Формы видообразования таблица – —

43,44.Формы видообразования. Способы и примеры видообразования.

Видообразование – это процесс адаптивных преобразований внутри старого вида, приводящий к возникновению одного или нескольких новых видов. При видообразование происходит превращение генетически открытых систем в генетически закрытые. Видообразование осуществляется на основе постоянно совершающихся внутри вида процессов микроэволюции: возникающего элементарного эволюционного явления, появления элементарного эволюционного материала, действия элементарных эволюционных факторов. Формы видообразования – аллопатрическое и симпатрическое. Выделяют аллопатрическое и симпатрическое видообразование. аллопатрическое видообразование – это видообразование, при котором дивергирующие популяции изолированы друг от друга пространственно. в основе аллопатрического видообразования лежат те или иные формы пространственной изоляции. Способы аллопатрического видообразования: фрагментация, распадение ареала родительского вида (возникновение видов майского ландыша), расселение исходного вида (группы больших чаек, некоторых рептилий, амфибий, насекомых).

Симпатрическое видообразование – это возникновение нового вида внутри ареала исходного. Способы: автополиплоидия (получены формы хризантем, табака, картофеля), аллополиплоидия (получены гибриды пшеницы и ржи, алычи и терна, рябины и кизельника), сезонная изоляция (сезонные расы у погремка, яровые и озимые расы проходных рыб). Кроме отмеченных, еще выделяют и филетическое видообразование. Это видообразование, когда вид изменяется в чреде поколений (например, ряд ископаемых европейских слонов).

45. Филетическое, дивергентное, гибридогенное видообразование, примеры.

Видообразование – это процесс адаптивных преобразований внутри старого вида, приводящий к возникновению одного или нескольких новых видов. При видообразование происходит превращение генетически открытых систем в генетически закрытые. Видообразование осуществляется на основе постоянно совершающихся внутри вида процессов микроэволюции: возникающего элементарного эволюционного явления, появления элементарного эволюционного материала, действия элементарных эволюционных факторов.

Филетическое видообразование - это видообразование, когда вид изменяется в череде поколений (например, ряд ископаемых европейских слонов), превращается в новый вид. Границы между отдельными видами в филетическом ряду форм провести невозможно – она всегда будет условной.

Дивергентное видообразование. Этот тип видообразования Ч. Дарвин считал самым распространенным. Примерами данного типа являются дивергенция дарвиновских вьюрков на Галапагосах, возникновение нескольких видов сигов вокруг Ирландского моря в результате разделения единой предковой формы.

Одним из путей видообразования является гибридогенное видообразование (сингенез), которое является обычным у растений. В этом случае могут образовываться комплексы видов (или полувидов), связанных между собой гибридизацией – сингамеоны. В случае таких гибридных комплексов иногда бывает трудно обнаружить четкие границы между отдельными видами, хотя виды как устойчивые генетические системы выделяются вполне определенно.

studfile.net

Видообразование — Википедия

Видообразова́ние — процесс возникновения новых биологических видов[1] и изменения их во времени[2]. При этом генетическая несовместимость новообразованных видов, то есть их неспособность производить при скрещивании плодовитое потомство или вообще потомство, называется межвидовым барьером, или барьером межвидовой совместимости.

Существуют разнообразные теории, объясняющие механизмы видообразования, поскольку эмпирическая проверка очень сложна из-за долговременности изучаемого процесса.

Согласно синтетической теории эволюции (СТЭ), основой для видообразования является наследственная изменчивость организмов, ведущий фактор — естественный отбор. В СТЭ выделяют два способа видообразования: географическое, или аллопатрическое, и экологическое, или симпатрическое.

Все четыре указанных способа естественного видообразования встречались в ходе эволюции, хотя и продолжаются споры об их относительной важности в увеличении биоразнообразия

[3].

Одним из примеров естественного видообразования предоставляет трёхиглая колюшка, океанская рыба, которая после последней ледниковой эпохи основала новые пресноводные колонии в изолированных озёрах и ручьях. Спустя примерно 10 тысяч поколений структурные отличия между колюшками разных озёр больше, чем различия между некоторыми родами рыб: варьируется форма плавников, размер и число костных пластин, устройство челюсти и окраска[4].

Аллопатрическое видообразование[править | править код]

При аллопатрическом, или географическом, видообразовании среда обитания разделяется[en] на изолированные части географическим барьером (горным хребтом, морским проливом и пр.) и возникают изоляты, географически изолированные популяции. Они претерпевают генотипические и фенотипические расхождения: а) на них действует разное давление естественного отбора; б) в них независимо происходит дрейф генов; с) в них происходят отличные мутации. При достаточной степени расхождении изначальные популяции оказываются репродуктивно изолированными и, в случае восстановления контакта между ними, более не могут обмениваться генами — образовывается новый вид.

Теория географического видообразования создана К. Джорданом, Б. Реншем, Ф. Добжанским, Э. Майром. Значение пространственной изоляции первым подчеркнул М. Вагенер.

Перипатрическое видообразование[править | править код]

Разновидностью аллопатрического видообразования является перипатрическое видообразованием, при котором новые виды возникают в небольших популяциях, которые изолированы на периферии и не могут обмениваться генами с основной популяцией. Если меньшая популяция претерпевает эффект бутылочного горлышка, то на такое видообразование оказывает большое влияние эффект основателя. Также предполагается, что большой эффект имеет дрейф генов[5][6].

Симпатрическое видообразование[править | править код]

Симпатрическое, или экологическое, видообразование связано с расхождением групп особей одного вида, обитающих на одном ареале, по экологическим признакам. При этом особи с промежуточными характеристиками оказываются менее приспособленными. Расходящиеся группы формируют новые виды.

Симпатрическое видообразование может протекать несколькими способами. Один из них — возникновение новых видов при быстром изменении кариотипа путём

полиплоидизации. Известны группы близких видов, обычно растений, с кратным числом хромосом. Другой способ симпатрического видообразования — гибридизация с последующим удвоением числа хромосом. Сейчас известно немало видов, гибридогенное происхождение и характер генома которых может считаться экспериментально доказанным. Третий способ симпатрического видообразования — возникновение репродуктивной изоляции особей внутри первоначально единой популяции в результате фрагментации или слияния хромосом и других хромосомных перестроек. Этот способ распространён как у растений, так и у животных. Особенностью симпатрического пути видообразования является то, что он приводит к возникновению новых видов, всегда морфологически близких к исходному виду. Лишь в случае гибридогенного возникновения видов появляется новая видовая форма, отличная от каждой из родительских.

«Мгновенное» видообразование на основе полиплоидии[править | править код]

Данный процесс не предполагает деление ареала на части и формально является симпатрическим. При этом за несколько поколений в результате резких изменений в геноме формируется новый вид.

Сальтационно происходит видообразование на основе полиплоидии у растений.

При скрещивании различных видов потомство обычно бывает стерильным. Это связано с тем, что число хромосом у разных видов различно. Несходные хромосомы не могут нормально сходиться в пары в процессе мейоза, и образующиеся половые клетки не получают нормального набора хромосом. Однако, если у такого гибрида происходит геномная мутация, вызывающая удвоение числа хромосом, то мейоз протекает нормально и дает нормальные половые клетки. При этом гибридная форма приобретает способность к размножению и утрачивает возможность скрещивания с родительскими формами. Кроме того, межвидовые гибриды растений могут размножаться вегетативным путём.

Существующие в природе естественные ряды гибридных видов растений возникли, вероятно, именно таким путём. Так, известны виды пшеницы с 14, 28 и 42 хромосомами, виды роз с 14, 28, 42 и 56 хромосомами и виды фиалок с числом хромосом, кратным 6 в интервале от 12 до 54. По некоторым данным, гибридогенное происхождение имеют не менее трети всех видов цветковых растений[7].

Гибридогенное происхождение доказано и для некоторых видов животных, в частности, скальных ящериц, земноводных и рыб

[8]. Некоторые виды кавказских ящериц, имеющих гибридогенное происхождение, триплоидны и размножаются с помощью партеногенеза.

Судя по палеонтологической летописи и по измерениям скорости мутаций, полная несовместимость геномов, делающая невозможным скрещивание, достигается в природе в среднем за 3 млн лет[9]. А значит, наблюдение образования нового вида в естественных условиях в принципе возможно, но это крайне редкое явление. В то же время, в лабораторных условиях скорость эволюционных изменений может быть увеличена, поэтому есть основания надеяться увидеть видообразование у лабораторных животных[10][11].

Известны многие случаи видообразования посредством гибридизации и полиплоидизации у таких растений как конопля, крапива, первоцвет, редька, капуста, а также у различных видов папоротников. В ряде случаев видообразование у растений происходило без гибридизации и полиплоидизации (кукуруза[12], стефаномерия (англ.)русск. Stephanomeria malheurensis из семейства астровых[13]).

Дрозофилы, также известные как плодовые мухи, входят в число наиболее изученных организмов. С 1970-х годов зафиксированы многие случаи видообразования у дрозофил. Видообразование происходило, в частности, за счёт пространственного разделения, разделения по экологическим нишам в одном ареале, изменения поведения при спаривании, дизруптивного отбора, а также за счет сочетания эффекта основателя с эффектом бутылочного горлышка (в ходе экспериментов founder-flush).

Видообразование наблюдалось в лабораторных популяциях комнатных мух, мух Eurosta solidaginis, яблонных мух-пестрокрылок, мучных жуков, комаров и других насекомых.

Известны случаи, когда в результате давления отбора (в присутствии хищников) одноклеточные зелёные водоросли из рода хлорелла образовывали многоклеточные колониальные организмы, а у бактерий в аналогичных условиях менялось строение и увеличивались размеры (c 1,5 до 20 микрометров за 8—10 недель). Являются ли эти случаи примерами видообразования, зависит от того, какое используется определение вида (при бесполом размножении нельзя использовать критерий репродуктивной изоляции)[14][15].

Видообразование также наблюдалось и у млекопитающих. Шесть случаев видообразования у домовых мышей на острове Мадейра за последние 500 лет были следствием исключительно географической изоляции, генетического дрейфа и слияния хромосом. Слияние двух хромосом — это наиболее заметное различие геномов человека и шимпанзе, а у некоторых популяций мышей на Мадейре за 500 лет было девять подобных слияний

[16][17].

Rhagoletis pomonella[править | править код]

Яблонная муха (Rhagoletis pomonella) является примером ранней стадии симпатрического видообразования[18]. Первоначально вид обитал в восточной части США. До появления европейцев личинки этих мух развивались только в плодах боярышника. Однако с завозом в Америку яблонь (первое упоминание яблонь в Америке — 1647 год), открылась новая экологическая ниша. В 1864 году личинки Rhagoletis pomonella были обнаружены в яблоках, тем самым зафиксирована яблонная раса этого вида[19]. За полтора века наблюдений расы очень сильно разошлись. Они почти не скрещиваются друг с другом (уровень гибридизации не превышает 4—6 %). Яблоневая раса спаривается почти исключительно на яблонях, а боярышниковая — на боярышнике, что, учитывая разное время созревания плодов, приводит к репродуктивной изоляции. В скором времени возможно выделение из этих рас самостоятельных видов.

Кроме того вслед за Rhagoletis pomonella подобное видообразование произошло у наездника Diachasma alloeum, личинки которого паразитируют на личинках мух. После появление новой расы мух появилась и новая раса наездников, предпочитающая паразитировать на яблонных мухах[20].

Опыты Г. Шапошникова по искусственному видообразованию[править | править код]

В конце 1950-х — начале 1960-х годов известный советский биолог Г. Х. Шапошников провёл ряд опытов, в процессе которых проводилась смена кормовых растений у различных видов тлей. Во время опытов впервые наблюдалась репродуктивная изоляция использованных в эксперименте особей от исходной популяции, что свидетельствует об образовании нового вида[21][22][23][24].

  1. ↑ Значение «Видообразование» в Большой советской энциклопедии
  2. ↑ Статья о видообразовании — научно-образовательный проект «Вся биология»
  3. Baker, Jason M. Adaptive speciation: The role of natural selection in mechanisms of geographic and non-geographic speciation (англ.) // Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences (англ.)русск. : journal. — 2005. — June (vol. 36, no. 2). — P. 303—326. — DOI:10.1016/j.shpsc.2005.03.005. — PMID 19260194.
  4. Kingsley, David M. Diversity Revealed: From Atoms to Traits (англ.) // Scientific American. — Springer Nature, 2009. — January (vol. 300, no. 1). — P. 52—59. — DOI:10.1038/scientificamerican0109-52.
  5. ↑ Speciation. — Sinauer Associates, 2004. — P. 545. — ISBN 0-87893-091-4. (стр. 105)
  6. Lawson, Lucinda P.; Bates, John M.; Menegon, Michele; Loader, Simon P. Divergence at the edges: peripatric isolation in the montane spiny throated reed frog complex (англ.) // BioMed Central (англ.)русск. : journal. — 2015. — Vol. 15, no. 128. — DOI:10.1186/s12862-015-0384-3.
  7. ↑ http://sbio.info/page.php?id=57
  8. ↑ http://vivovoco.astronet.ru/VV/JOURNAL/NATURE/09_00/PARTENO.HTM
  9. Douglas J. Futuyma. Evolutionary Biology. — 3-е изд. — Sunderland, Massachusetts: Sinauer Associates, 1998. — ISBN 0-87893-189-9. (англ.)
  10. Gingerich, P. D. Rates of evolution: Effects of time and temporal scaling (англ.) // Science. — 1983. — Vol. 222, no. 4620. — P. 159—161. DOI:10.1126/science.222.4620.159
  11. ↑ Speciations (англ.). Архив TalkOrigins.org. Архивировано 21 августа 2011 года.
  12. Pasterniani, E. Selection for reproductive isolation between two populations of maize, Zea mays L (англ.) // Evolution. — Wiley-VCH, 1969. — Vol. 23. — P. 534—547.
  13. Gottlieb, L. D. Genetic differentiation, sympatric speciation, and the origin of a diploid species of Stephanomeria (англ.) // American Journal of Botany. — Botanical Society of America, 1973. — Vol. 60. — P. 545—553.
  14. ↑ Boraas, M. E. 1983. Predator induced evolution in chemostat culture. EOS. Transactions of the American Geophysical Union. 64:1102. (англ.)
  15. Shikano, S., L. S. Luckinbill, Y. Kurihara. Changes of traits in a bacterial population associated with protozoal predation (англ.) // Microbial Ecology. — 1990. — Vol. 20, no. 1. — P. 75—84. DOI:10.1007/BF02543868
  16. ↑ Observed Instances of Speciation (англ.). Архив TalkOrigins.org. Архивировано 20 августа 2011 года.
  17. Britton-Davidian, J., J. Catalan, et al. Rapid chromosomal evolution in island mice (англ.) // Nature. — 2000. — Vol. 403. — P. 158. DOI:10.1038/35003116
  18. ↑ As the Worm Turns: Speciation and the Apple Maggot Fly — Case Study Collection — National Center for Case Study Teaching in Science Архивировано 20 августа 2011 года.
  19. ↑ Элементы.ру: Цепная реакция видообразования.
  20. ↑ Знание-сила 9/2009
  21. Шапошников Г.Х. Специфичность и возникновение адаптации к новым хозяевам у тлей (Homoptera, Aphidoidea) в процессе естественного отбора (экспериментальное исследование) // Энтом. обозр.. — 1961. — Т. XL, № 4. — С. 739—762. Архивировано 15 мая 2011 года.
  22. Шапошников Г.Х. Морфологическая дивергенция и конвергенция в эксперименте с тлями (Homoptera, Aphidinea) // Энтом. обозр.. — 1965. — Т. XLIV, № 1. — С. 3—25. Архивировано 8 сентября 2013 года.
  23. Шапошников Г.Х. Возникновение и утрата репродуктивной изоляции и критерий вида // Энтом. обозр.. — 1966. — Т. XLV, № 1. — С. 3—35. Архивировано 20 сентября 2009 года.
  24. Шапошников Г.Х. Динамика клонов, популяций и видов и эволюция // Журн. общ. биологии. — 1978. — Т. XXXIX, № 1. — С. 15—33. Архивировано 20 сентября 2009 года.
  • Дарвин Ч., Происхождение видов путём естественного отбора…, Соч., т. 3, М.—Л., 1939
  • 3авадский К. М., Вид и видообразование, Л., 1968
  • Майр Э., Зоологический вид и эволюция, пер. с англ., М., 1968
  • Симпсон Д., Темпы и формы эволюции, пер. с англ., М., 1948
  • Тимофеев-Ресовский Н. Видообразование, Воронцов Н. Н., Яблоков А. Видообразование, Краткий очерк теории эволюции, М., 1969

ru.wikipedia.org

Видообразование. Определение вида. Критерии вида

  • ГДЗ
  • 1 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Информатика
    • Природоведение
    • Основы здоровья
    • Музыка
    • Литература
    • Окружающий мир
    • Человек и мир
    • Технология
  • 2 Класс
    • Математика
    • Английский язык
    • Русский язык
    • Немецкий язык
    • Украинский язык
    • Информатика
    • Природоведение
    • Основы здоровья
    • Музыка
    • Литература
    • Окружающий мир

resheba.me

Способы видообразования

Видообразование — процесс возникновения одного или нескольких новых видов в результате изменения системы популяции с генетически открытой на генетически изолированную.

Основные этапы образования вида

1.       Географическая изоляция популяции либо глубокое изменение условий среды обитания в части ареала внутри отдельной популяции (биологическая изоляция).

2.       Формирование и накопление мутаций внутри популяции, в результате чего изменяется и становится неоднородным генофонд.

3.       Сохранение полезных мутаций в ходе естественного отбора.

4.       Репродуктивная изоляция, то есть возникновение нового вида.

Прокомментируем данные этапы. Образование новых видов происходит под влиянием изоляции групп особей, иначе говоря, при возникновении препятствий, которые значительно затрудняют свободное скрещивание между особями, принадлежащими как к разным популяциям, так и к одной.

Результатом этого становятся мутации, из которых только полезные мутации закрепляются естественным отбором. В результате невозможности свободного скрещивания постепенно происходит образование нового вида.

Напомним, что факторами видообразования являются все существующие элементарные факторы эволюции, а движущими силами — борьба за существование и естественный отбор.

1. Аллопатрическое видообразование (географическое)

1)      Чаще всего новые виды возникают в результате пространственной изоляции популяций, то есть из-за разделения географических ареалов. Такое видообразование носит название аллопатрического или географического.

2)      В ходе долгого разобщения единой популяции возникает явление генетической изоляции, которое остается даже в случае, если изоляция прекращается. Аллопатрическое видообразование является достаточно длительным процессом.

3)      Новые виды, зародившиеся в результате географического видообразования, часто именуются «географическими расами».

Примеры географического видообразования.

1)      Наличие трех подвидов синицы большой: южно-азиатского, евроазиатского и восточно-азиатского.

2)      Деление ареала майского ландыша, т. е. формирование сразу нескольких географических рас привело к появлению собственно ландыша майского, ландыша Кейске, ландыша закавказского и др.

3)      Наличие двух видов больших чаек: клуши и серебристой чайки в районе Балтийского и Северного морей.

2. Симпатрическое видообразование (экологическое)

Новые виды, образованные с помощью симпатрического (экологического) способа видообразования часто именуют «экологическими расами». Особенностью его является то, что новый вид появляется в пределах популяции с биологической изоляцией.

Примеры экологического видообразования.

1)      Сезонные расы погремка большого — в результате вмешательства человека (регулярное скашивание трав) растение не смогло давать семена летом, в результате чего появились подвиды погремка, различающиеся по срокам цветения.

2)      Пять различных рас форели в озере Севан (Армения), обитающие на разных глубинах при разных температурах.

3)      Двенадцать видов рыб-цихлид в озере Виктория (Восточная Африка), которые значительно различаются по образу жизни, поведению и морфологии.

К симпатрическому видообразованию можно отнести случаи появления новых видов на основе полиплодии и отдаленной гибридизации: например, разные виды картофеля с уникальным набором хромосом (12, 24, 48, 72), хризантем.

Полиплоиды чаще всего более конкурентоспособны и жизнестойки — они могут даже вытеснить родительский вид. Помимо растений, полиплоидия замечена у некоторых видов животных: членистоногих, иглокожих, кольчатых червей и др.

Также в природе может происходить отдаленная гибридизация между видами с последующим удвоением хромосом в геноме. В качестве примера укажем растение рябинокизильник, которые стал гибридом кизильника и рябины. Считается, что порядка 30 процентов всех цветковых появились в результате гибридизации.

Более подробно ознакомиться с темой можно в процессе просмотра видео- и онлайн-лекций автора данных курсов по биологии. 

Хочешь сдать экзамен на отлично? Жми сюда - репетитор по биологии онлайн

egevideo.ru

Конспект урока по биологии на тему "Видообразование"

Тема: Видообразование

Цель: рассмотреть механизмы видообразования на примерах аллопатрического и симпатрического, формировать и совершенствовать знания о микроэволюционных процессах.

Задачи :
Образовательные: закрепить и систематизировать знания о микроэволюционных процессах в популяциях; углубить и расширить знания о механизмах процессов видообразования на примерах аллопатрического и симпатрического видообразования; проверить качество усвоения терминологии по теме «микроэволюция»;

Развивающие: развитие умений выделять главное, существенное в учебном материале, сравнивать, делать выводы, переносить ранее полученные знания на новый учебный материал;

Воспитательные: воспитание положительной мотивации учебной деятельности, формирование коммуникативных навыков при работе; научного мировоззрения, воспитывать любовь к природе, стремление познания многообразия жизненных форм организмов.

 

Оборудование: таблица «Видообразование», учебник.

План урока:

  1. опрос по теме: Приспособленность организмов.

закрепление

новая тема:

1.      Актуализация знаний:

?Дайте определение понятию вид.

?Дайте определение понятию популяция.

?Назовите критерии вида.

Buд — это совокупность особей, которые сходны по морфофизиологическим признакам, способны скрещиваться между собой, давать плодовитое потомство и формируют систему популяций, образующих общий ареал.

Вид-это совокупность особей,имеющих сходное строение,образ жизни,способных к скрещиванию с появлением плодовитого  потомства.
По простому вид-это совершенно одинаковые организмы:)

Например, вид - кошка домашняя, а популяция - все кошки Вашего населенного пункта. Или вид - сосна обыкновенная, популяция - сосновый бор.

Популяция – это совокупность особей одного вида, способная к самовоспроизведению, более или менее изолированная в пространстве и во времени от других аналогичных совокупностей того же вида

Каждый вид живых организмов можно описать исходя из совокупности характерных черт, свойств, которые называются признаками. Признаки вида, с помощью которых один вид отличают от другого, называются критериями вида. Наиболее часто используют шесть общих критериев вида: морфологический, физиологический, географический, экологический, генетический и биохимический.

Морфологический критерий предполагает описание внешних (морфологических) признаков особей, входящих в состав определенного вида. По внешнему виду, размерам и окраске оперения можно, например, легко отличить большого пестрого дятла от зеленого, малого пестрого дятла от желны, большую синицу от хохлатой, длиннохвостой, голубой и от гаички. По внешнему виду побегов и соцветий, размерам и расположению листьев легко различают виды клевера: луговой, ползучий, люпиновый, горный.

Морфологический критерий самый удобный и поэтому широко используется в систематике. Однако этот критерий недостаточен для различения видов, которые имеют значительное морфологическое сходство. К настоящему времени накоплены факты, свидетельствующие о существовании видов-двойников, не имеющих заметных морфологических различий, но в природе не скрещивающихся из-за наличия разных хромосомных наборов. Так, под названием «крыса черная» различают два вида-двойника: крыс, имеющих в кариотипе 38 хромосом и живущих на всей территории Европы, Африки, Америки, Австралии, Новой Зеландии, Азии к западу от Индии, и крыс, имеющих 42 хромосомы, распространение которых связано с монголоидными оседлыми цивилизациями, населяющими Азию к востоку от Бирмы. Установлено также, что под названием «малярийный комар» существует 15 внешне не различимых видов.

Физиологический критерий заключается в сходстве жизненных процессов, в первую очередь в возможности скрещивания между особями одного вида с образованием плодовитого потомства. Между разными видами существует физиологическая изоляция. Например, у многих видов дрозофилы сперма особей чужого вида вызывает иммунологическую реакцию в половых путях самки, что приводит к гибели сперматозоидов. В то же время между некоторыми видами живых организмов скрещивание возможно; при этом могут образовываться плодовитые гибриды (зяблики, канарейки, вороны, зайцы, тополя, ивы и др.)

Географический критерий (географическая определенность вида) основан на том, что каждый вид занимает определенную территорию или акваторию. Иными словами, каждый вид характеризуется определенным географическим ареалом. Многие виды занимают разные ареалы. Но огромное число видов имеет совпадающие (накладывающиеся) или перекрывающиеся ареалы. Кроме того, существуют виды, не имеющие четких границ распространения, а также виды-космополиты, обитающие на огромных пространствах суши или океана. Космополитами являются некоторые обитатели внутренних водоемов — рек и пресноводных озер (виды рдестов, ряски, тростник). Обширный набор космополитов имеется среди сорных и мусорных растений, синантропных животных (виды, обитающие рядом с человеком или его жилищем) — постельный клоп, рыжий таракан, комнатная муха, а также одуванчик лекарственный, ярутка полевая, пастушья сумка и др.

Существуют также виды, которые имеют разорванный ареал. Так, например, липа растет в Европе, встречается в Кузнецком Алатау и Красноярском крае. Голубая сорока имеет две части ареала — западноевропейскую и восточносибирскую. В силу этих обстоятельств географический критерий, как и другие, не является абсолютным.

Экологический критерий основан на том, что каждый вид может существовать только в определенных условиях, выполняя соответствующую функцию в определенном биогеоценозе. Иными словами, каждый вид занимает определенную экологическую нишу. Например, лютик едкий произрастает на пойменных лугах, лютик ползучий — по берегам рек и канав, лютик жгучий — на заболоченных местах. Существуют, однако, виды, которые не имеют строгой экологичекой приуроченности. Во-первых, это синантропные виды. Во-вторых, это виды, которые находятся под опекой человека: комнатные и культурные растения, домашние животные.

Генетический (цитоморфологический) критерий основан на различии видов по кариотипам, т. е. по числу, форме и размерам хромосом. Для подавляющего большинства видов характерен строго определенный кариотип. Однако и этот критерий не является универсальным. Во-первых, у многих разных видов число хромосом одинаково и форма их сходна. Так, многие виды из семейства бобовых имеют 22 хромосомы (2n = 22). Во-вторых, в пределах одного и того же вида могут встречаться особи с разным числом хромосом, что является результатом геномных мутаций. Например, ива козья имеет диплоидное (38) и тетраплоидное (76) число хромосом. У серебристого карася встречаются популяции с набором хромосом 100, 150,200, тогда как нормальное число их равно 50. Таким образом, в случае возникновения полиплоидных или анеушюидных (отсутствие одной хромосомы или появление лишней в геноме) форм на основе генетического критерия нельзя достоверно определить принадлежность особей к конкретному виду.

Биохимический критерий позволяет различить виды по биохимическим параметрам (состав и структура определенных белков, нуклеиновых кислот и других веществ). Известно, что синтез определенных высокомолекулярных веществ присущ лишь отдельным группам видов. Например, по способности образовывать и накапливать алкалоиды различаются виды растений в пределах семейств пасленовых, сложноцветных, лилейных, орхидных. Или, к примеру, для двух видов бабочек из рода амата диагностическим признаком является наличие двух ферментов — фосфоглюкомутазы и эстеразы-5. Однако этот критерий не находит широкого применения — он трудоемкий и далеко не универсальный. Существует значительная внутривидовая изменчивость практически всех биохимических показателей вплоть до последовательности аминокислот в молекулах белков и нуклеотидов в отдельных участках ДНК.

Таким образом, ни один из критериев в отдельности не может служить для определения вида. Охарактеризовать вид можно только по их совокупности.

Эволюционные изменения, протекающие на популяционном, внутривидовом уровне, называют МИКРОЭВОЛЮЦИЕЙ. Процесс имеет две формы: филетическая эволюция и видообразование.

ФИЛЕТИЧЕСКАЯ ЭВОЛЮЦИЯ - постепенные изменения, происходящие с течением времени в пределах одного вида, популяции и группы популяций. Как правило, в результате этих изменений приспособленность организмов к среде возрастает.

ВИДООБРАЗОВАНИЕ – это сложный эволюционный процесс возникновения нового вида. Вновь возникший вид прерывает связи с родительским видом и превращается в обособленную совокупность организмов. Скрещивание особей нового и старого видов становится невозможным.

Представление о механизмах видообразования впервые было высказано Ч. Дарвином. Он исходил из того, что внутривидовая борьба за существование и вытекающий из нее естественный отбор служат главной причиной расхождения популяций, заставляют виды максимально широко и разнообразно использовать природные условия. По мнению Ч. Дарвина в пределах одного вида часто возникают популяции, которые приспосабливаются к разным условиям обитания: влажным или сухим, равнинным или горным местообитаниям, потреблению определенной пищи. Именно благодаря этому виды с наибольшей полнотой используют ресурсы среды своего обитания. Следовательно, естественный отбор благоприятствует все более полному использованию разнообразия условий существования. Это вызывает расхождение популяций в пределах вида по морфологическим, физиологическим и биохимическим признакам. От исходного вида берет начало целый «пучок» форм, но не все они получают дальнейшее развитие. Наиболее расходящиеся по признакам формы обладают большими возможностями оставлять после себя плодовитое потомство и выживать, так как они меньше конкурируют между собой, чем промежуточные, которые постепенно вымирают в борьбе за существование под действием естественного отбора в бесконечном ряду поколений. В природе не всегда сохраняются лишь наиболее расходящиеся, крайние формы, средние тоже могли выжить и дать потомство. Из крайних форм иногда развивается одна, но может развиваться и более. Если условия среды не изменяются или мало изменяются в течение длительного времени, то вид остается почти неизменным по сравнению с родоначальным.

Конкретные пути возникновения новых видов могут быть различны. В целом различают две основные формы:

1.      Географическое видообразование (аллопатрическое).

А) Расщепление исходного ареала на составные части.

Б) Расширение ареала из-за расселения.

При расширении ареала вида его популяции встречаются с новыми почвенно-климатическими условиями, а также с новыми сообществами животных, растений и микроорганизмов. В популяции постоянно возникают наследственные изменения, происходит борьба за существование, действует естественный отбор. Все это со временем приводит к изменению генного состава популяции – к микроэволюции. В дальнейшем эволюция популяции может привести к возникновению нового вида.

Например, лиственница сибирская далеко продвинулась на восток. У особей популяции постоянно возникали мутации, в результате скрещивания появились новые  комбинации генов; благодаря этим процессам популяция становилась неоднородной. В процессе борьбы за существования и в результате действия естественного отбора выживали и оставляли потомство особи с полезными в конкретных условиях обитания изменениями. Действие этих факторов способствовало появлению более резких различий между популяциями и в конечном итоге возникновению биологической изоляции.  Результат – лиственница даурская.

     2.Экологическое видообразование (симпатрическое).

В тех случаях, когда популяция одного вида остаются в пределах своего ареала, но условия обитания у них оказываются различными. Под влиянием движущих сил эволюции изменяется их генный состав. Через множество поколений эти изменения могут зайти так далеко, что особи разных популяций одного вида не будут скрещиваться между собой, возникнет биологическая изоляция, что характерно, как правило, для разных видов.

Пять видов синиц образовались в связи с пищевой специализацией: синица большая питается крупными насекомыми в садах, парках; лазоревка добывает мелких насекомых в щелях коры, в почках; хохлатая синица питается семенами хвойных деревьев; гаичка и московка питаются преимущественно насекомыми в лесах разных типов.

Есть также внезапное видообразование. Происходит в результате хромосомных мутаций, полиплоидии и гибридизации. Полиплоидия – это кратное умножение числа хромосом исходного предкового вида, которое возникает самопроизвольно или в результате скрещивания близкородственных организмов. Примерами являются: картофель, табак, хлопок, кузнечики, черви.

Иногда видообразование происходит за счет гибридизации с последующим удвоением числа хромосом. Например: культурная слива с 2n=48 (терн n=16 + алыча n=8).

Этапы видообразования:

Естественный отбор, протекающий в каждой из популяций в своем направлении→ Накопление различий между популяциями→ Возникновение и обособление подвидов→ Продолжение отбора в разных условиях среды, накопление различий между подвидами→ Появление биологической изоляции→ Возникновение и становление новых видов.

Закрепление:

? Назовите путь возникновения вида в данных примерах.

А) Популяции севанской форели различаются по срокам нереста, местам и глубине нерестилищ.

Б) Распад популяции ландыша в результате оледенения.

В) Обособление ареалов синиц и образование их подвидов.

Домашнее задание:

§ 9, заполнить таблицу:

Определите тип видообразования
  1. Возникновение двух видов австралийских мухоловок связано с разделением некогда единого широкого ареала полосой безводной пустыни.

  2. Возникновение видов хризантем связано с удвоением основного набора хромосом.

  3. Образование лиственницы даурской в результате расширения ареала сибирской лиственницы.

  4. Образование 20 видов лютиков от одного исходного вида в результате заселения ими различных мест обитания.

  5. Существование популяций севанской форели, различающихся по срокам нереста, местам, нерестилища.

infourok.ru

11. Видообразование как результат эволюции. Биология. Общая биология. 11 класс. Базовый уровень

11. Видообразование как результат эволюции

Вспомните!

Что такое вид?

Какие виды древних растений и животных вам известны?

Какую роль играет изоляция в процессе эволюции?

Видообразование – это процесс возникновения новых видов. В настоящее время на земном шаре обитает несколько миллионов разнообразных видов, а за всё время существования Земли, как считают учёные, их было в 50–100 раз больше. Как же возникало всё это гигантское многообразие?

Способы видообразования. Большой вклад в решение проблем видообразования внёс известный американский зоолог и эволюционист Эрнст Майр. Он выделил три основных способа видообразования (рис. 34).

Первый способ – преобразование одного вида в другой (А в В). При этом общее число видов не изменяется, потому что постепенно на смену одному виду приходит другой, новый вид.

Второй способ основан на гибридизации двух видов, в результате чего образуется третий, новый вид (межвидовое образование). Как правило, при этом исходные виды не исчезают, поэтому общее число видов увеличивается (+1). Примером такого видообразования может служить возникновение культурной сливы (2n = 48) в результате гибридизации тёрна (2n = 32) и алычи (2n = 16).

Рис. 34. Три основных способа видообразования

Третий способ, который Майр назвал истинным видообразованием, связан с расхождением (дивергенцией) признаков. Этот способ был подробно изучен и описан Ч. Дарвином. Если исходный и вновь образующийся виды остаются жизнеспособными, число видов увеличивается. Именно таким способом образовалось большинство видов.

Пути видообразования. Если особи, принадлежащие к разным популяциям внутри одного вида, скрещиваются и образуют плодовитое потомство, вид является единым целым. Поток генов между внутривидовыми популяциями формирует единый видовой генофонд. Для образования нового вида необходимо, чтобы между популяциями возникла изоляция. В результате обмен генами между изолированными популяциями прекращается, накапливаются межпопуляционные различия, что в дальнейшем может привести к превращению таких популяций в самостоятельные генетические системы, сначала виды, а затем и более крупные таксоны (рис. 35).

В зависимости от изолирующего механизма, можно выделить два основных пути видообразования: географическое и экологическое.

Рис. 35. Возникновение изоляции между популяциями может привести к образованию новых видов

Географическое видообразование[2]. При пространственной изоляции популяций происходит географическое видообразование. Если некая популяция мигрировала за пределы ареала исходного вида, утратила связь с остальными видовыми популяциями и попала в иные условия, накопление адаптаций к этим новым условиям обитания может привести к формированию нового вида.

Также географическое видообразование может происходить при разделении исходного целостного ареала родительского вида на несколько изолированных самостоятельных ареалов. Такая изоляция возникает в результате глобальных геологических процессов: дрейфа континентов, горообразования, образования водных преград и т. д. Классическим примером такого видообразования являются вьюрки, которых Дарвин изучал на различных Галапагосских островах.

Примером видообразования путём фрагментации (от лат. fragmentum – обломок, кусок) ареала материнского вида служит возникновение разных видов ландыша (рис. 36). Несколько миллионов лет назад исходный предковый вид ландыша был широко распространён в лесах Евразии, однако в связи с оледенением его ареал распался на несколько независимых территорий. Ландыш сохранился лишь на территориях, которые ледник не затронул: на юге Дальнего Востока, в Закавказье и на юге Европы. В дальнейшем эти три изолированные популяции развивались самостоятельно, что привело к образованию нескольких новых видов, отличающихся размером и окраской листьев и венчиков.

Рис. 36. Видообразование путём фрагментации ареала материнского вида. Образование разных видов ландыша

Видообразование протекает очень медленно, в течение сотен тысяч и миллионов лет в результате смены сотен тысяч поколений. Если мы проследим процесс последовательного отделения фрагментов суши от единого древнего континента, то сможем выявить чёткую корреляцию. Острова и континенты, имеющие более длительную историю самостоятельного существования, гораздо сильнее отличаются по флоре и фауне.

Экологическое видообразование. В пределах ареала исходного вида осуществляется экологическое видообразование. Оно может происходить несколькими способами. Один из них – быстрое возникновение новых видов путём кратного увеличения числа хромосом (полиплоидизация). Например, у исходного вида табака 12 хромосом, но известны формы с 24, 48, 72 хромосомами.

Другой способ основан на экологической изоляции видов. В этом случае изолирующими барьерами служат различия в условиях обитания, в результате чего образуются экологические подвиды, предпочитающие те или иные экологические ниши. В дальнейшем такие подвиды могут дать начало новым самостоятельным видам (§ 5, разные виды дубов, растущие на разных почвах).

Подобный способ видообразования встречается и у животных. Например, у яблонной пестрокрылки существуют две экологические группы, которые предпочитают кормиться и размножаться на двух разных видах растений – боярышнике и яблоне. Как выяснилось, распознавание и предпочтение хозяина контролируется одним геном. Следовательно, мутация, возникшая в этом гене, может положить начало формированию экологических рас, затем подвидов и в дальнейшем видов. Доказательством того, что видообразование завершено, является возникновение репродуктивной изоляции (невозможности скрещивания) даже при исчезновении изолирующих барьеров.

Образовавшийся новый вид в дальнейшем вступает в сложные межвидовые взаимоотношения, которые и определяют его последующую судьбу: процветание, гибель или распад на новые виды.

Вопросы для повторения и задания

1. Сравните три основных способа видообразования.

2. Охарактеризуйте механизмы основных путей видообразования.

3. Какую роль играет изоляция в процессе видообразования?

4. Приведите примеры географического и экологического видообразования.

5. Каково значение пространственной изоляции для образования новых видов?

Подумайте! Выполните!

Объясните, почему в природе чаще встречаются гибриды разных видов растений, чем разных видов животных.

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Узнайте больше

Видообразование в пределах ареала исходного вида. В настоящее время многие учёные разделяют видообразование, происходящее в пределах ареала исходного вида, на два варианта. Видообразование, основанное на экологической изоляции видов, при котором ведущим оказывается изменение предпочтений и активности самих особей, называют симпатрическим видообразованием. Другим вариантом является парапатрическое видообразование, которое происходит путём полиплоидизации или других генетических изменений. В этом случае новые формы возникают в течение одного поколения, т. е. сразу возникает генетическая изоляция. Для того чтобы доказать свою конкурентоспособность, особи с изменённым генетическим аппаратом должны выдержать жёсткую конкуренцию с другими особями, хорошо приспособленными к условиям жизни. Поэтому этот тип видообразования имеет ограниченное значение. Исключением являются случаи возникновения у полиплоидных форм растений, быстро распространяющихся за счёт вегетативного размножения.

Типы эволюционных изменений. Основными типами эволюционных изменений являются дивергенция, конвергенция, параллелизм и филетическая эволюция.

Дивергенция. Дивергенция (от лат. divergantia – расхождение) – это наиболее распространённый тип эволюционного процесса. Понятие дивергенции ввёл Ч. Дарвин, понимая под ним расхождение признаков в процессе эволюции. При этом происходит образование двух или более таксонов, происходящих от общего предка. Такое расхождение признаков и групп происходит в том случае, если меняются условия обитания дочерней группы. Например, освоить наземную среду древним позвоночным животным помогло появление пятипалой конечности рычажного типа. Однако в зависимости от образа жизни и типа местообитания конечности разных групп позвоночных претерпели существенные изменения и выполняют сейчас разные функции (см. рис. 6). Такие органы, имеющие общее происхождение и выполняющие разные или сходные функции, называют гомологичными органами (см. также § 13).

Конвергенция. Конвергенция – это тип эволюционного изменения, в результате которого сходные признаки возникают у организмов, неродственных друг другу, т. е. имеющих различное происхождение. Чаще всего конвергенция возникает при заселении разными видами организмов сходных типов местообитаний (рис. 37). Таким образом, конвергентное сходство является результатом приспособлений к одинаковым условиям внешней среды. Похожи жабры рыбы и жабры рака, выполняющие дыхательные функции. Однако жабры рыбы развиваются на перегородках между жаберными щелями, пронизывающими глотку, а жабры рака – это нитевидные выросты конечностей груди. Крылья бабочек и летучих мышей, глаза человека и осьминога, роющие конечности кротов и медведок (рис. 38) – все эти органы формируются из разных эмбриональных зачатков. Органы, выполняющие сходные функции, но имеющие разное происхождение, называют аналогичными (см. также § 13).

Рис. 37. Кактус астрофитум звёздчатый из Техаса (справа) и молочай Euphorbia obesa из Южной Африки (слева). Два вида живут в сходных природных условиях и приобрели сходные формы за счёт конвергентной эволюции. При этом они относятся не только к разным семействам, но и к разным порядкам. Несмотря на благоприятные условия, кактусы практически полностью отсутствуют в Африке

Параллелизм. Параллелизм – это тип эволюционных изменений, результатом которого является образование сходных признаков у родственных форм. Например, китообразные и ластоногие независимо друг от друга перешли к обитанию в водной среде и приобрели соответствующие приспособления – ласты. Известное общее сходство имеют млекопитающие тропического пояса, обитающие на разных континентах, в близких климатических условиях (рис. 39).

Рис. 38. Аналогичные органы

Рис. 39. Параллелизм в строении тела млекопитающих населяющих дождевые леса Африки и Южной Америки: панголин (слева) и гигантский броненосец (справа)

Филетическая эволюция. Филетическая эволюция – это такой тип эволюционных преобразований, при которых предковые таксоны постепенно преобразуются в новые (дочерние) без образования боковых ветвей. При этом образуется непрерывный ряд таксонов, в котором каждый является потомком предыдущего и предком последующего.

Поделитесь на страничке

Следующая глава >

bio.wikireading.ru

Механизм видообразования — урок. Биология, Общие биологические закономерности (9–11 класс).

Выделяют три основных пути видообразования.

 

Первый из них — простое преобразование видов. В ходе эволюции вид \(A\) меняется и превращается в вид \(B\). Такой процесс называется филетическим видообразованием. Число видов при этом не увеличивается.

 

Второй путь называется гибридогенным. Он связан со слиянием двух существующих видов \(A\) и \(B\) и образованием нового вида \(C\). Виды \(A\) и \(B\) в таком случае могут сохраняться.

 

Третий путь видообразования обусловлен дивергенцией, т. е. разделением одного предкового вида на несколько новых видов. Этим путём, в основном, и шла эволюция жизни на Земле.

 

Пути видообразования: филетический, гибридогенный и дивергентный


Дарвин доказал, что в природе постоянно происходит процесс возникновения новых видов на основе существующих под влиянием движущих сил эволюции. Он рассматривал только дивергентный путь видообразования. Филетический и гибридогенный пути были открыты позже.

  

Согласно современным представлениям об эволюции, образование нового вида происходит в пределах популяции — элементарной единицы эволюции.

  

Популяции являются генетически открытыми системами. И пока между ними происходит обмен генами в результате миграции особей, вид остаётся единой генетически закрытой системой. Возникновение изоляции между двумя популяциями приводит к накоплению в них различий, препятствующих скрещиванию особей. Популяции становятся генетически закрытыми системами и, значит, новыми видами. 

Видообразование — эволюционный процесс превращения генетически открытых систем (популяций) в генетически закрытые системы (новые виды).

Видообразование — это сложный и длительный процесс, включающий промежуточные стадии.

 

Действие изоляции ненаправленное, но является обязательным условием усиления генетических различий между популяциями. Если изоляция продолжается долго, то разнонаправленный естественный отбор приводит к расхождению признаков популяций — дивергенции. 

 

В результате популяции превращаются в разновидности или расы. Сохранение изоляции приводит к усилению различий между разновидностями, и они превращаются в подвиды. Если усиление различий между подвидами будет препятствовать их скрещиванию, значит, они стали генетически закрытыми системами. Между ними возникла репродуктивная изоляция. Подвиды превратились в новые виды.

 

Факторами видообразования являются:

  • предпосылки эволюции: мутационная и комбинативная изменчивость, популяционные волны, дрейф генов, изоляция;
  • движущие силы эволюции: борьба за существование, естественный отбор.

www.yaklass.ru

0 comments on “Формы видообразования таблица – —

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *