Сток исток затвор – : , ,

Полевой транзистор с управляющим PN-переходом

Полевой транзистор с управляющим PN-переходом – это очень мутная тема для многих начинающих электронщиков.

Введение

Как вы знаете, поле бывает разным. Бывает такое:

Полевой транзистор с управляющим PN-переходом

А бывает и такое))

Полевой транзистор с управляющим PN-переходом

Но речь пойдет совсем о других полях: невидимых… Мы их не видим, не слышим, но можем почувствовать. Например, гравитационное поле Земли тянет нас к центру Земли, хотим мы этого или нет. Некоторые виды полей без специальных приборов мы даже и не заметим. Это электрическое и магнитное поле. В данной статье мы с вами разберем электрическое поле.

Электрическое поле

Представьте себе, что мы взяли пару металлических пластинок. На одну из них мы подаем плюс питания, а на другую – минус.

Полевой транзистор с управляющим PN-переходом

В результате, они заряжаются, и между этими двумя пластинами создается однородное электрическое поле, которое характеризуется таким параметром, как напряженность. По идее, чем больше мы подадим напряжения между пластинами, тем напряженнее стает поле между этими пластинами.  Физика, 7-8 класс 😉

Но самое интересное, что это поле может влиять непосредственно на электроны. Если электрон пролетит между этими двумя пластинами, плюсовая пластина  начнет притягивать его к себе и траектория полета электрона будет уже искривлена. Чем больше напряженность поля, тем больше оно будет влиять на траекторию движения электрона. На этом принципе основана работа кинескопных телевизоров.

Какой вывод можно сделать из всего этого? Электрическое поле влияет на электроны и не только на электроны, но и на другие частицы, обладающие положительным, либо отрицательным зарядом. Это утверждение запомним. Оно нам еще пригодится.

Также вы со школы должны помнить еще одно утверждение: одноименные заряды отталкиваются, а разноименные  притягиваются:

Полевой транзистор с управляющим PN-переходом

Взаимодействие полупроводников

Мы с вами  знаем из статьи Биполярный транзистор, что есть два типа искусственных легированных полупроводников. Это полупроводник N-типа и полупроводник P-типа. Как вы помните, в полупроводнике N-типа у нас избыток электронов (там их ОЧЕНЬ много):

А в полупроводнике P-типа избыток дырок:

Если вы не забыли, электроны у нас обладают отрицательным зарядом ( – ), а дырки – положительным зарядом ( + ). Поэтому, на картинках мы заполнили наши бруски полупроводников соответствующими зарядами.

А что будет, если соединить их друг с другом?

Так как электроны и дырки постоянно находятся в хаотическом движении, на границе соединения P и N полупроводников начнется диффузия. Что такое диффузия? Как говорит нам Википедия, диффузия – это процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого вещества.

Пример:

Если пустить шептуна на парах, то в этом случае ваши вонючие молекулы из пукана будут смешиваться с молекулами воздуха и сосед через парту учует ваш запах пельменей, которые вы съели на ужин.

На границе полупроводников происходит то же самое! Электроны и дырки начинают смешиваться.

Но если ваши вонючие молекулы, выпущенные из пукана, могут спокойно смешиваться с воздухом пока не займут все пространство кабинета, то на границе P-N перехода есть камень преткновения. И он заключается в том, что электроны и дырки обладают зарядом и начинают взаимодействовать с друг другом. Начинает работать правило, одноименные заряды отталкиваются, а разноименные притягиваются. Так как электроны и дырки разноименных зарядов, они начинают притягиваться к друг другу. То есть с одной стороны идет диффузия, а с другой стороны взаимодействие зарядов. Когда все это устаканивается, получается вот такая картинка:

Запирающий слой

Область, которая возникает между этими зарядами, называется запирающим слоем. Его также называют обедненным, от слова “бедный”, так как в нем нет основных носителей. Как вы помните, основные носители в N полупроводнике – это электроны, а в P полупроводнике – дырки.

А раз нет свободных зарядов, то и электрический ток течь не может, так как электрический ток – это не что иное, как упорядоченное движение заряженных частиц в одном направлении. Получается, эта область по сути стает  диэлектриком , то есть областью, которая не проводит электрический ток.

Ну а теперь самое интересное. Оказывается, мы можем управлять толщиной этого запирающего слоя! Для этого достаточно увеличить напряженность электрического поля с помощью источника питания, то есть увеличить подаваемое напряжение, соблюдая необходимую полярность. Плюс источника напряжения подаем на N полупроводник, а минус источника – на P полупроводник.

Вот что у нас получится:

Электроны стремятся всей толпой к плюсовой клемме батареи, а дырки – к минусовой. В результате этого, запирающий слой стает намного шире. Это равносильно тому, что мы подаем обратное смещение на P-N переход. Чем больше напряжения мы подаем на P и N полупроводник, тем больше ширина запирающего слоя. Все элементарно и просто 😉

Если бы мы подали на P полупроводник  плюс, а на N  – минус, то у нас бы запирающий слой равнялся бы нулю и электрический ток прошел бы беспрепятственно через P-N переход. Как вы помните, это называется прямым включением P-N перехода. Но в этом случае мы должны подать напряжение больше, чем контактная разность потенциалов на границе переходов. Она равняется 0,6-0,7 Вольт, если используется материал кремний. Как только напряжение стает больше, чем 0,6-0,7 Вольт, начинается движение электрических зарядов. Диффузия усиливается еще тем, что электроны бегут к плюсовой клемме, а дырки – к минусовой.

Применение запирающего слоя

Но где же можно применить свойство “изменение толщины диэлектрика под воздействием напряженности электрического поля”? А давайте рассмотрим небольшой пример. Может быть вам потом станет ясно, где можно применить это свойство 😉

Итак, провинциальный городок X. Обычный будний день. Поток людей спешит по своим делам. Около тротуара стоит лавка с хот-догами. Пока что она еще не открылась, так как продавец сладко спит,  поэтому все проходят мимо этой лавки:

Но вот она открывается, и первые зеваки начинают “тусить” возле нее, чтобы отведать позавчерашних холодных протухших хот-догов)).

Продавец видит, что дела идут в гору и начинает еще быстрее обслуживать клиентов. То есть он вкладывает всю свою энергию, чтобы выдержать темп. Он начинает работать напряженнее. Чем напряженнее он обслуживает клиентов, тем их становиться больше. Зевакам ведь интересно, что за тусовка там намечается. А раз все покупают, то и они тоже хотят. Народу становится чуток больше.

Народ тихонько подваливает и продавец, чтобы не упустить выгоду, начинает работать изо всех сил. Наш бедный продавец работает, как белка в колесе. Тут уже не расслабишься, иначе народ уйдет к продавцу пончиков. На лбу у него выступил пот, напряжен так, что вот-вот уже лопнет от усталости! Но гляньте на тротуар… Движение ПЕРЕКРЫЛИ зеваки, которые жить не быть хотят купить эти протухшие хот-доги.

Мораль сей басни такова:

Коль хочешь жрать, готовь с утра).

Теперь давайте представим, что тротуар – это проводник. Люди – это электроны. Продавец – это какой-либо заряд, который если захочет, может работать либо напряженнее, либо вообще закрыть лавку.

Итак, что у нас тогда получается. Пока лавка закрыта, толпа зевак спокойно идет по своим делам в одном направлении. Продавца нет на месте. То есть заряд ноль. Это значит, что в данном направлении у нас спокойно течет электрический ток,  так как упорядоченное движение заряженных частиц – это и есть электрический ток

Как только продавец открыл лавку и стал работать,  некоторые зеваки стали толпиться у лавки. Но эта кучка зевак теперь мешается на тротуаре людям, которые действительно куда-то спешат по делам. То есть эта кучка зевает оказывает сопротивление потоку людей, спешащим по делам. Уже интереснее. Раз мешаются, значит меньше людей сможет пройти ниже толпы зевак за какое-то время. А что у нас значит этот параметр? Не силу тока ли случайно? Вот именно! Сила тока стала меньше!

Итак, теперь главный вопрос: от чего зависит поток людей? Да от продавца, мать его за ногу!

Как только он начинает орать: “Свежие хот-доги, бери, налетай, теще покупай!”, народу стает больше. То есть как только он начинает работать напряженнее, так и толпа зевак начинает больше заграждать тротуар. И все может закончится тем, что движение на тротуаре встанет колом. И да, кстати. Стоящая толпа зевак – это уже не электроны. Это обедненный слой, диэлектрик)

И вот ученые инженеры, которые поняли, что можно менять силу тока, управляя напряженностью электрического поля, создали радиоэлемент, который назвали в честь электрического поля, и имя его полевой транзистор.

Принцип работы транзистора

Схема полевого транзистора

В нашем примере мы тоже будем использовать вместо “тротуара” полупроводник N-типа. То есть мы имеем какой-либо брусочек из N полупроводника. В нем преобладают электроны. Конечно, их не так много, как в проводниках, но все же их достаточно, чтобы через этот брусок  мало-мальски тёк электрический ток.

Что будет, если на него подать напряжение? Как я уже сказал, хотя в  N полупроводнике избыток электронов, но их все равно не так много, как в проводниках. Поэтому через этот кусок N полупроводника побежит электрический ток, если мы приложим к нему постоянное или переменное напряжение.

Вы ведь не забыли, что хотя электроны и бегут к плюсу, но за направление электрического тока  во всем мире принято движение от плюса к минусу источника напряжения?

А теперь давайте впаяем в этот брусок полупроводник P-типа. Получится что-то типа этого:

Можно сказать, что у нас уже получился полевой транзистор.

На границе касания теперь образовался PN-переход с небольшим запирающим слоем!

Итого, у нас получился “кирпич” с тремя выводами.

Сток, исток, затвор

Полевой транзистор имеет три вывода. Вывод, с которого начинают свой путь электроны (основные носители) называется ИСТОКОМ. От слова “источник”. В разговорной речи мы источником называем родник, из которого бьет чистая вода. Поэтому нетрудно будет запомнить, что ИСТОК – это тот вывод, откуда начинают свой путь основные носители заряда. В данном случае это электроны. Место, куда они стекаются, называются СТОКОМ.

Эти два понятия нетрудно будет запомнить, если вспомнить водосточную систему с крыш ваших домов.

Истоком будет труба, которая собирает всю капли дождя с шифера или профнастила

Полевой транзистор с управляющим PN-переходом

А стоком будет конец  трубы, из которой вся дождевая вода будет выбегать на землю:

Полевой транзистор с управляющим PN-переходом

Но опять же, не забывайте, что мы говорим об электронах! А электроны бегут к плюсу. То есть по-нашенски получается что на СТОК мы подаем плюс, а на ИСТОК – минус.

А для чего нужен третий вывод?

Так, а давайте по приколу где-нибудь обрежем нашу водосточную трубу и воткнем туда вот такой прибамбас:

Полевой транзистор с управляющим PN-переходом

Называется он дисковым затвором. Чего бы мы добились, если бы воткнули этот дисковый затвор в нашу водосточную трубу? Да покрутив за баранку, мы могли бы регулировать поток воды! Мы можем вообще полностью перекрыть трубу, тогда в этом случае на стоке не стоит ждать дождевую водичку. А можем открыть наполовину, и регулировать поток воды со стока, чтобы при ливне у нас поток воды не смыл грядки и не сделал большую яму в земле. Удобно? Удобно.

Так вот, третий вывод полевого транзистора, который соединяется с P полупроводником называется тоже ЗАТВОРОМ и служит как раз для того, чтобы регулировать силу тока в бруске, через который бежит электрический ток 😉

Для этого достаточно подать на него напряжение, чтобы P-N переход был включен в обратном направлении, то есть в нашем случае подать МИНУС относительно ИСТОКА. Вся картина в целом будет выглядеть как-то вот так:

Канал транзистора

В этом случае, как вы видите на рисунке выше, запрещенный слой увеличивается в глубину бруска и начинает перекрывать дорогу электронам. В результате получается, что ширина “тротуара” для электронов стает меньше, и только некоторые электроны могут достичь назначенной цели, то есть СТОКА. Этот “тротуар” в полевом транзисторе называют каналом.

Так как у нас брусок сделан из N-полупроводника, следовательно и канал тоже у нас N-проводимости. Следовательно, такой  полевой транзистор называется N-канальным полевым транзистором с управляющим P-N переходом. На буржуйский манер это звучит как Junction Field-Effect-Transistors или просто JFET. Также неплохо было бы запомнить английские название выводов: Drain – сток, Source – исток, Gate – затвор.

А что будет, если на Bat2 мы еще больше добавим напряжения? То есть мы сделаем так, чтобы U2>U1. В этом случае у нас запирающий слой еще больше уйдет в брусок. Канал станет еще тоньше. Следовательно, увеличится сопротивление канала, что в свою очередь вызовет уменьшение силы тока через канал:

Если мы еще увеличим напряжение (U3>U2), то заметим, что при каком-то напряжении U3 у нас вообще перестанет течь ток через канал. Запирающий слой ПОЛНОСТЬЮ его перекроет:

Все, приехали… В этом случае мы ПОЛНОСТЬЮ перекрыли канал для дальнейшего движения электронов. А раз движуха электронов закончилась, то  откуда взяться электрическому току?  Ведь электрический ток – упорядоченное движение заряженных частиц, не так ли? Поэтому через исток-сток электрический бежать не будет.

Работа на практике

Ну что же, приступаем к практике.

В гостях у нас полевой N-канальный полевой транзистор с управляющим P-N переходом 2N5485:

Его распиновка будет выглядеть вот так:

В живую он выглядит вот так:

Для того, чтобы проверить писанину, которую вы прочитали,  соберем  вот такую схемку по рисункам выше:

Для удобства восприятия я нарисовал полевой транзистор, как он выглядит визуально.

Какие же напряжения допускаются при его эксплуатации? Если кому интересно, вот  на него даташит . Оттуда я взял безопасное напряжение для его проверки 15 Вольт, поэтому на Bat1 выставляю напряжение в 15 Вольт:

На Bat2 пока что устанавливаю 0 Вольт.

То есть это значит, что напряжение на Затвор-Истоке UЗИ=0 Вольт. А раз 0 Вольт, то канал у нас полностью открыт и электрончики в N полупроводнике спокойно бегут в одном направлении по своим делам. Но опять же, N полупроводник считается плохим проводником, так как в нем мало электронов. Поэтому, сила тока полностью открытого канала у нас будет 6,2 мА при напряжении в 15 Вольт. Сейчас даже можно вычислить сопротивление канала из закона Ома. R=U/I=15/6,2×10-3=2,42 КилоОма.

Если сравнивать эту ситуацию с продавцом хот-догов, то у нас это аналогично моменту, когда продавец еще дрыхнет дома:

А давайте добавим напряжение на Bat2 до полувольта.

Смотрим на миллиамперметр

Видели да? Сила тока через сток-исток уменьшилась!

Этот момент аналогичен тому, когда продавец только открыл свою лавку, и первые зеваки начинают тусить возле нее

А давайте еще добавим напряжение на Bat2 до 1 вольта:

Что мы видим на миллиамперметре?

Сила тока через Сток-Исток стала еще меньше! Но почему она стает меньше? Да дело в том, что запирающий слой стает все более толще от напряжения, тем самым уменьшая токопроводящий канал.

Это аналогично, когда продавец начинает уже тихонька напрягаться:

Давайте еще добавим полвольта на Bat2:

Смотрим на миллиамперметр:

Сила тока через канал стала еще меньше!

До какого же значения можно добавлять напряжение на Bat2? Уже при напряжении 2,3 Вольта

Электрический ток через канал полностью перестает бежать.

Канал стает полностью перекрытым.

Ну а этот момент аналогичен, когда продавец настолько напрягся, что перекрыл весь тротуар зеваками:

Дальнейшее увеличение напряжения на Bat2 уже ни к чему не приведет. Всегда можно подобрать такое обратное напряжение на ЗАТВОРЕ, при котором токопроводящий канал СТОК-ИСТОК будет полностью перекрыт.

Минуточку внимания. Все, что написано выше, мы применяли к N-канальному транзистору. Почему N-канальный, я думаю, вы уже догадались. Его внутреннее строение, как вы уже читали выше в статье, выглядит вот так:

И на схемах такой транзистор изображается вот так:

Р-канальный транзистор

Но есть также и P-канальный полевой транзистор с управляющим P-N переходом. Как вы уже догадались из названия, его канал сделан и полупроводника P-типа. Его внутреннее строение выглядит вот так:

На схемах обозначается так:

Обратите внимания на стрелочку по сравнению с N-канальным транзистором.

Принцип его действия точно такой же, просто основными носителями заряда будут являться уже дырки. Следовательно, все напряжения в схеме  меняем на противоположные:

Также не забываем, что вывод, откуда начинают движение основные носители (как вы помните в P полупроводнике это дырки), называется ИСТОКОМ.

Заключение

P-канальный транзистор используется еще реже, чем N-канальный. Да и вообще, полевой транзистор с PN- переходом давно уже канул в лету, но все таки кое-где до сих пор применяются. На смену им пришли полевые транзисторы (MOSFET, МОП) , о которых я поведу речь в следующих статьях.

Читайте далее: как проверить полевой транзистор с управляющим PN-переходом.

www.ruselectronic.com

Полевой МОП транзистор | Практическая электроника

Что такое MOS, MOSFET, МОП транзистор?

Как часто вы слышали название МОП, MOSFET, MOS, полевик, МДП-транзистор, транзистор с изолированным затвором? Да-да… это все слова синонимы и относятся они к одному и тому же радиоэлементу.

Полное название такого радиоэлемента на английский манер звучит как Metal Oxide Semiconductor Field Effect Transistors (MOSFET), что в дословном переводе звучит как Металл Оксид Полупроводник Поле Влияние Транзистор. Если преобразовать на наш могучий русский язык, то получается как полевой транзистор со структурой Металл Оксид Полупроводник или просто МОП-транзистор ;-). Почему МОП-транзистор также называют МДП-транзистором и транзистором с изолированным затвором? С чем это связано? Об этих и других вещах вы узнаете в нашей статье. Не переключайтесь на другую вкладку! 😉

Виды МОП-транзисторов

В семействе МОП-транзисторов в основном выделяют 4 вида:

1) N-канальный с индуцированным каналом

2) P-канальный с индуцированным каналом

3) N-канальный со встроенным каналом

4) P-канальный со встроенным каналом

Как вы могли заметить, разница только в обозначении самого канала. С индуцированным каналом он обозначается штриховой линией, а со встроенным каналом – сплошной.

В современном мире МОП-транзисторы со встроенным каналом используются все реже и реже, поэтому в наших статьям мы их затрагивать не будем, а будем рассматривать только N и P – канальные транзисторы с индуцированным каналом.

Откуда пошло название “МОП”

Начнем наш цикл статей про МОП-транзисторы именно с самого распространенного N-канального МОП-транзистора с индуцированным каналом. Go!

Если взять тонкий-тонкий нож и разрезать МОП-транзистор вдоль, то можно увидеть вот такую картину:

Если рассмотреть с точки зрения еды на вашем столе, то МОП-транзистор будет больше похож на бутерброд. Полупроводник P-типа – толстый кусок хлеба, диэлектрик – тонкий кусок колбасы, а сверху кладем еще слой металла – тонкую пластинку сыра. И у нас получается вот такой бутерброд:

бутерброд с сыром и колбасой

А как  будет строение транзистора сверху-вниз? Сыр – металл, колбаса – диэлектрик, хлеб – полупроводник. Следовательно получаем Металл-Диэлектрик-Полупроводник. А если взять первые буквы с каждого названия, то получается МДП – Металл-Диэлектрик-Полупроводник, не так ли? Значит, такой транзистор можно назвать по первым буквам МДП-транзистором ;-). А так как в качестве диэлектрика используется очень тонкий слой оксида кремния (SiO2), можно сказать что почти стекло, то и вместо названия “диэлектрик” взяли название “оксид, окисел”, и получилось Металл-Окисел-Полупроводник, сокращенно МОП. Ну вот, теперь все встало на свои места 😉

Строение МОП-транзистора

Давайте еще раз рассмотрим структуру нашего МОП-транзистора:

Имеем “кирпич” полупроводникового материала P-проводимости. Как вы помните, основными носителями в полупроводнике P-типа являются дырки, поэтому их концентрация в данном материале намного больше, чем электронов. Но электроны тоже есть в P-полупроводнике. Как вы помните, электроны в P-полупроводнике –  это неосновные носители и их концентрация очень мала, по сравнению с дырками. “Кирпич” P-полупроводника носит название Подложки. Она является основой МОП-транзистора, так как на ней создаются другие слои. От подложки выходит вывод с таким же названием.

Другие слои – это материал N+ типа, диэлектрик, металл. Почему N+, а не просто N? Дело в том, что этот материал сильно легирован, то есть концентрация электронов в этом полупроводнике очень большая. От  полупроводников N+ типа, которые располагаются по краям, отходят два вывода: Исток и Сток.

Между Истоком и Стоком через диэлектрик располагается металлическая пластинка, от который идет вывод и называется Затвором. Между Затвором и другими выводами нет никакой электрической связи. Затвор вообще изолирован от всех выводов транзистора, поэтому МОП-транзистор также называют транзистором с изолированным затвором.

Подложка МОП-транзистора

Итак, смотря на рисунок выше, мы видим, что МОП-транзистор на схеме имеет 4 вывода (Исток, Сток, Затвор, Подложка), а в реальности только 3. В чем прикол? Дело все в том, что Подложку обычно соединяют с Истоком. Иногда это уже делается в самом транзисторе еще на этапе разработки. В результате того, что Исток соединен с Подложкой, у нас образуется диод между Стоком и Истоком, который иногда даже не указывается в схемах, но всегда присутствует:

моп транзистор обозначение на схеме

Поэтому, требуется соблюдать цоколевку при подключении МОП-транзистора в схему.

Принцип работы МОП-транзистора

Тут все то же самое как и в полевом транзисторе с управляющим PN-переходом. Исток – это вывод, откуда начинают свой путь основные носители заряда, Сток – это вывод, куда они притекают, а Затвор – это вывод, с помощью которого мы контролируем поток основных носителей.

Пусть Затвор у нас пока что никуда не подключен. Для того, чтобы устроить движуху электронов через Исток-Сток, нам потребуется источник питания Bat:

Если рассмотреть наш транзистор с точки зрения P-N переходов и диодов на их основе, то можно нарисовать эквивалентную схемку для нашего рисунка. Она будет выглядеть вот так:

где

И-исток, П-Подложка, С-Сток.

Как вы видите, диод VD2 включен в обратном направлении, так что электрический ток никуда не потечет.

Значит, в этой схеме

никакой движухи электрического тока не намечается.

НО…

Индуцирование канала в МОП-транзисторе

Если подать определенное напряжение на Затвор, в подложке начинаются волшебные превращения. В ней начинает индуцироваться канал.

Индукция, индуцирование – это буквально означает “наведение”, “влияние”. Под этим термином понимают возбуждение в объекте какого-либо свойства или активности в присутствии возбуждающего субъекта (индуктора), но без непосредственного контакта (например, через электрическое поле). Последнее выражение для нас имеет более глубокий смысл: “через электрическое поле”.

Также нам не помешает вспомнить, как ведут себя заряды различных знаков. Те, кто не играл на физике на последней парте в  морской бой и не плевал через корпус шариковой ручки бумажными шариками в одноклассниц, тот наверняка вспомнит, что одноименные заряды отталкиваются, а разноименные – притягиваются:

Полевой МОП транзистор

На основе этого принципа еще в начале ХХ века ученые сообразили, где все это можно применить и создали гениальный радиоэлемент. Оказывается, достаточно подать на Затвор положительное напряжение относительно Истока, как сразу под Затвором возникает электрическое поле. А раз  подаем на Затвор положительное напряжение, значит он будет заряжаться положительно не так ли?

Так как у нас слой диэлектрика очень тонкий, следовательно, электрическое поле будет также влиять и на подложку, в которой дырок намного больше, чем электронов. А раз и на Затворе положительный потенциал и дырки обладают положительным зарядом, следовательно, одноименные заряды отталкиваются, а разноименные  – притягиваются. Картина будет выглядеть следующим образом пока что без источника питания между Истоком и Стоком:

Дырки обращаются в бегство подальше от Затвора и поближе к выводу Подложки, так как одноименные заряды отталкиваются, а электроны наоборот пытаются пробиться к металлической пластинке затвора, но им мешает диэлектрик, который не дает им воссоединиться с Затвором и уравнять потенциал до нуля. Поэтому электронам ничего другого не остается, как просто создать вавилонское столпотворение около слоя диэлектрика.

В результате, картина будет выглядеть следующим образом:

Видели да? Исток и Сток соединились тонким каналом из электронов! Говорят, что такой канал индуцировался из-за электрического поля, которое создал Затвор транзистора.

Так как этот канал соединяет Исток и Сток, которые сделаны из N+ полупроводника, следовательно у нас получился N-канал. А  такой транзистор уже будет называться N-канальным МОП-транзистором. Если вы читали статью проводники и диэлектрики, то наверняка помните, что в проводнике очень много свободных электронов. Так как Сток и Исток соединились мостиком из большого количества электронов, следовательно этот канал стал проводником для электрического тока. Проще говоря, между Истоком и Стоком образовался “проводок”, по которому может бежать электрический ток.

Получается, если подать напряжение между Стоком и Истоком при индуцированном канале, то мы можем увидеть вот такую картину:

Как вы видите, цепь стает замкнутой и в цепи начинает спокойно протекать электрический ток.

Но это еще не все! Чем сильнее электрическое поле, тем больше концентрация электронов, тем толще получается канал. А как сделать поле сильнее? Достаточно подать побольше напряжения на Затвор 😉 Подавая бОльшее напряжение на Затвор с помощью Bat2, мы  увеличиваем толщину канала, а значит и его проводимость! Или простыми словами, мы можем менять сопротивление канала, “играя” напряжением на затворе 😉 Ну гениальнее некуда!

Работа P-канального МОП-транзистора

В нашей статье мы разобрали N-канальный МОП транзистор с индуцированным каналом. Также есть еще и P-канальный  МОП-транзистор с индуцированным каналом. P-канальный работает точно также, как и N-канальный, но вся разница в том, что основными носителями будут являться уже дырки. В этом случае все напряжения в схеме меняем на инверсные, в отличие от N-канального транзистора:

На ютубе нашел очень неплохое видео, поясняющее работу полевого МОП-транзистора. Рекомендую к просмотру (не реклама):

А вот и  продолжение

www.ruselectronic.com

Транзистор полевой

В современной цифровой электронике, транзисторы работают, как правило — в ключевом (импульсном) режиме: открыт-закрыт. Для таких режимов оптимально подходят – полевые транзисторы. Название «полевой» происходит от "электрическое поле". Это значит, что они управляются полем, которое образует напряжение, приложенное к управляющему электроду. Другое их название – униполярный транзистор. Так подчеркивается, что используются только одного типа носители заряда (электроны или дырки), в отличии от классического биполярного транзистора. "Полевики" по типу проводимости канала и типу носителей бывают двух видов: n-канальный – носители электроны и p-канальный – носители дырки. Транзистор имеет три вывода: исток, сток, затвор.

исток (source) — электрод, из которого в канал входят (истекают) носители заряда, источник носителей. В традиционной схеме включения, цепь истока n-канального транзистора подключается к минусу питания, p-канального — к плюсу питания.

сток (drain) — электрод, через который из канала выходят (стекают) носители заряда. В традиционной схеме включения, цепь стока n-канального транзистора подключается к плюсу питания, p-канального — к минусу питания.

затвор (gate) —  управляющий электрод, регулирует поперечное сечения канала и соответственно ток протекающий через канал. Управление происходит напряжением между затвором и истоком – Vgs.

Полевые транзисторы бывают двух основных видов: с управляющим p-n переходом и с изолированным затвором. С изолированным затвором делятся на: с встроенным и индуцированным каналом. На рис.1  изображены типы полевых транзисторов и их обозначения на схемах.

Рис.1. Типы полевых транзисторов и их схематическое обозначение. 

"Полевик" с изолированным затвором и индуцированным каналом

Нас интересуют транзисторы Q5 и Q6. Именно они используются в цифровой и силовой электронике. Это полевые транзисторы с изолированным затвором и индуцированным каналом. Их называют МОП (метал-оксид-полупроводник) или МДП (метал-диэлектрик-полупроводник) транзисторами. Английское название MOSFET (metal-oxide-semiconductor field effect transistor). Таким названием подчеркивается, что затвор отделен слоем диэлектрика от проводящего канала. Жаргонные названия: "полевик", "мосфет", "ключ".

Индуцированный канал — означает, что проводимость в нем появляется, канал индуцируется носителями (открывается транзистор) только при подаче напряжения на затвор. В отличии от транзисторов Q3 и Q4 которые тоже МОП транзисторы, но со встроеным каналом, канал всегда открыт, даже при нулевом напряжении на затворе. Схематически, разница между этими двумя типами транзисторов на схемах обозначается сплошной (встроенный) или пунктирной (индуцированный) линией канала. Другое название индуцированного канала – обогащенный, встроенного – обеднённый.

Обратный диод

Технология изготовления МОП транзисторов такова, что образуются некоторые паразитные элементы, в частности биполярный транзистор, включенный параллельно силовым выводам. См. рис.2. Он оказывает негативное влияние на характеристики транзистора, поэтому технологической перемычкой замыкают вывод истока с подложкой (замыкают переход: база-эмиттер, паразитного транзистора), а оставшийся переход: коллектор-база, образует диод, включенный параллельно стоку-истоку, в направлении обратном протеканию тока (в классической схеме включения). Параметры этого диода производители уже могут контролировать, поэтому он не оказывает существенного влияния на работу транзистора. И даже наоборот, его наличие специально используется в некоторых схематических решениях.

Именно этот диод (стабилитрон) обозначается на схематическом изображении МОП транзистора, а технологическая перемычка показана стрелкой соединенной с истоком. Существуют и транзисторы без технологической перемычки, на их условном обозначения нет стрелкой.

В зависимости от модели транзистора, диод может быть, как и штатный – паразитный, низкочастотный, так и специально добавленный, с заданными характеристиками (высокочастотный или стабилитрон). Это указывается в документации к транзистору.

Рис.2. Паразитные элементы в составе полевого транзистора. 

 Основные преимущества MOSFET 

  • меньшее потребление, высокий КПД. Транзисторы управляются напряжением, и в статике не потребляют ток управления.
  • простая схема управления.  Схемы управления напряжением более просты, чем схемы управления током.
  • высокая скорость переключения. Отсутствуют неосновные носители. Следовательно не тратится время на их рассасывание. Частота работы сотни и тысячи килогерц
  • повышеная теплоустойчивость. С ростом температуры растет сопротивление канала, следовательно понижается ток, а это приводит к понижению температуры. Происходит саморегуляция.

Основные характеристики MOSFET

  • Vds(max) – максимальное напряжение сток-исток в закрытом состоянии транзистора
  • Rds(on) – активное сопротивление канала в открытом состоянии транзистора. Этот параметр указывают для определенных значений Vgs 10В или 4.5В  или 2.5 В при которых сопротивление становится минимальным.
  • Vgs(th) –  пороговое напряжение при котором транзистор начнет открываться. 
  • Ids – максимальный постоянный ток через транзистор.
  • Ids(Imp) – импульсный (кратковременный) ток, который выдерживает транзистор.
  • Ciss, Crss, Coss – емкость затвор-исток (input), затвор-сток (reverse), сток-исток(output).
  • Qg – заряд который необходимо передать затвору для переключения.
  • Vgs(max) – максимальное допустимое напряжение затвор-исток.
  • t(on), t(of) – время переключения транзистора.
  • характеристики обратного диода сток-исток ( максимальный ток, падение напряжения, время восстановление)

Что еще нужно знать про полевой транзистор?

P-канальные транзисторы имеют хуже характеристики чем N-канальные. Меньше рабочая частота, больше сопротивление, больше площадь кристалла. Они реже используются и выпускаются в меньшем ассортименте. 

МОП транзистор — потенциальный прибор и управляется напряжением (потенциалом), затвор отделен слоем диэлектрика , по сути это конденсатор и через него не протекает постоянный ток, поэтому он не потребляет ток управления в статике, но во время переключения требуется приличный ток для заряда-разряда емкости.

МОП транзистор имеет хоть и не большое, но активное сопротивление в открытом состоянии Rds. Это сопротивление уменьшается с ростом отпирающего напряжения и становится минимальным при определенном напряжении затвор-исток, 4.5В или 10В. По сути – это резистор, сопротивление которого управляется напряжением Vgs.

Vgs – управляющее напряжение, Vg-Vs. Если измерять относительно общего минуса, то: для n канального Vgs>0, для p канального Vgs<0 (красный провод вольтметра на затвор, черный на исток). У силовых транзисторов управляющее напряжение, при котором будет минимальное сопротивление – 10 вольт и больше. У низковольтных "полевиков", которые управляются логическими уровнями микросхем, оно составляет 4.5 вольт или 2.5В , для разных транзисторов. Общее правило: чем выше напряжение – тем транзистор лучше откроется, но это напряжение не должно превышать масимально допустимого Vgs(max).

Схема включения MOSFET

Традиционная, классическая схема включения "мосфет", работающего в режиме ключа (открыт-закрыт), приведена на рис 3. Это схема, с общим истоком. Она наиболее распространена, легка в реализации и имеет самый простой способ управления транзистором. 

Нагрузку включают в цепь стока. Встроенный диод, оказывается включенным в обратном направлении и ток через него не протекает.  

Для n-канального: исток на землю, сток через нагрузку к плюсу. Тогда для его открытия, на  затвор нужно подать положительное напряжение, подтянуть к плюсу питания. При работе от ШИМ (широтно импульсный модулятор), открывать его будет положительный импульс. 

Для p-канального: исток на плюс питания, сток через нагрузку на землю. Тогда для его открытия, на затвор нужно подать отрицательное напряжение, подтянуть к минусу питания (земле). При управлении от ШИМ, открывающим будет – отрицательный импульс (отсутствие импульса).

Рис. 3. Классическая схема включения MOSFET в ключевом режиме.

МОП транзистор, в открытом состоянии, будет пропускать ток как от истока к стоку, так и от стока к истоку. Также и нагрузку можно включать как в цепь стока, так и истока. Но при «нестандартном» включении, усложняется управление транзистором, так для n-канального может потребоваться, напряжение выше питания, а для p-канального – отрицательное напряжение ниже земли (двухполярное питание).

МОП транзисторы, используемые в цифровой электронике, делятся на два типа. 

  1. Мощные силовые – используются в импульсных преобразователях напряжения и в цепях питания. 
  2. Транзисторы логического уровня – используются как ключи, коммутируют различные сигналы и управляются микросхемами.

Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора.

www.macmachine.ru

Как работает МОП-транзистор | Практическая электроника

В этой статье мы рассмотрим работу МОП-транзистора.

Виды МОП-транзисторов

Здесь работает правило два по два (2х2). В каждом семействе по два вида:

Из всех этих 4 разновидностей, наверное не ошибусь, если скажу, что самый употребимый транзистор считается именно N-канальный с индуцированным каналом:

Как работает МОП-транзистор

Именно с него мы и начнем наш путь в мир современной электроники.

Режим отсечки

Давайте познакомимся с нашим героем. У нас в гостях N-канальный МОП-транзистор с индуцированным каналом:

Судя по гравировке, звать его IRFZ44N. Выводы слева-направо: Затвор, Сток и Исток.

Что будем делать с этим куском кремния? Раз уж он есть, то давайте заставим его пахать. Для начала соберем вот такую простенькую схемку ключа:

Напряжение на крокодилы идет с блока питания Bat, но лампочка не горит. Следовательно, в данный момент никакого движения электрического тока через канал Стока и Истока нет.

Это аналогично этому рисунку (только тут без лампочки):

Ток не бежит, потому что у нас там эквивалентный диод VD2, который препятствует протеканию тока.

Об этом я еще говорил в прошлой статье.

На амперметре блока питания также по нулям, что говорит о том, что тока вообще нет никакого.

Почему Затвор у нас висит без дела? Не порядок. Надо его тоже задействовать. Чем у нас занимается Затвор в полевых транзисторах? Управляет потоком основных носителей. А что такое поток заряженных частиц, которые движутся в одном направлении? Да, все верно – это электрический ток ;-).

В опыте выше на Затворе сейчас почти ноль. Почему почти? Да потому что он все равно пытается ловить какие-то наводки, но это все равно не сказывается на работе схемы. В реальных схемах Затвор никогда нельзя оставлять без дела болтаться в воздухе. Он всегда должен быть соединен с чем-нибудь.

Так, что нам теперь надо сделать, чтобы начать управлять шириной канала Сток-Исток, а следовательно и менять сопротивление этого канала? Как мы помним из прошлой статьи, достаточно подать положительное напряжение относительно Истока на Затвор;-) Для этого возьмем второй блок питания и будем с помощью него менять напряжение на Затворе нашего транзистора. Сделаем все по такой схеме:

Вот так выглядит мой блок питания, который в схеме называется Bat2. С помощью него мы будем регулировать напряжение вручную от нуля и больше.

Так выглядит вся схема в реале, которую я нарисовал выше. Так как вольтметр на блоке питания стрелочный и неточный, поэтому напряжение будем мерять с помощью мультиметра, который я цепанул параллельно щупам Bat2:

Хоть я и сделал крутилку на ноль на Bat2, все равно он выдает каких-то 22 миллиВольта. На этот опыт эти доли милливольта никак не повлияют.

Ну что, поехали?

Устанавливаю 1 Вольт на Bat2:

Лампочка не горит, сила тока в цепи ноль Ампер:

Так ладно. Добавляем еще 1 Вольт, итого получаем 2 Вольта:

Лампочка не горит, на амперметре опять по нулям:

Ну ладно. Раз такое дело добавляем еще 1 Вольт. Итого 3 Вольта:

Да опять лампочка не зажглась!

Активный режим работы транзистора

И вот уже при каких-то 3,5 Вольт

Через лампочку начинает течь ток силой около 10 мА, но лампочка, естественно, пока что не горит. Ток слабоват.

Во! Запомните этот момент! При этом напряжении транзистор начинает ОТКРЫВАТЬСЯ.  Это значение у разных видов транзисторов разное. В основном от 0,5 и до 5 вольт.  В даташите этот параметр называется как Gate threshold voltage, в переводе с англ. яз.  –  пороговое напряжение на Затворе для включения транзистора. В даташите этот параметр указывается как VGS(th), а в некоторых даташитах как VGS(to) . В даташите на мой транзистор это напряжение варьируется от 2 и до 4 Вольт при каких-то условиях (conditions):

(картинка кликабельна)

Как работает МОП-транзистор

Как вы видите, диапазон открытия этого транзистора может быть от 2 Вольт и до 4 Вольт. Но опять же, это при токе Стока от 250 мкА, как указано в даташите, а я замерял от 10 мА. Здесь также в условиях говорится, что напряжение между Истоком и Затвором должно быть такое же, как и напряжение между Стоком и Истоком. Так как мы не пытались замерить точное напряжение 5-ым знаком после запятой, для нас эти условия не имеют значения. Как вы помните, у биполярных транзисторов транзистор начинал открываться только при напряжении на базе-эмиттере более 0,6-0,7 Вольт для кремниевых видов.

Неужели мы сегодня так и не зажжем лампочку? Зажжем, да еще как! Для того, чтобы чуток накалить нить лампы, мы просто добавляем напряжение на Затвор, покрутив крутилку блока питания Bat2.

Вуа-ля! Нить лампы стала слабенько гореть.

На амперметре видим значение около 1 Ампера:

При этом стал очень сильно греться сам транзистор. Почему? Давайте разберемся…

Почему греется транзистор

Итак, раз мы с помощью Затвора стали управлять сопротивлением канала Сток-Исток, то грубо говоря, это у нас получился резистор R. Это и есть сопротивление канала Сток-Исток. При напряжении на Затворе в 0 Вольт, сопротивление этого резистора достигает очень большого значения, а следовательно, сила тока, протекающего через него, будет вообще микроАмперы. Закон Ома.

Так как резистор R включен последовательно в цепь, то вспоминаем правило шунта: на бОльшем сопротивлении падает бОльшее напряжение, а на меньшем сопротивлении падает меньшее напряжение. Также не забываем, что нить лампы тоже обладает сопротивлением, поэтому рисунок у нас примет вот такой вид:

В первом случае у нас на Затвор ничего не подавалось и транзистор был в закрытом состоянии. Как только мы стали подавать напругу на Затвор, то у нас сопротивление канала стало меняться, а следовательно и падение напряжение на резисторе R и проходящий через него ток. Получился типичный делитель напряжения. В этом случае на резисторе R падает какое-то напряжение и через него течет приличная сила тока. В нашем случае почти 1 Ампер. Значит, мощность, рассеиваемая на транзисторе, будет равняться падению напряжения на Сток-Истоке  помноженной на силу тока через Сток-Исток или просто на ток Стока или буквами:

P= I2R 

где R – это сопротивление канала Сток-Исток

I– ток, проходящий через канал (ток Стока)

А что такое мощность, рассеиваемая на радиоэлементе? Это и есть тепло. Поэтому в нашем случае транзистор нагрелся очень сильно. Опыт пришлось приостановить.

Значит, самые щадящие режимы для МОП-транзистора – это когда канал полностью открыт. В этом случае у нас сопротивление канала достигает сотые доли Ома. Либо когда канал полностью закрыт. В этом случае сила тока, проходящая через канал, будет достигать тока утечки между Стоком и Истоком. А это микроАмперы. В этих двух случаях транзистор будет холодным, как айсберг в океане. Поэтому такой транзистор предназначен в основном для работы в ключевом режиме, где как раз и используются эти два режима.

Режим насыщения МОП-транзистора

Для того, чтобы полностью открыть транзистор, достаточно будет просто подать чуть больше напряжения для полного открытия канала. В моем случае это составило 4,2 Вольта и выше:

Как вы видите, лампочка горит в полный накал. Сопротивление канала в этом случае минимальное.

Лампа ест свои честные 1,69 Ампер:

Умножайте силу тока на напряжение и получаем потребляемую мощность лампочки. Итого P=IU=12 Вх1,69 А=20,28 Ватт

А на лампочке написано 21 Ватт:

Ладно, спишем на погрешность и на то, что лампа еще не раскочегарилась. Транзистор в этом случае остается холодным и ни капельки не греется.

Предельные параметры и графические зависимости

Раз уж транзистор полностью открылся, то можно ли еще подавать напряжение на Затвор? Можно. Но при этом лампочка уже ярче светить не будет. Оно и понятно, так как лампочка итак горит уже на всю мощь, а сопротивление канала достигло уже почти нуля. Какое максимальное напряжение можно подать на Затвор? Смотрим даташит и находим что-то типа максимальных параметров (Absolute Maximum Ratings)

как работает моп транзистор

Находим параметр VGS , что обозначает напряжение между Затвором и Истоком. В нашем случае это напряжение на Bat2.  Смотрим на даташит и видим, что максимальное напряжение, которое можно подать – это +-20 Вольт.  Напряжение более 20 Вольт в обе стороны пробьет тончайший слой диэлектрика, в нашем случае это оксид кремния, и транзистору придет жопа. Значит, мы можем спокойно подавать от 0 и до 20 Вольт на Затвор, не боясь что транзистор уйдет на тот свет.

Также для нас могут представлять интерес такие параметры, как максимальная сила тока, которая может течь через канал Сток-Исток. В даташите такой параметр обозначается как ID (ток Стока).

(картинка кликабельна)

Как работает МОП-транзистор

Как мы видим, транзистор в легкую может протащить через себя 49 Ампер!!!

Как работает МОП-транзистор

Но это при температуре кристалла 25 градусов по Цельсию. А так номинальная сила тока 35 Ампер при температуе кристалла 100 градусов, что чаще всего происходит на практике.

Так как транзистор с индуцированным каналом в основном используется в импульсном и ключевом режиме, поэтому нам важен такой параметр как сопротивление канала полностью открытого транзистора. В даташите он указывается как RDS(on)

Как работает МОП-транзистор

Как мы видим всего 17,5 миллиОм. Или 0,017 Ом. Тысячные доли Ома! Давайте предположим, что мы пропускаем через открытый транзистор максимальный ток в 49 Ампер. Какая мощность будет рассеиваться на транзисторе в этом случае? Формула мощности через силу тока и сопротивление выглядит вот так: P=I2R= 492 x 0,017 = 41 Ватт.

А максимальная мощность, которую может рассеять транзистор – это 94 Ватта.

Как работает МОП-транзистор

Основные параметры полевых МОП-транзисторов указываются в основном сразу на первой страничке даташита в отдельной рамке.

Как работает МОП-транзистор

Также различные зависимости одних параметров от других можно увидеть в даташите. Очень информативно и наглядно.

Например, ниже на графике приводится зависимость тока Стока от напряжения Стока-Истока при каких-то фиксированных значениях напряжения на Затворе при температуре кристалла (подложки) 25 градусов Цельсия (комнатная температура). Верхняя линия графика приводится для напряжения 15 Вольт на Затворе. Другие линии в порядке очереди по табличке вверху слева:

Как работает МОП-транзистор

Также есть интересная зависимость сопротивления канала  полностью открытого транзистора от температуры кристалла:

Как работает МОП-транзистор

Если посмотреть на график, то можно увидеть, что при температуре кристалла в 140 градусов по Цельсию у нас сопротивление канала увеличивается вдвое. А при отрицательных температурах наоборот уменьшается.

Интересное свойство МОП-транзистора

А давайте немного изменим схему и уберем из нее Bat2. Вместо него поставим переключатель, а напряжение на Затвор будем брать от Bat1:

Для наглядности вместо переключателя я использовал проводок от макетной платы.

В данном случае лампочка не горит. А с чего ей гореть то? На Затворе то у нас голимый ноль, поэтому канал закрыт.

На фото ниже показан этот случай.

Но стоит только перекинуть выключатель в другое положение, как у нас лампочка сразу же загорается на всю мощь:

Даже не надо ни о чем заморачиваться! Тупо подаем на Затвор напряжение питания и все! Разумеется, если оно не превышает максимальное напряжение на Затворе, прописанное в даташите. Не повредит ли напряжение питания Затвору? Так как Затвор у нас имеет очень большое входное сопротивление (он ведь отделен слоем диэлектрика от всех выводов), то и сила тока в цепи Затвора будет копейки.

Лампочка горит на всю мощь. В этом случае можно сказать, что потенциал на Стоке стал равен почти как и на Истоке, то есть нулю, поэтому весь ток побежал от плюса питания к Стоку, “захватив” по пути лампочку накаливания, которая не прочь была покушать электрический ток, излучая кучу фотонов в пространство и на мой стол.

Даже если откинуть проводок от Затвора, все равно лампочка продолжает гореть как ни в чем не бывало!

Почему так происходит? Здесь надо вспомнить внутреннее строение самого МОПа.

 Вот эта часть вам ничего не напоминает?

Так это же конденсатор! А раз мы его зарядили, то с чего он будет разряжаться? Разрядиться то ему некуда! Вот он и держит заряд электронов в канале, пока мы не разрядим вывод Затвора. Для того, чтобы убрать потенциал Затвора и заткнуть канал, нам опять же надо уравнять его с нулем, замкнув Затвор на Исток. Лампочка сразу же потухнет:

Как вы видели в опыте выше,  если мы отключаем напряжение на Затворе, то обязательно должны притянуть Затвор к минусу, иначе канал останется открытым. Поэтому обязательное условие в схемах – Затвор должен всегда чем то управляться и с чем то соединяться. Ему нельзя давать висеть в воздухе. Об этом я еще говорил в начале статьи.

Ключ на МОП транзисторе

А почему бы Затвор автоматически не притягивать к нулю при отключении подачи напряжения на Затвор? Поэтому, эту схему можно доработать и сделать самый простейший ключ на МОП-транзисторе:

При включении выключателя S цепь стает замкнутой и лампочка загорается

Как только я убираю красный проводок от Затвора (разомкну выключатель),  лампочка сразу тухнет:

Красота! То есть как только я убрал напряжение от Затвора, Затвор притянуло к минусу через резистор и на нем стал нулевой потенциал. А раз на Затворе ноль, то и канал Сток-Исток закрыт. Если снова подам напряжение на Затвор, то у нас на мегаомном резисторе упадет напряжение питания, которое будет все оседать на Затворе и транзистор снова откроется. На бОльшем сопротивлении падает бОльшее напряжение ;-). Не забываем золотое правило. Резистор в основном берут от 100 КилоОм и до 1 МегаОма (можно и больше).

Так как МОП-транзисторы с индуцированным каналом в основном используются в цифровой и импульсной технике, из них получаются отличные  транзисторные ключи, в отличие от ключа на биполярном транзисторе.

Чего боится МОП-транзистор

Все полевые транзисторы, будь это полевой транзистор с управляющим P-N переходом, либо МОП-транзистор, очень чувствительны к электрическим перегрузкам на Затворе. Особенно это касается электростатического заряда, который накапливается на теле человека и на измерительных приборах. Опасные значения электростатического заряда для МОП-транзисторов составляют 50-100 Вольт, а для транзисторов с управляющим P-N переходом – 250 Вольт. Поэтому самое важное правило при работе с такими транзисторами – это заземлить себя через антистатический браслет, или взяться за голую батарею ДО касания полевых транзисторов.

Также в некоторых экземплярах полевых транзисторов встраивают защитные стабилитроны между Истоком и Затвором, которые вроде как спасают от электростатики, но лучше все-таки перестраховаться лишний раз и не испытывать судьбу транзистор на прочность. Также не помешало бы заземлить всю паяльную и измерительную аппаратуру. В настоящее время это все делается уже автоматически через евро розетки, у которых имеются в наличии заземляющий проводник.

Читайте также следующую статью: как проверить МОП-транзистор.

www.ruselectronic.com

Сток исток затвор по английски

Полевым транзисторомназывается полупроводниковый усилительный прибор, сопротивление которого может изменяться под действием электрического поля. Изменение сопротивления достигается изменением удельного электрического сопротивления слоя полупроводника или изменением объема полупроводника, по которому проходит электрический ток.

В работе полевых транзисторов используются различные эффекты, такие, как изменение объема рп-перехода при изменении действующего на нем запирающего напряжения; эффекты обеднения, обогащения носителями зарядов или инверсии типа проводимости в приповерхностном слое полупроводника. Полевые транзисторы иногда называют униполярными, потому что ток, протекающий через них, обусловлен носителями только одного знака. Полевые транзисторы еще называют канальными транзисторами, поскольку управляющее работой транзистора электрическое поле проникает в полупроводник относительно неглубоко, и все процессы протекают в тонком слое, называемом каналом.

Управляющая цепь полевого транзистора практически не потребляет ток и мощность. Это позволяет усиливать сигналы от источников, обладающих очень большим внутренним сопротивлением и малой мощностью. Кроме того, это дает возможность размещать сотни тысяч транзисторов на одном кристалле микросхемы.

Полевые транзисторы с управляющим р-п-переходом

Рис. 5.1. Структурные схемы полевых транзисторов с

управляющим р-п-переходом с п‑ и р-каналами и их

условные графические обозначения.

Полевой транзистор может быть изготовлен в виде пластинки полупроводника (с п- или р-проводимостью), в одну из поверхностей которой вплавлен слой металла, называемый затвором, образующий плоский р-п-переход (рис. 5.1). К нижнему и верхнему торцам пластинки присоединяются выводы, называемые соответственно истоком и стоком. Если на затвор подается напряжение запирающей полярности (положительное на п-затвор и отрицательное на р-затвор), то в зависимости от его значения в канале (р-п-переходе) возникает обедненный носителями заряда слой, являющийся практически изолятором.

Изменяя напряжение на затворе от нуля до некоторого достаточно большого напряжения, называемого напряжением отсечки (напряжением запирания, или пороговым напряжением, см. рис. 5.6), можно так расширить объем полупроводника, занимаемого р-п-переходом, что он займет весь канал и перемещение носителей заряда между истоком и стоком станет невозможным. Транзистор полностью закроется (рис. 5.2).

В отличие от биполярных транзисторов, управляемых током, полевые транзисторы управляются напряжением, и, поскольку это напряжение приложено к управляющему р-п-переходу в обратной (запирающей) полярности, то ток в цепи управления практически не протекает (при напряжении 5 В ток управления не превышает 10 -10 А).

Полевые транзисторы с изолированным затвором

полевые транзисторы с индуцированным каналом

Рис. 5.3. Устройство и условные обозначения МОП-транзисторов с индуцированным каналом.

На рис. 5.3 показано устройство полевого транзистора с изолированным затвором, называемого МДП-транзистором. Это название обусловлено конструкцией: затвор выполнен из металла (М) и отделен тонким слоем диэлектрика (Д) от полупроводника (П), из которого сделан транзистор. Если транзистор изготовлен из кремния, то в качестве диэлектрика используется тонкая пленка оксида кремния. В этом случае на­звание изменяется на МОП-транзистор (металл-оксид-полупроводник).

Показанный на рис. 5.3 слева транзистор изготовлен на основе пластинки (подложки, или основания) из кремния с р-проводимостью. На поверхности пластинки диффузионным способом получены две области с п-проводимостью (исток и сток), разделенные областью п-канала, имеющей преобладающую р-проводимость. Вследствие этого при подаче на транзистор напряжения ток между истоком и стоком протекать не будет, ибо переходы сток-основание и исток-основание образуют два встречно включенных р‑п‑перехода, один из которых будет закрыт при любой полярности приложенного напряжения.

Однако, если на поверхностный слой р-полупроводника подействовать достаточно сильным электрическим полем, приложив между затвором и основанием напряжение положительной полярности, то между истоком и стоком начнет протекать ток. Это объясняется тем, что из приповерхностного слоя полупроводника, расположенного под затвором, электрическим полем будут оттесняться дырки и собираться электроны, образуя канал (с п-проводимостью, показанный на рис. 5.3 пунктирной линией), вследствие чего р‑п‑переходы исток-канал и канал-исток перестанут существовать. Проводимость п‑канала будет тем больше, чем больше напряжение, приложенное между затвором и основанием.

Транзистор рассмотренной конструкции называется МДП-транзистором с индуцированным каналом.

Основание обычно соединяется с истоком, но иногда напряжение на него подается отдельно, и тогда основание играет роль дополнительного затвора.

Если основание выполнено из п-кремния, исток и сток образованы сильно легированными областями с р‑проводимостями, а в качестве изолятора используется оксид кремния, то получается МОП-транзистор с индуцированным р‑каналом (с проводимостью р) (рис. 5.3 справа).

полевые транзисторы со встроенным каналом

МОП-транзисторы могут быть выполнены со встроенным каналом. Например, на рис. 5.4 слева приведена схема устройства такого транзистора с п-каналом. Основание выполнено из р-кремния, а исток и сток имеют п-проводимость и получены диффузионным способом. Исток и сток соединены сравнительно тонким каналом с незначительной р‑проводимостью.

Если основание сделано из п-кремния, а исток и сток из р-кремния, то транзистор имеет встроенный р-канал (рис. 5.4 справа).

Рис. 5.4. Устройство и условные обозначения МОП-транзисторов со встроенным каналом.

Работу п-канального МОП-транзистора можно пояснить так. Если на затвор подано отрицательное (относительно основания) напряжение, то электроны проводимости вытесняются из п-канала в основание, и проводимость канала уменьшается, вплоть до полного обеднения и запирания канала.

При подаче на затвор положительного напряжения п-канал обогащается электронами, и проводимость его увеличивается (рис.5.6).

Классификация и характеристики полевых транзисторов

Рис. 5.5. Классификация полевых транзисторов.

Рис. 5.6. Зависимость тока стока

от напряжения затвор-исток для

при постоянном напряжении

Полевые транзисторы бывают обедненного и обогащенного типа. К первым относятся все транзисторы с р‑п-переходом и п-канальные МОП-транзисторы обедненного типа. МОП-транзисторы обогащенного типа бывают как п-канальными, так и р-канальными (рис. 5.5).

Транзисторы обогащенного и обедненного типа отличаются только значением так называемого порогового напряжения, получаемого экстраполяцией прямолинейного участка характеристики (рис. 5.6.).

Выходными характеристиками полевого транзистора называются зависимости тока стока от напряжения сток-исток для различных значений напряжения затвор-исток.

Рис. 5.7. Выходные характеристики полевых транзисторов.

Часть 2. Полевой транзистор с изолированным затвором MOSFET

Полевой транзистор с изолированным затвором – это транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 10 17 Ом).

Принцип работы этого типа полевого транзистора, как и полевого транзистора с управляющим PN-переходом, основан на влиянии внешнего электрического поля на проводимость прибора.

В соответствии со своей физической структурой, полевой транзистор с изолированным затвором носит название МОП-транзистор (Металл-Оксид-Полупроводник), или МДП-транзистор (Металл-Диэлектрик-Полупроводник). Международное название прибора – MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

МДП-транзисторы делятся на два типа – со встроенным каналом и с индуцированным каналом. В каждом из типов есть транзисторы с N–каналом и P-каналом.

Устройство МДП-транзистора (MOSFET) с индуцированным каналом.

На основании (подложке) полупроводника с электропроводностью P-типа (для транзистора с N-каналом) созданы две зоны с повышенной электропроводностью N + -типа. Все это покрывается тонким слоем диэлектрика, обычно диоксида кремния SiO2. Сквозь диэлектрический слой проходят металлические выводы от областей N + -типа, называемые стоком и истоком. Над диэлектриком находится металлический слой затвора. Иногда от подложки также идет вывод, который закорачивают с истоком

Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.

Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет, поскольку между зонами N + находиться область P, не пропускающая электроны. Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле. Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным напряжением на затворе.

Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок. Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси. Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока. Такой режим работы полевого транзистора называется режимом обогащения.

Принцип работы МДП-транзистора с каналом P–типа такой же, только на затвор нужно подавать отрицательное напряжение относительно истока.

Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.

ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения Uси. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.

Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.

Устройство МДП-транзистора (MOSFET) со встроенным каналом.

Физическое устройство МДП-транзистора со встроенным каналом отличается от типа с индуцированным каналом наличием между стоком и истоком проводящего канала.

Работа МДП-транзистора (MOSFET) со встроенным каналом N-типа.

Подключим к транзистору напряжение между стоком и истоком Uси любой полярности. Оставим затвор отключенным (Uзи = 0). В результате через канал пойдет ток Iси, представляющий собой поток электронов.

Далее, подключим к затвору отрицательное напряжение относительно истока. В канале возникнет поперечное электрическое поле, которое начнет выталкивать электроны из зоны канала в сторону подложки. Количество электронов в канале уменьшиться, его сопротивление увеличится, и ток Iси уменьшиться. При повышении отрицательного напряжения на затворе, уменьшается сила тока. Такое состояние работы транзистора называется режимом обеднения.

Если подключить к затвору положительное напряжение, возникшее электрическое поле будет притягивать электроны из областей стока, истока и подложки. Канал расшириться, его проводимость повыситься, и ток Iси увеличиться. Транзистор войдет в режим обогащения.

Как мы видим, МДП-транзистор со встроенным каналом способен работать в двух режимах — в режиме обеднения и в режиме обогащения.

Вольт-амперные характеристики (ВАХ) МДП-транзистора со встроенным каналом.

Преимущества и недостатки полевых транзисторов перед биполярными.

Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)

Главные преимущества полевых транзисторов

  • Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
  • Усиление по току у полевых транзисторов намного выше, чем у биполярных.
  • Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
  • У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.

Главные недостатки полевых транзисторов

  • У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
  • Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
  • Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».

При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).

Однако, при быстром скачке напряжения между стоком и истоком полевого транзистора, паразитный транзистор может случайно открыться, в результате чего, вся схема может выйти из строя.

Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.

Поэтому внешние корпуса полевых транзисторов стараются создавать таким образом, чтоб минимизировать возможность возникновения нежелательного напряжения между электродами прибора. Одним из таких методов является закорачивание истока с подложкой и их заземление. Также в некоторых моделях используют специально встроенный диод между стоком и истоком. При работе с интегральными схемами (чипами), состоящими преимущественно из полевых транзисторов, желательно использовать заземленные антистатические браслеты. При транспортировке интегральных схем используют вакуумные антистатические упаковки

Arduino, DIY и немного этих ваших линуксов.

Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.

Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:

Биполярный транзистор

Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:

Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).

Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.

Работа биполярного транзистора

NPN и PNP биполярные транзисторы

Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.

От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:

Обозначение NPN (слева) и PNP (справа) транзисторов на схеме

NPN транзисторы более распространены в электронике, потому что являются более эффективными.

Полевый транзистор

Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.

Полевые транзисторы имеют как минимум 3 вывода:

Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.

N канальные и P канальные полевые транзисторы

Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:

По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.

P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.

Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме

Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.

Транзистор Дарлингтона

Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.

Схема составного транзистора дарлингтона

Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:

Подключение мощного мотора с помощью транзистора

На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).

ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.

При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.

mytooling.ru

Полевой транзистор

Часть 2. Полевой транзистор с изолированным затвором MOSFET

Полевой транзистор с изолированным затвором – это транзистор, затвор которого электрически изолирован от проводящего канала полупроводника слоем диэлектрика. Благодаря этому, у транзистора очень высокое входное сопротивление (у некоторых моделей оно достигает 1017 Ом).

Принцип работы этого типа полевого транзистора, как и полевого транзистора с управляющим PN-переходом, основан на влиянии внешнего электрического поля на проводимость прибора.

В соответствии со своей физической структурой, полевой транзистор с изолированным затвором носит название МОП-транзистор (Металл-Оксид-Полупроводник), или МДП-транзистор (Металл-Диэлектрик-Полупроводник). Международное название прибора – MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor).

МДП-транзисторы делятся на два типа – со встроенным каналом и с индуцированным каналом. В каждом из типов есть транзисторы с N–каналом и P-каналом.

Устройство МДП-транзистора (MOSFET) с индуцированным каналом.

На основании (подложке) полупроводника с электропроводностью P-типа (для транзистора с N-каналом) созданы две зоны с повышенной электропроводностью N+-типа. Все это покрывается тонким слоем диэлектрика, обычно диоксида кремния SiO2. Сквозь диэлектрический слой проходят металлические выводы от областей N+-типа, называемые стоком и истоком. Над диэлектриком находится металлический слой затвора. Иногда от подложки также идет вывод, который закорачивают с истоком

Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.

Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет, поскольку между зонами N+ находиться область P, не пропускающая электроны. Далее, если подать на затвор положительное напряжение относительно истока Uзи, возникнет электрическое поле. Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным напряжением на затворе.

Когда Uзи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок. Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток Iси. Чем выше напряжение на затворе транзистора Uзи, тем шире канал и, следовательно, больше сила тока. Такой режим работы полевого транзистора называется режимом обогащения.

Принцип работы МДП-транзистора с каналом P–типа такой же, только на затвор нужно подавать отрицательное напряжение относительно истока.

Вольт-амперные характеристики (ВАХ) МДП-транзистора с индуцированным каналом.

ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения Uси. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.

Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.

Устройство МДП-транзистора (MOSFET) со встроенным каналом.

Физическое устройство МДП-транзистора со встроенным каналом отличается от типа с индуцированным каналом наличием между стоком и истоком проводящего канала.

Работа МДП-транзистора (MOSFET) со встроенным каналом N-типа.

Подключим к транзистору напряжение между стоком и истоком Uси любой полярности. Оставим затвор отключенным (Uзи = 0). В результате через канал пойдет ток Iси, представляющий собой поток электронов.

Далее, подключим к затвору отрицательное напряжение относительно истока. В канале возникнет поперечное электрическое поле, которое начнет выталкивать электроны из зоны канала в сторону подложки. Количество электронов в канале уменьшиться, его сопротивление увеличится, и ток Iси уменьшиться. При повышении отрицательного напряжения на затворе, уменьшается сила тока. Такое состояние работы транзистора называется режимом обеднения.

Если подключить к затвору положительное напряжение, возникшее электрическое поле будет притягивать электроны из областей стока, истока и подложки. Канал расшириться, его проводимость повыситься, и ток Iси увеличиться. Транзистор войдет в режим обогащения.

Как мы видим, МДП-транзистор со встроенным каналом способен работать в двух режимах — в режиме обеднения и в режиме обогащения.

Вольт-амперные характеристики (ВАХ) МДП-транзистора со встроенным каналом.

Преимущества и недостатки полевых транзисторов перед биполярными.

Полевые транзисторы практически вытеснили биполярные в ряде применений. Самое широкое распространение они получили в интегральных схемах в качестве ключей (электронных переключателей)

Главные преимущества полевых транзисторов

  • Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.
  • Усиление по току у полевых транзисторов намного выше, чем у биполярных.
  • Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.
  • У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.

Главные недостатки полевых транзисторов

  • У полевых транзисторов большее падение напряжения из-за высокого сопротивления между стоком и истоком, когда прибор находится в открытом состоянии.
  • Структура полевых транзисторов начинает разрушаться при меньшей температуре (150С), чем структура биполярных транзисторов (200С).
  • Несмотря на то, что полевые транзисторы потребляют намного меньше энергии, по сравнению с биполярными транзисторами, при работе на высоких частотах ситуация кардинально меняется. На частотах выше, примерно, чем 1.5 GHz, потребление энергии у МОП-транзисторов начинает возрастать по экспоненте. Поэтому скорость процессоров перестала так стремительно расти, и их производители перешли на стратегию «многоядерности».
  • При изготовлении мощных МОП-транзисторов, в их структуре возникает «паразитный» биполярный транзистор. Для того, чтобы нейтрализовать его влияние, подложку закорачивают с истоком. Это эквивалентно закорачиванию базы и эмиттера паразитного транзистора. В результате напряжение между базой и эмиттером биполярного транзистора никогда на достигнет необходимого, чтобы он открылся (около 0.6В необходимо, чтобы PN-переход внутри прибора начал проводить).

    Однако, при быстром скачке напряжения между стоком и истоком полевого транзистора, паразитный транзистор может случайно открыться, в результате чего, вся схема может выйти из строя.

  • Важнейшим недостатком полевых транзисторов является их чувствительность к статическому электричеству. Поскольку изоляционный слой диэлектрика на затворе чрезвычайно тонкий, иногда даже относительно невысокого напряжения бывает достаточно, чтоб его разрушить. А разряды статического электричества, присутствующего практически в каждой среде, могут достигать несколько тысяч вольт.

    Поэтому внешние корпуса полевых транзисторов стараются создавать таким образом, чтоб минимизировать возможность возникновения нежелательного напряжения между электродами прибора. Одним из таких методов является закорачивание истока с подложкой и их заземление. Также в некоторых моделях используют специально встроенный диод между стоком и истоком. При работе с интегральными схемами (чипами), состоящими преимущественно из полевых транзисторов, желательно использовать заземленные антистатические браслеты. При транспортировке интегральных схем используют вакуумные антистатические упаковки

hightolow.ru

Принцип работы полевого транзистора для чайников

Что такое полевой транзистор и каков принцип его работы? Транзистор (transistor, англ.) – триод, из полупроводниковых материалов, с тремя выходами, основное свойство которого – сравнительно низким входным сигналом управлять значительным током на выходе цепи. В радиодеталях, из которых собирают современные сложные электроприборы, используются полевые транзисторы. Их свойства позволяют решать задачи по выключению или включению тока в электрической цепи печатной платы, или его усилению.

Что такое полевой транзистор

Полевой транзистор — это устройство с тремя или четырьмя контактами, в котором ток на двух контактах регулируется напряжением электрического поля на третьем. Поэтому их называют полевыми.

Контакты:

  • Схема полевого транзистора на схемеисток – контакт входящего электрического тока, находящийся в зоне n;
  • сток – контакт исходящего, обработанного тока, находящийся в зоне n;
  • затвор – контакт, находящийся в зоне р, изменяя напряжение на котором, можно регулировать пропускную способность устройства.

Полевой транзистор с п – р переходом – особый вид транзисторов, которые служат для управления током.

Он отличается от простого обычного тем, что ток в нем проходит, не пересекая зоны р — n перехода, зоны, образующейся на границы этих двух зон. Размер р — n зоны регулируется.

Полевые транзисторы, их виды

Полевые транзисторы с п – р переходом делят на классы:

  1. По типу канала проводника: n или р. От канала зависит знак, полярность, сигнала управления. Она должна быть противоположна по знаку n -зоне.
  2. По структуре прибора: диффузные, сплавные по р – n — переходом, с затвором Шоттки, тонкопленочные.
  3. По числу контактов: 3-х и 4-контактные. В случае 4-контактного прибора, подложка также исполняет роль затвора.
  4. По используемым материалам: германий, кремний, арсенид галлия.

Классы делятся по принципу работы:

  • устройство под управлением р — n перехода;
  • устройство с изолированным затвором или с барьером Шоттки.

Полевой транзистор, принцип работы

По-простому, как работает полевой транзистор с управляющим р-п переходом, можно сказать так: радиодеталь состоит из двух зон: р — перехода и п — перехода. По зоне п течет электрический ток. Зона р – перекрывающая зона своего рода вентиль. Если на нее сильно надавить, она перекрывает зону для прохождения тока и его проходит меньше. Или, если давление снизить пройдет больше. Такое давление осуществляют увеличением напряжения на контакте затвора, находящегося в зоне р.

Принцип работы полевого транзистораПрибор с управляющим р — п канальным переходом — это полупроводниковая пластина с электропроводностью одного из этих типов. К торцам пластины подсоединены контакты: сток и исток, в середине — контакт затвора. Действие устройства основано на изменяемости толщины пространства р-п перехода. Поскольку в запирающей области почти нет подвижных носителей заряда, ее проводимость равна нулю. В полупроводниковой пластине, в области не под воздействием запирающего слоя, создается проводящий ток канал. При подаче отрицательного напряжения по отношению к истоку, на затвор создается поток, по которому истекают носители заряда.

В случае изолированного затвора, на нем расположен тонкий слой диэлектрика. Этот вид устройства работает на принципе электрического поля. Чтобы разрушить его достаточно небольшого электричества. Поэтому для защиты от статического напряжения, которое может достигать тысяч вольт, создают специальные корпуса приборов — они позволяют минимизировать воздействие вирусного электричества.

Зачем нужен полевой транзистор

Рассматривая работу сложной электронной техники, как работу полевого транзистора (как одного из компонентов интегральной схемы) сложно представить, что основных направления его работы пять:

  1. Усилители высоких частот.
  2. Усилители низких частот.
  3. Модуляция.
  4. Усилители постоянного тока.
  5. Ключевые устройства (выключатели).

Полевой транзистор имеет 5 основных направлений работыНа простом примере работу транзистора, как выключателя, можно представить как компоновку микрофона с лампочкой. Микрофон улавливает звук, от этого появляется электрический ток. Он поступает на запертый полевой транзистор. Своим присутствием ток включает устройство, включает электрическую цепь, к которой подключена лампочка. Лампочка загорается при улавливании звука микрофоном, но горит за счет источника питания, не связанного с микрофоном и более мощного.

Модуляция применяется для управления информационным сигналом. Сигнал управляет частотой колебания. Модуляция применяется для качественного звукового сигнала в радио, для передачи звукового ряда в телевизионных передачах, трансляции цвета и телевизионного сигнала высокого качества. Она применяется везде, где требуется работа с материалом высокого качества.

Как усилитель полевой транзистор упрощенно работает так: графически любой сигнал, в частности, звуковой ряд, можно представить в виде ломаной линии, где ее длина – это время, а высота изломов частота звука. Для усиления звука на радиодеталь подают мощное напряжение, которое приобретает необходимые частоты, но с более большими значениями, за счет подачи слабого сигнала на управляющий контакт. Другими словами, устройство пропорционально перерисовывает изначальную линию, но с более высокими пиковыми значениями.

Применение полевых транзисторов

Первым прибором, поступившим в продажу, где использовался полевой транзистор с управляющим p-n переходом, был слуховой аппарат. Его появление зафиксировано в пятидесятых годах прошлого века. В промышленных масштабах их применяли в телефонных станциях.

Полевой транзистор применяется во всех видах электротехникиВ современном мире, устройства применяют во всей электротехнике. Благодаря маленьким размерам и разнообразию характеристик полевого транзистора, встретить его можно в кухонной технике, аудио и телевизионной технике, компьютерах и электронных детских игрушках. Их применяются в системах сигнализации как охранных механизмов, так и пожарной сигнализации.

На заводах транзисторное оборудование применяется для регуляторов мощности станков. В транспорте от работы оборудования на поездах и локомотивов, до системы впрыска топлива частных автомобилей. В ЖКХ от систем диспетчеризации, до систем управления уличным освещением.

Одна из важнейших областей применения транзисторов – производство процессоров. По сути, весь процессор состоит из множества миниатюрных радиодеталей. Но при переходе на частоту работы выше 1,5 ГГц, они лавинообразно начинают потреблять энергию. Поэтому производители процессоров пошли по пути многоядерности, а не путем увеличения тактовых частот.

Плюсы и минусы полевых транзисторов

Полевые транзисторы своими характеристиками оставили далеко позади другие виды устройства. Широкое применение они нашли в интегральных схемах в роли выключателей.

Плюсы:

  • каскад деталей расходует мало энергии;
  • усиление выше, чем у других видов;
  • высокая помехоустойчивость достигается отсутствием прохождения тока в затворе;
  • более высокая скорость включения и выключения – они могут работать на недоступных другим транзисторам частотах.

Минусы:

  • более низкая температура разрушения, чем у других видов;
  • на частоте 1,5 ггц, потребляемая энергия начинает резко возрастать;
  • чувствительность к статическому электричеству.

Характеристики полупроводниковых материалов, взятых за основу полевых транзисторов, позволили применять устройства в быту и производстве. На основе плевых транзисторов создали бытовую технику в привычном для современного человека виде. Обработка высококачественных сигналов, производство процессоров и других высокоточных компонентов невозможна без достижений современной науки.

instrument.guru

0 comments on “Сток исток затвор – : , ,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *