Диод что такое: Что такое диод — простым языком

Что такое диод перехода?

Соединительный диод — это полупроводниковый кристалл, обычно сделанный из кремния, с двумя электрическими клеммами. PN-диод является наиболее распространенным типом полупроводниковых диодов. Характеристики переходного диода обычно позволяют ему легко проводить ток в одном направлении, но не в другом. Соединительные диоды могут использоваться для преобразования переменного тока (AC) в постоянный ток (DC), измерения температуры и защиты цепей от повреждающих напряжений. Они также могут создавать и воспринимать свет, формировать логические элементы и выполнять множество других функций. Различные типы соединительных диодов используются в таких устройствах, как радиоприемники, телевизоры и CD-приводы, среди многих других электронных устройств.

При создании переходного диода его кристалл имплантируется с положительными носителями заряда p-типа, называемыми отверстиями, с одной стороны. Другая сторона имплантирована с отрицательными носителями заряда n-типа, которые являются электронами. Тонкая область между ними известна как PN-переход. Некоторые электроны блуждают через соединение, чтобы соединиться с отверстиями, и наоборот. Это создает узкую область нейтрального заряда вокруг перехода, называемую обедненным слоем.

Когда прямое напряжение смещения прикладывается к соединительному диоду, оно обычно направляет больше электронов в область n-типа. Это также заставляет больше дыр в области p-типа. По мере увеличения этого напряжения слой обеднения сужается. Это облегчает прохождение тока через соединение. Когда прямое смещение превышает определенное напряжение, ток может течь довольно легко.

Если применяется обратное, обратное напряжение смещения, можно извлечь больше дырок из области p-типа и больше электронов из области n-типа. Отверстия и электроны отводятся от соединения, расширяя слой обеднения. Это обычно затрудняет течение тока. По мере увеличения напряжения обратного смещения ток через переход замедляется почти до нуля. Оставшийся ток утечки часто очень мал, но может увеличиваться с температурой диодного перехода.

Соединительный диод имеет много применений, связанных с его способностью проводить ток только в одном направлении. Например, он может преобразовывать переменный ток в постоянный, также известный как выпрямление. Он также может отделить аудиосигнал от радиочастотного (РЧ) сигнала в радиоприемнике. В схемах управления соединительные диоды могут обеспечивать защиту от скачков напряжения, когда сильноточные устройства, такие как двигатель или катушка реле, включены или выключены. Многие типы интегральных микросхем используют диоды на каждом контакте, чтобы предотвратить чрезмерное внешнее напряжение от повреждения чипа.

Соединительные диоды могут быть очень чувствительными к свету без темного пластика, в котором они обычно заключены. Они обычно используются в качестве фотодиодов для обнаружения света и в солнечных элементах для преобразования света в электричество. Светодиод (LED) является переходным диодом, который генерирует фотоны. Светодиоды существуют в различных цветах и ​​могут излучать свет от инфракрасного до ультрафиолетового. Они часто используются в качестве индикаторов состояния в электронных устройствах. Лазерный диод генерирует свет одной длины волны, который обычно фокусируется через полированную полость в его упаковке. Лазерные диоды часто используются в высокоскоростных коммуникациях и бытовых CD / DVD приводах.

Другие применения соединительных диодов включают в себя логические элементы, матричные клавиатуры, датчики температуры и регуляторы напряжения. Соединительный диод также может действовать как конденсатор, управляемый переменным напряжением; схема настройки радио или телевидения может изменять размер обедненного слоя диода, что, в свою очередь, изменяет емкость.

ДРУГИЕ ЯЗЫКИ

виды, как работает и область применения

Диод представляет собой простой полупроводниковый прибор, который нашел широкое применение в технике. Не каждый человек знает, что такое диод, и еще меньшее количество людей точно представляет себе принцип работы изделия.

При этом существует большое количество разновидностей этого прибора, о которых стоит знать всем, кто интересуется радиоэлектроникой.

Устройство и принцип работы

Если понять, как работает диод, то разобраться в устройстве этого полупроводникового прибора будет довольно просто. Основу детали составляет токовый переход, соединенный с двумя контактами (положительным — анодом и отрицательным — катодом). При прямом включении напряжения открывается переход, сопротивление которого небольшое. В результате через изделие проходит ток, называемый прямым.

Если же при включении детали в схему изменить полярность, то сопротивление участка перехода резко возрастет, а показатель электротока будет стремиться к нулю. Такое напряжение принято называть обратным.

Современные диоды имеют принципиальное отличие от первых моделей

, активно используемых во время радиоламп. В полупроводниковых радиодеталях токовый переход изготавливается из кремния или германия и носит название р-n-переход. Основное различие между этими материалами заключается в показателях прямого напряжения, при которых происходит открытие.

Так как полупроводниковый кристалл может эффективно работать в любых условиях, то необходимость создания особой среды исчезла.

В ламповых устройствах для этого в колбу закачивался специальный газ либо создавался вакуум. В результате современные изделия имеют небольшие габариты, а стоимость их производства значительно снизилась.

Основные виды

Диоды принято классифицировать по нескольким параметрам. В зависимости от рабочих частот, они могут быть низко-, высокочастотными, а также способными функционировать в условиях сверхвысоких частот. Также существует деление и в соответствии с конструктивными особенностями, где

можно выделить следующие виды диодов:

  • Диод Шоттки — вместо привычного p-n-перехода используется металл. С одной стороны, это позволяет добиться минимальных потерь напряжения при прямом включении. Однако с другой при высоком обратном токе, изделие быстро выходит из строя.
  • Стабилитрон — позволяет стабилизировать напряжение.
  • Стабистор — отличается от стабилитрона меньшей зависимостью напряжения от тока.
  • Диод Гана — лишен p — n -перехода, вместо которого используется особый кристалл. Используется для работы в диапазоне сверхвысоких частот.
  • Варикап — представляет собой сочетание диода с конденсатором. Емкость изделия зависит от обратного напряжения в области p — n -перехода, а применяется он при создании колебательных контуров.
  • Фотодиод — попадание светового потока на токовый переход приводит к созданию в нем разности потенциалов. Если замкнуть в этот момент цепь, то в ней появится ток.
  • Светодиод — при достижении определенного показателя тока в p — n -переходе, устройство начинает излучать световой поток.

Область применения

Сфера использования этих деталей в современной радиотехнике высока. Сложно найти устройство, которое работает без этих деталей. Чтобы понять, для чего нужен диод, можно привести несколько примеров:

  • Диодные мосты — содержат от 4 до 12 полупроводниковых устройств, которые соединяются между собой. Основной задачей диодных мостов является выпрямление тока, и они активно используются, например, при создании генераторов для автомобилей.
  • Детекторы — создаются при сочетании диодов и конденсаторов. В результате появляется возможность выделить низкочастотную модуляцию из различных сигналов. Применяются при изготовлении радио- и телеприемников.
  • Защитные устройства — позволяют обезопасить электрическую схему от возможных перегрузок. Несколько изделий подключаются в обратном направлении. Когда схема работает нормально, то они остаются в закрытом положении. Как только входное напряжение достигает критических показателей, устройство активируются.
  • Переключатели — такие системы на основе этих изделий позволяют осуществлять коммутацию высокочастотных сигналов.
  • Системы искрозащиты — создание шунт-диодного барьера позволяет ограничить показатель напряжения в электроцепи. Для увеличения степени защиты вместе с полупроводниковыми деталями используются специальные токоограничивающие резисторы.

Это лишь несколько примеров использования диодов. Они являются достаточно надежными устройствами, с помощью которых можно решать большое количество задач. Чаще всего эти радиодетали выходят из строя по причине естественного старения либо из-за перегрева.

Если произошел электрический пробой изделия, то его последствия редко являются необратимыми, так как кристалл не разрушается.

Что такое полупроводниковый диод — выпрямитель переменного тока

Диодами называют двухэлектродные приборы, обладающие односторонней проводимостью электрического тока. Это их основное свойство используют, например, в выпрямителях, где диоды преобразуют переменный ток электросети в ток постоянный для питания радиоаппаратуры, в приемниках — для детектирования модулированных колебаний высокой частоты, то есть преобразования их в колебания низкой (звуковой) частоты.

Наглядной иллюстрацией этого свойства диода может быть такой опыт (рис. 12). В цепь, составленную из батареи 3336Л и лампочки от карманного фонаря (3,5 В X 0,26 А), включи любой плоскостной диод (на рис. 12 он обозначен латинской буквой V

), например, из серии Д226 или Д7, но так, чтобы анод диода, обозначаемый условно треугольником, был бы соединен непосредственно или через лампочку с положительным полюсом батареи, а катод, обозначаемый черточкой, к которой примыкает угол треугольника, с отрицательным полюсом батареи. Лампочка должна гореть.

Измени полярность включения батареи на обратную — лампочка гореть не будет. Если сопротивление диода измерять омметром, го в зависимости от того, как подключить его к зажимам прибора, омметр покажет различное сопротивление: в одном случае малое (единицы или десятки ом), в другом — очень большое (десятки и сотни килоом). Этим и подтверждается односторонняя проводимость диода.

Как устроен и работает диод? У него два электрода: катод — отрицательный и анод — положительный (рис. 13). Катодом служит пластинка германия, кремния или какого-либо другого полупроводника, обладающего электронной проводимостью, или сокращенно полупроводник n-типа

(n — начальная буква латинского слова negativus — «отрицательный»), а анодом — часть объема этой же пластинки, но- с так называемой дырочной про-водимостью, или сокращенно полупроводник р-типа — начальная буква латинского слова positivus — «положительный»).

Между электродами образуется так называемый р-n переход — пограничная зона, хорошо проводящая ток от анода к катоду и плохо в обратном направлении (за направление тока принято направление, противоположное движению электронов).

Диод может находиться в одном из двух состояний: открытом, то есть пропускном, либо закрытом, то есть непропускном. Диод бывает открыт, когда к нему приложено прямое напряжение Uпр, иначе, его анод соединен с плюсом источника напряжения, а катод — с минусом.

В этом случае сопротивление р-n перехода диода мало и через него течет прямой ток IПр, сила которого зависит от сопротивления нагрузки (в нашем опыте — лам-почка от карманного фонаря).

При другой полярности питающего напряжения на р-n переход диода прикладывается обратное напряжение Uобр. В этом случае диод закрыт, его сопротивление велико и в цепи течет лишь незначительный обратный ток диода Iобр.

О зависимости тока, проходящего через диод, от значения и полярности напряжения на его электродах лучше всего судить по вольтамперной характеристике диода, которую можно снять опытным путем (рис. 14).

К свежему элементу 332 или 343 подключи проволочный переменный резистор 7?р сопротивлением 50… 100 Ом, а между его движком и нижним (по схеме) крайним выводом включи последовательно соединенные германиевый плоскостной диод (например, серии Д7 с любым буквенным индексом), миллиамперметр РА2 и резистор Rогр сопротивлением 10…20 Ом, ограничивающий ток в цепи до 100… 150 мА.

Диод должен быть включен в пропускном направлении, то есть анодом в сторону положительного полюса элемента. Параллельно диоду подсоединены вольтметр постоянного тока PU1, включенный на предел измерений до 1 В и фиксирующий напряжение, подаваемое на электроды диода.

Движок переменного резистора, выполняющего роль делителя напряжения, поставь в крайнее нижнее (по схеме) положение а затем, внимательно следя за стрелками приборов, очень медленно перемещай его в сторону верхнего положения. Запиши показания миллиамперметра при напряжениях на диоде 0,05, 0,1, 0,15 В и т, д до напряжения 0,4…0,5 В через каждые 0,ОЗ В, а затем по этим данным построй на миллиметровой бумаге график (рис. 15).

По горизонтальной оси вправо откладывай пря-мые напряжения на диоде (Uпр), а по вертикальной оси вверх — соответствующие им прямые токи в цепи (Iпр). Соединив точки пересечения значений электрических величин, ты таким образом построишь прямую ветвь вольт-амперной характеристики диода (на рис. 15 — сплошная линия). Она, правда, не совсем точная, особенно в начальной части, так как небольшой ток течет и через вольтметр, но все же близка к реальной.

О чем может рассказать этот график? При нулевом напряжений на диоде и ток в цепи, в которую он включен, равен нулю. При появлении прямого напряжения диод открывается и пропускает через себя прямой ток.

При напряжении 0,05 В прямой ток не превышает 0,1…0,2 мА, при напряжении 0,1 В — 0,6…0,8 мА, а при напряжении 0,2…0,3 В, когда вольтамперная характеристика начинает круто идти вверх, ток достигает уже 40…50 мА. Небольшой прирост напряжения, а как резко увеличивается ток!

Но значительно повышать напряжение на диоде и тем самым увеличивать ток через него нельзя: из-за чрезмерно большого тока наступает тепловой пробой, и~диод утрачивает свойство односторонней проводимости. Чтобы не случилось этого во время опыта, в цепь был включен ограничивающий резистор R0гр.

Теперь измени полярность включения диода на обратную и точно так же увеличивай напряжение на нем. Что показывает миллиамперметр? Его стрелка стоит возле нулевой отметки. Замени элемент на батарею 3336Л, соедини последовательно две-три таких батареи. Напряжение на диоде растет. Но оно обратное. Диод закрыт, поэтому и тока в цепи практически нет.

Обратная ветвь вольтамперной характеристики на £ис. 15 изображена штриховой линией. Она идет почти параллельно оси Uобр. Но при каком-то достаточно большом обратном напряжении она круто поворачивает и идет вниз. Это предел, при котором диод пробивается обратным напряжением и, как при тепловом пробое, выходит из строя.

Из построенной вольтамперной характеристики видно, что ток Iпр диода в сотни и тысячи раз больше тока Iобр. Так, например, у диода, имеющего такую вольтам-перную характеристику, при прямом напряжении 0,3 В ток IПр равен примерно 70 мА, а при обратном напряжении в 100 В ток Iобр не превышает 200 мкА. Именно по этой причине во второй части первого опыта лампочка не горела.

Если пренебречь малым обратным током (что и делают на практике), который у исправных плоскостных дио-дов не превышает десятые доли миллиампера, а у точечных еще меньше, то можно считать, что диод является односторонним проводником тока.

Вольтамперную характеристику, подобную той, что изображена на рис. 15, имеет и кремниевый диод, например, серии Д226, но прямая ветвь его характеристики как бы сдвинута вправо. Объясняется это тем, что кремниевый диод открывается при прямом напряжении около 0,5 В, а не при 0,1…0,15 В, как германиевый. При меньшем напряжении на нем диод закрыт-и ток через него практически не течет. Проверь это опытным путем.

Но помни — диод, будь он германиевым или кремниевым, плоскостным или точечным, нельзя включать в прямом направлении без нагрузки: он быстро выйдет из строя из-за недопустимо большого тока, который будет течь через него.

А если диод включить в цепь переменного тока? Он будет работать как выпрямитель, что может подтвердить следующий опыт.

Прежде чем начать этот опыт, хочется напомнить тебе, что электроосветительная сеть, с которой тебе придется иметь дело, таит в себе скрытые опасности. Пренебрежительное отношение к ним может обернуться тяжелыми последствиями.

Как предотвратить неприятности, которые может причинить электросеть? Прежде всего не надо забывать, что она находится под высоким, опасным для тебя напряжением. Никогда не касайся рукой или инструментом оголенных проводов и контактных гнезд штепсельной розетки.

А если потребуется изолировать поврежденный участок провода или подтянуть винты в штепсельной розетке, попроси старших или сам осторожно выверни плавкие предохранители («пробки») на распределительном щите, чтобы обесточить сеть. Только после этого устраняй дефекты или неисправности.

Прежде чем вставить в штепсельную розетку вилку электропаяльника или трансформатора, необходимого для питания от сети приемника или другого радиотехнического устройства, внимательно осмотри их — нет ли оголенных участков, замкнутых проводов, ослабленных или разболтанных контактов. Если все в порядке — включай, но опять-таки осторожно, не касаясь штырьков вилки.

Рекомендуем обзавестись переносной распределительной колодкой с несколькими штепсельными розетками и через нее подключать приборы к сети. Продолжим опыты с диодом (рис. 16).

В цепь вторичной (II) обмотки трансформатора Т, понижающего напряжение электроосветительной сети до 3…5 В, включи диод Д226 или Д7 с любым буквенным индексом или какой-либо аналогичный им плоскостной диод, а последовательно с ним — лампочку от карманного фонаря. Подключи первичную (I) обмотку трансформатора к сети (через плавкий предохранитель F на ток 0,25 А).

Если лампочка горит со значительным перекалом нити, то .включи в цепь резистор, ограничивающий ток в ней до 0,2…0,3 А. Сопротивление этого резистора рассчитай по закону Ома.

Как узнать, какой ток течет через нить накала лампочки — переменный или постоянный? Это можно сделать с помощью вольтметра постоянного тока. Подключи вольтметр параллельно лампочке (на рис. 16 — PU1), но так, чтобы его плюсовой щуп был соединен с проводником, идущим к катоду диода. Прибор покажет какое-то напряжение. Если же прибор подключить к лампочке в другой полярности, его стрелка отклонится в обратную сторону. Уже этот опыт подтверждает, что через лампочку течет ток одного направления, то есть постоянный.

О роде тока можно также судить по его магнитному полю. На катушку из-под ниток намотай 300…350 витков провода диаметром 0,2…0,3 мм в эмалевой, шелковой или бумажной изоляции (ПЭВ, ПЭЛ, ПЭЛШО 0,2…0,3), сделав отвод от 120…150-го витка (отвод нужен будет для опытов на пятом практикуме). У тебя получится катушка индуктивности (рис. 17,а) с каркасом из древесины.

Включи ее в цепь вторичной обмотки того же понижающего трансформатора (на рис. 17,6 — катушка L) последовательно с диодом и лампочкой накаливания. Как и в предыдущем опыте, лампочка должна гореть.

Поднеси к катушке магнитную чстрелку (компас) — она сразу же расположится вдоль оси катушки, указывая на ее магнитные полюсы. Значит, через катушку течет постоянный ток, иначе магнитная стрелка оставалась бы сориентированной на магнитные полюсы Земли.

Поменяй местами включение выводов диода — магнитная стрелка тут же повернется на 180°. Следовательно, при изменении полярности включения диода ток в цепи, в которую он включен, тоже изменяет свое направление.

Что же произошло во внешней цепи вторичной обмотки трансформатора при включении в нее диода? Хорошо пропуская ток одного направления, диод тем самым выпрямляет переменный ток.

В результате ток в цепи стал пульсирующим (см. график на рис. 16) — постоянным по направлению, но изменяющимся по величине с частотой переменного тока. Постоянным, но также пульсирующим, стало и его магнитное поле. Изменив включение диода, ты тем самым изменил направление тока в катушке и расположение ее магнитных полюсов.

Какова в этом опыте роль лампочки? Она, во-первых, служит индикатором включения питания, а во-вторых, ограничивает ток во внешней цепи, оберегая диод от перегрузки.

Если есть радиоприемник, включи его. Независимо от настройки в моменты отключения катушки из цепи вторичной обмотки трансформатора в громкоговорителе приемника раздается характерный треск. Его создают электромагнитные колебания, возбуждаемые слабой электрической искрой, возникающей в цепи с катушкой % момент выключения тока.

Оставь в цепи вторичной обмотки трансформатора только диод и лампочку (как на рис. 16). Лампочка продолжает гореть. Измерь вольтметром переменного тока (на рис. 16 — вольтметр PU2) напряжение на обмотке, а вольтметром постоянного тока PU1 — напряжение на лампочке. На лампочке напряжение почти наполовину меньше, чем на обмотке.

Преобразование переменного тока диодом происходит следующим образом. Во вторичной обмотке трансформатора индуцируется переменное напряжение с частотой 50 Гц. При положительных полупериодах на ее верхнем выводе (на рис. 16 показано знаком «+»)диод открывается. В эти моменты времени через диод и его нагрузку (лампочку) течет прямой ток диода Iпр.

При отрицательных полупериодах на аноде диод закрывается, и в цепи течет лишь незначительный обратный ток Iобр. Диод как бы отсекает большую часть отрицательных полуволн переменного тока (на графике рис. 16 показано штриховыми линиями), в результате через нагрузку выпрямителя течет пульсирующий ток — ток одного направления, но изменяющийся по силе с частотой 50 Гц. График такого тока можно увидеть только на экране осциллографа.

Проводник, соединенный с катодом диода, является выводом положительного полюса выпрямителя, а свободный конец вторичной обмотки трансформатора — выводом отрицательного полюса выпрямителя.

Получился простейший выпрямитель переменного тока, нагрузкой которого служит лампочка накаливания. А постоянное напряжение на нагрузке меньше напряжения переменного тока на вторичной обмотке, потому что ток через нее идет полуволнами.

В связи с тем что во внешнем участке цепи выпрямителя (в нашем опыте — лампочке) ток течет в основном только при положительных полупериодах напряжения на аноде диода, выпрямитель называют однополу-Периодным.

Такой выпрямитель может найти практическое применение, например, для питания микроэлектродвигателя постоянного тока, для зарядки малогабаритных аккумуляторов (типа Д~0,06, Д-0,2). Попробуй в порядке эксперимента подключить к нему (одноименными полюсами) полностью разрядившуюся батарею 3336Л. Через 30…40 мин отключи батарею от выпрямителя и подключи к ней лампочку от карманного фонаря. Лампочка будет гореть, но недолго: электрический заряд, принятый батареей, быстро израсходуется.

Еще один опыт с однополупериодным выпрямителем. Подключи к выходу выпрямителя, нагруженному лампочкой, головные телефоны (на рис. 18 — В). В телефонах услышишь звук низкого тона, соответствующий частоте пульсаций выпрямленного тока (50 Гц).

Его называют фоном переменного тока. Затем, не отключая телефоны, подключи к выходу выпрямителя конденсатор емкостью 5…10 мкФ (на рис. 18™ конденсатор С).

Если этот конденсатор электролитический, его положительная обкладка-должна быть соединена с плюсом, а отрицательная — с минусом выпрямителя. Лампочка при этом будет гореть чуть ярче, потому что напряжение на выходе выпрямителя увеличилось (проверь вольтметром), а уровень фона станет меньше. Тональность же прослушиваемого звука в телефонах остается прежней.

Какова в этом опыте роль конденсатора? В моменты времени, когда диод открыт, конденсатор заряжается до максимального (амплитудного) значения импульсов выпрямленного напряжения, а когда диод закрыт, то -разряжается через нагрузку выпрямителя.

Происходит «сглаживание» пульсаций выпрямленного напряжения, в результате среднее значение тока во внешней цепи несколько возрастает, а фон переменного тока снижается.

Увеличение емкости конденсатора улучшает сглаживание пульсаций выпрямленного тока, и фон ослабевает. Но при однополупериодном выпрямителе полезно используется только один полупериод переменного тока. Чтобы при том же понижающем трансформаторе использовать оба полупериода переменного тока, в выпрямителе должны работать два или четыре однотипных диода.

Проведи опыт с выпрямителем на четырех диодах, включенных по так называемой мостовой схеме. Диоды могут быть серий Д226, Д7 с любым буквенным индексом. Соедини их между собой и подключи к вторичной обмотке того же понижающего трансформатора точно по схеме, показанной на рис. 19.

Если полярность или последовательность включения диодов будет неправильна, опыт не удастся, а некоторые из диодов могут испортиться. Диоды, включенные таким способом, образуют выпрямительный мост, а каждый из диодов — плечо моста. Между точками А и Б включи лампочку Я от карманного фонаря, а последовательно с ней — резистор Rorp, ограничивающий ток & этой диагонали моста до 0,25…0,3 А.

Включи питание. Горит лампочка? Должна гореть. Измерь вольтметром переменного тока напряжение на вторичной обмотке трансформатора, а вольтметром постоянного тока — между точками А и Б, являющимися выходными контактами выпрямителя. По сравнению с однополупериоднвтм выпрямителем выходное напряжение увеличилось почти вдвое.

В таком выпрямителе в течение каждого полупериода переменного напряжения работают поочередно два диода противоположных плеч, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Когда на верхнем (по схеме) выводе вторичной обмотки трансформатора Т положительный полупериод, ток пойдет через диод VI, нагрузку Н, резистор Rorp и диод V3 к нижнему выводу вторичной обмотки. Диоды VI и V4 в это время закрыты. В течение другого полупериода переменного напряжения ток в нагрузке выпрямителя идет в том же направлении, а в самом выпрямителе — через открытые в это время диоды V4 и VI.

Таким образом, здесь используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными. Напряжение постоянного тока на их выходе равно примерно переменному напряжению, действующему во всей вторичной обмотке трансформатора,

Литература:  Борисов В. Г. Практикум начинающего радиолюбителя.2-е изд., перераб. и доп. 1984.

Дио дом. Полупроводниковый диод. Прямое и обратное напряжение

Что такое диод? Это элемент, получивший различную проводимость. Она зависит от того, как именно течет электрический ток. Применение устройства зависит от цепи, которой нужно ограничение следования данного элемента. В этой статье мы расскажем об устройстве диода, а также о том, какие виды существуют. Рассмотрим схему и то, где применяются эти элементы.

История появления

Так вышло, что работать над созданием диодов стало сразу два ученых: британец и немец. Следует заметить, что их открытия немного отличались. Первый основал изобретение на ламповых триодах, а второй — на твердотельных.

К сожалению, в то время наука не смогла сделать прорыв в этой сфере, однако для размышлений было дано очень много поводов.

Через несколько лет снова были открыты диоды (формально). Томас Эдисон запатентовал это изобретение. К сожалению, во всех своих работах при жизни это ему не пригодилось. Поэтому подобную технологию развивали другие ученые в разные годы. До начала XX века эти изобретения были названы выпрямителями. И только спустя время Вильям Иклз использовал два слова: di и odos. Первое слово переводится как два, а второе — путь. Язык, на котором было дано название, является греческим. И если переводить выражение полностью, то «диод» означает «два пути».

Принцип работы и основные сведения о диодах

Диод в своем строении имеет электроды. Речь идет об аноде и катоде. Если первый имеет положительный потенциал, то диод называется открытым. Таким образом, сопротивление становится маленьким, а ток проходит. Если же потенциал положительный имеется у катода, то диод не раскрыт. Он не пропускает электрический ток и имеет большой показатель сопротивления.

Как устроен диод

В принципе, что такое диод, мы разобрались. Теперь нужно понять, как он устроен.

Корпус зачастую изготавливается из стекла, металла или же керамики. Чаще всего вместо последней используются определенные соединения. Под корпусом можно заметить два электрода. Наиболее простой будет иметь нить небольшого диаметра.

Внутри катода располагается проволока. Она считается подогревателем, так как имеет в своих функциях подогрев, который совершается по законам физики. Нагревается диод за счет работы электрического тока.

При изготовлении также используется кремний или германий. Одна сторона прибора имеет нехватку электродов, вторая — их переизбыток. За счет этого создаются специальные границы, которые обеспечивает переход типа p-n. Благодаря ему ток проводится в том направлении, в котором это необходимо.

Характеристики диодов

Диод на схеме уже показан, теперь следует узнать, на что нужно обращать внимание при покупке устройства.

Как правило, покупатели ориентируются только по двум нюансам. Речь идет о максимальной силе тока, а также обратном напряжении на максимальных показателях.

Использование диодов в быту

Довольно часто диоды используют в автомобильных генераторах. То, какой диод выбрать, следует решать самому. Нужно заметить, что в машинах используются комплексы из нескольких приборов, которые признаны называться диодным мостом. Нередко подобные устройства встраиваются в телевизоры и в приемники. Если использовать их вместе с конденсаторами, то можно добиться выделения частот и сигналов.

Для того чтобы защитить потребителя от электрического тока, нередко в устройства встраивается комплекс из диодов. Такая система защиты считается довольно действенной. Также нужно сказать, что блок питания чаще всего у любых приборов использует такое устройство. Таким образом, светодиодные диоды сейчас довольно распространены.

Виды диодов

Рассмотрев, что такое диод, необходимо подчеркнуть, какие виды существуют. Как правило, приборы делятся на две группы. Первой считается полупроводниковая, а вторая не полупроводниковой.

На данный момент популярной является первая группа. Название связано с материалами, из которых такое устройство изготовлено: либо из двух полупроводников, либо из обычного металла с полупроводником.

На данный момент разработан ряд особых видов диодов, которые используются в уникальных схемах и приборах.

Диод Зенера, или стабилитрон

Этот вид используется в стабилизации напряжения. Дело в том, что такой диод при возникновении пробоя резко увеличивает ток, при этом точность максимально большая. Соответственно, характеристики диода такого типа довольно удивительны.

Туннельный

Если простыми словами объяснить, что это за диод, то следует сказать, что этот вид создает отрицательный тип сопротивления на вольт-амперных характеристиках. Зачастую такое приспособление используется в генераторах и усилителях.

Обращенный диод

Если говорить о данном типе диодов, то это устройство может изменять напряжение в минимальную сторону, работая в открытом режиме. Это устройство является аналогом диода тоннельного типа. Хоть и работает оно немного по другому признаку, но основано оно именно на вышеописанном эффекте.

Варикап

Данное устройство является полупроводниковым. Оно характеризуется тем, что имеет повышенную емкость, которой можно управлять. Зависит это от показателей обратного напряжения. Нередко такой диод применяется при настройке и калибровке контуров колебательного типа.

Светодиод

Данный тип диода излучает свет, но только в том случае, если ток течет в прямом направлении. Чаще всего именно это устройство используется везде, где следует создать освещение при минимальных затратах электроэнергии.

Фотодиод

Данное устройство имеет полностью обратные характеристики, если говорить о предыдущем описанном варианте. Таким образом, он вырабатывает заряды, только если на него попадает свет.

Маркировка

Нужно заметить, что особенностью всех устройств является то, что на каждом из элементов имеется специальное обозначение. Благодаря им, можно узнать характеристику диода, если он относится к полупроводниковому типу. Корпус состоит из четырех составных частей. Теперь следует рассмотреть маркировку.

На первом месте всегда будет стоять буква или цифра, которая говорит о материале, из которого изготовлен диод. Таким образом, параметры диода будет узнать несложно. Если указана буква Г, К, А или И, то это означает германий, кремний, арсенид галлия и индий. Иногда вместо них могут указываться цифры от 1 до 4 соответственно.

На втором месте будет указываться тип. Он также имеет разные значения и свои характеристики. Могут быть выпрямительные блоки (Ц), варикапы (В), туннельные (И) и стабилитроны (С), выпрямители (Д), сверхвысокочастотные (А).

Предпоследнее место занимает цифра, которая будет указывать на область, в которой применяется диод.

На четвертом месте будет установлено число от 01 до 99. Оно будет указывать на номер разработки. Помимо этого, на корпус производитель может наносить различные обозначения. Однако, как правило, их используют только на устройствах, создаваемых для определенных схем.

Для удобства диоды могут маркироваться графическими изображениями. Речь идет о точках, полосках. Логики в данных рисунках нет никакой. Поэтому для того, чтобы понять, что имел в виду производитель, придется ознакомиться с инструкцией.

Триоды

Этот вид электродов является аналогом диода. Что такое триод? Он немного по комплексу своему похож на описываемые выше устройства, однако имеет другие функции и конструкцию. Основное различие между диодом и триодом будет заключаться в том, что у него есть три вывода, и чаще всего его самого называют транзистором.

Принцип работы рассчитана на то, что, используя небольшой сигнал, будет выводиться ток в цепь. Диоды и транзисторы используются практически в каждом устройстве, которое имеет электронный тип. Речь идет также и о процессорах.

Плюсы и минусы

Лазерный диод, как и любой другой, имеет преимущества и недостатки. Для того чтобы подчеркнуть достоинства данных устройств, необходимо их конкретизировать. Помимо этого, составим и небольшой список минусов.

Из плюсов следует отметить небольшую стоимость диодов, отличный ресурс работы, высокий показатель службы эксплуатации, еще можно использовать данные устройства при работе с переменным током. Также нужно отметить небольшие размеры, которые позволяют размещать устройства на любой схеме.

Что касается минусов, то нужно выделить, что не существует на данный момент устройств полупроводникового типа, которые можно использовать в приборах с высоким напряжением. Именно поэтому придется встраивать старые аналоги. Также нужно заметить, что на диоды очень пагубно сказываются высокая температура. Она сокращает срок эксплуатации.

Первые экземпляры имели совершенно небольшую точность. Именно поэтому характеристики устройств были довольно плохими. Лампы-диоды приходилось распаковывать. Что же это означает? Некоторые устройства могли получать совершенно разные свойства, даже изготовленные в одной партии. После отсева негодных приспособлений элементы проходили маркировку, в которой описывались их реальные характеристики.

Все диоды, которые изготовлены из стекла, получили особенность: они чувствительны к свету. Таким образом, если прибор может открываться, то есть имеет крышку, то вся схема будет работать совершенно по-разному, в зависимости от того, открыто пространство для света или закрыто.

Все мы прекрасно знаем что такое полупроводниковый диод, но мало кто из нас знает о принципе работы диода, сегодня специально для новичков я поясню принцип его работы. Диод как известно одной стороной хорошо пропускает ток, а в обратном направлении — очень плохо. У диода есть два вывода — анод и катод. Ни один электронный прибор не обходится без применения диодов. Диод используют для выпрямлении переменного тока, при помощи диодного моста который состоит из четырех диодов, можно превратить переменной ток в постоянный, или с использованием шести диодов превратить трехфазовое напряжение в однофазовое, диоды применяются в разнообразных блоках питания, в аудио — видео устройствах, практически повсюду. Тут можно посмотреть фотографии некоторых .

На выходе диода можно заметить спад начального уровня напряжения на 0,5-0,7 вольт. Для более низковольтных устройств по питанию используют диод шоттки, на таком диоде наблюдается наименьший спад напряжения — около 0,1В. В основном диоды шоттки используют в радио передающих и приемных устройствах и в других устройствах работающих в основном на высокой частоте. Принцип работы диода с первого взгляда достаточно простой: диод — полупроводниковый прибор с односторонней проводимостью электрического тока.

Вывод диода подключенный к положительному полюсу источника питания называют анодом, к отрицательному — катодом. Кристалл диода в основном делают из германия или кремния одна область которого обладает электропроводимостью п — типа, то есть дырочная, которая содержит искуственно созданный недостаток электронов, друггая — проводимости н — типа, то есть содержит избыток электронов, границу между ними называют п — н переходом, п — в латыни первая буква слова позитив, н — первая буква в слове негатив. Если к аноду диода подать положительное напряжение, а к катоду отрицательное — то диод будет пропускать ток, это называют прямым включением, в таком положении диод открыт, если подать обратное — диод ток пропускать не будет, в таком положении диод закрыт, это называют обратным подключением.

Обратное сопротивление диода очень большое и в схемах его принимают ка диэлектрик (изолятор). Продемонстрировать работу полупроводникового диода можно собрать простую схему которая состоит из источника питания, нагрузки (например лампа накаливания или маломощный электрический двигатель) и самого полупроводного диода. Последовательно подключаем все компоненты схемы, на анод диода подаем плюс от источника питания, последовательно диоду, то есть к катоду диода подключаем один конец лампочки, другой конец той же лампы подключаем к минусу источника питания. Мы наблюдаем за свечением лампы, теперь перевернем диод, лампа уже не будет светится поскольку диод подключен обратно, переход закрыт. Надеюсь каким то образом это вам поможет в дальнейшем, новички — А. Касьян (АКА).

В самом начале радиотехники первым активным элементом была электронная лампа. Но уже в двадцатые годы прошлого века появились первые приборы доступные для повторения радиолюбителями и ставшие очень популярными. Это детекторные приёмники. Более того они выпускались в промышленном масштабе, стоили недорого и обеспечивали приём двух-трёх отечественных радиостанций работавших в диапазонах средних и длинных волн.

Именно в детекторных приёмниках впервые стал использоваться простейший полупроводниковый прибор, называемый вначале детектором и лишь позже получивший современное название – диод.

Диод это прибор, состоящий всего из двух слоёв полупроводника. Это слой “p”- позитив и слой “n”- негатив. На границе двух слоёв полупроводника образуется “p-n ” переход. Анодом является область “p”, а катодом зона “n”. Любой диод способен проводить ток только от анода к катоду. На принципиальных схемах он обозначается так.

Как работает полупроводниковый диод.

В полупроводнике “n” типа имеются свободные электроны, частицы со знаком минус, а в полупроводнике типа “p” наличествуют ионы с положительным зарядом, их принято называть «дырки». Подключим диод к источнику питания в обратном включении, то есть на анод подадим минус, а на катод плюс. Между зарядами разной полярности возникает притяжение и положительно заряженные ионы тянутся к минусу, а отрицательные электроны дрейфуют к плюсу источника питания. В “p-n” переходе нет носителей зарядов, и отсутствует движение электронов. Нет движения электронов – нет электрического тока. Диод закрыт.

При прямом включении диода происходит обратный процесс. В результате отталкивания однополярных зарядов все носители группируются в зоне перехода между двумя полупроводниковыми структурами. Между частицами возникает электрическое поле перехода и рекомбинация электронов и дырок. Через “p-n” переход начинает протекать электрический ток. Сам процесс носит название «электронно-дырочная проводимость». При этом диод открыт.

Возникает вполне естественный вопрос, как из одного полупроводникового материала удаётся получить структуры, обладающие различными свойствами, то есть полупроводник “n” типа и полупроводник “p” типа. Этого удаётся добиться с помощью электрохимического процесса называемого легированием, то есть внесением в полупроводник примесей других металлов, которые и обеспечивают нужный тип проводимости. В электронике используются в основном три полупроводника. Это германий (Ge) , кремний (Si) и арсенид галлия (GaAs) . Наибольшее распространение получил, конечно, кремний, так как запасы его в земной коре поистине огромны, поэтому стоимость полупроводниковых приборов на основе кремния весьма невысока.

При добавлении в расплав кремния ничтожно малого количества мышьяка (As ) мы получаем полупроводник “n ” типа, а легируя кремний редкоземельным элементом индием (In ), мы получаем полупроводник “p ” типа. Присадок для легирования полупроводниковых материалов достаточно много. Например, внедрение атомов золота в структуру полупроводника увеличивает быстродействие диодов, транзисторов и интегральных схем, а добавление небольшого числа различных примесей в кристалл арсенида галлия определяет цвет свечения светодиода.

Типы диодов и область их применения.

Семейство полупроводниковых диодов очень большое. Внешне они очень похожи за исключением некоторых групп, которые отличаются конструктивно и по ряду параметров. Наиболее распространены следующие модификации полупроводниковых диодов:

Также стоит отметить, что у каждого типа диодов есть и подгруппы. Так, например, среди выпрямительных есть и ультрабыстрые диоды. Могут называться как Ultra-Fast Rectifier , HyperFast Rectifier и т.п. Пример – ультрабыстрый диод с малым падением напряжения STTH6003TV/CW (аналог VS-60CPH03 ). Это узкоспециализированный диод, который применяется, например, в сварочных аппаратах инверторного типа . Диоды Шоттки являются быстродействующими, но не способны выдерживать больших обратных напряжений, поэтому вместо них применяются ультрабыстрые выпрямительные диоды, которые способны выдерживать большие обратные напряжения и огромные прямые токи. При этом их быстродействие сравнимо с быстродействием диодов Шоттки.

Параметры полупроводниковых диодов.

Параметров у полупроводниковых диодов достаточно много и они определяются функцией, которую те выполняют в конкретном устройстве. Например, в диодах, генерирующих СВЧ колебания, очень важным параметром является рабочая частота, а также та граничная частота, на которой происходит срыв генерации. А вот для выпрямительных диодов этот параметр совершенно не важен.

В импульсных и переключающих диодах важна скорость переключения и время восстановления, то есть скорость полного открытия и полного закрытия. В мощных силовых диодах важна рассеиваемая мощность. Для этого их монтируют на специальные радиаторы. А вот диоды, работающие в слаботочных устройствах, ни в каких радиаторах не нуждаются.

Но есть параметры, которые считаются важными для всех типов диодов, перечислим их:

    U пр. – допустимое напряжение на диоде при протекании через него тока в прямом направлении. Превышать это напряжение не стоит, так как это приведёт к его порче.

    U обр. – допустимое напряжение на диоде в закрытом состоянии. Его ещё называют напряжением пробоя. В закрытом состоянии, когда через p-n переход не протекает ток, на выводах образуется обратное напряжение. Если оно превысит допустимое значение, то это приведёт к физическому «пробою» p-n перехода. В результате диод превратиться в обычный проводник (сгорит).

    Очень чувствительны к превышению обратного напряжения диоды Шоттки, которые очень часто выходят из строя по этой причине. Обычные диоды, например, выпрямительные кремниевые более устойчивы к превышению обратного напряжения. При незначительном его превышении они переходят в режим обратимого пробоя . Если кристалл диода не успевает перегреться из-за чрезмерного выделения тепла, то изделие может работать ещё долгое время.

    I пр. – прямой ток диода. Это очень важный параметр, который стоит учитывать при замене диодов аналогами или при конструировании самодельных устройств. Величина прямого тока для разных модификаций может достигать величин десятков и сотен ампер. Особо мощные диоды устанавливают на радиатор для отвода тепла, который образуется из-за теплового действия тока. P-N переход в прямом включении также обладает небольшим сопротивлением. На небольших рабочих токах его действие не заметно, но вот при токах в единицы-десятки ампер кристалл диода ощутимо нагревается. Так, например, выпрямительный диодный мост в сварочном инверторном аппарате обязательно устанавливают на радиатор.

    I обр. – обратный ток диода. Обратный ток – это так называемый ток неосновных носителей. Он образуется, когда диод закрыт. Величина обратного тока очень мала и его в подавляющем числе случаев не учитывают.

    U стаб. – напряжение стабилизации (для стабилитронов). Подробнее об этом параметре читайте в статье про стабилитрон .

Кроме того следует иметь в виду, что все эти параметры в технической литературе печатаются и со значком “max ”. Здесь указывается предельно допустимое значение данного параметра. Поэтому подбирая тип диода для вашей конструкции необходимо рассчитывать именно на максимально допустимые величины.

Содержание:

Стандартная конструкция полупроводникового диода выполнена в виде полупроводникового прибора. В нем имеется два вывода и один выпрямляющий электрический переход. В работе прибора использованы различные свойства, связанные с электрическими переходами. Вся система соединена в едином корпусе из пластмассы, стекла, металла или керамики. Часть кристалла с более высокой концентрацией примесей носит название эмиттера, а область, имеющая низкую концентрацию, называется базой. Маркировка диодов и схема обозначений применяются в соответствии с их индивидуальными свойствами, конструктивными особенностями и техническими характеристиками.

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

В соответствии с технологическими признаками и конструкциями, диоды различаются как плоскостные или точечные, импульсные, универсальные или выпрямительные. Среди них следует отметить отдельную группу, куда входят , и . Все перечисленные признаки дают возможность определить диод по внешнему виду.

Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Обозначения и цветовая маркировка диодов

Современные обозначения диодов соответствуют новым стандартам. Они разделяются на группы, в зависимости от предельной частоты, при которой происходит усиление передачи тока. Поэтому, диоды бывают низкой, средней, высокой и сверхвысокой частоты. Кроме того, у них различная рассеиваемая мощность: малая, средняя и большая.

Маркировка диодов представляет собой краткое условное обозначение элемента в графическом исполнении с учетом параметров и технических особенностей проводника. Материал, из которого изготовлен полупроводник, имеет обозначение на корпусе соответствующими буквенными символами. Эти обозначения проставляются вместе с назначением, типом, электрическими свойствами прибора и его условным обозначением. Это помогает, в дальнейшем, правильно подключить диод в электронную схему устройства.

Выводы анода и катода обозначаются стрелкой или знаками плюс или минус. Цветовые коды и метки в виде точек или полосок, наносятся возле анода. Все обозначения и цветовая маркировка позволяют быстро определить тип устройства и правильно использовать его в различных схемах. Подробная расшифровка данной символики приводится в справочных таблицах, которые широко используются специалистами в области электроники.

Маркировка импортных диодов

В настоящее время широко используются -диоды зарубежного производства. Конструкция элементов выполнена в виде платы, на поверхности которой закреплен чип. Слишком маленькие размеры изделия не позволяют нанести на него маркировку. На более крупных элементах обозначения присутствуют в полном или сокращенном варианте.

В электронике SMD-диоды составляют около 80% всех используемых изделий этого типа. Такое разнообразие деталей заставляет внимательнее относиться к обозначениям. Иногда они могут не совпадать с заявленными техническими характеристиками, поэтому желательно провести дополнительную проверку сомнительных элементов, если они планируются к использованию в сложных и точных схемах. Следует учитывать, что маркировка диодов этого типа может быть разной на совершенно одинаковых корпусах. Иногда присутствует только буквенная символика, без каких-либо цифр. В связи с этим рекомендуется использовать таблицы с типоразмерами диодов от разных производителей.

Для SMD-диодов чаще всего используется тип корпуса SOD123. На один из торцов может наноситься цветная полоса или тиснение, что означает катод с отрицательной полярностью для открытия р-п-перехода. Единственная надпись соответствует обозначению корпуса.

Тип корпуса не играет решающей роли при использовании диода. Одной из основных характеристик является рассеивание некоторого количества тепла с поверхности элемента. Кроме того, учитываются значения рабочего и обратного напряжения, величина максимально допустимого тока через р-п-переход, мощность рассеивания и другие параметры. Все эти данные указаны в справочниках, а маркировка лишь ускоряет поиск нужного элемента.

По внешнему виду корпуса не всегда удается определить производителя. Для поиска нужного изделия существуют специальные поисковики, в которые нужно ввести цифры и буквы в определенной последовательности. В некоторых случаях диодные сборки вообще не несут какой-либо информации, поэтому в таких случаях сможет помочь только справочник. Подобные упрощения, делающие обозначение диода очень коротким, объясняются крайне ограниченным пространством для нанесения маркировки. При использовании трафаретной или лазерной печати удается разместить 8 символов на 4 мм2.

Стоит учесть и тот факт, что одним и тем же буквенно-цифровым кодом могут обозначаться совершенно разные элементы. В таких случаях анализируется вся электрическая схема.

Иногда в маркировке указывается дата выпуска и номер партии. Подобные отметки наносятся для возможности отслеживания более современных модификаций изделий. Выпускается соответствующая корректирующая документация с номером и датой. Это позволяет более точно установить технические характеристики элементов при сборке наиболее ответственных схем. Применяя старые детали для новых чертежей, можно не получить ожидаемого результата, готовое изделие в большинстве случаев просто отказывается работать.

Маркировка диодов анод катод

Каждый диод, как и резистор, оборудован двумя выводами — анодом и катодом. Эти названия не следует путать с плюсом и минусом, которые означают совершенно другие параметры.

Тем не менее, очень часто требуется определить точное соответствие каждого диодного вывода. Существует два способа определения анода и катода:

  • Катод маркируется полоской, которая заметно отличается от общего цвета корпуса.
  • Второй вариант предполагает проверку диода мультиметром. В результате, не только устанавливается местонахождение анода и катода, но и проверяется работоспособность всего элемента.

Диод [База знаний]

Что такое диод? Виды диодов

Теория

КОМПОНЕНТЫ
ARDUINO
RASPBERRY
ИНТЕРФЕЙСЫ ПЕРЕДАЧИ ДАННЫХ

Диод — электронный элемент, обладающий различной проводимостью в зависимости от направления электрического тока. У него есть 2 полюса: анод и катод. Ток пропускается только от анода (+) к катоду (-).

Электроды диода носят названия анод и катод. Если к диоду приложено прямое напряжение (то есть анод имеет положительный потенциал относительно катода), то диод открыт (через диод течёт прямой ток, диод имеет малое сопротивление). Напротив, если к диоду приложено обратное напряжение (катод имеет положительный потенциал относительно анода), то диод закрыт (сопротивление диода велико, обратный ток мал, и может считаться равным нулю во многих случаях).

Диоды бывают электровакуумные, газоразрядные и самые распространённые – полупроводниковые. Свойства диодов, чаще всего в связках между собой, используются для преобразования переменного тока электросети в постоянный ток, для нужд полупроводниковых и других приборов.

 


Конструкция диодов

Конструктивно, полупроводниковый диод состоит из небольшой пластинки полупроводниковых материалов (кремния/германия), одна сторона (часть пластинки) которой обладает электропроводимостью p-типа, то есть принимающей электроны (содержащей искусственно созданный недостаток электронов, «дырочная»), другая обладает электропроводимостью n-типа, то есть отдающей электроны (содержащей избыток электронов, «электронной»).

Слой между ними называется p-n переходом. Здесь буквы p и n — первые в латинских словах negative — «отрицательный», и positive — «положительный». Сторона p-типа, у полупроводникового прибора является анодом (положительным электродом), а область n-типакатодом (отрицательным электродом) диода.


Основные характеристики

Падение напряжения VF Вольт
Максимальное сдерживаемое обратное напряжение VDC Вольт
Максимальный прямой ток IF Ампер

Вольт-амперная характеристика

После того, как напряжение в прямом направлении превысит небольшой порог VF диод открывается и начинает практически беспрепятственно пропускать ток, который создаётся оставшимся напряжением.

Если напряжение подаётся в обратном направлении, диод сдерживает ток вплоть до некоторго большого напряжения VDC после чего пробивается и работает также, как в прямом направлении.


Основные виды диодов

Выпрямительный диод

Также известен как защитный, кремниевый

  • VF = 0,7 В
  • VDC — сотни или тысячи вольт
  • Открывается медленно
  • Восстанавливается после пробоя обратным током

 

Диод Шоттки

Шоттки — фамилия его изобретателя. Также известен как сигнальный, германиевый.

  • VF = 0,3 В
  • VDC — десятки вольт
  • Открывается быстро
  • Сгорает после пробоя обратным током

 

Диод Зеннера (Стабилитрон)

Зеннер — фамилия его изобретателя. Также известен как стабилитрон

  • VF = 1 В
  • VDC — фиксированное значение на выбор
  • Умышленно используется в обратном направлении как источник фиксированного напряжения

 


ПОЛУПРОВОДНИКОВЫЙ ДИОД

Полупроводниковый диод — двухэлектродный электронный прибор на базе полупроводникового (ПП) кристалла.

Понятие полупроводниковый диод объединяет приборы с разными принципами действия, которые имеют многофункциональное назначение. Система классификации полупроводниковых диодов соответствует общей системе классификации полупроводниковых приборов.

В наиболее широком классе электро-преобразовательных полупроводниковых диодов различают: импульсные диоды, выпрямительные диоды, стабилитроны, диоды СВЧ (видеодетекторы, параметрические, смесительные, генераторные и усилительные, умножительные, переключательные). Среди оптоэлектронных полупроводниковых диодов выделяют ПП квантовые генераторы, светоизлучающие диоды и фотодиоды.

Наиболее многочисленны полупроводниковые диоды, действие которых базируется на применении свойств электронно-дырочного перехода, другими словами р-и-перехода. Если к р-п-переходу диода приложить напряжение в прямом направлении, т. е. подать на его p-область положительный потенциал, то потенциальный барьер, который соответствует переходу, снижается и начинается интенсивный ввод дырок из /7-области в «-область и электронов из «-области в ^-область. Тем самым по диоду начинает течь большой прямой ток. Если приложить напряжение в обратном направлении, то потенциальный барьер повышается и через р-л-переход протекает очень малый ток вторичных носителей заряда (обратный ток).

На резкой несимметричности вольт-амперной характеристики (ВАХ) базируется работа выпрямительных диодов. Для выпрямительных устройств и других сильноточных электрических цепей производятся выпрямительные полупроводниковые диоды, имеющие допустимый выпрямленный ток до 300 А и максимально допустимое обратное напряжение в пределах от 20—30 В до 1—2 кВ. Полупроводниковые диоды аналогичного использования для слабо-точных цепей имеют выпрямленный ток <0,1 А и называются универсальными. При напряжениях, превышающих максимально допустимое обратное напряжение, ток резко возрастает, и появляется необратимый тепловой пробой /7-и-перехода, который приводит к выходу полупроводникового диода из строя. С целью повышения максимально допустимого обратного напряжения до нескольких десятков кВ применяют выпрямительные столбы, в которых несколько идентичных выпрямительных полупроводниковых диодов соединены последовательно и расположены в общем пластмассовом корпусе. Инерционность выпрямительных диодов ограничивает частотный предел их использования (как правило, областью частот 50—2000 Гц).

Применение специальных технологических приемов (легирование кремния и германия золотом) позволило создать быстродействующие импульсные полупроводниковые диоды, применяемые, наряду с диодными матрицами, как правило, в слаботочных сигнальных цепях ЭВМ.

При невысоких пробивных напряжениях, как правило, развивается не тепловой, а обратимый лавинный пробой р-и-перехода, т. е. резкое нарастание тока при почти постоянном напряжении, называется напряжением стабилизации. На использовании подобного пробоя базируется работа полупроводниковых стабилитронов. Стабилитроны общего назначения с напряжением стабилизации от 3—5 до 100—150 В используют в основном в стабилизаторах и ограничителях импульсного и постоянного напряжения; прецизионные стабилитроны, у которых встраиванием компенсирующих элементов достигается высокая температурная стабильность, — в качестве источников опорного и эталонного напряжений.
В предпробойной области обратный ток диода подвержен значительным флуктуациям; это свойство р-«-перехо-да применяют для создания генераторов шума. Инерционность развития лавинного пробоя в р-»-и-переходе обусловливает сдвиг фаз между напряжением и током в диоде, вызывая (при определенной схеме включения) генерирование СВЧ-колебаний. Это свойство успешно применяют в лавинно-пролетных полупроводниковых диодах, которые позволяют осуществлять генераторы с частотами до 150 ГГц. Стабилизаторы можно увидеть здесь.

Для преобразования и детектирования электрических сигналов в области СВЧ применяют смесительные полупроводниковые диоды и видеодетекторы, в большинстве которых р-«-переход расположен под точечным контактом. Это позволяет достигнуть малого значения емкости, а специфическое конструктивное оформление задает малые значения паразитных индуктивности и емкости, а также возможность монтажа диода в волноводных системах.

При подаче на р-«-переход обратного смещения, которое не превышает максимально допустимого обратного напряжения, он ведет себя как высокодобротный конденсатор, у которого емкость зависит от величины действующего на нее напряжения. Это свойство применяют в варикапах, используемых преимущественно для электронной перестройки резонансной частоты колебательных контуров, в умножительных диодах и варакторах, служащих для умножения частоты колебаний в диапазоне СВЧ, в параметрических полупроводниковых диодах, используемых для усиления СВЧ-колебаний. В этих полупроводниковых диодах стремятся уменьшить величину сопротивления, являющегося основным источником активных потерь энергии, и усилить зависимость емкости от максимально-допу-стимого обратного напряжения.

У перехода на базе вырожденного полупроводника область, которая обеднена носителями заряда, является очень тонкой (~ 10—2 мкм), и для нее становится значительным туннельный механизм перехода дырок и электронов через потенциальный барьер. На этом свойстве базируется работа туннельного диода, используемого в сверхбыстродействующих импульсных устройствах, в генераторах и усилителях колебаний СВЧ, а также обращенного диода, используемого в качестве детектора слабых сигналов и смесителя СВЧ-колебаний.

К полупроводниковым диодам относят также ПП приборы с двумя выводами, содержащие неуправляемую четырехслойную /7-«-р-«-структуру и называют динисторами, а также Ганна диоды. В полупроводниковых диодах применяют и другие разновидности ПП структур: контакт металл — полупроводник и структуру, свойства которых во многом схожи с характеристиками перехода.

Свойство /7-г-и-структуры менять свои электрические характеристики под воздействием излучения применяют в детекторах ядерных излучений и фотодиодах, устроенных таким образом, что ядерные частицы или фотоны могут поглощаться в активной области кристалла, которая непосредственно примыкает к р-«-переходу, и менять величину обратного тока последнего. Эффект излучательной рекомбинации дырок и электронов применяется в светоизлучающих диодах. К полупроводниковым диодам можно отнести также и полупроводниковые лазеры.

Большинство полупроводниковых диодов изготавливают, применяя планарноэпитаксиальную технологию, которая позволяет сразу получать до нескольких тысяч полупроводниковых диодов. В качестве полупроводниковых материалов для них используют главным образом кремний, а также германий и т. д., в качестве контактных материалов — золото, алюминий, медь. Для защиты кристалла полупроводникового диода его, как правило, помещают в металлокерамический, металлостеклянный, пластмассовый или стеклянный корпус.

Для обозначения полупроводниковых диодов используют шестизначный шифр, первая буква которого характеризует применяемый полупроводник, вторая определяет класс диода, цифры означают порядковый номер типа, а последняя буква — его группу.

От своих электровакуумных аналогов полупроводниковые диоды отличаются значительно большими долговечностью и надежностью, лучшими техническими характеристиками, меньшими габаритами, меньшей стоимостью и поэтому вытесняют их в большинстве областей использования. С развитием ПП электроники совершился переход к производству наряду с дискретными полупроводниковыми диодами диодных структур в функциональных устройствах и ПП монолитных интегральных схемах, где полупроводниковый диод неотделим от всей конструкции устройства. olil.ru

  • Предыдущее: ПОЛУПРОВОДНИКОВЫЙ ДЕТЕКТОР
  • Следующее: ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР

Принцип работы диодов для чайников

Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.

Принцип работы:

  1. Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
  2. Между двумя электродами происходит образование электрического поля.
  3. Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
  4. Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
  5. Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
  6. Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.

Устройство

Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:

  1. Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
  2. Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
  3. Внутри катода косвенного накала имеется специфический элемент – проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
  4. Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
  5. Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
  6. Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.

Такие особенности внутреннего устройства наделяют диоды их главным свойством – возможностью проведения электрического тока только в одном направлении.

Тиристоры

Реактивное сопротивление

Данные детали находят широкое применение в приборах для выпрямления и преобразования электротока, сварочных аппаратах, устройствах запуска и контроля скорости работающего на электричестве транспорта, различных радиоэлектронных и коммутационных установках. Применяются они и в конструкциях, предназначенных для компенсации реактивной мощностной нагрузки.

Важно! Низкочастотные тиристоры рассчитаны на эксплуатацию при частоте не более 100 герц. Устройства, отличающиеся повышенным быстродействием, заточены под использование в установках, требующих быстрого нарастания открытого электротока и закрытого напряжения.


Тиристорная деталь

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Схема выпрямления

Выпрямительные диоды присутствуют и в низковольтной части блока питания. Только схема включения состоит там не из 4-х диодов, а из двух. Внимательный читатель может спросить: «А почему это используются разные схемы включения? Нельзя ли применить диодный мост и в низковольтной части?» Можно, но это будет не лучшее решение. В случае диодного моста ток проходит через нагрузку и два последовательно включенных диода.

Интересно почитать: все о законе Ома.

В случае использования диодов 1N5408 общее падение напряжения на них может составить величину 1,8 В. Это очень немного по сравнению с сетевым напряжением 220 В. А вот если такая схема будет применена в низковольтной части, то это падение будет весьма заметным по сравнению с напряжениями +3,3, +5 и +12 В. Применение схемы из двух диодов уменьшает потери вдвое, так как последовательно с нагрузкой включен один диод, а не два.


Выпрямительный диод.

К тому же, ток во вторичных цепях блока питания гораздо больше (в разы), чем в первичной. Следует отметить, для этой схемы трансформатор должен иметь две одинаковые обмотки, а не одну. Схема выпрямления из двух диодов использует оба полупериода переменного напряжения, также как и мостовая.

Если потенциал верхнего конца вторичной обмотки трансформатора положителен по отношению к нижнему, то ток протекает через клемму 1, диод VD1, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD2 в это время заперт. Если потенциал нижнего конца вторичной обмотки положителен по отношению к верхнему, то ток протекает через клемму 2, диод VD2, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD1 в это время заперт. Получается тот же пульсирующий ток, что и при мостовой схеме.

Интересно почитать! Что такое варистор и где его применяют.

Прямое включение диода

На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.

Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:

  1. Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
  2. Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
  3. Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
  4. Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
  5. Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
  6. Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
  7. Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.


строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

Вот это и есть тот самый PN-переход

PN-переход диода

Обратное включение диода

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Силовые полупроводниковые диоды

Mаркировка smd

Данные изделия широко применяются в трансформаторах электрической энергии и разного рода силовых установках. Подключение диода в электроцепь может преследовать множество целей, но первоочередными обычно являются выпрямление тока и предохранение от коммутационных перегрузок. Распространены диоды таблеточной формы, в которых полюсами являются уплощенные основания. Определить «плюс» и «минус» в таких изделиях можно по отметкам на корпусе. Используют их в силовых установках, требующих малой зарядной дозы для восстановления, в высокочастотных условиях (2 килогерца и выше), в статических трансформаторах электрической энергии. Есть и диоды штыревого типа, в них роль катода исполняет вывод, а анода – основание, сделанное из меди. Применяют их чаще в условиях невысокой частоты (менее 500 Гц). Некоторые диоды используют в генераторах автомобилей, тракторов, выпрямительных блоках сварочного оборудования, системах возбуждения.

Прямое и обратное напряжение

Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:

  1. Прямое напряжение – это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
  2. Обратное напряжение – это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.

Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.

Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Работа диода и его вольт-амперная характеристика

Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.

Подобный график можно описать следующим образом:

  1. Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
  2. Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
  3. Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
  4. Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
  5. По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
  6. Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
  7. Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

Мой генератор частоты выглядит вот так.

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

Генератор выдает переменное синусоидальное напряжение.


синусоидальный сигнал

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.


переменное напряжение после диода

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.


переменый ток после диода

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.


переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

Основные неисправности диодов

Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.

Всего выделяют 3 основных типа распространенных неисправностей:

  1. Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
  2. При обрыве происходит обратный процесс – прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
  3. Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.

Пробой p-n-перехода

Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.

Обычно различается несколько видов:

  1. Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
  2. Электрические пробои, возникающие под воздействием тока на переход.

График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.

Электрический пробой

Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.

При этом, пробои такого типа делятся на две разновидности:

  1. Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
  2. Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.

Тепловой пробой

Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.

Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:

  1. Рост колебания атомов, входящих в состав кристалла.
  2. Попадание электронов в проводимую зону.
  3. Резкое повышение температуры.
  4. Разрушение и деформация структуры кристалла.
  5. Полный выход из строя и поломка всего радиокомпонента.

Плюсы и минусы

Полупроводниковые диоды имеют как преимущества, так и недостатки. К первым можно отнести:

  • доступность – элементы стоят недорого;
  • взаимозаменяемость – при выходе из строя легко подобрать и установить аналогичный;
  • высокая пропускная способность;
  • простой принцип работы.

Из недостатков – уязвимость к внешним воздействиям и возможные неисправности. Это могут быть:

  • обрыв перехода;
  • нарушение герметичности;
  • пробой перехода.

Однако устранить повреждения и заменить устройство несложно, поэтому минусы можно считать несущественными.

Где находят применение диоды

Помимо собственно преобразования нестабильного тока в постоянную форму, диоды имеют ряд других вариантов использования. К числу типичных примеров таких компонентов относятся светодиоды, используемые в разных электротехнических приборах, фонарях, телевизорах. Варикапы также применяются в детекторных аппаратах, логарифмических усилителях и иных установках, работающих с нелинейной обработкой аналоговых сигналов. Здесь они выполняют преобразовательную функцию либо формируют некоторый параметр. При встречно-параллельном подключении пары элементов можно сформировать блок ограничения сигнала. С точки зрения функционального наполнения, серьезной разницы между сборкой и единичными диодными компонентами не наблюдается. Вышедший из строя элемент подлежит замене равноценным ему.


Схема, содержащая силовые диоды

Силовые диодные компоненты заточены под трансформацию синусоидального тока в постоянный. Поскольку такая необходимость возникает часто, эти радиодетали используются в широком спектре приборов и схем. Разные варианты исполнения рассчитаны на эксплуатацию при различных показателях силы и частоты тока.

Электроника для всех

Часть 1

▌Конструкция

Диод делают из полупроводников. Вообще, изначально, полупроводниковые материалы, такие как кремний или германий ток проводят довольно хреново. У них электроны крепко держатся двумя молекулами сразу и требуется довольно большая энергия чтобы их вырвать.

Если полупроводник нагреть, облучить, подать высокое напряжение, чтобы образовалось мощное поле, которое потащит электроны, то из кристаллической решетки будет вырван электрон и будет он болтаться свободно среди молекул. А там где он был, образуется дырка. Дырка означает не скомпенсированную электроном связь, положительно заряженную область. Сдернуть электрон из ближайшего атома в соседнюю дырку куда проще, чем просто вырвать его из решетки. При этом дырка будет уже у соседнего атома, ведь электрон то надо откуда то вырвать.

По сути, дырку можно считать положительно заряженной частицей. Потому как под действием поля дырки также мотает по всему кристаллу как и электроны. Хотя они и менее подвижные, т.к. на перемещение дырки надо больше энергии чем на перемещение электрона.

Ну вот, есть у нас такой прикольный материал у которого сопротивление зависит от приложенной к нему энергии. И что дальше?

А самое веселое начинается когда в полупроводник добавляют примеси за счет которых можно либо добавить дырок, либо свободных электронов. Накидав в кристаллическую решетку атомов с тремя или с пятью свободными электронами соответственно.

Получаются проводники p и n типа. В p — есть лишние дырки (positive), а в n — лишние электроны (negative).

Осталось только слепить два таких разнопроводимых кристалла вместе, чтобы получился pn переход. И мы получили диод. Суть в чем:

Когда ток подается вот так:

Т.е. к p-кристаллу мы подаем положительный потенциал, а на n-кристалл отрицательный, то дырки и электроны поведут себя как и подобает приличным электрическим зарядам — отталкиваясь от себе подобных и притягивясь к противоположности.

В p-кристалле электроны неудержимо потянет в плюсовой провод, следовательно дырки ломанутся в центр. А в n-кристалле электроны из минусового провода, от источника питания, ломанутся к плюсу, тоже в центр. В центре электроны из n-кристалла запрыгнут в дырки p-кристалла и поскачут дальше к минусу (это называется рекомбинация). Т.е. через диод пойдет ток. И чем больше напряжение, тем больше дырок будет сдвигать и больше будет ток. Причем зависимость эта будет не линейная, а скорей параболическая.

Окей. С этим все понятно. Берем и меняем полярность. Что произойдет? А все то же самое, только направление движения зарядов изменится.

В p-кристалле электроны побегут в центр, значит дырки утащит к минусовому проводу, где они и останутся зиять, т.к. в металле проводника пути для них нет.

А в n-кристалле усосет все свободные электроны в источник питания. И тоже останется пустота. А, как я уже говорил, полупроводник в котором нет свободных зарядов, это хреновый проводник. Почти диэлектрик. И вот, собственно, на этом месте диод и перестает проводить ток в обратном направлении.

▌Фотодиод

Но при этом свойства полупроводника в зоне откуда убежали все свободные заряды никуда не деваются. Если полупроводник облучить, то в нем таки возникнут свободные заряды и он будет проводить ток. Так работает, например, фотодиод. Помните его схему включения?

Вот диод стоит себе в обратном направлении, сопротивление у него огромное, намного больше подтягивающего резистора и на ноге при этом возникает положительный потенциал от подтяжки. Но стоит ему засветить, как его тотчас прорывает за счет того, что его кристалл чувствителен к свету и свет из него легко выбивает заряды. Но, на самом деле, у фотодиода характеристика ВАХ еще более интересна:

Если рассмотреть его поквадрантно. То на нулевом освещении (самый верхний график) он ведет себя почти как обычный диод. Чуток травит назад, совсем мало. А прямая проводимость по той же параболе. А вот при увеличении освещения начинается самое интересное. Ну, во первых, у него резко возрастает обратный ток. Чем ярче на него светим, тем сильней. Но самое интересное это квадрант D. Если посмотреть на график, то при прямом напряжении мы имеем… обратный ток.

Т.е. фотодиод является источником энергии. Генерирует обратный ток и до поры до времени сопротивляется внешнему источнику питания. В конце концов, тот конечно его перебарывает и график уходит в квадрант А.

▌Стабилитрон

Или вот, например, стабилитрон. Тоже девайс работает в обратку. Тоже, по сути, вполне себе добропорядочный диод.

Стоит себе не пропускает, ну кроме тех случаев, когда поле (А напряженность поля напрямую зависит от напряжения. Ваш К.О.) оказывается столь сильно, что вырывает из полупроводника заряды сами по себе. И тогда он начинает подтравливать ток. Но только до тех пор, пока напряжение на нем не снизится до некого предельного уровня. Уровень этот и определяет напряжение которое стабилитрон будет стабилизировать. Причем чем больше напряжение, тем больший ток через него будет стравливаться, стараясь это напряжение удержать.

Примерно как клапан ограничения давления на паровом котле. Стоит там пружина с уставкой на давление в 5 очков, и все что выше 5 очков травит наружу.

То есть любой диод может пробивать в обратном направлении, при превышении определенного потенциала. И этот пробой является обратимым. При условии что ток при нем не был настолько большим, чтобы выделить тепло достаточное для уничтожения кристалла. Поэтому на стабилитроне и нужен резистор.

А то слишком большой ток через него потечет и он сдохнет, а так получается своего рода делитель напряжения, в котором нижнее плечо автоматом подстраивается так, чтобы на выходе было напряжение на которое заточен стабилитрон.

▌Емкость диода

Вообще, если рассматривать диод более детально, то у него есть емкость (хотя чего это я, у всего в мире есть емкость, даже у индуктивности

) и более приближенная к реальности схема диода выглядит так:

Но тут есть один нюанс. У этой емкости две природы. Когда диод пропускает в одну сторону, то у него заряжается диффузионная емкость

. Т.е. кристаллы диода насыщается неосновыми зарядами. Что значит неосновными?

А то, что в p-кристалле, где должно быть, по идее, полно дырок (основных зарядов), при протекании тока от души набивается хренова куча электронов, забивает все излишние дырки, да еще сверху насыпает с горкой.

В противовес, в n-кристалле, мало того, что все электроны лишние (основной заряд) усасывает полем, так еще и дополнительно вырывает из решетки, образуя дырки (неосновной заряд).

И когда напряжение резко меняют на обратное, диод то может и закроется мгновенно, но вот из насыщенных неосновными зарядами областей пока утащит все лишние электроны и дырки, которых там не должно быть, пройдет какое то время, а эти самые неосновные заряды при исходе образуют импульс обратного тока. Короткий, конечно, как иголочка.

Но если у вас частота высокая, то эти короткие импульсы вам могут помех натворить, потребление увеличить, пробить что-нибудь не то и так далее. Диффузионная емкость зависит от прямого тока. Чем больше прямой ток, тем больше неосновных зарядов насуёт в кристаллы.

Небольшое плато — это время на то, пока растащит заряды в области pn перехода. Собственно, время закрытия самого перехода. А вот потом уже идет обычный такой разряд конденсатора — это растаскивает неосновные заряды из основного тела полупроводника. И чем это тело больше, тем дольше их будет оттуда растаскивать.

А когда диод включен обратно, то возникает барьерная емкость

.

Если внимательно посмотреть на обратно смещенный диод, на что это похоже?

Два проводника, между ними диэлектрик… Правильно, на конденсатор. Ну и хрен что диэлектрик у этого конденсатора это полупроводник. При определенных условиях он же диэлектрик? Диэлектрик. Значит работать будет.

А еще расстояние между проводящими областями зависит от электрического поля. Подали посильней обратное смещение — дырки и электроны вжались в края — диэлектрический слой увеличился, ослабил поле — уменьшился. А от толщины диэлектрика напрямую зависит емкость этого импровизированного конденсатора. Т.е. барьерная емкость зависит от приложенного обратного напряжения.

Ну и обе емкости зависят от конструктива. Раньше, в советской литературе, было даже четкое деление на плоскостный и точечный диод. Т.е. у плоскостного pn переход был в виде двух плоских областей, способных пропустить через себя большой ток, но обладающих большой емкостью. А у точечного диода переход представлял собой подпружиненную иголочку с покрытием, упирающуюся в кристалл полупроводника. Площадь контакта мала, емкость мала, ток тоже мизерный.

Сейчас я такого деления как то не встречаю. Видать в западной классификации диоды по конструктиву не делят.

▌Варикап

Способность диода образовывать барьерную емкость при обратном смещении и послужило идеей для варикапа. Осталось только сделать такой диод, для которого барьерная емкость была бы максимально стабильной, не зависящей от разных там погодных условий и вуаля.

Т.е. даем отрицательное постоянное смещение, а поверх него переменный сигнал, то меняя смещение можно менять емкостное сопротивление этого конденсатора для этого переменного сигнала. Такую емкость зовут барьерной. Т.к. ее величина зависит от ширины потенциального барьера.

А как это применить тут можно многое придумать. Первое что приходит в голову разные электрически управляемые фильтры или колебательные контура. Вроде такого:

▌Шоттки

Отдельно хочу сказать о диоде Шоттки. Диод Шоттки использует не pn переход двух полупроводников. А переход полупроводник-металл. Получается примерно то же самое, но с рядом особенностей, как то:

  • Пониженное падение напряжения. Около 0.2 вольт, в отличии от типичных 0.7 вольт для простого диода.
  • Очень низкое время обратного восстановления. Так как в нем в разы меньше скапливаются неосновные заряды, а значит диффузионная емкость очень мала.

Минусы тоже значительные.

  • Самый главый минус в том, что у них намного ниже обратное напряжение чем у обычных pn диодов.
  • Также есть повышенный обратный ток. Если диод запирается в обратку почти наглухо, то тут ниппель чутка сифонит и чем выше температура, тем больше. Может до единиц, а то и десяток миллиампер (!) доходить. Особенно на мощных диодах с прямыми токами в десятки ампер.
  • А еще их обратный пробой не является обратимым. Пробило значит пробило. В помойку, без вариантов.

Вот как то так. Кратенько и по самым основам. Как раз под окончание сессии у студентов

Что такое диод? — Определение из WhatIs.com

Диод — это специализированный электронный компонент с двумя электродами, называемыми анодом и катодом. Большинство диодов изготавливаются из полупроводниковых материалов, таких как кремний, германий или селен. Некоторые диоды состоят из металлических электродов в камере, вакуумированной или заполненной чистым элементарным газом при низком давлении. Диоды могут использоваться в качестве выпрямителей, ограничителей сигналов, регуляторов напряжения, переключателей, модуляторов сигналов, смесителей сигналов, демодуляторов сигналов и генераторов.

Основным свойством диода является его склонность проводить электрический ток только в одном направлении. Когда катод заряжается отрицательно по отношению к аноду при напряжении больше определенного минимума, называемого прямым прорывом , через диод протекает ток. Если катод положителен по отношению к аноду, находится под тем же напряжением, что и анод, или имеет отрицательное значение, меньшее, чем прямое напряжение пробоя, то диод не проводит ток.Это упрощенный взгляд, но он верен для диодов, работающих как выпрямители, переключатели и ограничители. Прямое напряжение пробоя составляет примерно шесть десятых вольта (0,6 В) для кремниевых устройств, 0,3 В для германиевых устройств и 1 В для селеновых устройств.

Несмотря на приведенное выше общее правило, если напряжение на катоде достаточно положительное по отношению к напряжению на аноде, диод будет проводить ток. Напряжение, необходимое для возникновения этого явления, известное как лавинное напряжение , сильно различается в зависимости от природы полупроводникового материала, из которого изготовлено устройство.Лавинное напряжение может варьироваться от нескольких вольт до нескольких сотен вольт.

Когда аналоговый сигнал проходит через диод, работающий в точке прямого пробоя или вблизи нее, форма волны сигнала искажается. Эта нелинейность допускает модуляцию, демодуляцию и микширование сигналов. Кроме того, генерируются сигналы с гармониками или целыми кратными входной частоты. Некоторые диоды также имеют характеристику, которую неточно называют отрицательным сопротивлением Ом.Диоды этого типа при подаче напряжения соответствующего уровня и полярности генерируют аналоговые сигналы на микроволновых радиочастотах.

Полупроводниковые диоды

могут быть спроектированы для выработки постоянного тока (DC) при воздействии на них видимого света, инфракрасного (ИК) или ультрафиолетового (УФ) излучения. Эти диоды известны как фотогальванические элементы и являются основой солнечных электроэнергетических систем и фотодатчиков. Еще одна форма диода, обычно используемая в электронном и компьютерном оборудовании, излучает видимый свет или инфракрасную энергию, когда через него проходит ток.Таким устройством является всем знакомый светоизлучающий диод (LED).

Обзор диодов, назначение и типы | Что такое диод? — Видео и стенограмма урока

Для чего нужен диод?

Электрические схемы нарисованы, чтобы лучше понять поток электронов и зарядов в цепи. Электрические цепи могут быть разомкнуты, что означает нарушение пути, или замкнуты, что означает, что поток непрерывен, а путь непрерывен. Схемы включают в себя все электрические компоненты цепи, представленные на языке уникальных символов.Диоды представлены треугольным символом в схемах и указывают направление потока электронов (от анода к катоду). Если диод добавить в цепь в прямом направлении, поток будет непрерывным, и цепь будет замкнута. Однако, если ток реверсирован или диод расположен в цепи в обратном направлении, диод будет смещен в обратном направлении и больше не будет пропускать ток. Это может привести к разомкнутой цепи с прерыванием тока диодом.

Для чего нужен диод? Основное назначение диода — контролировать направление движения электронов в цепи. Существует несколько различных типов диодов, которые выполняют самые разные функции. Некоторые из первых диодов использовались в AM-радиоприемниках. Радиоприемники, как и многие электронные устройства, используют переменный ток (AC), однако усиливать можно только постоянный ток (DC). Диоды используются для преобразования переменного тока в постоянный, пропуская только половину переменного тока, протекающего в одном направлении, что приводит к однонаправленному постоянному току.

Наряду с выпрямлением диоды могут генерировать световые волны при прохождении через них электронов. Эти световые волны используются в светодиодном освещении. В пультах дистанционного управления один диод излучает свет, а другой диод посылает приемнику длину волны сигнала. Поскольку диоды ограничивают ток, протекающий в неправильном направлении, диоды можно использовать в качестве защиты цепи. Если питание неправильно подается в цепь, можно использовать диод для защиты электроники от вредных зарядов.

Как работает диод?

Диод состоит из полупроводниковых материалов, зажатых между анодом, положительным выводом, и катодом, отрицательным выводом.Поскольку чистые полупроводники не содержат примесей и не проводят электрический ток, к полупроводникам подмешивают другие материалы, чтобы изменить их свойства электропроводности; это называется допинг. В диодах два легированных полупроводниковых материала обычно называют материалом p-типа и материалом n-типа. Материал p-типа притягивает электрические заряды, а материал n-типа отдает электрические заряды. Когда эти два материала встречаются посередине на p-n переходе, разница зарядов образует электрическое поле, позволяющее электронам течь только в одном направлении.Это свойство диодов используется для идеального управления однонаправленным потоком электронов в цепи.

Диоды к сожалению не работают идеально; диоды потребляют небольшое количество энергии, позволяя току протекать и не блокируя все обратные токи. Существует три состояния работы диода: прямое смещение, обратное смещение и пробой. Диод называется с прямым смещением , когда ток течет через него от анода к катоду. Диод, смещенный в прямом направлении, считается включенным и имеет положительное напряжение на нем.Диод «выключен» и считается с обратным смещением , когда он не позволяет току легко протекать и действует как изолятор. Хотя большая часть тока блокируется, небольшое количество обратного тока может течь в противоположном направлении через диод. Пробой происходит, когда напряжение, приложенное к диоду, является чрезвычайно отрицательным. Пробой диода позволяет току свободно течь в обратном направлении, от катода к аноду.

Три каскада диода

Выпрямление – это преобразование переменного тока в постоянный.Простейшей формой схемы выпрямителя является однополупериодное выпрямление. Полуволновое выпрямление пропускает только половину переменного тока и, следовательно, использует только половину электроэнергии переменного тока. Схемы двухполупериодного выпрямителя, хотя и более сложные, способны преобразовывать весь переменный ток в пульсирующий постоянный ток.

Типы диодов

Существует несколько типов диодов, каждый из которых предназначен для определенных приложений и функций. Эти диоды также имеют разные диапазоны напряжения.Ниже обсуждаются диод Зенера, светоизлучающий диод, лазерный диод и диод Шоттки.

Стабилитрон

Стабилитроны называются диодами, регулирующими напряжение. Стабилитроны работают как обычные диоды в режиме прямого смещения, однако по-разному работают с обратным смещением. Стабилитрон работает в обратном направлении и пропускает небольшой ток. Стабилитроны имеют заданную величину напряжения пробоя, и при достижении этого тока через диод протекает ток в обратном направлении.Напряжение этого тока регулируется и стабилизируется до постоянного напряжения через диод.

Стабилитроны используются для регулирования напряжения и защиты электроники от перенапряжения при подавлении скачков напряжения. Стабилитроны также используются в схемах ограничителя и для преобразования переменного тока в постоянный. Эти диоды часто используются в качестве источников опорного напряжения из-за установленных значений напряжения.

Светоизлучающий диод (LED)

Светоизлучающие диоды, часто называемые светодиодами, представляют собой диоды, излучающие свет при прохождении электронов через диод.Светодиоды сделаны из полупроводников с особыми материалами, которые испускают больше фотонов, чем стандартный диод. Эти фотоны могут быть обнаружены человеческим глазом как свет. Светодиоды используются в пультах дистанционного управления, цифровых экранах и других электронных устройствах. Светодиоды становятся все более популярными по сравнению с традиционными лампами накаливания из-за их энергоэффективности и долговечности.

Лазерный диод

Подобно светодиодам, лазерные диоды излучают свет; однако ключевое различие заключается в длинах волн излучаемого света.В светодиоде свет излучается с одной и той же частотой, но длины волн не совпадают по фазе или некогерентны. В лазерных диодах свет также излучается с той же частотой, но длины волн света совпадают по фазе или когерентны. В результате лазерные диоды излучают мощный узкий луч света. Свет, излучаемый светодиодами, состоит из многих цветов, тогда как свет, излучаемый лазерными диодами, монохроматичен, то есть одного цвета. Лазерные диоды используются во многих приложениях, включая волоконную оптику, DVD-плееры, лазерные принтеры и широко используемые лазерные указки.

Диод Шоттки

Диоды Шоттки по функциям аналогичны стандартным диодам, но имеют два основных отличия. Первое отличие заключается в скорости переключения с прямого смещения на обратное. Диоды Шоттки переключаются между смещениями намного быстрее, чем другие типы диодов, что делает их идеальными для интегральных схем и вычислительных целей. Второе отличие заключается в падении напряжения при прямом смещении. По сравнению с другими типами диодов диоды Шоттки имеют более низкое падение напряжения при прямом смещении, что делает их идеальными для маломощных приложений.В отличие от этих преимуществ, диоды Шоттки допускают больший обратный ток при работе с обратным смещением.

Краткий обзор урока

Электрические цепи образуются, когда заряженные частицы движутся по проводникам, производя электрический ток . Электрические токи могут быть как переменными, так и постоянными. Диоды — это уникальные электрические компоненты, которые заставляют электрические токи течь в одном направлении по цепи. На электрических принципиальных схемах диоды изображаются треугольником с линией на вершине.При размещении в положении с прямым смещением диод позволяет току течь свободно. В положении с обратным смещением ток сопротивляется диоду. Диоды играют важную роль в схемах выпрямителей , которые преобразуют переменный ток в постоянный. Диоды также играют важную роль в защите цепи, защищая электронику от токов, протекающих в неправильном направлении. В некоторых приложениях диоды также могут использоваться для создания световых волн.

Существует множество различных типов диодов, каждый из которых служит определенной цели.Стабилитроны уникальны тем, что они обычно размещаются в положении обратного смещения и используются для регулирования и стабилизации напряжения в цепи. Светоизлучающие диоды или светодиоды обычно используются в электронике для получения более эффективного и долговечного света, чем традиционные источники света. Лазерные диоды похожи на светодиоды тем, что они также излучают свет. Однако длина волны лазерных диодов является когерентной и дает мощный одноцветный луч. Лазерные диоды используются в волоконной оптике.Диоды Шоттки важны в интегральных и компьютерных схемах из-за их быстрого переключения между прямым и обратным смещением и их способности работать при более низких напряжениях.

Диод Определение и значение | Dictionary.com

Диод — это устройство для управления электрическими токами, чтобы они протекали только в нужном направлении (так, как хочет инженер).

Диоды используются во всех видах электронных устройств. Большинство используемых сегодня диодов представляют собой полупроводниковые диоды . Люди часто используют слово диод , когда говорят о полупроводниковом диоде . Полупроводник — это материал, через который электричество может проходить, но не так хорошо, как через более прочный проводник, такой как медь. Этот вид диода похож на дверь для прохождения электричества, но он открывается только в одну сторону.

К простейшим видам этого прибора относятся диоды с p-n переходом. Такие диоды обычно изготавливаются из полупроводникового кремния.Кремний не очень хорошо проводит электричество сам по себе, но его проводимость можно улучшить, добавив другие элементы. В зависимости от того, что вы добавляете к кремнию, он может стать либо так называемым материалом p-типа, который имеет положительный заряд, либо материалом n-типа, который имеет отрицательный заряд. Чтобы создать диод , некоторые материалы p-типа и n-типа соединяются вместе. Р-тип — это анод, а n-тип — это катод. На стыке, где встречаются два материала, они компенсируют друг друга, и область вокруг стыка не имеет заряда.Электрический ток не может пройти через него. Если вы добавите положительный электрический ток к положительному концу и отрицательный к отрицательному концу, соединение станет меньше, и электричество может течь через соединение. Но если вы перевернете это, соединение станет больше, и ток не сможет пройти. Таким образом, электричество может проводиться только в одном направлении, и создается диод .

Другим основным типом диода является термоэмиссионный диод . Возможно, они вам лучше известны как вакуумные лампы .В вакуумных лампах используются стеклянные трубки для создания вакуума вокруг крошечной проволоки, которая нагревает катод и высвобождает электроны. Затем анод притягивает электроны, что означает, что ток течет в этом направлении. Хотя этот тип диода был широко распространен в ранних электрических приложениях, сегодня он в значительной степени вытеснен полупроводниковым типом.

Термин LED (как в LED огни и LED лампы ) означает светоизлучающий диод .Некоторые полупроводниковые диоды настолько гибкие и мощные, что их можно заставить излучать свет. Это делает светодиодные лампы более эффективными, чем обычные лампочки.

Пример: Устройство вышло из строя из-за неисправного диода, но его несложно было заменить.

Что такое диод? — Tutorials

Мы используем множество различных компонентов в наших электронных устройствах, но диоды обычно являются первым нелинейным компонентом, который люди используют в цепи. Будь то из-за того, что они превращают сигнал переменного тока в сигнал постоянного тока или из-за того, что они используют светодиод, чтобы что-то показать, диоды появляются довольно часто, и их нелинейные характеристики могут поначалу немного усложнить задачу.Мы подробно рассмотрим эти проблемы и способы их преодоления позже. А пока давайте просто рассмотрим диод, определим некоторые важные характеристики и получим хорошее интуитивное понимание того, как они работают.

Проще говоря, диод — это устройство, позволяющее току течь в одном направлении, а не в другом. В идеале, он позволяет току течь в одном направлении без какого-либо импеданса или какого-либо влияния, полностью останавливая течение всего тока в другом направлении, с четкой линией между двумя состояниями.При наличии обратного напряжения может протекать нулевой ток, независимо от того, насколько велико отрицательное падение напряжения. Если есть прямое напряжение, бесконечный ток может течь без какого-либо падения напряжения.

Рисунок 1. Кривая ВАХ идеального диода

Очевидно, это не так, но мы иногда используем эту «модель идеального диода», потому что она упрощает нашу жизнь, а кому не нравится, когда все просто? Реальность такова, что диоды не начинают проводить до тех пор, пока не будет достигнуто определенное прямое напряжение, как правило, но не всегда.7 вольт. И тогда ток быстро нарастает, но не уходит сразу в бесконечность.

Рис. 2. Типичная кривая ВАХ диода

Это немного сложнее для проведения расчетов, поэтому иногда возникает компромисс между идеальной моделью и «совершенно» реалистичной моделью, которую мы называем моделью постоянного падения напряжения или моделью CVD. В этом случае, как я всегда себе это представляю, вы берете идеальную модель, но смещаете точку, где она начинает вести. Итак, в модели CVD, если у вас что-то меньше 0.Прямое напряжение 7 В, ничего не проводит, но если больше 0,7 В, у вас будет бесконечный ток через модель.

Рис. 3. Диаграмма IV постоянного падения напряжения

Несмотря на то, что работать с диодами с использованием модели идеального диода или даже модели CVD проще, чем в реальности, в действительности она все еще нелинейна. Резисторы, конденсаторы и катушки индуктивности имеют линейную ВАХ, что означает, что ток через них имеет прямолинейную зависимость от напряжения на них.

Рисунок 4. Линейная или омическая ВАХ

Очевидно, что это не относится к диоду и делает так, что когда вы решаете схему с диодом, вам нужно сделать некоторые предположения, выполнить расчеты и затем проверьте свои предположения.У нас есть учебник, в котором это подробно рассматривается — если вы действительно готовы приступить к решению некоторых схем, проверьте это сейчас.

Рисунок 5. Схематическое обозначение диода

Возможно, вы уже знакомы со схематическим обозначением стандартного диода, но это просто стрелка с плоской полосой на одной стороне. Сторона с перемычкой является катодом и на полупроводниковом уровне легирована n. Другая сторона является анодом и на полупроводниковом уровне легирована p-типом. У нас есть несколько учебных пособий, в которых рассказывается, как это работает и почему это важно, и хотя вам не обязательно знать, как использовать диод, в конечном итоге вам нужно будет понять это, если ваша конечная цель — стать инженером-электриком или электронщиком.

Есть несколько важных терминов, которые вам необходимо знать, если вы хотите говорить о диодах или разбираться в технических характеристиках на них.

  • Прямое смещение — когда напряжение на аноде выше, чем на катоде, и если напряжение больше, чем прямое напряжение, будет течь ток. В отличие от диодов Зенера, это типичный режим работы диода.
  • Обратное смещение — когда напряжение на катоде выше, чем на аноде. Когда диод смещен в обратном направлении, в идеале ток не будет течь.
  • Прямое напряжение (V F ) — напряжение, при котором диод начинает проводить ток. Это довольно мало для диодов Шоттки, но становится довольно большим для диодов большой мощности.
  • Обратное напряжение (V R ) — напряжение, при котором при обратном смещении диод начинает проводить ток. Обычно это нежелательно, поэтому обычно нежелательно превышать это напряжение.
  • Пробой — что произойдет, если сместить диод в обратном направлении выше его обратного напряжения. Не проблема со стабилитронами, но может привести к необратимому повреждению других диодов.
  • Прямой ток — количество прямого тока, которое ваш диод может безопасно проводить. Обычно существует зависимость между прямым напряжением и прямым током.
  • Обратный ток или ток утечки — какой ток проводит ваш диод, когда он смещен в обратном направлении и предположительно не проводит ток. Вы хотите, чтобы это число было как можно меньше, но всегда есть компромиссы.

И есть несколько различных типов диодов, о которых вы услышите, кратко изложенные здесь:

  • Диоды Шоттки — имеют более низкое прямое напряжение и более чувствительны, но имеют более низкое обратное напряжение пробоя.
  • Стабилитроны — рассчитаны на обратное смещение и имеют очень специфическое напряжение пробоя.
  • Светоизлучающие диоды — создают свет при прямом токе.
  • Фотодиоды — создают электроэнергию при воздействии света.
  • Сигнальные диоды — обычные диоды для слаботочных устройств (менее 1 А).
  • Силовые диоды — обычные диоды для приложений с большим током (1 ампер или больше). Обычно они имеют немного более высокое прямое напряжение, чем сигнальные диоды.Граница между сигнальным и силовым диодами нечеткая и нечеткая.

Итак, мы закончили с основами диодов, и я надеюсь, что это руководство поможет вам понять, как работают диоды. Если вы нашли этот урок интересным или полезным, поставьте ему лайк, а если у вас есть какие-либо вопросы, оставьте их в комментариях ниже. До встречи в нашем следующем уроке!

ток — Что именно делает диод?

Другой вопрос касается того факта, что ток течет по полным цепям — нет тока без полного контура, по которому течет ток.Некоторые ответы пошли по касательной, обсуждая разницу между электронным током и обычным током. В схемотехнике вы можете спокойно игнорировать электронный ток и всегда думать с точки зрения обычного тока. Но направление тока абсолютно не имеет значения.

Что касается диодов, то в идеале диод пропускает через себя ток только в одном направлении, от анода к катоду. В частности, выше определенного «порогового» напряжения требуется лишь очень небольшое увеличение напряжения, чтобы увеличить ток до астрономических уровней:

(изображение CC из openwetware.орг)

Обратное поведение пробоя (большой обратный ток при приложении большого обратного смещения) обычно считается неидеальным, а не частью идеального поведения диода.

Некоторые диоды имеют другие эффекты, например, светодиоды, которые излучают свет, когда через них проходит ток; или стабилитроны, которые обычно используются в области обратного пробоя.

Редактировать

для чего включать в цепь садовый диод (не светодиод)?

Как правило, вы используете их, когда хотите быть уверенным, что ток может течь только в одном направлении.Например,

  • Для защиты цепи от батареи, установленной наоборот.
  • Для формирования схемы мостового выпрямителя (с использованием 4 диодов) для преобразования мощности переменного тока в постоянный.
  • В цепи пикового детектора .

В схемах, использующих сигналы переменного тока, правильное управление точкой смещения постоянного тока диода позволяет использовать его в качестве переключателя для маршрутизации этих сигналов.

Вы также можете увидеть диод, используемый в тех случаях, когда разработчик знает, что ток будет течь в правильном направлении, чтобы создать грубое «фиксированное» падение напряжения около 0.7 В.

Другим применением является использование способности диода (должным образом спроектированного) отводить большое количество тока (в прямом направлении) для защиты более чувствительных цепей от перегрузки или условий электростатического разряда, или в цепи демпфера для уменьшения кольца линии передачи.

Другое использование состоит в том, что, выходя за рамки свойств постоянного тока, диод в обратном смещении имеет переменную емкость в зависимости от величины смещения. Эту переменную емкость можно использовать для настройки генераторов или фильтров.Специально разработанные для этого диоды называются варикапами .

типов диодов » Заметки по электронике

Существует множество различных типов диодов, различающихся не только технологией, но и силовыми диодами, диодами для поверхностного монтажа и многими другими.


Учебное пособие по диодам Включает:
Типы диодов Характеристики и номиналы диодов PN-переходной диод ВЕЛ PIN-диод Диод с барьером Шоттки Солнечная батарея / фотоэлектрический диод Варактор / варикап Стабилитрон


Полупроводниковый диод является широко используемым компонентом электроники, используемым сегодня во многих электронных схемах.

Несмотря на то, что существует множество различных типов диодов, в которых используется одна и та же базовая структура области материала p-типа и области материала n-типа, различные типы оптимизированы для обеспечения различных характеристик, которые можно использовать различными способами. во многих электронных схемах.

Каким бы ни был тип диода, основная идея диода важна в электронной промышленности сегодня, независимо от того, используется ли он для производства коммерческого или промышленного оборудования, для использования любителями или кем-либо, изучающим электронику.

Диоды

используются в самых разных областях. Они могут быть для простого исправления сигнала; они могут использоваться в качестве мощных диодов для выпрямления мощности, обнаружения сигналов, различных форм радиочастотного проектирования, генерации света, генерации лазерного излучения, обнаружения света и многого другого.

Диоды также могут иметь различные корпуса: диоды для поверхностного монтажа, обычные диоды с проволочными выводами, а некоторые силовые диоды могут даже иметь возможность крепления болтами к радиатору. Диоды бывают всех форм и размеров.

Диоды для поверхностного монтажа на печатной плате

История полупроводникового диода

Первые используемые диоды были обнаружены еще в начале 1900-х годов, когда технология беспроводной связи находилась в зачаточном состоянии. Cat’s Whisker был одним из первых используемых диодов. Он состоял из очень тонкого куска проволоки (сам кошачий ус), который можно было поместить на кусок материала полупроводникового типа (обычно минеральный кристалл), чтобы сделать диод с точечным контактом. Это широко использовалось до середины-конца 1920-х годов, когда термоэлектронные или вентильные технологии стали достаточно дешевыми, чтобы их можно было широко использовать в радиоприемниках.

Примерно во время Второй мировой войны для разрабатываемых радиолокационных установок потребовались новые диоды. Полупроводниковые диоды были одним из вариантов, поскольку их размер означал, что они могли лучше работать на частотах, необходимых для радара.

Символ цепи диода

Как и все электронные компоненты, диоды имеют символ цепи, который используется на электронных схемах. Базовый символ цепи для диода состоит из треугольника, точка которого касается короткой линии, перпендикулярной проводу на принципиальной схеме.

Иногда треугольник и даже линия отображаются только в виде контура, в то время как в других случаях они отображаются как закрашенные черные фигуры.

Обозначение базовой диодной схемы

Иногда условное обозначение диодной схемы отображается только в виде контура и без закрашенных фигур. Форма контура одинаково приемлема.

Альтернативный символ диодной цепи

Существует много различных типов диодов, и некоторые используют символы схемы, которые немного изменены по сравнению с основным символом диода, чтобы указать их функцию: диод Шоттки, варакторный диод и ряд других попадают в эту категорию.

Устройства для поверхностного монтажа или освинцованные

Диоды бывают всех форм и размеров. Традиционно многие из этих электронных компонентов помещались в небольшую стеклянную трубку, которая заключала в себе настоящий полупроводниковый диод. Сейчас диоды содержатся во множестве различных корпусов.

Все еще существуют свинцовые корпуса и диоды в стеклянной капсуле, но есть и много пластиковых корпусов. Они могут различаться по размеру в зависимости от требуемой рассеиваемой мощности.

В наши дни, когда многие печатные платы собираются с использованием технологии поверхностного монтажа, существует целый ряд диодов, доступных в качестве компонентов для поверхностного монтажа, SMD-диодов. Существует множество стандартных корпусов для SMD-диодов, включая корпус SOT-23, который используется для многих небольших дискретных диодов. Используются только два из трех доступных контактов, что позволяет правильно ориентировать диод.

Поскольку эти SMD-диоды имеют небольшие размеры, на диоде нет места для полного номера детали, и для их различения используются краткие номера.

Несмотря на то, что при сборке печатных плат используется технология поверхностного монтажа, существуют и другие области производства электроники, где требуются диоды с гораздо более высокой допустимой нагрузкой по току. Эти диоды могут содержаться в корпусах, крепящихся к радиаторам.

Типы диодов

Существует множество различных типов диодов, которые производятся и используются в различных электронных схемах, радиочастотных конструкциях, а также часто в цифровых конструкциях. Каждый тип имеет разные свойства, что делает их подходящими для разных цепей.

  • Обратный диод:   Этот тип диода иногда также называют обратным диодом. Хотя это не широко используется, это форма диода с PN-переходом, которая очень похожа на туннельный диод по своей работе. Он находит несколько специальных применений, в которых можно использовать его особые свойства, обычно на микроволновых частотах.

    Обратный диод — это, по сути, разновидность туннельного диода, в котором одна сторона перехода менее легирована, чем другая.


  • Диод БАРИТТА:  Этот вид диода получил свое название от слов «Диод времени прохождения барьерной инжекции». Он используется в микроволновых устройствах и имеет много общего с более широко используемым диодом IMPATT.


  • Диод Ганна:   Хотя это и не диод в форме PN-перехода, этот тип диода представляет собой полупроводниковое устройство с двумя выводами.Он обычно используется для генерации микроволновых сигналов и использовался во многих радиочастотных конструкциях как простая и эффективная форма микроволнового генератора.

    Диоды Ганна

    также известны как устройства переноса электронов или TED. Хотя этот электронный компонент называется диодом, он не имеет PN-перехода и технически не является диодом в обычном понимании того, как он используется в полупроводниковой технологии. Вместо этого устройство использует эффект, известный как эффект Ганна (названный в честь первооткрывателя Дж. Б. Ганна).

    Хотя диод Ганна обычно используется для генерации микроволновых радиочастотных сигналов, этот электронный компонент также может использоваться для усилителя в том, что иногда называют усилителем с переносом электронов или TEA.


  • Кошачий ус: Как уже упоминалось, этот тип диода был первым, получившим широкое распространение. Он состоял из небольшой проволоки, помещенной на кусок минерального кристалла. Это создало диод с небольшим точечным контактом, который, хотя и был ненадежным, был достаточно хорош, чтобы можно было слышать радиопередачи при использовании в «кристаллическом наборе».»

    Типовой кристаллический детектор / детектор кошачьих усов

    Хотя детекторы кошачьих усов не были особенно надежными, они были первой формой полупроводниковых диодов и указали путь к более поздним диодам. . . а принцип светодиода даже наблюдал Г. Дж. Раунд в 1908 г. на одном из них.

  • Диод IMPATT: Диод IMPACT или микроволновый диод IMPact с лавинной ионизацией и временем прохождения используется в некоторых радиочастотных конструкциях, где требуется простой генератор для микроволновых сигналов.

    Диодная технология IMPATT не так широко используется в наши дни, но этот электронный компонент способен генерировать сигналы, как правило, на частотах от 3 до 100 ГГц и выше. Одним из основных преимуществ этого микроволнового диода является относительно высокая мощность (часто десять ватт и более), которая намного выше, чем у многих других форм микроволновых диодов. Он имеет гораздо более высокую выходную мощность, чем диод Ганна.


  • Лазерный диод:   Этот тип диода отличается от обычного светодиода тем, что он излучает лазерный (когерентный) свет.Эти электронные компоненты используются во многих приложениях, включая приводы компакт-дисков и DVD. Хотя эти диоды намного дешевле, чем другие виды лазерных генераторов, они дороже обычных светодиодов.
  • Светоизлучающие диоды:  Светоизлучающий диод или светодиод — один из самых популярных типов диодов. При прямом смещении тока, протекающего через соединение, возникает свет. Первоначальный цвет этих диодов был красным, но в наши дни доступно большинство цветов.Это достигается за счет использования различных смесей полупроводников по обе стороны от PN-перехода.


  • Фотодиод: Когда свет падает на PN-переход, он может создавать электроны и дырки, вызывая протекание тока. В результате можно использовать полупроводники для обнаружения света. Эти типы диодов также можно использовать для выработки электроэнергии. В некоторых приложениях PIN-диоды очень хорошо работают в качестве фотодетекторов.


  • PIN-диод: Этот тип диода имеет области кремния P-типа и N-типа, но между ними находится область собственного полупроводника (т.е. без допинга). Это увеличивает размер так называемой области истощения. Этот тип диода используется в ряде приложений, включая радиочастотные переключатели и фотодиоды.


  • Диод с точечным контактом:   Этот тип диода работает так же, как простой диод с PN-переходом, но конструкция намного проще. Они состоят из куска полупроводника n-типа, на который помещается острие металлической проволоки определенного типа (металл III группы для химиков).Часть металла мигрирует в полупроводник и образует PN-переход.

    Эти диоды имеют очень низкий уровень емкости и идеально подходят для многих радиочастотных (РЧ) приложений. У них также есть то преимущество, что они очень дешевы в производстве, хотя их характеристики не особенно воспроизводимы.

  • PN-переход: Стандартный PN-переход можно рассматривать как обычный или стандартный тип диода, который используется сегодня.Этот электронный компонент включен во многие конструкции электронных схем, а также используется во многих конструкциях радиочастотных схем. Эти диоды могут быть маломощными для использования в радиочастотах или других слаботочных приложениях, или другие типы могут быть сильноточными и высоковольтными, которые можно использовать для силовых приложений.


  • Диоды Шоттки:  Диоды этого типа имеют меньшее прямое падение напряжения, чем обычные кремниевые диоды с PN-переходом.При малых токах падение может составлять от 0,15 до 0,4 вольта, в отличие от 0,6 вольта для кремниевого диода.

    Для достижения этих характеристик их конструкция отличается от конструкции обычных диодов, имеющих контакт металл-полупроводник. Они широко используются в качестве фиксирующих диодов и в радиочастотных конструкциях, часто в качестве детекторов сигналов. Они также используются в качестве силовых диодов для выпрямления переменного тока в источниках питания и т.п. Меньшие потери, вызванные меньшим падением, имеют большое значение для повышения эффективности.


  • Солнечные элементы / фотоэлектрические диоды:   Солнечные элементы используются все чаще, поскольку появляется больше приложений для преобразования солнечной энергии в электрическую. Солнечные элементы основаны на диодах с PN-переходом и способны преобразовывать энергию, содержащуюся в свете, падающем на диод, в электрическую энергию. Хотя уровень эффективности не особенно высок, технология совершенствуется, а уровень эффективности растет.


  • Диод с ступенчатым восстановлением:   Тип микроволнового диода, используемый для генерации и формирования импульсов на очень высоких частотах. Эти диоды основаны на характеристике очень быстрого выключения диода для их работы.


  • Диод TRAPATT:   Этот тип диода во многом похож на IMPATT и фактически принадлежит к тому же семейству. Он предлагает более низкий уровень шума, но не достигает таких высоких частот.


  • Туннельный диод:   Несмотря на то, что сегодня туннельный диод не получил широкого распространения, он использовался в микроволновых устройствах, где его производительность превышала характеристики других устройств того времени.
  • Варикапы или варакторные диоды:  Диоды этого типа используются в радиочастотных (РЧ) приложениях. Диод имеет обратное смещение, поэтому через переход не протекает ток.Однако ширина обедненного слоя варьируется в зависимости от величины смещения, приложенного к нему.

    Диод можно представить как две пластины конденсатора с обедненным слоем между ними. Поскольку емкость изменяется в зависимости от ширины обедненного слоя и ее можно изменять, изменяя обратное смещение на диоде, можно управлять емкостью диода.


  • Стабилитрон / диод опорного напряжения:   Зенеровский диод — очень удобный тип диода.Он работает под обратным смещением и при достижении определенного напряжения выходит из строя. Если ток ограничивается резистором, это позволяет получать стабильное напряжение. Поэтому этот тип диода широко используется для обеспечения опорного напряжения в регулируемых источниках питания.


Существует очень много различных типов диодов, каждый из которых подходит для своего применения. Мало того, что технология различается между различными типами диодов, они также могут содержаться в разных корпусах: некоторые могут быть с выводами, а другие могут крепиться болтами к радиаторам, а с количеством сборки печатной платы, которая использует автоматизированные технологии производства, диоды для поверхностного монтажа сейчас используется в огромных количествах.

Другие электронные компоненты:
Резисторы конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор полевой транзистор Типы памяти Тиристор Соединители ВЧ-разъемы Клапаны/трубки Батареи Переключатели Реле Технология поверхностного монтажа
    Вернуться в меню «Компоненты». . .

диод — Викисловарь

Английский

Этимология

ди- +‎ -ода .Ученая формация, придуманная Уильямом Экклсом в 1919 году после древнегреческого δίοδος (díodos).

Произношение[править]

Существительное[править]

диод ( несколько диоды )

  1. (электроника) Электронное устройство, позволяющее току течь только в одном направлении; используется в основном как выпрямитель.
    • 1919 18 апреля, Уильям Экклс, Электрик , стр. 475:

      Предлагаю дать название диод трубке с двумя электродами.

    • 1949 , Samuel Silver, Теория и конструкция микроволновой антенны [1] , стр. 593:

      -модулированный источник; или с источником непрерывного тока детектор может быть подключен к микроамперметру или гальванометру в качестве показывающего устройства.

    • 2005 , Robert Diffenderfer, Electronic Devices: Systems and Applications [2] , стр. 69:

      близко к барьерному потенциалу диода .

Координатные термины[править]
Производные термины[править]
Связанные термины[править]
Потомки[править]
  • → французский: диод ( см. Там дальнейших потомков )
Переводы[править]

Анаграммы


Произношение[править]

Существительное[править]

диод

  1. (электроника) диод
Склонение[править]
См.

0 comments on “Диод что такое: Что такое диод — простым языком

Добавить комментарий

Ваш адрес email не будет опубликован.