Эпс метр – ESR-метр | Практическая электроника

ESR-метр | Практическая электроника

В этой статье мы с вами будем собирать ESR-метр. В первый раз слышите слово “ESR”? А ну-ка бегом читать эту статью!

Для чего нужен ESR-метр

Итак, для чего нам вообще собирать ESR-метр? Для тех, кто поленился читать статью про ESR давайте вспомним, чем оно нам вредит.  Дело в том, что сейчас почти во всей электронной аппаратуре используются импульсные блоки питания. В этих импульсных блоках питания “гуляют” высокие частоты и некоторые из этих частот проходят через электролитические конденсаторы. Если вы читали статью конденсатор в цепи постоянного и  переменого тока, то наверняка помните, что высокие частоты конденсатор пропускает через себя почти без проблем. И проблем тем меньше, чем выше частота. Это, конечно, в идеале. В  реальности же в каждом конденсаторе “спрятан” резистор. А какая мощность будет выделяться на резисторе?

P=I2xR

где

P  – это мощность, Ватт

I – сила тока, Ампер

R – сопротивление, Ом

А как вы знаете, мощность, которая рассеивается на резисторе – это и есть тепло 😉 И что тогда у нас получается? Конденсатор тупо превращается в маленькую печку)). Нагрев конденсатора  – эффект очень нежелательный, так как при нагреве в лучшем случае он  меняет свой номинал, а в худшем  – просто раскрывается розочкой). Такие кондеры-розочки использовать уже нельзя.

вздувшийся конденсатор

Вздувшиеся электролитические конденсаторы – это большая проблема современной техники. Очень много отказов в работе электроники бывает именно по их вине. Визуально это проявляется в появлении припухлости в верхней части конденсатора. Видите небольшие прорези на шляпе этих конденсаторов? Это делается для того, чтобы такой конденсатор не разрывался от предсмертного шока и не забрызгивал всю плату электролитом, а ровнёхонько надрывал тонкую часть прорези и испускал тихий спокойных выдох. У советских конденсаторов таких прорезей не было, и поэтому если они и бахали, то делали это громко, эффектно и задорно)))

Но иногда бывает и так, что внешне такой конденсатор ничем не отличается от простых рабочих конденсаторов, а ESR очень велико. Поэтому, для проверки таких конденсаторов и был создан прибор под названием ESR-метр. У меня например ESR-метр идет в комплекте  с Транзистор-метром:

Минус данного прибора в том, что им можно замерять ESR только демонтированных конденсаторов. Если замерять прямо на плате, то он выдаст полную ахинею.

Схема и сборка

В интернете очень давно гуляет схема простенького ESR-метра, а точнее – приставки к мультиметру.  С помощью нее можно спокойно замерить ESR конденсатора, даже не выпаивая его из платы. Давайте же  рассмотрим схемку нашей приставки. Кликните по ней, и схема откроется в новом окне и в полный рост:

Вместо “Cx” (в штриховом прямоугольнике) мы здесь ставим конденсатор, у которого замеряем ESR.

Для того, чтобы не травить лишний раз платку, я взял макетную плату и спаял на ней. На Али я взял целый набор этих макеток. Это получается даже дешевле, чем покупать фольгированный текстолит.

макетная плата

С обратной стороны макетной платы для связи радиоэлементов использовал провод МГТФ

провод МГФТ

Вы легко его узнаете по розовой  окраске. Хотя бывают и другого цвета, но в основном розовый.

Что это за “фрукт”? МГТФ расшифровывается как Монтажный, Гибкий, Теплостойкий, в Фторопластовой изоляции. Этот провод  отлично подходит для электронных поделок, так как при пайке его изоляция не плавится. Это только один из плюсов.

Обратную сторону с проводами МГТФ  я показывать не буду). Там ничего интересного нет).

После сборки макетная плата выглядит вот так:

ESR-метр

Микросхемы по привычке всегда ставлю в панельки:

кроватка под микросхему

При своей стоимости, панельки позволяют быстро сменить микросхему. Особенно это актуально для дорогих микроконтроллеров. Вдруг понадобится МК для других целей?)

Для подачи питания с батарейки на платку, я воспользовался стандартной клеммой от старого мультиметра:

ESR-метр

Как быть, если у вас нет такой клеммы, а подать питание с Кроны необходимо? В таком случае, у вас наверняка есть старая батарейка Крона, так ведь? Аккуратно вскрываем корпус, снимаем клеммы батарейки, подпаиваем проводки и у нас готова клемма для подключения к новой батарейке. На крайний случай их можно также купить на Али. Выбор огромный.

Прибор выполнен в виде приставки к любому цифровому мультиметру:

ESR-метр

Здесь есть одно “но”.  Так как мы измеряем на пределе 200 милливольт постоянного напряжения (DCV), то и значения мы получим не в Омах или миллиомах, а в милливольтах, которые затем, сверяясь со значениями полученными при калибровке прибора, мы должны будем перевести в Омы.

А вот и мой самопальный щуп:

ESR-метр

Подобные приборы не любят длинных проводов-щупов, идущих к ножкам конденсатора, и поэтому я был вынужден сделать подобие пинцета, собранное из двух половинок фольгированного текстолита.

Внутри корпуса платка  выглядит примерно вот так:

ESR-метр

Провода, идущие к пинцету,  закреплены каплей термоклея. Между щупами, идущими к мультиметру, стоит конденсатор керамика 100 нанофарад с целью снизить уровень помех. В схеме применен подстроечный резистор на 1,5 Килоома. С помощью этого резистора мы и будем калибровать наш приборчик.

Калибровка прибора

После того  как все собрали, приступаем к калибровке (настройке) нашего ESR-метра пошагово:

1)Если у вас есть осциллограф, замеряем на измерительных щупах напряжение с  частотой 120-180 КилоГерц. Если замеряемая частота не укладывается в этот диапазон, то меняем значение резистора R3.

2) Цепляем мультиметр и ставим его крутилку на измерение милливольт постоянного напряжения.

3) Берем резистор номиналом в 1 Ом и цепляем его к измерительным щупам. В данном случае, к нашему самопальному пинцету.

4) Добиваемся того, чтобы мультиметр показал значение в 1 милливольт, меняя значение подстроечного резистора R1

5) Теперь берем сопротивление 2 Ома, и не меняя значение R1 записываем показания мультиметра

6) Берем 3 Ома и снова записываем показания и тд. Думаю, до 8-10 Ом вам таблички хватит вполне.

Например, мы можем выставить соответствие 1 милливольт – это 1 Ом, и т. д., хотя я предпочел настроить 4,8 милливольт – 1 Ом, для того чтобы была возможность точнее измерять низкие значения сопротивления. При замыкании щупов – контактов пинцета на дисплее мультиметра значение 2,8 милливольт. Сказывается сопротивление проводов-щупов. Это у  нас типа 0 Ом ;-).

Приведу для ознакомления значения измерений низкоомных резисторов: при измерении резистора 0,68 Ом значения равны 3,9 милливольт, 1 ом – 4,8 милливольт, 2 Ома – 9,3 милливольта. У меня получилась вот такая табличка, которую я потом и наклеил на свой прибор

ESR-метр

При измерении сопротивления в 10 Ом на экране уже показание 92,5 миллиВольт. Как мы видим, зависимость не пропорциональная.

После того, как я сделал замеры, смотрю в другую табличку:

таблица ESR конденсаторов

Слева – номинал конденсатора, вверху – значение напряжения, на которое рассчитан этот конденсатор. Ну и, собственно, в  таблице максимальное значение ESR конденсатора, который можно  использовать в ВЧ схемах.

Давайте попробуем замерить ESR  у двух импортных и одного отечественного конденсатора

ESR-метр

ESR-метрESR-метрESR-метр

Как вы видите, импортные конденсаторы обладают очень маленьким ESR. Советский конденсатор показывает уже большее значение. Оно и не удивительно. Старость не в радость).

Поправки к схеме

1) Для более-менее точных измерений, желательно, чтобы питание нашего ESR-метра было всегда стабильное. Если батарейка разрядится хотя бы на 1 Вольт, то показания ESR также будут уже с погрешностью. Так что лучше постарайтесь давать питание на ESR-метр всегда стабильное. Как я уже сказал, для этого можно использовать внешний блок питания или собрать схемку на 7809 микросхеме. Например, блок питания можно собрать  по этой схеме.

2) Показания, которые выдает наша самоделка, не говорят о том, что наш самопальный прибор с  великой точностью замеряет ESR. Скорее всего, его можно отнести к пробникам. А что делают пробники? Отвечают в основном на два вопроса: да или нет ;-). В данном случае прибор “говорит”, можно ли использовать такой конденсатор или лучше все-таки поставить его в НЧ (НизкоЧастотную) схему.

Данный пробник может собрать любой, даже начинающий радиолюбитель, если у него вдруг возникнет потребность заняться ремонтами. А вот и видео его работы:

Автор – Андрей Симаков

www.ruselectronic.com

ESR (ЭПС)-метр своими руками | Каталог самоделок

Неисправность электролитических конденсаторов чаще всего является причиной дефектов в радиоэлектронных аппаратах. При этом ёмкостный показатель неисправного конденсатора может совсем немного отличаться от его нормального значения, а ЭПС быть больше. Поэтому зачастую найти поломку в электролитическом конденсаторе с помощью измерителя ёмкости бывает крайне сложно.

В связи с этим именно увеличенный показатель ЭПС является единственным признаком ненормальной работы конденсатора в радиоаппаратуре.

В поиске увеличенного значения ЭПС может помочь специальный прибор, который называется ЭПС-метр. Его можно сделать самостоятельно.

Этот прибор измеряет сопротивление, которое выдаёт конденсатор при частоте в 100 кГц.

Плюсом этого прибора является то, что он не требует абсолютной точности в измерениях, ведь показатель ЭПС дефектного конденсатора обычно в разы превышает установленную норму.

Конструирование ЭПС-метра должно начинаться с составления схемотехнического рисунка в системе LTspice. В итоге должен получиться график, демонстрирующий отклонение стрелки амперметра в зависимости от показателя ЭПС.

ESR (ЭПС)-метр своими руками

По результатам схемотехнического рисунка, который был составлен ранее, можно спроектировать схему в программе OrCAD.

ESR (ЭПС)-метр своими руками

ESR (ЭПС)-метр своими руками

Известно, что в приборе установлено 9-вольтовое питание и регулятор напряжения, за основу которого берётся схема LM 7805. Также для прибора нужны транзисторные приёмники, которые можно выбрать на своё усмотрение, но всё же лучше подойдут 2N3904 (n-p-n) и 2N3906 (p-n-p). Ещё в приборе применимы диоды 1N5711 и измерительная головка с силой тока в 50 мкА.

Небольшое напряжение в конденсаторе, позволяет использовать устройство без его снятия.

В итоге получается разводка односторонней платы без перемычек. Для платы использовались чип-компоненты и проделывались отверстия для крепления деталей, которые позже нужно припаять.

ESR (ЭПС)-метр своими руками

Плата изготавливается с помощью фоторезистора, ЛУТ или ЧПУ.

ESR (ЭПС)-метр своими руками

Для создания шкалы прибора, необходимо произвести практические замеры, которые позже переносится в программу и распечатывается. После этого можно производить сборку всех компонентов.

ESR (ЭПС)-метр своими руками

В заключении, стоит заметить, что перед тем, как измерять показатель ЭПС с помощью самодельного прибора, его необходимо полностью разрядить.

ESR (ЭПС)-метр своими руками

ESR (ЭПС)-метр своими руками

 

Автор: Орлов Александр, Москва.

 


volt-index.ru

RLC и ESR метр, или прибор для измерения конденсаторов, индуктивностей и низкоомных резисторов.

В последнее время выход из стоя электролитических конденсаторов стал одной из основных причин поломок радиоаппаратуры. Но для правильной диагностики не всегда достаточно иметь только измеритель емкости, поэтому сегодня мы поговорим об еще одном параметре — ESR.
Что это, на что влияет и чем измеряют, я попробую рассказать в этом обзоре.

Для начала скажу, что этот обзор будет кардинально отличаться от предыдущего, хотя оба этих обзора об измерительных приборах радиолюбителя.
1. В этот раз не конструктор, а скорее «полуфабрикат»
2. Паять в этом обзоре я ничего не буду.
3. Схемы в этом обзоре также не будет, думаю что к концу обзора будет понятно, почему.
4. Данный прибор очень узконаправленный, в отличии от предыдущего «многостаночника».
5. Если о предыдущем приборе знало очень много людей, то этот почти никому неизвестен.
6. Обзор будет маленьким

Для начала, как всегда, упаковка.

К упаковке прибора претензий не возникло, простенько и компактно.

Комплектация совсем спартанская, в комплекте только сам прибор и инструкция, щупы и батарейка в комплект не входят.

Инструкция также не блещет информативностью, общие фразы и картинки.

Технические характеристики прибора, указанные в инструкции.

Ну и более понятным языком.
Сопротивление
Диапазон — 0,01 — 20 Ом
Точность — 1% + 2 знака.

Эквивалентное последовательное сопротивление (ESR)
Диапазон — 0,01 — 20 Ом, работает в диапазоне конденсаторов от 0.1мкФ
Точность — 2% + 2 знака

Емкость
Диапазон — 0,1мкФ — 1000мкФ (3-1000 мкФ измеряются на частоте 3КГц, 0.1-3мкФ — 72КГц)
Точность — зависит от частоты измерения, но составляет около 2% ± 10 знаков

Индуктивность
Диапазон — 0-60 мкГн на частоте 72КГц и 0-1200 мкГн на частоте 3КГц.
Точность — 2% + 2 знака.

Для начала я расскажу что же это такое — ESR.
Многие довольно часто слышали слово — конденсатор, а некоторые даже их видели 🙂
Если не видели, то на фото ниже наиболее часто встречающиеся в технике представители.

Внешне конденсатор это обычно деталька с двумя выводами, но на самом деле все компоненты выглядят сложнее, чем кажутся на первый взгляд.
Начнем с того, что все детали неидеальны и кроме своего основного параметра еще имеют кучу «паразитных».
Так как мы говорим о конденсаторах, то для примера его и рассмотрим внимательнее.

В реальной жизни эквивалентная схема конденсатора выглядит примерно так, как показано на рисунке ниже.
На картинке показаны —
C — эквивалентная емкость, r — сопротивление утечки, R — эквивалентное последовательное сопротивление, L — эквивалентная индуктивность.

А если упрощенно, то
Эквивалентная емкость — это конденсатор в «чистом» виде, т.е. без недостатков.
Сопротивление утечки — это то сопротивление, которое разряжает конденсатор помимо внешних цепей. Если провести аналогию с бочкой воды, то это естественное испарение. Оно может быть больше, может быть меньше, но оно будет всегда.
Эквивалентная индуктивность — Можно сказать что это дроссель, включенный последовательно с конденсатором. Например это обкладки конденсатора свернутые в рулон. Этот параметр мешает конденсатору при работе на высоких частотах и чем выше частота, тем больше влияние.
Эквивалентное последовательное сопротивление, ESR — Вот и тот параметр, который мы и рассматриваем.
Его можно представить как резистор, включенный последовательно с идеальным конденсатором.
Это сопротивление выводов, обкладок, физические ограничения и т.д.
В самых дешевых конденсаторах это сопротивление обычно выше, в более дорогих LowESR ниже, а ведь есть еще Ultra LowESR.
А если просто (но очень утрированно), то это все равно, что набирать воду в бочку через короткий и толстый шланг или через тонкий и длинный. Заправится бочка в любом случае, но чем тоньше шланг, тем это будет происходить дольше и с большими потерями во времени.

Из-за этого сопротивления невозможно конденсатор мгновенно разрядить или зарядить, кроме того при работе на высоких частотах именно это сопротивление греет конденсатор.
Но самое плохое то, что обычный измеритель емкости его не измеряет.
У меня часто были случаи, когда при измерении плохого конденсатора прибор показывал нормальную емкость (и даже выше), но устройство не работало. При измерении ESR-метром сразу становилось понятно, что внутреннее сопротивление у него очень высокое и работать нормально он не может (по крайней мере там, где стоял до этого).
Некоторые наверняка видели вспухшие конденсаторы. Если отсечь случаи, когда конденсаторы пухли просто лежа на полке, то остальное будет являться следствием повышения внутреннего сопротивления. При работе конденсатора постепенно увеличивается внутреннее сопротивление, происходит это от неправильного режима работы или от перегрева.
Чем больше внутреннее сопротивление, тем больше начинает греться конденсатор изнутри, чем больше нагрев изнутри, тем больше растет сопротивление. В итоге электролит начинает «кипеть» и из-за повышения внутреннего давления конденсатор вспухает.

Но вспухает конденсатор не всегда, иногда на вид он абсолютно нормальный, емкость в порядке, а нормально не работает.
Подключаешь его к ESR метру, а у него вместо привычных 20-30мОм уже 1-2 Ома.
Я пользуюсь в работе самодельным ESR метром, собранным много лет назад по схеме с форума ProRadio, автор конструкции — Go.
Этот ESR метр попадается в моих обзора довольно часто и меня часто спрашивают о нем, но когда я увидел в новых поступлениях магазина уже готовый прибор, то решил заказать его для пробы.
Еще подогревало интерес то, что информации по этому прибору я нигде не нашел, ну тем интереснее 🙂

Внешне прибор выглядит как «полуфабрикат», т.е. собранная конструкция, но без корпуса.
Правда для удобства производитель установил всю эту конструкцию на такие вот пластиковые «ножки», даже гаечки пластиковые 🙂

С правого торца прибора расположены клеммы для подключения измеряемого элемента.
К сожалению схема подключения двухпроводная, а значит что чем длиннее будут провода щупов (если их использовать) тем больше будет погрешность показаний.
В более правильных конструкциях используется четырехпроводное подключение, по одной паре конденсатор заряжается/разряжается, по другой происходит измерение напряжения на конденсаторе. в таком варианте провода можно сделать хоть метр длиной, глобальной разницы в показаниях не будет.
Также рядом с клеммами находятся два контакта печатной платы, они используются при калибровке прибора (это я понял уже потом).

Снизу предусмотрено место для установки батареи питания типа 6F22 9 Вольт (Крона).

Прибор также может питаться и от внешнего источника питания, подключаемого посредством разъема MicroUSB. при подключении питания к этому разъему батарея отключается автоматически. при частом использовании я бы советовал питать прибор от USB разъема, так как батареи разражаются довольно ощутимо.
На фото также видно, что стяжка, при помощи которой крепится батарея, многоразовая. Замок стяжки имеет язычок, при нажатии на который ее можно открыть.

В собранном виде конструкция выглядит как то так.

Включается и управляется прибор всего одной кнопкой.
Включение — нажатие дольше 1 сек.
Нажатие в рабочем режиме переключает прибор между измерениями L и С-ESR.
Выключение — нажатие кнопки более чем 2 секунды.

При включении прибора высвечивается сначала название и версия прошивки, затем идет надпись, предупреждающая о том, что конденсаторы надо обязательно разрядить перед проверкой.
При удержании кнопки более двух секунд высвечивается надпись — Выключение питания и при отпускании кнопки прибор отключается.

Как я выше писал, прибор имеет два рабочих режима.
1. измерение индуктивности
2. измерение емкости, сопротивления (или ESR).
В обоих режима на экране отображается напряжение питания прибора.

Естественно посмотрим что из себя представляет начинка этого прибора.
На вид она заметно сложнее чем у предыдущего тестера транзисторов, что косвенно говорит либо о непродуманности схемы либо о лучших характеристиках, мне кажется что в данном случае скорее второй вариант.

Ну дисплей особо описывать смысла нет, классический 1602 вариант. Единственно что удивило — черный цвет текстолита.

Общее фото печатной платы я сделал в двух вариантах, со вспышкой и без, вообще прибор очень не хотел фотографироваться, мешая мне всеми возможными способами, потому заранее приношу извинение за качество.
На всякий случай напоминаю, что все фото в моих обзорах кликабельны.

«сердцем» прибора является микроконтроллер 12le5a08s2, информации по конкретно этому контроллеру я не нашел, но в даташите другой его версии проскакивала информация что он собран на ядре 8051.

Измерительная часть содержит довольно много элементов, кстати заявлено что процессор имеет 12 бит АЦП, который используется для измерения. Вообще такая разрядность весьма неплохая, скорее интересно насколько это реально.
Изначально думал начертить схему всего этого «безобразия», но потом понял, что особого смысла это не имеет, так как характеристики прибора в плане диапазона измерения не очень большие. Но если кому интересно, то можно попробовать перечертить.

Также в измерительной схеме задействован операционный усилитель, как по мне довольно неплохой, я такой использовал в усилителе сигнала с токового шунта электронной нагрузки.

Судя по всему это узел переключения питания между батареей и USB разъемом.

Снизу платы почти ничего интересного, кроме кнопки компонентов никаких нет 🙁

Но я нашел интересное даже на пустой печатной плате :)))
Дело в том, что когда я получил прибор и игрался с ним, то категорически не мог заставить его отображать емкость конденсатора выше 680мкФ, он упорно показывал OL и все.
Осматривая плату я не мог не заметить три пары контактов для подключения кнопок (судя по маркировке).
Сначала я ткнул key2, на что получил на экране — калибровка нуля (вольный перевод) — ОК.
Ха, думаю, ну щаззз мы тебя.
А вот и нет, калибровка заняла у меня уйму времени, так как из-за редкости прибора информации по нему нет, вообще. Единственное упоминание со словом калибровка было здесь.

Замыкание других пар контактов выводит на экран значения констант (судя по всему).
причем были еще варианты, с другими буквами, а также иногда при замыкании key3 проскакивала надпись — Сохранено ОК (на англ ессно).

Но вернемся к калибровке.
Прибор сопротивлялся всем своими силами.
Для начала я попробовал коротнуть клеммы пинцетом и калибровать так, но прибор в итоге показывал правильную емкость и отрицательное сопротивление у конденсаторов.
После этого я коротнул два тестовых пятачка на плате, прибор стал показывать корректное сопротивление, но диапазон измерения емкости сузился до 220-330 мкФ.
И уже после долгих поисков в инете я наткнулся на фразу (ссылка есть чуть выше) — Use 3cm thick copper wire for short circuit to clear
В переводе это означало — используйте медный провод толщиной 3см. я подумал что толщина в 3см это как то круто и скорее всего имелось в виду 3см длины.
Отрезал кусочек провода длиной около 3см и коротнул патчки на плате, стало работать гораздо лучше, но все равно не так.
Взял провод подлиннее раза в два и повторил операцию. После этого прибор стал работать уже вполне нормально и дальнейшие тесты я проводил уже после этой калибровки.

Для начала я подобрал разных компонентов, при помощи которых буду проверять как работает прибор.
На фото они уложены в соответствии с порядком тестирования, только дроссели лежат наоборот.
Все компоненты проверялись от меньшего номинала к большему.

Перед тестами я посмотрел осциллографом что выдает прибор на свои измерительные клеммы.
Судя по показаниям осциллографа частота установлена примерно на 72КГц.

В плане измерения индуктивности показания вполне сошлись с указанными на компонентах.
1. индуктивность 22мкГн
2. индуктивность 150мкГн
Кстати, в процессе калибровки я заметил, что никакие манипуляции не влияли на точность измерения емкости и индуктивности, а отражались только на точности измерения сопротивления.

С индуктивностью 150мкГн форма сигнала на клеммах выглядела так

С конденсаторами небольшой емкости также не возникло проблем.
1. 100нФ 1%
2. 0.39025 мкФ 1%

Форма сигнала при измерении конденсатора 0.39025 мкФ

Дальше пошли электролиты.
1. 4.7мкФ 63В
2. 10мкФ 450В
3. 470мкФ 100 Вольт
4. 470мкФ 25 В lowESR
Отдельно скажу насчет конденсатора 10мкФ 450 Вольт. Меня очень удивили показания и это не дефект конкретного элемента, так как конденсаторы новые и у меня их два одинаковых. показания также были одинаковые у обоих и другие приборы показывали именно емкость около 10мкФ. мало того, даже на этом приборе пару раз проскочили показания со значением около 10мкФ. почему так, мне непонятно.

1. 680мкФ 25 Вольт низкоимпедансный
2. 680мкФ 25 Вольт lowESR.
3. 1000мкФ 35 Вольт обычный Samwha.
4. 1000мкФ 35 Вольт Samwha RD серия.

Форма сигнала на контактах при тестировании обычного 1000мкФ 35 Вольт Samwha.
По идее, при измерении емких электролитов, частота должна была упасть до 3КГц, но на осциллограмме явно видно, что частота не менялась в процессе всех тестов и составляла около 72КГц.

1000мкФ 35 Вольт Samwha RD серии иногда выдавал и такой результат, проявлялось это при плохом контакте выводов с измерительными клеммами.

Уже после того как сделал групповое фото, измерил и сложил детали по своим местам я вспомнил, что забыл измерить сопротивление резисторов.
Для измерения я взял пару резисторов
1. 0.1 Ома 1%
2. 0.47 Ома 1%
Сопротивление второго резистора несколько завышено и явно вылазит за предел 1%, скорее даже ближе к 10%. но я думаю что это скорее сказывается то, что измерение проходит на переменном токе и влияет индуктивность проволочного резистора, так как мелкий резистор на 2.4 Ома показал сопротивление 2.38 Ома.

Когда искал информацию по прибору, то пару раз натыкался на фото этого прибора, где показано одновременное измерение с разными частотами, но мой прибор такое не выводит, опять же непонятно почему 🙁
То ли другая версия, то ли еще что, но разница есть. У меня вообще сложилось впечатление, что измеряет он только на частоте 72КГц.
Высокая частота измерения это хорошо, но всегда удобно иметь альтернативу.

Резюме
Плюсы
В работе прибор показал довольно неплохую точность (правда после калибровки)
Если не учитывать то, что мне пришлось его калибровать, то можно сказать что конструкция готова к работе «из коробки», но допускаю что это мне так «повезло».
Двойное питание.

Минусы
Полное отсутствие информации по калибровке прибора
Узкий диапазон измерения
У меня прибор нормально начал работать только после калибровки.

Мое мнение. Если честно, то у меня создалось стойкое двоякое впечатление о приборе. С одной стороны я получил вполне неплохие результаты, а с другой я получил больше вопросов чем ответов.
Например я так на 100% и не понял как его правильно калибровать, также не понял почему мой конденсатор на 10мкФ отображается как 2.3, ну и кроме того непонятно, почему измерение проходит только на 72КГц.
Я даже не знаю, рекомендовать его или нет. Если паять совсем не хочется, то можно использовать этот или транзистор тестер из прошлого обзора, а если хочется лучших характеристик (в основном в сторону расширения диапазона) и не нужно измерять индуктивности, то можно собрать C-ESR метр от Go.
Очень расстроил верхний диапазон измерения емкости в 1000мкФ, хотя я спокойно измерял и 2200 мкФ, но точность прибора падала, он начинал явно завышать показания емкости.

В общем на этом пока все, очень буду рад любой информации по прибору и с удовольствием добавлю ее в обзор. Допускаю что у кого нибудь он тоже есть, хотя и очень маловероятно, так как я не нашел по нему ничего, хотя часто все приборы являются повторением каких то уже известных конструкций.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

mysku.ru

ESR метр своими руками — измеритель емкости конденсаторов. Схема и описание

ESR метр своими руками. Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический конденсатор. Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.

Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.

Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность импульсных источников питания, приводя к сгоранию дорогих микросхем и транзисторов.

Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.

Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать ESR метр конденсаторов своими руками.

Описание ESR метра для конденсаторов

Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.

Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.

Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.

Радиодетали ESR метра расположены на печатной плате, которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.

Настройка устройства

После окончания монтажа и проверки, необходимо проверить осциллографом частоту на щупах X1 и X2. Она должна быть в пределах 120…180 кГц. Если это не так, то путем подбора резистора R1 добиваются нужной частоты. Далее необходимо подготовить набор резисторов следующих номиналов:

1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.

К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.

Источник: Радиомир 03/2012

www.joyta.ru

Что такое ESR. Измерение ESR. Прибор для измерения ESR

Привет друзья. Сегодня расскажу о приборе, который очень сильно помогает мне в ремонте, экономит деньги и время. Это ESR метер китайского происхождения Mega328. Купил его на алиекспресс у этого продавца. Какие именно достоинства этого прибора?

Во первых, им очень удобно проверять электролитические конденсаторы. Для этой цели я его и покупал. У каждого конденсатора есть два параметра, которые отвечают за его работу. Первый параметр это емкость. Это те самые микрофарады которые и обозначается на корпусе конденсатора. Емкость легко измерять любым мультиметром который поддерживает эту функцию.

Сначала я думал, что это единственный параметр который мне нужно знать в конденсаторе, чтобы определить его исправность, но не тут то было. Ремонтируя один монитор, я никак не мог довести до ума источник питания. Блок выдавал заниженные напряжения, как ни крути. Проверяя конденсаторы, я мерил их емкость, которая была в пределах нормы. В один момент, плюнув на все это дело, я выпаял все конденсаторы, и заменил их на новые, после чего монитор запустился. Моему удивлению не было предела. Я решил найти причину, и поочередно начал впаивать старые конденсаторы, пока не нашел один 470 мкф на 50в, впаивая который, монитор переставал работать. Тестер показывал что конденсатор исправен, но на практике оказалось, что это не так. После этого я начал изучать все о конденсаторах, и открыл для себя такой параметр как ESR.

ESR — Equivalent Series Resistance – параметр конденсатора, который показывает активные потери в цепи переменного тока. Это можно представить как подключенный последовательно конденсатору резистор. Чем меньше ом потери тока, тем лучшего качества конденсатор. Скажу сразу, параметр ESR очень актуален для электролитических конденсаторов емкостью свыше 4,7 мкф. У нового электролитического конденсатора 1мкф ESR может быть и 5 Ом. Для конденсаторов меньшего номинала это не столь важно, по крайней мере в моей практике это так.

Теперь по сути. У электролитического конденсатора емкостью больше 4,7 мкф ESR должен быть меньше 1 Ом. Если этот параметр выше, то я меняю конденсатор на новый.

На картинке ниже, показан пример измерения конденсатора номиналов 1000мкф на 10в.

Измерение ESR

Измерение ESR

Это сильно подсаженный конденсатор, где ESR уже 17 Ом. Очень часто бывает так, что емкость еще 950 мкф, а ESR уже 10 Ом. Такой конденсатор однозначно под замену.

Еще один пример севшего конденсатора. Это конденсатор 220 мкф на 35в. Номинал его стал 111 мкф, а ESR поднялся до 1,3 Ом.

ESR 220 мкф на 35в

ESR 220 мкф на 35в

Или такой же 220мкф на 35в из статьи Ремонт кадровой развертки на примере телевизора AIWA TV-215KE, где ESR уже 15 Ом.

Завышеный ESR конденсатора С510

Вот пример исправного конденсатора, который уже был в работе, но номинал его еще позволяет поработать. Это 100мкф на 63в.

ESR_goodКак видите, его ESR до 1 Ом, да и номинал стал меньше менее чем на 3 мкф, так что такие конденсаторы я оставляю в работе. Приведу пример идеального конденсатора. Это 1500мкф на 10в.

ESR_good2

Здесь ESR вообще ноль Ом, а номинал больше заявленного.

Отойду немного от конденсаторов, и расскажу больше о приборе MEGA 328. Он может проверять не только конденсаторы, а и многое другое. Им легко проверять транзисторы, резисторы, стабилитроны,  мосфеты и много другое. Очень удобно проверять полевые транзисторы, так как прибор покажет его тип, расположение ножек стока, истока и затвора.

Пример проверки полевого транзистора:

Polevoy_tranzПрибор показывает тип транзистора, порог открытия  и расположение ножек. Очень удобно, особенно для новичка.

Вот пример проверки обычного N-P-N транзистора.

NPN

Полный перечень возможностей данного тестера:

  Проверка: Конденсаторов, Диодов, Двойных диодов, MOS, Транзисторов, SCR, Регуляторов, Светодиодные трубки, СОЭ, Сопротивление, регулируемые потенциометры и др.
Сопротивление: от 0.1 Ом до максимум 50 мОм
Конденсатор: от 25pF   до 100,000 мкФ
Индукторы: от 0.01 mH до 20 H
Измерения биполярного транзистора текущий коэффициент усиления и база-эмиттер пороговое напряжение.
Может одновременно измерять два резисторы . Отображается на правой десятичным значением 4. Сопротивление символ на обе стороны показывает контактный номер.

Очень важно!!! Перед измерением ESR, конденсатор необходимо разрядить !!!

Тестер обычно поставляется в виде платы, с разъемом под крону. Свой прибор, я установил  в распределительную коробку, вырезал окошко под дисплей, кнопку, и панель для проверки. Приклеил термоклеем, и так он у меня и работает по сей день. Вот фото:

IMG_20151130_214303Не сильно красиво, но за красотой я особо и не гнался :).

Виде обзор работы ESR метра


Рекомендую покупать на алиекспресс напрямую, так как это намного дешевле, тем более с нашими ценами. Вот ссылка на продавца, где покупал я. Прибор пришел в Украину за 18 дней.

Рекомендую посмотреть обзор моего нового ESR метра на аккумуляторе по этой ссылке

Перечень всех моих инструментов для ремонта можете зайти здесь:

Спасибо за внимание.



IMG_20151130_214303Весь инструмент и расходники, которые я использую в ремонтах находится здесь.
Если у Вас возникли вопросы по ремонту телевизионной техники, вы можете задать их на нашем новом форуме .

IMG_20151130_214303 Загрузка...

my-chip.info

Простой ESR (ЭПС) измеритель быстрого приготовления

ESR-метр или прибор для измерения ЭПС - эквивалентного последовательного сопротивления.
Как выяснилось, работоспособность (электролитических - частности) конденсаторов, особенно тех, которые работают в силовых импульсных устройствах, влияет в значительной степени внутреннее эквивалентное последовательное сопротивление переменному току. Различные производители конденсаторов по разному относятся к значениям частоты, на которой должна определяться величина ЭПС, но частота эта не должна быть ниже 30кГц.

Величина ЭПС в какой-то степени связана с основным параметром конденсатора - емкостью, но доказано, что конденсатор может быть неисправным из-за большого собственного значения ЭПС, даже при наличии заявленной емкости.
В технической литературе и на страничках технических сайтов описано немало случаев полной неработоспособности устройств из-за завышенной величины ЭПС электролитических конденсаторов.
В различных электронно-технических журналах и страничках сайтов, посвященных электронике, приводятся схемы приборов различной сложности и функциональности для определения величины ЭПС конденсаторов.

Предлагаю свой вариант прибора, не отличающегося от многих прочих, похожих на него, по принципу работы, но, быть может, еще более простого...
Схема прибора потребляет от двух 3-хвольтовых батареек, соединенных последовательно, 6,5мА при разомкнутых щупах и 10мА - при замкнутых. Схема прибора выглядит так:

В качестве генератора использована микросхема КР1211ЕУ1 (частота при номиналах на схеме около 70кГц), трансформаторы могут быть применены фазоинверторные от БП АТ/АТХ - одинаковые параметры (коэффициенты трансформации в частности) практически от всех производителей. Внимание!!! В трансформаторе Т1 используется лишь половинка обмотки.

Головка прибора имет чувствительность 300мкА, но возможно использование других головок. Предпочтительно использование более чувствительных головок.
Шкала этого прибора растянута на треть при измерении до 1-го Ома. Десятая Ома легко отличима от 0,5 Ома. В шкалу укладываются 22 Ома.
Растяжку и диапазон можно варьировать с помощью добавления витков к измерительной обмотке (с щупами) и/или к обмоткам III того или иного трансформатора.
Удачи!

Константин (riswel)

Россия, г. Калининград

C детства - музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, - для интереса, - и своих, и чужих.

За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования.
Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. - электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все - такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

 

datagor.ru

ESR-метр (0…75)Ом с индикацией утечки

РадиоКот >Схемы >Аналоговые схемы >Измерения >

ESR-метр (0…75)Ом с индикацией утечки

           В статье описан простой портативный аналоговый ESR-метр с расширенным диапазоном измерения до 75 Ом и с функцией индикации короткого замыкания или утечки по постоянному току. В качестве индикаторной головки использован стрелочный микроамперметр от старого кассетного магнитофона.

           В практике ремонта различной аппаратуры незаменимым помощником является измеритель внутреннего эквивалентного сопротивления электролитических конденсаторов – ESR-метр. В радиолюбительской литературе описано множество неплохих и несложных в повторении ESR-метров, однако лишь немногие из них способны измерять ESR вплоть до 75 Ом, что часто бывает необходимо при проверке электролитических конденсаторов малой ёмкости (1 мкФ, 0.47 мкФ, 0.33 мкФ). А ведь такие электролиты тоже существуют и их надо как-то проверять.Также автор не встречал ни одного ESR-метра, который бы позволял дополнительно определять проверяемый конденсатор на утечку или пробой. Так, например, при коротком замыкании проверяемого конденсатора обычный ESR-метр, осуществляющий измерение на переменном токе, покажет малое внутреннее сопротивление, и пробитый конденсатор будет ошибочно принят за исправный.

           Оба этих требования были учтены при разработке собственного ESR-метра, фото которого показано на фото ниже.

           А на этом фото прибор показан со сложенными щупами внутрь корпуса.

Прибор следующие технические характеристики:

- предел измерения ESR, Ом...............................................0…75;

- частота измерения, кГц....................................................80;

- амплитуда проверяемого напряжения, мВ..........................<30;

- пределы индикация утечки по постоянному току, Ом..........0…100;

- напряжение питания  (CR2032), В.....................................2,2…3,6;

- потребляемый ток, мА......................................................8;

- габаритные размеры со слеженными щупами, мм.................71х53х30;

- вес, г..............................................................................65;

- индикация разряда батареи питания;

- съёмные щупы, убираемые внутрь корпуса при транспортировке.

 

           Схема разработанного ESR-метра приведена ниже:

           Питание прибора осуществляется от литиевого элемента GB1 CR2032. Резистор R1 предназначен для ограничения начального броска тока через незаряженные ёмкости конденсаторов C1, C4 при включении питания. Диод VD1 1N4007 служит для защиты от подачи питающего напряжения в обратной полярности. На микросхеме DA1 LP2951CM выполнен стабилизатор напряжения +2 В, от которого питается основная часть схемы. Эта микросхема представляет собой микромощный регулируемый стабилизатор напряжения Low Drop с максимальным выходным током 100 мА.

            Задающий генератор частотой около 80 кГц собран на микросхеме DD1 74HC04D, четыре инвертора которой запараллелены для увеличения выходного тока. Прямоугольные импульсы с выхода генератора размахом 2 В подаются на делитель R5, R6, уменьшающий размах тестирующего напряжение до 30 мВ, что позволяет проводить измерения непосредственно в схеме, не опасаясь, что откроются p-n переходы присутствующих в ней  полупроводниковых приборов. С нижнего плеча делителя ограниченные по амплитуде импульсы подаются на одну из обкладок тестируемого конденсатора. Вторая обкладка через резистор R7 соединяется с общим проводом схемы. На этом резисторе выделяется падение напряжения, обратно пропорциональное внутреннему сопротивлению проверяемого конденсатора. Диоды VD2…VD6 служат для защиты прибора от повышенного напряжения при проверке заряженного конденсатора. Переменная составляющая напряжения с R7 подаётся на инвертирующий усилитель DA2.1 с коэффициентом усиления по переменному напряжению около 8 (определяется в основном отношением сопротивлений резисторов R14/R8). Неинвертирующий вход DA2.1 подключен к виртуальной земле, сформированной при помощи R13, VD7, VD8, C10, C11. Усиленное переменное напряжение с выхода DA2.1 через разделительный конденсатор C12 поступает на двухполупериодный выпрямитель, выполненный на второй части ОУ DA2.2. В качестве нагрузки выпрямителя использована стрелочная головка микроамперметра PA1 М68501 от старого кассетного магнитофона. Головка имеет внутреннее сопротивление около 500 Ом  и ток полного отклонения 250 мкА. Средний ток через головку определяется отношением средневыпрямленного значения входного напряжения к сопротивлению Rос=R16+R20 [1]. Диоды моста VD9…VD12 – диоды Шоттки для уменьшения падения напряжения. Подстроечный резистор R16 предназначен для установки стрелки прибора на нулевое деление шкалы.

            Детектор утечки по постоянному току выполнен на компараторе DA3.1 LM393D. Исправный проверяемый конденсатор не пропускает через себя постоянную составляющую подаваемых на него прямоугольных импульсов. Переменная составляющая отфильтровывается ФНЧ R9, C7, поэтому на инвертирующем входе компаратора DA3.1 присутствует нулевое напряжение. На неинвертирующем входе DA3.1 присутствует некоторое положительное пороговое напряжение, заданное делителем R11, R12, поэтому на выходе компаратора высокий уровень и сигнальный светодиод HL1 не светится. При наличии утечки в проверяемом конденсаторе на инвертирующем входе появится напряжение, величина которого будет пропорциональна току утечки. При превышении на инвертирующем входе порога, заданного делителем R11, R12, на выходе компаратора установится низкий уровень, и светодиод HL1 своим свечением просигнализирует о наличии утечки.

            Индикатор состояния элемента питания выполнен на второй части компаратора - DA3.2. На инвертирующий вход компаратора подано опорное напряжение +1В с делителя R17, R18. На неинвертирующий вход – напряжение элемента питания GB1 через делитель R21, R22. При напряжения на GB1 более 2,2 В на неинвертирующем входе DA3.2 напряжение будет выше, чем на инвертирующем, поэтому на выходе компаратора будет присутствовать высокий уровень и красный светодиод HL2 будет погашен. Зелёный ультраяркий светодиод HL3 будет при этом светиться, указывая на включенное питание. Это помогает не забыть выключить питание после проведения измерений. Использование ультраяркого светодиода на 6 Cd позволило снизить ток его потребления до 30…35 мкА при приемлемой яркости свечения. По мере снижения напряжения GB1 яркость свечения зелёного светодиода уменьшается и после разрядки батареи ниже 2,2 В на выходе компаратора DA3.2 установится низкий уровень. Это приведёт к открыванию красного светодиода HL2, который своим переходом зашунтирует зелёный светодиод HL3 вместе с добавочным резистором R24, в результате чего зелёный светодиод погаснет.

            Изготовление прибора.

            Устройство выполнено на печатной плате из одностороннего фольгированного стеклотекстолита с габаритными размерами 63х49 мм, внешний вид которой со стороны выводных элементов и со стороны печати и SMD-элементов показан на рисунках ниже:

            Печатная плата разрабатывалась под покупной пластмассовый корпус габаритными размерами 68х53х29 мм. Корпус состоит из двух половинок с защёлками, без саморезов. Названия на корпусе не было, лишь изображение колокольчика. Как сообщил продавец в магазине, данный корпус предназначен для монтажа разводки стационарных телефонов.

            Под измерительную головку в верхней крышке корпуса вырезано прямоугольное окно. Индикатор закреплён при помощи двухстороннего скотча.

            Вид прибора изнутри со щупами в рабочем положении показан на фото:

           Вид прибора изнутри со щупами в в транспортировочном положении показан на фото:

            Плата крепится к нижней крышке корпуса при помощи одного винта по центру.

            Конструкция щупов показана на фото ниже:

            Для изготовления щупов использовались две стальные швейные иголки. Крепление щупов выполнено при помощи резьбового соединения. У латунного винта М2,5 в торце просверлено отверстие под диаметр иголки, на винт накручена стальная гайка, после чего иголка была зафиксирована в отверстии припоем. Шляпка винта аккуратно откушена, край сточен надфилем, а немного исковерканная резьба восстановлена при помощи накрученной гайки. После этого гайка была выкручена на середину резьбового соединения и зафиксирована небольшим расплющиванием ударами молотка. Второй щуп изготовлен аналогично. На иголки надета термоусаживающаяся трубка. Общая длина щупа получилась равной 55 мм.

            Держатели щупов изготовлены из латунных винтов М4х10. Внутри винта просверлено сквозное отверстие и нарезана резьба М2.5. Шляпка обточена надфилем.

            Для измерительной головки сделана новая наклейка со шкалой, отснятой экспериментально с набором точных резисторов. Для удобства пользования прибором на шкалу снизу дополнительно нанесены примерные значения ёмкости, соответствующие внутреннему сопротивлению исправных электролитических конденсаторов, взятые из [2].

 

            Настройка прибора.

            Настройка  прибора заключается в установке стрелки индикатора на нулевое деление шкалы при замкнутых щупах подстроечным резистором R16. Для настройки индикатора утечки к щупам необходимо подключить резистор сопротивлением 100 Ом (или другим требуемым номиналом, ниже которого будет загораться красный светодиод HL1), и подстроечным резистором R12 добиться сначала засвечивания HL1, а затем плавным поворотом движка R12 в обратную сторону погасания HL1.

         

Литература:

1). Гутников В.С. Интегральная электроника в измерительных устройствах.–Л.:Энергия. Ленингр.отд-ние, 1980. – 248 с., ил.

2) Чулков В. Прибор для проверки ESR электролитических конденсаторов. “Ремонт электронной техники” №6, 2002.

Файлы:
Плата в Layout
Перечень элементов
Наклейки

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

0 comments on “Эпс метр – ESR-метр | Практическая электроника

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *