Мощность транзистора – Основные параметры транзистора | Практическая электроника

Основные параметры транзистора | Практическая электроника

Основные параметры биполярного транзистора описаны в любом даташите. Для того, чтобы понять характеристики транзистора, надо научиться читать его основные параметры. Не зная этих параметров, можно накосячить при конструировании своих радиоэлектронных безделушек. Погнали!

Виды транзисторов

Из первой ст атьи про биполярный транзистор, мы помним, что его производят из двух веществ – это германий и кремний. Следовательно, по материалу, из которых их производят, все биполярные транзисторы делятся на кремниевые и германиевые. Почему же идет такая классификация? Как вы помните из предыдущих статей, для того, чтобы транзистор “открылся” на германиевый транзистор надо подать 0,2-0,3 Вольта, а на кремниевый 0,6-0,7 Вольт. Кремниевый транзистор выдерживает температуру эксплуатации до 150 градусов по Цельсию, тогда как германиевый только до 70 градусов. Обратный коллекторный ток у кремниевого транзистора намного меньше, чем у германиевого, что кстати, тоже немаловажный параметр.

Проводимость транзистора

Проводимость NPN или PNP.

С этим, думаю, уже все понятно

Коэффициент усиления по току

Коэффициент усиления по  току в схеме с Общим Эмиттером (ОЭ)

Основные параметры транзистора

Обратный коллекторный ток

Обратный коллекторный ток  IКБО (ICBO)

Обозначения и индексы

Откуда вообще берутся эти обозначения индексов? Снизу синим маркером я пометил эти индексы:

Основные параметры транзистора

Оказывается, все до боли просто.

Первая буква индекса – первый вывод транзистора, вторая буква – второй вывод транзистора, ну а третья буква обозначает оставшийся вывод и его условие, при котором производится этот замер. Самая распространенная третья буква – это “О”. Но скорее всего это даже и не буква, а цифра “ноль”. Она говорит о том, что на третьем выводе напряжение равняется нулю. Это достигается тем, что оставшийся третий вывод никуда не подключен и висит в воздухе.

Например, IКБО говорит нам о том, что это ток (сила тока), между коллектором и базой, при условии, что напряжение на эмиттере равняется нулю. То есть эмиттер отключен.

Есть также более интересные условия, но они встречаются редко. Например, буква “К” от слова “короткий” (в англ.варианте “Shot”). Такой параметр как UКЭК говорит нам о том, что это напряжение между коллектором и эмиттером, при условии, что база и эмиттер замкнуты накоротко, или детским языком, база  с эмиттером соединены проводочком. Здесь последняя буква говорит нам об оставшемся выводе и условии, которое происходит между этим выводом и буковкой-выводом которая рядом.

Также иногда встречается буква “R”, которая обозначает, как ни странно, сопротивление. Например UКЭR говорит о том, что это напряжение между коллектором и эмиттером при условии что база и эмиттер соединены сопротивлением. И рядышком в справочнике приводится номинал этого сопротивления.

Также часто встречается вместо третьей буквы индекса обозначение “нас” или на буржуйский манер “sat”. “Нас” – кратко от “насыщение”, то же самое и “”sat” – saturation  в переводе на русский  – насыщение. Например,

UКЭ нас (VCEsat) – это напряжение насыщения коллектор-эмиттер.

И еще один нюанс… порядок индексов совпадает с положительным направлением тока. Что это значит? Например, UКЭ напряжение между коллектором и эмиттером. Значит ток движется от коллектора к эмиттеру. Но если мы поменяем индексы вот так UЭК у нас это будет уже обозначать, что электрический ток движется от эмиттера к коллектору. Справедливы также следующие выражения:

UКЭ= – UЭК и так далее.

Максимальное допустимое обратное напряжение между коллектором и базой

Максимальное допустимое обратное напряжение между коллектором и базой UКБ макс (VCBO – это максимальное обратное напряжение, которое может выдержать коллекторный P-N переход при открытом эмиттере (эмиттер ни с чем не связан и его ножка болтается в воздухе, короче говоря, на эмиттере ноль)

Для NPN транзистора это будет выглядеть так:

Основные параметры транзистора

Для NPN транзистора этот параметр показан с плюсом. Оно и понятно, индексы  идут как “КБ”, что означает коллектор “плюсовый” а база “минусовая”.

Вот, например, этот параметр для транзистора BC337 структуры NPN:

Основные параметры транзистора

Как вы видите, параметр VCBO показан с плюсом.

Чтобы не мудрить с индексами, для PNP транзистора ставят просто тупо минус перед циферками в даташите, которое говорит нам о том, что напряжение подаем в обратной полярности. В некоторых даташитах знак “минус” не указан, но все равно имейте ввиду, что это обратное напряжение на P-N переходе.

Например как в этом даташите на транзистор S8550 PNP структуры. Видите перед цифрой “30” знак минус? Если бы мы поменяли индексы, то получили бы, что VBCO =30 Вольт. Знак “минус” тогда бы исчез, но в то же время у нас индексы поменялись (я их даже выделил жирным шрифтом).

Основные параметры транзистора

То есть тут мы видим, что это напряжение тоже обратное.

Основные параметры транзистора

Максимальное допустимое значение напряжения между эмиттером и базой

Максимальное допустимое напряжение между эмиттером и базой UЭБ макс (VЕВО)  – это напряжение, которое может выдержать эмиттерный P-N переход, если приложить напряжение в обратном направлении, при условии, что коллектор у нас никуда не цепляется. Похожий параметр, но только  уже для эмиттерного перехода.

Для NPN транзистора это выглядит вот так и напряжение в даташите указывается с плюсом:

Основные параметры транзистора

Основные параметры транзистора

А для PNP как-то так:

Основные параметры транзистора

Для PNP этот параметр также идет с минусом, чтобы не переставлять индексы:

Основные параметры транзистора

Максимальное допустимое напряжение между коллектором и эмиттером

Максимальное допустимое напряжение между коллектором и эмиттером UКЭ макс (UКЭО). Максимальное напряжение между коллектором и эмиттером по направлению стрелочки эмиттера , при условии что база  никуда не цепляется. Для PNP транзистора этот параметр также идет с минусом.

Основные параметры транзистора

Максимальная рассеиваемая мощность

Максимальная мощность, рассеиваемая на коллекторе

PK макс (PC max). Это максимальная мощность, которую транзистор может рассеять на себе в окружающее пространство.

Например, для транзистора S8550 это значение равняется 1 Ватту.

Основные параметры транзистора

Чтобы его не превысить, нужно рассчитать какую мощность будет рассеивать ваш транзистор по формуле:

P=UK x IK

где

P – это мощность, которая рассеивается на транзисторе

U– напряжение на коллекторе относительно минуса

I– ток коллектора

Рассеивание мощности транзистором означает, что на нем будет выделяться тепло, которое рассеивается в окружающее пространство. Поэтому, чтобы отвести это тепло от транзистора, применяют радиаторы:

Основные параметры транзистора

Особенно это касается мощных транзисторов, через которые текут большие токи и напряжения. Как я уже говорил, для кремниевых транзисторов критическая температура нагрева это 150 градусов по Цельсию, для германиевых 70. Так что следите за температурой, если не хотите получить в результате уголек с дымом. Иными словами если

Р превысит PК макс, то вашему транзистору придет жопа.

Максимальный допустимый коллекторный ток

Максимально допустимый коллекторный ток IK макс (Ic max). Превышение этого номинала приводит к пробою переходов, выгоранию тонких токоведущих проводов, которые соединяют ножку транзистора с кристаллом полупроводника. Ну и чем больше ток, тем разумеется и больше мощность, выделяемая транзистором, значит  будет больше нагрев.

Граничная частота передачи тока

Граничная частота передачи тока fгр .  Это частота, на которой коэффициент β (коэффициент усиления по току) становится равным единице. Так что отсюда вывод, что не каждый транзистор будет усиливать высокочастотные колебания. Поэтому в радиоприемной и радиопередающей аппаратуре используются транзисторы с высокой граничной частотой.

Различных других параметров транзистора туева куча. Здесь же я привел те параметры, на которые следует обращать внимание при проектировании своих электронных безделушек. Некоторые параметры в одной книге обозначают так, в другой эдак, в третьей совсем по-другому. Не могу сказать, что мои названия и обозначение параметров образцовые, но все-таки старался обозначить как в большинстве учебной литературы, чтобы было понятно каждому начинающему электронщику.

Продолжение——>

<——-Предыдущая статья

www.ruselectronic.com

2.2 Расчет режима работы транзистора.

Амплитуда напряжения на коллекторе: В.

Постоянное напряжение на коллекторе транзистора: В.

Проверка недонапряженного режима работы:

В.

Модуль эквивалентного сопротивления колебательного контура: Ом.

Мощность, потребляемая транзистором от источника коллекторного напряжения: Вт.

Мощность, рассеиваемая на коллекторе транзистора: Вт.

Коэффициент полезного действия транзистора: .

Постоянная составляющая тока базы: мА.

Напряжение смещения на базе: В.

2.3 Расчет элементов цепей питания.

Индуктивность дросселя в цепи коллекторного питания: мкГн.

Напряжение источника коллекторного питания: В.

Рассчитаем цепи базового автосмещения:

Номинал резистора в эмиттерной цепи

Rэ= 99/0,21=476 Ом,

Выберем сопротивление делителя из условия: =>

RД= 2400 Ом;

Ом

<<

<<

большеRн в 4,8 раз, необходимо использовать.

3 . Оконечный каскад.

Оконечный каскад необходим для создания необходимой мощности на выходе. Транзисторы являются приборами сравнительно маломощными, выходная мощность отдельной двухтактной ячейки обычно не превышает 100...200 Вт. Поэтому для получения необходимого уровня выходной мощности всего усилителя приходится использовать в выходном каскаде от одной до нескольких десятков таких двухтактных ячеек. Основным фактором, влияющим на расчет режима работы транзисторов, будет расчет на заданное значение мощности Р1- мощности первой гармоники, отдаваемой в нагрузку одним транзистором. Расчет ведется при угле отсечки 90 градусов (α0= 0,318; α1= 0,5).

В качестве транзистора для оконечного каскада используется транзистор 2Т909Бсо следующими параметрами:

  • максимально допустимое значение напряжения между коллектором и эмиттером uк.доп = 60 В;

  • максимально допустимое значение амплитуды импульса коллекторного тока ikmдоп= 8 А

  • максимально допустимое значение постоянной составляющей коллекторного тока Ik0доп = 4 А;

  • граничная частота fT = 700 МГц;

  • коэффициент передачи по току в схеме с общим эмиттером 0 = 35;

  • индуктивности выводов транзистора Lэ = 0.2 нГн, Lk = 2 нГн, Lб = 2.5 нГн;

  • суммарная емкость коллекторного перехода Ck = 60 пФ;

  • сопротивление тела базы rб = 0,5 Ом;

  • сопротивление насыщения коллекторного перехода rнас = 1 Ом;

  • тепловое сопротивление участка переход-корпус транзистора Rт.п-к = 2,5 Ом;

  • максимально допустимое значение температуры перехода tп.доп = 160 C.

3.1 Расчёт выходной цепи усилителя.

Мощность первой гармоники отдаваемая в нагрузку двухтактной ячейкой:

=(1,2..1,5)==1,35=1,35∙140=189 Вт

Мощность первой гармоники отдаваемая в нагрузку одним транзистором: =/2=94,5 ,но т.к подкоренное выражение >0,то =47,25 Вт

Крутизна линии граничного режима по высокой частоте:

.

Напряжение коллекторного питания:

.

Амплитуда импульса коллекторного тока:

.>=8А

то принимаем =/2=47,25/2=23,625 Вт. Получается 4 двухтактных ячейки.

И амплитуда импульса коллекторного тока:

<

Угол отсечки:

.

Амплитуда первой гармоники коллекторного тока:

.

Остаточное напряжение на коллекторе:

.

Амплитуда переменного напряжения на коллекторе:

.

Сопротивление нагрузки по первой гармонике:

.

Стандартного кабеля с таким сопротивлением нет. Необходимо пересчитать:

W=Rн/2ⁿ,n=0,1..

Для возникновения бегущей волны необходимо согласование ощущаемого сопротивления и трансформатора на основе длинной линии. W=51/2ⁿ =25,5; 12,75; 6,375; 3,1875. Из ряда сопротивлений возьмем.

Окончательные результаты расчета выходной цепи:

.<=8 А

Амплитуда первой гармоники коллекторного тока:

.

Постоянная составляющая коллекторного тока:

.<=4 А

Остаточное напряжение на коллекторе: .

Амплитуда переменного напряжения на коллекторе:

.

Максимальное напряжение на коллекторе:

.< =60 В

Мощность первой гармоники отдаваемая в нагрузку одним транзистором:

.

Мощность первой гармоники отдаваемая в нагрузку одной двухтактной ячейкой:

, т.к ячеек 4, то мощность первой гармоники отдаваемая в нагрузку, попадает в диапазон=(1,2..1,5)=168÷210 Вт

Потребляемая мощность:

.

КПД:

>0,55.

Рассеиваемая на коллекторе мощность:

.

Проверка условия

, причем в 2 раза

studfile.net

Биполярные транзисторы. Характеристики и схемы соединений

Открытие полупроводников позволило создать не только диоды и тиристоры, но и тоже не менее популярные усилительные устройства – транзисторы. Они активно применяются в электронике и схемотехнике, а также современный прогресс позволил применять их и в силовой электронике. Более подробно мы рассмотрим биполярные транзисторы в этой статье.

Содержание:

Структура и принцип работы транзистора

В отличии от тиристоров и диодов, транзистор имеет двух переходную структуру. Она может быть двух видов – p-n-p проводимость, в которой по средине расположен полупроводник с электронной проводимостью, а по бокам с дырочной. Схема ниже:

Схема транзистора с p-n-p переходом

Или же n-p-n:

Схема транзистора с n-p-n переходом

Каждый из этих переходов имеет особенности обычных диодов. Если к левому переходу приложить напряжение в прямом направлении (положительный потенциал к р-полупроводнику, а негативный к n-полупроводнику), то в левом переходе появится прямой ток. Основные носители начнут переходить с левого полупроводника в средний, где они станут уже не основными. Если же к правому переходу приложить напряжение обратной полярности, то основные носители не будут создавать ток. При этом будет существовать только ток, который создается неосновными носителями. Но если в средней зоне появится значительное количество неосновных носителей за счет диффузии через левый переход, то и в правом переходе ток возрастет. Таким образом можно регулировать ток правого перехода, изменением его в левом переходе. Средний полупроводник зовут базой (на схеме Б), тот, к которому напряжение приложено в прямом направлении – эмиттером (на схеме Е), а в обратном – коллектором (К). На рисунках выше показаны обозначение транзисторов на принципиальных схемах. Вывод эмиттера показан стрелкой. Поскольку в работе транзистора принимают участия носители обеих знаков – его называют биполярным.

Основные носители эмиттера, что проникают в базу, создают ток коллектора Iк, но некоторая их часть (примерно 1-2%) отправляется в базу. Все три тока подчиняются первому закону Кирхгофа IE =Iб+Iк. если такое выражение справедливо для токов, то оно будет справедливо и для его приращений  ∆IE =∆Iб+∆Iк.

Схемы соединения транзисторов

Существует три схемы соединения транзистора: с общей базой, с общим эмиттером и коллектором соответственно. Рассмотрим детальней каждую из них.

Общая база

Схема будет выглядеть так:

Схема соединения транзистора с общей базой

В данном случае входным током будет IЕ, а выходным IК. Коэффициентом усиления называют зависимость приращения тока коллектора от тока эмиттера и он имеет вид h21б=  ∆Iк/∆IE. Поскольку ∆IE =∆Iб+∆Iк, то h21б<1. Обычно h21б= 0,98÷0,99, поскольку Iб составляет 1-2% от IE.

Вольт-амперная характеристика транзистора при отсутствии тока эмиттера представляет собой обратную характеристику диода (между коллектором и базой напряжение обратной полярности). Если создать ток между эмиттером и базой, возрастет ток (будем обозначать далее как I) коллектора. При различных значениях IЕ будут различные значения вольт-амперных характеристик транзистора, которые создают, так называемое семейство характеристик транзистора, которые приведены ниже:

Характеристика транзистора с общей базой

Зависимость I от приложенного между ним и базой напряжения (входная характеристика транзистора) представляет собой ничто иное  как прямую ветку характеристику диода. Также на I эмиттера оказывает влияние и напряжение между коллектором и базой и чем оно выше, тем сильнее характеристика смещается влево, как показано на рисунке ниже:

Влияние напряжения коллектор-база при схеме с общей базой

Но данное смещение наблюдается только в промежутке от 0 до 10 В, при увеличении напряжений характеристики смещаться не будут. Поскольку большинство транзисторов работают при UК>10 В, то входную характеристику считают независимой от входного напряжения.

Схема с общим эмиттером

Такая схема включения дает реальное усиление выходного тока I. Схема ниже:

Схема соединения транзистора с общим эмиттером

Коэффициент усиления это как и раньше отношение выходного I к входному, но теперь входным будет IБ, так что получим:

Коэффициент усиления транзистора с общим эмиттером

Если учесть что h21б= 0,98÷0,99; имеем h21Е= 50÷98, что значительно выше единицы. Это главное преимущество этой схемы.

Вольтамперные характеристики схемы с общим эмиттером ОЭ напоминают те, что соответствуют схеме с общей базой ОБ, но расположены в первом квадранте и показаны ниже:

Характеристики схемы включения транзистора с общим эмиттером

Здесь имеем два p-n перехода с потенциальным барьером, электрические поля в которых направлены встречно и взаимно компенсируются, поэтому при UК=0, коллекторный I не возникает. Характеристики будут смещаться относительно IБ, который в данном случае будет входным.

Входная характеристика практически такая же, как и для схемы с ОБ, так как соответствует одному и тому же переходу, но из-за того, что полярность входного напряжения относительно коллекторного в этой схеме противоположная, характеристика при росте UК смещается вправо и показана ниже:

Влияние напряжения коллектор-база при схеме с общим эмиттером

И здесь она при UК>10 В от дальнейшего возрастания UК не зависит.

Для расчета и анализа усилителей необходимо использовать эквивалентную схему транзистора. Ее можно создать исходя из эквивалентной схемы диода. Поскольку транзистор являет собой два диода, совмещенных в одном корпусе, то эмиттерный переход будет находится под прямым напряжением. Чтоб учесть смещение входной характеристики в зависимости от входного напряжения коллектора, источник Е выразим как h12БUК, пропорциональным UK. Сопротивление эмиттерного перехода обозначим как h11Б. схема будет иметь следующий вид:

Эквивлентная схема транзистора с общим эмиттером

Схема с общим коллектором

Эта схема практически ничем не отличается от эмиттерной и ее эквивалентная схема может быть такой же. Но тому, что выходные (вольтамперные) характеристики практически горизонтальные, их пересечения с горизонтальной осью найти практически невозможно. Как известно из курса электротехники последовательное включение резистора с источником напряжения можно заменить на параллельное соединение резистора с источником тока, величина которого найдется как ордината точки пересечения характеристики с осью токов. Поскольку выходная характеристика будет смещаться относительно IЕ, учтем это путем введения источника тока h21БIЕ, пропорционально входному IЕ. Наклон выходной характеристики определит нам проводимость коллекторного перехода, которая имеет обозначение h22Б. Построенная таким образом схема будет полностью соответствовать эквивалентной схеме транзистора:

Эквивлентная схема транзистора с общим эмиттером

Буква Б в данном случае указывает на то, что данная схема соответствует соединению с общей базой ОБ.

Применив к левой части второй закон Кирхгофа, а к правой первый, получим:

Формула напряжения и тока транзистора для соединения с общим коллектором

Оба эти уравнения создают так называемую систему гибридных параметров, чем и обосновывается буква h. Если выписать все коэффициенты уравнений (параметры) в таблицу (определитель), то первый цифровой  индекс будет указывать на номер строки, а второй на номер столбца. При этом двое из этих параметров – коэффициент усиления тока h21Б и коэффициент обратной связи по напряжению h21Б размерности не имеют. Входное сопротивление h11Б, измеряется в омах, а выходная проводимость h22Б в сименсах.

Также для схемы с ОЭ существует такая  же система параметров и подобная эквивалентная схема:

Эквивлентная схема транзистора общая

Различие между схемами состоит в том, что вместо буквы Б использована буква Е. Уравнения для этой системы будут иметь вид:

Формула напряжения и тока транзистора для соединения с общим коллектором по схеме 2

На практике считается что h12Б= h12Э=0, поскольку при UК>10 В смена коллекторного напряжения на выходную характеристику не влияет. Между параметрами различных схем соединений существуют следующие зависимости:

Связь между различными схемами включения транзисторов

Мощность транзисторов

Все изготовляемые транзисторы разделяют на три основных группы по мощности, которая может быть выделена на коллекторе и равна произведению тока на напряжение, что приложено к коллектору:

  • Транзисторы малой мощности, их мощность лежит в пределах 0<PK<0,3 Вт;
  • Транзисторы средней мощности – их пределы 0,3 Вт< PK< 1,5 Вт;
  • Мощные транзисторы РК больше 1,5 В.

Мощность ограничивается граничной температурой, при превышении которой может произойти тепловой пробой.

Конструктивные особенности биполярных транзисторов

На самом деле конструктивное оформление биполярных транзисторов довольно разнообразно. Давайте рассмотрим конструкцию этих элементов на примере транзистора, показанного ниже:

Конструкция транзистора

На массивном металлическом основании 4 размещают кристалл полупроводника 1, который имеет, к примеру, электронную проводимость. На противоположной стороне кристалла относительно грани сделаны две напайки 2 и 3 например с индию, под которым будут создаваться зоны с дырочной проводимостью. Один из этих элементов будет коллектором, а второй эмиттером – сам кристалл базой. Для всех элементов реализованы выводы, а вся конструкция накрыта корпусом во избежание механических повреждений и попадания влажности. Металлическая основа 4 отводит тепло от устройства. В более мощных устройствах могут применять радиаторы, для более высокой теплоотдачи.

elenergi.ru

Расчет усилителя с общим эмиттером

Усилитель с общим эмиттером раньше являлся базовой схемой всех усилительных устройств.

Описание работы

В прошлой статье мы с вами говорили о самой простой схеме смещения транзистора. Эта схема (рисунок ниже) зависит от коэффициента бета, а он в свою очередь зависит от температуры, что не есть хорошо. В результате на выходе схемы могут появиться искажения усиливаемого сигнала.

Чтобы такого не произошло, в эту схему добавляют еще парочку резисторов и в результате получается схема с 4-мя резисторами:

Резистор между базой и эмиттером назовем Rбэ , а резистор, соединенный с эмиттером, назовем Rэ. Теперь, конечно же, главный вопрос: “Зачем они нужны в схеме?”

Начнем, пожалуй, с Rэ.

Как вы помните, в предыдущей схеме его не было. Итак, давайте предположим, что по цепи +Uпит—->Rк —–> коллектор—> эмиттер—>Rэ —-> земля бежит электрический ток, с силой в несколько миллиампер (если не учитывать крохотный ток базы, так как Iэ = Iк + Iб ) Грубо говоря, у нас получается вот такая цепь:

Следовательно, на каждом резисторе у нас будет падать какое-то напряжение. Его величина  будет зависеть от силы тока в цепи, а также от номинала самого резистора.

Чуток упростим схемку:

Rкэ  – это сопротивление перехода коллектор-эмиттер. Как вы знаете, оно в основном зависит от базового тока.

В результате, у нас получается простой делитель напряжения, где

Расчет усилителя с общим эмиттером

Мы видим, что  на эмиттере уже НЕ БУДЕТ напряжения в ноль Вольт, как это было в прошлой схеме. Напряжение на эмиттере уже будет  равняться падению напряжения на резисторе Rэ .

А чему равняется падение напряжения на Rэ ? Вспоминаем закон Ома и высчитываем:

Расчет усилителя с общим эмиттером

Как мы видим из формулы, напряжение на эмиттере будет равняться произведению силы тока в цепи на номинал сопротивления резистора Rэ . С этим вроде как разобрались. Для чего вся эта канитель, мы разберем чуть ниже.

Какую же функцию выполняют резисторы Rб и Rбэ ?

Именно эти два резистора представляют из себя опять же простой делитель напряжения. Они задают определенное напряжение на базу, которое будет меняться, если только поменяется +Uпит, что бывает крайне редко.  В остальных случаях напряжение на базе будет стоять мертво.

Вернемся к Rэ .

Оказывается, он выполняет самую главную роль в этой схеме.

Предположим, у нас из-за нагрева транзистора начинает увеличиваться ток в этой цепи.

Теперь разберем поэтапно, что происходит после этого.

а) если увеличивается ток в этой цепи, то следовательно увеличивается и падение напряжения на резисторе Rэ .

б) падение напряжения на резисторе Rэ  – это и есть напряжение на эмиттере Uэ.  Следовательно, из-за увеличения силы тока в цепи Uэ стало чуток больше.

в) на базе у нас фиксированное напряжение Uб , образованное делителем из резисторов Rб  и Rбэ

г) напряжение между базой эмиттером высчитывается по формуле Uбэ = Uб – Uэ . Следовательно, Uбэ станет меньше, так как Uэ увеличилось из-за увеличенной силы тока, которая увеличилась из-за нагрева транзистора.

д) Раз Uбэ уменьшилось, значит и сила тока Iб , проходящая через базу-эмиттер  тоже уменьшилась. 

е) Выводим из формулы ниже Iк

Расчет усилителя с общим эмиттером

Iк =β х Iб

Следовательно, при уменьшении базового тока, уменьшается и коллекторный ток 😉 Режим работы схемы приходит в изначальное состояние. В результате схема у нас получилась с отрицательной обратной связью, в роли которой выступил резистор Rэ . Забегая вперед, скажу, что Отрицательная Обратная Связь (ООС) стабилизирует схему, а положительная наоборот приводит к полному хаосу, но тоже иногда используется в электронике.

Расчет усилительного каскада

Рассчитать каскад на биполярном транзисторе КТ315Б с коэффициентом усиления равным KU =10Uпит = 12 Вольт.

1) Первым делом находим из даташита  максимально допустимую рассеиваемую мощность, которую транзистор может рассеять на себе в окружающую среду. Для моего транзистора это значение равняется 150 миллиВатт.  Мы не будем выжимать из нашего транзистора все соки, поэтому уменьшим нашу рассеиваемую мощность, умножив на коэффициент 0,8:

Pрас = 150х0,8=120 милливатт.

2) Определим напряжение на Uкэ . Оно должно равняться половине напряжения Uпит.

Uкэ = Uпит / 2 = 12/2=6 Вольт.

3) Определяем ток коллектора:

Iк = Pрас / Uкэ  = 120×10-3 / 6 = 20 миллиампер.

4) Так как половина напряжения упала на коллекторе-эмиттере Uкэ , то еще половина должна упасть на резисторах. В нашем случае 6 Вольт падают на резисторах Rк  и Rэ . То есть получаем:

Rк + Rэ  = (Uпит / 2) / Iк = 6 / 20х10-3 = 300 Ом.

Rк + Rэ  = 300, а Rк =10Rэ  , так как KU = Rк / Rэ , а мы взяли KU =10 ,

то составляем небольшое уравнение:

10Rэ + Rэ = 300

11Rэ = 300

Rэ = 300 / 11 = 27 Ом

Rк = 27х10=270 Ом

5) Определим ток базы Iбазы из формулы:

Расчет усилителя с общим эмиттером

Коэффициент бета мы замеряли в прошлом примере. Он у нас получился около 140.

Значит,

Iб = Iк  / β = 20х10-3 /140 = 0,14 миллиампер

6) Ток делителя напряжения Iдел , образованный резисторами Rб  и Rбэ , в основном выбирают так, чтобы он был в 10 раз больше, чем базовый ток Iб :

Iдел = 10Iб = 10х0,14=1,4 миллиампер.

7) Находим напряжение на эмиттере по формуле:

Uэ= Iк Rэ= 20х10-3 х 27 = 0,54 Вольта

8) Определяем напряжение на базе:

Uб =  Uбэ + Uэ

Давайте возьмем среднее значение падения напряжения на базе-эмиттер Uбэ = 0,66 Вольт. Как вы помните – это падение напряжения на P-N переходе.

Следовательно, Uб =0,66 + 0,54 = 1,2 Вольта. Именно такое напряжение будет теперь находиться у нас на базе.

9) Ну а теперь, зная напряжение на базе (оно равняется 1,2 Вольта), мы можем рассчитать номинал самих резисторов.

Для удобства расчетов прилагаю кусочек схемы каскада:

Итак, отсюда нам надо найти номиналы резисторов. Из формулы закона Ома высчитываем значение каждого резистора.

Для удобства пусть у нас падение напряжения на Rб называется U1 , а падение напряжения на Rбэ будет U2 .

Используя закон Ома, находим значение сопротивлений каждого резистора.

Rб = U1 / Iдел = 10,8  / 1,4х10-3 = 7,7 КилоОм. Берем из ближайшего ряда 8,2 КилоОма

Rбэ = U2 / Iдел = 1,2 / 1,4х10-3 = 860 Ом. Берем из ряда 820 Ом.

В результате у нас будут вот такие номиналы на схеме:

Проверка работы схемы в железе

Одной теорией и расчетами сыт не будешь, поэтому собираем схему в реале и проверяем ее в деле. У меня получилась вот такая схемка:

Итак, беру свой цифровой осциллограф и цепляюсь щупами на вход и выход схемы. Красная осциллограмма – это входной сигнал, желтая осциллограмма – это выходной усиленный сигнал.

Первым делом подаю синусоидальный сигнал с помощью своего китайского генератора частоты:

Расчет усилителя с общим эмиттером

Как вы видите, сигнал усилился почти в 10 раз, как и предполагалось, так как наш коэффициент усиления был равен 10.  Как я уже говорил, усиленный сигнал по схеме с ОЭ находится в противофазе, то есть сдвинут на 180 градусов.

Давайте подадим еще треугольный сигнал:

Расчет усилителя с общим эмиттером

Вроде бы гуд. Если присмотреться, то есть небольшие искажения. Нелинейность входной характеристики транзистора дает о себе знать.

Если вспомнить осциллограмму схемы с двумя резисторами

то можно увидеть существенную разницу в усилении треугольного сигнала

Расчет усилителя с общим эмиттером

Заключение

Схема с ОЭ во времена пика популярности биполярных транзисторов использовалась как самая ходовая. И этому есть свое объяснение:

Во-первых, эта схема усиливает как по току, так и по напряжению, а следовательно и по мощности, так как P=UI.

Во-вторых, ее входное сопротивление намного больше, чем выходное, что делает эту схему отличной малопотребляемой нагрузкой и отличным источником сигнала для следующих за ней нагрузок.

Ну а теперь немного минусов:

1) схема потребляет небольшой ток, пока находится в режиме ожидания. Это значит, питать ее долго от батареек не имеет смысла.

2) она уже морально устарела в наш век микроэлектроники. Для того, чтобы собрать усилитель, проще купить готовую микросхему и сделать на ее базе мощный и простой усилок.

www.ruselectronic.com

Токоограничивающий резистор в базе транзистора

Для чего нужен токоограничивающий резистор в базе транзистора? Читали предыдущую статью? Если да, то это очень хорошо, если нет, срочно читайте, иначе не поймёте о чем речь в этой статье.

Для чего ставят резистор в базу

Итак, у некоторых возникли непонятки с резистором, который цепляется к базе транзистора. Вроде бы понятно, что он ограничивает силу тока, но непонятно зачем. Давайте вспомним нашу картинку с предыдущей статьи:

Видите резистор на 500 Ом? Что он там делает и для чего нужен, мы с вами разберем в этой статье.

Итак, у нас есть всеми нами любимый и знакомый транзистор КТ815Б – классика Советского Союза 😉

Вспоминаем его цоколевку (расположение выводов):

цоколевка кт815б

Включение транзистора в схему с ОЭ (Общим Эмиттером) будет выглядеть приблизительно вот так:

Как вы видите, в этой схеме мы подключали также лампочку и источник тока к коллектору-эмиттеру.

Откинем пока что лампу и источник Bat2 и просто цепляемся крокодилами от Блока питания на выводы базы и эмиттера:

Плюс от блока питания на базу, а минус на эмиттер.

Теперь давайте будем увеличивать напряжение от нуля и до какого-то значения. Итак, кручу крутилку до 0,6 В и только тогда амперметр на блоке питания показал 10 мА:

Кручу дальше и получаю следующие результаты (слева-направо):

Дальше добавлять напряжение страшновато, так как транзистор становится горячим. Кстати, первый подопытный транзистор скончался, испустив белый дым, под напряжением в 1,5 В. Слишком резко крутанул крутилку).

Давайте построим график по нашим точкам, или как говорится в народе, Вольт амперную характеристику (ВАХ):

Токоограничивающий резистор в базе транзистора

Чуток коряво конечно, но смысл уловить можно.

Среди профи-электронщиков этот график называется входной характеристикой биполярного транзистора, при нулевом напряжении на коллектор-эмиттере.

Как вы помните, транзистор можно схематически представить, как два диода, соединенные или анодами, или катодами (кто не помнит, читаем эту статью). В нашем случае транзистор КТ815Б является транзистором NPN, следовательно, его можно представить  вот так:

Так что это получается? Мы  подавали напряжение на диод? Ну да, все верно)

 Так вот, для диода ВАХ будет выглядеть как-то вот так:

Токоограничивающий резистор в базе транзистора

Что тут можно увидеть? Подавая напряжение на диод в прямом включении (на анод плюс, на катод – минус), мы видим, что через диод ток начинает течь только тогда, когда напряжение становится больше, чем 0,5 В. Далее подавая напряжение на диод чуточку больше, сила тока через диод возрастает непропорционально. Напряжения добавили чуть-чуть, а сила тока стала в разы больше.

Так как переход база-эмиттер – это что ни на есть самый простой диод, то следовательно, малое изменение напряжения в плюс вызовет большое изменение силы тока. Настолько большое, что транзистор можно сгореть! Для нашего подопечного максимально допустимый постоянный ток базы составляет 0,5 А. Я же выжал 0,7 А, но транзистор за эти пару секунд чуть не вскипел.

Что же это получается? Если напряжение изменится в плюс даже на каких-то десятки Вольт, то транзистор сгорит? Да, все именно так. Но как нам теперь быть? Неужели придется использовать высокостабильный блок питания?

Но выход есть проще некуда, и называется он  токоограничивающий резистор.

Давайте проведем два небольших опыта. Для этого к базе цепляем резистор на 10 Ом:

Смотрим теперь на показания блока питания (слево-направо):

Строим график по полученным точкам:

Токоограничивающий резистор в базе транзистора

Сравниваем с графиком без резистора:

Токоограничивающий резистор в базе транзистора

Обратите внимание на вертикальную шкалу силы тока базы (Iбазы). При одном вольте на графике без резистора базовый ток был уже почти 0,7 А!  А с резистором на 10 Ом базовый при 1 В уже был каких-то 0,02 А. Чувствуете разницу?

Почему же так все получилось? Дело в том, что на резисторе “осело” лишнее напряжение. Досконально это схема будет выглядеть вот таким образом:

По цепи, которую я отметил красными проводками, течёт электрический ток. Нагрузкой для электрического тока является резистор и диод транзистора. А так как они соединены последовательно, то вспоминая статью Делитель напряжения можно сказать, что и на диоде транзистора и на резисторе R падает напряжение. А сумма этих напряжений равняется напряжению батареи Bat. В данном случае вместо батареи я использовал блок питания.  То есть можно записать, что

UBat = UR + Uбаза-эмиттер

Проверяем, так ли оно на самом деле?

В нашем случае используем тот же самый резистор на 10 Ом. Выставляем на блоке питания напряжение 1 В.

Видим, что сила тока, протекающая по цепи равна 20 мА. 

Итак, замеряем падение напряжения на резисторе:

А теперь падение напряжения на базе-эмиттере:

Итого: 0,32 + 0,74 = 1,06 В

0,06 В спишем на погрешность вольтметра блока питания).

Ну как, теперь понятно, почему всё так происходит?

Небольшое лирическое отступление. Так как резистор рассчитан на определенную мощность, нужно таким образом подбирать резистор, чтобы он не колыхнул ярким пламенем. Какая же мощность сейчас в данный момент рассеивается на резисторе? Так как в нашем случае нагрузки подцеплены последовательно (резистор и диод транзистора), сила тока, проходящая через каждую нагрузку везде будет одинаковой. Значит, резистор в данный момент рассеивает мощность, равную

P = IU = 0,02х0,32 = 0,0064 Вт.

Мой резистор рассчитан максимум на 0,25 Вт, значит все гуд.  Если на резисторе будет рассеиваться мощность больше, чем 0,25 Вт, то резистор сгорит. Имейте это ввиду, когда будете проектировать свои электронные поделки.  

А что будет, если взять резистор еще больше по номиналу? Давайте попробуем. Возьмем резистор на 100 Ом:

И проводим аналогичный опыт. Вот наши показания (слева-направо):

Строим по ним график:

Токоограничивающий резистор в базе транзистора

Заключение

Из всего выше сказанного, показанного и написанного делаем простые и не очень выводы:

1) Резистор в базе используется для того, чтобы плавно регулировать силу тока в базе, а также для ограничения силы тока, которая может спалить транзистор. Для чего нам плавно регулировать ток базы, мы с вами еще обсудим.

2) Чем больше номинал резистора, тем больше станет диапазон напряжения для регулировки силы тока в базе, тем самым можно плавнее регулировать этот самый ток.

На рисунке (художник из меня так себе) мы видим резистор, который качается на качелях, прикрепленных к графику входной характеристики транзистора  ну и следовательно, чем больше его номинал, тем больше он прогибает график))).

Токоограничивающий резистор в базе транзистора

Продолжение——->

<——-Предыдущая статья

www.ruselectronic.com

Транзисторы для начинающих часть 6 - Транзисторы - Фундаменты электроники - Каталог статей

В начале вопрос: может ли быть ток коллектора бесконечно большим? Теоретически, увеличением тока базы, вы можете свободно увеличивать ток коллектора.

Тем не менее, в той или иной схеме максимальный ток коллектора транзистора только в состоянии насыщении и, главное, не определяется транзистором, а только напряжением питания и сопротивлением нагрузки. При снижении сопротивления нагрузки увеличивается ток.

Как вы догадались, этот ток нельзя увеличивать произвольно. Каждый транзистор имеет максимальный ток коллектора, обозначается в каталогах производителей - ICmax.

Значение этого тока, зависит от конструкций и толщины переходов транзистора.

При протекании тока через сопротивление, выделяется тепло. Вы наверное, догадываетесь, или, может быть, вы видели своими глазами, что связи между слоями кремния транзистора и проводники сделаны из тонкой проволоки. Хотя ее часто делают из золотой проволоки, они при избыточном токе ведут себя как самые обычные предохранители – разогреваются и перегорают.

Не только проводники. Кремниевая структура транзистора так же имеет не большие геометрические размеры. Если пропустить большой ток через эту структуру имеющую малое сечение, мы получим, ток очень большой плотности. Не забывайте, мы имеем дело с чувствительной структурой полупроводника и чрезмерное увеличение плотности тока приводит не только к повышению температуры, а также целый ряд других негативных явлений. Я буду говорить только об уменьшении коэффициента усиления по току (β) с ростом тока коллектора.

Таким образом. Ограничение коллекторного тока производителем обосновано допустимой плотностью тока, и температурой плавления структуры, вы не можете ее превышать.

Если вы думаете о мгновениях, то можно придти к выводу, что если транзистор будет работать в импульсном режиме, открылся, пропустил ток только на короткое мгновение, за это мгновение структура не успевает разогреться и расплавиться. Таким образом, ток в импульсе может быть и больше максимальной ток в не прерывном режиме.

Вы правы! В каталогах часто приводят максимальном токе коллектора при непрерывной работе и максимальный ток коллектора для импульса. Вы можете это увидеть в характеристиках силового транзистора.

Но сейчас, мы не будем связываться с этим вопросом. Как вы думаете или если не превышать ток Icmax каталога, и напряжения UCEmax, ваш транзистор не находится в опасности?

Мы начинаем обсуждать важную и, как выясняется – трудную тему. Но вы должны понять ее! Самую сложную информацию я дам вам в следующем месяце, а сейчас все элементарно.

Наверное, вы слышали такой термин: мощность транзистора.

Что такое мощность транзистора? И что такое общая мощность?

 Термин мощность относиться ко многим устройствам:
Двигатель имеет мощность 100 Вт,
Электрический обогреватель имеет мощность до 2000 Вт,
Паяльник 40 Вт,
У нас есть две лампочки в 60 Вт, одна на 220 Вольт, другая на автомобильные 12 Вольт.

Все эти машины используют электроэнергию от источника и конвертируют ее в другие формы энергии: тепло в механическую энергию (двигатель) энергию света (лампа).

Чем больше мощность, тем больше энергии потребляет в каждый момент это устройство. Обе эти лампы потребляют ту же мощность 60 Вт. В чем разница? Конечно, что одна работает при напряжении 12 вольт и потребляет 5 ампер тока (12Вх5A=60W) а другая, которая работает при напряжении 220 В, потребляет немного больше чем 0,27 ампер (что также дает 220×0,27=60 Вт).

Таким образом, одни и те же мощности могут быть достигнуты с различными токами и напряжениями. Вот простые формулы, необходимые для расчета мощности. Я беру электрические оборудование, работающего на постоянном токе (переменный ток работающий на активное сопротивление). Запомните раз и навсегда:

Возвращаясь к вопросу о мощности транзистора: это мощность, рассеиваемая нагрузкой? Может мощность, рассеиваемая транзистором? Или, может быть даже что-то еще? Ранее я объяснил вам, что коллекторная цепь – это регулируемый источник тока, а не переменный резистор, однако это не меняет тот факт что, когда через структуру транзистора будет течь ток будут потери мощности на тепло. Величина этих потер, определяется по формуле: P UCE IC Где Uce это напряжение между коллектором и эмиттером, Ic – ток коллектора. Строго говоря, мы должны так взять во внимание потери мощности в базовой цепи Ube*Ib, но так как эта мощность очень маленькая, по сравнению с мощностью рассеваемой на коллекторе, она не учитывается.

И что происходит дальше с этим теплом? Если оно остается в транзисторе?

Ни в коем случае! У вас нет ни каких сомнений, что если транзистор не будет хорошо термоизолирован от окружающей среды, это выделяемое тепло приведет к повышению температуры. И это вредное тепло необходимо рассеять во внешней среде. Смотри рисунок 43.

Тут работает простой принцип: тепло передается от горящего к холодному.

Вы уже знаете, что такое потери мощности транзистора. Но именно здесь, кроиться кардинальная ошибка начинающих. Они рассуждают следующим образом: если транзистор может работать при максимальном напряжении коллектора UCE0 и максимальном токе коллектора Icmax, максимальная "мощность транзистора" равна Р = UCE0 × ICmax.

Это абсолютная ерунда, нельзя так просто рассчитать мощность. Посмотрите в каталог любого транзистора и найдите там его мощность, она обозначается Ptot. Запомните раз и навсегда: общая мощность транзистора всегда меньше чем произведение Р = UCE0 × ICmax.

А теперь вычислите. Какая мощность рассеивается на транзисторе, а какая на нагрузке схем на рисунке 44. Возьмем схему 44а, сначала рассчитаем напряжение на резисторе, потом на транзисторе, а потом обе мощности. Напряжение на резисторе:

Мощность рассеиваемая на резисторе:

(То же самое можно вычислить по формуле ) Напряжение на транзисторе:

Мощность рассеиваемая на транзисторе:

Для других схем на рисунке 44, рассчитайте самостоятельно.

Как вы можете видеть, расчеты совсем не сложные. Таким образом, мы идем дальше. Вы уже знаете три условия работы транзистора:
1 Напряжение питания не должно быть больше, чем указанное в каталоге напряжение UCE0. Самое высокое напряжение присутствует на коллекторе транзистора в состоянии отсечки.
2 Ток коллектора не может быть больше, чем ICmax. Самый большой ток протекает через транзистор в состоянии насыщения.
3 Рассеиваемая мощность транзистора, ни при каких обстоятельствах не превышает допустимую Ptot.

Рассмотрим эти три ограничений на примере транзистора с параметрами (UCE0 = 25В, ICmax = 100mA, Ptot = 500 мВт) смотри рисунок 45. Если напряжение и ток на графике это прямые лини, тогда линия, представляющая мощность Р = U × I) будет иметь вид гиперболы, как это показано на рисунке 45. Однако если ток и напряжение отложить на логарифмических шкалах, то кривая мощности станет прямой. Что видно на рисунке 46. Тут нет никакого мошенничества - рисунки 45 и 46 показывают одни и те же значения, но не много по разному: в линейном масштабе, и в логарифмическом. В каталогах приводятся характеристики похожие на рисунок 46. На Рисунке 47 вы можете найти копии конкретных характеристик транзисторов BD243 и BD244, взятых из каталога. Тут для вас есть масса информации, если транзистор будет работать в импульсном режиме, то мгновенный ток и мгновенную мощность можно будет взять больше чем при постоянной работе. Заметим, однако, что характеристика на рисунке 47 имеет еще одно ограничение по сравнению с рисунком 46. Это "отсечение", что является дополнительным ограничением, связанным с явлением так называемого вторичного пробоя (второй пробой). Появление вторичного пробоя приводит к повреждению транзистора. Подробнее об этом можно найти в книгах. Я не буду сейчас объяснять, потому что это сейчас не нужно. В любом случае, у нас есть еще одно ограничение.



В любом случае, мы достигли пиковой точки нашего сегодняшнего обсуждения: проектируемая схема должны вписываться в безопасную рабочую область транзистора. В каталогах она часто обозначается SOAR или SOA. Это сокращение от английского область безопасной работы (Area). Рисунок 47 показывает безопасную рабочую область для транзистора BD243 и BD244.
Строго говоря, при проектировании схемы вы должны найти график показывающий область безопасной работы транзистора (такой, как на рисунке 47), выполнять расчеты, или выбрать на графике ток транзистора и убедиться что мощность находиться в разрешенной зоне. Примеры, которые мы обсуждали несколько минут назад это простейшие случай – транзистор работает на активное сопротивление нагрузки. Во многих схемах, дело обстоит сложнее. Так, например, транзисторы в усилителе мощности выходного каскада также должны работать в безопасной зоне работы при любых условиях - даже в случае короткого замыкания на выходе, подключении к емкостной нагрузкой (длинный кабель) или индуктивной (динамик). В базовый курс мы не будет иметь дело с такими расчетами. Я просто хочу, чтобы указать, на проблему, а вы получите для себя со временем достаточно знаний, чтобы справиться с более сложными задачами.

На данный момент, вы можете придерживаться простого правила: используйте транзисторы с параметрами выше необходимого минимума. На практике, как правило, для безопасной работы используют транзисторы с параметрами на 50…100% выше, чем расчетные, напряжение, ток, мощность. Тогда у нас есть запас прочности, и не придется беспокоиться о надежности. Использование транзисторов «больше и сильнее» также выгодно по ряду других причин при возможной небольшая разнице в цене, которая не имеет значения. Но не подобает использовать силовые транзисторы и транзисторы высокого напряжения, там где это не нужно.

Казалось бы, что все просто и легко, при выборе условий работы транзистора (напряжение питания и сопротивление нагрузки) и можете сами установить транзистор в разрешенный диапазон. Действительно учесть напряжение и максимальный ток, это просто, но потери мощности определить не так просто. На кону здесь два важных вопроса вы должны понять:
- Зависимость потерь мощности от напряжения питания и сопротивления нагрузки,
- Вопрос отвода тепла от транзистора.

Сегодня мы ответим только на первый вопрос.

Часто, не требуется считать потери мощности указанным выше способом. На практике, как правило, нас интересует самый худший случай. Если рассчитать потери мощности в худшем случае нет необходимости проводить дальнейшие расчеты.

Рисунок 48 помогает понять, что я имею в виду, говоря о худшем случае. Транзистор работает с сопротивлением нагрузки RL при постоянном напряжении питания (в данном случае, RL = 250 Ом, Usup = 20В).


Рисунок 48b относится к принципиальной схеме, показанной на рис 48а, но очень похожая ситуация в схеме, показанной на рисунке 48c. Идя дальше, мы можем расширить вопрос: интегральная схема состоит из транзисторов, аналогичные расчеты применяются к интегральных схемам, в частности к стабилизаторам. Пример 48d. Во всех случаях (рис. 48а, 48с, 48d) напряжение транзистора UT, напряжения на нагрузке UL.
Что можно понять из того рисунка?

Рисунок 48b это то же самое что и на рисунке 44г. Когда нет базового тока, то нет и коллекторного тока и напряжение на коллекторе равно напряжению питания. Когда вы пустите ток в базу, и начнете его увеличивать, увеличиться ток коллектора а напряжение на нем уменьшиться. Зная напряжение питания и сопротивление нагрузки RL можно выполнять вычисления для нескольких или нескольких десятков значений напряжения UT. Вы можете рассчитывать не только ток коллектора, но и мощность, рассеиваемая на нагрузке, и на транзисторе для различных напряжений коллектора (т.е. различных токах базы). По этим значениям можно построит график такой как на рисунке 48г.

На этом рисунке синей линей я изобразил зависимость тока от напряжения Uсе (напряжение на транзисторе), шкала тока находиться слева. Здесь простая нагрузка Rl. Красная линия – потери мощности на транзисторе. Фиолетовая, какая мощность рассеивается на нагрузочном резисторе. (Внимание! Шкала мощности нарисована справа).

Примечание: в отсутствие тока базы и тока коллектора, потери мощности транзистора равны нулю, потому что P = Usup × 0. На рисунке 48б показана точка А. Очевидно в состоянии отсечки ток не течет, и нет потери мощности на транзистор и на нагрузке.

Теперь обратите внимание на то, что происходит в состоянии насыщения – посмотрите на точку B. Хотя сейчас ток очень большой, но напряжение на транзисторе очень мало (Ucesat напряжения насыщения десятки или сотни милливольт). Таким образом, рассеивание тепла в режиме насыщения транзистора мало, можно сказать, близко к нулю, потому что P = Ucesat × I. Вы удивлены?

Оказалось, что в состоянии насыщения, когда ток самый большой, рассеиваемая мощность транзистора практически равна нулю! Да, это так! Высокая мощность (P = Usup × I) рассеивается, на сопротивлении нагрузки, а не на транзисторе. Короче говоря, если транзистор работает как переключатель, во время открытия и насыщения он выделяет очень мало тепла. Прямо сейчас вы должны знать, что потери при импульсе будут только на короткое время переключения. К этой проблеме мы еще вернемся. В настоящее время нас интересует работа в линейном режиме.

Как вы можете видеть на рисунке 48b, сама большая мощность рассеивается на транзисторе когда напряжение на коллекторе равно половине напряжения питания. И это тот самый худший случай, о котором я упоминал. Худший, так как потери мощности на транзисторе самые большие. На рисунке 48б это показано точкой С.

Как вы можете видеть, потери мощности на транзисторе при этом равна потери мощности на нагрузке. Если это так, то максимальная рассеиваемая мощность, при каких пропорциях, может быть рассчитана очень просто: потому что в худшем случае рассеиваемая мощность транзистора равна рассеиваемой мощности на сопротивлении нагрузки RL. Тогда значение напряжения делим на две равные части и считаем


Это расчетная мощность, очевидно, не может быть больше чем указанная в каталоге мощность транзистора Ptot.

Эта формула позволяет вычислить минимальное сопротивление нагрузки для данного напряжения питания и мощности из каталога:

По ней также можно рассчитать максимальное напряжение для данного сопротивления нагрузки и выбранной мощности

Вы можете не быть орлом в математике, но эти формулы нужно запомнить или записать себе на видном месте.

Можно спросить, как эти расчеты соотнести с кривой допустимой мощности рассеивания на рисунках 45 и 46?

Это интересный вопрос!

Давайте посмотрим вместе, смогут ли наши транзисторы с характеристиками на рисунках 45 и 46 работать в схеме, показанной на рисунке 48а при напряжении 25В с сопротивлением нагрузки 250Ω, где напряжение на транзисторе может плавно изменяться от нуля до полного напряжения?

Рассчитаем потери мощности в худшем случае:

Потому что во время работы может возникнуть самая тяжелая ситуация, и наш транзистор будет перегружен. Но если он будет работать в ключевом режиме, т.е. находиться в одном из двух состояний: отсечки или насыщения. Так как в обоих этих условиях мощность, рассеиваемая на транзисторе равна или близка к нулю, насколько это возможно. И нам не нужно, прибегать в расчетах к наихудшему случаю, потому что в схемах переключения такое состояние не встречается.

Возвращаясь к рисунку 45, можно сказать, что мы не превысили допустимые потери мощности, и наша нагрузка находиться в безопасной рабочей области транзистора. Некоторые примеры можно найти на рисунке 49 при простой нагрузке для различных напряжений питания и различные сопротивлений.

На рисунке 49 нагрузка показана прямой линией. Попробуйте самостоятельно построить подобных линий на рисунках 46 и 47. Будет ли это легко? Проверьте, построив несколько точек.

В реальной схеме транзистор будет работать при напряжениях Usup гораздо меньше, чем допустимо напряжения UCE0, и сопротивление нагрузки в коллекторе будет ограничивать максимальный ток до величины, значительно меньше, чем ICmax. Как я уже сказал, нормальный запас здесь 50 .. 100%. А теперь поупражняйтесь самостоятельно.

Транзистор имеет следующие параметры: UCE0=25V, ICmax=300mA, Ptot=100mW. Дорисуйте на рисунке 50 кривые максимальной выходной мощности 100 мВт. Рассчитайте максимально мощность (в худшем случае) при условии транзистора в следующих условиях:

Отметьте эти случаи на рисунке 50. Может ли транзистор может работать при таких условиях?

Транзистор с параметрами как в предыдущей задаче, вычислите минимальное сопротивление в цепи на рисунке 51. И в какой пропорции будет выделяться мощность на транзисторе и его нагрузке в состоянии насыщения?

В схеме на рисунке 52 мы хотим использовать транзистор со следующими параметрами: UCE0 = 45В, ICmax = 500mA, Ptot = 300 мВт. Рассчитать, при каком напряжении питания он не будет перегружен.

Транзистор T1 схемы стабилизатора показаной на рисунке 53 имеет следующие параметры: UCE0 = 50В, ICmax = 100mA, Ptot = 300 мВт. Рассчитать максимальный ток транзистора, когда напряжение стабилизации равно 5В. Выполнить расчеты для двух напряжений питания:
а) за счет напряжения питания = 25В
б) за счет напряжения питания = 7В

Если вы думаете, что вы знаете все рассеиваемой мощности транзистора, я вас расстрою. Все наши соображения относятся только к маломощным транзисторам, для них этого достаточно. Но для мощных транзисторов необходимо учитывать дополнительные факторы. Указанная в справочнике мощность Ptot тесно связана с температурой кристалла и эффективности отвода тепла. Этот важный вопрос будет в следующем месяце.

edwpl.ucoz.ru

Выходная мощность биполярного транзистора - это... Что такое Выходная мощность биполярного транзистора?


Выходная мощность биполярного транзистора

60. Выходная мощность биполярного транзистора

D. Ausgangsleistung

E. Output power

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • выходная мощность (для ВЭУ)
  • Выходная мощность в пике огибающей биполярного транзистора

Смотреть что такое "Выходная мощность биполярного транзистора" в других словарях:

  • выходная мощность биполярного транзистора — Мощность, которую отдает транзистор в типовой схеме генератора (усилителя) на заданной частоте. Обозначение Pвых Pout [ГОСТ 20003 74] Тематики полупроводниковые приборы EN output power DE Ausgangsleistung …   Справочник технического переводчика

  • выходная мощность — 3.3 выходная мощность Р, Вт: Усредненная во времени ультразвуковая мощность излучения ультразвукового преобразователя в условиях свободного поля и в какой то определенной среде, желательно в воде. Источник …   Словарь-справочник терминов нормативно-технической документации

  • выходная мощность в пике огибающей биполярного транзистора — Мощность двухтонового сигнала в нагрузке биполярного транзистора, равная мощности однотонового, имеющего ту же амплитуду, что и двухтоновый сигнал в пике огибающей. Обозначение Pвых,п.о Примечание Под двухтоновым сигналом понимают сигнал,… …   Справочник технического переводчика

  • Выходная мощность в пике огибающей биполярного транзистора — 65a. Выходная мощность в пике огибающей биполярного транзистора Е Peak envelope power Рвых,п.о Мощность двухтонового сигнала в нагрузке биполярного транзистора, равная мощности однотонового, имеющего ту же амплитуду, что и двухтоновый сигнал в… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 20003-74: Транзисторы биполярные. Термины, определения и буквенные обозначения параметров — Терминология ГОСТ 20003 74: Транзисторы биполярные. Термины, определения и буквенные обозначения параметров оригинал документа: 1 При заданном обратном токе эмиттера в токе коллектора, равном нулю, UЭБ0, UEB0. 2 При заданном токе коллектора и… …   Словарь-справочник терминов нормативно-технической документации

  • Средняя — периодическое увлажнение пола, при котором поверхность покрытия пола влажная или мокрая; покрытие пола пропитывается жидкостями. Источник: МДС 31 12.2007: Полы жилых, общественных и производственных зданий с применением м …   Словарь-справочник терминов нормативно-технической документации

  • максимальная — максимальная: Максимально возможная длина ЗО, в пределах которой выполняются требования настоящего стандарта и технических условий (ТУ) на извещатели конкретных типов, Источник: ГОСТ Р 52651 2006: И …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 21934-83: Приемники излучения полупроводниковые фотоэлектрические и фотоприемные устройства. Термины и определения — Терминология ГОСТ 21934 83: Приемники излучения полупроводниковые фотоэлектрические и фотоприемные устройства. Термины и определения оригинал документа: 12. p i n фотодиод D. Pin Photodiode E. Pin Photodiode F. Pin Photodiode Фотодиод, дырочная и …   Словарь-справочник терминов нормативно-технической документации

  • Электронный усилитель — Электронный усилитель  усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газах, вакууме и полупроводниках. Электронный усилитель может представлять собой как самостоятельное …   Википедия

  • Усилитель (электроника) — Электронный усилитель  усилитель электрических сигналов, в усилительных элементах которого используется явление электрической проводимости в газах, вакууме и полупроводниках. Электронный усилитель может представлять собой как самостоятельное… …   Википедия

normative_reference_dictionary.academic.ru

0 comments on “Мощность транзистора – Основные параметры транзистора | Практическая электроника

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *