют со входами СР последующих, а на входы CN подают лог. 0 (рис. 197). Если необходимо обеспечить параллельный перенос, сле-дует установить дополнительные элементы И-НЕ и ИЛИ-НЕ. На рис. 198 приведена схема счетчика с параллельным переносом. Про-хождение счетного импульса на вход СР счетчика DD2.2 через эле-мент DD1.2 разрешается при состоянии 1111 счетчика DD2.1, при ко-тором на выходе элемента DD3.1 лог. 0. Аналогично прохождение счетного импульса на вход СР DD4.1 возможно лишь при состоянии 1111 счетчиков DD2.1 и DD2.2 и т. д. Назначение элемента DD1.1 такое же, как и DD1.1 в схеме рис. 189, и он при тех же условиях может быть исключен. Максимальная частота входных импульсов для обоих вариантов счетчиков одинакова, но в счетчике с параллельным переносом переключение всех выходных сигналов происходит одновременно.

Один счетчик микросхемы может быть использован для построения делителей частоты с коэффициентом деления от 2 до 16. Для примера на рис. 199 приведена схема счетчика с коэффициентом, пересчета 10 Для Получения коэффициентов пересчета -,5,6,9,12 можно воспользоваться той же схемой, соответствующим образом выбрав выходы счетчика для подключения ко входам DD2.1 Для получения коэффициентов пересчета 7, 11, 13, l4 элемент DD2.1 должен иметь три входа, для коэффициента 15 — четыре входа.


Микросхема К561ИЕ11 — двоичный четырехразрядный реверсивный счетчик с возможностью параллельной записи информации (рис. 200). Микросхема имеет четыре информационных выхода 1, 2, 4,8, выход переноса Р и следующие входы: вход переноса PI, вход установки исходного состояния R, вход для подачи счетных импульсов С, вход направления счета U, входы для подачи информации при параллельной записи Dl — D8, вход параллельной записи S.

Вход R имеет приоритет над остальными входами: если на него подать лог. 1, на выходах 1, 2, 4, 8 будет лог.0 независимо от состояния


других входов. Если на входе R лог. 0, приоритет имеет вход S. При подаче на него лог. 1 происходит асинхронная запись информации со входов D1 -D8 в триггеры счетчика.

Если на входах R, S, PI лог. 0, разрешается рабо-та микросхемы в счетном режиме. Если на входе U лог. 1, по каждому спаду входного импульса отрицательной полярности, поступающему на вход С, состояние счетчика будет увеличиваться на единицу. При лог. 0 на входе U счетчик переключается

В режим вычитания — по каждому спаду импульса отрицательной полярности на входе С состояние счетчика уменьшается на единицу. Если на вход переноса PI подать лог. 1, счетный режим запрещается.

На выходе переноса Р лог. 0, если на входе PI лог. 0 и все триггеры счетчика находятся в состоянии 1 при счете вверх или в состоянии 0 при счете вниз.

Для соединения микросхем в счетчик с последовательным переносом необходимо объединить между собой все входы С, выходы Р микросхем соединить со входами PI следующих, а на вход PI младшего разряда подать лог. 0 (рис. 201). Выходные сигналы всех микросхем счетчика изменяются одновременно, однако максимальная частота работы счетчика меньше, чем отдельной микросхемы из-за накопления задержек в цепи переноса. Для обеспечения максимальной рабочей частоты многоразрядного счетчика необходимо обеспечить параллельный перенос, для чего на входы PI всех микросхем подать лог. О, а сигналы на входы С микросхем подать через дополнительные элементы ИЛИ, как это показано на рис. 202. В этом случае прохождение счетного импульса на входы С микросхем будет разрешено только тогда, когда на выходах Р всех предыдущих микросхем лог. 0,


Причем время задержки этого разрешения после одновременного срабатывания микросхем не зависит от числа разрядов счетчика.

Особенности построения микросхемы К561ИЕ11 требуют, чтобы изменение сигнала направления счета на входе U происходило в паузе между счетными импульсами на входе С, то есть при лог. 1 на этом входе, или по спаду этого импульса.

Микросхема К176ИЕ12 предназначена для использования в электронных часах (рис. 203). В ее состав входят кварцевый генератор G с внешним кварцевым резонатором на частоту 32768 Гц и два делителя частоты: СТ2 на 32768 и СТ60 на 60. При подключении к микросхеме кварцевого резонатора по схеме рис. 203 (б) она обеспечивает получение частот 32768, 1024, 128, 2, 1, 1/60 Гц. Импульсы с частотой 128 Гц формируются на выходах микросхемы Т1 — Т4, их скважность равна 4, сдвинуты они между собой на четверть периода. Эти импульсы предназначены для коммутации знакомест индикатора часов при динамической индикации. Импульсы с частотой 1/60 Гц подаются на счетчик минут, импульсы с частотой 1 Гц могут использоваться для подачи на счетчик секунд и для обеспечения мигания разделительной точки, для установки показаний часов могут использоваться импульсы с частотой 2 Гц. Частота 1024 Гц предназначена для звукового сигнала будильника и для опроса разрядов счетчиков при динамической индикации, выход частоты 32768 Гц — контрольный. Фазовые соотношения колебаний различных частот относительно момента снятия сигнала сброса продемонстрированы на рис. 204, временные масштабы различных диаграмм на этом рисунке различны. При использовании



импульсов с выходов Т1 — Т4 для других целей следует обратить внимание на наличие коротких ложных импульсов на этих выходах.

Особенностью микросхемы является то, что первый спад на выходе минутных импульсов М появляется спустя 59 с после снятия сигнала установки 0 со входа R. Это заставляет при пуске часов отпускать кнопку, формирующую сигнал установки 0, спустя одну секунду после шестого сигнала поверки времени. Фронты и спады сигналов на выходе М синхронны со спадами импульсов отрицательной полярности на входе С.

Сопротивление резистора R1 может иметь ту же величину, что и для микросхемы К176ИЕ5. Конденсатор С2 служит для точной подстройки частоты, С- — для грубой. В большинстве случаев конденсатор С4 может быть исключен.


Микросхема К176ИЕ13 предназначена для построения электронных часов с будильником. Она содержит счетчики минут и часов, регистр памяти будильника, цепи сравнения и выдачи звукового сигнала, цепи динамической выдачи кодов цифр для подачи на индикаторы. Обычно микросхема К176ИЕ13 используется совместно с К176ИЕ12. Стандартное соединение этих микросхем показано на рис. 205. Основными выходными сигналами схемы рис. 205 являются импульсы Т1 — Т4 и коды цифр на выходах 1, 2, 4, 8. В моменты времени, когда на выходе Т1 лог. 1, на выходах 1,2,4,8 присутствует код цифры единиц минут, когда лог. 1 на выходе Т2 — код цифры десятков минут и т. д. На выходе S — импульсы с частотой 1 Гц для зажигания разделительной точки. Импульсы на выходе С служат для стробирования записи кодов цифр в регистр памяти микросхем К176ИД2 или К176ИД-, обычно используемых совместно с К176ИЕ12 и К176ИЕ13, импульс на выходе К может использоваться для гашения индикаторов во время коррекции показаний часов. Гашение индикаторов необходимо, поскольку в момент коррекции происходит остановка динамической индикации и при отсутствии гашения светится лишь один разряд с увеличенной в четыре раза яркостью.

На выходе HS — выходной сигнал будильника. Использование выходов S, К, HS не обязательно. Подача лог. 0 на вход V микросхемы переводит ее выходы 1, 2, 4, 8 и С в высокоимпедансное состояние.

При подаче питания на микросхемы в счетчик часов и минут и в регистр памяти будильника автоматически записываются нули. Для введения в счетчик минут начального показания следует нажать



кнопку SB1, показания счетчика начнут меняться с частотой 2 Гц от 00 до 59 и далее снова 00, в момент перехода от 59 к 00 показания счетчика часов увеличатся на единицу. Показания счетчика часов будут также изменяться с частотой 2 Гц от 00 до 23 и снова 00, если нажать кнопку SB2. Если нажать кнопку SB3, на индикаторах появится время включения сигнала будильника. При одновременном нажатии кнопок SB1 и SB3 показание разрядов минут времени включения будильника будет изменяться от 00 до 59 и снова 00, однако переноса в разряды часов не происходит. Если нажать кнопки SB2 и SB3, будет изменяться показание разрядов часов времени включения будильника, при переходе из состояния 23 в 00 произойдет сброс показаний разрядов минут. Можно нажать сразу три кнопки, в этом случае будут изменяться показания как разрядов минут, так и часов.

Кнопка SB4 служит для пуска часов и коррекции хода в процессе эксплуатации. Если нажать кнопку SB4 и отпустить ее спустя одну секунду после шестого сигнала поверки времени, установится правильное показание и точная фаза работы счетчика минут. Теперь можно установить показания счетчика часов, нажав кнопку SB2, при этом ход счетчика минут не будет нарушен. Если показания счетчика минут находятся в пределах 00…39, показания счетчика часов при нажатии и отпускании кнопки SB4 не изменятся. Если же показания счетчика минут находятся в пределах 40…59, после отпускания кнопки SB4 показания счетчика часов увеличиваются на единицу. Таким образом, для коррекции хода часов независимо от того, опаздывали часы или спешили, достаточно нажать кнопку SB4 и отпустить ее спустя секунду после шестого сигнала поверки времени.

Стандартная схема включения кнопок установки времени обладает тем недостатком, что при случайном нажатии на кнопки SB1 или SB2 происходит сбой показаний часов. Если в схему рис. 205 добавить один диод и одну кнопку (рис. 206), показания часов можно будет изменять, лишь нажав сразу две кнопки — кнопку SB5 («Установ-


ка») и кнопку SB1 или SB2, что случайно сделать значительно менее вероятно.

Если показания часов и время включения сигнала будильника не со-впадают, на выходе HS микросхемы К176ИЕ13 лог. 0. При совпадении по-казаний на выходе HS появляются им-пульсы положительной полярности с частотой 128 Гц и длительностью 488 мкс (скважность 16). При по-даче их через эмиттерный повторитель на любой излучатель сигнал напоминает звук обычного механического будильника.Сигнал пре-кращается, когда показания часов и будильника перестают совпадать.

Схема согласования выходов микросхем К176ИЕ12 и К176ИЕ13 с индикаторами зависит от их типа. Для примера на рис. 207 приве-дена схема для подключения полупроводниковых семисегментных индикаторов с общим анодом. Как катодные (VT12 — VT18), так и анодные (VT6, VT7, VT9, VT10) ключи выполнены по схемам эмит-терных повторителей. Резисторами R4 — R10 определяется импульс-ный ток через сегменты индикаторов.

Указанная на рис. 207 величина сопротивлений резисторов R4 -R10 обеспечивает импульсный ток через сегмент примерно 36 мА, что соответствует среднему току 9мА. При таком токе индикаторы АЛ305А, АЛС321Б, АЛС324Б и другие имеют достаточно яркое све-чение. Максимальный коллекторный ток транзисторов VT12 — VT18 соответствует току одного сегмента 36 мА и поэтому здесь можно ис-пользовать практически любые маломощные транзисторы р-n-р с до-пустимым током коллектора 36 мА и более.

Импульсные токи транзисторов анодных ключей могут достигать 7 х 36 — 252 мА, поэтому в качестве анодных ключей можно исполь-зовать транзисторы, допускающие указанный ток, с коэффициентом передачи тока базы h31э не менее 120 (серий КТ3117, КТ503, КТ815).



Если транзисторы с таким коэффициентом подобрать нельзя, можно использовать составные транзисторы (КТ315 + КТ503 или КТ315 + КТ502). Транзистор VT8 — любой маломощный, структуры n-р-n.

Транзисторы VT5 и VT11 — эмиттерные повторители для подключения излучателя звука будильника НА1, в качестве которого можно использовать любые телефоны, в том числе и малогабаритные от слуховых аппаратов, любые динамические головки, включенные через выходной трансформатор от любого радиоприемника. Подбором емкости конденсатора С1 можно добиться необходимой громкости звучания сигнала, можно также установить переменный резистор 200…680 Ом, включив его потенциометром между С1 и НА1. Выключатель SA6 служит для отключения сигнала будильника.

Если используются индикаторы с общим катодом, эмиттерные повторители, подключаемые к выходам микросхемы DD3, следует выполнить на транзисторах n-р-n (серии КТ315 и др.), а вход S DD3 соединить с общим проводом. Для подачи импульсов на катоды. индикаторов следует собрать ключи на транзисторах n-р-n по схеме с общим эмиттером. Их базы следует соединить с выходами Т1 — Т4 микросхемы DD1 через резисторы 3,3 кОм. Требования к транзисторам те же, что и к транзисторам анодных ключей в случае индикаторов с общим анодом.

Индикация возможна и при помощи люминесцентных индикаторов. В этом случае необходима подача импульсов Т1 — Т4 на сетки индикаторов и подключение объединенных между собой одноименных анодов индикаторов через микросхему К176ИД2 или К176ИД- к выходам 1, 2, 4, 8 микросхемы К176ИЕ13.

Схема подачи импульсов на сетки индикаторов приведена на рис. 208. Сетки С1, С2, С4, С5 — соответственно сетки знакомест единиц и десятков минут, единиц и десятков часов, С- — сетка разделительной точки. Аноды индикаторов следует подключить к выходам микросхемы К176ИД2, подключенной к DD2 в соответствии с включением DD3 на рис. 207 при помощи ключей, подобных ключам рис. 178 (б), 179,180, на вход S микросхемы К176ИД2 должна быть подана лог. 1.

Возможно использование микросхемы К176ИД- без ключей, ее вход S должен быть подключен к общему проводу. В любом случае аноды и сетки индикаторов должны быть через резисторы 22…100 кОм подключены к источнику отрицательного напряжения, которое по абсолютной величине на 5…10 В больше отрицательного напряжения, подведенного к катодам индикаторов. На схеме рис. 208 это резисторы R8 — R12 и напряжение -27 В.



Подачу импульсов Т1 — Т4 на сетки индикаторов удобно производить при помощи микросхемы К161КН2, подав на нее напряжения питания в соответствии с рис. 180.

В качестве индикаторов могут использоваться любые одноместные вакуумные люминесцентные индикаторы, а также плоские четырехместные индикаторы с разделительными точками ИВЛ1 — 7/5 и ИВЛ2 — 7/5, специально предназначенные для часов. В качестве DD4 схемы рис. 208 можно использовать любые инвертирующие логические элементы с объединенными входами.

На рис. 209 приведена схема согласования с газоразрядными индикаторами. Анодные ключи могут быть выполнены на транзисторах серий КТ604 или КТ605, а также на транзисторах сборок К166НТ1.

Неоновая лампа HG5 служит для индикации разделительной точки. Одноименные катоды индикаторов следует объединить и подключить к выходам дешифратора DD7. Для упрощения схемы можно исключить инвертор DD4, обеспечивающий гашение индикаторов на время нажатия кнопки коррекции.

Возможность перевода выходов микросхемы К176ИЕ13 в высокоимпедансное состояние позволяет построить часы с двумя вариантами показаний (например, MSK и GMT) и двумя будильниками, один из которых можно использовать для включения какого-либо устройства, другой — для выключения (рис. 210).

Одноименные входы основной DD2 и дополнительной DD2 микросхем К176ИЕ13 соединяют между собой и с другими элементами по схеме рис. 205 (можно с учетом рис. 206), за исключением входов Р и V. В верхнем по схеме положении переключателя SA1 сигналы



установки от кнопок SB1 — SB3 могут поступать на вход Р микросхемы DD2, в нижнем — на DD2. Подачей сигналов на микросхему DD3 управляют секцией SA1.2 переключателя. В верхнем положении пе-реключателя SA1 лог. 1 поступает на вход V микросхемы DD2 и на входы DD3 проходят сигналы с выходов DD2. В нижнем положении переключателя лог. 1 на входе V микросхемы DD2 разрешает передачу сигналов с ее выходов.

В результате при верхнем положении переключателя SA1 можно управлять первыми часами и будильником и индицировать их состояние, в нижнем — вторыми.

Срабатывание первого будильника включает триггер DD4.1, DD4.2, на выходе DD4.2 появляется лог. 1, которую можно использовать для включения какого-либо устройства, срабатывание второго будильника выключает это устройство. Кнопки SB5 и SB6 также можно использовать для его включения и выключения.

При использовании двух микросхем К176ИЕ13 сигнал сброса на вход R микросхемы DD1 следует взять непосредственно с кнопки SB4. В этом случае коррекция показаний происходит, как при показанном на рис. 205 соединении, но блокировки кнопки SB4 «Корр.»



при нажатии кнопки SB3 «Буд.» (рис. 205), существующей в стандартном варианте, не происходит. При одновременном нажатии кнопок SB3 и SB4 в часах с двумя микросхемами К176ИЕ13 происходит сбой показаний, но не хода часов. Правильные показания восстанавливаются, если повторно нажать кнопку SB4 при отпущенной SB3.

Микросхема К561ИЕ14 — двоичный и двоичнодесятичный четырехразрядный десятичный счет-чик (рис. 211). Ее отличие от микросхемы К561ИЕ11 заключается в замене входа R на вход В — вход переключения модуля счета. При лог. 1 на входе В микросхема К561ИЕ14 производит двоичный счет, так же, как и К561ИЕ11, при лог. 0 на входе В — двоично-десятичный. Назначение остальных входов, режимы работы и правила включения для этой микросхемы такие же, как и для К561ИЕ11.

Микросхема КА561ИЕ15 — делитель частоты с переключаемым коэффициентом деления (рис. 212). Микросхема имеет четыре управляющих входа Kl, K2, К-, L, вход для подачи тактовых импульсов С, шестнадцать входов для установки коэффициента деления 1-8000 и один выход.


Микросхема позволяет иметь несколько вариантов задания коэффициента деления, диапазон изменения его составляет от 3 до 21327. -десь будет рассмотрен наиболее простой и удобный вариант, для которого, однако, максимально возможный коэффициент деления составляет 16659. Для этого варианта на вход К- следует постоянно подавать лог. 0.

Вход К2 служит для установки начального состояния счетчика, которая происходит за три периода входных импульсов при подаче на вход К2 лог. 0. После подачи лог. 1 на вход К2 начинается работа счетчика в режиме деления частоты. Коэффициент деления частоты при подаче лог. 0 на входы L и К1 равен 10000 и не зависит от сигналов, поданных на входы 1-8000. Если на входы L и К1 подать различные входные сигналы (лог.0 и лог. 1 или лог. 1 и лог. 0), коэффициент деления частоты входных импульсов определится двоично-десятичным кодом, поданным на входы 1-8000. Для примера на рис. 213 показана временная диаграмма работы микросхемы в режиме деления на 5, для обеспечения которого на входы 1 и 4 следует подать лог. 1, на входы 2, 8-8000 — лог. 0 (К1 не равно L).



Длительность выходных импульсов положительной полярности равна периоду входных импульсов, фронты и спады выходных импульсов совпадают со спадами входных импульсов отрицательной полярности.

Как видно из временной диаграммы, первый импульс на выходе микросхемы появляется по спаду входного импульса с номером, на единицу большим коэффициента деления.

При подаче лог. 1 на входы L и К1 осуществляется режим однократного счета. При подаче на вход К2 лог. 0 на выходе микросхемы появляется лог. 0. Длительность импульса начальной установки на входе К2 должна быть, как и в режиме деления частоты, не менее трех периодов входных импульсов. После окончания на входе К2 импульса начальной установки начнется счет, который будет происходить по спадам входных импульсов отрицательной полярности. После окончания импульса с номером, на единицу большим кода, установленного на входах 1-8000, лог. 0 на выходе изменится на лог. 1, после чего изменяться не будет (рис. 213, К1 — L — 1). Для очередного запуска необходимо на вход К2 вновь подать импульс начальной установки.

Данный режим работы микросхемы подобен работе ждущего мультивибратора с цифровой установкой длительности импульса, следует только помнить, что в длительность входного импульса входит длительность импульса начальной установки и, сверх того, еще один период входных импульсов.

Если после окончания формирования выходного сигнала в режиме однократного счета на вход К1 подать лог. 0, микросхема перейдет в режим деления входной частоты, причем фаза выходных импульсов будет определяться импульсом начальной установки, поданным ранее в режиме однократного счета. Как уже указывалось выше, микросхема может обеспечить фиксированный коэффициент деления частоты, равный 10000, если на входы L и К1 подать лог. 0. Однако после импульса начальной установки, поданного на вход К2, первый выходной импульс появится после подачи на вход С импульса с номером, на единицу большим кода, установленного на входах 1-8000. Все последующие выходные импульсы будут появляться через 10000 периодов входных импульсов после начала предыдущего.

На входах 1-8 допустимые сочетания входных сигналов должны соответствовать двоичному эквиваленту десятичных чисел от 0 до 9. На входах 10-8000 допустимы произвольные сочетания, то есть возможна подача на каждую декаду кодов чисел от 0 до 15. В результате максимально возможный коэффициент деления К составит:

К — 15000 + 1500 + 150 + 9 = 16659.

Микросхема может найти применение в синтезаторах частоты, электромузыкальных инструментах, программируемых реле времени, для формирования точных временных интервалов в работе различных устройств.


Микросхема К561ИЕ16 — четырнадцатиразрядный двоичный счетчик с последовательным переносом (рис. 214). У микросхемы два входа -вход установки начального состояния R и вход для подачи тактовых импульсов С.Установка триггеров счетчика в 0 производится при подаче на вход R лог. 1, счет — по спадам импульсов положительной полярности, подаваемых на вход С.

Счетчик имеет выходы не всех разрядов — отсутствуют выходы разрядов 21 и 22, поэтому, если необходимо иметь сигналы со всех двоичных разрядов счетчика, следует использовать еще один счетчик, работающий синхронно и имеющий выходы 1, 2, 4, 8, например половину микросхемы К561ИЕ10 (рис. 215).



Коэффициент деления одной микросхемы К561ИЕ16 составляет 214 = 16384, при необходимости получения большего коэффициента деления можно выход 213 микросхемы соединить со входом еще одной такой же микросхемы или со входом СР любой другой микросхемы — счетчика.3, следует использовать схему рис. 215 или 59, при коэффициенте более 16384 — схему рис. 216.

Для перевода числа в двоичную форму его нацело следует разделить на 2, остаток (0 или 1) записать. Получившийся результат вновь разделить на 2, остаток записать и так далее, пока после деления не останется нуль. Первый остаток является младшим разрядом двоичной формы числа, последний — старшим.

Микросхема К176ИЕ17 — календарь. Она содержит счетчики дней недели, чисел месяца и месяцев. Счетчик чисел считает от 1 до 29, 30 или 31 в зависимости от месяца. Счет дней недели производится от 1 до 7, счет месяцев — от 1 до 12. Схема подключения микросхемы К176ИЕ17 к микросхеме К176ИЕ13 часов приведена на рис. 219. На выходах 1-8 микросхемы DD2 присутствуют поочередно коды цифр числа и месяца аналогично кодам часов и минут на выходах


микросхемы К176ИЕ13. Подключение индикаторов к указанным вы-ходам микросхемы К176ИЕ17 производится аналогично их подключению к выходам микросхемы К176ИЕ13 с использованием импульсов записи с выхода С микросхемы К176ИЕ13.

На выходах А, В, С постоянно присутствует код 1-2-4 порядкового номера дня недели. Его можно подать на микросхему К176ИД2 или К176ИД- и далее на какой-либо семисегментный индикатор, в результате чего на нем будет индицироваться номер дня недели. Однако более интересной является возможность вывода двухбуквенного обозначения дня недели на цифробуквенные индикаторы ИВ-4 или ИВ-17, для чего необходимо изготовить специальный преобразователь кода.

Установка числа, месяца и дня недели производится аналогично установке показаний в микросхеме К176ИЕ13. При нажатии кнопки SB1 происходит установка числа, кнопки SB2 — месяца, при совместном нажатии SB3 и SB1 — дня недели. Для уменьшения общего


числа кнопок в часах с календарем можно использовать кнопки SB1 -SB3, SB5 схемы рис. 206 для уста-новки показаний календаря, переключая их общую точку тумблером со входа Р микросхемы К176ИЕ13 на вход Р микросхемы К176ИЕ17. Для каждой из указанных микросхем цепь R1C1 должна быть своя подобно схеме рис. 210.

Подача лог. 0 на вход V микросхемы переводит ее выходы 1-8 в высокоимпедансное состояние. Это свойство микросхемы позволяет относительно несложно организовать поочередную выдачу показаний часов и календаря на один четырехразрядный индикатор (кроме дня недели). Схема
подключения микросхемы К176ИД2 (ИД-3) к микросхемам ИЕ13 и ИЕ17 для обеспечения указанного режима приведена на рис. 220, цепи соединения микросхем К176ИЕ13, ИЕ17 и ИЕ12 между собой не показаны. В верхнем по схеме положении переключателя SA1 («Часы») выходы 1-8 микросхемы DD3 находятся в высокоимпедансном состоянии, выходные сигналы микросхемы DD2 через резисторы R4 — R7 поступают на входы микросхемы DD4, индицируется состояние микросхемы DD2 — часы и минуты. При нижнем положении переключателя SA1 («Календарь») выходы микросхемы DD3 активизируются, и теперь уже микросхема DD3 определяет входные сигналы микросхемы DD4. Переводить выходы микросхемы DD2 в высокоимпедансное состояние, как это сделано в схеме



рис. 210, нельзя, так как при этом перейдет в высокоимпедансное состояние и выход С микросхемы DD2, а аналогичного выхода микросхема DD3 не имеет. В схеме рис. 220 реализовано упомянутое выше использование одного комплекта кнопок для установки показаний часов и календаря. Импульсы от кнопок SB1 — SB3 поступают на вход Р микросхемы DD2 или DD3 в зависимости от положения того же переключателя SA1.

Микросхема К176ИЕ18 (рис. 221) по своему строению во многом напоминает К176ИЕ12. Ее основным отличием является выполнение выходов Т1 — Т4 с открытым стоком, что позволяет подключать сетки вакуумных люминесцентных индикаторов к этой микросхеме без согласующих ключей.

Для обеспечения надежного запирания индикаторов по их сеткам скважность импульсов Т1 — Т4 в микросхеме К176ИЕ18 сделана несколько более четырех и составляет 32/7. При подаче лог. 1 на вход R микросхемы на выходах Т1 — Т4 лог. 0, поэтому подача специального сигнала гашения на вход К микросхем К176ИД2 и К176ИД3 не требуется.

Вакуумные люминесцентные индикаторы зеленого свечения в темноте кажутся значительно более яркими, чем на свету, поэтому желательно иметь возможность изменения яркости индикатора. Микро-схема К176ИЕ18 имеет вход Q, подачей лог. 1 на этот вход можно в 3,5 раза увеличить скважность импульсов на выходах Т1 — Т4 и во



столько же раз уменьшить яркость свечения индикаторов. Сигнал на вход Q можно подать или с переключателя яркости, или с фоторезистора, второй вывод которого подключен к плюсу питания. Вход Q в этом случае следует соединить с общим проводом через резистор 100 к0м…1 МОм, который необходимо подобрать для получения требуемого порога внешней освещенности, при котором будет происходить автоматическое переключение яркости.

Следует отметить, что при лог. 1 на входе Q (малая яркость) установка показаний часов не действует.

Микросхема К176ИЕ18 имеет специальный формирователь звукового сигнала. При подаче импульса положительной полярности на вход HS на выходе HS появляются пачки импульсов отрицательной полярности с частотой 2048 Гц и скважностью 2. Длительность пачек — 0,5 с, период повторения — 1 с. Выход HS выполнен с открытым стоком и позволяет подключать излучатели с сопротивлением 50 Ом и выше между этим выходом и плюсом питания без эмиттерного повторителя. Сигнал присутствует на выходе HS до окончания очередного минутного импульса на выходе М микросхемы.

Следует отметить, что допустимый выходной ток микросхемы К176ИЕ18 по выходам Т1 — Т4 составляет 12 мА, что значительно превышает ток микросхемы К176ИЕ12, поэтому требования к коэффициентам усиления транзисторов в ключах при применении микросхем К176ИЕ18 и полупроводниковых индикаторов (рис. 207) значительно менее жестки, достаточно h31э > 20. Сопротивление базовых

Резисторов в катодных ключах может быть уменьшено до 510 Ом при h31э > 20 или до 1к0м при h31э > 40.

Микросхемы К176ИЕ12, К176ИЕ13, К176ИЕ17, К176ИБ18 допускают напряжение питания такое же, как и микросхемы серии К561 — от 3 до 15 В.


Микросхема К561ИЕ19 — пятиразрядный сдвигающий регистр с возможностью параллельной записи информации, предназначенный для построения счетчиков с программируемым модулем счета (рис. 222). Микросхема имеет пять информационных входов для параллельной записи D1 -D5, вход информации для последовательной записи DO, вход параллельной записи S, вход сброса R, вход для подачи тактовых импульсов С и пять инверсных выходов 1-5.

Вход R является преобладающим — при подаче на него лог. 1 все Триггеры микросхемы устанавливаются в 0, на всех выходах появляется лог. 1 независимо от сигналов на других входах. При подаче на вход R лог. 0, на вход S лог. 1 происходит запись информации со входов D1 — D5 в триггеры микросхемы, на выходах 1-5 она появляется в инверсном виде.

При подаче на входы R и S лог. 0 возможен сдвиг информации в триггерах микросхемы, который будет происходить по спадам импульсов отрицательной полярности, поступающим на вход С. В первый триггер ин-формация будет записываться со входа D0.


Если соединить вход DO с одним из выходов 1-5, можно получить счетчик с коэффициентом пересчета 2, 4, 6, 8, 10. Для примера на рис. 223 показана временная диаграмма работы микросхемы в режиме деления на 6, который организуется в случае соединения входа D0 с выходом 3. Если необходимо получить нечетный коэффициент пересчета 3,5,7 или 9, следует использовать двухвходовый элемент И, входы которого подключить соответственно к выходам 1 и 2, 2 и 3, 3 и 4,4 и 5, выход — ко входу DO.12 = 4096. У нее два входа — R (для установки нулевого состояния) и С (для подачи тактовых импульсов). При лог. 1 на входе R счетчик устанавливается в нулевое состояние, а при лог. 0 — считает по спадам поступающих на вход С импульсов положительной полярности. Микросхему можно использовать для деления частоты на коэффициенты, являющиеся степенью числа 2. Для построения делителей с другим коэффициентом деления можно воспользоваться схемой для включения микросхемы К561ИЕ16 (рис. 218).

Микросхема КР1561ИЕ21 (рис. 227) — синхронный двоичный счетчик с возможностью параллельной записи информации по спаду тактового импульса. Микросхема функционирует аналогично К555ИЕ10 (рис. 38).

На прошлом занятии мы познакомились с микросхемой К561ИЕ8, содержащей в одном корпусе десятичный счетчик и десятичный дешифратор, а также с микросхемой К176ИД2, содержащей дешифратор, предназначенный.для работы с семисегментными индикаторами. Существуют микросхемы К176ИЕЗ и К176ИЕ4, содержащие в себе счетчик и дешифратор, предназначенный для работы с семисегментным индикатором.

Микросхемы имеют одинаковые цоколевки и корпуса (показано на рисунке 1А и 1Б на примере микросхемы К176ИЕ4), разница состоит в том, что К176ИЕЗ считает до 6-ти, а К176ИЕ4 до 10- ти. Микросхемы предназначены для электронных часов, поэтому К176ИЕЗ считает до 6-ти, например если нужно считать десятки минут или секунд. Кроме того обе микросхемы имеет по дополнительному выводу (вывод 3). В микросхеме К176ИЕ4 на этом выводе появляется единица в тот момент, когда её счетчик переходит в состояние «4». А в микросхеме К176ИЕЗ на этом выводе появляется единица в тот момент, когда счетчик досчитает до 2-х. Таким образом, наличие этих выводов дает возможность построить счетчик часов, считающий до 24-х.

Рассмотрим микросхему К176ИЕ4 (рисунок 1А и 1Б). На вход «С» (вывод 4) подаются импульсы которые микросхема должна считать и отображать их число в семисегментном виде на цифровом индикаторе. Вход «R » (вывод 5) служит для принудительной установки счетчика микросхемы в ноль. При подаче на него логической единицы счетчик переходит в нулевое состояние, и на индикаторе, подключенном к выходу дешифратора микросхемы будет цифра » 0″ , выраженная в семисегментном виде (смотри занятие №9). Счетчик микросхемы имеет выход переноса «Р» (вывод 2). По микросхема считает до 10 на этом выводе логическая единица. Как только микросхема достигает 10-ти (на её вход «С» поступает десятый импульс) она автоматически возвращается в нулевое состояние, и в этот момент (между спадом 9-го импульса и фронтом 10-го) на выходе «Р» формируется отрицательный импульс (нулевой перепад). Наличие этого выхода «Р» позволяет использовать микросхему как делитель частоты на 10, потому, что частота импульсов на этом выходе будет в 10 раз ниже частоты импульсов, поступающих на вход «С» (через каждые 10 импульсов на входе «С», — на выходе «Р» получается один импульс). Но главное назначение этого выхода (» Р» ) — организация многразрядного счетчика.

Еще один вход — «S » (вывод 6), он нужен для выбора типа индикатора, с котором будет работать микросхема. Если это светодиодный индикатор с общим катодом (см. занятие №9), то для работы с ним на этот вход нужно подать логический нуль. Если индикатор с общим анодом — нужно подать единицу.

Выходы «A -G » служат для управления сегментами светодиодного индикатора, они подключаются к соответствующим входам семисегментного индикатора.

Микросхема К176ИЕЗ работает так же как и К176ИЕ4, но считает только до 6-ти, и на её выводе 3 появляется единица тогда, когда её счетчик досчитывает до 2-х. В остальном микросхема не отличается от К176ИЕЗ.

Для изучения микросхемы К176ИЕ4 соберите схему, показанную на рисунке 2. На микросхеме D 1 (К561ЛЕ5 или К176ЛЕ5) построен формирователь импульсов. После каждого нажатия и отпускания кнопки S 1 на его выходе (на выводе 3 D 1.1) формируется один импульс. Эти импульсы поступают на вход «С» микросхемы D 2 — К176ИЕ4. Кнопка S 2 служит для подачи единичного логического уровня на вход «R » D 2, чтобы переводить, таким образом, счетчик микросхемы в нулевое положение.

К выходам A -G микросхемы D 2 подключен светодиодный индикатор Н1. В данном случае используется индикатор с общим анодом, поэтому для зажигания его сегментов на соответствующих выходах D 2 должны быть нули. Чтобы переключить микросхему D 2 в режим работы с такими индикаторами на её вход S (вывод 6) подается единица.

При помощи вольтметра Р1 (тестера, мультиметра, включенного в режим измерения напряжения) можно наблюдать за изменением логических уровней на выходе переноса (вывод 2) и на выходе «4» (вывод 3).

Установите микросхему D 2 в нулевое состояние (нажать и отпустить S 2). Индикатор Н1 покажет цифру «О». Затем нажимая на кнопку S 1 проследите работу счетчика от «0 й до «9», и при следующем нажатии снова переходит в «0». Затем установите щуп прибора Р1 на вывод 3 D 2 и нажимайте S 1. Сначала, пока идет счет от нуля до трех на этом выводе будет нуль, но с появлением цифры «4» — на этом выводе будет единица (прибор Р1 покажет напряжение, близкое к напряжению питания).

Попробуйте соеди­нить между собой выводы 3 и 5 микросхемы D 2 при помощи отрезка монтажного провода (на схеме показан штрих-линией). Теперь счетчик дойдя до нуля станет считать только до «4». То есть показания индикатора будут такие — «0» , «1», «2», «3» и снова «0» и далее по кругу. Вывод 3 позволяет ограничить счет микросхемы до четырех.

Установите щуп прибора Р1 на вывод 2 D 2. Все время прибор будет показывать единицу, но после 9-го импульса в момент поступления 10-го импульса и перехода в ноль здесь уровень упадет до нулевого, а затем, после десятого снова станет единичным. Используя этот вывод (выход Р) можно организовать многоразрядный счетчик.

На рисунке 3 показана схема двухразрядного счетчика, построенного на двух микросхемах К176ИЕ4. Импульсы на вход этого счетчика поступают с выхода мультивибратора на элементах D 1.1 и D 1.2 микросхемы К561ЛЕ5 (или К176ЛЕ5).

Счетчик на D 2 считает единицы импульсов, и после каждого десятка импульсов, поступивших на его вход «С» на его выходе «Р» появляется один импульс. Второй счетчик — D3 считает эти импульсы (поступающие с выхода «Р» счетчика D 2) и его индикатор показывает десятки импульсов, поступивших на вход D 2 с выхода мультивибратора.

Таким образом, этот двухразрядный счетчик считает от «00» до «99» и с приходом 100-го импульса переходит в нулевое положение.

Если нам нужно, чтобы этот двухразрядный счетчик считал до и 39″ (переходил в нуль с поступлением 40-го импульса) нужно вывод 3- D 3 при помощи отрезка монтажного провода соединить с соединенными вместе выводами 5 обеих счетчиков. Теперь с окончанием третьего десятка входных импульсов, единица с вывода 3 -D 3 поступит на входы «R » обеих счетчиков и принудительно установит их в нулевое состояние.

Для изучения микросхемы К176ИЕЗ соберите схему, показанную на рисунке 4.

Схема такая же как на рисунке 2. Разница в том, что микросхема будет считать от «О» до «5», и при поступлении 6-го импульса переходить в нулевое состояние. На выводе 3 будет появляться единица при поступлении на вход второго импульса. Импульс переноса на выводе 2 будет появляться с приходом 6-го входного импульса. Пока считает до 5-ти на выводе 2 — единица, с приходом 6-го импульса в момент перехода в ноль — логический ноль.

Используя две микросхемы К176ИЕЗ и К176ИЕ4 можно построить счетчик, на подобие того, что используется в электронных часах для подсчета секунд или минут, то есть, счетчик считающий до 60-ти. На рисунке 5 показана схема такого счетчика.

Схема такая же как на рисунке 3, но разница в том, что в качестве микросхемы D 3 вместе К176ИЕ4 используется К176ИЕЗ. А эта микросхема считает до 6-ти, значит и число десятков будет 6. Счетчик будет считать «00» до «59», и с приходом 60-го импульса переходить в ноль. Если сопротивление резистора R 1 подобрать таким образом, чтобы импульсы на выходе D 1.2 следовали с периодом в одну секунду, то можно получить секундомер, работающий до одной минуты.

Используя эти микросхемы несложно построить электронные часы.

Это и будет нашим следующим занятием.

Понимаем принцип работы К176ИЕ4. В данной статье я хочу рассказать о принципе работы с К176ИЕ4 — незаменимым драйвером семисегментных индикаторов. Его работу предлагаю разобрать на примере данной схемы: Не пугайтесь — хоть схема и выглядит массивной, несмотря на это она очень простая, используется всего 29 электронных компонентов Принцип работы К176ИЕ4: К176ИЕ4 — по своей сути очень простая в понимании микросхема. Она представляет собой десятичный счетчик с дешифратором для семисегментной индикации. Она имеет 3 входа и 9 выходов сигнала. Номинальное напряжение питания — от 8.55 до 9.45В. Максимальный ток на один выход — 4мА Входами являются: Тактирующая линия (4 ножка микросхемы) — по ней приходит сигнал, который заставляет микросхему переключать свои состояния, то есть считать Выбор общего анода/катода (6 ножка) — подключая эту линию к минусу мы можем управлять индикатором с общим катодом, к плюсу — с общим анодом Сброс (5 ножка) — при подаче лог. 1 сбрасывает счетчик до нуля, при подаче лог. 0 — разрешает микросхеме переключать состояния Выходы: 7 выходов на семисегментный индикатор (1, 8-13 ножки) Тактирующий сигнал поделенный на 4 (3 ножка) — нужен для часовых схем, нами не используется Тактирующий сигнал поделенный на 10 (2 ножка) — позволяет объединять несколько К176ИЕ4, расширяя диапазон разрядов (можно добавлять десятки, сотни и т.д.) Принцип подсчета работает таким образом, что при переключении нами сигнала на тактирующей линии с лог. 0 на лог. 1 текущее значение увеличивается на единицу Принцип работы данной схемы: Для упрощения восприятия работы этой схемы можно составить такую последовательность: NE555 выдает прямоугольный импульс К176ИЕ4 под воздействием импульса увеличивает свое состояние на единицу Его текущее состояние передается на транзисторную сборку ULN2004 для усиления Усиленный сигнал поступает на светодиоды Индикатор отображает текущее состояние Данная схема переключает состояния ИЕ4 один раз в секунду (этот период времени сформирован RC-цепью, состоящей из R1, R2 и C2) NE555 можно спокойно заменить на КР1006ВИ1 C3 можно выбирать в диапазоне от 10 до 100нФ Усилитель необходим так как максимальный ток на один выход ИЕ4 — 4мА, а номинальный ток большинства светодиодов 20мА Семисегментные индикаторы подойдут любые с общим анодом и номинальным напряжением от 1.8 до 2.5В, с током от 10 до 30мА Мы подключаем 6 ножку микросхемы к минусу питания, но при этом используем индикатор с общим анодом, это обусловлено тем, что ULN2004 не только усиливает, но и инвертирует сигнал Микросхема сбрасывает свое состояние при подаче питания (выполнен цепью из C4 и R4) или по нажатию кнопки (S1 и R3). Сброс при подаче питания необходим так как, иначе, микросхема не будет нормально работать Резистор перед кнопкой сброса необходим для безопасной работы кнопки — почти все тактовые кнопки рассчитаны на ток не более 50мА, а следовательно резистор мы должны выбирать в пределах от 9В/50мА=180Ом и до 1кОм Автор: arssev1 Взято из http://cxem.net 20 шт. NE555 NE555P NE555N 555 DIP-8 . US $0.99 / партия

На прошлом занятии мы познакомились с микросхемой К561ИЕ8, содержащей в одном корпусе десятичный счетчик и десятичный дешифратор, а также с микросхемой К176ИД2, содержащей дешифратор, предназначенный для работы с семисегментными индикаторами. Существуют микросхемы К176ИЕЗ и К176ИЕ4, содержащие в себе счетчик и дешифратор, предназначенный для работы с семисегментным индикатором.

Микросхемы имеют одинаковые цоколевки и корпуса (показано на рисунке 1А и 1Б на примере микросхемы К176ИЕ4), разница состоит в том, что К176ИЕЗ считает до 6-ти, а К176ИЕ4 до 10- ти. Микросхемы предназначены для электронных часов, поэтому К176ИЕЗ считает до 6-ти, например если нужно считать десятки минут или секунд. Кроме того обе микросхемы имеет по дополнительному выводу (вывод 3). В микросхеме К176ИЕ4 на этом выводе появляется единица в тот момент, когда её счетчик переходит в состояние «4». А в микросхеме К176ИЕЗ на этом выводе появляется единица в тот момент, когда счетчик досчитает до 2-х. Таким образом, наличие этих выводов дает возможность построить счетчик часов, считающий до 24-х.

Рассмотрим микросхему К176ИЕ4 (рисунок 1А и 1Б). На вход «С» (вывод 4) подаются импульсы которые микросхема должна считать и отображать их число в семисегментном виде на цифровом индикаторе. Вход «R» (вывод 5) служит для принудительной установки счетчика микросхемы в ноль. При подаче на него логической единицы счетчик переходит в нулевое состояние, и на индикаторе, подключенном к выходу дешифратора микросхемы будет цифра «0», выраженная в семисегментном виде (смотри занятие №9). Счетчик микросхемы имеет выход переноса «Р» (вывод 2). По микросхема считает до 10 на этом выводе логическая единица. Как только микросхема достигает 10-ти (на её вход «С» поступает десятый импульс) она автоматически возвращается в нулевое состояние, и в этот момент (между спадом 9-го импульса и фронтом 10-го) на выходе «Р» формируется отрицательный импульс (нулевой перепад). Наличие этого выхода «Р» позволяет использовать микросхему как делитель частоты на 10, потому, что частота импульсов на этом выходе будет в 10 раз ниже частоты импульсов, поступающих на вход «С» (через каждые 10 импульсов на входе «С», — на выходе «Р» получается один импульс). Но главное назначение этого выхода («Р») — организация многразрядного счетчика.

Еще один вход — «S» (вывод 6), он нужен для выбора типа индикатора, с котором будет работать микросхема. Если это светодиодный индикатор с общим катодом (см. занятие №9), то для работы с ним на этот вход нужно подать логический нуль. Если индикатор с общим анодом — нужно подать единицу.

Выходы «A-G» служат для управления сегментами светодиодного индикатора, они подключаются к соответствующим входам семисегментного индикатора.

Микросхема К176ИЕЗ работает так же как и К176ИЕ4, но считает только до 6-ти, и на её выводе 3 появляется единица тогда, когда её счетчик досчитывает до 2-х. В остальном микросхема не отличается от К176ИЕЗ.

Для изучения микросхемы К176ИЕ4 соберите схему, показанную на рисунке 2. На микросхеме D1 (К561ЛЕ5 или К176ЛЕ5) построен формирователь импульсов. После каждого нажатия и отпускания кнопки S1 на его выходе (на выводе 3 D1.1) формируется один импульс. Эти импульсы поступают на вход «С» микросхемы D2 — К176ИЕ4. Кнопка S2 служит для подачи единичного логического уровня на вход «R» D2, чтобы переводить, таким образом, счетчик микросхемы в нулевое положение.

К выходам A-G микросхемы D2 подключен светодиодный индикатор Н1. В данном случае используется индикатор с общим анодом, поэтому для зажигания его сегментов на соответствующих выходах D2 должны быть нули. Чтобы переключить микросхему D2 в режим работы с такими индикаторами на её вход S (вывод 6) подается единица.

При помощи вольтметра Р1 (тестера, мультиметра, включенного в режим измерения напряжения) можно наблюдать за изменением логических уровней на выходе переноса (вывод 2) и на выходе «4» (вывод 3).

Установите микросхему D2 в нулевое состояние (нажать и отпустить S2). Индикатор Н1 покажет цифру «О». Затем нажимая на кнопку S1 проследите работу счетчика от «0й до «9», и при следующем нажатии снова переходит в «0». Затем установите щуп прибора Р1 на вывод 3 D2 и нажимайте S1. Сначала, пока идет счет от нуля до трех на этом выводе будет нуль, но с появлением цифры «4» — на этом выводе будет единица (прибор Р1 покажет напряжение, близкое к напряжению питания).

Попробуйте соединить между собой выводы 3 и 5 микросхемы D2 при помощи отрезка монтажного провода (на схеме показан штрих-линией). Теперь счетчик дойдя до нуля станет считать только до «4». То есть показания индикатора будут такие — «0», «1», «2», «3» и снова «0» и далее по кругу. Вывод 3 позволяет ограничить счет микросхемы до четырех.

Установите щуп прибора Р1 на вывод 2 D2. Все время прибор будет показывать единицу, но после 9-го импульса в момент поступления 10-го импульса и перехода в ноль здесь уровень упадет до нулевого, а затем, после десятого снова станет единичным. Используя этот вывод (выход Р) можно организовать многоразрядный счетчик.

На рисунке 3 показана схема двухразрядного счетчика, построенного на двух микросхемах К176ИЕ4. Импульсы на вход этого счетчика поступают с выхода мультивибратора на элементах D1.1 и D1.2 микросхемы К561ЛЕ5 (или К176ЛЕ5).

Счетчик на D2 считает единицы импульсов, и после каждого десятка импульсов, поступивших на его вход «С» на его выходе «Р» появляется один импульс. Второй счетчик — D3 считает эти импульсы (поступающие с выхода «Р» счетчика D2) и его индикатор показывает десятки импульсов, поступивших на вход D2 с выхода мультивибратора.

Таким образом, этот двухразрядный счетчик считает от «00» до «99» и с приходом 100-го импульса переходит в нулевое положение.

Если нам нужно, чтобы этот двухразрядный счетчик считал до и39″ (переходил в нуль с поступлением 40-го импульса) нужно вывод 3- D3 при помощи отрезка монтажного провода соединить с соединенными вместе выводами 5 обеих счетчиков. Теперь с окончанием третьего десятка входных импульсов, единица с вывода 3 -D3 поступит на входы «R» обеих счетчиков и принудительно установит их в нулевое состояние.

Для изучения микросхемы К176ИЕЗ соберите схему, показанную на рисунке 4.

Схема такая же как на рисунке 2. Разница в том, что микросхема будет считать от «О» до «5», и при поступлении 6-го импульса переходить в нулевое состояние. На выводе 3 будет появляться единица при поступлении на вход второго импульса. Импульс переноса на выводе 2 будет появляться с приходом6-го входного импульса. Пока считает до 5-ти на выводе 2 — единица, с приходом 6-го импульса в момент перехода в ноль — логический ноль.

Используя две микросхемы К176ИЕЗ и К176ИЕ4 можно построить счетчик, на подобие того, что используется в электронных часах для подсчета секунд или минут, то есть, счетчик считающий до 60-ти. На рисунке 5 показана схема такого счетчика.

Схема такая же как на рисунке 3, но разница в том, что в качестве микросхемы D3 вместе К176ИЕ4 используется К176ИЕЗ. А эта микросхема считает до 6-ти, значит и число десятков будет 6. Счетчик будет считать «00» до «59», и с приходом 60-го импульса переходить в ноль. Если сопротивление резистора R1 подобрать таким образом, чтобы импульсы на выходе D1.2 следовали с периодом в одну секунду, то можно получить секундомер, работающий до одной минуты.

Используя эти микросхемы несложно построить электронные часы.

Это и будет нашим следующим занятием.

Журнал Радиоконструктор 2000г.

Дополнительно

Корпус: DIP-14

Микросхема К176ИЕ4 представляет счетчик по модулю 10 с дешифратором для вывода информации на семисегментный индикатор. Микросхема К176ИЕ4 была разработана специально для работы в схемах электронных часов.

Счет происходит по спаду импульсов положительной полярности на тактовом входе C. Подача лог. «1» на вход R переводит триггеры счетчика в нулевое состояние. Вход S управляет «полярностью» сигналов на выходах сегментов — это позволяет использовать индкаторы как с общим анодом так и с общим катодом.

На выводе 2 выделяется последовательность импульсов с частотой f/10, на выводе 3 — f/4.

Аналог: CD4026B

Условное обозначение К176ИЕ4:

Назначение выводов К176ИЕ4:

Не смотря на то, что серия К176 относится к устаревшим КМОП-сериям некоторые микросхемы этой серии, и К176ИЕ4 в частности, не имеют аналогов в более современных сериях К561/КР561 и поэтому все ещевостребованы в отдельных приложениях.

Основные параметры К176ИЕ4:

Подключение ЖК индикатора к К176ИЕ4:

Подключение люминисцентного индикатора к К176ИЕ4:

Схемы подключения светодиодных индикаторов к К176ИЕ4:

К176ИЕ17 — Таймеры и часы — МИКРОСХЕМЫ — Электронные компоненты (каталог)

К176ИЕ17 — микросхема календаря — предназначена для построения часов с будильником и календарем на основе комплекта специализированных часовых микросхем серии К176. Она работает в непосредственной связке с микросхемами К176ИЕ12(ИЕ18) и К176ИЕ13.

Принципы построения микросхемы К176ИЕ17 сходны с К176ИЕ13. Она содержит счётчики дней недели и чисел месяца, счётчик месяцев. Счётчик К176ИЕ17 приняв суточные импульсы от К176ИЕ13, последовательно переводит их в двоичный код дня недели, числа и месяца, и передает на внешний дешифратор для преобразования в код индикатора.

Основные параметры К176ИЕ17

(при Uпит=9В)

Напряжение питания номинальное

9В±5%

Напряжение питания допустимое

+3..15В

Ток потребления статический

<50мкА

Ток потребления динамический

<0,6мА

Выходное напряжение «0»

<0,3В

Выходное напряжение «1»

>8,2В

Входной ток «0/1»

<0,3мкА

Входная ёмкость

<12пФ

Предельная тактовая частота

30КГц

Длительность фронта/среза тактовых импульсов

<10мкс

Коэффициент разветвления выхода

50

Температурный диапазон

-10…+70°С

Корпус

238.16-1.

(DIP-16)

 

Управление микросхемой К176ИЕ17

(P — вывод.13)

Кнопка Сигналы Режим
SB1 T1 Установка числа

SB2

T2 Установка месяца
SB1+SB3 T1+T3 Установка дня недели

Микросхема К176ИЕ17 работает следующим образом. Смотрите схему ниже, а также описание и диаграмму работы микросхем К176ИЕ12 и К176ИЕ13.

К176ИЕ17 получает суточные тактовые импульсы от счётчика К176ИЕ13, а также синхронизирующие импульсы частотой 1024Гц и 2Гц от К176ИЕ12 (ИЕ18).

На выходах «A, B, C» постоянно присутствует (строб не требуется) двоичный код дня недели.

На выходах счётчика К176ИЕ17 «1..8» поочередно появляются двоичные коды числа и месяца, стробируемые сигналом «S» с микросхемы К176ИЕ13 (!). Эти коды подаются на внешний дешифратор. Для семисегментных индикаторов обычно используются дешифраторы К176ИД2, К176ИД3 или CD4056, но могут быть использованы дешифраторы и индикаторы других типов.

Подача лог.»0″ на вход «V» (вывод 2) переводит выходы «1-8» микросхемы К176ИЕ17 в высокоимпедансное состояние.

«Q» (вывод 1) -технологический сброс — установка в «0» внутреннего генератора тактовых импульсов и счётчиков (обычно не используется в часах).

РадиоЧайник (Применение микросхем серии К176

Оглавление
(Часть 1) Часть 2 Часть 3

Применение микросхем серии К176

Рассмотренные ранее в журнале [1—3] интегральные микросхемы серии К155 позволяют строить самые разнообразные цифровые устройства с быст­родействием до 10…15 МГц, однако потребляемая ими мощность довольно велика. В ряде случаев, где не нужно такое высокое быстродействие, а, нао­борот, необходима минимальная пот­ребляемая мощность, применяют инте­гральные микросхемы серии К176.

Микросхемы этой серии изготовляют по технологии дополняющих транзисто­ров структуры МОП (металл — оки­сел — полупроводник). Основная осо­бенность и достоинство микросхем — ничтожное потребление тока в статиче­ском режиме, находящееся в пределах 0,1…100мкА. При работе на максималь­ной рабочей частоте 1…2 МГц потреб­ляемая мощность доходит до значений этого параметра микросхем ТТЛ с близким быстродействием, например, серии К134. Номинальное напряжение питания микросхем серии К176 — 9 В ±5 %, однако они сохраняют ра­ботоспособность в интервале питающе­го напряжения от 5 до 12 В. Диапазон рабочих температур — от —10 до +70°С. При напряжении питания 9 В уровень логического 0 — не более 0,3 В, уровень 1 — не менее 8,2 В. Максимальный выходной ток составля­ет единицы миллиампер. Такие пара­метры затрудняют подключение микро­схем серии К176 к микросхемам других серий и индикаторам.

В номенклатуру серии К176 входит свыше 30 микросхем. Из них к комбина­ционным относят логические .элементы, содержащие в своем обозначении буквы ЛЕ (элементы ИЛИ-НЕ), ЛА (элемен­ты И-НЕ). ЛП (сочетание элементов ИЛИ-НЕ или И-ИЕ и инвертора, эле­мент ИСКЛЮЧАЮЩЕЕ ИЛИ), де­шифратор К176ИД1, четырехразрядный полный сумматор К176ИМ1 и некото­рые другие; к последовательностным — интегральные   триггеры   К176ТМ1, К176ТМ2,     К176ТВ1,     счетчики К176ИЕ1 — К176ИЕ18,- сдвигающие регистры К176ИР2 — К176ИР10 и не­которые другие.

Логические элементы И, И-НЕ, ИЛИ-НЕ, НЕ этой серии работают так же, как и аналогичные элементы серии К155.

Интегральная микросхема К176ИД1 (ее обозначение показано на рис. 1,а) — дешифратор на 10 выходов. Он имеет 4 входа для сигналов в коде 1-2-4-8. Выходной сигнал с уровнем 1 появляет­ся на том выходе дешифратора, номер которого в виде десятичного числа выражает состояние входов в двоичном коде. На остальных выходах дешифра­тора при этом будет уровень 0.

Дешифратор К176ИД1 не имеет спе­циального входа стробирования. При построении дешифраторов с числом выходов более 10 можно использовать для этой цели вход 8, так как сигналы на выходах 0—7 могут появиться лишь при уровне 0 на этом входе. Такой расширенный дешифратор можно соб­рать по схеме на рис. 2.

Микросхема К176ЛП2 (рис. 1,6) — сумматор по модулю 2 или ИСКЛЮ­ЧАЮЩЕЕ ИЛИ. Логика ее работы полностью совпадает с логикой работы микросхемы К155ЛП5 [З].

Полный четырехразрядный сумматор К176ИМ1 (рис. 1,в) по логике работы соответствует микросхеме К155ИМЗ [З]. На входы А1—А4 подают сигналы в двоичном коде одного из суммируе­мых чисел, на входы В1—В4 — сигналы второго числа (Al, Bl — младшие разряды), а на вход С — сигнал пере­носа с предыдущего разряда. На вы­ходах SI—S4 формируются сигналы, соответствующие коду суммы чисел, а на выходе P — сигнал переноса в сле­дующий разряд. У микросхемы, сумми­рующей только младшие, разряды мно­горазрядных двоичных чисел, вход C соединяют с общим проводом.

Интегральная микросхема К176ЛП1 (рис. 1,г) занимает особое место среди комбинационных микросхем серии К176. В нее входят три полевых транзистора с каналом p-типа и столько же — с ка­налом    n-типа. Соединяя выводы микросхемы, можно получить три от­дельных инвертора (рис. 3.а), инвертор с мощным выходом (рис. 3,б), трехвходовый элемент ИЛИ-НЕ (рис. 3,в), трехвходовый элемент И-НЕ (рис. 3,г), отсутствующий в серии элемент ИЛИ-И-НЕ (рис. 3,д) и мультиплексор с дву­мя входами (рис. 3,е).

Мультиплексор по приведенной схе­ме пропускает сигнал на выход D с входа А при уровне 1 на входе С или с входа В при уровне 0 на входе С. Причем такой мультиплексор обратим, т. е. при тех же условиях сигнал с выхода D проходит на входы А или В,

Пропускаемый сигнал может быть как цифровым, так и аналоговым. Ана­логовый сигнал по амплитуде не дол­жен выходить за допустимые пределы напряжения питания микросхемы. Со­противление между входом и выходом открытого канала мультиплексора со­ставляет 100…200 Ом и зависит от напряжения на входе и разности напря­жений между входом и выходом. Для получения малых нелинейных искаже­ний передаваемого сигнала сопротивле­ние нагрузки должно быть не менее 50…100 кОм.

В серию входят три микросхемы счет­ных триггеров: К176ТВ1, К176ТМ1, К176ТМ2.

Микросхема К176ТВ1 (рис. 1, д) содержит два JK-триггера. Каждый триггер, кроме входов J и K, имеет входы R и S для установки триг­гера в нулевое или единичное состоя­ние соответственно, а также вход C для тактовых импульсов; При подаче уров­ня 1 на вход R триггер устанав­ливается в нулевое состояние, а на вход S — в единичное.

Триггер не переключается при изме­нении сигналов на J и K входах, играют роль лишь их уровни на этих входах во время спада импуль­са отрицательной полярности на входе С. Так, если на входах J и K при­сутствует уровень 1, то каждым спа­дом импульса отрицательной полярно­сти на тактовом входе С триггер переключается в противоположное со­стояние. При уровне 0 на входах J и K состояние триггера импульсами на входе C не изменяется. В случае, если уровень 1 воздействует на вход J, а уровень 0 — на вход K, спад импульса на входе C устанавливает триггер в единичное состояние. Если же на входе J — уровень 0, а на входе K — 1, то спадом импульса на входе С триггер переключается в нуле­вое состояние.

 Интегральная микросхема К176ТМ2 (рис. 1,ж) состоит из двух D-триг-геров. В нулевое и единичное состоя­ния триггеры устанавливаются так же, как и триггеры микросхемы К176ТВ1, при подаче уровней 1 на входы R и S. Спадами тактовых импуль­сов отрицательной полярности на входе С триггеры переключаются в состоя­ние, соответствующее уровню на входе D, аналогично триггерам в микросхе­ме K155TM2.

Микросхема К176ТМ1 отличается от K176TM2 только отсутствием входов S (рис. 1,е).


При построении двоичных счетчиков на микросхемах серии К 176 входы С триггеров подключают к инверсным вы­ходам предыдущих триггеров. Схемы декад на микросхемах К176ТВ1 и К176ТМ2, а также временные диаграм­мы их работы приведены на рис. 4 и 5.

Шестиразрядный двоичный счетчик К176ИЕ1 (рис. 1,з) имеет вход R для установки триггеров счетчика в нулевое состояние (уровнем 1) и вход С для счетных импульсов. Триггеры микросхемы переключаются спадом импульсов отрицательной по­лярности на входе С. В многораз­рядных делителях частоты для пра­вильного порядка переключения триг­геров входы микросхем К176ИЕ1 под­ключают к выходам предыдущих через инверторы.

Пятиразрядный счетчик К176ИЕ2 (рис. 1,и) может работать как двоич­ный счетчик в коде 1-2-4-8-16 при уровне 1 на управляющем входе А или как декада с подключенным к ее выходу триггером при уровне 0 на том же входе. Во втором случае код работы счетчика 1-2-4-8-10, а об­щий коэффициент деления частоты входного сигнала — 20.

На входы CP и CN микросхемы подают тактовые импульсы. Полярность импульсов при подаче на первый из этих входов должна быть поло­жительной (при уровне 1 на входе CN), на второй — отрицательной (при уровне 0 на входе CP). В обоих случаях счетчик переключается спадами импульсов. Триггеры счетчика устанав­ливаются в нулевое состояние при уров­не 1 на входе R. Первые четыре триггера счетчика можно установить в единичное состояние, если подать уровень 1 на входы SI — S8 (при этом на входе R должен быть уро­вень 0).

При уровне 0 на входе А порядок работы триггеров в счетчике иллюстри­рует временная диаграмма на рис. 6. В этом режиме на выходе переноса Р10, представляющем собой выход эле­мента И-НЕ, входы которого подклю­чены к выходам 1 и 8 микросхемы, выделяются импульсы отрицательной полярности. Фронты импульсов совпа­дают со спадом каждого девятого входного импульса, а спады — со спа­дом каждого десятого импульса. С вы­хода переноса импульсы могут быть поданы  на  вход CN следующей микросхемы многоразрядного счетчика.

Интегральные микросхемы К176ИЕЗ, К176ИЕ4 и К176ИЕ5 разработаны специально для работы в электрон­ных часах с семиеегмснтными индика­торами.

Микросхема К176ИЕ4 (рис. 1,л) содержит декаду и преобразователь ее состояний в двоичном коде в сигналы управления семисегментным индикато­ром. Триггеры декады устанавливаются в нулевое состояние при подаче уров­ня 1 на вход R, а переключаются спадом положительных импульсов на входе С.

На выходах a—g микросхемы фор­мируются выходные сигналы, обес­печивающие на семисегментном ин­дикаторе свечение цифр, соответствую­щих состоянию декады. При подаче уровня 0 на управляющий вход S состояние декады определяется уровнями 1 на выходах a—g, а при поступлении уровня 1 — уровнями 0 на тех же выходах. Такое переклю­чение полярности выходных сигналов существенно расширяет область при­менения микросхемы.

На выходе 4 микросхемы после че­тырех входных импульсов возникает уровень 1, который служит для органи­зации сброса счетчика часов, собран­ного на микросхемах К176ИЕЗ и К176ИЕ4, при достижении им состояния 24. Выход P микросхемы —   выход переноса, на котором спад положи­тельного импульса формируется в мо­мент перехода декады из состояния 9 в состояние 0.

Следует помнить, что в паспорте микросхемы и в некоторых справоч­никах обозначение выходов а — g дано для нестандартного расположения сегментов в индикаторах. На рис, 1,л приведено обозначение выходов для стандартного расположения сегментов.

Два варианта подключения к мик­росхеме К176ИЕ4 вакуумных семисегменгных индикаторов иллюстрируют схемы на рис. 7. Напряжение нака­ла выбирают в соответствии с типом используемого индикатора. Подбором напряжения питания в пределах +25… 30 В в устройстве по схеме на рис. 7,а и   -15…20 В в устрой­стве по схеме на рис, 7.б можно изменять яркость свечения сегментов. Транзисторы в устройстве по схеме на рис. 7.б могут быть любыми кремниевыми структуры p-n-p с обрат­ным током коллекторного перехода, не превышающим 1 мкА при напряжении 25 В. Если этот ток больше ука­занного значения, то между анодами и одним из выводов накала инди­катора необходимо включить резисто­ры сопротивлением 30…60 кОм. То же делают при использовании германиевых транзисторов.

На рис. 8 и показаны схемы подклю­чения к микросхеме К176ИЕ4 полу­проводниковых индикаторов с общим катодом (рис, 8,а) и с общим ано­дом (рис. 8,б). Подбором резисторов R1 — R7 (в пределах 100…360 Ом) устанавливают необходимый ток через сегменты индикатора.

Светодиодные индикаторы, обеспечи­вающие достаточную яркость свечения при малых токах через сегменты (до 5 мА), можно подключить к микро­схеме непосредственно.

По схеме на рис. 8,6, исключив резисторы R1—R7, можно подключить и накальные индикаторы. При этом напряжение питания индикаторов необ­ходимо увеличить примерно на I В про­тив номинального для компенсации падения напряжения на транзисторах, Это напряжение может быть как по­стоянным, так и пульсирующим.

Интегральная микросхема К176ИЕЗ (рис. 1,к) отличается от К176ИЕ4 тем, что ее счетчик имеет коэффици­ент пересчета 6, а уровень 1 на вы­ходе 2 появляется при установке счет­чика в состояние 2.

Микросхема К176ИЕ5 (рис. 1,м) содержит каскады для работы в квар­цевом генераторе с внешним резона­тором на частоту 32 768 Гц и пятнад­цатиразрядный двоичный делитель ча­стоты. Вариант включения микросхемы показан на рис. 9. Выходной сигнал кварцевого генератора можно контро­лировать на выходах  K и К. Сиг­нал частотой 32 768 Гц поступает на вход девятиразрядного двоичного делителя частоты. С его выхода 9 сигнал частотой 64 Гц может быть подан на вход 10 шестиразрядного делителя. На выходе 14 пятого разряда этого делителя формируются импульсы часто­той 2 Гц, а на выходе 15 шесто­го разряда — 1 Гц.

Вход  R микросхемы служит для установки исходной фазы колебаний на выходах микросхемы. При подаче на вход R уровня 1 на выходах 9, 14, 15 возникает уровень 0, а после снятия установочного уровня появляются сиг­налы соответствующей частоты, причем спад первого импульса положитель­ной полярности на выходе 15 возника­ет через 1 с.

Конденсаторы C1 и C2 служат для точной установки частоты кварцевого генератора. Емкость первого из них может находиться в пределах от еди­ниц до ста пикофарад, емкость второ­го — в интервале 30.. .100 пФ. При увеличении емкости конденсаторов ча­стота генерации уменьшается. Точно устанавливать частоту удобнее подстроечными конденсаторами, подключен­ными параллельно конденсаторам C1 и C2: первым из них частоту регули­руют грубо, вторым — точно.

  Микросхемы К176ИР2, К176ИРЗ, К176ИР10 — сдвигающие регистры. Микросхема К176ИР2 (рис. 1,н) содер­жит две одинаковые независимые сек­ции по четыре разряда. Каждая секция имеет вход R для установки триг­геров в нулевое состояние при подаче уровня 1. По спадам импульсов от­рицательной полярности на входе C в регистр записывается информация с входа D в первый разряд регистра, сдвигая записанную ранее информацию в сторону возрастания номеров выхо­дов. При построении сдвигающего ре­гистра с большим числом разрядов вход D одного регистра микросхемы соединяют с выходом 4 предыдущего и объединяют входы С, а также входы R.

Четырехразрядный сдвигающий ре­гистр К176ИРЗ (рис. 1,о) по своим возможностям и назначению выводов соответствует микросхеме К155ИР1. Информация в первый разряд записы­вается через вход D0 и одновременно сдвигается в регистре спадами импуль­сов отрицательной полярности, пода­ваемых на вход C1, при уровне 0 на входе S. Через входы D1—D4 инфор­мация записывается параллельно при воздействии спадов импульсов отрица­тельной полярности на входе C2 и уровне 1 на входе S. При объеди­нении входов C1 и C2 режим сдвига пли записи выбирают, управляя входом S (при уровне 0 на входе — сдвиг, при уровне 1 — запись). Если объеди­нить входы C1 и S. специального сигнала управления не требуется.

Соединение входов D1—D3 соответ­ственно с выходами 2—4 превращает микросхему К176ИРЗ в реверсивный сдвигающий регистр.

Восемнадцати разрядный   сдвигаю­щий регистр К176ИР10 (рис. 1,п) разделен на четыре секции с общим входом C для подачи тактовых импуль­сов. Первая секция (вход D1)—че­тырехразрядная, имеет выход только в последнем разряде, вторая (вход D5)— пятиразрядная с выходами в четвертом (8) и пятом разрядах (9). Третья секция с входом D10 (вы­ход 13) аналогична первой, а четвер­тая с D14 (выходы 17 и 18) — второй. Информация записывается че­рез входы D1, D5, D10 и D14 с одновременным сдвигом в регистре спадами тактовых импульсов положи­тельной полярности на входе С. Осо­бенности построения триггеров в микро­схеме требуют, чтобы длительность тактовых импульсов не превышала 30 мкс.

Предельная частота следования так­товых импульсов для    микросхем К176ТМ1,    К176ТМ2,    К176ИЕ1, К176ИЕЗ. К176ИЕ4 — не более 1 МГц а для К176ТВ1, К176ИЕ2, К176ИР2, 176ИР10 — не более 2 МГц.

Микросхемы К176ЛП1, К176ТМ1, К176ТМ2, К176ИЕ1, К176ИЕЗ — К176ИЕ5,    К176ИРЗ,    К176ИР10, К176ЛП2 оформлены в корпусах с 14 выводами. Напряжение питания этих микросхем подают на вывод 14, а вывод 7 соединяют с общим приводом. Микро­схемы К176ТВ1, К176ИЕ2, К176ИР2, К176ИД1, К176ИМ1 имеют по 16 выводов. Напряжение питания подводят к выводу 16, а вывод 8 подклю­чают к общему проводу.

При подключении микросхем серии К 176 ни один из их входов не должен быть свободным, даже если какой-либо элемент в микросхеме не использован. Эти входы должны быть или соединены с используемыми вхо­дами того же элемента, или подклю­чены к проводнику питания или обще­му проводу в соответствии с логи­кой работы микросхемы (см., например, рис. 4.а и 5,а). Напряжение питания в устройстве, выполненном на микро­схемах серии К176, необходимо вклю­чать до подачи входных сигналов.

Особое внимание следует обратить на монтаж устройств с микросхемами К176. Перед установкой микросхем на печатную плату необходимо соединить проводник питания на ней с общим проводом через резистор сопротивле­нием 1…2 кОм. Снять его можно лишь после налаживания устройства. Если в цепи питания устройства вклю­чен стабилитрон, то резистор устанав­ливать не нужно.

Если микросхема лежит в металли­ческой коробке или ее выводы обер­нуты в фольгу, то прежде, чем взять микросхему, следует дотронуться до коробки или фольги.

Чтобы исключить случайный пробой микросхемы статическим электричест­вом, потенциалы платы, паяльника и тела монтажника должны быть оди­наковы. Для этого на ручку паяль­ника наматывают несколько витков неизолированного провода или укреп­ляют на ней жестяную пластину и соединяют (провод или пластину) через резистор сопротивлением 100…200 кОм со всеми металлическими частями паяльника (в том числе и с жалом). При монтаже свободной рукой следует держаться за проводник питания монти­руемой платы.

 

Продолжение

С. АЛЕКСЕЕВ

г. Москвы

ЛИТЕРАТУРА

1. Алексеев С. Применение микросхем се­рии К155. — Радио. 1977, № 10. с. 39—41.

2. Алексеев С. Применение микросхем серии К155. — Радио, 1978, № 5. с. 37, 38.

3. Алексеев С. Применение микросхем серии K155.- Радии, 1982, № 2, с. 30—34.

 

 

Стандартные серии КМОП: к176, к561, 564

Микросхема

Аналог

Корпус

Назначение

 564АГ1 CD4098B 402.16-33 2 моностабильных одновибратора
 564ГГ1 CD4046B 402.16-23 Генератор с ФАПЧ
 564ИД1
К561ИД1
CD4028A
CD4028AE
402.16-23
238.16-1
Двоично-десятичный декодер
К176ИД2 б/а 238.16-1 Дешифратор двоичного кода в семисегментный
К176ИД3 б/а 238.16-1 Дешифратор двоичного кода в семисегментный
 564ИД4 CD4055 402.16-33 Дешифратор возбуждения
 564ИД5 CD4056A 402.16-33 Стробируемый дешифратор возбуждения
К176ИЕ1 CD4024A 201.14-1 6-разрядный двоичный счетчик
К176ИЕ2 TA5971 238.16-1 5-разрядный счетчик
К176ИЕ3 HEF4017 201.14-1 Счетчик по модулю 6 с выводом на 7-сегментный индикатор
К176ИЕ4 CD4026 201.14-1 Счетчик по модулю 10 с выводом на 7-сегментный индикатор
К176ИЕ5 CD4033 201.14-1 15-разрядный делитель частоты
К561ИЕ8 CD4017AE 238.16-1 Десятичный счетчик делитель
564ИЕ9
К561ИЕ9
CD4022A 402.16-32
238.16-1
Счетчик-делитель на 8
564ИЕ10
К561ИЕ10
MC14520AP 402.16-33
238.16-1
Два 4-разрядных счетчика
564ИЕ11
К561ИЕ11
MC14516AP 402.16-23
238.16-1
4-разрядный двоичный реверсивный счетчик
К176ИЕ12 б/а 238.16-1 15-разрядный делитель частоты и двоичный счетчик на 60
К176ИЕ13 б/а 238.16-1 Двоичный счетчик с устройством управления
564ИЕ14
К561ИЕ14
CD4029A
CD4029AE
402.16-23
238.16-1
Двоично-десятичный 4-разрядный реверсивный счетчик с предустановкой
564ИЕ15
К561ИЕ15
КА561ИЕ15
CD4059A 4118.24-2
405.24-7
Программируемый счетчик
К561ИЕ16 CD4020AE 238.16-1 14-разрядный двоичный счетчик-делитель
К176ИЕ17 б/а 201.14-1 Двоичный счетчик с устройством управления (календарь)
К176ИЕ18 б/а 201.14-1 Двоичный счетчик на 60 с 15-разрядным делителем частоты, генератором сигнала звонка
564ИЕ19
К561ИЕ19
CD4018A 402.16-23
238.16-1
5-разрядный счетчик Джонсона с предустановкой
564ИЕ22 MC14553B 402.16-23 3-декадный двоично-десятичный счетчик с регистром памяти
564ИК1
К561ИК1
б/а 402.16-23
238.16-1
Строенный мажоритарный элемент
564ИК2 б/а 4118.24-2 Схема управления 5-разрядными 7-сегментными индикаторами в мультиплексном режиме
564ИМ1
К561ИМ1
CD4008A 402.16-23
238.16-1
4-разрядный сумматор
564ИП2
К561ИП2
MC14585A 402.16-32
238.16-1
4-разрядная схема сравнения
564ИП3 MC14581A 405.24-2 Ариметическо-логическое устройство
564ИП4 MC14582A 402.16-33 Схема сквозного переноса
564ИП5
К561ИП5
MC14554A
MC14554CP
402.16-33
238.16-1
Универсальный двухразрядный умножитель
564ИП6 CD40101B 401.14-5 9-разрядный контролер четности
564ИР1 CD4006A 401.14-5 18-разрядный сдвигающий регистр
564ИР2
К561ИР2
CD4015A
CD4015AE
402.16-23
238.16-1
Два 4-разрядных регистра сдвига
К176ИР3 б/а 201.14-1 4-разрядный сдвигающий регистр
К176ИР4 CD4031 201.14-1 64-разрядный регистр сдвига
564ИР6
К561ИР6
CD4034AE 405.24-2
239.24-1
8-разрядный сдвигающий регистр
564ИР9
К561ИР9
CD4035A 402.16-23
238.16-1
4-разрядный последовательно- параллельный регистр
К176ИР10 CD4006E 201.14-1 8-разрядный сдвигающий регистр
564ИР11
К561ИР11
MC14580CP
б/а
405.24-2
239.24-1
Многоцелевой регистр (8х4) бит
564ИР12
К561ИР12
MC14580A 405.24-2
239.24-1
Многоцелевой регистр (4х4 бит)
564ИР13 MM54C905 405.24-2 12-разрядный регистр последовательного приближения
564ИР16 CD40105B 402.16-23 Регистровое ЗУ 16х4 бит
564КП1
К561КП1
CD4052A 402.16-23
238.16-1
Двойной 4-канальный мультиплексор
564КП2
К561КП2
CD4051A 402.16-23
238.16-1
8-канальный мультиплексор
К561КП6 KT8592 238.16-1 4-разрядный коммутатор для АТС со встроенной памятью состояния матрицы ключей
К176КТ1 CD4016E 201.14-1 4 двунаправленных переключателя
564КТ3
К561КТ3
CD4066A 401.14-5
201.14-1
4 двунаправленных переключателя
 564ЛА7
К561ЛА7
КФ561ЛА7
CD4011A 401.14-5
201.14-1
4313.14-А
4 логических элемента 2И-НЕ
564ЛА8
К561ЛА8
CD4012A 401.14-5
201.14-1
2 логических элемента 4И-НЕ
564ЛА9
К561ЛА9
CD4023A 401.14-5
201.14-1
3 логических элемента 3И-НЕ
564ЛА10 CD40107B 401.14-5 2 логических элемента 2И-НЕ с открытым стоком
564ЛЕ5
К561ЛЕ5
CD4001A 401.14-1В
201.14-1
4 логических элемента 2ИЛИ-НЕ
564ЛЕ6
К561ЛЕ6
CD4002A 401.14-1В
201.14-1
2 логических элемента 4ИЛИ-НЕ
564ЛЕ10
К561ЛЕ10
CD4025A 401.14-5
201.14-1
3 логических элемента 3ИЛИ-НЕ
К176ЛИ1 б/а 201.14-1 Элемент 9И и элемент НЕ
 564ЛН1
К561ЛН1
MC14502AP 402.16-32
238.16-1
6 логических элементов НЕ с блокировкой и запретом
 564ЛН2
К561ЛН2
CD4049A 401.14-5
201.14-1
6 логических элементов НЕ
К561ЛН3 MPD4503 238.16-1 6 повторителей с блокировкой для видеомагнитофонов с 3 состояниями
К561ЛН5 CD4069A 201.14-1 6 логических элементов НЕ
К176ЛП1 CD4007E 201.14-1 Элемент логический универсальный
 564ЛП2
К561ЛП2
CD4030A 401.14-5
201.14-1
4 двухвходовых элемента «Исключающее-ИЛИ»
К176ЛП4 CD4000E 201.14-1 2 логических элемента 3ИЛИ-НЕ и логический элемент НЕ
К176ЛП11 б/а 201.14-1 2 логических элемента 4ИЛИ-НЕ и логический элемент НЕ
К176ЛП12 б/а 201.14-1 2 логических элемента 4И-НЕ и логический элемент НЕ
 564ЛП13
К561ЛП13
КФ561ЛП13
б/а 401.14-5
201.14-1
4313.14-А
Три 3-входовых мажоритарных элемента
 564ЛС1
К176ЛС1
б/а 401.14-5
201.14-1
3 логических элемента 3И-ИЛИ
 564ЛС2
К561ЛС2
CD4019A 402.16-23
238.16-1
4 логических элемента И-ИЛИ
 564ПР1 CD4094B 402.16-23 8-разрядный преобразователь последовательного кода в параллельный
К176ПУ1 б/а 201.14-1 5 преобразователей уровня КМОП-ТТЛ
К176ПУ2 CD4009E 238.16-1 6 преобразователей уровня с инверсией
К176ПУ3 CD4010E 238.16-1 6 преобразователей уровня
 564ПУ4
К561ПУ4
CD4050A 402.16-32
238.16-18
6 преобразователей уровня
К176ПУ5 б/а 238.16-1 Преобразователи уровня
 564ПУ6 CD40109A 402.16-23 4 преобразователя уровня
 564ПУ7
К561ПУ7
б/а 401.14-5
201.14-1
6 преобразователей уровня логических уровней с низкого на высокий с инверсией
 564ПУ8
К561ПУ8
б/а 401.14-5
201.14-1
6 преобразователей уровня логических уровней с низкого на высокий без инверсии
 564ПУ9 CD40116 4118.24-2 8-разрядный двунаправленный преобразователь уровня для сопряжения ТТЛ-КМОП
 564РП1 CD4039A 4118.24-2 Буферное ЗУ с организацией 8*4
 564РУ2
К561РУ2
К176РУ2
CD4061A

CD4061
ОЗУ 256х1 бит
 564СА1
К561СА1
MC14531A 402.16-33
238.16-1
12-разрядная схема сравнения
 564ТВ1
К561ТВ1
CD4027A 402.16-23
238.16-1
2 триггера J-K
 564ТЛ1
К561ТЛ1
CD4093A 401.14-5
201.14-1
4 триггера Шмитта с входной логикой 2И-НЕ
К176ТМ1 CD4003E 201.14-1 2 D-триггера со сбросом
 564ТМ2
К561ТМ2
CD4013A 401.14-5
201.14-1
2 D-триггера
 564ТМ3
К561ТМ3
CD4042A 402.16-32
238.16-1
4 D-триггера
 564ТР2
К561ТР2
CD4043A 402.16-32
238.16-1
4 R-S-триггера
 564УМ1 CD4054A 402.16-33 Усилитель индикации
Панель брандмауэра

— K176-8655-1200 — OEM — Kenworth Панель брандмауэра

— K176-8655-1200 — OEM — Kenworth — Big Rig World

Магазин не будет работать корректно в случае, если куки отключены.

Похоже, в вашем браузере отключен JavaScript. Для наилучшего взаимодействия с нашим сайтом обязательно включите Javascript в своем браузере.

Деталь № K176-8655-1200 СТАРЫЙ №

Товара нет на складе, но его можно приобрести у нашего поставщика.Обычно они отправляются к предполагаемой дате отправки. Если вам нужна деталь быстрее, мы можем ускорить ее. Пожалуйста, свяжитесь с нами, чтобы ускорить эту часть.

Панель брандмауэра

— Big Rig World предлагает оригинальные запчасти OEM и запасные части для ремонта вашего автомобиля по самым низким ценам.

Дополнительная информация
Текущая часть № К176-8655-1200
Производитель Кенворт
Наличие на складе В наличии
Горячие предложения
Подходит для Кенворт
Тип ОЕМ
Гарантия Стандартные производители

Copyright © 2006-2022 Big Rig World

Дизайн и разработка:

Kenworth — K176-4282 — ПАНЕЛЬНЫЙ ПЕРЕКЛЮЧАТЕЛЬ W900B

Kenworth — K176-4282 — ПАНЕЛЬНЫЙ ПЕРЕКЛЮЧАТЕЛЬ W900B

Магазин не будет работать корректно в случае, если куки отключены.

Похоже, в вашем браузере отключен JavaScript. Для наилучшего взаимодействия с нашим сайтом обязательно включите Javascript в своем браузере.

Нажмите на изображение, чтобы увеличить

OEM: Kenworth

Описание: Панельный переключатель W900B

Вес: 0.2

Компания Kenworth Truck производит грузовые автомобили. Компания предлагает грузовики средней и большой грузоподъемности для государственных, частных и профессиональных рынков в Северной Америке.

О нас

Vintage Parts — ваш надежный партнер для приобретения устаревших и быстроходных запасных частей от производителей оригинального оборудования (OEM) для ваших клиентов. Мы тесно сотрудничаем с более чем 60 OEM-производителями, чтобы предоставить высококачественное решение для продления срока службы этих труднодоступных запасных частей.

Некоторые из указанных деталей доступны для продажи только через авторизованных дилеров, и в зависимости от интересующего местоположения/продукта они также могут быть доступны напрямую через Vintage Parts.Узнайте о наличии запчастей на нашем сайте, а затем свяжитесь с местным дилером, если они не доступны для прямой продажи. Сообщите им, что вы нашли деталь в наличии на веб-сайте VPARTSINC.COM, и они будут рады заказать вам эту деталь. Дилер может даже доставить деталь прямо к вам.

Дополнительная информация

Дополнительная информация
Продукт Панельный переключатель W900B

Санкционная политика — наши внутренние правила

Эта политика является частью наших Условий использования.Используя любой из наших Сервисов, вы соглашаетесь с этой политикой и нашими Условиями использования.

Как глобальная компания, базирующаяся в США и осуществляющая деятельность в других странах, Etsy должна соблюдать экономические санкции и торговые ограничения, включая, помимо прочего, те, которые введены Управлением по контролю за иностранными активами («OFAC») Департамента США. казначейства. Это означает, что Etsy или любое другое лицо, использующее наши Сервисы, не может принимать участие в транзакциях, в которых участвуют определенные люди, места или предметы, происходящие из определенных мест, как это определено такими агентствами, как OFAC, в дополнение к торговым ограничениям, налагаемым соответствующими законами и правилами.

Эта политика распространяется на всех, кто пользуется нашими Услугами, независимо от их местонахождения. Ознакомление с этими ограничениями зависит от вас.

Например, эти ограничения обычно запрещают, но не ограничиваются транзакциями, включающими:

  1. Определенные географические области, такие как Крым, Куба, Иран, Северная Корея, Сирия, Россия, Беларусь, Донецкая Народная Республика («ДНР») и Луганская Народная Республика («ЛНР») области Украины, или любое физическое или юридическое лицо, работающее или проживающее в этих местах;
  2. Физические или юридические лица, указанные в санкционных списках, таких как Список особо обозначенных граждан (SDN) OFAC или Список иностранных лиц, уклоняющихся от санкций (FSE);
  3. Граждане Кубы, независимо от местонахождения, если не установлено гражданство или постоянное место жительства за пределами Кубы; и
  4. Предметы, происходящие из регионов, включая Кубу, Северную Корею, Иран или Крым, за исключением информационных материалов, таких как публикации, фильмы, плакаты, грампластинки, фотографии, кассеты, компакт-диски и некоторые произведения искусства.
  5. Любые товары, услуги или технологии из ДНР и ЛНР, за исключением соответствующих информационных материалов, и сельскохозяйственных товаров, таких как продукты питания для людей, семена продовольственных культур или удобрения.
  6. Ввоз в США следующих товаров российского происхождения: рыбы, морепродуктов, непромышленных алмазов и любых других товаров, время от времени определяемых министром торговли США.
  7. Вывоз из США или лицом США предметов роскоши и других предметов, которые могут быть определены США.S. Министр торговли, любому лицу, находящемуся в России или Беларуси. Список и описание «предметов роскоши» можно найти в Приложении № 5 к Части 746 Федерального реестра.
  8. Товары, происходящие из-за пределов США, на которые распространяется действие Закона США о тарифах или связанных с ним законов, запрещающих использование принудительного труда.

Чтобы защитить наше сообщество и рынок, Etsy принимает меры для обеспечения соблюдения программ санкций. Например, Etsy запрещает участникам использовать свои учетные записи в определенных географических точках.Если у нас есть основания полагать, что вы используете свою учетную запись из санкционированного места, такого как любое из мест, перечисленных выше, или иным образом нарушаете какие-либо экономические санкции или торговые ограничения, мы можем приостановить или прекратить использование вами наших Услуг. Участникам, как правило, не разрешается размещать, покупать или продавать товары, происходящие из санкционированных районов. Сюда входят предметы, которые были выпущены до введения санкций, поскольку у нас нет возможности проверить, когда они были действительно удалены из места с ограниченным доступом. Etsy оставляет за собой право запросить у продавцов дополнительную информацию, раскрыть страну происхождения товара в списке или предпринять другие шаги для выполнения обязательств по соблюдению.Мы можем отключить списки или отменить транзакции, которые представляют риск нарушения этой политики.

В дополнение к соблюдению OFAC и применимых местных законов, члены Etsy должны знать, что в других странах могут быть свои собственные торговые ограничения и что некоторые товары могут быть запрещены к экспорту или импорту в соответствии с международными законами. Вам следует ознакомиться с законами любой юрисдикции, когда в сделке участвуют международные стороны.

Наконец, члены Etsy должны знать, что сторонние платежные системы, такие как PayPal, могут независимо контролировать транзакции на предмет соблюдения санкций и могут блокировать транзакции в рамках своих собственных программ соответствия.Etsy не имеет полномочий или контроля над независимым принятием решений этими поставщиками.

Экономические санкции и торговые ограничения, применимые к использованию вами Услуг, могут быть изменены, поэтому участники должны регулярно проверять ресурсы по санкциям. Для получения юридической консультации обратитесь к квалифицированному специалисту.

Ресурсы: Министерство финансов США; Бюро промышленности и безопасности Министерства торговли США; Государственный департамент США; Европейская комиссия

Последнее обновление: 18 марта 2022 г.

K176 Full Power 500 мл x 12

описание Средство для удаления граффити Full Power с пористых поверхностей, которое удаляет аэрозольную краску с первого прохода, устраняя необходимость в агрессивных средствах против ореолов.
Full Power разрушает граффити, не растворяя его. Это предотвратит впитывание граффити в стену. Отколовшиеся чешуйки краски затем легко удаляются мойкой высокого давления, не оставляя разводов. Современная формула удаляет красители с кожи, чернила, пятна и воск, новые предпочтительные маркеры для граффити. Full Power не подходит для использования на чувствительных к растворителям поверхностях, таких как пластик и поликарбонат. Хотя Selden не может комментировать воздействие граффити на окружающую среду, это средство для удаления граффити Full Power обладает исключительно хорошими экологическими характеристиками.Не содержит ни кислот, ни щелочей.
Приложение Совместимость: Голый металл ✓ Кирпич, бетон, шлакоблок и камень ✓ Голое дерево (необработанное) ✓ Полиэтилен ✓ Полипропилен ✓ Любой другой пластик ✕ (повреждает) Поликарбонат ✕ (повреждает) Обработанная древесина, напр.

0 comments on “К176: Маршрут к176: расписание, карты и остановки

Добавить комментарий

Ваш адрес email не будет опубликован.