Электронный предохранитель на 10 ампер – Электронный предохранитель для блока питания

Электронный предохранитель для блока питания


Здравствуйте друзья Самоделкины! У многих из вас есть наверное блок питания для подключения к различным электронным устройствам. Но не все блоки защищены от перегрузки и короткого замыкания. Я предлагаю вашему вниманию самоделку, которая защитит ваш блок от этих неприятностей. Вот схема электронного предохранителя

Я нашел ее в интернете. Немного о работе этого предохранителя. Устройство предназначено для бесконтактного аварийного отключения питания от электронного прибора при токах, превышающих определенное значение. Для этих целей ставятся обычно плавкие предохранители, но быстродействие их таково, что сначала выгорает вся электроника и лишь потом сгорает предохранитель. Электронный же предохранитель отключает нагрузку гораздо быстрее и вероятность повреждения от перенапряжения, или непредвиденного повышения тока потребления резко сокращается.

Главным элементом схемы является транзистор VT2, который в нормальном состоянии открыт и падение напряжения на нем минимально. Светодиод VD1 погашен. При увеличении потребляемого тока падение напряжения на транзисторе увеличивается, и начинает открывать транзистор VT1. В результате этого процесса транзистор VT1 быстро открывается, а VT2 – закрывается, и отключает нагрузку от источника питания. При этом загорается индикатор перегрузки светодиод VD1. При устранении короткого замыкания, или же отключении нагрузки от электронного предохранителя, работоспособность устройства восстанавливается.

Подключается предохранитель между выходом блока питания и нагрузкой. Все это показано на схеме. Для сборки этого устройства нам понадобятся следующие детали и инструменты


1 – монтажная или печатная плата небольшого размера, например , 5 на 5 см; транзистор КТ817; транзистор КТ315; светодиод АЛ 307в, желательно красный; резисторы МЛТ 0,25 вт 360 ом; 0,125 вт 1,5 ком; 0,5 вт 91 ом; 0,25 вт 450 ом; монтажные провода. 2 – паяльник; припой; пинцет; кусачки; пассатижи; мультиметр; автомобильная лампа 12 в на 21 вт– для подключения ее вместо нагрузки. Собираем следующим образом.

Шаг 1. Проверяем все детали при помощи мультиметра, так как среди них есть и Б/У






Шаг 2. Спаиваем всю схему на монтажной плате. Проверяем правильность сборки схемы

Шаг 3. Подключаем собранное устройство к выходу блока питания согласно схеме, а к выходу предохранителя подключаем нагрузку, например, автомобильную лампу 12 в 21 вт. При указанных номиналах устройство срабатывает при токе 1А и напряжении питания 9В.

Для изменения характеристик предохранителя номиналы резисторов R3 и R4 придется пересчитать по приведенным ниже формулам.

R3= Uвх *Вст/Iн. maх,

где Uвх –входное напряжение в вольтах; В ст. –статический коэффициент передачи тока транзистора VT2 ; I н.maх – ток нагрузки максимальный в амперах.

R4 при токах до 1,5 А рассчитывается из условия: R4 = 0,05* Uвх( ком). При токах 1,5А— 10А , R4= 0,02* Uвх .(ком).

Шаг 4 . Проверяем работу электронного предохранителя. Для этого на выход предохранителя подключаем автомобильную лампу 12 в 21 вт с током потребления более 1- 1,5 А. Так как предохранитель рассчитан на срабатывание при токе 1А, то лампа тут же погаснет, и загорится индикатор перегрузки светодиод VD1. В таком состоянии предохранитель будет находиться сколько угодно времени, пока не будет отключена нагрузка (лампа) от его выхода. После отключения нагрузки, работа устройства восстанавливается автоматически. Это говорит о том, что схема работает. При минимуме деталей предохранитель работает довольно – таки не плохо, и лампа цела, и блок питания не сгорел.

Вот вроде бы и все.
Желаю всем вам удачи в создании своих самоделок.

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Как сделать электронный предохранитель своими руками

Р/л технология

Главная  Радиолюбителю  Р/л технология



Было бы преступлением не упомянуть здесь плавкие предохранители. Как и другие типы предохранительных устройств они призваны защищать участок цепи от губительных перепадов питающего тока.

Плавкие предохранители

Отличительная особенность таких предохранителей — их очевидная простота. Устройство представляет собой не что иное, как участок проволоки небольшого диаметра. Последняя легко плавится при превышении силы тока сверх заданного порога.

Конечно, у такого метода защиты есть очевидный недостаток – время реакции (плавление проволоки не происходит мгновенно). То есть от кратковременных, но от этого не менее губительных, импульсов тока он не спасет. Зато он очень эффективен при коротких замыканиях в сети или при превышении допустимой нагрузки.

Принцип работы основывается на тепловой работе, которую совершает ток при прохождении через проводники (и напряжение здесь не имеет особого значения).

Расчет:

Сила тока = Максимально допустимая мощность цепи / Напряжение

То есть максимальная сила тока, которую должен выдерживать плавкий предохранитель в цепи питания 220 В при максимальной нагрузке в 3 кВт – около 15 А.

Ввиду того, что плавкость зависит от множества факторов (диаметр проволоки, теплоотводящая способность окружающей среды, материал, из которого изготовлена проволока, и т.п.), то чаще всего сгоревший элемент меняют согласно готовым расчетам из таблицы ниже (для наиболее популярных металлов).

Таблица 1

Предохранители на реле

Как и было сказано выше, плавкие предохранители имеют серьезный недостаток – время реакции. Кроме того, сгоревший элемент необходимо полностью менять (требуется замена проволоки или всего предохранителя).

В качестве альтернативы можно рассмотреть реле.

Один из примеров реализации такой схемы ниже.

Рис. 1. Схема реле

При коротком замыкании в питаемой цепи резко возрастает ток, вследствие чего составной транзистор (VT1 VT2) запирается и всё напряжение прикладывается к первому реле, которое, в результате срабатывания, размыкает второе реле и ток остается только на закрытом составном транзисторе.

Обозначенный блок рассчитан только на цепи, ток питания которых не превышает 1,6А, что может быть неудобно для разных задач.

Её можно немного переделать так.

Рис. 2. Переделанная схема реле

Номинал R4 не прописан специально, так как он требует расчета в зависимости от параметров питаемой цепи.

В качестве основы можно использовать готовые показатели в таблице ниже.

Таблица 2

R4, Ом

1,6

0,82

0,6

0,39

0,22

Сила тока срабатывания предохранителя, А

0,9

1,3

1,7

2,0

2,4

Обе приведенные схемы рассчитаны на работу только в цепях питания 12 В.

Электронные предохранители без реле

Если ваша схема питается током до 5 А и напряжением до 25 В, то вам определенно понравится схема ниже. Порог срабатывания может быть настроен подстроечным резистором, а время реакции можно задать с помощью конденсатора.

Рис. 3. Схема предохранителя без реле

Ввиду того, что под постоянной нагрузкой транзистор может греться, его лучше всего разместить на теплоотводе.

В качестве альтернативной реализации, но с тем же принципом.

Рис. 4. Схема предохранителя без реле

Еще более простой электронный предохранитель с минимумом деталей на схеме ниже.

Рис. 5. Схема электронного предохранителя с минимумом деталей

При возникновении короткого замыкания транзистор блокируется на непродолжительное время. Если блокировка будет снята, а короткое замыкание останется, то «предохранитель» снова сработает и так до тех пор, пока в питаемой цепи не будет устранена проблема. То есть такой предохранитель не требует включения или выключения. Единственный его недостаток – постоянное включение прямой нагрузки в цепи в виде резистора R3.

Электронный предохранитель для 220 В

Схемы электронных предохранителей, приведенные выше, могут работать только в цепях с постоянным питанием. Но что, если вам нужен быстродействующий предохранитель для защиты питания в цепях с переменным током 220 В?

Можно использовать схему блока защиты от перегрузок ниже.

Рис. 6. Схема блока защиты от перегрузок

Максимальный ток срабатывания этой схемы, выполненной на стабилизаторе 7906 – 2А.

T1 – транзистор TIC225M, а

T2 — BTA12-600CW (замена не допустима).

В качестве более простых альтернатив для цепей с переменным током могут выступать следующие.

Рис. 7. Схемы для цепей с переменным током

Автор: RadioRadar

Дата публикации: 09.03.2018

Мнения читателей

Нет комментариев. Ваш комментарий будет первый.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:


www.radioradar.net

6. Электронные предохранители и ограничители постоянного и переменного тока

Ощутимым недостатком плавких предохранителей является их одноразовость, необходимость последующей ручной замены на другой предохранитель, рассчитанный на тот же ток защиты. Зачастую, когда под рукой нет подходящего, используют предохранители на другой ток или более того, ставят самодельные (суррогатные) предохранители или просто массивные перемычки, что крайне негативно отражается на надежности работы аппаратуры и небезопасно в пожарном отношении.
Обеспечить автоматическую многоразовую защиту устройства и одновременно повысить ее быстродействие можно за счет использования электронных предохранителей. Эти устройства можно подразделить на два основных класса: первые из них самовосстанавливают цепь питания после устранения причин аварии, вторые — только после вмешательства человека. Известны также устройства с пассивной защитой — при аварийном режиме они только индицируют световым или звуковым сигналом о наличии опасной ситуации.

Для защиты радиоэлектронных устройств от перегрузок по току обычно используют резистивные или полупроводниковые датчики тока, включенные последовательно в цепь нагрузки. Как только падение напряжения на датчике тока превысит заданный уровень, срабатывает защитное устройство, отключающее нагрузку от источника питания. Преимуществом такого способа защиты является то, что величину тока срабатывания защиты можно легко изменять. Чаще всего этого достигают с помощью датчика тока.
Другим эффективным методом защиты нагрузки является ограничение величины предельного тока через нее. Даже при наличии в цепи нагрузки короткого замыкания ток ни при каких обстоятельствах не сможет превысить заданный уровень и повредить нагрузку. Для ограничения предельного тока нагрузки используют генераторы стабильного тока.
Схемы простой автоматической защиты радиоэлектронных устройств от перегрузок по току представлены на рис. 5.1 и 5.2 [5.1]. Работа устройств такого типа (стабилизатор тока на основе полевого транзистора) подробно рассматривалась ранее в главе 5 (книга 2). Ток нагрузки при использовании такого ограничителя не сможет превысить начального тока стока полевого транзистора. Величину этого тока можно задавать подбором типа транзистора, например, для приведенного на схеме транзистора типа КП302В максимальный ток через нагрузку не превысит значения 30…50 мА. Увеличить значение этого тока можно параллельным включением нескольких транзисторов.

Рис. 5.1. Ограничение предельного тока нагрузки при помощи полевого транзистора


Рис. 5.2. Транзисторный ограничитель предельного тока через нагрузку

В ограничителе тока нагрузки (рис. 5.2) работают обычные биполярные транзисторы с коэффициентом передачи по току не менее 80… 100. Входное напряжение через резистор R1 поступает на базу транзистора VT1 и открывает его. Транзистор работает в режиме насыщения, поэтому большая часть входного напряжения поступает на выход источника питания. При токе меньше порогового транзистор VT2 закрыт, и светодиод HL1 не горит. Резистор R3 выполняет роль датчика тока. Как только падение напряжения на нем превысит порог открывания транзистора VT2, он
откроется, включится светодиод HL1, а транзистор VT1, напротив, начнет закрываться, и ток через нагрузку ограничится.
При указанных на схеме номиналах элементов ток короткого замыкания равен (0,7 В)/(3,6 Ом)=0,2…0,23 А.


Рис. 5.3. Схема электронного предохранителя на полевом транзисторе VT1


Рис. 5.4. Вариант электронного предохранителя на полевом транзисторе

Электронные предохранители [5.2] можно выполнить с использованием мощного полевого транзистора VT1 в качестве ключа (рис. 5.3 и 5.4). Ток срабатывания защиты определяется соотношением резистивных элементов и зависит, в первую очередь, от величины сопротивления датчика тока, включенного последовательно с полевым транзистором.
После срабатывания защиты для повторного подключения нагрузки необходимо нажать кнопку SA1.
Стаиилизатор (рис. 5.5) позволяет получить на выходе регулируемое в пределах от 0 до 17 Б стабильное напряжение [5.3]. Для защиты стабилизатора от короткого замыкания и превышения тока в нагрузке использован тиристор VS1 с датчиком тока на резисторе R2. При увеличении тока в нагрузке включается тиристор, шунтируя цепь управления транзистора VT1, после чего напряжение на выходе падает до нуля. Светодиод HL1 индицирует факт срабатывания защиты. Для повторного запуска стабилизатора после устранения причин перегрузки следует нажать кнопку SB1 и разблокировать тиристор.


Рис. 5.5. Схема стабилизатора напряжения с защитой

Ток защиты в зависимости от величины сопротивления датика тока — резистора R2 — может быть установлен от 20.. .30 мА о 1…2 А. Например, при R2=36 Ом ток срабатывания — 30 мА; ри R2=4 Ом — 0,5 А.
В качестве транзистора VT1 можно использовать КТ815, Т801, КТ807 и др., VT2 — П702, КТ802 — КТ805 (с радиатором).
Схема источника питания со звуковым сигнализатором пре->!шения потребляемого тока [5.4] показана на рис. 5.6. Выпря-итель на диодах VD1 — VD4 питается от трансформатора, оричная обмотка которого рассчитана на напряжение 18 6 при же нагрузки не менее 1 А. Регулируемый стабилизатор напря-эния выполнен на транзисторах VT2 — VT5 по известной схеме, этенциометром R7 на выходе стабилизатора может быть уставлено напряжение от 0 до +15 В.
Сигнализатор, обозначенный на схеме устройства как ЗГ (звуковой генератор), представляет собой генератор звуковой частоты с подключенным к нему акустическим излучателем, например, динамической головкой. Для управления работой звукового генератора использован ключ на транзисторе VT1.

Рис. 5.6. Схема стабилизатора напряжения со звуковой индикацией перегрузки

При работе стабилизатора ток нагрузки проходит через датчик тока R1, создавая на нем падение напряжения. Пока ток небольшой (при указанной на схеме величине этого резистора не более 0,3 А), транзистор VT1 закрыт. По мере роста тока потребления и, соответственно, увеличения напряжения на резисторе, транзистор приближается к порогу открывания. Когда напряжение между базой и эмиттером транзистора VT1 достигнет 0,7 В, он открывается и при дальнейшем росте тока переходит в состояние насыщения. При открывании транзистора выпрямленное напряжение поступает на акустический сигнализатор и приводит его в действие.
Звуковой сигнализатор перегрузки на транзисторе VT1 может быть встроен в любой другой источник питания.
Электронный предохранитель для цепей постоянного тока и, одновременно, стабилизатор напряжения [5.5] может быть выполнен по схеме, показанной на рис. 5.7. На первых двух транзисторах (VT1 и VT2) собран стабилизатор напряжения по традиционной схеме, однако параллельно стабилитрону VD1
цключен релейный каскад на транзисторах VT3 — VT5 с дат-сом тока на резисторе Rx. При увеличении сверх заданной эмы тока в нагрузке этот каскад сработает и зашунтирует ста-питрон. Напряжение на выходе стабилизатора упадет до не-(чительной величины.


5.7. Схема электронного предохранителя — стабилизатора напряжения постоянного тока

Для разблокировки схемы защиты достаточно кратковре—ю нажать кнопку SB1.
Использование автоматических выключателей нагрузки по-!яет предотвратить разряд элементов питания или защитить чник питания от перегрузки. Выполнять функции таймера и матически отключать нагрузку при коротком замыкании по-яет устройство по схеме на рис. 5.8 [5.6].
Автовыключатель нагрузки работает следующим образом, кратковременном нажатии кнопки SB1 конденсатор С1 заря-ся от источника питания через резистор R1. Одновременно атывает ключ (ключи) /ШО/7-коммутатора (DA1), обеспе-я тем самым включение мощного транзистора VT1. Если ключатель SA1 разомкнут, устройство работает по схеме ера. Конденсатор С1 разряжается через цепочку включен-1араллельно ему резисторов R3 и R2. Когда конденсатор С1 чдится, устройство самостоятельно отключится от источника <ия и отключит нагрузку.
При замкнутом переключателе SA1 таймер не работает. 7-коммутатор блокируется подачей на управляющий вход (входы) напряжения высокого уровня через диод VD2 и резисторы R4, R5. Схема защиты источника питания от короткого замыкания в нагрузке выполнена на транзисторе VT2 и работает следующим образом. При работе устройства в нормальном режиме транзистор VT2 закрыт и не влияет на функционирование других элементов схемы. При коротком замыкании в нагрузке ток через диод VD2 не протекает, транзистор VT2 оказывается подключенным к конденсатору С1, на его базу поступает отпирающее смещение через резисторы R5 и R6. Конденсатор С1 разряжается, и происходит отключение устройства. Резистор R4 ограничивает начальный бросок тока при разряде конденсатора С1.


Рис. 5.8. Схема автовыключателя нагрузки — таймера

При суммарном сопротивлении резисторов R2 и R3 100 кОм таймер обеспечивает выдержку в 1 сек, при суммарном сопротивлении 200 кОм — 2 сек, 300 кОм — 3 сек и т.д. до 33 сек. Увеличить время выдержки на один-два порядка можно увеличением номиналов R2, R3 и С1.
Максимальный ток нагрузки определяется типом используемого транзистора VT1 и наличием у него теплоотвода. Незадействованные ключи коммутатора можно подключить параллельно DA1.1 либо использовать в подобных взаимонезависимых схемах автовыключения нагрузки. Такое включение может быть использовано в схемах резервирования функций для обеспечения повышенной надежности работы устройств: выход из строя одного из сопротивлений нагрузки не вызовет отключения или повреждения других каналов. Переключатель SA2 может быть включен при
малых (до 10 мА на ключ) токах нагрузки. При токах нагрузки до 40 мА можно исключить из схемы транзистор VT1 . В этом случае все ключи /ШО/7-коммутатора DA1 должны быть соединены параллельно.
Устройство работает в диапазоне питающих напряжений 5… 15 В и даже при 4 б. Отключить устройство можно нажатием кнопки SB2. В отключенном состоянии оно потребляет ток до долей-единиц мкА.
Известно, что в последовательно соединенной цепи элементы аккумуляторной батареи, разряженные до напряжения ниже 1,1 В, из источника напряжения превращаются в своего рода дополнительную нагрузку для еще неразрядившихся элементов, вызывая резкое падение напряжения на выводах батареи аккумуляторов. Кроме снижения энергоемкости батареи аккумуляторов в целом, это может привести и к «повреждению отдельных ее элементов.


Рис. 5.9. Схема устройства автоматического отключения аккумуляторной батареи

Устройство [5.7], схема которого показана на рис. 5.9, предотвращает слишком глубокую разрядку элементов в батарее. Оно включается между аккумуляторной батареей и нагрузкой. Принцип действия основан на контроле напряжения на нагрузке. Когда оно снижается до уровня 1,1х пВ (где п — число элементов з аккумуляторной батарее) нагрузка и само устройство отклю-наются контактной группой реле, и ток через аккумуляторные элементы прекращается (если в самой батарее отсутствуют ка-<ие-либо неисправности).
При нажатии кнопки SB1 к источнику тока подключаются и нагрузка, и само контролирующее устройство. Напряжение на
инвертирующем входе микросхемы DA1 (вывод 2) определяется стабилитроном VD1 и составляет 3,9 В, а на неинвертирующем (вывод 3) — делителем напряжения на резисторах R1 и R2, причем при нормальном напряжении источника оно несколько выше, чем на инвертирующем входе. В таком состоянии на выходе микросхемы имеется высокий уровень напряжения — реле К1 включается, и его контакты К1.1 оставляют включенными нагрузку и контролирующее устройство даже при отпускании кнопки включения.
Когда напряжение на батарее упадет настолько, что его величина на неинвертирующем входе станет менее 3,9 6, на выходе микросхемы напряжение станет низким, и реле обесточится, разрывая цепь питания. Момент переключения зависит от напряжения на батарее аккумуляторов и величины сопротивления резистора R1, которое следует выбрать в соответствии с таблицей 5.1. Для ограничения базового тока транзистора между выходом микросхемы и базой следует включить резистор сопротивлением 1…10/Ю/И.

Таблица 5.1. Сопротивление резистора R1 при различном напряжении батареи

Напряжение батареи, В Сопротивление резистора, кОм
6,0
1,6
7,2 2,7
8,4 3,9
4,7
10,8 6,2
12,0 7,5

Данное устройство может давать ложные срабатывания, если к источнику питания подключают слишком мощную нагрузку, при которой напряжение батареи мгновенно «подсаживается». В этом случае отключение нагрузки еще не говорит о том, что элемент (элементы) батареи аккумуляторов разрядился до нижней допустимой границы. Повысить помехозащищенность
/стройства позволит подключение конденсаторов параллельно $ходам компаратора.
Зарядные устройства (ЗУ) обычно снабжены электронной ощитой от короткого замыкания на выходе [5.8]. Однако еще !стречаются простые ЗУ, состоящие из понижающего транс-рорматора и выпрямителя. В этом случае можно применить неложную электромеханическую защиту с использованием реле 1ли автоматических выключателей многократного действия (на-|ример, автоматические предохранители или АВМ в квартирных >лектросчетчиках) [5.8]. Быстродействие релейной защиты со-тавляет примерно 0,1 сек, а с использованием ABM — 1…3 сек.
Когда аккумулятор (или аккумуляторная батарея) соединен выходом устройства, реле К1 срабатывает и своими контактами 11.1 подключает ЗУ (рис. 5.10).


Рис. 5.10. Схема устройства защиты для зарядных устройств

При коротком замыкании выходное напряжение резко уменьится, обмотка реле будет обесточена, что приведет к размыка-ию контактов и отключению аккумулятора от ЗУ. Повторное ключение после устранения неисправности осуществляется кноп-эй SB1. Конденсатор С1, заряженный до выходного напряжения эшрямителя, подключается к обмотке реле. Резистор R1 огранивает импульс тока при ошибочном включении, когда короткое тыкание на выходе еще не устранено.
Резистор R2 ограничивает ток короткого замыкания. Его ожно не устанавливать, если диоды имеют запас по току. Сле-/ет помнить, что в этом случае выходное напряжение ЗУ долж-з быть больше на значение падения напряжения на резисторе 2 при номинальном зарядном токе. АВМ защищает при пере->узках по току, чего релейная защита выполнить не может.
Автоматический предохранитель (или выключатель) подключают последовательно с контактами реле. Сопротивление АВМ — около 0,4 Ом. В этом случае резистор R2 можно не включать.
Для ЗУ автомобильных аккумуляторных батарей необходимо выбрать реле на номинальное напряжение 12 Б с допустимым током через контакты не менее 20 А. Этим условиям удовлетворяет реле РЭН-34 ХП4.500.030-01, контакты которого следует включить параллельно. Для ЗУ с номинальным током до 1 А можно применить реле РЭС-22 РФ4.523.023-05.
Тиристорно-транзисторная схема защиты источника питания от короткого замыкания [5.9] показана на рис. 5.11. Схема работает следующим образом. При номинальном режиме тиристор отключен, транзисторы устройства, включенные по схеме Дарлингтона, находятся в состоянии насыщения, падение напряжения на них минимально (обычно единицы вольт). При возникновении короткого замыкания в нагрузке начинает протекать ток через управляющий переход тиристора VS1, происходит его включение. Открытый тиристор шунтирует цепь управления составного транзистора, ток через который снижается до минимума.


Рис. 5.11. Схема защиты источника питания от короткого замыкания

Светодиод HL1 индицирует наличие короткого замыкания в нагрузке.
Схема рассчитана на работу при больших токах, поэтому на самой схеме защиты падает довольно значительная часть напряжения питания и рассеивается, соответственно, большая мощность.
Устройство, описанное ниже, одновременно может выпол-ять роль стабилизатора постоянного и переменного тока боль-юй величины, защищать цепь нагрузки от короткого замыкания, ыполнять роль регулируемой активной нагрузки с предельной ощностью рассеяния сотни бг[5.10, 5.11].
Основой стабилизатора тока является токостабилизирую-(ий двухполюсник, схема которого приведена на рис. 5.12. Он эедставляет собой модифицированный источник тока, описанный работе [5.12]. Ток через канал полевого транзистора VT1 опреде-чется, преимущественно, напряжением U1 (рис. 5.12) и может эггь вычислен из выражения: I=U1/RM. Напряжение U1 является 1стыо напряжения +Е, приложенного к двухполюснику, а посколь-/ резистивный делитель R1/R2 обеспечивает прямо пропорцио-1льную зависимость между величинами U1 и +Е, то такое же ютношение будет наблюдаться между током I и напряжением +Е.


Рис. 5.12. Токостабилизирующий двухполюсник на основе дифференциального усилителя и полевого транзистора

Эквивалентное сопротивление двухполюсника можно пред-авить как: R3=E/l=ExRM/U1. В свою очередь U1=E*RM/(R1+R2).
Отсюда R3=RM+(R1XRM/R2) или R3=R|/,'<(1+R1/R2). Следова-пьно, ток через двухполюсник можно изменять, регулируя либо личину Ри, либо соотношение сопротивлений делителя R1/R2. in R1»R2 выражение для вычисления эквивалентного сопро-вления двухполюсника упростится: R3=RMxR1/R2.
Практическая схема узла активной нагрузки — стабилиза-эа постоянного тока — приведена в статье [5.10], а ниже, на с. 5.13 показана возможность использования этого схемного шения для стабилизации переменного тока [5.1 1].


Рис. 5.13. Стабилизатор переменного (и постоянного) тока с регулируемым током нагрузки от единиц мА до 8 А

Ток в цепи стабилизатора можно плавно регулировать поворотом ручки потенциометра R2 в пределах от нескольких мА до 8 А, причем максимальный ток нагрузки при необходимости можно увеличить еще на порядок, применив вентиляторы, радиаторы, нарастив количество параллельно задействованных полевых транзисторов.

lib.qrz.ru

Электронный предохранитель на полевом транзисторе. Схема и описание

Электронный предохранитель являются действенным способ позволяющий защитить всевозможные электронные приборы от перегрузок по току.

В основном электронные предохранители обязаны соответствовать следующим требованиям: они должны быть экономичными, простыми и в то же время надежными и иметь малые размеры. Для воплощения всех перечисленных требований как нельзя, кстати, подходят полевые транзисторы высокой мощности.

Принципиальная схема одного из вариантов подобного электронного предохранителя приводится в данной статье.

Описание работы электронного предохранителя

Данный электронный предохранитель подключается в разрыв цепи между источником питания и защищаемой нагрузкой. Схема обеспечивает защиту при напряжении 5…20 вольт при нагрузке, доходящей до 40 ампер.

На операционном усилителе LМ358 (DA1) построен компаратор, на вход 3 которого подается опорное напряжение со стабилизатора TL431 (DA2). Полевой транзистор VT1 воплощает сразу две функции: датчика тока и мощного электронного ключа. Как уже отмечалось выше, специфика электронного предохранителя заключается в применении сопротивления канала полевого транзистора в роле датчика тока.

 Ключевые характеристики используемого полевого транзистора

  •  предельная мощность рассеивания — 110 Вт.
  • сопротивление канала — 0,027 Ом.
  • максимальное напряжение сток-исток — 55 В.
  • предельный ток стока — 41 А.

Для активации предохранителя предназначена кнопка SA1 (без фиксации). При непродолжительном нажатии на ее, напряжение поступает на затвор полевого транзистора через сопротивление R4 и диод VD2. В результате этого транзистор подключает питание к  нагрузке.

Состояние на выходе операционного усилителя LМ358 связано с уровнем напряжения на его входе 2. Если ток, потребляемый нагрузкой, меньше установленного порога срабатывания электронного предохранителя, то напряжение на входе 2 компаратора будет ниже опорного напряжения на выводе 3. В результате на выходе 1 будет высокий уровень напряжения, который поддерживает транзистор в открытом состоянии.

Одновременно с ростом тока потребления, будет увеличиваться и напряжение на полевом транзисторе VT1. Когда данное напряжение превзойдет напряжение на сопротивлении R1, на выходе компаратора напряжение начнет снижаться, транзистор VT1 начнет закрываться с одновременным ростом напряжение на нем.

В связи с этим на выходе компаратора еще сильнее снижается напряжение, что в конечном итоге это приводит к мгновенному закрытию транзистора и обесточиванию нагрузки. Для повторной активации электронного предохранителя нужно повторно нажать кнопку SA1.

Необходимую величину тока срабатывания предохранителя подбирают подстроечным сопротивлением R1. В случае если контролируемое питание стабильно, то стабилизатор DA2 и сопротивление R3 можно убрать из схемы, установив на место R3 перемычку. Для надежного отключения контролируемой нагрузки при небольшом токе срабатывания (не более 1…1,5 ампер) надлежит повысить сопротивление датчика тока, подключив резистор около 0,1 Ом в электрическую цепь стока транзистора VT1 (точка «А» на схеме).

В схеме возможно использовать произвольный ОУ (DA1), который может работать при нулевом напряжении на обоих входах в режиме однополярного питания, а именно К1464УД1Р, КР1040УД1А, К1464УД1Т. Линейный стабилизатор DA2 может быть заменен на отечественный КР142ЕН19. Подстроечный резистор марки СПЗ-28, СПЗ-19а. Все постоянные резисторы С2-33, МЛТ. Не оксидный конденсатор С1 типа К10-17В

Источник: Радио, 6/2005

www.joyta.ru

Электронный предохранитель до 10 Ампер

категория

Схемы источников питания

материалы в категории

Во время налаживания или ремонта радиоэлектронной аппаратуры, питающейся непосредственно от электросети, из-за различного рода ошибок может возникнуть короткое замыкание. Для предотвращения повреждения аппаратуры этим явлением следует использовать электронный предохранитель. На рисунке ниже представлена принципиальная схема электронного предохранителя с высоким быстродействием, который рассчитан на ток потребления до 10 А.

При наличии тока в цепи более-10 А устройство автоматически срабатывает и нагрузка, подключенная к разъему Х2, обесточивается. При подключении электронного предохранителя к сети 220 В на его узел управления подается питающее напряжение — 12 В. Ток течет через резистор R6 и светоизлучатель оптрона U1, так как транзистор VT1 и тринистор VS2 закрыты.

В этот момент открывается фотодинистор оптрона и ток начинает течь через него и резистор R3. Напряжение, выпрямленное мостом VD1…VD4, подается на управляющий электрод тринистора VS1. После открытия тринистор VS1 замыкает диагональ моста и открывает путь сетевому напряжению к нагрузке. В момент превышения тока нагрузки или коротком замыкании в ее цепях падение напряжения на резисторе R10 приводит к открытию транзистора VT1 и тринистора VS2. Тринистор своим малым сопротивлением шунтирует цепь питания светоизлучающего оптрона, что приводит к закрытию фотодинистора оптрона и тринистора VS2. В результате происходит обесточивание нагрузки, о чем свидетельствует загорание светодиода HL1. Для включения электронного предохранителя служит кнопка SB1. В момент нажатия кнопки SB1, когда ее контакты замыкаются тринистор VS2 закрывается, но электронный предохранитель еще остается невключенным, так как цепь питания светоизлучающего оптрона зашунтирована. И лишь при отпускании кнопки, когда ее контакты размыкаются, сетевое напряжение подается на нагрузку. Такое построение схемы позволяет не допустить выхода из строя устройства, а также в случае попытки его включения при коротком замыкании.

Для необходимости ручного отключения нагрузки в электронном предохранителе имеется кнопка SB2. В устройстве могут быть использованы следующие радиодетали. Резистор R10 представляет отрезок провода ПЭВ-1 00,6 мм длиной 2 м, который намотан ha корпус мощного резистора. Все остальные резисторы типа MJIT, рассчитанные на мощность, указанную на схеме. Конденсатор С1 типа К73-17, а С2 и СЗ — К50-6. Диоды VD1…VD4, кроме указанных на схеме, могут быть серий Д232, Д233, Д247, КД203, КД206 и другие на U06p.max не менее 400 В. Вместо диодов КД209Б (VD5,VD6, VD8) подойдут диоды серии КД102, а стабилитрона Д814Д (VD7) можно применить— Д814Г, Д813, Д811, КС213 и другие с напряжением стабилизации 10…12 В. Тринистор КУ101 (VS2) использовать с любым буквенным индексом, КУ202 (VS1) — с индексами К…Н. Транзистор VT1 из серии КТ361, КТ209, КТ201, КТ502, КТ501, КТ3107 и подобные. Кнопки SB1 и SB2 типа П2К без фиксации. Тринисторы VS1 и диоды VD1…VD4 следует установить на плоских алюминиевых радиаторах размерами 50x80x5 мм. Основная часть деталей устройства монтируется на печатной плате размером 72×52 мм, вырезанной из одностороннего фольгиро-ванного стеклотекстолита. Плата размещается в корпусе, в котором на лицевой его стороне установлены кнопки SB1 и SB2, светодиод HL1 и розетка XI. Собранный правильно из исправных деталей электронный предохранитель в налаживании не нуждается. Для установки требуемого порога срабатывания устройства необходимо подобрать тринистор VS1 и резистор R10 исходя из того, что Ікз < Icp.max При этом сопротивление резистора R10 определяют из формулы:

Литература: В.М. Пестриков. Энциклопедия радиолюбителя.

radio-uchebnik.ru

Регулируемый электронный предохранитель | Все своими руками

Опубликовал admin | Дата 9 ноября, 2018

В статье рассматривается схема электронного предохранителя на большой ток нагрузки, до 30 ампер. В статье «Амперметр на микросхеме ACS712» была рассмотрена схема амперметра постоянного тока на основе модуля с микросхемой ACS712, в данной статье этот модуль будет использован в качестве датчика тока нагрузки для электронного предохранителя. Принципиальная схема электронного предохранителя показана на рисунке 1.

На схеме показан модуль, рассчитанный на ток нагрузки до пяти ампер. На AliExpress можно так же приобрести модули на ток 20 ампер и 30 ампер и использовать их в данной схеме. Но тогда транзистор VT1 IRL2505 следует заменить двумя такими же транзисторами. Хотя можно использовать и другие MOSFET. Напряжение питание данной схемы ограничено лишь максимальным напряжением питания микросхемы стабилизатора питания LM7805 – 35 вольт.

Работа схемы

После подачи напряжения на вход схемы появляется напряжение пять вольт на выходе стабилизатора напряжения питания микросхемы DA3 и модуля датчика тока DA2. На схеме нарисована микросхема одноименного модуля, а не сам модуль. Модуль имеет три вывода и конденсатор С2 находится на его плате. Появляется напряжение на выходе 7 микросхемы DA2 (Вывод Out модуля) примерно 2,5 В. Это напряжение подается на вход 2 компаратора, реализованного на операционном усилителе LM358N. На его инвертирующий вход, вывод 3 микросхемы DA3, подается опорное напряжение с резистивного регулируемого делителя R3 и R4. С помощью резистора R3 устанавливается порог срабатывания схемы по току. Это напряжение выставляется больше напряжения с выхода ACS712. Значит, при таком уровне напряжений на входах ОУ на его выходе будет присутствовать напряжение близкое к его напряжению питания. Это напряжение будет приложено к цепи светодиода оптрона U1. Вывод 1 DA3 — > вывод 1 U1 — > вывод 2 U1 — > гасящий резистор R2 — > общий провод. Светодиод оптрона засветится, что приведет к появлению открывающего для транзистора VT1 напряжения на его выходе в районе восьми вольт. Транзистор VT1 откроется и через модуль входное напряжение схемы практически полностью будет подано на ее выход. Диод VD1 будет закрыт положительным напряжением на его катоде, и ни какого влияния, в данном случае, оказывать на работу схемы компаратора не будет. В качестве этого диода можно использовать любой маломощный диод.

Модули датчиков тока, реализованных на микросхеме ACS712 и предназначенные для разных токов нагрузки в 5, 20 и тридцать ампер, имеют разные коэффициенты передачи преобразования ток – напряжение. Соответствующие коэффициенты составляют 185 мВ/А, 100 мВ/А и 66 мВ/A. Для пятиамперного датчика, указанного на схеме, выходное напряжение относительно 2,5 вольта, при токе 5А увеличится на 5 х 185 = 925мВ = 0,925 В. То есть общее выходное напряжение с датчика будет примерно 2,5 + 0,925 = 3,425 В. Пишу: примерно, потому, что у разных датчиков выходное напряжение при отсутствии тока нагрузки разное и не равно точно 2,5 вольта. И так, далее, когда напряжение на выходе датчика превысит установленное опорное напряжение на входе 3 микросхемы DA3, сработает компаратор и напряжение на его выходе будет практически равно нулю. Катод диода VD1 через внутренний выходной транзистор операционного усилителя будет подключен к общему проводу и зашунтирует собой на общий провод и опорное напряжение на неинвертирующем входе ОУ. Через открытый диод возникает положительная обратная связь. Возникает эффект «защелки». В таком положении компаратор может находиться сколь угодно долго. После снятия напряжения со светодиода оптрона пропадет и открывающее напряжение на затворе ключевого транзистора VT1. Транзистор закроется и обесточит нагрузку. Для восстановления работоспособности схемы необходимо снять с нее напряжение с последующей подачей.

Ключевые MOSFET транзисторы IRL2505 имеют очень маленькое сопротивление открытого канала, оно равно 0,008 Ом. Исходя из этого, при токе стока, равного десяти амперам, на кристалле транзистора выделится тепловая мощность, равная: P = I² • R = 100 • 0,008 = 0,8 Вт. Это говорит о том, что транзистор при данном токе может работать без дополнительного теплоотвода. Но я всегда советую ставить хоть небольшой теплоотвод в виде алюминиевой пластинки. Это убережет транзистор от теплового пробоя при аварийной ситуации.

На этом все. Успехов, удачи.

Скачать “Регулируемый-электронный-предохранитель” Регулируемый-электронный-предохранитель.rar – Загружено 1 раз – 128 KB

Обсудить эту статью на — форуме «Радиоэлектроника, вопросы и ответы».

Просмотров:857


www.kondratev-v.ru

ЭЛЕКТРОННЫЙ ПРЕДОХРАНИТЕЛЬ

ЭЛЕКТРОННЫЙ ПРЕДОХРАНИТЕЛЬ

И. АЛЕКСАНДРОВ, г. Курск

При налаживании различной радиоэлектронной аппаратуры желательно пользоваться блоком питания с встроенной и регулируемой электронной защитой по току нагрузки. Если имеющийся в вашем распоряжении блок не имеет такой защиты, ее можно выполнить в виде приставки, включаемой между выходными гнездами блока и нагрузкой. Таким образом, приставка-предохранитель в случае превышения заданного максимального тока нагрузки мгновенно отключит ее от блока питания.

Электронный предохранитель (см. рисунок) содержит мощный транзистор VT2, который включен в минусовый провод питания, два стабилизатора тока на полевых транзисторах — один регулируемый (на VT1), в другой — нерегулируемый (на VT3), и чувствительный элемент — тринистор VS1. Управляющее напряжение на тринистор поступает с датчика тока, в роли которого выступает резистор R1 весьма малого сопротивления (0,1 Ома), и с резистора R2. Данный тип тринистора включается при напряжении на управляющем электроде (относительно катода) 0,5…0,6 В.

Ток нагрузки создает падение напряжения на резисторе R1, которое для тринистора является открывающим. Кроме того, ток, протекающий через транзистор VT1 (его можно изменять переменным резистором R3), создает падение напряжения на резисторе R2, которое также будет открывающим для тринистора. Когда сумма этих напряжений достигнет определенного значения, тринистор откроется, напряжение на нем уменьшится до 0,7…0,8 В. Зажжется светодиод HL1 и просигнализирует об аварии. В то же время напряжение на светодиоде HL2 уменьшится настолько, что он погаснет. Транзистор VT2 закроется, и нагрузка окажется отключенной от блока питания.

Предохранитель работает так. В исходном состоянии через транзистор VT3 протекает ток примерно 8…15 мА, который остается почти неизменным при изменении выходного напряжения блока питания. Этот ток протекает через све-тодиод HL2 (он зажигается, сигнализируя о прохождении через устройство тока нагрузки) и цепь базы транзистора VT2, который открывается. Поскольку статический коэффициент передачи транзистора составляет несколько тысяч, он способен пропустить в нагрузку ток в несколько ампер. При этом падение напряжения на транзисторе не превысит 1 В.

Ток нагрузки, при котором будет срабатывать предохранитель, можно устанавливать переменным резистором R3 в пределах от нескольких десятков миллиампер до примерно 5 А.

После устранения неисправности в нагрузке электронный предохранитель приводят в исходное состояние кнопкой SB1, которая при замыкании ее контактов обесточивает тринистор, и он закрывается. Транзистор VT2 открывается, ток поступает в нагрузку.

В устройстве допустимо применить, кроме указанных на схеме, полевые транзисторы КП307А или аналогичные с начальным током стока 10… 15 мА и максимально допустимым напряжением не менее выходного напряжения блока питания. Транзистор VT2 может быть КТ829А— КТ829Г, КТ827А—КТ827В. При токе нагрузки более 1 А транзистор необходимо установить на

радиатор. Светодиоды — любые маломощные (АЛ307, АЛ341), но на месте HL1 лучше установить свето-диод красного свечения, а на месте HL2 — — зеленого. Тринистор -2У107А—2У107В. Переменный резистор — СПО, СП, СП4, постоянные — МЛТ, С2-33, резистор R1 изготавливают из отрезка высокоом-ного провода.

Налаживание устройства сводится к установке максимального тока срабатывания подбором сопротивления резистора R1 при отключенном от плюса питания стока транзистора VT1. Минимальный ток срабатывания подбирают подключением резистора R3 другого номинала. При этом допускается включение последовательно с ним или параллельно ему постоянного резистора.

Если при срабатывании предохранителя через транзистор VT2 все-таки протекает остаточный ток (транзистор не закрывается), рекомендуется применить светодиод HL2 с большим рабочим напряжением или включить последовательно с ним диод КД102Б, КД103Б, КД105Б, КД522Б.

От редакции. Если в блоке питания есть стабилизатор напряжения, предохранитель следует включать перед ним, а не на выходе блока.

Радио №2, 2000 г., с. 54.

www.radio-schemy.ru

0 comments on “Электронный предохранитель на 10 ампер – Электронный предохранитель для блока питания

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *