Трансформатор подключение – Подключаем к сети неизвестный трансформатор. — Начинающим — Теория

Подключение трансформатора тока: инструкция + фото

Представьте себе, что у вас оказался трансформатор. Вы о нем совершенно ничего не знаете. Именно поэтому мы поместили эту статью, в которой расскажем, как подключить трансформатор. Подключение трансформатора – это достаточно сложный процесс, который выполнять должны только профессионалы. Здесь вы узнаете, какие операции необходимо проделать перед подключением трансформатора.

Для начала вам необходимо знать, что собою представляет это устройство. Трансформатор – это достаточно сложное устройство, которое необходимо для того, чтобы преобразовывать напряжение. Обычно он имеет две или более обмоток. По назначению эти устройства могут быть как понижающими, так и повышающими.
Существуют также и автотрансформаторы. Основной их особенностью считается то, что первичная и вторичная обмотка должна подключаться вместе. Их особенность заключается в том, что они преобразовывают величину тока. Обычно их используют для подключения контрольно-измерительных приборов.

Определяем трансформатор

Например, если у вас имеется трансформатор, но вы не знаете какой именно тогда вам следует знать, на что нужно обратить внимание? Для того чтобы определить что это за устройство необходимо посмотреть на количество выводов обмоток. Трехфазные устройства могут иметь 4 вывода, а однофазные трансформаторы два вывода. Если устройство вы желаете использовать в квартире, тогда вам подойдет однофазный трансформатор. Подключение трехфазного трансформатора осуществляется только на предприятиях.

После этого вам необходимо определить тип трансформатора. Основной особенностью этого трансформатора считается мощный проводник вокруг, которого располагается обмотка. К особенности автотрансформаторов относятся небольшие габариты и наличие регулятора. В быту эти трансформаторы встретить можно достаточно редко.

Определяем обмотку

Для того чтобы определить обмотку вам необходимо использовать мультиметр. Если трансформатор будет понижающим, тогда сопротивление в первичной обмотке будет больше чем у вторичной. Обычно размер первичной обмотки немного больше чем во вторичной. Если трансформатор содержит в себе несколько обмоток, тогда необходимо измерить сопротивление каждой из них.

Подключение трансформатора напряжения

Сейчас мы вам расскажем, как подключить понижающий трансформатор. Для начала вам необходимо определить, какой параметр тока необходим потребителю. Для бытовых приборов необходим постоянный ток. В электрической сети обычно течет переменный ток и поэтому вам потребуется выпрямитель. В зависимости от вашего прибора вторичную обмотку необходимо подключить через выпрямитель. Перед тем как подключать трансформатор вам необходимо узнать как сделать трансформатор своими руками. Первичная обмотка будет подключаться прямо в сеть.

Подключение трансформатора тока

Как мы уже говорили в этой статье, трансформаторы тока должны применяться вместе с измерительными приборами. Тороидальный трансформатор подключается точно так. Подключение трансформатора предполагает в себе подключение первичной и вторичной обмотки. Первичную обмотку необходимо подключать в цепь, а вторичную обмотку к измерительным приборам. Помните, что вторичная обмотка всегда должна иметь низкую нагрузку.

Как видите, монтаж трансформатора – это несложно, и выполнить этот процесс можно самостоятельно.

К вашему вниманию: трансформатор для галогенных ламп. 

vse-elektrichestvo.ru

Трехфазный трансформатор: схема подключения, типы соединений

В данной статье вы узнаете что такое трехфазный трансформатор тока, какие бывают его соединения, подробно опишем его конструкцию.

Описание трехфазного трансформатора

До сих пор мы рассматривали конструкцию и работу однофазного двухобмоточного трансформатора напряжения, который можно использовать для увеличения или уменьшения его вторичного напряжения по отношению к первичному напряжению питания. Но трансформаторы напряжения также могут быть сконструированы для подключения не только к одной однофазной, но и для двухфазных, трехфазных, шестифазных и даже сложных комбинаций до 24 фаз для некоторых выпрямительных трансформаторов постоянного тока.

Если мы возьмем три однофазных трансформатора и соединим их первичные обмотки друг с другом и их вторичные обмотки друг с другом в фиксированной конфигурации, мы можем использовать трансформаторы от трехфазного источника питания.

Трехфазные, также записанные как 3-фазные или 3φ источники питания, используются для выработки, передачи и распределения электроэнергии, а также для всех промышленных применений. Трехфазные источники питания имеют много электрических преимуществ по сравнению с однофазными, и при рассмотрении трехфазных трансформаторов нам приходится иметь дело с тремя переменными напряжениями и токами, различающимися по фазе на 120 градусов, как показано ниже.

Трехфазные напряжения и токи

Трансформатор не может действовать как устройство для изменения фазы и превращать однофазное в трехфазное или трехфазное в однофазное. Чтобы обеспечить совместимость трансформаторных соединений с трехфазными источниками питания, нам необходимо соединить их особым образом, чтобы сформировать конфигурацию трехфазного трансформатора.

Трехфазный трансформатор или 3φ трансформатор может быть сконструирован либо путем соединения вместе три однофазных трансформатора, тем самого образуя так называемый трехфазный трансформаторный блок, или с помощью одного предварительно собранного и сбалансированного трехфазного трансформатора, который состоит из трех пар однофазных обмоток, установленные на одном ламинированном сердечнике.

Преимущества создания одного трехфазного трансформатора в том, что при одинаковой номинальной мощности кВА он будет меньше, дешевле и легче, чем три отдельных однофазных трансформатора, соединенных вместе, поскольку медный и железный сердечник используются более эффективно. Способы подключения первичной и вторичной обмоток одинаковы, будь то использование только одного трехфазного трансформатора или трех отдельных однофазных трансформаторов. Рассмотрим схему ниже:

Трехфазные трансформаторные соединения

Первичная и вторичная обмотки трансформатора могут быть подключены в различной конфигурации, как показано выше, для удовлетворения практически любых требований. В случае трехфазных обмоток трансформатора возможны три формы подключения: «звезда», «треугольник» и «взаимосвязанная звезда».

Комбинации трех обмоток могут быть с первичным соединенным треугольником и вторичной соединенной звездой, или звезда-треугольник, звезда-звезда или треугольник, в зависимости от использования трансформаторов. Когда трансформаторы используются для обеспечения трех или более фаз, их обычно называют

многофазным трансформатором .

Трехфазный трансформатор звезда и треугольник

Но что мы подразумеваем под «звездой» (также известной как тройник) и «треугольником» (также известной как сетка) при работе с трехфазными трансформаторными соединениями. Трехфазный трансформатор имеет три комплекта первичной и вторичной обмоток. В зависимости от того, как эти наборы обмоток связаны между собой, определяется, является ли соединение звездой или треугольником.

Три доступных напряжения, каждое из которых смещено друг от друга на 120 электрических градусов, не только определяют тип электрических соединений, используемых на первичной и вторичной сторонах, но и определяют поток токов трансформатора.

При подключении трех однофазных трансформаторов магнитный поток в трех трансформаторах различается по фазе на 120 градусов. С одним трехфазным трансформатором в сердечнике есть три магнитных потока, различающихся по фазе времени на 120 градусов.

Стандартный метод маркировки трехфазных обмоток трансформатора заключается в маркировке трех первичных обмоток заглавными (заглавными буквами) буквами A, B и C , которые используются для обозначения трех отдельных фаз КРАСНОГО,  ЖЕЛТОГО и СИНЕГО (см. картинку ниже). Вторичные обмотки помечены маленькими (строчными буквами) буквами a, b и c. Каждая обмотка имеет два конца, обычно обозначенные 1 и 2, так что, например, вторая обмотка первичной обмотки имеет концы, которые будут обозначены как В1 и В2, в то время как третья обмотка вторичной обмотки будет обозначена с1 и с2, как показано ниже.

Символы обычно используются на трехфазном трансформаторе для обозначения типа или типов соединений, используемых в верхнем регистре Y для подключения звездой, D для подключения треугольником, звезды и Z для взаимосвязанных первичных обмоток звезды, со строчными буквами y, d и z для их соответствующих вторичных. Тогда звезда-звезда будет обозначаться как Yy, дельта-дельта будет обозначаться как Dd, а взаимосвязанная звезда и взаимосвязанная звезда будут Zz для однотипных подключенных трансформаторов.

Таблица идентификация обмотки трансформатора
СоединениеПервичная обмоткаВторичная обмотка
Треугольник (дельта)Dd
ЗвездаYy
ВзаимосвязанноеZz

Теперь мы знаем, что существует четыре различных способа соединения трех однофазных трансформаторов между их первичной и вторичной трехфазными цепями. Эти четыре стандартные конфигурации представлены как: Дельта-Дельта (Dd), Звезда-Звезда (Yy), Звезда-Дельта (Yd) и Дельта-Звезда (Dy).

Трансформаторы для работы под высоким напряжением со звездообразными соединениями имеют то преимущество, что снижают напряжение на отдельном трансформаторе, уменьшают необходимое количество витков и увеличивают размер проводников, делая обмотки катушек легче и дешевле для изолирования, чем дельта-трансформаторы.

Тем не менее, соединение треугольник-треугольник имеет одно большое преимущество перед конфигурацией звезда-треугольник, заключающееся в том, что если один трансформатор из группы трех должен выйти из строя или отключиться, два оставшихся будут продолжать выдавать трехфазную мощность с мощностью, равной приблизительно две трети первоначальной мощности трансформаторного блока.

Трансформатор дельта-дельта соединения

В дельта подключении ( Dd ) группа трансформаторов, напряжение линии V L равно напряжению питания V L  = V S . Но ток в каждой фазной обмотке задается как: 1 / √ 3 × I L тока линии, где L — ток линии.

Один из недостатков трехфазных трансформаторов, соединенных треугольником, состоит в том, что каждый трансформатор должен быть намотан для напряжения полной линии (в нашем примере выше 100 В) и для 57,7% линейного тока. Большее число витков в обмотке, вместе с изоляцией между витками, требует большей и более дорогой катушки, чем звездное соединение. Другим недостатком трехфазных трансформаторов, соединенных треугольником, является отсутствие «нейтрального» или общего подключения.

В схеме «звезда-звезда» ( Yy ) каждый трансформатор имеет одну клемму, соединенную с общим соединением, или нейтральную точку с тремя оставшимися концами первичных обмоток, подключенными к трехфазному сетевому питанию. Число витков в обмотке трансформатора для соединения «звезда» составляет 57,7% от требуемого для соединения треугольником.

Соединение звездой требует использования трех трансформаторов, и если какой-либо один трансформатор выйдет из строя или отключится, вся группа может быть отключена. Тем не менее трехфазный трансформатор со звездообразным соединением особенно удобен и экономичен в системах распределения электроэнергии, поскольку четвертый провод может быть подключен в качестве нейтральной точки ( n ) из трех вторичных проводов,  как показано на рисунке.

Трансформатор звезда-звезда соединения

Напряжение между любой линии трехфазного трансформатора называется «линейное напряжение» V L , в то время как напряжение между линией и нейтральной точкой трансформатора с соединением звезда называется «фаза напряжения» V P . Это фазовое напряжение между нейтральной точкой и любым из подключений к линии составляет 1 / √ 3  × V 

L от напряжения сети. Тогда выше, напряжение фазы первичной стороны P задается как:

Вторичный ток в каждой фазе группы трансформаторов соединенных «звездой» такое же, что и для линии тока питания, то I L = I S .

Тогда соотношение между линейными и фазовыми напряжениями и токами в трехфазной системе можно суммировать как:

СоединениеФазовое напряжениеЛинейное напряжениеФазный токЛиния тока
ЗвездаP = V L ÷ √ 3L = √ 3 × V PI P = I LL = I P
ДельтаP = V LL = V PP = I L ÷√ 3L = √ 3 × I P

Где, опять же, L — это напряжение между линиями, а P — это напряжение между фазами и нейтралью на первичной или вторичной стороне.

Другими возможными соединениями для трехфазных трансформаторов являются звезда-треугольник Yd, где первичная обмотка соединена звездой, а вторичная обмотка соединена треугольником или треугольником Dy с первичным соединением первичной обмотки и вторичной обмоткой со звездой.

Трансформаторы с соединением треугольником и звездой широко используются при низком распределении мощности, при этом первичные обмотки обеспечивают трехпроводную сбалансированную нагрузку для коммунального предприятия, а вторичные обмотки обеспечивают требуемое нейтральное или заземляющее 4-проводное соединение.

Когда первичная и вторичная обмотки имеют разные типы соединений обмотки, звезда или треугольник, общее отношение витков трансформатора становится более сложным. Если трехфазный трансформатор подключен как дельта-дельта ( Dd ) или звезда-звезда ( Yy ), то трансформатор может иметь отношение витков 1: 1. То есть входные и выходные напряжения для обмоток одинаковы.

Однако, если 3-фазный трансформатор соединен звезда-треугольник, ( Yd ) каждое звездообразное соединение первичной обмотки будет получать напряжение фазы V P от источника, который равен 1 / √ 3  × V L .

Тогда каждая соответствующая вторичная обмотка будет иметь то же самое напряжение, индуцированное в ней, и, поскольку эти обмотки соединены треугольником, напряжение 1 / √ 3  × V L станет напряжением вторичной линии. Затем при соотношении витков 1: 1 трансформатор, подключенный по схеме звезда-треугольник, будет обеспечивать коэффициент линейного напряжения с понижением √ 3 : 1 .

Тогда для  трансформатора, подключенного звезда-треугольник ( Yd ), отношение витков становится равным:

Аналогично, для дельта-звезда ( Dy ) соединенный трансформатор, с 1: 1 соотношением витков, трансформатор будет обеспечивать 1: √ 3 соотношение повышающего линейного напряжения. Тогда для трансформатора, соединенного треугольником-звезда, отношение витков становится равным:

Затем для четырех основных конфигураций трехфазного трансформатора мы можем перечислить вторичные напряжения и токи трансформатора по отношению к напряжению первичной линии, V L и его току первичной линии I L, как показано в следующей таблице.

Где: n равно числу витков трансформатора числа вторичных обмоток N S, деленной на число первичных обмоток N P . ( N S / N P  ) и V L — линейное напряжение, при этом V P — это напряжение между фазой и нейтралью.

Пример трехфазного трансформатора

К первичной обмотке  трансформатора 50 ВА, подключенного к треугольнику ( Dy ), подключено трехфазное питание 100 В, 50 Гц. Если трансформатор имеет 500 витков на первичной обмотке и 100 витков на вторичной обмотке, рассчитайте вторичные стороны напряжений и токов.

Приведенные данные: номинальный трансформатор, 50 ВА, напряжение питания, 100 В, первичные витки 500 , вторичные витки, 100.

Получается, что на вторичную сторону трансформатора подается линейное напряжение, V Lоколо 35 В, дающее фазное напряжение, V P 20 В при 0,834 Ампер.

Конструкция трехфазного трансформатора

Ранее мы уже говорили, что трехфазный трансформатор представляет собой три взаимосвязанных однофазных трансформатора на одном многослойном сердечнике, и можно достичь значительной экономии в стоимости, размере и весе, объединив три обмотки в одну магнитную цепь, как показано на рисунке.

Трехфазный трансформатор обычно имеет три магнитных цепи, которые чередуются, чтобы обеспечить равномерное распределение диэлектрического потока между обмотками высокого и низкого напряжения. Исключением из этого правила является трехфазный трансформатор типа корпусной. В конструкции типа корпусной, даже несмотря на то, что три ядра находятся вместе, они не переплетены.

Трехфазный трансформатор с сердечником является наиболее распространенным методом построения трехфазного трансформатора, позволяя фазам быть магнитно связанными. Поток каждой конечности использует две другие ветви для своего обратного пути с тремя магнитными потоками в сердечнике, создаваемыми линейными напряжениями, различающимися по фазе времени на 120 градусов. Таким образом, поток в сердечнике остается почти синусоидальным, создавая синусоидальное вторичное напряжение питания.

Конструкция трехфазного трансформатора с кожухом пятиступенчатого типа тяжелее и дороже в сборке, чем сердечник. Пятиконтактные сердечники обычно используются для очень больших силовых трансформаторов, так как они могут быть выполнены с уменьшенной высотой. Материалы сердечника трансформаторов типа корпусной, электрические обмотки, стальной корпус и охлаждение практически такие же, как и для более крупных однофазных типов.

meanders.ru

Схема подключения трансформатора, как правильно его подсоединить к цепи.

 

 

 

Тема: как нужно соединять трансформатор с электрической цепью.

 

Применение силовых понижающих (реже повышающих) трансформаторов имеет большое распространение. Они являются достаточно простым и недорогим решением для функции преобразования электрической энергии, а именно напряжения и тока. Для тех, кто не особо знаком с электротехникой уточню — трансформаторы представляют собой электрическую машину, состоящую из магнитопровода определенной формы, на котором содержаться намотки изолированного провода (медного чаще всего). В зависимости от количества витков на трансформаторе и его сечения зависит напряжение и ток, который преобразуется.

 

Самый простой вариант трансформатора содержит на себе две обмотки. Входная обмотка называется первичной, а выходная — вторичной. Изначально каждый трансформатор рассчитывается на свою мощность, напряжение, ток, частоту. Чаще всего можно встретить обычный понижающий трансформатор, у которого входная обмотка рассчитана на напряжение 220 вольт, а вторичная на то напряжение, которое используется тем или иным устройством (наиболее ходовыми являются 3, 5, 9, 12, 24 вольта). От количества витков зависит напряжение, а от диаметра провода обмотки — сила тока.

 

 

Схема подключения трансформатора достаточно проста. На вход подается питание (переменное напряжение). Если это обычный понижающий транс, рассчитанный на стандартное сетевое напряжение, то подключаем 220 вольт. Полярность тут не имеет значения. Обычно на самом электротехническом устройстве пишется, где у него, какая обмотка, на сколько вольт она рассчитана. Входные провода (или выводы, клеммы) как правило делаются хорошо изолированными, расположенные отдельно от выходных. В принципе легко понять, какие выводы соответствуют входу.

 

 

 

 

Если вам попался силовой трансформатор, у которого нет четкого указания, надписи, где у него входные клеммы, выводы, провода, а вы точно знаете, что он на 220 вольт, то можно первичную обмотку просто вызвонить тестером, мультиметром. Итак, сначала зрительно определяем, какие выводы наиболее похожи на вход. Далее начинаем измерять сопротивление обмоток. Так как первичная обмотка рассчитана на большее напряжение (220 вольт), значит она будет иметь наибольшее сопротивление относительно всех остальных. Для примера, у большинства понижающих трансформаторов размерами примерно с кулак взрослого человека сопротивление входной, первичной обмотки будет лежать в пределах 10-1000 ом. Чем больше трансформатор, тем меньше сопротивление на его входной обмотки.

 

Вторичная обмотка силового понижающего трансформатора в простом варианте имеет два вывода (провода, клеммы). Она наматывается проводом большего диаметра, в сравнении с первичной обмоткой. На ее выводах будет пониженное переменное напряжение (когда на вход подадим питание). Для большинства устройств нужно постоянное низковольтное напряжение, а поскольку со вторичной обмотки выходит переменное напряжение, то ее в большинстве случаев подключают к диодному, выпрямительному мосту, который и преобразует переменное напряжение в постоянное.

 

Для некоторых электротехнических устройств нужно несколько различных низковольтных напряжений. В этом случае ставятся силовые понижающие трансформаторы, у которых имеется одна входная обмотка (первичная), рассчитанная на 220 или 380 вольт, и несколько выходных (вторичные). Либо может быть вторичная обмотка со средней точкой. То есть, у выходной обмотки электрической машины (транса) выходит 3 провода (один провод общий для двух одинаковых обмоток, ну и по проводу, идущие от других концов этих обмоток). У таких понижающих трансформаторов относительно общего провода будет два одинаковых низковольтных напряжения, а общее напряжение будет равно сумме этих двух напряжений.

 

В промышленности широко используются также напряжения величиной в 380 вольт. Следовательно, те трансформаторы, что там используются могут быть рассчитаны как на входное переменное напряжение 220 вольт, так и на 380 вольт. Если на таких трансах есть надпись (входного и выходного напряжения), значит хорошо. Если же непонятно, на какое входное напряжение рассчитан трансформатор, то — если на транс, рассчитанный на 380 вольт подать 220 вольт, на выходе мы всего лишь получим меньшее напряжение, чем он изначально должен выдавать, если же наоборот, транс рассчитан на 220 вольт, а мы на него подадим 380 вольт, то он быстро начнет греться и в скором времени просто выйдет из строя.

 

P.S. Трансформаторы рассчитаны на работу именно с переменным током, от постоянного они будут просто греться, не выдавая на выходе никакого напряжения. Также стоит учесть, что в большинстве случаев (когда обмотки между собой не связаны, к примеру две первичные, которые подключаются последовательно) полярность подключения к выводам трансформатора не имеет значения. Главное, чтобы вы были уверены в том, что само устройство рассчитано на то напряжение, которое вы на него собираетесь подавать и получать. Ну, и не забываем — мощность имеет значение! Подбирайте именно такой трансформатор, который без перегрузки может обеспечить ваше устройство нужным напряжением и током.

 

electrohobby.ru

Схемы подключения трансформаторов напряжения

Общие сведения

Трансформаторами напряжения, как правило, называют разновидность трансформаторов, которые предназначены не для передачи мощности, а для гальванического разделения высоковольтной стороны от низковольтной.

Такие трансформаторы предназначены для питания измерительных и управляющих приборов. На «высокой» стороне различных трансформаторов напряжения, естественно, напряжение  может быть разным, это и 6000, и 35000 вольт и даже много более, а вот на «низкой» стороне (на вторичной обмотке) оно не превышает 100 вольт.

Это очень удобно для унификации приборов управления. Если делать измерительные приборы и приборы управления, а это в основном реле, на высокое напряжение, то они, во-первых, будут очень большими, а во-вторых, очень опасными в обслуживании.

Коэффициент трансформации указан на самом трансформаторе и может выглядеть как Кu = 6000/100, либо просто 35000/100. Разделив одно число на другое, получим в первом случае этот коэффициент 60, во втором 350.

Данные трансформаторы бывают как «сухие», в которых в качестве изоляции используется электрокартон. Они применяются, обычно, для напряжений до 1000 вольт. Пример НОС-0,5. Где, Н означает напряжение, имеется ввиду трансформатор напряжения, О – однофазный, С – сухой, 0,5 – 500 вольт (0,5кВ). А так же масляные: НТМИ, НОМ, 3НОМ, НТМК, в которых масло играет роль, как изолятора, так и охладителя. И литые, если быть точным, то с литой изоляцией (3НОЛ – трехобмоточный трансформатор напряжения однофазный с литой изоляцией), в которых все обмотки и магнитопровод залиты эпоксидной смолой.

Устройство трансформаторов напряжения

Как и все трансформаторы, как это было сказано выше, данный тип трансформаторов имеют как первичные обмотки (высоковольтные), так и вторичные (низковольтные). Различают однофазные и трехфазные трансформаторы напряжения.

В каждом из них имеется магнитопровод, к которому предъявляются довольно высокие требования. Дело в том, что чем больше рассеивание магнитного потока в таком трансформаторе, тем больше погрешность измерения. Кстати. В зависимости от погрешности различают трансформаторы по классу точности различаются (0,2; 0,5; 1; 3). Чем выше число, тем больше погрешность измерений.

К примеру, трансформатор с классом точности 0,2 может допустить погрешность не выше 0,2% от измеряемой величины напряжения, а, соответственно, класса точности 3 – не более 3%.

Обозначения на схемах и натуральное исполнение бывает сильно отличаются друг от друга.

 

Однофазный двухобмоточный трансформатор представлен на рисунке, так, как он выглядит на самом деле.

На схемах он обозначается как:

 

Обратите внимание, трансформатор понижающий, во вторичной обмотке меньше витков, чем в первичной, и это отражено визуально на схеме в данном случае, хотя это и не всегда делается. Кроме того, начала и концы обмоток обозначены на схеме и на самом трансформаторе. Первичные обмотки обозначаются большими (прописными) буквами AиX. Вторичные – малыми (строчными) буквами a и x.

 

Существуют и трехобмоточные однофазные трансформаторы, у которых две вторичных обмотки. Одна из которых является основной, а вторая дополнительной. Дополнительная обмотка служит для контроля изоляции и имеет аббревиатуру КИЗ. Маркировка выводов этой обмотки следующая ад — начало обмотки, хд — конец обмотки.

Трехфазные трансформаторы выпускаются с двумя типами магнитопроводов: трехстержневые и пятистержневые.

 

Начала и концы здесь обозначаются несколько по-другому. На первичных обмотках начала обозначаются буквами A, B иC согласно фазам к которым они будут подключаться, а концы буквами X,Y и Z. Вторичные обмотки, соответственно, малыми буквами a,b,cи x,y,z.

 

 

Магнитные потоки создаваемые катушками AX, BY, CZ компенсируют друг друга при нормальных условиях работы. Но вот в случае пробоя одной из фаз на землю в стержнях магнитопровода создается слишком большой дисбаланс и часть потока будет закольцовываться через воздух, что создает сильный нагрев трансформатора из-за повышения номинального тока в обмотках. Дополнительные стержни, как раз и призваны взять на себя образовавшиеся разбалансированные потоки и не допустить перегрева трансформатора. При этом в нем наматываются дополнительные обмотки, но об этом несколько позже.

Схемы соединений обмоток трансформаторов напряжения

Самым простым способом измерения межфазного напряжения является включение однофазного двухобмоточного трансформатора напряжения по схеме представленной на рисунке слева.

 

При этом на концах вторичной обмотки имеем напряжение соответствующее межфазному ВС, но уменьшенное с учетом коэффициента трансформации.

Все три межфазных напряжения можно измерять при помощи двух однофазных трансформатора подключенных определенным способом.

 

В трехфазных трансформаторах первичные обмотки всегда подключается по схеме «звезда».

 

Вторичные обмотки могут подключаться как по схеме «звезда» так и по схеме «треугольник».

 

При верхнем подключении на точках вывода вторичной обмотки мы имеем возможность измерения межфазных напряжений. При нижнем подключении, по схеме так называемого разомкнутого треугольника, мы можем выявить факт короткого замыкания или обрыва провода в одной их фаз на высокой стороне. Выводы при этом маркируются 01 и 02, поскольку при нормальных условиях работы между этими точками нет напряжения.

Для подключения реле защиты применяются, как уже было сказано выше дополнительные обмотки в трехобмоточных трансформаторах напряжения. Пот пример подключения таких трансформаторов в трехфазную сеть. При этом концы обмоток заземляются как в первичной, так и во вторичной обмотке.

 

Вот еще несколько вариантов подключения однофазных трансформаторов для измерения межфазных и фазных напряжений, а так же для питания аппаратуры управления.

 

Более сложные варианты подключения трансформаторов напряжения, содержащих большее количество обмоток изучается в специальном курсе электротехники.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

elektronchic.ru

принцип работы, как выбрать, схема подключения

Без этого электротехнического устройства потребители электроэнергии не смогли бы заряжать автомобильные аккумуляторы, подключать энергосберегающие источники света. Электротехническое изделие понижает стационарное напряжение до требуемого уровня. Прибор изготовлен на базе электромагнитной индукции. Продается в специализированных стационарных торговых предприятиях, интернет-магазинах.

Общее устройство и принцип работы

Понижающий трансформатор с 220 на 12 вольт покупают водители, дачники, владельцы загородных домов, коттеджей для устройства внутридомовой низковольтной осветительной сети. Временами использование электрического питания 220 вольт в домашнем обиходе экономически нерационально.

Изделие состоит из четырех главных деталей: двух стержней-сердечников и двух катушек из медной проволоки требуемого сечения и длины. Называются обмотками, содержащими неравное количество витков. Стержни-сердечники изготавливают из специальной стали, используемой в электротехнической отрасли. На трансформатор 220 подают ток стационарной электросети.

В первичной обмотке начинается интенсивное движение электронов, создается электродвижущая сила. Образуется магнитное поле, пересекаемое второй обмоткой. В ней появляются электрические потенциалы, поскольку магнитное поле первой катушки вызывает во второй самоиндукцию (движение электронов). Возникает разность электрических уровней, стремящихся уравнять потенциальные значения до нуля.

Перелив электронов с высокого потенциала на конечный нулевой рождает электрический ток. Напряжение во вторичной обмотке зависит от того, во сколько раз в ней меньше витков, чем в первой. Следует помнить, что понижающее электротехническое устройство генерирует в концевой обмотке переменное напряжение с изменением полярности 50 раз в секунду. Получают и постоянный ток, подключая в систему выпрямитель, чтобы на выходе иметь 12 вольт прямого тока.

Существует большой ассортимент электронных понижающих изделий, не содержащих сердечников, катушек.

Понижающими устройствами являются микроскопические электронные схемы в соединении с конденсаторами, резисторами и другими важными элементами. Перед традиционными преобразователями тока имеют неоспоримые преимущества, заключающиеся:

  • в компактности;
  • в весе;
  • в ручной регулировке пониженного напряжения;
  • в бесшумной работе;
  • в высоком КПД.

Покупатель может выбирать тот трансформатор, в котором нуждается. Это его право.

Изготовленный собственными руками трансформатор рекомендуется эксплуатировать, спрятав его за стенками металлического или деревянного корпуса, имеющего естественную вентиляцию.

Как выбрать понижающий трансформатор

В продаже появились импортные электроприборы, работающие от сети 110 вольт. Отечественные электросети подают ток напряжением в 220 вольт. Использовать иностранный бытовой или другого назначения прибор проблематично. Но есть выход. Можно приобрести трансформатор 220 с понижающими клеммами на 110 вольт.

Выбирая понижающее изделие, важно высчитать максимальную нагрузку, на которую оно рассчитано. Результат получают следующим методом. Умножают вольты на силу тока и получают мощность. Формула выглядит так: V x A=W. Выбирают мощный потребитель электрической энергии, высчитывают пиковую нагрузку по формуле, прибавляют к ее значению 20%.

Приведем пример. Домохозяйка приобрела импортный кухонный комбайн, работающий от сети 110 вольт, рассчитанный на силу тока 3 А. Умножаем показатели. Получим мощность 330 W. Это нормативная мощность, при которой работает комбайн. Но во время приготовления заправки, например для борща, в комбайн попала косточка, которую прибор должен измельчить. За секунду мощность подскочит до 1400 W. Производитель электроприборов в техническом паспорте указывает максимальную мощность.

Устройство, понижающее ток, несложно сделать самому. Алгоритм действий следующий: ассчитывают количество витков металлической проволоки на катушках. Расчет первичной начинают с обмотки на 220 вольт. После вычислений определяют число витков. Получают 2200 витков при сечении провода 0.3 мм и площади стержня в 6 кв. см.

После рассчитывают количество витков для катушки на 12 вольт. Вторая катушка, вырабатывая напряжение в 12 вольт, будет иметь 120 витков при сечении провода в 1 мм. Витки одной обмотки по количеству не должны равняться другой. В идеале могут, если медная проволока разного сечения.

Напряжением в двенадцать вольт питаются светодиодные ленты, лампы, освещение галогенное. Галогенным лампам требуется небольшая мощность. Важным моментом является изготовление сердечника. От его качества зависит мощность трансформатора.

Если под рукой нет специальной электротехнической стали, используют металлические емкости из-под пива, хлебного кваса, других жидких продуктов. Из банок нарезают полосы длиной 3 дм и шириной 0.2 дм. Заготовки подвергают обжигу, после удаляют налет окалины. Лакируют, обворачивают бумагой с одной стороны.

Вторую обмотку заполняют провода сечением 1 мм. Катушечную основу изготавливают из картонного материала повышенной прочности. Обворачивают картонную заготовку бумагой, пропитанной парафином. На приготовленные сердцевины наматывают проволоку, не забывая намотанные витки разделять бумагой. Готовые к использованию обмотки закрепляют на компактном деревянном или металлическом каркасе. Фиксируют скобами или другим крепежом.

Схема подключения понижающего трансформатора

Как подключить трансформатор 220 на 12 вольт, интересует многих. Делается все просто. Подсказывает алгоритм действий маркировка в местах подключения. Выведенные клеммы на панель соединения с контактными проводами потребительского прибора обозначены латинскими буквами. Клеммы, к которым подключают нулевой провод, помечены символами N или 0. Силовая фаза – обозначение L или 220. Выходные клеммы обозначены цифрами 12 или 110. Остается не перепутать клеммы и практическими действиями ответить на вопрос, как подключить понижающий трансформатор 220.

Заводская маркировка клемм обеспечивает безопасное подключение человеком, не знакомым с подобными действиями. Импортные трансформаторы проходят отечественный сертификационный контроль и не представляют опасности при эксплуатации. Подключают изделие на 12 вольт по описанному выше принципу.

Теперь понятно, как подключают понижающий трансформатор заводского изготовления. Сложнее определиться с самодельным устройством. Сложности возникают, когда при монтаже прибора забывают промаркировать клеммы. Чтобы совершить подключение без ошибки, важно научиться визуально определять толщину проводов. Первичная катушка изготовлена из проволоки меньшего сечения, чем обмотка концевого действия. Схема подключения простая.

Надо усвоить правило, согласно которому можно получать повышающее электрическое напряжение, прибор подключают в обратном порядке (зеркальный вариант).

Принцип работы понижающего трансформатора понять легко. Эмпирически и теоретически установлено, что связь на уровне электронов в обоих катушках следует оценивать как разность магнитного потокового воздействия, создающего контакт с обоими катушками, к электронному потоку, который возникает в обмотке с меньшим числом витков. Подключая концевую катушку, обнаруживают, что в цепи появляется ток. То есть получают электроэнергию.

И здесь возникает электротехническая коллизия. Подсчитано, что подаваемая энергия от генератора на первичную катушку равна энергии, направленной в созданную цепь. И это происходит, когда между обмотками нет металлического, гальванического контакта. Передается энергия путем создания мощного магнитного потока, имеющего переменные характеристики.

В электротехнике есть термин “рассеивание”. Магнитный поток на пути следования теряет мощность. И это плохо. Исправляет положение конструктивная особенность устройства трансформаторов. Созданные конструкции металлических магнитных путей не допускают рассеивания магнитного потока по цепи. В результате магнитные потоки первой катушки равны значениям второй или почти равны.

 

odinelectric.ru

Схема подключения трансформатора тока - варианты подключения

Токовые трансформаторы являются важными защитным устройством релейного типа.

Схема подключения трансформатора тока предполагает использование первичной и вторичной обмотки с учетом коэффициента относительной погрешности.

В статье подробно о монтаже счетчика через трансформатор тока.

Схема подключения счетчика через трансформаторы тока

Установка электрического счетчика осуществляется в соответствии с основными правилами и требованиями, предъявляемыми к схеме подключения прибора. Счетчик устанавливается при температурном режиме не ниже 5оС.

Приборы энергоучета, наряду с любой другой электроникой, крайне тяжело переносят низкотемпературное воздействие. Установка электрического счетчика на улице потребует сооружения специального герметичного утепленного шкафа. Прибор учета фиксируется на высоте не более 100-170 см, что облегчает эксплуатацию и его обслуживание.

Схема подключения счетчиков МЕРКУРИЙ

Для самостоятельной установки необходимо приобрести электросчетчик и щиток, изоляционные автоматические материалы, кабеля и крепежные элементы, DIN-рейки, а также подготовить набор монтажного инструмента.

Подключение однофазного прибора

При монтаже однофазного прибора учета, особое внимание необходимо уделить порядку подключения кабелей на клеммные элементы:

  • на первую клемму производится подсоединение фазного провода. Вводимый кабель чаще всего обладает белым, коричневым или черным окрашиванием;
  • на вторую клемму осуществляется подключение фазного провода, испытывающего силовую нагрузку. Такой кабель обычно бывает белого, коричневого или черного цвета;
  • на третью клемму выполняется подсоединение электропровода «ноль». Этот вводной кабель имеет голубую или синевато-голубую маркировку;
  • на четвертую клемму производится подключение нулевого провода, имеющего голубое или синевато-голубое окрашивание.

Подключение однофазного прибора

Обеспечивать защиту на заземление для устанавливаемого и подключаемого электрического прибора учета не потребуется.

Следует отметить, что дополнительные участки подсоединения на однофазном электросчетчике являются вспомогательными, и обеспечивают эффективность эксплуатации или автоматизацию учета используемой электроэнергии.

Схема подключения трехфазного счетчика через трансформаторы тока

Трёхфазные устройства учета электроэнергии комплектуются, как правило, DIN-рейкой, двумя видами панелей, которые прикрывают подключаемые клеммы, а также руководство и пломбы. Технология самостоятельной установки:

  • монтаж на DIN-рейке электрического щита вводного автомата и трехфазного счетчика электроэнергии;
  • спуск фиксаторов на оборотной стороне трёхфазного прибора энергоучета, с последующей установкой и поднятием фиксаторов;
  • подсоединение вводного автомата с необходимыми вводными клеммами на электросчетчике, в соответствии со схемой подключения.

Схема монтажа трехфазного счетчика

Удобным является использование токопроводящих жил из медных проводов, сечение которых не меньше, чем стандартные размеры вводного кабеля.

При прямом подсоединении трехфазного электрического счётчика, без применения вводной автоматизации, на соответствующие клеммы прибора подключаются одновременно провода «фаза» и «ноль».

Соединение обмоток реле и трансформаторов тока

Принцип воздействия токового трансформатора не имеет существенных отличий от подобных характеристик стандартного силового прибора. Особенностью первичной трансформаторной обмотки является последовательное включение в измеряемую электрическую цепь. Кроме всего прочего, обязательно присутствует замыкание на вторичную обмотку на разные, подключенные друг за другом приборы.

В полную звезду

В условиях стандартного симметричного уровня токового протекания, трансформатор устанавливается на всех фазах. В этом случае вторичная трансформаторная и релейная обмотка объединяются в звезду, а связка их нулевых точек выполняется посредством одной жилы «ноль», а зажимы на обмотках подсоединяются.

Соединение трансформаторов тока и обмоток реле в полную звезду

Таким образом, трехфазное короткое замыкание характеризуется протеканием токов в обратном кабеле в условиях двух реле. Для двухфазного короткого замыкания, протекание тока отмечается в единственном или сразу в паре реле, согласно фазовому повреждению.

Любые замыкания, кроме «земля», сопровождаются протеканием в нулевом проводе токовой геометрической суммы в реле, приблизительно «О».

В неполную звезду

Особенностью двухфазной двухрелейной схемы подсоединения с образованием неполной звезды. К достоинствам такой схемы можно отнести реагирование на любой вид короткого замыкания, кроме земли фазы, а также вероятность применения данной схемы на междуфазных защитах.

Соединение трансформаторов тока и обмоток реле в неполную звезду

Таким образом, в условиях различных типов короткого замыкания, токовые величины в реле, а также уровень его чувствительности, будут разнообразными.

Недостаток подсоединения в неполную звезду представлен слишком низким коэффициентом чувствительности, по сравнению со схемой полной звезды.

Проверка трансформатора на работоспособность требуется, если имеются подозрения на его неисправность. Как проверить трансформатор мультиметром – инструкцию вы найдете в статье.

Как правильно установить заземление на даче, расскажем тут.

Как правильно выбрать провод заземления и какие марки наиболее популярны, читайте далее.

Подсоединение трансформаторов тока в фильтр токов нулевой последовательности

Токовые величины в реле проявляются исключительно при наличии однофазового и двухфазного короткого замыкания «земля».

Такой вариант находит широкое применение в защите от замыкания «земля».

В условиях нагрузки трехфазного и двухфазного короткого замыкания показатели IN=0.

Тем не менее, при наличии погрешности токовых трансформаторов, в реле наблюдается проявление небаланса или Iнб.

Подсоединение трансформаторов тока

В процессе выполнения последовательного подключения вторичной обмотки в условиях параллельного подсоединения, позволяет уменьшать трансформирующий коэффициент и увеличивать уровень тока на вторичной цепи. Первичные обмотки подсоединяются исключительно в последовательности, а вторичные — в любом положении.

Последовательное подсоединение

При варианте последовательного подключения токовых трансформаторов, обеспечивается повышение нагрузочных показателей. В этом случае применяются трансформаторы, имеющие идентичные показатели kТ.

Соединение обмоток трансформатора последовательно

При протекающем через прибор одинаковом токе, величина поделится на коэффициент два, а уровень нагрузки снизится в пару раз. Применение такой схемы актуально при подсоединении Y/D с целью обеспечения защиты дифференциального типа.

Если устройству требуется напряжение в 12 Вольт, необходимо подключать его через трансформатор. Трансформатор 220 на 12 Вольт – назначение и принцип действия рассмотрим подробно.

Об особенностях использования и монтажа шины заземления вы узнаете из этой информации.

Параллельное подсоединение

Такой вариант позволяет уменьшить показатели kТ.

При использовании токовых трансформаторов, обладающих одинаковым уровнем kТ, отмечается появление результативного трансформирующего коэффициента, сниженного в пару раз.

Таким образом, при последовательном подсоединении вторичных обмоток обеспечивается повышение уровня выходного напряжения и показателей мощности в условиях сохранения номинальных значений выходного тока.

Если обмотка вторичного типа на каждом трансформаторе предполагает напряжение на выход 6,0 В при номинальных токовых показателях 1,0 А, то последовательное подсоединение позволяет сохранить номинал, а уровень мощности повышается в два раза.

Параллельное подключение вторичной обмотки в таком варианте помогает обеспечивать показатели напряжения на выходе 6,0 В, а также уровень тока — в два раза выше.

Видео на тему

proprovoda.ru

Основные схемы подключения трансформатора | Полезные статьи

Рисунок 1. Трансформаторы тока Трансформатор — это устройство, которое преобразует напряжение: понижает, повышает, меняет с переменного на постоянное... Есть трансформаторы напряжения и трансформаторы тока. Это распространенные устройства, которые широко используются в быту и на производстве, поэтому правильно подобранная схема подключения трансформатора очень важна для нормальной работы оборудования.

 

Подключение трансформаторов тока

Наиболее распространенный пример применения трансформаторов тока — подключение через них измерительных приборов, поэтому схема подключения трансформаторов тока также является стабильно востребованной.

Амперметры, вольтметры и прочие измерительные приборы — это высокочувствительные приборы, предназначенные для измерения тока небольшой силы. Чтобы понизить переменный электрический ток большой силы до значений, удобных для измерения этими измерительными приборами, применяется трансформатор тока.

Рисунок 2 Схема соединения обмоток трансформатора со счетчиком на рис. 2 показывает, что первичная обмотка трансформатора Л1-Л2 последовательно включена в линейный провод с повышенным током, а токовая обмотка измерительного прибора подсоединена к вторичной обмотке трансформатора (И1-И2). Обмотка напряжения должна подключаться к фазному и нулевому проводам. Для этого между выводами Л1 и И1 выполнена перемычка, а к третьему зажиму прибора подсоединен нулевой провод. Данная схема подключения трансформатора проста, а потому и широко распространена.

 

Рисунок 3 На производстве распространены трехфазные электросети с трехфазными счетчиками. В таком случае используется схема подключения трехфазного трансформатора, точнее — самая популярная ее вариация: схема подключения трех однофазных трансформаторов к трехфазному счетчику (рис. 3).

 
Подключение понижающих трансформаторов

Рисунок 4. Подключение светильников 12В через понижающий трансформатор Самый яркий и распространенный пример, на котором может быть продемонстрирована схема подключения понижающего трансформатора — подключение экономной системы освещения. Такая схема подключения трансформатора напряжения нужна для того, чтобы реализовать схему освещения, использующую гораздо меньшие показатели напряжения, чем традиционные 220 В. Чаще всего применяются низковольтные галогенные лампы в 12 В, которые используются не только в открытых, но и во встроенных светильниках, поскольку небольшие размеры современных понижающих трансформаторов позволяют монтировать их прямо в каркасе потолков.

Общая схема соединения обмоток трансформатора со светильниками довольно проста и приведена на рис. 4. Выключатель устанавливается перед трансформатором, подключенным к нему. Светильники параллельно подключаются к трансформатору и все — схема закончена. Роль трансформатора заключается в понижении напряжения со стандартных 220 В до 12 В, необходимых для питания точечных галогенных светильников.

 

cable.ru

0 comments on “Трансформатор подключение – Подключаем к сети неизвестный трансформатор. — Начинающим — Теория

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *