Расчет токов короткого замыкания онлайн – Расчёт токов короткого замыкания

Пример приближенного расчета токов короткого замыкания в сети 0,4 кв

Часто инженерам для проверки отключающей способности защитных аппаратов (автоматические выключатели, предохранители и т.д.), нужно знать значения токов короткого замыкания (ТКЗ). Но на практике не всегда есть возможность быстро выполнить расчет ТКЗ по ГОСТ 28249-93, из-за отсутствия данных по различным сопротивлениям, особенно это актуально при расчете однофазного тока короткого замыкания на землю.

Для решения этой задачи, можно использовать приближенный метод расчета токов короткого замыкания на напряжение до 1000 В, представленный в книге: «Е.Н. Зимин. Защита асинхронных двигателей до 500 В. 1967 г.».

Рассмотрим на примере расчет ТКЗ в сети 0,4 кВ для небольшого распределительного пункта, чтобы проверить отключающую способность предохранителей, используя приближенный метод расчета ТКЗ представленный в книге Е.Н. Зимина.

Обращаю Ваше внимание, что в данном примере будет рассматриваться, только расчет ТКЗ для предохранителей FU1-FU6 из условия обеспечения необходимой кратности тока короткого замыкания.

Расчет

Известно, что двигатели получают питание от трансформатора мощность 320 кВА. Кабель от трансформатора до РЩ1 проложен в земле, марки АСБГ 3х120+1х70, длина линии составляет 250 м. На участке от распределительного щита ЩР1 до распределительного пункта РП, проложен кабель марки АВВГ 3х25+1х16, длина линии составляет 50 м. Однолинейная электрическая схема представлена на рис.1.

Рис.1 – Однолинейная электрическая схема 380 В

Рис.1 – Однолинейная электрическая схема 380 В

Расчет токов к.з. для точки К1

Для проверки на отключающую способность предохранителя FU1, нужно определить в месте его установки ток трехфазного короткого замыкания.

1. Определяем активное и индуктивное сопротивление фазы трансформатора:

1. Определяем активное и индуктивное сопротивление фазы трансформатора

где:

  • Sт – мощность трансформатора, кВА;
  • с – коэффициент, равный: 4 – для трансформаторов до 60 кВА; 3,5 – до 180 кВА; 2,5 – до 1000 кВА; 2,2 – до 1800 кВА;
  • d – коэффициент, равный: 2 – для трансформаторов до 180 кВА; 3 – до 1000 кВА; 4 – до 1800 кВА;
  • k = Uн/380, Uн — номинальное напряжение на шинах распределительного пункта.

2. Определяем активное и индуктивное сопротивление кабеля марки АСБГ 3х120+1х70:

2. Определяем активное и индуктивное сопротивление кабеля

где:

  • L – длина участка, км;
  • Sф и S0 – сечение проводника фазы и соответственно нулевого провода, мм2;
  • а – коэффициент, равный: 0,07 – для кабелей; 0,09 – для проводов, проложенных в трубе; 0,25 – для изолированных проводов, проложенных открыто;
  • b – коэффициент, равный: 19 – для медных проводов и кабелей; 32 – для алюминиевых проводов и кабелей;

3. Определяем полное сопротивление фазы:

3. Определяем полное сопротивление фазы

4. Определяем ток трехфазного короткого замыкания:

4. Определяем ток трехфазного короткого замыкания

Для проверки на отключающую способность предохранителей FU2 – FU6, нужно определить однофазный ток короткого замыкания на землю в конце защищаемой линии.

Расчет токов к.з. для точки К2

5. Определяем суммарные активные и индуктивные сопротивления кабелей цепи короткого замыкания:

5. Определяем суммарные активные и индуктивные сопротивления кабелей

6. Определяем полное сопротивление петли фаза-нуль:

6. Определяем полное сопротивление петли фаза-нуль

где:
Zт(1) = 22/Sт*k2 – расчетное полное сопротивление трансформатора току короткого замыкания на землю, k=Uн/380.

7. Определяем ток однофазного короткого замыкания на землю:

7. Определяем ток однофазного короткого замыкания на землю

Аналогично выполняем расчет ТКЗ для точек К3-К6, результаты расчетов заносим в таблицу 1. Зная токи к.з., можно теперь выбрать плавкие вставки для предохранителей FU1 – FU6, исходя из условия обеспечения необходимой кратности тока короткого замыкания.

Таблица 1 – Расчет токов к.з.

Точка КЗRф, ОмR0, ОмХф, ОмХ0, ОмRт, ОмХт, ОмZф-0, ОмZт, ОмIк.з.(3), АIк.з.(1), А
К10,070,020,00780,0230,0892468
К20,2410,3740,0220,0220,674326
К30,3740,5980,02310,02310,99222
К40,1740,2780,0220,0220,512429
К50,6941,110,02590,02591,8
122
К60,1740,2780,0220,0220,512429

Поделиться в социальных сетях

raschet.info

Расчет токов короткого замыкания | Проектирование электроснабжения

Сегодня хочу вашему вниманию представить методику расчета токов короткого замыкания. Самое главное без всякой воды и каждый из вас сможет ей воспользоваться, приложив минимум усилий, а некоторые из вас получат и мою очередную программу, с которой считать будет еще проще.

Это уже вторая статья, посвященная токам короткого замыкания. В первой статье я обратил ваше внимание на защиту протяженных электрических сетей и то, что в таких сетях, порой, не так просто подобрать защиту от токов короткого замыкания. Для того и проектировщик, чтобы решать подобные вопросы.

Теорию по расчету токов короткого замыкания можно найти в следующих документах:

1 ГОСТ 28249-93 (Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ).

2 РД 153-34.0-20.527-98 (Руководящие указания по расчету токов короткого замыкания и выбору элетрооборудования).

3 А.В. Беляев (Выбор аппаратуры, защит и кабелей в сетях 0,4кВ).

В интернете я не нашел, где все четко было бы расписано от «А» до «Я».

Думаю вы со мной согласитесь, что токи короткого замыкания не так просто рассчитать, поскольку проектировщик не всегда досконально владеет всей необходимой информацией. Данный метод расчета является упрощенным, т.к. в нем не учитываются сопротивления контактов автоматических выключателей, предохранителей, шин, трансформаторов тока.

Возможно, позже все эти сопротивления я учту, но, на мой взгляд, эти значения на конечный результат влияют незначительно.

Последовательность расчета токов короткого замыкания.

1 Сбор исходных данных по трансформатору:

Uкз — напряжение короткого замыкания трансформатора, %;

Рк — потери короткого замыкания трансформатора, кВт;

Uвн – номинальное напряжение обмоток ВН понижающего трансформатора; кВ;

Uнн (Ел) – номинальное напряжение обмоток НН понижающего трансформатора; В;

Еф – фазное напряжение обмоток НН понижающего трансформатора; В;

Sнт – номинальная мощность трансформатора, кВА;

– полное сопротивление понижающего трансформатора током однофазного к.з., мОм;

Активные и индуктивные сопротивления трансформаторов 6 (10)/0,4кВ, мОм

2 Сбор исходных данных по питающей линии:

Тип, сечение кабеля, количество кабелей;

L – длина линии, м;

Хо – индуктивное сопротивление линии, мОм/м;

Zпт – полное сопротивление петли фаза-ноль от трансформатора до точки к.з., измеренное при испытаниях или найденное из расчета, мОм/м;

Полное удельное сопротивление петли фаза-ноль для кабелей или пучка проводов

3 Другие данные.

Куд – ударный коэффициент.

Ударный коэффициент

После сбора исходных можно приступить непосредственно к вычислениям.

Активное сопротивление понижающего трансформатора, мОм:

Активное сопротивление трансформатора

Индуктивное сопротивление понижающего трансформатора, мОм:

Индуктивное сопротивление трансформатора

Активное сопротивление питающей линии, мОм:

Rк=Rуд.к*l/Nк

Индуктивное сопротивление питающей линии, мОм:

Хк=Худ.к*l/

Полное активное сопротивление, мОм:

RΣ = Rт+Rк

Полное индуктивное сопротивление, мОм:

XΣ=Xт+Xк

Полное сопротивление, мОм:

Полное сопротивление

Ток трехфазного короткого замыкания, кА:

Ток трехфазного короткого замыкания

Ударный ток трехфазного к.з., кА:

Ударный ток трехфазного к.з.

Ток однофазного короткого замыкания, кА:

Zпт=Zпт.уд.*L 

Ток однофазного короткого замыкания

Рассчитав токи короткого замыкания, можно приступать к выбору защитных аппаратов.

По такому принципу я сделал свою новую программу для расчета токов короткого замыкания. При помощи программы все расчеты можно выполнить значительно быстрее и с минимальным риском допущения ошибки, которые могут возникнуть при ручном расчете. Пока это все-таки beta-версия, но тем не менее думаю вполне рабочий вариант программы.

Внешний вид программы:

Программа для расчета токов к.з.

Ниже в программе идут все необходимые таблицы для выбора нужных параметров трансформатора и питающей линии.

Также в месте с программой я прилагаю образец своего расчета, чтобы быстро можно было оформить расчет и предоставить всем заинтересованным органам.

Стоит заметить, что у меня появилась еще одна мелкая программа – интерполяция. Удобно, например, находить удельную нагрузку квартир при заданных значениях.

Интерполяция

Жду ваших отзывов, пожеланий, предложений, уточнений.


Продолжение следует… будет еще видеообзор измененной версии.
Нужно ли учитывать сопротивления коммутационных аппаратов при расчете к.з.?

Советую почитать:

220blog.ru

Расчет токов короткого замыкания (КЗ), пример, методические пособия

расчет токов кзВ этой статье мы ниже рассмотривает пример расчет из курсового проекта тока КЗ. Скажем сразу, расчетов токов КЗ целое исскуство, и если Вам необходимо рассчитать токи КЗ для реальных электроустановок, то лучше скачать следующие методические пособия разработанные Петербурским энергетическим университетом повышения квалификации и всё сделать по ним.

И так:

1. И.Л. Небрат. Расчеты токов короткого замыкания в сетях 0,4 кв — скачать;

2.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 1 — скачать;

3.И.Л.Небрат, Полесицкая Т.П. Расчет ТКЗ для РЗ, часть 2 — скачать.

Так же полезно будет иметь под рукой программы, которые помогут Вам точно расчитать токи КЗ. Данных программ в настоящее время много и Вы можете найти большое количество различного софта в интернете, на который Вы можете потратить от часа до нескольких дней, чтобы разобраться как в нём работать. Ниже я выложу перечень программ в файле ворд, в котором указаны производители программ и как и где их можно получить (ссылок на скачивание в файле нет). А также выложу одну программу для расчета токов КЗ в сетях 0.4кВ. Данная программа очень древняя, но и такая же надежная как весь совеский аэрофлот. Работает из под DOSa. Эмулятор в файле скачивания. И так:

1. Переченьпрограмм расчетов ТКЗ и уставок РЗ (если Вы знаете какие-то другие программы, то пишите на pue8(г а в)mail.ru). Мы их включим в перечень.;

2. Программа для расчета токов КЗ в сетях 0.4 кВ.

Если Вам необходим расчет для курсового проекта или учебного задания, то ниже приведен не большой расчет, который в этом Вам поможет.

В задании к курсовому проекту приводятся данные об эквивалентных параметрах сети со стороны высшего напряжения рабочих трансформаторов СН (ТСН) и со стороны высшего напряжения резервных трансформаторов СН (РТСН). В соответствии с рис.2.1, приводятся: ток КЗ на ответвлении к ТСН (3) по I , кА при номинальном напряжении генератора Uгн, кВ или эквивалентное сопротивление сети со стороны ВН ТСН ТСН э X , Ом. Имеет место следующая зависимость:

Расчетная схема для определения токов КЗ Рис.2.1. Расчетная схема для определения токов КЗ при расположении точек КЗ на секциях СН 6(10) кВ и 0,4(0,69) кВ.
Для резервных трансформаторов СН задается ток к.з. на шинах ОРУ в точке включения РТСН (3) по I , кА при среднеэксплуатационном напряжении ОРУ ср U , кВ или эквивалентное сопротивление системы в точке включения РТСН РТСН э Х , Ом:
Расчет токов короткого замыкания (КЗ), пример, методические пособия
Учитывается возможность секционирования с помощью токоограничивающих реакторов секций РУСН-6 кВ. Это дает возможность применить на секциях за реактором более дешевые ячейки КРУ с меньшими токами термической и электродинамической стойкости и меньшим номинальным током отключения, чем на секциях до реактора, и кабели с меньшим сечением токопроводящих жил.

 Расчет ведется по среднеэксплуатационным напряжениям, равным в зависимости от номинального напряжения 1150; 750; 515; 340; 230; 154; 115; 37; 24; 20; 18; 15,75; 13,8; 10,5; 6,3; 3,15; 0,66; 0,525; 0,4; 0,23, и среднеэксплуатационным коэффициентам трансформации. В учебном пособии расчеты по определению токов КЗ в относительных (базисных) единицах применительно к схеме Ленинградской АЭС с тремя системами напряжения (750, 330, 110 кВ) и напряжением 6,3 кВ проводились с учетом как действительных, так и среднеэксплуатационных коэффициентов трансформации трансформаторов и автотрансформаторов.

Показано, что расчет по среднеэксплуатационным напряжениям не вносит существенных корректировок в уровни токов КЗ. В то же время требуется серьезная вычислительная работа методом последовательных приближений, чтобы связать уровни напряжения генераторов, значения их реактивных мощностей с учетом коэффициента трансформации АТ связи, рабочих и резервных ТСН и напряжений на приёмных концах линий. При сокращении числа переключений трансформаторов и АТ связи с РПН из соображений надежности работы блоков задача выбора отпаек РПН становится менее актуальной.

Схема замещения в случае наличия реактора при питании секций
Схемы замещения для точек КЗ на напряжениях 6,3 и 0,4 кВ приведены на рис.2.2.
Все сопротивления приводятся к базисным условиям и выражаются либо в относительных единицах (о.е.) либо в именованных (Ом). В начале расчета необходимо определиться, в каких единицах будут производиться вычисления, и сохранять данную систему единиц до конца расчетов. Методики определения токов КЗ с использованием относительных и именованных единиц равноправны.

В работе приводятся методики расчетов в относительных и в именованных единицах, как с учетом действительных коэффициентов трансформации, так и по среднеэксплуатационным напряжениям.

В работе приводятся расчеты как в относительных, так и в именованных единицах для простейших схем 0,4 кВ, где нужно учесть не только индуктивное, но и активное сопротивления.

Рис.2.2. Схема замещения в случае наличия реактора при питании секций 6(10) кВ СН: а – от рабочего ТСН; б – от резервного ТСН Для расчета в относительных единицах задают базисную мощность Sбаз, базисное напряжение Uбаз и вычисляют базисные токи Iбаз. В качестве базисной целесообразно принять номинальную мощность трансформатора СН: Sбаз = SТСН, МВА. Базисное напряжение принимают, как правило, равным для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ. Заметим, что при расчете в относительных единицах можно выбрать любые другие значения Sбаз, Uбаз.

Базисные токи в точках короткого замыкания К1 – К4, кА:

Расчет токов короткого замыкания (КЗ), пример, методические пособияПри расчетах в именованных единицах задают только базисное напряжение Uбаз – напряжение той точки, для которой рассчитываются токи КЗ: для точек К1, К2 Uбаз1,2 = 6,3 кВ; для точек К3, К4 Uбаз3,4 = 0,4 кВ.
Сопротивления сети в точках включения рабочего хсист1 и резервного хсист2 трансформаторов СН приводятся к базисным условиям по формулам:
в относительных единицах:
Расчет токов короткого замыкания (КЗ), пример, методические пособиягде uкв-н – напряжение короткого замыкания ТСН между обмоткой ВН и обмотками НН, включенными параллельно, о.е.;
uкн-н – напряжение короткого замыкания ТСН между обмотками НН, приведенное к половинной мощности ТСН, о.е.;
SТСН – номинальная мощность ТСН, МВА.

При использовании справочников для определения напряжения короткого замыкания uкн-н следует обращать внимание на указанный в примечаниях смысл каталожных обозначений. Если напряжение короткого замыкания uк НН1-НН2 отнесено в каталоге к номинальной мощности трансформатора, то данное uк НН1-НН2 необходимо пересчитать для половинной мощности, разделив на 2. В случае неверной подстановки в формулы (2.5), (2.5′) зачастую сопротивление хв получается отрицательным. Например, для ТСН марки ТРДНС-63000/35 в табл.3.5 справочника uкв-н = 12,7% и uкн-н = 40% отнесены к полной мощности трансформатора – см. примечание к таблице.

В этом случае в скобках формул (2.5), (2.5′) должно стоять выражение (0,127 – 20,2 ). Например, для РТСН марки ТРДН-32000/150 в табл.3.7 справочника uкв-н = 10,5% и uкн-н = 16,5% отнесены к половинной мощности трансформатора. При этом в скобках формул (2.5), (2.5′) должно быть (0,105 – 20,165 ). На блоках мощностью до 120 МВт используются двухобмоточные трансформаторы собственных нужд без расщепления. В этом случае сопротивление ТСН или РТСН вычисляется по формулам:

в относительных единицах:Расчет токов короткого замыкания (КЗ), пример, методические пособия
где uкв-н – напряжение короткого замыкания трансформатора между обмотками высшего и низшего напряжений, о.е.;
Sбаз, SТСН, SРТСН имеют тот же смысл, что и в формулах (2.5), (2.5′), (2.6),(2.6′).

Сопротивление участка магистрали резервного питания:

в относительных единицах:

где Худ – удельное сопротивление МРП, Ом/км;
МРП – длина МРП, км;
Uср – среднеэксплуатационное напряжение на первой ступени трансформации, кВ.

Сопротивление трансформатора собственных нужд 6/0,4 кВ:

в относительных единицах:Расчет токов короткого замыкания (КЗ), пример, методические пособия
где SТ 6/0,4 – номинальная мощность трансформатора, МВА.
Аналогично рассчитывается сопротивление трансформатора 10,5/0,69 кВ.

Сопротивление одинарных токоограничивающих реакторов Хр задается в Омах и для приведения к базисным условиям используют формулы:

в относительных единицах:Расчет токов короткого замыкания (КЗ), пример, методические пособия
В некоторых каталогах сопротивление токоограничивающих реакторов Хр приводится в процентах и для приведения к базисным условиям используют формулы:

в относительных единицах:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

где Iрн – номинальный ток реактора, кА, определяемый по мощности тех электродвигателей, которые предполагается включить за реактором.

Индуктивное сопротивление реактора Хр определяют по допустимому току КЗ за реактором Iп0доп. Значение Iп0доп связано с номинальным током отключения предполагаемых к установке за реактором выключателей (Iп0доп — Iоткл.н). 

Одновременно происходит и снижение теплового импульса тока КЗ за реактором Вдоп, что благоприятно для выбора сечения кабелей по условиям термической стойкости и невозгорания. При определении Iп0доп и Вдоп следует учитывать, что реактор не в состоянии ограничить подпитку точки КЗ от двигателей за реактором Iпд0 и ухудшает условия их пуска и самозапуска, т.е.

Расчет токов короткого замыкания (КЗ), пример, методические пособия

где Iпс – периодическая составляющая тока подпитки точки КЗ от ветви, в которую предполагается включить реактор;

Iпд0 – ток подпитки от двигателей за реактором.
Потеря напряжения U в одинарном реакторе при протекании токов рабочего режима I:

Расчет токов короткого замыкания (КЗ), пример, методические пособия
Сопротивление эквивалентного двигателя на каждой секции определяется через его мощность или через коэффициент загрузки Кзгр и номинальную мощность трансформатора СН. При отсутствии токоограничивающего секционного реактора и использовании на первой ступени трансформатора с расщепленными обмотками имеем: 

Расчет токов короткого замыкания (КЗ), пример, методические пособия

В случае различия расчетных мощностей двигательной нагрузки Sд1, Sд2, в дальнейшем расчете сопротивления эквивалентного двигателя будет участвовать максимальная из них, вне зависимости от способа питания секций 6,3 кВ (от рабочего и резервного ТСН).

При использовании секционного токоограничивающего реактора определяется его проходная мощность Sр по формуле (2.12) и далее – мощности двигателей:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

при использовании РТСН для замены рабочего ТСН энергоблока, работающего на мощности. Наличие предварительной нагрузки РТСН характерно для блоков генератор-трансформатор без генераторных выключателей. При наличии выключателя в цепи генераторного токопровода, что предусмотрено действующими нормами технологического проектирования, пуск и останов энергоблока обычно осуществляется от рабочего ТСН и надобности в использовании РТСН в этих режимах не возникает. Поэтому для схем с генераторными выключателями можно принимать ТСН згр к = РТСН згр к = 0,7. При отсутствии выключателей в цепи генераторного токопровода РТСН згр к возрастает.

Наличие секционного токоограничивающего реактора приводит к изменению распределения двигателей по сравнению с вариантом без реактора и к изменению доли подпитки ими точек КЗ до и после реактора. При КЗ в точке К2 не следует учитывать подпитку от двигателей, включенных до реактора, а при КЗ в точке К1 не следует учитывать подпитку от двигателей, включенных за реактором.

По вычисленным мощностям двигателей Sд определяют приведенные сопротивления двигательной нагрузки в вариантах при отсутствии реактора и при его наличии:

в относительных единицах:

Расчет токов короткого замыкания (КЗ), пример, методические пособия

Расчет токов короткого замыкания (КЗ), пример, методические пособия

pue8.ru

10. Пример расчета токов КЗ в сети напряжением 0,4 кВ

10. Пример расчета токов КЗ в сети напряжением 0,4 кВ

Категория: И.Л. Небрат «Расчеты токов короткого замыкания в сетях 0,4 кВ»

Расчет токов КЗ – трехфазных, двухфазных, однофазных в сети 0,4 кВ схемы, приведенной на рис. 7

Рис.8 Расчетная схема к примеру

 

         Необходимо рассчитать токи КЗ в сети 0,4 кВ собственных нужд электростанции. Расчет выполняется для проверки отключающей способности автоматических выключателей, проверки кабельных линий на термическую стойкость, а также для выбора уставок токовых катушек автоматических выключателей и проверки их чувствительности.

       С этой целью выполняются расчеты металлических и дуговых КЗ трехфазных, двухфазных и однофазных.

   Расчетная схема представлена на рис.7

       Расчет выполняется в именованных единицах, сопротивления расчетной схемы приводятся к напряжению 0,4 кВ и выражаются в миллиомах. Параметры элементов расчетной схемы приводятся в таблицах Приложения 1

       Расчеты выполняются в соответствии с методикой рекомендованной ГОСТ 28249-93 на расчеты токов КЗ в сетях напряжением до 1 кВ.

       Короткие замыкания рассчитываются на шинах 0,4 кВ РУ (точка К1) и на вторичной силовой сборке за кабелем КЛ1 (точка К2).

       В данном примере расчеты дуговых КЗ выполняются с использованием снижающего коэффициента КС , поэтому переходные сопротивления контактов, контактных соединений кабелей и шинопроводов в расчетных выражениях для определения суммарного активного сопротивления R не учитываются, эти сопротивления учтены при построении характеристик зависимости коэффициента Кс от полного суммарного сопротивления до места К3, Кс = ∫(Z), полученных экспериментальным путем. Характеристики Кс = ∫(Z) приведены на рис. 6.

 

Система

 

Мощность короткого замыкания

Sк=100мВ•А, UН ВН=6,3 кВ.

 

ТС3-1000/6,0, схема соединения обмоток ∆/Y0

Sк=1000 кВ•А, UН ВН=0,4 кВ,

Uк=8%.

Сопротивления трансформатора, приведены к UН ВН=0,4 кВ, определяются по таблице 1 Приложения 1:

R1=R2=R0=1.9 мОм,

X1=X2=X0=12.65 мОм.

 

 

Шинопровод III 1

 

IIIМА-4-1600, длина 15м.

Удельное параметры шинопровода по данным таблицы II Приложения1

R1 уд=0,03 мОм/м

прямая последовательность

X1 уд =0,014мОм/м

 

R0 уд=0,037 мОм/м

нулевая последовательность

X0 уд =0,042мОм/м

 

Трансформаторы тока ТТ1

Удельные параметры трансформатора тока по данным таблицы 14 Приложения1:

Ктт=150/5,

R1=R0=0,33 мОм,

X1=X0=0.3 мОм.

 

Кабельная линия КЛ1

АВВГ- (3*185+1*70),

   =100м.

Удельные параметры кабеля по данным таблицы 7 Приложения 1:

R1 уд=0,208 мОм/м

прямая последовательность

X1 уд =0,063мОм/м

 

R0 уд=0,989 мОм/м

нулевая последовательность

X0 уд =0,244мОм/м

 

Автоматический выключатель АВ1

Тип “Электрон” , IН =1000А.

Из таблицы 13 Приложения 1 определяем сопротивления катушек АВ1:

Rкв= 0,25 мОм,

Хкв= 0,1 мОм.

 

Автоматический выключатель АВ2

Тип А3794С, Iн= 400А.

Из таблицы 13 Приложения 1 определяем сопротивления катушек АВ2:

Rкв= 0,65 мОм,

Хкв= 0,17 мОм.

 

Расчет параметров схемы замещения

Все сопротивления расчетной схемы приводятся к Uбаз= 0,4 кВ.

 

Система

 

Сопротивление системы учитывается индуктивным сопротивлением в схеме замещения прямой последовательности. По формуле (3)

 

 

Трансформатор

 

Для трансформатора со схемой соединения обмоток ∆/Y0 активные и индуктивные сопротивления обмоток одинаковы для всех трех последовательностей.

R= R= R=1,9 мОм,

X= X= X=12,65 мОм.

 

 

 

Шинопровод III 1

Сопротивление шинопровода III 1 определяем по известным удельным сопротивлениям шинопровода и его длине:

R= R= 0,03•15=0,45 мОм;

X= X= 0,014•15=0,21 мОм;

R= 0,037•15=0,555 мОм;

X= 0,042•15=0,63 мОм.

 

Кабельная линия КЛ1

Сопротивление кабельной линии КЛ1 определяется по известным удельным сопротивлениям кабеля и его длине:

R1кл= R2кл= 0,208•100=20,8 мОм;

X1кл= X2кл= 0,063•100=6,3 мОм;

R0кл= 0,989•100=98,9 мОм;

X0кл= 0,244•100=24,4 мОм.

Схема замещения прямой ( обратной ) последовательности представлена на рис. 9, схема замещения нулевой последовательности – на рис. 10.

Рис. 9 Схема замещения прямой ( обратной ) последовательности к примеру

 

 

Рис. 10 Схема замещения нулевой последовательности к примеру

 

 

 

 

 

 

 

 

Расчет токов короткого замыкания для точки К1

 

   Трехфазное КЗ.

   Ток металлического трехфазного КЗ определяется по формуле:

 

 

 

   По схеме замещения прямой последовательности суммарные сопротивления R1S и X1S определяем арифметическим суммированием сопротивлений до точки КЗ.

 

                         R1S = 0,33 + 1,9 + 0,45 + 0,25 = 2,93 мОм

                         X1S = 1,6 + 0,3 + 12,65 + 0,21 + 0,1 = 14,86 мОм

 

Полное суммарное сопротивление до точки К1 :

 

мОм

 

   Ток трехфазного металлического КЗ :

 

кА

 

   Ток трехфазного дугового КЗ определяется с использованием снижающего коэффициента КС . Кривые зависимости коэффициента КС от суммарного сопротивления до места КЗ, приведены на рисунке 6, построены для начального момента КЗ (кривая 1) и установившегося КЗ (кривая 2).

   Расчеты показывают, что разница токов дуговых КЗ для разных моментов времени незначительна, примерно составляет 10%. Поэтому можно рекомендовать для практических расчетов дуговых КЗ определять ток по минимальному снижающему коэффициенту КС2 (кривая 2), полагая, что ток в процессе дугового КЗ практически не изменяется. В данном примере расчет дуговых КЗ производится с использованием обеих характеристик, т.е. определяются и КС1 и КС2

 

   Расчет дугового трехфазного КЗ выполняется в следующем порядке :

 

1.     Определяются значения снижающего коэффициента для начального момента КЗ (КС2) по кривым 1 и 2 рис.6.

При мОм       КС1 = 0,67   КС2 = 0,58

 

2.     Ток трехфазного дугового КЗ определяется по формуле :

 

 

                             = 15,27 × 0,67 = 10,23 кА       tКЗ » 0

= 15,27 × 0,58 = 8,86 кА         tКЗ > 0,05 с.

 

   Ударный ток КЗ определяется по формуле :

 

 

   Ударный коэффициент КУ определяется по характеристике, приведенной на рисунке 5.

 

 

 

Находим отношение                

Этому отношению соответствует КУ = 1,6

Определяем                           кА

 

 

   Ток металлического двухфазного КЗ определяется по формуле :

 

 

   Полное суммарное сопротивление до точки К1 при двухфазном КЗ определяется по формуле :

 

 

мОм

 

   Определяем ток двухфазного металлического КЗ

кА

проверяем                           кА

 

 

 

 

   Расчет дугового двухфазного КЗ :

 

   Определяем коэффициенты КС1 и КС2.

для мОм       КС1 = 0,68, а   КС2 = 0,6

 

   Определяем токи двухфазного дугового КЗ

                                        tКЗ » 0

     tКЗ> 0,05 с.

Ток металлического однофазного К3 IКм(1) определяется по формуле IКм(1) =

Полное суммарное сопротивление цепи до точки К1 при однофазном К3 определяем по формуле

;

Предварительно определяем суммарные активное и индуктивное сопротивления нулевой последовательности до точки К1 из схемы замещения на рис.10.

R0∑=1,9+0,555+0,25=2,7 мОм

   X0∑=12,65+0,63+0,1=13,38 мОм

Определяем полное сумарное сопротивление цепи для однофазного К3

мОм

Определяем ток однофазного металлического К3

кА

Расчет дугового однофазного К3:

Определяем коэффициенты Кс1 и Кс2.

Для =14,65 мОм   Кс1=0,66 , а Кс2=0,58.

Определяем токи однофазного дугового К3

=15,66•0,66=10,33 кА   tкз ≈0

=15,66•0,58=9,1 кА   tкз>0,05 с

 

Расчет токов короткого замыкания для точки К2.

 

Трехфазное К3

Определяем суммарные активное и индуктивное сопротивления до точки К2 в соответствии со схемой замещения на рис. 9.

R1∑=0,33+1,9+0,455+0,25+0,65+20,8=24,38 мОм

X1∑=1.6+0.3+12.65+0.21+0.1+0.17+6.3=21.33 мОм

             Суммарное сопротивление

мОм

Определяем ток однофазного металлического К3

кА

Определяем токи дугового К3.

В соответствии с графиком для мОм

Коэффициенты Кс1 и Кс2 соответственно равны 0,74 и 0,67.

Определяем токи дугового К3

=7,14•0,74=5,28 кА   tкз ≈0

=7,14•0,67=4,78 кА   tкз>0,05 с

Определяем ударный ток iу = Ку· ·

По отношению    Ку = 1,05, тогда

iу=1,05··7,14=10,6 кА.

 

Двухфазное К3

Для расчета двухфазного К3 в точке К2 определяем следующие величины.

Полное суммарное сопротивление до точки К3 для двухфазного К3

мОм.

Ток двухфазного металлического К3

По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =37,44 мОм соответственно равны 0,78 и 0,69.

Токи двухфазного дугового К3

=6,17•0,78=4,81 кА   tкз ≈0

=6,14•0,69=4,26кА  tкз>0,05 с

Однофазное К3

Для расчета однофазного К3 в точке К2 определяем следующие величины:

Суммарные активное и индуктивное сопротивления нулевой последовательности относительно точки К2 в соответствии со схемой замещения нулевой последовательности (рис. 10):

R0∑=1,9+0,555+0,25+0,65+98,9=102,25 мОм

X0∑=12,65+0,63+0,1+0,17+24,4=38 мОм.

Полное суммарное сопротивление до места К3 при однофазном К3

Ток однофазного металлического К3

кА.

Определяем токи дугового К3

По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =57,2 мОм соответственно равны 0,82 и 0,72.

=4,04•0,82=3,31 кА   tкз ≈0

=4,04•0,72=2,91кА   tкз>0,05 с

Все результаты расчетов токов К3 приведены в таблице 4, что представляется удобным для дальнейшего анализа, выбора уставок защитных аппаратов и проверки кабелей.

 

 

 

 

 

 

 

Таблица 4

Результаты расчетов токов К3

Виды К3

Точка К3

 

Трехфазное К3

 

Двухфазное К3

 

Однофазное К3

 

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

iУД

кА

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

К1

15,27

10,23

8,86

34,6

13,2

8,98

7,92

15,66

10,33

9,1

К2

7,14

5,28

4,78

10,6

6,17

4,81

4,26

4,04

3,31

2,91

 

Этот пример наглядно показывает, что аналитические методы расчетов токов К3 очень трудоемкий, особенно для электроустановок с большим количеством элементов 0,4 кВ. Поэтому еще раз обращаем внимание на необходимости освоения и более широкого применения для практических расчетов компьютерных программ, в том числе, программа, которая разработана на кафедре РЗА ПЭИпк и успешно используется на многих энергообьектах (описание программы см. на стр. 3).

rza001.ru

Расчеты РЗА

В данном разделе рассмотрены методы и примеры расчетов уставок релейной защиты и автоматики, которые окажутся полезными при проектировании и эксплуатации устройств РЗА.
У многих начинающих инженеров-проектировщиков могут возникнуть проблемы, как правильно рассчитать уставки срабатывания, выполнить селективность, чтобы отключался только поврежденный элемент энергосистемы и при этом избежать неправильных действий релейной защиты и автоматики, тем самым предотвратив возникновение аварий или их развитие при повреждениях в электрической части энергосистемы, путем быстрого отключения поврежденного элемента.
Ответы на эти вопросы и не только Вы сможете найти в этом разделе.


Расчет уставок асинхронного двигателя мощностью более 2 МВт

В данной статье будет рассматриваться пример расчета уставок асинхронного двигателя с прямым пуском мощностью более 2…

Расчет уставок для ячейки питающей УПП

В данном примере рассмотрим расчет уставок защит для ячейки 6 кВ питающей реакторное устройство плавного пуска (УПП) типа SYN-START-06-385-032A2-IP20…

Трансформатор заземления нейтрали в сети генераторного напряжения

В данной статье речь пойдет о трансформаторе заземления нейтрали (ТЗН) устанавливаемый в сети генераторного напряжения. В сетях 6 и 10 кВ с…

Автоматическая частотная разгрузка

Автоматическая частотная разгрузка (АЧР) служит для ликвидации сравнительно небольшого дефицита мощности, не сопровождающегося лавиной…

Расчет защиты от двойных замыканий на землю для генераторов

В данной статье пойдет речь о расчете защиты от двойных замыканий на землю для генераторов. Защита действует при двойных КЗ на землю, когда…

Расчет токоограничивающего резистора для светодиода

В данной статье речь пойдет о расчете токоограничивающего резистора для светодиода. Расчет резистора для одного светодиода Для питания…

Справочные таблицы сопротивлений элементов сети 0,4 кВ

В данной статье речь пойдет о справочных таблицах сопротивлений элементов сети 0,4 кВ при расчете токов КЗ. При расчете токов (трехфазного,…

Общие положения расчета токов кз в сети 0,4 кВ

В данной статье будут рассматриваться общие положения расчета токов КЗ в сети 0,4 кВ. Расчет токов короткого замыкания в сети 0,4 кВ имеет…

Перечень защит для асинхронных электродвигателей выше 1 кВ

В данной статье речь пойдет о том, какие защиты нужно предусматривать для асинхронных электродвигателей выше 1 кВ, согласно ПУЭ 7-издание…

Расчет защиты от замыканий на корпус двигателя выше 1 кВ

Требуется определить уставки токовой защиты от замыкания на корпус обмотки статора для неявнополюсного синхронного электродвигателя типа…

Страница 1 из 712345…»В конец

raschet.info

Пример расчета тока трехфазного к.з. в сети 0,4 кВ

Содержание

В данном примере будет рассматриваться расчет тока трехфазного короткого замыкания в сети 0,4 кВ для схемы представленной на рис.1.

Рис.1 - Однолинейная схема питания и расчетная схема замещения

Исходные данные:

1. Ток короткого замыкания на зажимах ВН трансформатора 6/0,4 кВ составляет — 11 кА.

2. Питающий трансформатор типа ТМ — 400, основные технические характеристики принимаются по тех. информации на трансформатор:

  • номинальная мощностью Sн.т — 400 кВА;
  • номинальное напряжение обмотки ВН Uн.т.ВН – 6 кВ;
  • номинальное напряжение обмотки НН Uн.т.НН – 0,4 кВ;
  • напряжение КЗ тр-ра Uк – 4,5%;
  • мощность потерь КЗ в трансформаторе Рк – 5,5 кВт;
  • группа соединений обмоток по ГОСТ 11677-75 – Y/Yн-0;

3. Трансформатор соединен со сборкой 400 В, алюминиевыми шинами типа АД31Т по ГОСТ 15176-89 сечением 50х5 мм. Шины расположены в одной плоскости — вертикально, расстояние между ними 200 мм. Общая длина шин от выводов трансформатора до вводного автомата QF1 составляет 15 м.

4. На стороне 0,4 кВ установлен вводной автомат типа XS1250CE1000 на 1000 А (фирмы SOCOMEC), на отходящих линиях установлены автоматические выключатели типа E250SCF200 на 200 А (фирмы SOCOMEC) и трансформаторы тока типа ТСА 22 200/5 с классом точности 1 (фирмы SOCOMEC).

5. Кабельная линия выполнена алюминиевым кабелем марки АВВГнг сечением 3х70+1х35.

Решение

Для того, чтобы рассчитать токи КЗ, мы сначала должны составить схему замещения, которая состоит из всех сопротивлений цепи КЗ, после этого, определяем все сопротивления входящие в цепь КЗ. Активные и индуктивные сопротивления всех элементов схемы замещения выражаются в миллиомах (мОм).

В практических расчетах для упрощения расчетов токов к.з. учитывается только индуктивное сопротивление энергосистемы, которое равно полному. Активное сопротивление не учитывается, данные упрощения на точность расчетов – не влияют!

1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]:

1.1 Определяем сопротивление энергосистемы со стороны ВН по выражению 2-7 [Л1. с. 28]

1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]:

1.2 Определяем сопротивление энергосистемы приведенное к напряжению 0,4 кВ по выражению 2-6 [Л1. с. 28]

2.1 Определяем полное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-8 [Л1. с. 28]:

2.1 Определяем полное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-8 [Л1. с. 28]

2.2 Определяем активное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-9 [Л1. с. 28]:

2.2 Определяем активное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-9 [Л1. с. 28]

2.3 Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-10 [Л1. с. 28]:

2.3 Определяем индуктивное сопротивление трансформатора для стороны 0,4 кВ по выражению 2-10 [Л1. с. 28]

Для упрощения расчетов можно воспользоваться таблицей 2.4 [Л1. с. 28], как видно из результатов расчетов, активные и индуктивные сопротивления совпадают со значениями таблицы 2.4.

Таблица 2.4 - Значения активных и индуктивных сопротивлений трансформаторов

3.1 Определяем индуктивное сопротивление алюминиевых прямоугольных шин типа АД31Т сечением 50х5 по выражению 2-12 [Л1. с. 29]:

3.1 Определяем индуктивное сопротивление алюминиевых прямоугольных шин типа АД31Т сечением 50х5 по выражению 2-12 [Л1. с. 29]

3.1.1 Определяем среднее геометрическое расстояние между фазами 1, 2 и 3:

3.1.1 Определяем среднее геометрическое расстояние между фазами 1, 2 и 3

3.2 По таблице 2.6 определяем активное погонное сопротивление для алюминиевой шины сечением 50х5, где rуд. = 0,142 мОм/м.

Для упрощения расчетов, значения сопротивлений шин и шинопроводов, можно применять из таблицы 2.6 и 2.7 [Л1. с. 31].

Таблицы 2.6, 2.7 - Активное и индуктивное удельные сопротивления шин и шинопроводов

3.3 Определяем сопротивление шин, учитывая длину от трансформатора ТМ-400 до РУ-0,4 кВ:

3.3 Определяем сопротивление шин, учитывая длину от трансформатора ТМ-400 до РУ-0,4 кВ

4.1 Определяем активное и индуктивное сопротивление кабелей по выражению 2-11 [Л1. с. 29]:

4.1 Определяем активное и индуктивного сопротивления кабелей по выражению 2-11 [Л1. с. 29] Таблицы 11 ГОСТ 28249-93 - Параметры кабеля с алюминиевыми жилами в непроводящей оболочке

Значения активных и индуктивных сопротивлений обмоток для одного трансформатора тока типа ТСА 22 200/5 с классом точности 1, определяем по приложению 5 таблица 20 ГОСТ 28249-93, соответственно rта = 0,67 мОм, хта = 0,42 мОм.

Таблица 20 - Значения активных и индуктивных сопротивлений трансформаторов тока ГОСТ 28249-93

Активным и индуктивным сопротивлением одновитковых трансформаторов (на токи более 500 А) при расчетах токов КЗ можно пренебречь.

Согласно [Л1. с. 32] для упрощения расчетов, сопротивления трансформаторов тока не учитывают ввиду почти незаметного влияния на токи КЗ.

Определяем активное сопротивление контактов по приложению 4 таблица 19 ГОСТ 28249-93:

  • для рубильника на ток 1000 А – rав1 = 0,12 мОм;
  • для автоматического выключателя на ток 200 А — rав2 = 0,60 мОм.
Таблица 19 - Значения сопротивлений разъемных контактов коммутационных аппаратов напряжением до 1 кВ ГОСТ 28249-93

Для упрощения расчетов, сопротивления контактных соединений кабелей и шинопроводов, я пренебрегаю, ввиду почти незаметного влияния на токи КЗ.

Если же вы будете использовать в своем расчете ТКЗ значения сопротивления контактных соединений кабелей и шинопроводов, то они принимаются по приложению 4 таблицы 17,18 ГОСТ 28249-93.

При приближенном учете сопротивлений контактов принимают:

  • rк = 0,1 мОм — для контактных соединений кабелей;
  • rк = 0,01 мОм — для шинопроводов.
Таблицы 17,18 -  Значения сопротивления контактных соединений кабелей и шинопроводов ГОСТ 28249-93

8.1 Определяем ток трехфазного к.з. в конце кабельной линии:

8.1 Определяем ток трехфазного к.з. в конце кабельной линии

1. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.
2. Голубев М.Л. Расчет токов короткого замыкания в электросетях 0,4 — 35 кВ. 2-e изд. 1980 г.
3. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ.

Поделиться в социальных сетях

raschet.info

Особенности расчета однофазных токов КЗ в сети 0,4 кВ

Привет всем.

Сегодня поговорим о расчете однофазных токов коротких замыканий в низковольтных сетях. Почему именно однофазных?

Во-первых потому, что для выбора уставок эти токи обычно являются определяющими по критерию чувствительности. Во-вторых, потому, что с расчетами этих токов больше всего вопросов, и основные связаны с вычислением параметров нулевой последовательности кабелей и сопротивления дуги. Давайте их проанализируем.

Источники информации для расчета однофазных ТКЗ в сетях 0,4 кВ

Основным документом определяющим правила расчета токов КЗ в сетях до 1000 В является ГОСТ 28249-93. Стоит, однако, отметить, что этот документ в основном направлен на расчеты ТКЗ для выбора оборудования, а не уставок РЗА и автоматических выключателей.

Второй источник — это известная книга А.В. Беляева «Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ», которая, хоть и не является нормативным документом, гораздо более подробно описывает правила расчета ТКЗ именно для выбора уставок автоматических выключателей.

В принципах расчета однофазных токов КЗ, приведенных в этих источниках есть существенные различия. Приведем основные в Табл. 1

Табл.1. Различия в методиках вычисления однофазных КЗ

Наверное, надежнее пользоваться методикой, приведенной в действующем ГОСТ, но есть две проблемы.

Первая в том, что найти достоверную информацию о сопротивлениях нулевой последовательности кабелей 0,4 кВ очень непросто потому, что производители не приводят ее в каталогах. В приложениях ГОСТ есть данные по r0 и x0 кабелей, но без указания конкретного типа и не для всех сечений.

Вторая причина состоит в сложности определения сопротивления дуги по ГОСТ (Приложение 9), где в приведенной формуле (40) сопротивление дуги зависит от тока КЗ, который нужно определить с учетом сопротивления дуги! Как это сделать на практике не очень понятно. Графики зависимости сопротивления дуги от сечения и длины кабеля (то же Приложение 9) также не слишком полезны потому, что для однофазных КЗ, многих типов кабелей там просто нет, а аппроксимировать нелинейные зависимости такое себе занятие.

По сравнению с ГОСТ методика, приведенная в книге А.В. Беляева намного более понятная и простая в применении.

Предлагаю оценить величины токов КЗ по этим двум методикам, чтобы выяснить какая из них больше подходит под наши задачи (выбор уставок защитных аппаратов)

Для примера будем использовать расчетную схему на Рис. 1

Рис.1 Расчетная схема сети 0,4 кВ

В схеме на Рис. 1 я постарался взять такие кабели, параметры которых есть и в ГОСТе, и книге А.В. Беляева. По крайней мере для линий 1 и 3.

Ниже привожу сканы из источников с указанием исходных данных по сопротивления НП и петли «фаза-ноль» для кабелей. Сопротивления прямой последовательности кабелей для обоих методов принял одинаковыми (это так и есть по источникам). Параметры трансформатора также одинаковы для обоих методов.

Рис.2. Исходные данные по сопротивления zпт.уд. из книги А.В. Беляева

Рис.3 исходные данные по уд. сопротивлениям НП из ГОСТ 28249-93

Не буду вас мучать формулами, а сразу приведу результат расчета. В конце я приложил форму Эксель, где можно посмотреть как исходные данные, так и сами формулы. Активное сопротивление медных кабелей, а также их zпт. уменьшено в 1,7 раза по сравнению с табличными (как для книги А.В. Беляева, так и для ГОСТ)

Рис.4. Результат расчета однофазных КЗ для сети 0,4 кВ по разным методикам

Как видно, разница в расчетах очень большая, причем для трех- и двухфазных КЗ она не превышает 8% (здесь не показана)

Очевидно, что такое различие в однофазных токах КЗ обусловлено разницей в параметрах нулевой последовательностей кабелей. Это особенно хорошо видно по токам металлического КЗ, где нет влияния дуги, рассчитанной по разным методикам.

Чувствительность автоматов проверяют по дуговым КЗ и здесь ситуация немного лучше. Видно, что для сопротивление дуги отчасти компенсирует различие в токах КЗ, особенно для удаленных КЗ, но все равно эта разница очень велика.

Какие причины могут быть для такой большой разницы?

  • Во-первых, это мое неправильное определение точки исходных данных. В книге А.В. Беляева указано (Таблица 7), что сопротивления петли даны для «кабелей или пусков проводов с алюминиевыми жилами». Здесь не указан ни конструкция кабеля, ни тип изоляции. Возможно здесь учтена определенная проводящая оболочка, вокруг жил.
  • Во-вторых, ни в первом, ни во втором источнике не указано на что именно происходит однофазное КЗ. Сопротивление контуров «фаза — ноль» и «фаза — заземляющие конструкции» может сильно различаться.
  • В-третьих, в методике А.В. Беляева есть несколько допущений, которые ведут к снижению токов КЗ, а именно арифметическое сложение полных сопротивлений трансформатора и кабелей и уменьшение в 1,7 раза сопротивления петли «фаза-ноль» для медных кабелей, в то время как уменьшаться должно только активное сопротивление.

В пользу методики по «петле» говорят два основных момента:

  1. Сопротивление петли «фаза-ноль» измеряют при наладке на объекте и если будет большое расхождение с расчетами, то всегда можно отправить проектировщику на проверку откорректированные исходные данные. С сопротивлениями НП так не получится.
  2. Токи однофазных КЗ через эту методику получаются ниже, чем через ГОСТ, а это лучше для проверки чувствительности. Если пройдете проверку на этих токах, то пройдете и на ГОСТовских

Если вы автоматизировали расчеты токов КЗ, например, в том же Экселе, то можете считать сразу двумя способами и выбирать наиболее подходящий для ваших условий

Как бы то ни было, этот пример показывает, что существует большая разница в расчетах однофазных токов КЗ в сети 0,4 кВ по разным методикам, и стоит осторожно относится к выбору как самой методики, так и исходных данных.

А что вы думаете по этому поводу? Пишите в комментариях

P.S. Мои расчеты ТКЗ по Рис.1 находятся здесь

Расчеты методика А.В. Беляева vs ГОСТ

 

Список литературы

  1. ГОСТ 28249-93. Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ
  2. А.В. Беляев. Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ. Учебное пособие. Энергоатомиздат. 1988 г.

 

pro-rza.ru

0 comments on “Расчет токов короткого замыкания онлайн – Расчёт токов короткого замыкания

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *