Милливольтметр переменного тока схема – МИЛЛИВОЛЬТМЕТР ПЕРЕМЕННОГО ТОКА

МИЛЛИВОЛЬТМЕТР ПЕРЕМЕННОГО ТОКА

   Как-то, года два назад, для «сведения» катушек металлодетектора понадобился точный милливольтметр переменного тока, отвлекаться на поиски подходящей схемы и подбирать детали уж очень не хотелось, и тогда взял и купил готовый набор «Милливольтметр переменного тока». Когда вник в инструкцию выяснилось, что у меня на руках только половина того что нужно. Оставил эту затею и купил на базаре древний, но в почти отличном состоянии осциллограф ЛО-70 и прекрасно всё сделал. А так как за последующее  время изрядно надоело перекладывать этот пакетик с конструктором с места на место, решил всё же его собрать. Также присутствует любопытство по поводу того насколько хорош он будет. 

набор «Милливольтметр переменного тока»

   В набор входит микросхема К544УД1Б которая представляет собой операционный дифференциальный  усилитель  с высоким входным сопротивлением и низким уровнем входных токов, с внутренней частотной коррекцией. Плюс печатная плата с двумя конденсаторами, с двумя парами резисторов  и диодов. Также имеется инструкция по сборке. Всё скромно, но обид нет, стоит набор меньше чем одна микросхема из него в розничной продаже.

Схема Милливольтметра переменного тока

   Милливольтметр, собранный по данной схеме позволяет измерять напряжение с пределами:

  • 1 – до 100 мВ
  • 2 – до 1 В
  • 3 – до 5 В

   В диапазоне 20 Гц – 100 кГц, входное сопротивление около 1 МОм, напряжение питания  
от + 6 до 15 В. 

Печатная плата для МИЛЛИВОЛЬТМЕТРА

   Печатная плата милливольтметра переменного тока изображена со стороны печатных дорожек, для «отрисовки» в Sprint-Layout («зеркалить» не нужно), если понадобиться. 

МИЛЛИВОЛЬТМЕТР ПЕРЕМЕННОГО ТОКА - рисунок печатной

   Сборка началась с изменений в компонентном составе:  под микросхему поставил панельку (сохранней будет), керамический конденсатор поменял на плёночный, номинал естественно прежний. Один из диодов Д9Б при монтаже пришёл в негодность – запаял все Д9И, благо в инструкции последняя буква диода вообще не прописана. Номиналы всех устанавливаемых на плату компонентов были измерены, они соответствуют указанным в схеме (у электролита проверил ещё и ESR). 

подстроечники резисторы

   В набор были включены три резистора номиналом R2 - 910 Ом, R3 - 9,1 кОм и R4 - 47 кОм однако при этом в руководстве по сборке есть оговорка что их номиналы необходимо подбирать в процессе настройки, так что сразу поставил подстроечные резисторы на 3,3 кОм, 22 кОм и 100 кОм. Их было нужно смонтировать на любой подходящий переключатель, взял имевшийся в наличии марки ПД17-1. Показался весьма удобным, миниатюрен, есть за что крепить на плате, имеет три фиксированных положения переключения. 

узлы из электронных компонентов поместил на монтажную плату

   В итоге все узлы из электронных компонентов поместил на монтажную плату, соединил их между собой и подсоединил к маломощному источнику переменного тока – трансформатору ТП-8-3, который подаст на схему напряжение 8,5 вольт.

Милливольтметр переменного тока - калибровка

   А теперь заключительная операция – калибровка. В качестве генератора звуковой частоты использован виртуальный. Звуковая карта компьютера (даже самая посредственная) вполне прилично справляется с работой на частотах до 5 кГц. На вход милливольтметра подан от генератора звуковой частоты сигнал частотой 1000 Гц, действующее значение которого соответствует предельному напряжению выбранного поддиапазона. 

   Звук берётся с разъёма «наушники» (зелёного цвета). Если после подсоединения к схеме и включения виртуального звукового генератора звук «не пойдёт» и даже подключив наушники его, не будет слышно, то в меню «пуск» наведите курсор на «настройки» и выберите «панель управления», где выберите «диспетчер звуковых эффектов» и в нём нажмите на «Выход S/PDIF», где будет указано несколько вариантов. Наш тот, где есть слова «аналоговый выход». И звук «пойдёт».

   Был выбран поддиапазон «до 100 мВ» и при помощи подстроечного резистора  достигнуто отклонение стрелки на конечное деление шкалы микроамперметра (внимание на символ частоты, на шкале, обращать не нужно). То же самое было успешно проделано с другими поддиапазонами. Инструкция производителя в архиве. Несмотря на свою простоту, радиоконструктор оказался вполне работоспособным, и что особенно понравилось – адекватным в настройке. Одним словом набор хорош. Поместить всё в подходящий корпус (если нужно), установить разъёмы и прочее будет делом техники.

   Форум по измерителям

   Обсудить статью МИЛЛИВОЛЬТМЕТР ПЕРЕМЕННОГО ТОКА


radioskot.ru

Милливольтметр схема 2 | Техника и Программы

Милливольтметр переменного тока позволяет совместно с генератором звуковой частоты проверить и наладить усили­тель 34, низкочастотный фильтр и другие устройства.

Прибор измеряет переменное напряжение от 3…5 мВ до 5 В частотой от 20 Гц до 200 кГц. Завал амплитудно-частотной характеристики на границах этого диапазона не превышает 1 дБ. Милливольтметр имеет девять пределов измерения, ко­торые обеспечиваются двумя переключателями и составляют 10, 20, 50, 100, 200, 500 мВ; 1, 2 и 5 В. Выбор пределов изме­рений, кратных числам 1, 2 и 5, позволяет обойтись одной шкалой прибора со 100 делениями и упрош;ает пересчет значе­ния напряжения при переходе с одного диапазона измерения на другой.

Входное сопротивление милливольтметра постоянно на всех пределах измерения и составляет около 1 МОм. Погреш­ность измерений милливольтметром зависит от точности ка­либровки. При использовании в качестве эталонного прибора поверенного вольтметра переменного тока точность измерений может составлять 3…10%.

Принципиальная схема милливольтметра приведена на рис. 9.10. Он состоит из входного каскада на ОУ DA1.1, вольт­метра переменного тока на второй половине сдвоенного ОУ DA1.2, диодах VD1—VD4 и микроамперметре РА1.

Измеряемое переменное напряжение с разъема XS1 подает­ся через делитель напряжения, состояш,ий из переключателя SA1 и резисторов R1, R2 и R3, на входной каскад на ОУ , DA1.1. О помощью этого делителя напряжение может быть уменьшено в 10 или 100 раз. В положении переключателя «х10 мВ» делитель образован резисторами R1, R2, а в положе­нии «хЮО мВ» — резисторами R1, R3. Каскад на ОУ DA1.1 выполнен по схеме неинвертирующего усилителя. Резисторы R4, R5 образуют искусственную среднюю точку, которая по переменному току шунтируется конденсатором 02. Резистор R6 определяет входное сопротивление каскада.

В цепь обратной связи ОУ DA1.1 включен еще один делитель напряжения R8—R11, 03, коммутируемый переключателем SA2. Этот делитель позволяет получить три коэффициента передачи

неинвертирующего усилителя:(по­ложение переключателя «10»),и

. Таким образом, оба делителя совместно обеспечивают указанные в начале описания пределы измерения милливольтметра. Резистор R7 предотвращает измене­ние режимов по постоянному току при переключениях SA2.

С выхода каскада на DA1.1 усиленное переменное напря­жение поступает на вход вольтметра переменного тока с ли­нейной шкалой на ОУ DA1.2. Вольтметр представляет собой неинвертирующий усилитель, охваченный отрицательной об­ратной связью через диодный мост (VD1—VD4). Микроампер­метр РА1 включен в диагональ этого моста.

Глубина отрицательной обратной связи и, Kajc следствие, коэффициент усиления усилителя зависит от прямого сопро­тивления диодов моста. При больших переменных напряжени­ях это сопротивление мало. В этом случае глубина ООС также оказывается большой, а коэффициент передачи — малым. При уменьшении напряжения прямое сопротивление диодов увели­чивается. Это приводит к уменьшению глубины обратной свя­зи, охватывающей усилитель. В результате его коэффициент усиления увеличивается и на диодный мост поступает большее напряжение. Указанные процессы приводят к линеаризации шкалы прибора.

Дополнительно улз^чшить линейность позволяет резистор ‘ R13, шунтирующий микроамперметр РА1. Этот резистор уве­личивает ток через диоды выпрямительного моста, выводя их рабочие точки подальше от начального з^частка, отличающе­гося наибольшей нелинейностью характеристик. Тем не ме­нее следует помнить, что примерно на одной трети шкалы прибор имеет большую нелинейность, чем в оставшемся рабо­чем з^частке.

Резистором R12 регулируют чувствительность милливольт­метра при калибровке. Конденсатор С5 шунтирует цепи пита­ния милливольтметра. Питание прибора осуществляется от стабилизированного напряжения величиной 12…15 В.

Милливольтметр собран в корпусе размером 150 X 110 X 65 мм. Если корпус пластмассовый, его внутрен­нюю часть экранируют алюминиевой или медной фольгой и надежно соединяют экран с общим проводом.

В приборе использованы резисторы МЛТ, С1-4, С2-10, С2-33, подстроечный резистор R12 типа СПЗ-19а. Оксидные конденсаторы К50-35, конденсатор 01 К10-17, КМ. Диоды VD1—VD4 — любые из серии Д9. Переключатели SA1, SA2 — малогабаритные галетные, SA1 — на три положения и два на­правления, SA2 — на три положения и одно направление. Разъем XS1 — любой экранированный, например СР-50. Мик­роамперметр РА1 типа М42100.

Детали прибора, кроме разъема XS1, резисторов делителя R1—R3, переключателей SA1, SA2 и микроамперметра РА1, смонтированы на плате, изготовленной из фольгированного стеклотекстолита толщиной 2 мм (рис. 9.11).

Налаживание милливольтметра начинают с подбора рези­сторов R8—R11. Для этого переключатель SA1 устанавливают в положение «х1 мВ», SA2 — в положение «10», а резистор R12 — в верхнее (по принципиальной схеме) положение.

С генератора звуковой частоты подают на вход милли­вольтметра синусоидальное напряжение частотой 1 кГц и ам­плитудой 10 мВ (контролируют образцовым милливольтмет­ром). Резистором R12 выставляют стрелку микроамперметра точно на конечную отметку шкалы. После этого переключа­тель переводят в положение «20» и, подбирая резистор R9, ус­танавливают стрелку прибора на середину шкалы. Добившись этого, вновь переводят переключатель в положение «10» и ре­зистором R12 устанавливают стрелку прибора на конечную от­метку. Далее переводят переключатель в положение «50» и подбором резистора R10 устанавливают стрелку на отметку, соответствующую 20% шкалы. Операции по подбору резисто­ров приходится повторять несколько раз, добиваясь точного соотношения коэффициентов передачи (10:5:2) неинвертирую­щего усилителя.

Далее подбирают резистор R2 входного делителя. Для это­го переключатель SA1 переводят в положение «х10 мВ». Пе­реключатель SA2 во время этой операции находится в поло­жении «10». Подают на вход милливольтметра с генератора

Рис. 9.11. Печатная плата милливольтметра и размещение деталей на ней

звуковой частоты синусоидальное напряжение той же часто­ты амплитудой 100 мВ. Подбором резистора R2 добиваются , того, чтобы стрелка измерительного прибора РА1 установи­лась на отметку «100». После этого переключатель переводят в положение «хЮО мВ», а входное напряжение увеличивают до 1 В. Подбором сопротивления резистора КЗ вновь устанав­ливают стрелку прибора на конечную отметку шкалы микро­амперметра.

Для повышения доверия к прибору полезно снять характе­ристики прибора во всем диапазоне рабочих частот, сняв ам­плитудно-частотные характеристики. Эти характеристики в дальнейшем можно использовать как поправочные при прове­дении измерений.

nauchebe.net

Стрелочный милливольтметр переменного напряжения ЗЧ

Прибор предназначен для измерения низкочастотного напряжения переменного тока частотой от 10 Hz до 50 kHz. Можно измерять в трех пределах измерения: до 0,01V, до 0,01V и до 1V.

Входное сопротивление составляет 910 kOm независимо от предела измерения.

Вход прибора от перенапряжения защищен ограничительной цепью из двух диодов и резистора. От постоянной составляющей вход защищен конденса­тором.

В приборе используется измерительная головка магнитодинамической системы.Прибор сделан на основе операционного усилителя А1 типа 741. Усилитель питается двуполярным напряжением от источника, состоящего из двух девяти­вольтовых гальванических батарей G1 и G2, выключаемых с помощью двойного включателя S1.

Балансировка производится переменным резистором R5, который устанавливает нулевое напряжение на выходе ОУ А1. Этим резистором, перед началом изме­рения, нужно установить стрелку прибора на нулевую отметку при отсутствии вход­ного напряжения.

Входное напряжение подается на разъем Х1 коаксиального типа. ОУ А1 усиливает напряжение и оно поступает на выпрями­тель на германиевых диодах VD5-VD8. Далее через диод VD3 на измерительную головку Р1.

Предел измерения зависит от чувстви­тельности усилителя, которая регули­руется с помощью переключателя S2, переключающего резисторы цепи ООС операционного усилителя, отвечающие за его коэффициент усиления.

Налаживание заключается в градуировке и юстировки прибора точным подбором сопротивлений R1-R3. При этом нужно пользоваться образцовым прибором, например, мультиметром, и источником регулируемого переменного напряжения ЗЧ, например, лабораторным генератором НЧ.

Диоды Д9Б можно заменить любыми Д9, или другими германиевыми, например, ГД507, ОА91 и др.

Конструкция прибора такая же, как прибора из предыдущей статьи этого же автора.

Автор: Денисов В.А.

Возможно, вам это будет интересно:

meandr.org

РАДИО для ВСЕХ - ВЧ ВОЛЬТМЕТР с линейной шкалой

ВЧ вольтметр с линейной шкалой
Роберт АКОПОВ (UN7RX), г. Жезказган Карагандинской обл., Казахстан

    Одним из необходимых приборов в арсенале радиолюбителя-коротковолновика, безусловно, является высокочастотный вольтметр. В отличие от НЧ мультиметра или, например, компактного ЖК осциллографа, такой прибор в продаже встречается редко, да и стоимость нового фирменного довольно высока. Посему, когда назрела необходимость в таком приборе, он был построен, причем со стрелочным миллиамперметром в качестве индикатора, который, в отличие от цифрового, позволяет легко и наглядно оценивать изменения показаний количественно, а не путем сравнения результатов. Это особенно важно при налаживании устройств, где амплитуда измеряемого сигнала постоянно меняется. В то же время точность измерения прибора при использовании определенной схемотехники получается вполне приемлемой.

На схеме в журнале опечатка: R9 должен быть сопротивлением 4,7 МОм

     ВЧ вольтметры можно разделить на три группы. Первые построены на базе широкополосного усилителя с включением диодного выпрямителя в цепь отрицательной ОС [1]. Усилитель обеспечивает работу выпрямительного элемента на линейном участке ВАХ. В приборах второй группы применяют простейший детектор с высокоомным усилителем постоянного тока (УПТ). Шкала такого ВЧ вольтметра на нижних пределах измерений нелинейна, что требует применения специальных градуировочных таблиц либо индивидуальной калибровки прибора [2]. Попытка в какой-то мере линеаризировать шкалу и сдвинуть порог чувствительности вниз путем пропускания небольшого тока через диод проблему не решает. До начала линейного участка ВАХ эти вольтметры являются, по сути, индикаторами [3]. Тем не менее такие приборы, как в виде законченных конструкций, так и приставок к цифровым мультиметрам, весьма популярны, о чем свидетельствуют многочисленные публикации в журналах и сети Интернет.
    Третья группа приборов использует линеаризацию шкалы, когда линеаризирующий элемент включен в цепь ОС УПТ для обеспечения необходимого изменения усиления в зависимости от амплитуды входного сигнала. Подобные решения нередко используют в узлах профессиональной аппаратуры, например, в широкополосных высоколинейных измерительных усилителях с АРУ, либо узлах АРУ широкополосных ВЧ генераторов. Именно на таком принципе построен описываемый прибор, схема которого с незначительными изменениями заимствована из [4].
     При всей очевидной простоте ВЧ вольтметр имеет очень неплохие параметры и, естественно, линейную шкалу, избавляющую от проблем с градуировкой.
Диапазон измеряемого напряжения — от 10 мВ до 20 В. Рабочая частотная полоса — 100 Гц…75 МГц. Входное сопротивление — не менее 1 МОм при входной емкости не более нескольких пикофарад, которая определяется конструкцией детекторной головки. Погрешность измерений — не хуже 5 %.
Линеаризирующий узел выполнен на микросхеме DA1. Диод VD2 в цепи отрицательной ОС способствует повышению усиления этой ступени УПТ при малых значениях входного напряжения. Снижение выходного напряжения детектора компенсируется, в результате показания прибора приобретают линейную зависимость. Конденсаторы С4, С5 предотвращают самовозбуждение УПТ и уменьшают возможные наводки. Переменный резистор R10 служит для установки стрелки измерительного прибора РА1 на нулевую отметку шкалы перед проведением измерений. При этом вход детекторной головки должен быть замкнут. питания прибора особенностей не имеет. Он выполнен на двух стабилизаторах и обеспечивает двуполярное напряжение 2×12 В для питания операционных усилителей (сетевой трансформатор на схеме условно не показан, но входит в состав набора для сборки).

Все детали прибора, за исключением деталей измерительного щупа, смонтированы на двух печатных платах из односторонне фольгированного стеклотекстолита. Ниже приведена фотография платы УПТ, платы а питания и измерительного щупа.

Миллиамперметр РА1 — М42100, с током полного отклонения стрелки 1 мА. Переключатель SA1 — ПГЗ-8ПЗН. Переменный резистор R10 — СП2-2, все подстроечные резисторы — импортные многооборотные, например 3296W. Резисторы нестандартных номиналов R2, R5 и R11 могут быть составлены из двух, включенных последовательно. Операционные усилители можно заменить другими, с высоким входным сопротивлением и желательно с внутренней коррекцией (чтобы не усложнять схему). Все постоянные конденсаторы — керамические. Конденсатор СЗ смонтирован непосредственно на входном разъеме XW1.

Диод Д311А в ВЧ выпрямителе выбран из соображения оптимальности максимально допустимого ВЧ напряжения и эффективности выпрямления на верхней измеряемой частотной границе.
Несколько слов о конструкции измерительного щупа прибора. Корпус щупа изготовлен из стеклотекстолита в виде трубки, поверх которой надет экран из медной фольги.

Внутри корпуса размещена плата из фольгированного стеклотекстолита, на которой смонтированы детали щупа. Кольцо из полоски луженой фольги примерно посредине корпуса предназначено для обеспечения контакта с общим проводом съемного делителя, который можно навинтить вместо наконечника щупа.
Налаживание прибора начинают с балансировки ОУ DA2. Для этого переключатель SA1 устанавливают в положение «5 В», замыкают вход измерительного щупа и подстроечным резистором R13 устанавливают стрелку прибора РА1 на нулевую отметку шкалы. Затем переключают прибор в положение «10 мВ», на его вход подают такое же напряжение, и резистором R16 устанавливают стрелку прибора РА1 на последнее деление шкалы. Далее на вход вольтметра подают напряжение 5 мВ, стрелка прибора должна быть примерно на середине шкалы. Линейности показаний добиваются подборкой резистора R3. Ещё лучшей линейности можно добиться подборкой резистора R12, однако следует иметь в виду, что это повлияет на коэффициент усиления УПТ. Далее калибруют прибор на всех поддиапазонах соответствующими подстроечными резисторами. В качестве а образцового напряжения при градуировке вольтметра автор использовал генератор Agilent 8648A (с подключенным к его выходу эквивалентом нагрузки сопротивлением 50 Ом), имеющий цифровой измеритель уровня выходного сигнала.

Всю статью из журнала Радио №2, 2011 можно загрузить отсюда
ЛИТЕРАТУРА:
1. Прокофьев И., Милливольтметр-Q-метр. — Радио, 1982, №7, с. 31.
2. Степанов Б., ВЧ головка к цифровому мультиметру. — Радио, 2006, № 8, с. 58, 59.
3. Степанов Б., ВЧ вольтметр на диоде Шоттки. — Радио, 2008, № 1, с. 61, 62.
4. Пугач А., Высокочастотный милливольтметр с линейной шкалой. — Радио, 1992, № 7, с. 39.




Стоимость печатных плат (щупа, основной платы и платы БП) с маской и маркировкой: 160 грн.

Стоимость набора для сборки ВЧ вольтметра (как на фото под схемой, переключатель ПГК): 540 грн.

Миллиамперметр М2001 или М4202 с током полного отклонения стрелки 1 мА (в состав набора не входит) - 150 грн.

Состав набора можно увидеть здесь >>>

Для заказа просьба обращаться сюда >>> или сюда >>>

Мирного неба, удачи, добра! 73!

radio-kits.ucoz.ru

Милливольтметр и вольтметр | Все своими руками

Опубликовал admin | Дата 23 июля, 2016

Эта статья посвящена двум вольтметрам, реализованных на микроконтроллере PIC16F676. Один вольтметр имеет диапазон измеряемых напряжений от 0,001 до 1,023 вольта, другой, с соответствующим резистивным делителем 1:10, может измерять напряжения от 0,01 до 10,02 вольта. Ток потребления всего устройства при выходном напряжении стабилизатора +5 вольт составляет примерно 13,7 мА. Схема вольтметра изображена на рисунке 1.

Два вольтметра схема


Цифровой вольтметр, работа схемы

Для реализации двух вольтметров использованы два вывода микроконтроллера, сконфигурированных на вход для модуля цифрового преобразования. Вход RA2 используется для измерения малых напряжений, в районе вольта, а к входу RA0 подключен делитель напряжения 1:10, состоящий из резисторов R1 и R2, позволяющий измерять напряжение до 10 вольт. В данном микроконтроллере используется десятиразрядный модуль АЦП и чтобы реализовать измерение напряжения с точностью до 0,001 вольта для диапазона 1 В, пришлось применить внешнее опорное напряжение от ИОН микросхемы DA1 К157ХП2. Так как мощность ИОН микросхемы очень маленькая, и чтобы исключить влияние внешних цепей на этот ИОН, в схему введен буферный ОУ на микросхеме DA2.1 LM358N. Это неинвертирующий повторитель напряжения, имеющий стопроцентную отрицательную обратную связь — ООС. Выход этого ОУ нагружен на нагрузку, состоящую из резисторов R4 и R5. С движка подстроечного резистора R4, опорное напряжение величиной 1,024 В подается на вывод 12 микроконтроллера DD1, сконфигурированного, как вход опорного напряжения для работы модуля АЦП. При таком напряжении каждый разряд оцифрованного сигнала будет равен 0,001 В. Чтобы уменьшить влияние шумов, при измерении малых величин напряжения применен еще один повторитель напряжения, реализованный на втором ОУ микросхемы DA2. ООС этого усилителя резко уменьшает шумовую составляющую измеряемой величины напряжения. Так же уменьшается напряжение импульсных помех измеряемого напряжения.

Для вывода информации об измеряемых величинах применен двухстрочный ЖКИ, хотя для этой конструкции хватило бы и одной строки. Но иметь в запасе возможность вывода еще какой ни будь информации, тоже не плохо. Яркость подсветки индикатора регулируется резистором R6, контрастность выводимых символов зависит от величины резисторов делителя напряжения R7 и R8. Питается устройство от стабилизатора напряжения собранного на микросхеме DA1. Выходное напряжение +5 В устанавливается резистором R3. Для уменьшения общего тока потребления, напряжение питания самого контроллера можно уменьшить до величины, при которой сохранялась бы работоспособность контроллера индикатора. При проверке данной схемы индикатор устойчиво работал при напряжении питания микроконтроллера 3,3 вольта.

Настройка вольтметра

Для настрой данного вольтметра необходим, как минимум цифровой мультиметр, способный измерять напряжение 1,023 вольта, для настройки опорного напряжения ИОН. И так, с помощью контрольного вольтметра выставляем на выводе 12 микросхемы DD1 напряжение величиной 1,024 вольта. Затем на вход ОУ DA2.2, вывод 5 подаем напряжение известной величины, например 1,000 вольт. Если показания контрольного и настраиваемого вольтметров не совпадают, то подстроечным резистором R4, изменяя величину опорного напряжения, добиваются равнозначных показаний. Затем на вход U2 подают контрольное напряжение известной величины, например 10,00 вольт и подборкой величины сопротивления резистора R1, можно и R2, а можно и тем и другим добиваются равнозначных показаний обоих вольтметров. На этом регулировка заканчивается.

Фото устройства на макетной плате

Внешний вид собранного устройства на макетной плате показан на фото 1. Успехов. К.В.Ю. Скачать файл прошивки

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:4 355


www.kondratev-v.ru

Вольтметр своими руками: изготовление и проведение измерений

Ситуации, когда под рукой должен находиться вольтметр, встречаются достаточно часто. Для этого нет необходимости использовать заводской сложный прибор. Изготовить простенький вольтметр своими руками – не проблема, потому что состоит он из двух элементов: стрелочный измерительный блок и резистор. Правда, необходимо отметить, что пригодность вольтметра определяется его входным сопротивлением, которое состоит из сопротивлений его элементов.

ВольтметрНо необходимо учитывать тот факт, что резисторы есть разные с разными номиналами, а это говорит о том, что от установленного резистора будет зависеть входное сопротивление. То есть, подобрав правильно резистор, можно сделать вольтметр под замеры определенных уровней напряжений сетей. Сам же измерительный прибор чаще оценивается по показателю – относительное входное сопротивления, приходящееся на один вольт напряжения, его единица измерения – кОм/В.

То есть, получается так, что входное сопротивления на разных измеряемых участках разное, а относительная величина – показатель постоянный. К тому же, чем меньше отклоняется стрелка измерительного блока, тем больше относительная величина, а, значит, точнее будут измерения.

Прибор для измерения нескольких пределов

Кто не раз сталкивался с транзисторными конструкциями и схемами знает, что очень часто вольтметром приходится замерять цепи с напряжением от десятков долей одного вольта до сотен вольт. Простой приборчик, изготовленный своими руками, с одним резистором это не осилит, поэтому в схему придется подключить несколько элементов с разным сопротивлением. Чтобы вы поняли, о чем идет речь, предлагаем ознакомиться со схемой, расположенной снизу:

Четыри резисторами

На ней показано, что в схеме установлено четыре резистора, каждый из которых отвечает за свой диапазон измерений:

  1. От 0 вольт до единицы.
  2. От 0 вольт до 10В.
  3. От 0 В до 100 вольт.
  4. От 0 до 1000 В.

Номинал каждого резистора поддается подсчету, который проводится на основе закона Ома. Здесь используется следующая формула:

R=(Uп/Iи)-Rп, где

  • Rп – это сопротивление измерительного блока, возьмем, к примеру. 500 Ом;
  • Uп – это максимальное напряжение измеряемого предела;
  • Iи – это сила тока, при которой стрелка отклоняется до конца шкалы, в нашем случае – 0,0005 ампер.


Для несложного вольтметра из китайского амперметра можно выбрать следующие резисторы:

  • для первого предела – 1,5 кОм;
  • для второго – 19,5 кОм;
  • для третьего – 199,5;
  • для четвертого – 1999,5.

А вот относительная величина сопротивления этого прибора будет равна 2 кОм/В. Конечно, расчетные номиналы не совпадают со стандартными, поэтому резисторы придется подбирать близкими по значению. Далее проводится финишная подгонка, при которой производится градуировка самого прибора.

Как переделать вольтметр постоянного напряжения в переменное

Показанная на рисунке №1 схема – это вольтметр постоянного тока. Чтобы его сделать переменным или, как говорят специалисты, пульсирующим, необходимо в конструкцию установить выпрямитель, с помощью которого постоянное напряжение преобразуется в переменное. На рисунке №2 вольтметр переменного тока показан схематически.

Данная схема работает так:

  • когда на левом зажиме находится положительная полуволна, то открывается диод D1, D2 в этом случае закрыт;
  • напряжение проходит через амперметр к правому зажиму;
  • когда положительная полуволна находится на правом конце, то D1 закрывается, и напряжение через амперметр не проходит.

В схему обязательно добавляется резистор Rд, сопротивление которого рассчитывается точно так же, как и остальные элементы. Правда, его расчетное значение делится на коэффициент, равный 2,5-3. Это в том случае, если в вольтметр устанавливается однополупериодный выпрямитель. Если используется двухполупериодный выпрямитель, то значение сопротивления делится на коэффициент: 1,25-1,5. Кстати, схема последнего изображена на рисунке №3.

Как правильно подключить вольтметр

Тот, кто не знает, но хочет проверить напряжение на каком-то участке электрической сети, должен задаться вопросом – как подключить вольтметр? Это на самом деле серьезный вопрос, в ответе которого лежит простое требование – подключение вольтметра необходимо проводить только параллельно нагрузке. Если будет произведено последовательное подключение, то сам прибор просто выйдет из строя, и вас может ударить током.

Вольтметр своими руками

Все дело в том, что при таком соединении уменьшается сила тока, действующая на сам измерительный прибор. При этом сопротивлении его не меняется, то есть, остается большим. Кстати, никогда не путайте вольтметр с амперметром. Последний подключается к цепи последовательно, чтобы снизить показатель сопротивления до минимума.

И последний вопрос темы – как пользоваться вольтметром, изготовленным самостоятельно. Итак, в вашем приборе два щупа. Один подключается к нулевому контуру, второй к фазе. Так же можно проверить напряжение через розетку, предварительно определив, к какому гнезду запитан ноль, а к какому фаза. Или соединяете параллельно прибор к измеряемому участку. Стрелка измерительного блока покажет величину напряжения в сети. Вот так пользуются этим самодельным измерительным прибором.

onlineelektrik.ru

Простой ВЧ милливольтметр своими руками

Добавил: STR2013,Дата: 03 Фев 2016

Для налаживания различных ВЧ устройств (приёмники, передатчики…) измерить уровень сигнала обычным вольтметром не получится. Поэтому здесь необходимо воспользоваться ВЧ вольтметром.

Одним из таких предложена ниже схема простого ВЧ милливольтметра на двух транзисторах.

Принципиальная схема ВЧ милливольтметра

Схема милливольтметра постоянного тока построена на транзисторах VI.1 и VI.2 и выпрямителя высокочастотного напряжения на диоде V2.

Применение интегральной сборки транзисторов позволяет свести к минимуму разбаланс усилителя постоянного тока милливольтметра из-за изменения окружающей температуры.

В качестве V2 целесообразно использовать кремниевый диод, предназначенный для смешения сигналов или их детектирования в диапазоне дециметровых волн.

Можно здесь применить и некоторые из импульсных диодов, предназначенных для коммутаторов с высоким быстродействием. Температурную компенсацию режима работы диода V2 обеспечивает кремниевый диод V3, смещенный в прямом направлении.

Рабочую точку диода выпрямителя V2 устанавливают подстроечным резистором R9 по максимальной его чувствительности. Балансировку милливольтметра (в отсутствие ВЧ напряжения на входе) производят подстроечным резистором R 7.

Калибруют прибор, используя подстроечный резистор R8.

Шкала милливольтметра нелинейна и ее изготавливают индивидуально для каждого экземпляра прибора.

Вместо интегральной пары транзисторов можно использовать и отдельные транзисторы, подобранные по коэффициенту усиления одинаковыми.

Все узлы прибора выполнены на печатной плате.

В ВЧ милливольтметре можно применить транзисторные сборки К125НТ1 или К166НТ1А (причем один из транзисторов сборки с успехом выполнит роль термостабилизирующего диода) или им подобным, а также (как писали выше) можно подобрать пару транзисторов из серий КТ312, КТ315 и т. д. (по статическим коэффициентам передачи тока при фиксированном значении тока коллектора и по напряжению база-эмиттер при фиксированном значении тока базы).

Источник: Конструкции советских и чехословацких радиолюбителей: Сб. статей. 1987. (МРБ № 1113)




П О П У Л Я Р Н О Е:

  • Самодельный цветной календарь из бумаги
  • Календарь на 2018 год своими руками

    Как быстро сделать календарь на год? Имея цветной принтер легко можно сделать календарь, распечатав готовый шаблон на цветном принтере, вырезать и склеить как показано на рисунке.

    Подробнее…

  • Автомат управления дачным водопроводом
  • У многих имеются дачи, садовые домики, «фазенды». Если дача расположена недалеко от города некоторые семьи вообще перебираются туда на все лето, а при наличии теплого отапливаемого дома проводят много времени и зимой. Жизнь на природе прекрасна, спору нет, но все же хочется и немного благ цивилизации вроде водопровода. Зачастую центрального городского водопровода на даче нет, а в качестве источника воды используется колодец. Глубина колодца обычно значительно больше глубины промерзания грунта (для Московской области до 1,5 метра). Подробнее…

  • Делаем из спичек стремянку!
  • Из спичек много можно сделать разных поделок и простых, и сложных.

    Сегодня рассмотрим одну из простейших поделок для начинающих — это «стремянка».

    Поделка «стремянка» делается всего за семь шагов. Подробнее…


- н а в и г а т о р -


Популярность: 5 852 просм.


ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ


www.mastervintik.ru

0 comments on “Милливольтметр переменного тока схема – МИЛЛИВОЛЬТМЕТР ПЕРЕМЕННОГО ТОКА

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *