Схема классификации химических реакций – Химические реакции их классификация (Схема, Таблица)

Классификация химических реакций. Тепловой эффект химических реакций

На уроке будут рассмотрены классификация и тепловой эффект химических реакций.

Химическая реакция – это процесс, при котором из одних веществ получаются другие, отличающиеся от исходных веществ по составу или строению, по свойствам.

Существует несколько классификаций химических реакций, основанных либо на параметрах самих реакций, либо на свойствах участвующих веществ.

I. Классификация, основанная на агрегатном состоянии участвующих веществ

Реакция называется гомогенной (греч. «гомо-с» – одинаковый, «гениум» – рождать), т. е. одинаковый по рождению. Вещества, участвующие в реакции, находятся в одном агрегатном состоянии: газообразном, твердом или жидком. В понятие «жидкое агрегатное состояние» входят и растворы веществ. Но между веществами не должно быть границы раздела фаз.

Гомогенные реакции подразделяют на

· Газофазные

· Жидкостные

· Твердофазные

Реакция называется гетерогенной (греч. «гетеро-с» – разный), если вещества находятся в различных агрегатных состояниях (жидкое и твердое, несмешивающиеся жидкости или смеси твердых веществ)

Классификация по агрегатному состоянию участвующих веществ.

Гомогенные реакции Гетерогенные реакции
Газофазная Жидкостная

 II. Классификация по изменению состава веществ или не изменению состава вещества

Реакции, при которых не изменяется состав вещества:

 

Реакция изомеризации пропил бензола в изопропилбензол

Переход между аллотропными модификациями

(графит ↔ алмаз)

Табл. 2

Реакции, происходящие с изменением состава веществ подразделяются на

· соединения

· разложения

· замещения

· обмена

 

В органической химии реакции присоединения обозначаются как гидрирование, гидратация, галогенирование, гидрогалогенирование, полимеризация. Реакции разложения называют реакциями отщепления: дегидрирование, дегидратация, дегидрогалогенирование. Реакции замещения в органической химии – это галогенирование алканов, замещение гидроксила на галоген в спиртах, галогенирование бензола.

В отдельную группу выделяют реак

interneturok.ru

Классификация химических реакций в неорганической и органической химии » HimEge.ru

Классификацию  химических  реакций  в  неорганической и органической химии осуществляют на основании различных классифицирующих признаков, сведения о которых приведены в таблице ниже.

По изменению степени окисления  элементов

Первый признак классификации — по изменению степени окисления  элементов, образующих реагенты и продукты.
а) окислительно-восстановительные
б) без изменения степени окисления
Окислительно-восстановительными 

называют  реакции,  сопровождающиеся  изменением  степеней  окисления  химических  элементов, входящих в состав реагентов. К окислительно-восстановительным в неорганической химии относятся все реакции замещения и те реакции разло­жения и соединения, в которых участвует хотя бы одно прос­тое вещество. К реакциям, идущим без изменения степе­ней окисления элементов, образующих реагенты и продукты реакции, относятся все реакции обмена.

По числу и составу реагентов и продуктов 

Химические реакции классифицируются по характеру процесса, т.е по числу и составу реагентов и продуктов.

Реакциями соединения называют химические реакции, в результате которых сложные молекулы получаются из нескольких более простых, например:
4Li + O

2  = 2Li2O

Реакциями разложения называют химические реакции, в результате  которых  простые  молекулы  получаются  из  более  сложных,  например:
CaCO3  = CaO + CO2

Реакции разложения можно рассматривать как процессы, обратные соединению.

Реакциями замещения называют химические реакции, в результате которых атом или группа атомов в молекуле вещества замещается на другой атом или группу атомов, например:
Fe + 2HCl = FeCl2  + H2  

Их отличительный признак — взаимодействие простого вещества со сложным. Такие реакции есть и в органической химии.
Однако понятие «замещение» в органике шире, чем в неорганической химии. Если в молекуле исходного вещества какой-либо атом или функциональная группа заменяются на другой атом или группу, это тоже реакции замещения, хотя с точки зрения неорганической химии процесс выглядит как реакция обмена.

— обмена (в том числе и нейтрализации).
Реакциями обмена называют химические реакции, протекающие без изменения степеней окисления элементов и приводящие к обмену составных частей реагентов, например:
AgNO3  + KBr = AgBr + KNO3

 

По возможности протекать в обратном направлении

По возможности протекать в обратном направлении – обратимые и необратимые.

Обратимыми называют химические реакции, протекающие при данной температуре одновременно в двух противоположных направлениях с соизмеримыми скоростями. При записи уравнений таких реакций знак равенства заменяют противоположно направленными стрелками.  Простейшим примером обратимой реакции является синтез аммиака взаимодействием азота и водорода:

N2  +3H2↔2NH3

Необратимыми называют реакции, протекающие только в прямом направлении, в результате которых образуются продукты, не взаимодействующие между собой. К необратимым относят химические реакции, в результате которых образуются малодиссоциированные соединения, происходит выделение большого количества энергии, а также те, в которых конечные продукты уходят из сферы реакции в газообразном виде или в виде осадка, например:

HCl + NaOH = NaCl + h3O

2Ca + O2  = 2CaO

BaBr2  + Na2SO 4  = BaSO4↓ + 2NaBr

 По тепловому эффекту

Экзотермическими называют химические реакции, идущие с выделением теплоты. Условное обозначение изменения энтальпии (теплосодержания) ΔH, а теплового эффекта реакции Q. Для экзотермических реакций Q > 0, а ΔH < 0.

Эндотермическими называют химические реакции, идущие с поглощением теплоты. Для эндотермических реакций Q < 0, а ΔH > 0.

  Реакции соединения как правило будут реак­циями экзотермическими, а реакции разложения — эндотер­мическими. Редкое исключение — реакция азота с кислородом — эндотермиче­ская:
N2 + О2 → 2NO – Q

 По фазе

Гомогенными  называют  реакции,  протекающие  в  однородной среде (однородные вещества, в одной фазе, например г-г, реакции в растворах).

Гетерогенными  называют  реакции,  протекающие  в  неоднородной  среде,  на  поверхности  соприкосновения  реагирующих  веществ,  находящихся  в  разных  фазах,  например,  твердой  и  газообразной,  жидкой  и  газообразной,  в  двух  несмешивающихся  жидкостях.

По использованию катализатора

Катализатор – вещество ускоряющее химическую реакцию.

Каталитические реакции протекают только в присутствии катализатора (в том числе и ферментативные).

Некаталитические реакции идут в отсутствие катализатора.

 По типу разрыва связей

По  типу  разрыва  химической  связи  в  исходной  молекуле  различают гомолитические и гетеролитические реакции.

Гомолитическими называются реакции, при которых в результате разрыва связей образуются частицы, имеющие неспаренный электрон — свободные радикалы.

Гетеролитическими называют реакции, протекающие через образование ионных частиц — катионов и анионов.

  • гомолитические (равный разрыв, каждый атом по 1 электрону получает)
  • гетеролитический (неравный разрыв – одному достается пара электронов)

Радикальными  (цепными)  называют химические реакции  с  участием радикалов, например:

CH4  + Cl2hv →CH3Cl + HCl

Ионными называют химические реакции, протекающие с участием ионов, например:

KCl + AgNO3  = KNO3  + AgCl↓

Электрофильными называют гетеролитические реакции органических соединений с электрофилами — частицами, несущими целый или дробный положительный заряд. Они подразделяются на реакции электрофильного  замещения  и  электрофильного  присоединения,  например:

C6H6  + Cl2FeCl3→ C 6 H 5 Cl + HCl

H2C =CH2  + Br2 →   BrCH

2 –CH2Br

Нуклеофильными называют гетеролитические реакции органических соединений с нуклеофилами — частицами, несущими целый или дробный отрицательный заряд. Они подразделяются на реакции нуклеофильного замещения и нуклеофильного присоединения, например:

CH3Br + NaOH →  CH3OH + NaBr

CH3C(O)H + C2H5OH  → CH3CH(OC2H5)2  + H2O

Классификация органических реакций

Классификация органических реакций приведена в таблице:

Таблицы по теме «Типы химических реакций»

  

himege.ru

Классификация химических реакций

Химические реакции следует отличать от ядерных реакций. В результате химических реакций общее число атомов каждого химического элемента и его изотопный состав не меняются. Иное дело ядерные реакции — процессы превращения атомных ядер в результате их взаимодействия с другими ядрами или элементарными частицами, например превращение алюминия в магний:

2713Аl + 11Н = 2412Мg + 42Не 

Классификация химических реакций многопланова, то есть в ее основу могут быть положены различные признаки. Но под любой из таких признаков могут быть отнесены реакции как между неорганическими, так и между органическими веществами.

Рассмотрим классификацию химических реакций по различным признакам.

Реакции, идущие без изменения состава веществ.

В неорганической химии к таким реакциям можно отнести процессы получения аллотропных модификаций одного химического элемента, например:

С (графит) ↔ С (алмаз)
S (ромбическая) ↔ S (моноклинная)
Р (белый) ↔ Р (красный)
Sn (белое олово) ↔ Sn (серое олово)
3O2 (кислород) ↔ 2O3 (озон)

В органической химии к этому типу реакций могут быть отнесены реакции изомеризации, которые идут без изменения не только качественного, но и количественного состава молекул веществ, например:

1. Изомеризация алканов.

Реакция изомеризации алканов имеет большое практическое значение, так как углеводороды изостроения обладают меньшей способностью к детонации.

2. Изомеризация алкенов.

3. Изомеризация алкинов (реакция А. Е. Фаворского).

CH3— CH2— С= — СН ↔ СН3— С= — С- СН3

этилацетилен диметнлацетилен

4. Изомеризация галогеналканов (А. Е. Фаворский, 1907 г.).

5. Изомеризация цианита аммония при нагревании.

Впервые мочевина была синтезирована Ф. Велером в 1828 г. изомеризацией цианата аммония при нагревании.

Можно выделить четыре типа таких реакций: соединения, разложения, замещения и обмена.

1. Реакции соединения — это такие реакции, при которых из двух и более веществ образуется одно сложное вещество

В неорганической химии все многообразие реакций соединения можно рассмотреть, например, на примере реакций получения серной кислоты из серы:

1. Получение оксида серы (IV):

S + O2 = SO — из двух простых веществ образуется одно сложное.

2. Получение оксида серы (VI):

SO2 + 02 → 2SO3 — из простого и сложного веществ образуется одно сложное.

3. Получение серной кислоты:

SO3 + Н2O = Н2SO4 — из двух сложных веществ образуется одно сложное.

Примером реакции соединения, при которой одно сложное вещество образуется из более чем двух исходных, может служить заключительная стадия получения азотной кислоты:

4NО2 + O2 + 2Н2O = 4НNO3 

В органической химии реакции соединения принято называть «реакциями присоединения». Все многообразие таких реакций можно рассмотреть на примере блока реакций, характеризующих свойства непредельных веществ, например этилена:

1. Реакция гидрирования — присоединения водорода:

CH2=CH2 + Н2 → Н3-СН3

этен → этан

2. Реакция гидратации — присоединения воды.

3. Реакция полимеризации.

2. Реакции разложения — это такие реакции, при которых из одного сложного вещества образуется несколько новых веществ.

В неорганической химии все многообразие таких реакций можно рассмотреть на блоке реакций получения кислорода лабораторными способами:

1. Разложение оксида ртути(II) — из одного сложного вещества образуются два простых.

2. Разложение нитрата калия — из одного сложного вещества образуются одно простое и одно сложное.

3. Разложение перманганата калия — из одного сложного вещества образуются два сложных и одно простое, то есть три новых вещества.

В органической химии реакции разложения можно рассмотреть на блоке реакций получения этилена в лаборатории и в промышленности:

1. Реакция дегидратации (отщепления воды) этанола:

С2H5OH → CH2=CH2 + H2O

2. Реакция дегидрирования (отщепление водорода) этана:

CH3-CH3 → CH2=CH2 + H2

или СН3-СН3 → 2С + ЗН2

3. Реакция крекинга (расщепления) пропана:

CH3-СН2-СН3 → СН2=СН2 + СН4

3. Реакции замещения — это такие реакции, в результате которых атомы простого вещества замещают атомы какого-нибудь элемента в сложном веществе.

В неорганической химии примером таких процессов может служить блок реакций, характеризующих свойства, например, металлов:

1. Взаимодействие щелочных или щелочноземельных металлов с водой:

2Na + 2Н2O = 2NаОН + Н2

2. Взаимодействие металлов с кислотами в растворе:

Zn + 2НСl = ZnСl2 + Н2

3. Взаимодействие металлов с солями в растворе:

Fе + СuSO4 = FеSO4 + Сu

4. Металлотермия:

2Аl + Сr2O3 → Аl2O3 + 2Сr

Предметом изучения органической химии являются не простые вещества, а только соединения. Поэтому как пример реакции замещения приведем наиболее характерное свойство предельных соединений, в частности метана, — способность его атомов водорода замещаться на атомы галогена. Другой пример — бромирование ароматического соединения (бензола, толуола, анилина).

FеВr3

С6Н6 + Вr2 → С6Н5Вr + НВr

бензол → бромбензол

Обратим внимание на особенность реакции замещения у органических веществ: в результате таких реакций образуются не простое и сложное вещество, как в неорганической химии, а два сложных вещества.

В органической химии к реакциям замещения относят и некоторые реакции между двумя сложными веществами, например нитрование бензола. Она формально является реакцией обмена. То, что это реакция замещения, становится понятным только при рассмотрении ее механизма. 

4. Реакции обмена — это такие реакции, при которых два сложных вещества обмениваются своими составными частями

Эти реакции характеризуют свойства электролитов и в растворах протекают по правилу Бертолле, то есть только в том случае, если в результате образуется осадок, газ или малодиссоциирующее вещество (например, Н2O).

В неорганической химии это может быть блок реакций, характеризующих, например, свойства щелочей:

1. Реакция нейтрализации, идущая с образованием соли и воды.

2. Реакция между щелочью и солью, идущая с образованием газа.

3. Реакция между щелочью и солью, идущая с образованием осадка:

СuSO4 + 2КОН = Сu(ОН)2 + К2SO4

или в ионном виде:

Сu2+ + 2OН = Сu(ОН)2

В органической химии можно рассмотреть блок реакций, характеризующих, например, свойства уксусной кислоты:

1. Реакция, идущая с образованием слабого электролита — Н2O:

СН3СООН + NаОН → Nа(СН3СОО) + Н2O

2. Реакция, идущая с образованием газа:

2СН3СООН + СаСO3 → 2СН3СОО + Са2+ + СO2 + Н2O

3. Реакция, идущая с образованием осадка:

2СН3СООН + К2SO3 → 2К(СН3СОО) + Н2SO3

или

2СН3СООН +SiO → 2СН3СОО + Н2SiO3

По этому признаку различают следующие реакции:

1. Реакции, идущие с изменением степеней окисления элементов, или окислительно-восстановительные реакции.

К ним относится множество реакций, в том числе все реакции замещения, а также те реакции соединения и разложения, в которых участвует хотя бы одно простое вещество, например:

1. Mg0 + H+2SO4 = Mg+2SO4 + H2

2. 2Mg0 + O02 = Mg+2O-2

Сложные окислительно-восстановительные реакции составляются с помощью метода электронного баланса.

2KMn+7O4 + 16HCl = 2KCl + 2Mn+2Cl2 + 5Cl02↑ + 8H2O

В органической химии ярким примером окислительно-восстановительных реакций могут служить свойства альдегидов.

1. Они восстанавливаются в соответствующие спирты:

Альдекиды окисляются в соответствующие кислоты:

2. Реакции, идущие без изменения степеней окисления химических элементов.

К ним, например, относятся все реакции ионного обмена, а также многие реакции соединения, многие реакции разложения, реакции этерификации:

НСООН + CHgOH = НСООСН3 + H2O

По тепловому эффекту реакции делят на экзотермические и эндотермические.

1. Экзотермические реакции протекают с выделением энергии.

К ним относятся почти все реакции соединения. Редкое исключение составляют эндотермические реакции синтеза оксида азота(II) из азота и кислорода и реакция газообразного водорода с твердым иодом.

Экзотермические реакции, которые протекают с выделением света, относят к реакциям горения. Гидрирование этилена — пример экзотермической реакции. Она идет при комнатной температуре.

2. Эндотермические реакции протекают с поглощением энергии.

Очевидно, что к ним будут относиться почти все реакции разложения, например:

1. Обжиг известняка

2. Крекинг бутана

Количество выделенной или поглощенной в результате реакции энергии называют тепловым эффектом реакции, а уравнение химической реакции с указанием этого эффекта называют термохимическим уравнением:

Н2(г) + С12(г) = 2НС1(г) + 92,3 кДж

N2(г) + O2(г) = 2NO(г) — 90,4 кДж 

По агрегатному состоянию реагирующих веществ различают:

1. Гетерогенные реакции — реакции, в которых реагирующие вещества и продукты реакции находятся в разных агрегатных состояниях (в разных фазах).

2. Гомогенные реакции — реакции, в которых реагирующие вещества и продукты реакции находятся в одном агрегатном состоянии (в одной фазе).

По участию катализатора различают:

1. Некаталитические реакции, идущие без участия катализатора.

2. Каталитические реакции , идущие с участием катализатора. Так как все биохимические реакции, протекающие в клетках живых организмов, идут с участием особых биологических катализаторов белковой природы — ферментов, все они относятся к каталитическим или, точнее, ферментативным. Следует отметить, что более 70% химических производств используют катализаторы.

По направлению различают:

1. Необратимые реакции протекают в данных условиях только в одном направлении. К ним можно отнести все реакции обмена, сопровождающиеся образованием осадка, газа или малодиссоциирующего вещества (воды) и все реакции горения.

2. Обратимые реакции в данных условиях протекают одновременно в двух противоположных направлениях. Таких реакций подавляющее большинство.

В органической химии признак обратимости отражают названия — антонимы процессов:

• гидрирование — дегидрирование,

• гидратация — дегидратация,

• полимеризация — деполимеризация.

Обратимы все реакции этерификации (противоположный процесс, как вы знаете, носит название гидролиза) и гидролиза белков, сложных эфиров, углеводов, полинуклеотидов. Обратимость этих процессов лежит в основе важнейшего свойства живого организма — обмена веществ.

1. Радикальные реакции идут между образующимися в ходе реакции радикалами и молекулами.

Как вы уже знаете, при всех реакциях происходит разрыв старых и образование новых химических связей. Способ разрыва связи в молекулах исходного вещества определяет механизм (путь) реакции. Если вещество образовано за счет ковалентной связи, то могут быть два способа разрыва этой связи: гемолитический и гетеролитический. Например, для молекул Сl2, СН4 и т. д. реализуется гемолитический разрыв связей, он приведет к образованию частиц с неспаренными электронами, то есть свободных радикалов.

Радикалы чаще всего образуются, когда разрываются связи, при которых общие электронные пары распределены между атомами примерно одинаково (неполярная ковалентная связь), однако многие полярные связи также могут разрываться подобным же образом, в частности тогда, когда реакция проходит в газовой фазе и под действием света, как, например, в случае рассмотренных выше процессов — взаимодействия С12 и СН4. Радикалы очень реакционноспособны, так как стремятся завершить свой электронный слой, забрав электрон у другого атома или молекулы. Например, когда радикал хлора сталкивается с молекулой водорода, то он вызывает разрыв общей электронной пары, связывающей атомы водорода, и образует ковалентную связь с одним из атомов водорода. Второй атом водорода, став радикалом, образует общую электронную пару с неспаренным электроном атома хлора из разрушающейся молекулы Сl2, в результате чего возникает радикал хлора, который атакует новую молекулу водорода и т. д 

Реакции, представляющие собой цепь последовательных превращений, называют цепными реакциями. За разработку теории цепных реакций два выдающихся химика — наш соотечественник Н. Н. Семенов и англичанин С. А. Хиншелвуд были удостоены Нобелевской премии.
Аналогично протекает и реакция замещения между хлором и метаном:

По радикальному механизму протекают большинство реакций горения органических и неорганических веществ, синтез воды, аммиака, полимеризация этилена, винилхлорида и др.

Типичные ионные реакции — это взаимодействие между электролитами в растворе. Ионы образуются не только при диссоциации электролитов в растворах, но и под действием электрических разрядов, нагревания или излучений. γ-Лучи, например, превращают молекулы воды и метана в молекулярные ионы.

По другому ионному механизму происходят реакции присоединения к алкенам галогеноводородов, водорода, галогенов, окисление и дегидратация спиртов, замещение спиртового гидроксила на галоген; реакции, характеризующие свойства альдегидов и кислот. Ионы в этом случае образуются при гетеролитическом разрыве ковалентных полярных связей.

инициирующей реакцию, различают:

1. Фотохимические реакции. Их инициирует световая энергия. Кроме рассмотренных выше фотохимических процессов синтеза НСl или реакции метана с хлором, к ним можно отнести получение озона в тропосфере как вторичного загрязнителя атмосферы. В роли первичного в этом случае выступает оксид азота(IV), который под действием света образует радикалы кислорода. Эти радикалы взаимодействуют с молекулами кислорода, в результате чего получается озон.

Образование озона идет все время, пока достаточно света, так как NO может взаимодействовать с молекулами кислорода с образованием того же NO2. Накопление озона и других вторичных загрязнителей атмосферы может привести к появлению фотохимического смога.

К этому виду реакций принадлежит и важнейший процесс, протекающий в растительных клетках, — фотосинтез, название которого говорит само за себя.

2. Радиационные реакции. Они инициируются излучениями большой энергии — рентгеновскими лучами, ядерными излучениями (γ-лучами, а-частицами — Не2+ и др.). С помощью радиационных реакций проводят очень быструю радиополимеризацию, радиолиз (радиационное разложение) и т. д.

Например, вместо двухстадийного получения фенола из бензола его можно получать взаимодействием бензола с водой под действием радиационных излучений. При этом из молекул воды образуются радикалы [•OН] и [•H•], с которыми и реагирует бензол с образованием фенола:

С6Н6 + 2[ОН] → С6Н5ОН + Н2O

Вулканизация каучука может быть проведена без серы с использованием радиовулканизации, и полученная резина будет ничуть не хуже традиционной.

3. Электрохимические реакции. Их инициирует электрический ток. Помимо хорошо известных вам реакций электролиза укажем также реакции электросинтеза, например, реакции промышленного получения неорганических окислителей

4. Термохимические реакции. Их инициирует тепловая энергия. К ним относятся все эндотермические реакции и множество экзотермических реакций, для начала которых необходима первоначальная подача теплоты, то есть инициирование процесса.

Рассмотренная выше классификация химических реакций отражена на схеме.

Классификация химических реакций, как и все другие классификации, условна. Ученые договорились разделить реакции на определенные типы по выделенным ими признакам. Но большинство химических превращений можно отнести к разным типам. Например, составим характеристику процесса синтеза аммиака.

Это реакция соединения, окислительно-восстановительная, экзотермическая, обратимая, каталитическая, гетерогенная (точнее, гетерогенно-каталитическая), протекающая с уменьшением давления в системе. Для успешного управления процессом необходимо учитывать все приведенные сведения. Конкретная химическая реакция всегда многокачественна, ее характеризуют разные признаки.

examchemistry.com

Классификация химических реакций, с примерами

Наиболее часто под химическими реакциями понимают процесс превращения исходных веществ (реагентов) в конечные вещества (продукты).

Химические реакции записываются с помощью химических уравнений, содержащих формулы исходных веществ и продуктов реакции. Согласно закону сохранения массы, число атомов каждого элемента в левой и правой частях химического уравнения одинаково. Обычно формулы исходных веществ записывают в левой части уравнения, а формулы продуктов – в правой. Равенство числа атомов каждого элемента в левой и правой частях уравнения достигается расстановкой перед формулами веществ целочисленных стехиометрических коэффициентов.

Химические уравнения могут содержать дополнительные сведения об особенностях протекания реакции: температура, давление, излучение и т.д., что указывается соответствующим символом над (или «под») знаком равенства.

Все химические реакции могут быть сгруппированы в несколько классов, которым присущи определенные признаки.

Классификация химических реакций по числу и составу исходных и образующихся веществ

Согласно этой классификации, химические реакции подразделяются на реакции соединения, разложения, замещения, обмена.

В результате реакций соединения из двух или более (сложных или простых) веществ образуется одно новое вещество. В общем виде уравнение такой химической реакции будет выглядеть следующим образом:

A + B (+D) = C

Например:

СаСО3 + СО2 + Н2О = Са(НСО3)2

SO3 + H2O = H2SO4

2Mg + O2 = 2MgO.

2FеСl2 + Сl2 = 2FеСl3

Реакции соединения в большинстве случаев экзотермические, т.е. протекают с выделением тепла. Если в реакции участвуют простые вещества, то такие реакции чаще всего являются окислительно-восстановительными (ОВР), т.е. протекают с изменением степеней окисления элементов. Однозначно сказать будет ли реакция соединения между сложными веществами относиться к ОВР нельзя.

Реакции, в результате которых из одного сложного вещества образуется несколько других новых веществ (сложных или простых) относят к реакциям разложения. В общем виде уравнение химической реакции разложения будет выглядеть следующим образом:

A= B+ C + D

Например:

CaCO3CaO + CO2 ↑ (1)

2H2O =2H2 ↑+ O2 (2)

CuSO4 × 5H2O = CuSO4 + 5H2O (3)

Cu(OH)2 = CuO + H2O (4)

H2SiO3 = SiO2 + H2O (5)

2SO3 =2SO2 + O2 ↑ (6)

(NH4)2Cr2O7 = Cr2O3 + N2↑ +4H2O (7)

Большинство реакций разложения протекает при нагревании (1,4,5). Возможно разложение под действием электрического тока (2). Разложение кристаллогидратов, кислот, оснований и солей кислородсодержащих кислот (1, 3, 4, 5, 7) протекает без изменения степеней окисления элементов, т.е. эти реакции не относятся к ОВР. К ОВР реакциям разложения относится разложение оксидов, кислот и солей, образованных элементами в высших степенях окисления (6).

Реакции разложения встречаются и в органической химии, но под другими названиями — крекинг (8), дегидрирование (9):

С18H38 = С9H18 + С9H20 (8)

C4H10 = C4H6 + 2H2 ↑ (9)

При реакциях замещения простое вещество взаимодействует со сложным, образуя новое простое и новое сложное вещество. В общем виде уравнение химической реакции замещения будет выглядеть следующим образом:

A + BC = AB + C

Например:

2Аl + Fe2O3 = 2Fе + Аl2О3 (1)

Zn + 2НСl = ZnСl2 + Н2 (2)

2КВr + Сl2 = 2КСl + Вr2 (3)

2КСlO3 + l2 = 2KlO3 + Сl2 (4)

СаСО3+ SiO2 = СаSiO3 + СО2 (5)

Са3(РО4)2 + ЗSiO2 = ЗСаSiO3 + Р2О5 (6)

СН4 + Сl2 = СН3Сl + НСl (7)

Реакции замещения в своем большинстве являются окислительно-восстановительными (1 – 4, 7). Примеры реакций разложения, в которых не происходит изменения степеней окисления немногочисленны (5, 6).

Реакциями обмена называют реакции, протекающие между сложными веществами, при которых они обмениваются своими составными частями. Обычно этот термин применяют для реакций с участием ионов, находящихся в водном растворе. В общем виде уравнение химической реакции обмена будет выглядеть следующим образом:

АВ + СD = АD + СВ

Например:

CuO + 2HCl = CuCl2 + H2O (1)

NaOH + HCl = NaCl + H2O (2)

NаНСО3 + НСl = NаСl + Н2О + СО2↑ (3)

AgNО3 + КВr = АgВr ↓ + КNО3 (4)

СrСl3 + ЗNаОН = Сr(ОН)3 ↓+ ЗNаСl (5)

Реакции обмена не являются окислительно-восстановительными. Частный случай этих реакций обмена -реакции нейтрализации (реакции взаимодействия кислот со щелочами) (2). Реакции обмена протекают в том направлении, где хотя бы одно из веществ удаляется из сферы реакции в виде газообразного вещества (3), осадка (4, 5) или малодиссоциирующего соединения, чаще всего воды (1, 2).

Классификация химических реакций по изменениям степеней окисления

В зависимости от изменения степеней окисления элементов, входящих в состав реагентов и продуктов реакции все химические реакции подразделяются на окислительно-восстановительные (1, 2) и, протекающие без изменения степени окисления (3, 4).

2Mg + CO2 = 2MgO + C (1)

Mg0 – 2e = Mg2+ (восстановитель)

С4+ + 4e = C0 (окислитель)

FeS2 + 8HNO3(конц) = Fe(NO3)3 + 5NO↑ + 2H2SO4 + 2H2O (2)

Fe2+ -e = Fe3+ (восстановитель)

N5+ +3e = N2+ (окислитель)

AgNO3 +HCl = AgCl ↓ + HNO3 (3)

Ca(OH)2 + H2SO4 = CaSO4 ↓ + H2O (4)

Классификация химических реакций по тепловому эффекту

В зависимости от того, выделяется ли или поглощается тепло (энергия) в ходе реакции, все химические реакции условно разделяют на экзо – (1, 2) и эндотермические (3), соответственно. Количество тепла (энергии), выделившееся или поглотившееся в ходе реакции называют тепловым эффектом реакции. Если в уравнении указано количество выделившейся или поглощенной теплоты, то такие уравнения называются термохимическими.

N2 + 3H2 = 2NH3 +46,2 кДж (1)

2Mg + O2 = 2MgO + 602, 5 кДж (2)

N2 + O2 = 2NO – 90,4 кДж (3)

Классификация химических реакций по направлению протекания реакции

По направлению протекания реакции различают обратимые (химические процессы, продукты которых способны реагировать друг с другом в тех же условиях, в которых они получены, с образованием исходных веществ) и необратимые (химические процессы, продукты которых не способны реагировать друг с другом с образованием исходных веществ).

Для обратимых реакций уравнение в общем виде принято записывать следующим образом:

А + В ↔ АВ

Например:

СН3СООН + С2Н5ОН↔ Н3СООС2Н5+ Н2О

Примерами необратимых реакций может служить следующие реакции:

2КСlО3 → 2КСl + ЗО2

С6Н12О6 + 6О2 → 6СО2↑+ 6Н2О

Свидетельством необратимости реакции может служить выделение в качестве продуктов реакции газообразного вещества, осадка или малодиссоциирующего соединения, чаще всего воды.

Классификация химических реакций по наличию катализатора

С этой точи зрения выделяют каталитические и некаталитические реакции.

Катализатором называют вещество, ускоряющее ход химической реакции. Реакции, протекающие с участием катализаторов, называются каталитическими. Протекание некоторых реакций вообще невозможно без присутствия катализатора:

2H2O2 = 2H2O + O2 ↑ (катализатор MnO2)

Нередко один из продуктов реакции служит катализатором, ускоряющим эту реакцию (автокаталитические реакции):

MeO+ 2HF = MeF2 + H2O, где Ме – металл.

Примеры решения задач

ru.solverbook.com

Схема классификация химических реакций. Классификация химических реакций по различным признакам

Лекция 2.

Химические реакции. Классификация химических реакций.

Окислительно-восстановительные реакции

Вещества, взаимодействуя друг с другом подвергаются различным изменениям и превращениям. Например, уголь, сгорая образует углекислый газ. Бериллий, взаимодействуя с кислородом воздуха превращается в оксид бериллия.

Явления, при которых одни вещества превращаются в другие, отличающихся от исходных составом и свойствами и при этом не происходит изменения состава ядер атомов называются химическими . Окисление железа, горение, получение металлов из руд ­ – все это химические явления.

Следует различать химические и физические явления.

При физических явлениях изменяется форма или физическое состояние вещества или образуются новые вещества за счет изменения состава ядер атомов . Например, при взаимодействии газообразного аммиакам с жидким азотом, аммиак переходит вначале в жидкое, а затем в твердое состояние. Это не химическое, а физическое явление, т.к. состав вещества не меняется. Некоторые явления, приводящие к образованию. Новых веществ относятся к физическим. Таковы например, ядерные реакции в результате которых из ядер одних элементов образуются атомы других.

Физические явления, т.к. и химические широко распространены: протекание электрического тока по металлическому проводнику, ковка и плаваление металла, выделение теплоты, превращение воды в лед или пар. И т.д.

Химические явления всегда сопровождаются физическими. Например, при сгорании магния выделяется теплота и свет, в гальваническом элементе в результате химической реакции возникает электрический ток.

В соответствии с атомно-молекулярным учением и законом сохранения массы вещества из атомов вступивших в реакцию веществ, образуются новые вещества как простые так и сложные, причем общее число атомов каждого элемента всегда остается постоянным.

Химические явления возникают благодаря протеканию химических реакций.

Химические реакции классифицируют по различным признакам.

1.По признаку выделения или поглощения теплоты. Реакции, протекающие с выделением теплоты называются экзотермическими. Например, реакция образования хлористого водорода из водорода и хлора:

Н 2 +СI 2 =2HCI+184,6 кДж

Реакции, протекающие с поглощением теплоты из окружающей среды, называются эндотермическими. Например, реакция образования оксида азота (II) из азота и кислорода, которая протекает при высокой температуре:

N 2 +O 2 =2NO – 180,8кДж

Количество, выделенной или поглощенной в результате реакции теплоты называют тепловым эффектом реакции. Раздел химии, изучающий тепловые эффекты химических реакций называется термохимией. Об этом мы подробно поговорим при изучении раздела «Энергетика химических реакций».

2. По признаку изменения числа исходных и конечных веществ реакции подразделяют на следующие типы: соединения, разложения и обмена .

Реакции в результате которых из двух или нескольких веществ образуется одно новое вещество называются реакциями соединения :

Например, взаимодействие хлористого водорода с аммиаком:

HCI + NH 3 = NH 4 CI

Или горение магния:

2Mg + O2 = 2MgO

Реакции в результате которых из одного вещества образуется несколько новых веществ называются реакциями разложения .

Например реакция разложения иодида водорода

2HI = H 2 + I 2

Или разложение перманганата калия:

2KmnO 4 = K2mnO 4 + mnO 2 + O 2

Реакции между простыми и сложными веществами, в результате которых атомы простого вещества замещаю

2s5.ru

Классификация химических реакций. 11-й класс

На первом уроке составляем таблицу по двум параграфам. В конце урока- тренировочный тест, при выполнении которого ученикам разрешено пользоваться таблицей. На втором уроке - закрепление: решение задач, выполнение тестовых заданий и т.д.

Таблица «Типы химических реакций»

При заполнении таблицы следует сразу обговорить с учениками некоторые правила заполнения:

1) при записи определения типа химической реакции будем опускать следующие слова «это такие реакции, которые или в результате которых»;

2) при рассмотрении реакций органической химии будем писать «в органической химии:»

Тип реакции Определение Пример
Реакции, идущие без изменения состава веществ
1. Процессы превращения различных аллотропных модификаций одного химического элемента (явление аллотропии) Способность атомов одного химического элемента образовывать несколько простых веществ.       to
Ркр. = Рбел.,

        to
Sмн. ->Sпл.

2. Реакции изомеризации Реакции взаимопревращения изомеров. н-гептан -> 2,2,3-метилбутан
Реакции, идущие с изменением состава веществ
3.Реакции соединения Из двух или более простых или сложных веществ, получается одно сложное вещество.

(В органической химии: реакции галогенирования, гидрогалогени-рования, гидратации, гидрирования, полимеризации)

СаО + СО2 = СаСО3

2 + О2 = 2Н2О

кат.

СН2=СН2 + Н2 -> СН3-СН3

СН2=СН2 + Cl2 -> СН2Cl-СН2Cl

СН2=СН2 + НCl -> СН3-СН2Cl

СН2=СН2 + Н2O -> СН3-СН2-OH

n(СН2=СН2) -> (-СН2-СН2-) n

4. Реакции разложения Из одного сложного вещества получается два или более простых или сложных веществ.

(В органической химии: реакции дегидратации, дегидрирования, дегалогенирования и дегидрогалогенирования.)

2КMnO4 = K2MnO4 + MnO2 + O2

2H2O = 2H2 + O2

СН3-СН2Cl -> СН2=СН2 + НCl

5. Реакции замещения Атомы простого вещества замещают атомы одного из химических элементов в сложном веществе. Zn + 2HCl = ZnCl2 + H2
6. Реакции обмена Сложные вещества обмениваются своими составными частями.

(В органической химии - реакция этерификации)

1) NaOH + HCl = NaCl + H2O — реакция нейтрализации

2) BaCl2 + Na2SO4 = 2NaCl + BaSO4v

HCOOH+CH3OH > HCOOCH3+H2O

Реакции, идущие с выделением или поглощением тепла
7.Экзотермические реакции Идут с выделением тепла. S + O2 = SO2 +Q
8.Эндотермические реакции Идут с поглощением тепла. N2 + O2 = 2NO — Q
Реакции, идущие в присутствии или отсутствии катализатора
9. Каталитические Протекают с участием катализатора. MnO2

2H2O2 = 2H2O + O2

10. Некаталитические Протекают без участия катализатора. 2Ca + O2 = 2CaO
Реакции, идущие с изменением степени окисления
11.Окислительно-восстановительные Происходит изменение степеней окисления атомов химических элементов или ионов, образующих реагирующие вещества. Zn0 + 2H+Cl = Zn+2Cl2 + H02
Обратимость химических реакций
12. Обратимые реакции Протекают в двух противоположных направлениях — прямом и обратном.

(В органической химии: реакция этерификации, гидролиз жиров.)

СаО + СО2 <-> СаСО3

HCOOH+CH3OH <->- HCOOCH3+H2O

13.Необраимые реакции Протекают только в одном направлении. СaCO3 + 2HCl = CaCl2+H2O + CO2^

Тест «Типы химических реакций»

1. Взаимодействие оксида серы (IV) с кислородом относится к реакциям

1) соединения, экзотермическим

2) замещения, экзотермическим

3) обмена, эндотермическим

4) соединения, эндотермическим.

2.Взаимодействие метановой кислоты с этанолом относится к реакциям

1) гидрирования

2) присоединения

3) этерификации

4) гидратации.

3. Взаимодействие водорода с азотом относится к реакциям

1) соединения, каталитическим

2) обмена, каталитическим

3) разложения, некаталитическим

4) замещения, некаталитическим.

4. Взаимодействие цинка с соляной кислотой относится к реакциям

1) разложения

2) ионного обмена

3) замещения

4) соединения.

5. Реакция спиртового брожения глюкозы относится к реакциям

1) обмена

2) замещения

3) соединения

4) разложения.

6. Гидратация этилена и ацетилена — это реакции

1) соединения

2) разложения

3) ионного обмена

4) замещения.

7. Дегидрирование бутана — это реакция

1) соединения

2) разложения

3) ионного обмена

4) замещения.

8. Взаимодействие гидроксида натрия с раствором сульфата меди относится к реакциям

1) соединения

2) разложения

3) ионного обмена

4) замещения.

9. Взаимодействие гидроксида натрия с серной кислотой относится к реакциям

1) соединения

2) разложения

3) ионного обмена

4) замещения.

Литература

1. О.С. Габриелян. Химия. 11 класс. Базовый уровень. М.: Дрофа, 2006. — 218, [6] с.: ил.

2. А.С.Корощенко, М.Г.Снастина. ЕГЭ — 2008: Химия: реальные задания. М.: АСТ: Астрель, 2008. — 126, [2] с.

3. Ю.Н.Медведев. Химия. ЕГЭ 2011. Типовые тестовые задания. М.: Издательство «Экзамен», 2011.- 159, [1]с.

urok.1sept.ru

числу и составу исходных и полученных веществ, изменению степеней окисления химических элементов, поглощению и выделению энергии – HIMI4KA

Классификацию химических реакций в неорганической и органической химии осуществляют на основании различных классифицирующих признаков.

По числу и составу исходных и полученных веществ различают реакции соединения, разложения, обмена и замещения.

Реакциями соединения называют химические реакции, в результате которых сложные молекулы получаются из двух и более простых, например:

Реакциями разложения называют химические реакции, в результате которых простые молекулы получаются из более сложных, например:

Реакциями замещения называют химические реакции, в результате которых атом или группа атомов в молекуле вещества замещается на другой атом или группу атомов, например:

Реакциями обмена называют химические реакции, протекающие без изменения степеней окисления элементов и приводящие к обмену составных частей реагентов, например:

По изменению степеней окисления химических элементов, входящих в состав реагирующих веществ, реакции делят на окислительно-восстановительные и не окислительно-восстановительные.

Окислительно-восстановительными называют реакции, сопровождающиеся изменением степеней окисления химических элементов, входящих в состав реагентов:

Не окислительно-восстановительными называют реакции, в которых степень окисления химических элементов, входящих в состав реагентов, не изменяется.

Окислительно-восстановительные реакции разделяют на следующие основные типы: реакции межмолекулярного окисления-восстановления, реакции внутримолекулярного окисления-восстановления, реакции диспропорционирования и реакции конмутации.

Реакциями межмолекулярного окисления-восстановления называют реакции, в которых обмен электронами происходит между различными атомами, молекулами или ионами, например:

(сера — окислитель, магний — восстановитель).

(бром — окислитель, водород — восстановитель).

(окислитель — азотистая кислота, восстановитель — сероводород).

Таким образом, атом-окислитель и атом-восстановитель в данных реакциях принадлежат разным веществам.

Реакциями внутримолекулярного окисления-восстановления называют реакции, в которых атом-окислитель и атом-восстановитель входят в состав одной и той же молекулы.

(окислитель — атом хлора в степени окисления +5, восстановитель — атом кислорода в степени окисления –2).

(окислитель — атом хрома в степени окисления +6, восстановитель — атом азота в степени окисления –3).

(окислители — атомы серебра в степени окисления +1 и азота в степени окисления +5, восстановитель — атом кислорода в степени окисления –2).

Реакциями диспропорционирования называют реакции, в которых молекулы или ионы одного и того же вещества реагируют друг с другом как окислитель и восстановитель. При этом содержащиеся в данном соединении атомы с переменной промежуточной степенью окисления переходят один в высшую, другой — в низшую степень окисления, например:

Реакциями конмутации называют реакции окисления-восстановления, в результате которых происходит выравнивание степеней окисления атомов одного и того же элемента, например:

(окислитель — атом азота в степени окисления +5, восстановитель — атом азота в степени окислителя –3).

(окислитель — атом азота в степени окисления +3, восстановитель — атом азота в степени окислителя –3).

По тепловому эффекту, сопровождающему химические реакции, их разделяют на экзотермические и эндотермические.

Экзотермическими называют химические реакции, идущие с выделением теплоты. Условное обозначение изменения энтальпии ΔH, а теплового эффекта реакции Q. Для экзотермических реакций Q > 0, а ΔH < 0.

Эндотермическими называют химические реакции, идущие с поглощением теплоты. Для эндотермических реакций Q < 0, а ΔH > 0.

В соответствии с агрегатным состоянием реагентов различают гомогенные и гетерогенные химические реакции.

Гомогенными называют реакции, протекающие в однородной среде.

Гетерогенными называют реакции, протекающие в неоднородной среде, на поверхности соприкосновения реагирующих веществ, находящихся в разных фазах, например твёрдой и газообразной, жидкой и газообразной, в двух несмешивающихся жидкостях.

Тренировочные задания

1. Реакция 3CaО + P2O5 = Ca3(PO4)2 относится к реакциям

1) разложения
2) соединения
3) обмена
4) замещения

2. Реакция Na2SO4 + Ba(OH)2 = BaSO4 + 2NaOH относится к реакциям

1) разложения
2) соединения
3) обмена
4) замещения

3. Реакция H2SO4 + Fe = FeSO4 + H2 относится к реакциям

1) разложения
2) соединения
3) обмена
4) замещения

4. Реакция CaCO3 = CaO + CO2 относится к реакциям

1) разложения
2) соединения
3) обмена
4) замещения

5. Реакция разложения описана уравнением

1) Cu(OH)2 = CuO + H2O
2) BaO + H2O = Ba(OH)2
3) Na2SO4 + BaCl2 = ZnCl2 + BaSO4
4) FeO + H2 = Fe + H2O

6. Реакция соединения описана уравнением

1) Br2 + H2 = 2HBr
2) H2SO4+ 2NaOH = Na2SO4 + 2H2O
3) ZnS + 2HCl = ZnCl2 + H2S
4) HI + NaOH = NaI + H2O

7. К каталитическим процессам относят реакцию между

1) калием и водой
2) серой и хлором
3) азотом и литием
4) азотом и водородом

8. К экзотермическим реакциям относится взаимодействие

1) азота с кислородом
2) углерода с углекислым газом
3) воды с углеродом
4) углерода с кислородом

9. К окислительно-восстановительным реакциям не относится взаимодействие

1) натрия и хлора
2) брома и водорода
3) гидроксида калия и уксусной кислоты
4) кальция и уксусной кислоты

10. К реакциям замещения относится взаимодействие

1) серной кислоты и гидроксида натрия
2) серной кислоты и железа
3) серной кислоты и оксида натрия
4) серной кислоты и хлорида бария

11. К экзотермическим реакциям относится

1) взаимодействие соляной кислоты и гидроксида калия
2) взаимодействие азота и кислорода
3) гидролиз сульфата меди
4) разложение карбоната натрия

12. К эндотермическим реакциям относится

1) взаимодействие азота и кислорода
2) взаимодействие азотной кислоты и гидроксида лития
3) взаимодействие кислорода и водорода
4) взаимодействие воды и оксида калия

13. К окислительно-восстановительным реакциям не относится взаимодействие

1) натрия и брома
2) натрия и кислорода
3) оксида калия и воды
4) натрия и уксусной кислоты

14. Взаимодействие брома с гидроксидом калия относится к реакциям

1) нейтрализации
2) межмолекулярного окисления-восстановления
3) диспропорционирования
4) обмена

15. Взаимодействие азота и кислорода относится к реакциям

1) соединения, эндотермическим
2) соединения, экзотермическим
3) разложения, эндотермическим
4) обмена, экзотермическим

16. К эндотермическим реакциям относится взаимодействие

1) азота и лития
2) азота и кислорода
3) кислорода и кальция
4) углерода и кислорода

17. Взаимодействие оксида кальция и воды относится к реакциям

1) каталитическим, экзотермическим
2) разложения, эндотермическим
3) соединения, экзотермическим
4) обмена, эндотермическим

18. К каталитическим экзотермическим реакциям относится

1) получение фосфорной кислоты из оксида фосфора (V) и воды
2) разложение карбоната кальция
3) синтез аммиака из простых веществ
4) получение соляной кислоты из хлора и водорода

19. При нагревании нитрата серебра происходит реакция

1) соединения
2) разложения
3) замещения
4) обмена

20. Реакция, протекающая по схеме: CaCO3 = CaO + CO2 − Q, является реакцией

1) экзотермического разложения
2) разложения
3) замещения
4) эндотермического разложения

Ответы

himi4ka.ru

0 comments on “Схема классификации химических реакций – Химические реакции их классификация (Схема, Таблица)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *