Таблица арифметических квадратных корней: Таблица квадратных корней | Алгебра

Таблица квадратных корней | Алгебра

В таблице приведены квадратные корни натуральных чисел от 1 до 100.

√1 = 1
√4 = 2
√9 = 3
√16 = 4
√25 = 5
√36 = 6
√49 = 7
√64 = 8
√81 = 9
√100 = 10
√121 = 11
√144 = 12
√169 = 13
√196 = 14
√225 = 15
√256 = 16
√289 = 17
√324 = 18
√361 = 19
√400 = 20
√441 = 21
√484 = 22
√529 = 23
√576 = 24
√625 = 25
√676 = 26
√729 = 27
√784 = 28
√841 = 29
√900 = 30
√961 = 31
√1024 = 32
√1089 = 33
√1156 = 34
√1225 = 35
√1296 = 36
√1369 = 37
√1444 = 38
√1521 = 39
√1600 = 40
√1681 = 41
√1764 = 42
√1849 = 43
√1936 = 44
√2025 = 45
√2116 = 46
√2209 = 47
√2304 = 48
√2401 = 49
√2500 = 50
√2601 = 51
√2704 = 52
√2809 = 53
√2916 = 54
√3025 = 55
√3136 = 56
√3249 = 57
√3364 = 58
√3481 = 59
√3600 = 60
√3721 = 61
√3844 = 62
√3969 = 63
√4096 = 64
√4225 = 65
√4356 = 66
√4489 = 67
√4624 = 68
√4761 = 69
√4900 = 70
√5041 = 71
√5184 = 72
√5329 = 73
√5476 = 74
√5625 = 75
√5776 = 76
√5929 = 77
√6084 = 78
√6241 = 79
√6400 = 80
√6561 = 81
√6724 = 82
√6889 = 83
√7056 = 84
√7225 = 85
√7396 = 86
√7569 = 87
√7744 = 88
√7921 = 89
√8100 = 90
√8281 = 91
√8464 = 92
√8649 = 93
√8836 =  94
√9025 = 95
√9216 = 96
√9409 = 97
√9604 = 98
√9801 = 99
√10000 = 100

Таблица квадратов - таблица квадратных корней натуральных чисел от 1 до 99 (от 1 до 9, от 10 до 99 ).

Таблица квадратных корней. Квадраты чисел. Корни чисел.




Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Таблицы численных значений. (Таблица квадратов, кубов, синусов ....) + Таблицы Брадиса  / / Таблица квадратов - таблица квадратных корней натуральных чисел от 1 до 99 (от 1 до 9, от 10 до 99 ). Таблица квадратных корней. Квадраты чисел. Корни чисел.

Поделиться:   

Таблица квадратов натуральных чисел от 1 до 99 (от 1 до 9, от 10 до 99 ). Квадраты чисел.

Число Значение квадрата числа       Число Значение квадрата числа       Число Значение квадрата числа
1 1 34 1156 67 4489
2 4
35
1225 68 4624
3 9 36 1296 69 4761
4 16 37 1369 70 4900
5 25 38 1444 71 5041
6 36 39 1521 72 5184
7 49 40 1600 73 5329
8 64 41 1681
74
5476
9 81 42 1764 75 5625
10 100 43 1849 76 5776
11 121 44 1936 77 5929
12 144 45 2025 78 6084
13 169 46 2116 79 6241
14 196 47 2209 80 6400
15 225 48 2304 81 6561
16 256 49 2401 82 6724
17 289 50 2500 83 6889
18 324 51 2601 84 7056
19 361 52 2704 85 7225
20 400 53 2809 86 7396
21 441 54 2916 87 7569
22 484 55 3025 88 7744
23 529 56 3136 89 7921
24 576 57 3249 90 8100
25 625 58 3364 91 8281
26 676 59 3481 92 8464
27 729
60
3600 93 8649
28 784 61 3721 94 8836
29 841 62 3844 95 9025
30 900 63 3969 96 9216
31 961 64 4096 97 9409
32 1024 65 4225 98 9604
33 1089 66 4356 99 9801
Кликабельная картинка
для печати


Ссылка (памятка):
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Поиск в инженерном справочнике DPVA. Введите свой запрос:
Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.
Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса. Free xml sitemap generator

Квадратный корень. Действия с квадратными корнями.

2=400\\ \hline \end{array}\]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
\(\bullet\) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть \[\sqrt a\pm\sqrt b\ne \sqrt{a\pm b}\] Таким образом, если вам нужно вычислить, например, \(\sqrt{25}+\sqrt{49}\), то первоначально вы должны найти значения \(\sqrt{25}\) и \(\sqrt{49}\), а затем их сложить. Следовательно, \[\sqrt{25}+\sqrt{49}=5+7=12\] Если значения \(\sqrt a\) или \(\sqrt b\) при сложении \(\sqrt a+\sqrt b\) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме \(\sqrt 2+ \sqrt {49}\) мы можем найти \(\sqrt{49}\) – это \(7\), а вот \(\sqrt 2\) никак преобразовать нельзя, поэтому \(\sqrt 2+\sqrt{49}=\sqrt 2+7\). Дальше это выражение, к сожалению, упростить никак нельзя

  \(\bullet\) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть \[\sqrt a\cdot \sqrt b=\sqrt{ab}\quad \text{и}\quad \sqrt a:\sqrt b=\sqrt{a:b}\] (при условии, что обе части равенств имеют смысл)
Пример: \(\sqrt{32}\cdot \sqrt 2=\sqrt{32\cdot 2}=\sqrt{64}=8\);   \(\sqrt{768}:\sqrt3=\sqrt{768:3}=\sqrt{256}=16\);   \(\sqrt{(-25)\cdot (-64)}=\sqrt{25\cdot 64}=\sqrt{25}\cdot \sqrt{64}= 5\cdot 8=40\).   \(\bullet\) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем \(\sqrt{44100}\). Так как \(44100:100=441\), то \(44100=100\cdot 441\). По признаку делимости число \(441\) делится на \(9\) (так как сумма его цифр равна 9 и делится на 9), следовательно, \(441:9=49\), то есть \(441=9\cdot 49\).
Таким образом, мы получили: \[\sqrt{44100}=\sqrt{9\cdot 49\cdot 100}= \sqrt9\cdot \sqrt{49}\cdot \sqrt{100}=3\cdot 7\cdot 10=210\] Рассмотрим еще один пример: \[\sqrt{\dfrac{32\cdot 294}{27}}= \sqrt{\dfrac{16\cdot 2\cdot 3\cdot 49\cdot 2}{9\cdot 3}}= \sqrt{ \dfrac{16\cdot4\cdot49}{9}}=\dfrac{\sqrt{16}\cdot \sqrt4 \cdot \sqrt{49}}{\sqrt9}=\dfrac{4\cdot 2\cdot 7}3=\dfrac{56}3\]
\(\bullet\) Покажем, как вносить числа под знак квадратного корня на примере выражения \(5\sqrt2\) (сокращенная запись от выражения \(5\cdot \sqrt2\)). Так как \(5=\sqrt{25}\), то \[5\sqrt2=\sqrt{25}\cdot \sqrt2=\sqrt{25\cdot 2}=\sqrt{50}\] Заметим также, что, например,
1) \(\sqrt2+3\sqrt2=4\sqrt2\),
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\). 2\), поэтому \(\sqrt{16}=4\). А вот извлечь корень из числа \(3\), то есть найти \(\sqrt3\), нельзя, потому что нет такого числа, которое в квадрате даст \(3\).
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа \(\sqrt3, \ 1+\sqrt2, \ \sqrt{15}\) и т.п. являются иррациональными.
Также иррациональными являются числа \(\pi\) (число “пи”, приблизительно равное \(3,14\)), \(e\) (это число называют числом Эйлера, приблизительно оно равно \(2,7\)) и т.д.
\(\bullet\) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой \(\mathbb{R}\).
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.  

Факт 5.
\(\bullet\) Модуль вещественного числа \(a\) – это неотрицательное число \(|a|\), равное расстоянию от точки \(a\) до \(0\) на вещественной прямой. 2\\ &2>2,25 \end{aligned}\] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и \(\sqrt 2-1<0,5\).
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве \(-3<\sqrt2\) нельзя (убедитесь в этом сами)!   \(\bullet\) Следует запомнить, что \[\begin{aligned} &\sqrt 2\approx 1,4\\[1ex] &\sqrt 3\approx 1,7 \end{aligned}\] Знание приблизительного значения данных чисел поможет вам при сравнении чисел!   \(\bullet\) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. 2=168\cdot 168=28224\).
Следовательно, \(\sqrt{28224}=168\). Вуаля!

Что такое квадратный корень? Формулы и Примеры

Что такое квадратный корень

Определение арифметического квадратного корня ясности не добавляет, но заучить его стоит:

Арифметическим квадратным корнем из неотрицательного числа a называется такое неотрицательное число, квадрат которого равен a.

Определение квадратного корня также можно представить в виде формул:
√a = x
x2 = a
x ≥ 0
a ≥ 0

Из определения следует, что a не может быть отрицательным числом. То есть то, что стоит под корнем — обязательно положительное число.

Чтобы разобраться, почему именно так и никак иначе, давайте рассмотрим пример.

Попробуем найти корень из √-16

Здесь логично предположить, что 4, но давайте проверим: 4*4 = 16 — не сходится.

Если - 4, то -4 * -4 = 16, (минус на минус всегда дает плюс).

Получается, что ни одно число не может дать отрицательный результат при возведении его в квадрат.

Числа, стоящие под знаком корня, должны быть положительными.

Исходя из определения, значение корня также не должно быть отрицательным

Здесь могут возникнуть резонные вопросы, почему, например, в примере x2 = 16, x = 4 и x = -4.

Чтобы вопросы отпали, и все встало на свои места, нужно разобраться, в чем разница между квадратным уравнением и арифметическим квадратным корнем. В детской школе Skysmart ученики вникают в тонкости математической вселенной вместе с красочными героями комиксов и в интерактивном формате.

Приходите вместе с ребенком на бесплатный вводный урок: познакомимся и покажем, как решать задачки весело и эффективно.

Разница между квадратным корнем и арифметическим квадратным уравнением

Прежде всего, чтобы разграничить эти два понятия, запомните:

  • x2 = 16 не равно  x = √16.

Это два нетождественных друг другу выражения.

  • x2 = 16 — это квадратное уравнение.
  • x = √ 16 — арифметический квадратный корень.

Из выражения x2 = 16 следует, что:

  • |x| = √16, это значит, что x = ±√16 = ±4, x1 = 4, x2 = -4.

Если две вертикальные палочки возле x вводят вас в замешательство, почитайте нашу статью о модуле числа.

В то же самое время, из выражения x = √16 следует, что x = 4.

Если ситуация все еще кажется запутанной и нелогичной, просто запомните, что отрицательное число может быть решением только в квадратном уравнении. Если в решении «минус» — есть два варианта:

 
  1. Пример решен неверно

  2. Это квадратное уравнение.

Если вы извлекаете квадратный корень из числа, то можете быть уверены, вас ждет «положительный» результат.

Давайте рассмотрим пример, чтобы окончательно выяснить разницу между квадратным корнем и квадратным уравнением.

Даны два выражения: 

 
  1. x2 = 36

  2. x = √36

Первое выражение — квадратное уравнение. 

|x| = √36
x1 = +6
x2 = -6.

Второе выражение — арифметический квадратный корень. 

√36 = 6
x = 6.

Мы видим, что результатом решения первого выражения стали два числа — отрицательное и положительное. А во втором случае — только положительное.

Запись иррациональных чисел с помощью квадратного корня

Иррациональное число — это число, которое нельзя представить в виде обыкновенной дроби.

Чаще всего, иррациональные числа можно встретить в виде корней, логарифмов, степеней и т.д.

Примеры иррациональных чисел:

√2 = 1,414213…;

π = 3,141592…;

e = 2,718281.... .

Чтобы упростить запись иррациональных чисел, математики ввели понятие квадратного корня. Давайте разберем пару примеров, чтобы увидеть квадратный корень в деле.

Дано уравнение: x2 = 2.

Сразу сталкиваемся с проблемой, поскольку очевидно, что ни одно целое число не подходит. 

Переберем числа, чтобы удостовериться в этом:

1 * 1 = 1,
2 * 2 = 4,
3 * 3 = 9.

Отрицательные числа дают такой же результат. Значит результатом решения не могут быть целые числа.

Решение следующее:
Строим график функции y = x2.
Отмечаем решения на графике: -√2; √2.


Если попробовать извлечь квадратный корень из 2 с помощью калькулятора, то результат будет следующий: √2 = 1,414213… .

В таком виде ответ не записывают — нужно оставить квадратный корень.
x2 = 2.
x = √2
x = -√2. 

Извлечение корней

Решать примеры с квадратными корнями намного легче, если запомнить как можно больше квадратов чисел. Для этого воспользуйтесь таблицей — сохраните ее себе и используйте для решения задачек.

Таблица квадратов


Вот несколько примеров извлечения корней, чтобы научиться пользоваться таблицей:

  • 1. Извлеките квадратный корень: √289

Ищем в таблице число 289, двигаемся от него влево и вверх, чтобы определить цифры, образующие нужное нам число.

Влево — 1, вверх — 7.

Ответ: √289 = 17.

  • 2. Извлеките квадратный корень: √3025

Ищем в таблице число 3025.
Влево — 5, вверх —  5.

Ответ: √3025 = 55.

  • 3. Извлеките квадратный корень: √7396

Ищем в таблице число 7396.

Влево — 8, вверх — 6.

Ответ: √7396 = 86.

  • 4. Извлеките корень: √9025

Ищем в таблице число 9025.

Влево — 9, вверх — 5.

Ответ: √9025 = 95.

  • 5. Извлеките корень √1600

Ищем в таблице число 1600.

Влево — 4, вверх — 0.

Ответ: √1600 = 40.

Извлечением корня называется нахождение его значение.

Свойства арифметического квадратного корня

У арифметического квадратного корня есть 3 свойства — их нужно запомнить, чтобы проще решать примеры.

  • Корень произведения равен произведению корней
  • Извлечь корень из дроби — это извлечь корень из числителя и из знаменателя
  • Чтобы возвести корень в степень, нужно возвести в степень значение под корнем

Давайте потренируемся и порешаем примеры на все три свойства. Не забывайте обращаться к таблице квадратов. Попробуйте решить примеры самостоятельно, а для проверки обращайтесь к ответам.

Умножение арифметических корней

Для умножения арифметических корней используйте формулу:

Примеры:

 

Внимательно посмотрите на второе выражение и запомните, как записываются такие примеры.

Если нет возможности извлечь корни из чисел, то поступаем так:

 

  1. Если множителей больше двух, то решается примерно точно так, как и с двумя множителями:

Добрая напоминалочка

Чтобы решать примеры быстрее, не забывайте пользоваться таблицей квадратов.

 


Деление арифметических корней

Для деления арифметических корней используйте формулу:

Примеры:

 
  1. Ответ: смешанную дробь превращаем в неправильную (16 * 3) + 1 = 49





Выполняя деление, не забывайте сокращать множители. При делении арифметических корней, используйте правила преобразования обыкновенных дробей.

Возведение арифметических корней в степень

Для возведения арифметического корня в степень используйте формулу:

Примеры:



Эти две формулы нужно запомнить:


Повторите свойства степеней, чтобы без труда решать такие примеры.

Внесение множителя под знак корня

Вы уже умеете по-всякому крутить и вертеть квадратными корнями: умножать, делить, возводить в степень. Богатый арсенал, не правда ли? Осталось овладеть еще парой приемов и можно без страха браться за любую задачку.

А теперь давайте разберемся, как вносить множитель под знак корня.

Дано выражение: 7√9

Число семь умножено на квадратный корень из числа девять. 

Извлечем квадратный корень и умножим его на 7.

√9= 3.

7√9 = 7*3 = 21

В данном выражение число 7 — множитель. Давайте внесем его под знак корня. 

Запомните, что вносить множитель под знак корня обязательно нужно так, чтобы значение исходного выражения осталось неизменным. Иными словами, после наших манипуляций с корнем, значение выражения должно по-прежнему оставаться 21.

Вы помните, что (√a)2 = a

Тогда число 7 должно быть возведено во вторую степень. В этом случае значение выражения останется тем же. 

7√9 = √72* 9 = √49 * 9 = √49 * √9 = 7 * 3 = 21.

Формула внесения множителя под знак корня:

Запоминаем:

Нельзя вносить отрицательные числа под знак корня.

Потренируемся вносить множители. Попробуйте решить примеры самостоятельно, сверяясь с ответами.

 


Вынесение множителя из-под знака корня 

С тем, как вносить множитель под корень мы, кажется, разобрались. Но алгебра — такая алгебра, поэтому теперь неплохо бы и вынести множитель из-под знака корня.

Дано выражение в виде квадратного корня из произведения.

Вы уже наверняка без труда извлекаете квадратный корень из чего угодно, поэтому знаете, что делать.

Извлекаем корень из всех имеющихся множителей. 


В данном выражении квадратный корень мы можем извлечь только из 4, поэтому:


Таким образом множитель выносится из-под знака корня.

Давайте разберем примеры. Попробуйте вынести множители из-под знака корня самостоятельно, сверяясь с ответами.

 
  1. √28

    Раскладываем подкоренное выражение на множители 28 = 7*4.

    Извлекаем корень из 4. Множитель 7 оставляем под знаком корня.



  2. Ответ: по правилу извлечения квадратного корня из произведения,

    Так как вынесенный множитель должен стоять перед подкоренным знаком, то меняем их местами.

  3. Вынесите множитель из-под знака корня в выражении: √24

    Ответ: Раскладываем выражение под корнем на множители 24 = 6 * 4.


  4. Упростите выражение:

    Вынесем в двух последних выражения множитель из-под знака корня.

    Умножаем (-4 * 4) = -16. Все остальное выражение записываем в неизменном виде.

    Мы видим, что во всем выражении есть один общий множитель — √5.
    Выносим общий множитель за скобки:

    Далее вычисляем все, что в скобках:

 

Давайте тренироваться вместе: в современном формате и под присмотром внимательных учителей. Учиться в удовольствие — это реально.

Запишите ребенка на бесплатный урок математики в Skysmart: покажем, как все устроено на платформе и поможем ребенку поверить в себя.

Сравнение квадратных корней

Мы почти досконально разобрали арифметический квадратный корень, научились умножать, делить и возводить его в степень. Теперь вы без труда можете вносить множители под знак корня и выносить их оттуда. Осталось научиться сравнивать корни и стать непобедимым теоретиком.

Итак, чтобы понять, как сравнить два квадратных корня, нужно запомнить пару правил.

Если:

  • √a < √b, то a < b
  • √a = √b, то a = b

Давайте разберем на примере.

Сравните два выражения: √70 и 8√2

Первым делом преобразуем второе выражение: 8√2 = √64 * √2 = √64*2 = √128.

70 < 128.

Это значит, что √70  <  8√2.

Запоминаем

Чем больше число под знаком корня, тем больше сам корень.

Потренируйтесь в сравнении корней. Сверяете свои результаты с ответами.

 
  1. Сравните два выражения: √50 и 9√5

    Ответ: преобразовываем выражение 9√5.

    9√5 = √81 * √5 = √81*5 = √405

    50 < 405

    Это значит, что √50 < 9√5.


  2. Сравните два выражения: 6√5 и √18

    Ответ: преобразовываем выражение 6√5.

    6√5 = √36 * √5 = √36*5= √180

    180 > 18

    Это значит, что 6√5 > √18.


  3. Сравните два выражения: 7√12 и √20

    Ответ: преобразовываем выражение 7√12.

    7√12 = √49 * √12 = √49*12 = √588

    588 >20

    Это значит, что 7√12 > √20.

Как видите, ничего сложного в сравнении арифметических квадратных корней нет. 

Самое главное — выучить формулы и сверяться с таблицей квадратов, если значения корня слишком большие для легкого вычисления в уме.

Не бойтесь пользоваться вспомогательными материалами. Математика просто создана для того, чтобы окружить себя подсказками и намеками.

Когда вы почувствуете, что уже достаточно натренировались в решении примеров с квадратными корнями, можете позволить себе время от времени прибегать к помощи онлайн-калькуляторов. Они помогут решать примеры быстрее и быть эффективнее. 

Таких калькуляторов в интернете много, вот один из них.

Извлечение квадратного корня из большого числа

Вы уже наверняка познакомились и подружились с таблицей квадратов. Она — ваша правая рука. С ее помощью вы реактивно решаете примеры и, возможно, даже подумываете запомнить ее наизусть.

Но, как вы можете заметить, таблица заканчивается на числе 9801. А это, согласитесь, не самое крупное число из тех, что могут вам попасться в примере.


Чтобы извлечь корень из большого числа, которое отсутствует в таблице квадратов, нужно:

 
  1. Определить «сотни», между которыми оно стоит.

  2. Определить «десятки», между которыми оно стоит.

  3. Определить последнюю цифру в этом числе.

Извлечь корень из большого числа можно разными способами — вот один из них.

Извлечем корень из √2116.

Наша задача в том, чтобы определить между какими десятками стоит число 2116.

102 = 100

202 = 400

302 = 900

402 = 1600

502 = 2500 

Мы видим что, 2116 больше 1600, но меньше 2500.

Это значит, что число 2116 находится между 402и 502.

41, 42, 43, 44, 45, 46, 47, 48, 49.

Запомните лайфхак по вычислению всего на свете, что нужно возвести в квадрат.

Не секрет, что на последнем месте в любом числе может стоять только одна цифра от 1 до 0.


Как пользоваться таблицей

12 = 1

22 = 4

32 = 9

42 = 16 ⇒ 6

52 = 25 ⇒ 5

62 = 36 ⇒ 6

72 = 49 ⇒ 9

82 = 64 ⇒ 4

92 = 81 ⇒ 1

Мы знаем, что число 41, возведенное в квадрат, даст число, на конце которого — цифра 1.

Число, 42, возведенное в квадрат, даст число, на конце которого — цифра 4.

Число 43, возведенное в квадрат, даст число, на конце которого — 9.

Такая закономерность позволяет нам без записи «перебрать» все возможные варианты, исключая те, которые не дают нужную нам цифру 6 на конце.

Таким образом, у нас остаются два варианта: 442 и 462.

Далее вычисляем: 44 * 44 = 1936.

46 * 46 = 2116.

Ответ: √2116 = 46

Если такой способ показался не до конца понятным — можно потратить чуть больше времени и разложить число на множители. Если решить все правильно, получим такой же результат. 

Еще пример. Извлечем корень из числа √11664

Разложим число 11664 на множители: 

11666 : 4 = 2916

2916 : 4 = 729

729 : 3 = 243

243 : 3 = 81

11664

4

2916

4

729

3

243

3

81

81

Запишем выражение в следующем виде:


Извлечь квадратный корень из большого числа гораздо проще с помощью калькулятора. Но знать парочку таких способов «на экстренный случай» точно не повредит. Например, для контрольной или ЕГЭ.

Чтобы закрепить все теоретические знания, давайте ещё немного поупражняемся в решении примеров на арифметические квадратные корни.
 

В 8 классе примеров с корнями очень много. Это значит, что ничего не остается, как выучить все формулы и натренироваться так, чтобы самый оголтелый квадратный корень выпустил белый флаг и запросил пощады.

На уроках математики в онлайн-школе Skysmart ваш ребенок научится извлекать самые неподатливые и громоздкие корни. Записывайтесь на бесплатный вводный урок и учите алгебру с удовольствием.

Таблица корней

В данной статье мы с вами разберем такое понятие как квадратный корень, какие бывают виды корней, а так же рассмотрим таблицу корней и то как ей пользоваться.

Итак, что же такое квадратный корень. Для того чтобы это понять воспользуемся примерами из школьного курса и рассмотрим простое уравнение, типа: х2 = 4. Что бы его решить нужно понять какое число нужно возводить в квадрат для получения 4. Это не так уж и сложно так как таблица умножения подсказывает нам что это 2 либо -2. с целью упрощения математического решения и ввели понятие квадратного корня с присвоением ему специального символа ?.

Квадратным корнем положительного числа а, будет только положительное число квадрат от которого равняется а.

Как вы думаете почему а может быть только положительное число. Опять обратимся к примеру и найдем корень для ?(-9). И это будет 32 = 9, но не - 9, а если возьмем -3. Проверим (-3)2 = 9. Опять не получается и все это из-за того что не существует таких чисел, которые в квадрате давали бы число со знаком минус.

Можно заметить что квадратный корень в решении, может быть только положительным числом, но почему тогда в первом уравнении упоминалось как 2 так и -2? Объясняю, есть квадратные уравнения и арифметические квадратные корни от числа и это разные вещи. Например х2=4 не тоже самое что х=?4.

Да, в этом легко запутаться, но когда нужно только извлечь корень от какого либо числа, то в ответе получим исключительно положительный ответ.

Для удобства и быстроты нахождения решений, существует таблица корней, которая содержит в себе уже готовые извлеченные корни. Пользуйтесь!
Верхняя строка содержит единицы, а левый столбец десятки. К примеру вам необходимо узнать квадратный корень числа 54. Ищем десятки с левой стороны (это будет цифра 5), а единицы с верху (это будет цифра 4). При пересечении этих значений и находится нужный нам ответ который равен 6,7082.


Таблица корней от 0 до 99


Также есть таблица квадратов, не путайте с таблицей корней. Выглядит она так:


Она удобно если вам нужно сразу получить значение двухзначного числа в квадрате. К примеру, нужно возвести 89 в квадрат. Находим 8 слева, 9 сверху, на пересечении значение квадрата - 7921.

Чем больше вы будите работать с корнями, тем реже будите пользоваться данной таблицей. Так как все значения со временем запоминаются. Это как таблица умножения, которой мы пользуемся только для изучения и запоминания.

С корнями возможно производить только три действия и это:

- умножать,
- делить,
-возводить в степень.

Свойства и Примеры объединены и показаны в таблице.

Когда срочно нужна курсовая работа, а времени на её написание практически нет. Стоит обратиться за помощью, которая находиться на сайте http://zakazat-kursovuyu.ru/index.php/zakaz-kursovoj. Ценой и качеством Вы будите приятно удивленны.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Квадратный корень

Предварительные навыки

Основные сведения

Чтобы найти площадь квадрата, нужно длину его стороны возвести во вторую степень.

Найдём площадь квадрата, длина стороны которого 3 см

S = 32 = 9 см2

Теперь решим обратную задачу. А именно, зная площадь квадрата определим длину его стороны. Для этого воспользуемся таким инструментом как кóрень. Корень бывает квадратный, кубический, а также n-й степени.

Сейчас наш интерес вызывает квадратный корень. По другому его называют кóрнем второй степени.

Для нахождения длины стороны нашего квадрата, нужно найти число, вторая степень которого равна 9. Таковым является число 3. Это число и является кóрнем.

Введём для работы с корнями новые обозначения.

Символ кóрня выглядит как . Это по причине того, что слово корень в математике употребляется как радикал. А слово радикал происходит от латинского radix (что в переводе означает корень). Первая буква слова radix это r впоследствии преобразилась в символ корня .

Под корнем располагáют подкореннóе выражение. В нашем случае подкоренным выражением будет число 9 (площадь квадрата)

Нас интересовал квадратный корень (он же корень второй степени), поэтому слева над корнем указываем число 2. Это число называют показателем корня (или степенью корня)

Получили выражение, которое читается так: «квадратный корень из числа 9». С этого момента возникает новая задача по поиску самогó корня.

Если число 3 возвести во вторую степень, то получится число 9. Поэтому число 3 и будет ответом:

Значит квадрат площадью 9 см2 имеет сторону, длина которой 3 см. Приведённое действие называют извлечéнием квадрáтного кóрня.

Нетрудно догадаться, что квадратным корнем из числа 9 также является отрицательное число −3. При его возведении во вторую степень тоже получается число 9

Получается, что выражение  имеет два значения: 3 и −3. Но длина стороны квадрата не может быть отрицательным числом, поэтому для нашей задачи ответ будет только один, а именно 3.

Вообще, квадратный корень имеет два противоположных значения: положительное и отрицательное.

Например, извлечём квадратный корень из числа 4

Это выражение имеет два значения: 2 и −2, поскольку при возведении этих чисел во вторую степень, получится один и тот же результат 4

Поэтому ответ к выражению вида  записывают с плюсом и минусом. Плюс с минусом означает, что квадратный корень имеет два противоположных значения.

Запишем ответ к выражению  с плюсом и минусом:


Определения

Дадим определение квадратному корню.

Квадратным корнем из числа a называют такое число b, вторая степень которого равна a.

То есть число b должно быть таким, чтобы выполнялось равенство ba. Число b (оно же корень) обозначается через радикал  так, что . На практике левая и правая часть поменяны местами и мы видим привычное выражение 

Например, квадратным корнем из числá 16 есть число 4, поскольку число 4 во второй степени равно 16

42 = 16

Корень 4 можно обозначить через радикал  так, что .

Также квадратным корнем из числá 16 есть число −4, поскольку число −4 во второй степени равно 16

(−4)2 = 16

Если при решении задачи интересует только положительное значение, то корень называют не просто квадратным, а арифметическим квадратным.

Арифметический квадратный корень из числá a — это неотрицательное число b (b ≥ 0), при котором выполняется равенство ba.

В нашем примере квадратными корнями из числá 16 являются корни 4 и −4, но арифметическим из них является только корень 4.

В разговорном языке можно использовать сокращение. К примеру, выражение  полностью читается так: «квадратный корень из числá шестнадцать», а в сокращённом варианте можно прочитать так: «корень из шестнадцати».

Не следует путать понятия корень и квадрат. Квадрат это число, которое получилось в результате возведения какого-нибудь числá во вторую степень. Например, числа 25, 36, 49 являются квадратами, потому что они получились в результате возведения во вторую степень чисел 5, 6 и 7 соответственно.

Корнями же являются числа 5, 6 и 7. Они являются теми числами, которые во второй степени равны 25, 36 и 49 соответственно.

Чаще всего в квадратных корнях показатель кóрня вообще не указывается. Так, вместо записи можно использовать запись. Если в учебнике по математике встретится корень без показателя, то нужно понимать, что это квадратный корень.

Квадратный корень из единицы равен единице. То есть справедливо следующее равенство:

Это по причине того, что единица во второй степени равна единице:

12 = 1

и квадрат, состоящий из одной квадратной единицы, имеет сторону, равную единице:

Квадратный корень из нуля равен нулю. То есть справедливо равенство , поскольку 0= 0.

Выражение вида  смысла не имеет. Например, не имеет смысла выражение , поскольку вторая степень любого числа есть число положительное. Невозможно найти число, вторая степень которого будет равна −4.

Если выражение вида  возвести во вторую степень, то есть если записать , то это выражение будет равно подкореннóму выражению a

Например, выражение  равно 4

Это потому что выражение  равно значению 2. Но это значение сразу возвóдится во вторую степень и получается результат 4.

Еще примеры:

Корень из квадрата числá равен модулю этого числá:

Например, корень из числá 5, возведённого во вторую степень, равен модулю числá 5

Если во вторую степень возвóдится отрицательное число, ответ опять же будет положительным. Например, корень из числá −5, возведённого во вторую степень, равен модулю числá −5. А модуль числа −5 равен 5

Действительно, если не пользуясь правилом , вычислять выражение  обычным методом — сначала возвести число −5 во вторую степень, затем извлечь полученный результат, то полýчим ответ 5

Не следует путать правило  с правилом . Правило  верно при любом a, тогда как правило  верно в том случае, если выражение  имеет смысл.

В некоторых учебниках знак корня может выглядеть без верхней линии. Выглядит это так:

Примеры: √4, √9, √16.

Мéньшему числу соответствует мéньший корень, а бóльшему числу соответствует бóльший корень.

Например, рассмотрим числа 49 и 64. Число 49 меньше, чем число 64.

49 < 64

Если извлечь квадратные корни из этих чисел, то числу 49 будет соответствовать меньший корень, а числу 64 — бóльший. Действительно, √49 = 7, а √64 = 8,

√49 < √64

Отсюда:

7 < 8


Примеры извлечения квадратных корней

Рассмотрим несколько простых примеров на извлечение квадратных корней.

Пример 1. Извлечь квадратный корень √36

Данный квадратный корень равен числу, квадрат которого равен 36. Таковым является число 6, поскольку 6= 36

√36 = 6


Пример 2. Извлечь квадратный корень √49

Данный квадратный корень равен числу, квадрат которого равен 49. Таковым является число 7, поскольку 7= 49

√49 = 7

В таких простых примерах достаточно знать таблицу умножения. Так, мы помним, что число 49 входит в таблицу умножения на семь. То есть:

7 × 7 = 49

Но 7 × 7 это 72

7= 49

Отсюда, √49 = 7.


Пример 3. Извлечь квадратный корень √100

Данный квадратный корень равен числу, квадрат которого равен 100. Таковым является число 10, поскольку 102 = 100

√100 = 10

Число 100 это последнее число, корень которого можно извлечь с помощью таблицы умножения. Для чисел, бóльших 100, квадратные корни можно находить с помощью таблицы квадратов.


Пример 3. Извлечь квадратный корень √256

Данный квадратный корень равен числу, квадрат которого равен 256. Чтобы найти это число, воспользуемся таблицей квадратов.

Нахóдим в таблице квадратов число 256 и двигаясь от него влево и вверх определяем цифры, которые образуют число, квадрат которого равен 256.

Видим, что это число 16. Значит √256 = 16.


Пример 4. Найти значение выражения 2√16

В данном примере число 2 умножается на выражение с корнем. Сначала вычислим корень √16, затем перемнóжим его с числом 2


Пример 7. Решить уравнение 

В данном примере нужно найти значение переменной x, при котором левая часть будет равна 4.

Значение переменной x равно 16, поскольку . Значит корень уравнения равен 16.

Примечание. Не следует путать корень уравнения и квадратный корень. Корень уравнения это значение переменной, при котором уравнение обращается в верное числовое равенство. А квадратный корень это число, вторая степень которого равна выражению, находящемуся под радикалом .

Подобные примеры решают, пользуясь определением квадратного корня. Давайте и мы поступим так же.

Из определения мы знаем, что квадратный корень  равен числу b, при котором выполняется равенство ba.

Применим равенство ba к нашему примеру . Роль переменной b у нас играет число 4, а роль переменной a — выражение, находящееся под корнем , а именно переменная x

В выражении 4x вычислим левую часть, полýчим 16 = x. Поменяем левую и правую часть местами, полýчим = 16. В результате приходим к тому, что нашлось значение переменной x.


Пример 8. Решить уравнение 

Перенесем −8 в правую часть, изменив знак:

Возведем правую часть во вторую степень и приравняем её к переменной x

Вычислим правую часть, полýчим 64 = x. Поменяем левую и правую часть местами, полýчим = 64. Значит корень уравнения  равен 64


Пример 9. Решить уравнение 

Воспользуемся определением квадратного корня:

Роль переменной b играет число 7, а роль переменной a — подкореннóе выражение 3 + 5x. Возведем число 7 во вторую степень и приравняем его к 3 + 5x

В выражении 72 = 3 + 5x вычислим левую часть полýчим 49 = 3 + 5x. Получилось обычное линейное уравнение. Решим его:

Корень уравнения  равен . Выполним проверку, подставив его в исходное уравнение:


Пример 10. Найти значение выражения 

В этом выражении число 2 умножается на квадратный корень из числа 49.

Сначала нужно извлечь квадратный корень и перемножить его с числом 2


Приближённое значение квадратного корня

Не каждый квадратный корень можно извлечь. Извлечь квадратный корень можно только в том случае, если удаётся найти число, вторая степень которого равна подкореннóму выражению.

Например, извлечь квадратный корень  можно, потому что удаётся найти число, вторая степень которого равна подкореннóму выражению. Таковым является число 8, поскольку 8= 64. То есть

А извлечь квадратный корень  нельзя, потому что невозможно найти число, вторая степень которого равна 3. В таком случае говорят, что квадратный корень из числа 3 не извлекается.

Зато можно извлечь квадратный корень из числа 3 приближённо. Извлечь квадратный корень приближённо означает найти значение, которое при возведении во вторую степень будет максимально близко к подкореннóму выражению.

Приближённое значение ищут с определенной точностью: с точностью до целых, с точностью до десятых, с точностью до сотых и так далее.

Найдём значение корня  приближённо с точностью до десятых. Словосочетание «с точностью до десятых» говорит о том, что приближённое значение корня  будет представлять собой десятичную дробь, у которой после запятой одна цифра.

Для начала найдём ближайшее меньшее число, корень которого можно извлечь. Таковым является число 1. Корень из этого числа равен самому этому числу:

√1 = 1

Аналогично находим ближайшее бóльшее число, корень которого можно извлечь. Таковым является число 4. Корень из этого числа равен 2

√4 = 2

√1 меньше, чем √4

√1 < √4

А √3 больше, чем √1 но меньше, чем √4. Запишем это в виде двойного неравенства:

√1 < √3 < √4

Точные значения корней √1 и √4 известны. Это числа 1 и 2

1 < √3 < 2

Тогда очевидно, что значение корня √3 будет представлять собой десятичную дробь, потому что между числами 1 и 2 нет целых чисел.

Для нахождения приближённого значения квадратного корня √3 будем проверять десятичные дроби, располагающиеся в интервале от 1 до 2, возводя их в квадрат. Делать это будем до тех пор пока не полýчим значение, максимально близкое к 3. Проверим к примеру дробь 1,1

1,12 = 1,21

Получился результат 1,21, который не очень близок к подкореннóму выражению 3. Значит 1,1 не годится в качестве приближённого значения квадратного корня √3, потому что оно малó.

Проверим тогда дробь 1,8

1,82 = 3,24

Получился результат 3,24, который близок к подкореннóму выражению, но превосходит его на 0,24. Значит 1,8 не годится в качестве приближенного значения корня √3, потому что оно великó.

Проверим тогда дробь 1,7

1,72 = 2,89

Получился результат 2,89, который уже близок к подкореннóму выражению. Значит 1,7 и будет приближённым значением квадратного корня √3. Напомним, что знак приближенного значения выглядит как ≈

√3 ≈ 1,7

Значение 1,6 проверять не нужно, потому что в результате получится число 2,56, которое дальше от трёх, чем значение 2,89. А значение 1,8, как было показано ранее, является уже большим.

В данном случае мы нашли приближенное значение корня √3 с точностью до десятых. Значение можно получить ещё более точно. Для этого его следует находить с точностью до сотых.

Чтобы найти значение с точностью до сотых проверим десятичные дроби в интервале от 1,7 до 1,8

1,7 < √3 < 1,8

Проверим дробь 1,74

1,742 = 3,0276

Получился результат 3,0276, который близок к подкореннóму выражению, но превосходит его на 0,0276. Значит значение 1,74 великó для корня √3.

Проверим тогда дробь 1,73

1,732 = 2,9929

Получился результат 2,9929, который близок к подкореннóму выражению √3. Значит 1,73 будет приближённым значением квадратного корня √3 с точностью до сотых.

Процесс нахождения приближённого значения квадратного корня продолжается бесконечно. Так, корень √3 можно находить с точностью до тысячных, десятитысячных и так далее:

√3 = 1,732 (вычислено с точностью до тысячных)

√3 = 1,7320 (вычислено с точностью до десятитысячных)

√3 = 1,73205 (вычислено с точностью до ста тысячных).

Ещё квадратный корень можно извлечь с точностью до целых. Приближённое значение квадратного корня √3 с точностью до целых равно единице:

√3 ≈ 1

Значение 2 будет слишком большим, поскольку при возведении этого числа во вторую степень получается число 4, которое больше подкоренного выражения. Нас же интересуют значения, которые при возведении во вторую степень равны подкореннóму выражению или максимально близки к нему, но не превосходят его.

В зависимости от решаемой задачи допускается находить значение, вторая степень которого больше подкоренного выражения. Это значение называют приближённым значением квадратного корня с избытком. Поговорим об этом подробнее.


Приближенное значение квадратного корня с недостатком или избытком

Иногда можно встретить задание, в котором требуется найти приближённое значение корня с недостатком или избытком.

В предыдущей теме мы нашли приближённое значение корня √3 с точностью до десятых с недостатком. Недостаток понимается в том смысле, что до значения 3 нам недоставало ещё некоторых частей. Так, найдя приближённое значение √3 с точностью до десятых, мы получили 1,7. Это значение является значением с недостатком, поскольку при возведении этого числа во вторую степень полýчим результат 2,89. Этому результату недостаёт ещё 0,11 чтобы получить число 3. То есть, 2,89 + 0,11 = 3.

С избытком же называют приближённые значения, которые при возведении во вторую степень дают результат, который превосходит подкореннóе выражение. Так, вычисляя корень √3 приближённо, мы проверили значение 1,8. Это значение является приближённым значением корня √3 с точностью до десятых с избытком, поскольку при возведении 1,8 во вторую степень, получаем число 3,24. Этот результат превосходит подкореннóе выражение на 0,24. То есть 3,24 − 3 = 0,24.

Приближённое значение квадратного корня √3 с точностью до целых тоже был найден с недостатком:

√3 ≈ 1

Это потому что при возведении единицы в квадрат получаем единицу. То есть до числа 3 недостаёт ещё 2.

Приближённое значение квадратного корня √3 с точностью до целых можно найти и с избытком. Тогда этот корень приближённо будет равен 2

√3 ≈ 2

Это потому что при возведении числа 2 в квадрат получаем 4. Число 4 превосходит подкореннóе выражение 3 на единицу. Извлекая приближённо квадратный корень с избытком желательно уточнять, что корень извлечен именно с избытком:

√3 ≈ 2 (с избытком)

Потому что приближённое значение чаще всего ищется с недостатком, чем с избытком.

Дополнительно следует упомянуть, что в некоторых учебниках словосочетания «с точностью до целых», «с точностью до десятых», с «точностью до сотых», заменяют на словосочетания «с точностью до 1», «с точностью до 0,1», «с точностью до 0,01» соответственно.

Так, если в задании сказано извлечь квадратный корень из числа 5 с точностью до 0,01, то это значит что корень следует извлекать приближённо с точностью до сотых:

√5 ≈ 2,23


Пример 2. Извлечь квадратный корень из числа 51 с точностью до 1

√51 ≈ 7


Пример 3. Извлечь квадратный корень из числа 51 с точностью до 0,1

√51 ≈ 7,1

Пример 4. Извлечь квадратный корень из числа 51 с точностью до 0,01

√51 ≈ 7,14


Границы, в пределах которых располагаются корни

Если исходное число принадлежит промежутку [1; 100], то квадратный корень из этого исходного числа будет принадлежать промежутку [1; 10].

Например, пусть исходным числом будет 64. Данное число принадлежит промежутку [1; 100]. Сразу делаем вывод, что квадратный корень из числа 64 будет принадлежать промежутку [1; 10]. Теперь вспоминаем таблицу умножения. Какое перемножение двух одинаковых сомножителей даёт в результате 64? Ясно, что перемножение 8 × 8, а это есть 8= 64. Значит квадратный корень из числа 64 есть 8


Пример 2. Извлечь квадратный корень из числа 49

Число 49 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 7, поскольку 7= 49

√49 = 7


Пример 2. Извлечь квадратный корень из числа 1

Число 1 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 1, поскольку 1= 1

√1 = 1


Пример 3. Извлечь квадратный корень из числа 100

Число 100 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 10, поскольку 10= 100

√100 = 10

Понятно, что промежуток [1; 100] содержит ещё и числа, квадратные корни из которых не извлекаются. Для таких чисел корень нужно извлекать приближённо. Тем не менее, приближённый корень тоже будет располагаться в пределах промежутка [1; 10].

Например, извлечём квадратный корень из числа 37. Нет целого числа, вторая степень которого была бы равна 37. Поэтому извлекать квадратный корень следует приближённо. Извлечём его к примеру с точностью до сотых:

√37 ≈ 6,08

Для облегчения можно находить ближайшее меньшее число, корень из которого извлекается. Таковым в данном примере было число 36. Квадратный корень из него равен 6. И далее отталкиваясь от числа 6, можно находить приближённое значение корня √37, проверяя различные десятичные дроби, целая часть которых равна 6.

Квадраты чисел от 1 до 10 обязательно нужно знать наизусть. Ниже представлены эти квадраты:

12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
102 = 100

И обратно, следует знать значения квадратных корней этих квадратов:

Если к любому числу от 1 до 10 в конце дописать ноль (или несколько нулей), и затем возвести это число во вторую степень, то в полученном числе будет в два раза больше нулей.

Например, 6= 36. Допишем к числу 6 один ноль, полýчим 60. Возведём число 60 во вторую степень, полýчим 3600

60= 3600

А если к числу 6 дописать два нуля, и возвести это число во вторую степень, то полýчим число, в котором четыре нуля. То есть в два раза больше нулей:

6002 = 360000

Тогда можно сделать следующий вывод:

Если исходное число содержит знакомый нам квадрат и чётное количество нулей, то можно извлечь квадратный корень из этого числа. Для этого следует извлечь корень из знакомого нам квадрата и затем записать половину количества нулей из исходного числа.

Например, извлечём квадратный корень из числа 900. Видим, что в данном числе есть знакомый нам квадрат 9. Извлекаем из него корень, получаем 3

Теперь из исходного числа записываем половину от количества нулей. В исходном числе 900 содержится два нуля. Половина этого количества нулей есть один ноль. Записываем его в ответе после цифры 3


Пример 2. Извлечём квадратный корень из числа 90000

Здесь опять же имеется знакомый нам квадрат 9 и чётное количество нулей. Извлекаем корень из числа 9 и записываем половину от количества нулей. В исходном числе содержится четыре нуля. Половиной же этого количества нулей будет два нуля:


Пример 3. Извлечем квадратный корень из числа 36000000

Здесь имеется знакомый нам квадрат 36 и чётное количество нулей. Извлекаем корень из числа 36 и записываем половину от количества нулей. В исходном числе шесть нулей. Половиной же будет три нуля:


Пример 4. Извлечем квадратный корень из числа 2500

Здесь имеется знакомый нам квадрат 25 и чётное количество нулей. Извлекаем корень из числа 25 и записываем половину от количества нулей. В исходном числе два нуля. Половиной же будет один ноль:


Если подкореннóе число увеличить (или уменьшить) в 100, 10000 то корень увеличится (или уменьшится) в 10, 100 раз соответственно.

Например, . Если увеличим подкореннóе число в 100 раз, то квадратный корень увеличится в 10 раз:

И наоборот, если в равенстве  уменьшим подкореннóе число в 100 раз, то квадратный корень уменьшится в 10 раз:

Пример 2. Увеличим в равенстве  подкореннóе число в 10000, тогда квадратный корень 70 увеличиться в 100 раз

Пример 3. Уменьшим в равенстве  подкореннóе число в 100 раз, тогда квадратный корень 70 уменьшится в 10 раз

Эта закономерность позволяет извлечь квадратный корень из десятичной дроби, если в данной дроби после запятой содéржатся две цифры, и эти две цифры образуют знакомый нам квадрат. В таких случаях данную десятичную дробь следует умножить на 100. Затем извлечь квадратный корень из получившегося числа и уменьшить подкореннóе число в сто раз.

Например, извлечём квадратный корень из числа 0,25. В данной десятичной дроби после запятой содержатся две цифры и эти две цифры образуют знакомый нам квадрат 25.

Умнóжим десятичную дробь 0,25 на 100, полýчим 25. А из числа 25 квадратный корень извлекается легко:

Но нам изначально нужно было извлечь корень из 0,25, а не из 25. Чтобы исправить ситуацию, вернём нашу десятичную дробь. Если в равенстве  подкореннóе число уменьшить в 100 раз, то полýчим под корнем 0,25 и соответственно ответ уменьшится в 10 раз:

Обычно в таких случаях достаточно уметь передвигáть запятую. Потому что сдвинуть в числе запятую вправо на две цифры это всё равно что умножить это число на 100.

В предыдущем примере в подкоренном числе 0,25 можно было сдвинуть запятую вправо на две цифры, а в полученном ответе сдвинуть её влево на одну цифру.

Например, извлечем корень из числа 0,81. Мысленно передвинем запятую вправо на две цифры, полýчим 81. Теперь извлечём квадратный корень из числа 81, полýчим ответ 9. В ответе 9 передвинем запятую влево на одну цифру, полýчим 0,9. Значит, .

Это правило работает и в ситуации, когда после запятой содержатся четыре цифры и эти цифры образуют знакомый нам квадрат.

Например, десятичная дробь 0,1225 содержит после запятой четыре цифры. Эти четыре цифры образуют число 1225, квадратный корень из которого равен 35.

Тогда можно извлечь квадратный корень и из 0,1225. Умнóжим данную десятичную дробь на 10000, полýчим 1225. Из числа 1225 квадратный корень можно извлечь с помощью таблицы квадратов:

Но нам изначально нужно было извлечь корень из 0,1225, а не из 1225. Чтобы исправить ситуацию, в равенстве  подкореннóе число уменьшим в 10000 раз. В результате под корнем образуется десятичная дробь 0,1225, а правая часть уменьшится в 100 раз

Эта же закономерность будет работать и при извлечении корней из дробей вида 12,25. Если цифры из которых состоит десятичная дробь образуют знакомый нам квадрат, при этом после запятой содержится чётное количество цифр, то можно извлечь корень из этой десятичной дроби.

Умнóжим десятичную дробь 12,25 на 100, полýчим 1225. Извлечём корень из числа 1225

Теперь в равенстве уменьшим подкореннóе число в 100 раз. В результате под корнем образуется число 12,25, и соответственно ответ уменьшится в 10 раз


Если исходное число принадлежит промежутку [100; 10000], то квадратный корень из этого исходного числа будет принадлежать промежутку [10; 100].

В этом случае применяется таблица квадратов:

Например, пусть исходным числом будет 576. Данное число принадлежит промежутку [100; 10000]. Сразу делаем вывод, что квадратный корень из числа 576 будет принадлежать промежутку [10; 100]. Теперь открываем таблицу квадратов и смотрим какое число во второй степени равно 576

Видим, что это число 24. Значит .


Пример 2. Извлечь квадратный корень из числа 432.

Число 432 принадлежит промежутку [100; 10000]. Значит квадратный корень следует искать в промежутке [10; 100]. Открываем таблицу квадратов и смотрим какое число во второй степени равно 432. Обнаруживаем, что число 432 в таблице квадратов отсутствует. В этом случае квадратный корень следует искать приближённо.

Извлечем квадратный корень из числа 432 с точностью до десятых.

В таблице квадратов ближайшее меньшее число к 432 это число 400. Квадратный корень из него равен 20. Отталкиваясь от числа 20, будем проверять различные десятичные дроби, целая часть которых равна 20.

Проверим, например, число 20,8. Для этого возведём его в квадрат:

20,82 = 432,64

Получилось число 432,64 которое превосходит исходное число 432 на 0,64. Видим, что значение 20,8 великó для корня √432. Проверим тогда значение 20,7

20,7= 428,49

Значение 20,7 годится в качестве корня, поскольку в результате возведения этого числа в квадрат получается число 428,49, которое меньше исходного числа 432, но близко к нему. Значит √432 ≈ 20,7.

Необязательно запоминать промежутки чтобы узнать в каких границах располагается корень. Можно воспользоваться методом нахождения ближайших квадратов с чётным количеством нулей на конце.

Например, извлечём корень из числа 4225. Нам известен ближайший меньший квадрат 3600, и ближайший больший квадрат 4900

3600 < 4225 < 4900

Извлечём квадратные корни из чисел 3600 и 4900. Это числа 60 и 70 соответственно:

Тогда можно понять, что квадратный корень из числа 4225 располагается между числами 60 и 70. Можно даже найти его методом подбора. Корни 60 и 70 исключаем сразу, поскольку это корни чисел 3600 и 4900. Затем можно проверить, например, корень 64. Возведём его в квадрат (или умнóжим данное число само на себя)

Корень 64 не годится. Проверим корень 65

Получается 4225. Значит 65 является корнем числа 4225


Тождественные преобразования с квадратными корнями

Над квадратными корнями можно выполнять различные тождественные преобразования, тем самым облегчая их вычисление. Рассмотрим некоторые из этих преобразований.

Квадратный корень из произведения

Квадратный корень из произведения это выражение вида , где a и b некоторые числа.

Например, выражение  является квадратным корнем из произведения чисел 4 и 9.

Чтобы извлечь такой квадратный корень, нужно по отдельности извлечь квадратные корни из множителей 4 и 9, представив выражение  в виде произведения корней . Вычислив по отдельности эти корни полýчим произведение 2 × 3, которое равно 6

Конечно, можно не прибегать к таким манипуляциям, а вычислить сначала подкореннóе выражение 4 × 9, которое равно 36. Затем извлечь квадратный корень из числа 36

Но при извлечении квадратных корней из больших чисел это правило может оказаться весьма полезным.

Допустим, потребовалось извлечь квадратный корень из числа 144. Этот корень легко определяется с помощью таблицы квадратов — он равен 12

Но предстáвим, что таблицы квадратов под рукой не оказалось. В этом случае число 144 можно разложить на простые множители. Затем из этих простых множителей составить числа, квадратные корни из которых извлекаются.

Итак, разлóжим число 144 на простые множители:

Получили следующее разложение:

В разложéнии содержатся четыре двойки и две тройки. При этом все числа, входящие в разложение, перемнóжены. Это позволяет предстáвить произведения одинаковых сомножителей в виде степени с показателем 2.

Тогда четыре двойки можно заменить на запись 2× 22, а две тройки заменить на 32

В результате будем иметь следующее разложение:

Теперь можно извлекáть квадратный корень из разложения числа 144

Применим правило извлечения квадратного корня из произведения:

Ранее было сказано, что если подкореннóе выражение возведенó во вторую степень, то такой квадратный корень равен модулю из подкореннóго выражения.

Тогда получится произведение 2 × 2 × 3, которое равно 12

Простые множители представляют в виде степени для удобства и короткой записи. Допускается также записывать их под кóрнем как есть, чтобы впоследствии перемнóжив их, получить новые сомножители.

Так, разложив число 144 на простые множители, мы получили разложение 2 × 2 × 2 × 2 × 3 × 3. Это разложение можно записать под кóрнем как есть:

затем перемнóжить некоторые сомножители так, чтобы получились числа, квадратные корни из которых извлекаются. В данном случае можно дважды перемнóжить две двойки и один раз перемнóжить две тройки:

Затем применить правило извлечения квадратного корня из произведения и получить окончательный ответ:

С помощью правила извлечения квадратного корня из произведения можно извлекать корень и из других больших чисел. В том числе, из тех чисел, которых нет в таблице квадратов.

Например, извлечём квадратный корень из числа 13456. Этого числа нет в таблице квадратов, поэтому воспользуемся правилом извлечения квадратного корня из произведения, предварительно разложив число 13456 на простые множители.

Итак, разложим число 13456 на простые множители:

В разложении имеются четыре двойки и два числа 29. Двойки дважды предстáвим как 22. А два числа 29 предстáвим как 292. В результате полýчим следующее разложение числа 13456

Теперь будем извлекать квадратный корень из разложения числа 13456

Итак, если ≥ 0 и ≥ 0, то . То есть корень из произведения неотрицательных множителей равен произведению корней из этих множителей.

Докажем равенство . Для этого воспользуемся определением квадратного корня.

Согласно определению, квадратным корня из числа a есть число b, при котором выполняется равенство b= a.

В нашем случае нужно удостовериться, что правая часть равенства  при возведении во вторую степень даст в результате подкореннóе выражение левой части, то есть выражение ab.

Итак, выпишем правую часть равенства  и возведём ее во вторую степень:

Теперь воспользуемся правилом возведения в степень произведения. Согласно этому правилу, каждый множитель данного произведения нужно возвести в указанную степень:

Ранее было сказано, что если выражение вида  возвести во вторую степень, то получится подкореннóе выражение. Применим это правило. Тогда полýчим ab. А это есть подкореннóе выражение квадратного корня

Значит равенство  справедливо, поскольку при возведéнии правой части во вторую степень, получается подкореннóе выражение левой части.

Правило извлечения квадратного корня из произведения работает и в случае, если под кóрнем располагается более двух множителей. То есть справедливым будет следующее равенство:

, при ≥ 0 и ≥ 0, ≥ 0.


Пример 1. Найти значение квадратного корня 

Запишем корень в виде произведения корней, извлечём их, затем найдём значение полученного произведения:


Пример 2. Найти значение квадратного корня 

Предстáвим число 250 в виде произведения чисел 25 и 10. Делать это будем под знáком корня:

Теперь под кóрнем образовалось два одинаковых множителя 10 и 10. Перемнóжим их, полýчим 100

Далее применяем правило извлечения квадратного кóрня из произведения и получáем окончательный ответ:


Пример 3. Найти значение квадратного корня 

Воспользуемся правилом возведения степени в степень. Степень 114 предстáвим как (112)2.

Теперь воспользуемся правилом извлечения квадратного кóрня из квадрата числа:

В нашем случае квадратный корень из числа (112)2 будет равен 112. Говоря простым языком, внешний показатель степени 2 исчезнет, а внутренний останется:

Далее возводим число 11 во вторую степень и получаем окончательный ответ:

Этот пример также можно решить, воспользовавшись правилом извлечения квадратного корня из произведения. Для этого подкореннóе выражение 114 нужно записать в виде произведения 11× 112. Затем извлечь квадратный корень из этого произведения:


Пример 4. Найти значение квадратного корня

Перепишем степень 34 в виде (32)2, а степень 56 в виде (53)2

Далее используем правило извлечения квадратного кóрня из произведения:

Далее используем правило извлечения квадратного кóрня из квадрата числа:

Вычислим произведение получившихся степеней и полýчим окончательный ответ:


Сомножители, находящиеся под корнем, могут быть десятичными дробями. Например, извлечём квадратный корень из произведения

Запишем корень  в виде произведения корней, извлечём их, затем найдём значение полученного произведения:


Пример 6. Найти значение квадратного корня


Пример 7. Найти значение квадратного корня


Если первый сомножитель умножить на число n, а второй сомножитель разделить на это число n, то произведение не изменится.

Например, произведение 8 × 4 равно 32

8 × 4 = 32

Умнóжим сомножитель 8 скажем на число 2, а сомножитель 4 раздéлим на это же число 2. Тогда получится произведение 16 × 2, которое тоже равно 32.

(8 × 2) × (4 : 2) = 32

Это свойство полезно при решении некоторых задач на извлечение квадратных корней. Сомножители подкореннóго выражения можно умнóжить и разделить так, чтобы корни из них извлекались.

Например, извлечём квадратный корень из произведения . Если сразу воспользоваться правилом извлечения квадратного корня из произведения, то не полýчится извлечь корни √1,6 и √90, потому что они не извлекаются.

Проанализировав подкореннóе выражение 1,6 × 90, можно заметить, что если первый сомножитель 1,6 умножить на 10, а второй сомножитель 90 разделить на 10, то полýчится произведение 16 × 9. Из такого произведения квадратный корень можно извлечь, пользуясь правилом извлечения квадратного корня из произведения.

Запишем полное решение данного примера:

Процесс умножения и деления можно выполнять в уме. Также можно пропустить подробную запись извлечения квадратного корня из каждого сомножителя. Тогда решение станóвится короче:


Пример 9. Найти значение квадратного корня

Умнóжим первый сомножитель на 10, а второй раздéлим на 10. Тогда под кóрнем образуется произведение 36 × 0,04, квадратный корень из которого извлекается:


Если в равенстве поменять местами левую и правую часть, то полýчим равенство . Это преобразовáние позволяет упрощáть вычисление некоторых корней.

Например, узнáем чему равно значение выражения .

Квадратные корни из чисел 10 и 40 не извлекаются. Воспользуемся правилом , то есть заменим выражение из двух корней  на выражение с одним корнем, под которым будет произведение из чисел 10 и 40

Теперь найдём значение произведения, находящегося под корнем:

А квадратный корень из числа 400 извлекается. Он равен 20

Сомножители, располагáющиеся под корнем, можно расклáдывать на множители, группировáть, представлять в виде степени, а также перемножáть для получения новых сомножителей, корни из которых извлекаются.

Например, найдём значение выражения .

Воспользуемся правилом

Сомножитель 32 это 25. Предстáвим этот сомножитель как 2 × 24

Перемнóжим сомножители 2 и 2, полýчим 4. А сомножитель 24 предстáвим в виде степени с показателем 2

Теперь воспóльзуемся правилом и вычислим окончательный ответ:


Пример 12. Найти значение выражения

Воспользуемся правилом

Сомножитель 8 это 2 × 2 × 2, а сомножитель 98 это 2 × 7 × 7

Теперь под кóрнем имеются четыре двойки и две семёрки. Четыре двойки можно записать как 2× 22, а две семёрки как 72

Теперь воспользуемся правилом и вычислим окончательный ответ:


Квадратный корень из дроби

Квадратный корень вида равен дроби, в числителе которой квадратный корень из числа a, а в знаменателе — квадратный корень из числа b

Например, квадратный корень из дроби  равен дроби, в числителе которой квадратный корень из числа 4, а в знаменателе — квадратный корень из числа 9

Вычислим квадратные корни в числителе и знаменателе:

Значит, квадратный корень из дроби равен .

Докáжем, что равенство является верным.

Возведём правую часть во вторую степень. Если в результате полýчим дробь , то это будет означать, что равенство верно:


Пример 1. Извлечь квадратный корень 

Воспользуемся правилом извлечения квадратного корня из дроби:


Пример 2. Извлечь квадратный корень 

Переведём подкореннóе выражение в неправильную дробь, затем воспользуемся правилом извлечения квадратного корня из дроби:


Пример 3. Извлечь квадратный корень

Квадратным корнем из числа 0,09 является 0,3. Но можно извлечь этот корень, воспользовавшись правилом извлечения квадратного корня из дроби.

Предстáвим подкоренное выражение в виде обыкновенной дроби. 0,09 это девять сотых:

Теперь можно воспользоваться правилом извлечения квадратного корня из дроби:


Пример 4. Найти значение выражения 

Извлечём корни из 0,09 и 0,25, затем сложим полученные результаты:

Также можно воспользоваться правилом извлечения квадратного корня из дроби:

В данном примере первый способ оказался проще и удобнее.


Пример 5. Найти значение выражения 

Сначала вычислим квадратный корень, затем перемнóжим его с 10. Получившийся результат вычтем из 4


Пример 6. Найти значение выражения 

Сначала найдём значение квадратного корня . Он равен 0,6 поскольку 0,6= 0,36

Теперь вычислим получившееся выражение. Согласно порядку действий, сначала надо выполнить умножение, затем сложение:


Вынесение множителя из-под знака корня

В некоторых задачах может быть полезным вынесение множителя из-под знака корня.

Рассмотрим квадратный корень из произведения . Согласно правилу извлечения квадратного корня из произведения, нужно извлечь квадратный корень из каждого множителя данного произведения:

В нашем примере квадратный корень извлекается только из множителя 4. Его мы извлечём, а выражение  оставим без изменений:

Это и есть вынесение множителя из-под знака корня.

На практике подкореннóе выражение чаще всего требуется разложить на множители.


Пример 2. Вынести множитель из-под знака корня в выражении

Разлóжим подкореннóе выражение на множители 9 и 2. Тогда полýчим:

Теперь воспользуемся правило извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 9. Множитель 2 остáвим под кóрнем:


Пример 3. Вынести множитель из-под знака корня в выражении

Разлóжим подкореннóе выражение на множители 121 и 3. Тогда полýчим:

Теперь воспользуемся правилом извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 121. Выражение √3 остáвим под корнем:


Пример 4. Вынести множитель из-под знака корня в выражении

Воспользуемся правилом извлечения квадратного корня из произведения:

Квадратный корень извлекается только из числа 121. Извлечём его, а выражение √15 оставим без изменений:

Получается, что множитель 11 вынесен из-под знака корня. Вынесенный множитель принято записывать до выражения с корнем. Поменяем выражения √15 и 11 местами:


Пример 5. Вынести множитель из-под знака корня в выражении

Разлóжим подкореннóе выражение на множители 4 и 3

Воспользуемся правилом извлечения квадратного корня из произведения:

Извлечём корень из числа 4, а выражение √3 остáвим без изменений:


Пример 6. Упростить выражение 

Предстáвим второе слагаемое в виде . А третье слагаемое предстáвим в виде

Теперь в выражениях и вынесем множитель из-под знака корня:

Во втором слагаемом перемнóжим числа −4 и 4. Остальное перепишем без изменений:

Замечáем, что получившемся выражении квадратный корень √3 является общим множителем. Вынесем его за скобки:

Вычислим содержимое скобок, полýчим −1

Если множителем является −1, то записывают только минус. Единица опускается. Тогда полýчим окончательный ответ −√3


Внесение множителя под знак корня

Рассмотрим следующее выражение:

В этом выражении число 5 умнóжено на квадратный корень из числа 9. Найдём значение этого выражения.

Сначала извлечём квадратный корень, затем перемнóжим его с числом 5.

Квадратный корень из 9 равен 3. Перемнóжим его с числом 5. Тогда полýчим 15

Число 5 в данном случае было множителем. Внесём этот множитель под знак корня. Но сделать это нужно таким образом, чтобы в результате наших действий значение исходного выражения не изменилось. Проще говоря, после внесения множителя 5 под знак корня, получившееся выражение по-прежнему должно быть равно 15.

Значение выражения не изменится, если число 5 возвести во вторую степень и только тогда внести его под корень:

Итак, если данó выражение , и нужно внести множитель a под знак корня, то надо возвести во вторую степень множитель a и внести его под корень:

Пример 1. Внести множитель под знак корня в выражении

Возведём число 7 во вторую степень и внесём его под знак корня:


Пример 2. Внести множитель под знак корня в выражении 

Возведём число 10 во вторую степень и внесем его под знак корня:


Пример 3. Внести множитель под знак корня в выражении 

Вносить под знак корня можно только положительный множитель. Ранее было сказано, что выражение вида  не имеет смысла.

Однако, если перед знаком кóрня располагается отрицательный множитель, то минус можно оставить за знáком корня, а самó число внести под знак корня.

Пример 4. Внести множитель по знак корня в выражении 

В этом примере под знак корня внóсится только 3. Минус остаётся за знáком корня:


Пример 5. Выполнить возведéние в степень в следующем выражении:

Воспользуемся формулой квадрата суммы двух выражений:

(a + b)2 = a+ 2ab + b2

Роль переменной a в данном случае играет выражение √3, роль переменной b — выражение √2. Тогда полýчим:

Теперь необходимо упростить получившееся выражение.

Для выражений и  применим правило . Ранее мы говорили, что если выражение вида  возвести во вторую степень, то это выражение будет равно подкореннóму выражению a.

А в выражении для множителей и применим правило . То есть заменим произведение корней на один общий корень:

Приведём подобные слагаемые. В данном случае можно сложить слагаемые 3 и 2. А в слагаемом вычислить произведение, которое под кóрнем:


 

Задания для самостоятельного решения

Задание 1. Найдите значение квадратного корня:

Решение:

Задание 2. Найдите значение квадратного корня:

Решение:

Задание 3. Найдите значение квадратного корня:

Решение:

Задание 4. Найдите значение выражения:

Решение:

Задание 5. Найдите значение квадратного корня:

Решение:

Задание 6. Найдите значение квадратного корня:

Решение:

Задание 7. Найдите значение квадратного корня:

Решение:

Задание 8. Найдите значения следующих выражений:

Решение:

Задание 9. Извлеките квадратный корень из числа 4624

Решение:

Задание 10. Извлеките квадратный корень из числа 11025

Решение:

Задание 11. Найдите значение квадратного корня:

Решение:

Задание 12. Найдите значение квадратного корня:

Решение:

Задание 13. Найдите значение квадратного корня:

Решение:

Задание 14. Найдите значение квадратного корня:

Решение:

Задание 15. Найдите значение квадратного корня:

Решение:

Задание 16. Найдите значение выражения:

Решение:

Задание 17. Найдите значение выражения:

Решение:

Задание 18. Найдите значение выражения:

Решение:

Задание 19. Найдите значение выражения:

Решение:

Задание 20. Найдите значение выражения:

Решение:

Задание 21. Найдите значение выражения:

Решение:

Задание 22. Найдите значение выражения:

Решение:

Задание 23. Найдите значение выражения:

Решение:

Задание 24. Найдите значение выражения:

Решение:

Задание 25. Найдите значение выражения:

Решение:

Задание 26. Найдите значение выражения:

Решение:

Задание 27. Найдите значение выражения:

Решение:

Задание 28. Найдите значение выражения:

Решение:

Задание 29. Найдите значение выражения:

Решение:

Задание 30. Найдите значение выражения:

Решение:

Задание 31. Найдите значение выражения:

Решение:

Задание 32. Найдите значение выражения:

Решение:

Задание 33. Найдите значение выражения:

Решение:

Задание 34. Вынести множитель из-под знака корня:

Решение:

Задание 35. Вынести множитель из-под знака корня:

Решение:

Задание 36. Вынести множитель из-под знака корня:

Решение:

Задание 37. Вынести множитель из-под знака корня:

Решение:

Задание 38. Вынести множитель из-под знака корня:

Решение:

Задание 39. Вынести множитель из-под знака корня:

Решение:

Задание 40. Вынести множитель из-под знака корня:

Решение:

Задание 41. Вынести множитель из-под знака корня:

Решение:

Задание 42. Вынести множитель из-под знака корня:

Решение:

Задание 43. Вынести множитель из-под знака корня:

Решение:

Задание 44. Вынести множитель из-под знака корня в следующих выражениях:

Решение:

Задание 45. Внести множитель под знак корня:

Решение:

Задание 46. Внести множитель под знак корня:

Решение:

Задание 47. Внести множитель под знак корня:

Решение:

Задание 48. Внести множитель под знак корня:

Решение:

Задание 49. Внести множитель под знак корня:

Решение:

Задание 50. Внести множитель под знак корня в следующих выражениях:

Решение:

Задание 51. Упростить выражение:

Решение:

Задание 52. Упростить выражение:

Решение:

Задание 53. Упростить выражение:

Решение:

Задание 54. Упростить выражение:

Решение:

Задание 55. Упростить выражение:

Решение:

Задание 56. Упростить выражение:

Решение:

Задание 57. Упростить выражение:

Решение:

Задание 58. Упростить выражение:

Решение:

Задание 59. Упростить выражение:

Решение:

Задание 60. Упростить выражение:

Решение:


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

что это такое в алгебре, как извлекать

Извлечение корней при помощи таблицы

Квадратные корни

Арифметический квадратный корень из неотрицательного числа a — неотрицательное число t, квадрат которого равен числу а.3=a\)

В отличие от квадратного корня, в решении корней кубических ответ всегда один. Если исходное число положительное, то и корень будет положительным. Если кубический корень извлечен из отрицательного числа, то и он сам будет отрицательным.

Для нахождения кубических корней тоже есть таблицы. Они бывают разных масштабов, но чаще всего используют стандартную для чисел от 0 до 99. В ней также десятки расположены в строках, а единицы — в столбцах.

Помимо таблиц корней второй и третьей степени существуют таблицы для более высоких степеней, но обычно при вычислениях ими не пользуются.

Примечание

В обеих таблицах не приведены абсолютно точные значения — все они округлены до пятого знака после запятой. Поэтому, если необходимы значения более высокой степени точности, следует воспользоваться калькулятором или другим вычислительным устройством. 

Особенности использования для квадратных и кубических корней

Таблицы квадратных и кубических корней используются по одному принципу. Однако, так как одна степень — четная, а другая нет, существуют различия в том, как решать выражения с этими корнями.

Из определения арифметического квадратного корня следует, что подкоренное число не может быть отрицательным. Это ввели для того, чтобы сделать понятие корня однозначным. Однако есть более широкое понятие алгебраического квадратного корня.

Алгебраический квадратный корень — корень второй степени, для которого не требуется извлечение из положительного числа и положительное значение самого корня. 

При работе с таблицей стоит учитывать, какой именно квадратный корень нужно найти — арифметический или алгебраический.

В первом случае достаточно взять значение из таблицы корней без дополнительных действий.

В задаче с алгебраическим корнем ответ зависит от того, какое число стоит под корнем. Если подкоренное число больше нуля, то корня будет два — положительный и отрицательный. Если возведенное в степень число отрицательно, то задача не имеет решения. Вторая степень является четной, поэтому нет такого числа, которое в квадрате дало бы отрицательное значение. 

Пример

\(\sqrt{47}=\pm\;6.85565\)
Число 47 больше нуля, поэтому корня два: 6.85565 и –6.85565

\( \sqrt{-35}\neq5.91608\\\sqrt{-35}\neq-5.91608\)

 –35 — число отрицательное, поэтому ответа нет.

Кубический корень — степень нечетная, поэтому подкоренное значение может быть и отрицательным, и положительным. Такое же значение будет иметь и ответ. То есть к результату из таблицы нужно лишь добавить минус, если искомый корень возведен в число меньше нуля. 

Примеры с описанием

Поиск квадратных корней

Задача № 1

Требуется найти \(\sqrt{84}.\)

В числе 84 количество десятков — 8, поэтому по таблице квадратов ищем строку, обозначенную слева цифрой 8. Нужное количеств единиц — 4, значит, нужен столбец с цифрой 4 наверху. Находим ячейку, где эти столбец и строка пересекаются. Там находится число 9.16515, оно и будет искомым ответом. Если требуется, его можно округлить до сотых (9.17) или десятых (9,2).

Задача № 2

 Нужно решить уравнение \(x=\sqrt{17}. \)

В таких случаях квадратный корень обычно принимается за алгебраический, поэтому смотрим на подкоренное число. Оно положительное, поэтому ответа будет два. Находим по таблице строку с количеством десятков, равным 1, и столбец, где число единиц — 7. В их пересечении находится ячейка с числом 4.12311. Для арифметического корня этого было бы достаточно, для алгебраического мы приводим два ответа: x=4.12311 и x=–4.12311. При необходимости округляем до сотых (4.12, –4.123) или десятых (4.1, –4.1). Оба этих числа при возведении в квадрат будут равны 17. 

Задача № 3

Дано выражение \(x=\sqrt{-23}.\)

Ищем по таблице ячейку, в которой пересекутся строка со значением 2 и столбец со значением 3. В ней указано число 4.79583. Однако обращаем внимание, что подкоренное число меньше нуля, поэтому найденный результат ответом не будет. В решении указываем:
\(\sqrt[{}]{-23}\neq4.79583\\\sqrt{-23}\neq-4.79583\)

Поиск кубических корней

Задача № 1

Нужно решить уравнение \(x=\sqrt[3]{55}\)

В таблице кубических корней ищем строку с десятками, равными 5, и столбец, где значение единиц — 5. Они пересекаются в ячейке с числом 3.80295. Так как подкоренное число положительное, то и ответ будет с таким же знаком. Искомое значение x — 3.80295 (или 3.8).

Задача № 2

Требуется найти переменную в выражении \(x=\sqrt[3]{-48}\)

Находим по таблице графу, где пересекаются строка с обозначением 4 и столбец с цифрой 8. В ней располагается число 3.63424. Смотрим на число, которое был возведено в куб, — оно отрицательное. Значит, и ответ будет с минусом. Таким образом, x=–3.63424.

Таблица квадратов и квадратных корней

Что такое квадратные корни и почему нас это волнует?

Квадратный корень из числа - это число, которое при умножении само на себя дает желаемое значение. Так, например, квадратный корень из 49 равен 7 (7x7 = 49). Сам процесс умножения числа раз называется возведением в квадрат .

Числа, квадратные корни которых являются целыми числами (или, точнее, положительными целыми числами), называются точными квадратными числами. Числа с десятичными знаками не являются точными квадратными корнями.

Все положительные числа будут иметь положительное число в качестве квадратного корня, называемого главным, и отрицательное число. Все эти числа известны как действительные числа.

Все отрицательные числа будут иметь комплексное число в качестве квадратного корня. Комплексное число - это число, умноженное на i. i - это «мнимый» квадратный корень из -1. Это называется мнимым, но для математиков оно существует.

Как нам выписать квадратные корни?

Уравнение квадратного корня записывается с использованием знака корня или символа корня (?).Число, из которого мы хотим получить корень, идет после или под хвостом радикала (например,? 3, если мы хотим найти квадратный корень из 3). Число после корня называется подкоренным. На калькуляторе вместо радикала вы можете увидеть «sqrt».

Для чего мы используем квадратный корень?

Это может быть немного сложно представить, но квадратные корни - одни из самых полезных чисел. Функции квадратного корня очень важны для уравнений физики всех видов. Они также полезны для статистики; статистики всегда используют квадратные корни при анализе корреляции между разными точками данных.

Список идеальных квадратов

Используйте эту таблицу, чтобы найти квадраты и квадратные корни чисел от 1 до 100 .

Эту таблицу также можно использовать для вычисления квадратных корней из больших чисел.

  • Например, если вы хотите найти квадратный корень из 2000 , ищите в среднем столбце , пока не найдете число, наиболее близкое к 2000. Число в среднем столбце, которое ближе всего к 2000, равно 2,025 .
  • Теперь посмотрите на число слева от от 2,025 , чтобы найти его квадратный корень. Квадратный корень из 2025 равен 45 .
  • Следовательно, приблизительный квадратный корень из 2000 составляет 45 .

Чтобы получить более точное число, вам понадобится калькулятор (44,721 - более точный квадратный корень из 2000).

Готовитесь к длительной учебной сессии? Возможно, вас заинтересует наш список лучших настольных стульев 2020 года.

62 62 62 900 75 900
НОМЕР КВАДРАТ КВАДРАТНЫЙ КОРЕНЬ
1 1 1.000
2 4 1,414
3 9 1,732
4 16 2.000
5 25 2,236
6 36 2,449
7 49 2,646
8 64 2,828
9 81 3.000
10 100 3,162
11 121 3,317
12 144 3,464
13 169 3,606
14 196 3,742
15 225 3,873
16 256 4.000
17 289 4.123
18 324 4,243
19 361 4,359
20 400 4,472
21 441 4,583
22 484 4,690
23 529 4,796
24 576 4,899
25 625 5.000
26 676 5,099
27 729 5,196
28 784 5,292
29 841 5,385
30 900 5,477
31 961 5,568
32 1,024 5,657
33 1,089 5.745
34 1,156 5,831
35 1,225 5,916
36 1,296 6.000
37 1,369 6,083
38 1,444 6,164
39 1,521 6,245
40 1,600 6,325
41 1,681 6.403
42 1,764 6,481
43 1,849 6,557
44 1,936 6,633
45 46 2,025 6,708
2116 6,782
47 2,209 6,856
48 2304 6,928
49 2,401 7.000
50 2,500 7,071
51 2,601 7,141
52 2704 7,211
53 2,809 7,280
2,809 7,280
2,916 7,348
55 3,025 7,416
56 3,136 7,483
57 3,249 7.550
58 3,364 7,616
59 3,481 7,681
60 3,600 7,746
61 3,721 7,86210 3,844 7,874
63 3,969 7,937
64 4096 8.000
65 4225 8.062
66 4,356 8,124
67 4,489 8,185
68 4,624 8,246
69 4,761 8,307 4,900 8,367
71 5,041 8,426
72 5,184 8,485
73 5,329 8.544
74 5,476 8,602
75 5,625 8,660
76 5,776 8,718
77 5,929 8,76275 6084 8,832
79 6241 8,888
80 6,400 8,944
81 6,561 9.000
82 6,724 9,055
83 6,889 9,110
84 7,056 9,165
85 7,225 9,220 7,396 9,274
87 7,569 9,327
88 7,744 9,381
89 7921 9.434
90 8100 9,487
91 8,281 9,539
92 8,464 9,592
93 8,649 9,644 93 8,649 9,644 900 8,836 9,695
95 9,025 9,747
96 9216 9,798
97 9,409 9.849
98 9,604 9,899
99 9,801 9,950
100 10,000 10.000

ПРИМЕЧАНИЕ. ближайшая тысячная.

Средние и медианные числа и формулы Поиск квадратных корней

Диаграмма квадратного корня

Если вы ищете список точных квадратных корней или полную таблицу квадратных корней от 1 до 100, диаграмма квадратного корня с этой страницы будет иметь ваши радикалы прикрыты! Существуют как цветные, так и черно-белые версии диаграмм в формате PDF для печати.

Печатные диаграммы с квадратным корнем и идеальным квадратом

Прекрасно составленные диаграммы на этой странице готовы к отправке прямо на ваш принтер с высоким разрешением и станут прекрасным дополнением к папкам вашего ученика по базовой геометрии и алгебре.

Цветная диаграмма с точными квадратами от 1 до 15 не только визуально отображает площадь квадрата, связанного с каждым вычислением корня, но также показывает названия частей выражения квадратного корня (знак радикала, подкоренное выражение и корень) и краткое описание того, как конкретная проблема квадратного умножения соотносится с уравнением квадратного корня.

Что такое квадратные корни?

Хороший способ объяснить ученикам квадратный корень - описать его как обратное умножению числа на само себя. Студенты часто знакомы с функциями, которые дополняют друг друга (например, сложение и вычитание). Использование этой структуры для описания поиска корней как особого обращения задачи умножения является отличным умственным сокращением для объяснения не только квадратных корней, но и различных оснований системы счисления как хорошо.

Квадратный корень из некоторого числа (a) - это другое число (b), которое при умножении само на себя дает (a).Обычно это означает bxb = a, демонстрируя, что (b) является квадратным корнем из (a), или, в конкретном примере, 3x3 = 9, демонстрируя, что 3 является квадратным корнем из 9.

Хотя мы обычно изучаем квадратные корни в контексте целых чисел мы также можем найти квадратные корни из чисел, которые не являются целыми числами. Например, квадратный корень из 10 - это десятичное число, близкое к 3,16227 (вы можете проверить это, умножив это число на само себя на калькуляторе, и вы получите значение, очень близкое к 10.)

Итак, что делает число

идеальным. Квадратный корень?

Если умножить положительное целое число на само себя, получится полный квадрат.Произведение этого умножения будет целым числом, а квадратный корень из этого значения будет исходным числом, которое также было целым числом. Эти целые корни известны как точные квадратные корни.

Итак, как вы, наверное, догадались, несовершенный квадрат будет иметь квадратный корень, который не является целым числом (он имеет десятичную или дробную часть), как квадратный корень из 10, который мы вычислили выше. Фактически, все эти корни будут иррациональными числами с десятичными значениями, которые продолжаются вечно. Из-за этого несовершенные квадратные корни округляются до некоторой степени десятичной точности для практических приложений.Это действительно интересная математическая тема, в которую вы можете погрузиться, если хотите узнать больше.

Как вычисляются квадратные корни?

Поскольку квадратные корни для большинства чисел иррациональны, метод их точного вычисления немного громоздок. Процедура вычисления квадратных корней из произвольных чисел заключается в том, чтобы начать с оценки, а затем постепенно ее уточнять, пока не получите значение, достаточно точное для ваших нужд. Вы можете найти более подробную информацию о том, как вычисляются квадратные корни в Википедии, и эти методы, по сути, делают ваш карманный калькулятор, когда вы нажимаете клавишу квадратного корня.

Корни в таблице квадратного корня 1–100 на этой странице округлены до четырех десятичных знаков точности для корней несовершенных квадратов.

Что такое корни высшего порядка?

Квадратные корни - это только начало!

Кубический корень похож на квадратный корень, но значение корня умножается само на себя три раза, чтобы получить значение «куб». Так, например, 2x2x2 = 8 означает, что кубический корень из 8 равен 2.

Вы можете найти корни более высокого порядка помимо квадратов и кубов, но только у этих двух есть специальные имена.Например, 4-й корень 16 равен 2, поскольку 2x2x2x2 (всего 4 умноженных двойки) равняется 16. Вы заметите, что это также 2 в 4-й степени (показатель степени), и вы увидите очень четкую обратную зависимость. между корнями n-й степени и применением экспонент к числу.

Что такое главный корень числа?

Если ваши дети сталкивались с отрицательными числами, они уже знают, что два отрицательных числа, умноженные вместе, дают положительный результат. Из-за этого на самом деле есть два квадратных корня из положительного числа... Один положительный, а другой отрицательный. Например, -2x-2 = 4, поэтому квадратный корень из 4 может быть 2 или -2. Мы отличаем положительный корень от отрицательного, называя его главным корнем числа.

Так что насчет корней отрицательных чисел?

Если квадратный корень может быть действительным числом (целым числом, если он является корнем полного квадрата, или десятичным числом, если он является корнем несовершенного квадрата), мы знаем, что получим положительный результат, умножив это число. сам по себе.Невозможно получить отрицательный квадратный результат, умножив одно и то же число на само, потому что вы умножаете либо положительное на положительное, либо отрицательное на отрицательное ... И то, и другое всегда дает вам положительный результат.

Чтобы получить квадратные корни из отрицательных чисел, нужно ввести совершенно новый тип чисел, и, конечно же, поскольку мы называем наборы целых и десятичных чисел действительными числами , мы можем умно изобрести новый набор из мнимых чисел. делать что-то совсем другое.

Мнимые числа представляют единичное мнимое число i , которое явно является квадратным корнем из -1. Введя эту мнимую единицу, квадратный корень отрицательного числа может быть вычислен как значение с мнимым результатом. Например, квадратный корень из -4 становится 2i.

Что такое постоянная Пифагора?

Константа Пифагора - это квадратный корень из 2. Поскольку 2 не является точным квадратом, квадратный корень является иррациональным числом. Это число встречается во многих геометрических операциях, но на самом деле это просто квадратный корень.

На приведенной выше диаграмме квадратного корня вы можете видеть, что значение квадратного корня из 2 составляет примерно 1,4142, и эту константу удобно запомнить.

квадратов и квадратных корней

Сначала узнайте о квадратах, затем квадратные корни - это просто.

Как возвести в квадрат число

Чтобы возвести число в квадрат: , умножьте его на само .

Пример: Что такое 3 в квадрате?

3 Квадрат = = 3 × 3 = 9

«В квадрате» часто записывают как две маленькие цифры:


Здесь говорится, что "4 в квадрате равно 16"
(маленькая 2 говорит число появляется дважды при умножении)

квадратов от 0

2 до 6 2
0 Квадрат = 0 2 = 0 × 0 = 0
1 Квадрат = 1 2 = 1 × 1 = 1
2 Квадрат = 2 2 = 2 × 2 = 4
3 Квадрат = 3 2 = 3 × 3 = 9
4 Квадрат = 4 2 = 4 × 4 = 16
5 Квадрат = 5 2 = 5 × 5 = 25
6 Квадрат = 6 2 = 6 × 6 = 36

Отрицательные числа

Мы также можем возвести в квадрат отрицательные числа .

Это было интересно!

Когда мы возводим в квадрат отрицательное число , мы получаем положительный результат .

То же, что и возведение положительного числа в квадрат:

(Подробнее см. Квадраты и квадратные корни в алгебре)

Квадратные корни

Квадратный корень из идет в обратном направлении:

3 в квадрате равно 9, поэтому квадратный корень из 9 это 3

Квадратный корень числа равен...

... значение, которое можно умножить на само , чтобы получить исходное число.

Квадратный корень из 9 равен ...

... 3 , потому что , когда 3 умножается на себя , мы получаем 9 .

Это как спросить:

Что можно умножить само на себя, чтобы получить это?

Чтобы помочь вам вспомнить , подумайте о корне дерева:

«Я знаю дерево , но какой корень его сделал? »

В данном случае дерево - «9», а корень - «3».

Вот еще несколько квадратов и квадратных корней:

4 16
5 25

6

36

7

49

Десятичные числа

Также работает с десятичными числами.

Попробуйте использовать ползунки ниже (примечание: «...» означает, что десятичные дроби остаются неизменными):

Использование ползунков:

  • Что такое квадратный корень из 8 ?
  • Что такое квадратный корень из 9 ?
  • Что такое квадратный корень из 10 ?
  • Что такое 1 в квадрате?
  • Что такое 1,1 в квадрате?
  • Что такое 2,6 в квадрате?

Отрицательные

Ранее мы обнаружили, что можем возводить в квадрат отрицательные числа:

Пример: (−3) в квадрате

(−3) × (−3) = 9

И, конечно же, 3 × 3 = 9 тоже.

Таким образом, квадратный корень из 9 может быть −3 или +3

Пример. Каковы квадратные корни из 25?

(−5) × (−5) = 25

5 × 5 = 25

Таким образом, квадратные корни из 25 равны −5 и +5

.

Символ квадратного корня

Это специальный символ, означающий «квадратный корень», это что-то вроде клеща,
и на самом деле началось сотни лет назад в виде точки с движением вверх.

Он называется радикалом и всегда делает математику важной!

Мы используем это так:


, и мы говорим, что "квадратный корень из 9 равен 3"

Пример: Что такое √25?

25 = 5 × 5, другими словами, когда мы умножаем 5 сам по себе (5 × 5) получаем 25

Итак, ответ:

√25 = 5

Но подождите минутку! Разве квадратный корень не может быть −5 ? Потому что (−5) × (−5) = 25 тоже.

  • Ну, квадратный корень из 25 может быть −5 или +5.
  • Но когда мы используем радикальный символ , мы даем только положительный (или нулевой) результат .

Пример: Что такое √36?

Ответ: 6 × 6 = 36, поэтому √36 = 6

Идеальные квадраты

Совершенные квадраты (также называемые «квадратными числами») - это квадраты целых чисел:

Совершенное
Квадраты
0 0
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64
9 81
10 100
11 121
12 144
13 169
14 196
15 225
и др...

Попытайтесь запомнить их до 12.

Вычисление квадратного корня

Легко вычислить квадратный корень из полного квадрата, но он действительно сложно вычислить другие квадратные корни.

Пример: что такое √10?

Итак, 3 × 3 = 9 и 4 × 4 = 16, поэтому мы можем угадать ответ от 3 до 4.

  • Давайте попробуем 3,5: 3,5 × 3,5 = 12,25
  • Попробуем 3.2: 3,2 × 3,2 = 10,24
  • Попробуем 3,1: 3,1 × 3,1 = 9,61
  • ...

Приближается к 10, но чтобы получить хороший ответ, потребуется много времени!

В этот момент я достаю свой калькулятор, и он говорит:

3,1622776601683793319988935444327

Но цифры могут продолжаться и продолжаться без какого-либо рисунка.

Так даже ответ калькулятора - только приближение !

Примечание: подобные числа называются иррациональными числами, если вы хотите узнать больше.

Самый простой способ вычислить квадратный корень

Используйте кнопку квадратного корня вашего калькулятора!

А также руководствуйтесь здравым смыслом, чтобы убедиться, что у вас есть правильный ответ.

Интересный способ вычисления квадратного корня

Есть забавный метод вычисления квадратного корня, который с каждым разом становится все точнее:

a) начните с предположения (предположим, что 4 - это квадратный корень из 10)
б) разделить на предположение (10/4 = 2.5)
c) прибавьте это к предположению (4 + 2,5 = 6,5)
d) затем разделите полученный результат на 2, другими словами, уменьшите его вдвое. (6,5 / 2 = 3,25)
e) теперь установите это как новое предположение и начните с b) снова

  • Наша первая попытка подняла нас с 4 до 3,25
  • Возвращаясь снова ( b к e ), мы получаем: 3,163
  • Возвращаясь снова ( b к e ), мы получаем: 3,1623

Итак, через 3 раза ответ будет 3.1623, что неплохо, потому что:

3,1623 x 3,1623 = 10,00014

А теперь ... почему бы вам, , не попытаться вычислить квадратный корень из 2 таким способом?

Как угадать

Что, если нам нужно угадать квадратный корень для такого сложного числа, как «82 163» ...?

В этом случае мы могли бы подумать, что «82 163» состоит из 5 цифр, поэтому квадратный корень может состоять из 3 цифр (100x100 = 10 000), а квадратный корень из 8 (первая цифра) примерно равен 3 (3x3 = 9), поэтому 300 хорошее начало.

День квадратного корня

4 апреля 2016 г. - День квадратного корня, потому что дата выглядит так: 4/4/16

Следующее за этим 5 мая 2025 г. (05.05.25)

309 310 315, 1082, 1083, 2040, 3156, 2041, 2042, 3154

Таблица квадратного корня - использование, применение, важность и решаемые примеры

Таблица квадратных корней - это табличная форма, в которой показаны все натуральные числа от 1 до 100, каждое из которых соответствует 3 десятичным знакам.Используя эту таблицу квадратных корней, мы можем найти квадратные корни из чисел меньше 100. Вы можете использовать эту таблицу для определения как квадратов, так и квадратных корней чисел от 1 до 100. Найдите под квадратным корнем таблицы с 1 по 50 для вашего лучшего понимания.

(Изображение будет добавлено в ближайшее время)

Использование и применение математики корневой таблицы

  • Мы можем использовать таблицу квадратных корней для оценки квадратов и квадратных корней натуральных чисел от 1 до 100, как а также квадратные корни из больших чисел.

  • Мы также можем использовать таблицы квадратного корня для определения приблизительного значения квадратного корня.

(Изображение будет добавлено в ближайшее время)

Важность применения корневой таблицы

Мы применяем метод деления в длину, чтобы найти приблизительные значения квадратных корней. Метод не только длительный, но и довольно сложный. Таким образом, по этой причине были подготовлены таблицы квадратных корней и кубических корней, в которых регистрируются эти приблизительные значения квадратных корней для разных чисел.

Как использовать таблицы квадратного корня?

Давайте посмотрим, как мы используем эти таблицы квадратного корня. Видя, что мы будем получать только приблизительные значения, мы используем символ ~, чтобы обозначить то же самое. В данной таблице приведены значения квадратных корней от натурального числа от 1 до 99 с точностью до 3 десятичных знаков.

Квадратный корень из числа «m» - это такое число x, что x2 = m. Иначе говоря, число x, квадрат которого (результат умножения числа на себя, или x × x) равен «m».Например,

Квадрат из 5, т.е. 52 = 25

Квадратный корень из 5, √5 = 2,2361

Пример поиска квадратного корня

Например, если мы хотим найти квадратный корень из 3500, нам потребуется чтобы заглянуть в средний столбец диаграммы квадратного корня, пока не найдем число, наиболее близкое к 3500. Число в среднем столбце, которое ближе всего к 3500, - это 3464.

Теперь взгляните на число слева от 3464, чтобы найти его квадратный корень. Квадратный корень из 3464 равен 58.85

Таким образом, приблизительный квадратный корень из 3500 равен 58,85.

Чтобы получить более точное число, вы также можете воспользоваться калькулятором.

Квадратные корни отрицательных чисел

Идеальный способ получить квадратные корни отрицательных чисел - это ввести совершенно новую форму чисел. Кроме того, поскольку мы называем наборы целых и десятичных чисел действительными числами, мы также можем стратегически запустить новый набор мнимых чисел, чтобы делать что-то еще.

Решенные примеры для квадратного корня

Пример 1. Вычислить квадратный корень числа 1764 с использованием простого факторизации

Solution1:

Определить данное число i.е. 1764 в простые множители

При вычислении квадратного корня из 1764 с использованием метода разложения на простые множители получаем

2 x 2 x 3 x 3 x 7 x 7 = 1764

Теперь, составляя пары одинаковых множителей, получаем

√1764 = √ [2 x 2] x [3 x 3] x [7 x 7]

= 2 x 3 x 7

= 42

Следовательно, √1764 = 42

Пример 2: Найти квадрат Корень √5329 с использованием метода длинного деления.

Решение 2: Сначала нам нужно отметить периоды и применить метод деления по столбикам,

7) 53 29 (73

49

143) 143 (429

429

0

Таким образом, √5329 = 73

Квадратный корень от 1 до 20

Квадратный корень от 1 до 20 - это список квадратных корней из всех чисел от 1 до 20.Квадратный корень может иметь как положительные, так и отрицательные значения. Положительные значения квадратных корней от 1 до 20 варьируются от 1 до 4,47214.

В квадратных корнях от 1 до 20 числа 1, 4, 9 и 16 являются точными квадратами, а остальные числа - неполными квадратами, т.е. их квадратный корень будет иррациональным. Квадратный корень от 1 до 20 в радикальной форме выражается как √x, а в экспоненциальной форме - как (x) ½ .

Где x - любое число от 1 до 20.

Изучение квадратного корня от 1 до 20 поможет вам быстро упростить трудоемкие длинные уравнения.Значение квадратного корня от 1 до 20 до 3 знаков после запятой указано в таблице ниже.

Студентам рекомендуется тщательно запоминать эти квадратные корни от 1 до 20 значений для более быстрых математических вычислений. Нажмите кнопку загрузки, чтобы сохранить его копию в формате PDF.

В таблице ниже показаны значения квадратных корней от 1 до 20 для полных квадратов.

В таблице ниже показаны значения от 1 до 20 квадратных корней для неполных квадратов.

Часто задаваемые вопросы о квадратном корне с 1 по 20

Какое значение имеет квадратный корень от 1 до 20?

Значение квадратного корня от 1 до 20 представляет собой число (x 1/2 ), когда умножение на само дает исходное число.Он может иметь как отрицательные, так и положительные значения. Между 1 и 20 квадратные корни из 1, 4, 9 и 16 являются целыми числами (рациональными), а квадратные корни из 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14 , 15, 17, 18, 19 и 20 - десятичные числа, которые не являются ни завершающими, ни повторяющимися (иррациональные).

Если взять квадратные корни от 1 до 20, сколько из них будут иррациональными?

Числа 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19 и 20 не являются совершенными квадратами. Следовательно, их квадратный корень будет иррациональным числом (не может быть выражено в виде p / q, где q 0).

Какие методы вычисления квадратного корня от 1 до 20?

Существует два метода, обычно используемых для вычисления значений квадратных корней от 1 до 20. Для полных квадратов (1, 4, 9 и 16) мы можем использовать метод разложения на простые множители, а для неполных квадратов (2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19 и 20) можно использовать метод длинного деления.

Какие значения квадратного корня от 1 до 20 составляют от 2 до 3 включительно?

Значения квадратных корней от 1 до 20 от 2 до 3: √4 (2), √5 (2.236), √6 (2,449), √7 (2,646), √8 (2,828) и √9 (3).

Что такое 21 плюс 2 квадратный корень 16?

Значение √16 равно 4. Итак, 21 + 2 × √16 = 21 + 2 × 4 = 29. Следовательно, значение 21 плюс 2 квадратного корня 16 равно 29.

Сколько чисел в квадратном корне от 1 до 20 являются рациональными?

Числа 1, 4, 9 и 16 являются точными квадратами, поэтому их квадратные корни будут целыми числами, т.е. могут быть выражены в виде p / q, где q ≠ 0. Следовательно, числа 1, 4, 9 и 16 - рациональные числа.

чисел - квадратные корни - глубина

Многие математические операции имеют обратную или противоположную операцию. Вычитание противоположное сложения, деление - это обратное умножение и т. д. Квадрат, о котором мы узнали на предыдущем уроке (экспоненты), есть и обратное, называемое «нахождение квадратного корня». Помните, что квадрат числа - это число, умноженное на само число. Идеальные квадраты - это квадраты целых чисел: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

Квадратный корень числа n написано

это число, которое дает n при умножении на себя.Например,

потому что 10 х 10 = 100

Примеры

Вот квадратные корни из всех полных квадратов от 1 до 100.

В поисках квадрата корни чисел, которые не являются точными квадратами без калькулятора

1. Оценка - во-первых, подойдите как можно ближе, найдя два идеальных квадратных корня из ваших число находится между.

2.Делить - разделите ваше число на один из этих квадратных корней.

3. Среднее - возьмите среднее значение результата шага 2 и корень.

4. Используйте результат шага 3, чтобы повторять шаги 2 и 3, пока вы не получите точное число достаточно для вас.

Пример: Вычислите квадратный корень из 10 () до 2 знаков после запятой.

1. Найти между двумя точными квадратами.

Решение:
3 2 = 9 и 4 2 = 16, поэтому находится между 3 и 4.

2. Разделить 10 на 3. 10/3 = 3,33 (ответ можно округлить)

3. Среднее 3,33 и 3. (3,33 + 3) / 2 = 3,1667

Повторить шаг 2: 10 / 3,1667 = 3,1579
Повторите шаг 3: Среднее значение 3,1579 и 3,1667. (3,1579 + 3,1667) / 2 = 3,1623

Попробуй ответ -> Это 3.1623 в квадрате равно 10? 3,1623 x 3,1623 = 10,0001

Если это верно хватит тебе, можешь остановиться! В противном случае вы можете повторить шаги 2 и 3.

Примечание : Есть несколько способов вычислить квадратные корни без использования калькулятора. Это только один из них.

назад наверх

Вычислить квадратный корень без калькулятора

Вы здесь: Главная → Статьи → Алгоритм извлечения квадратного корня

Большинство людей в современном мире считают, что, поскольку калькуляторы могут находить квадратные корни, детям не нужно учиться находить квадратные корни, используя какой-либо метод карандаша и бумаги.Однако изучение, по крайней мере, метода "угадай и проверь" для нахождения квадратного корня на самом деле поможет студентам ПОНИМАТЬ и запомнить саму концепцию квадратного корня!

Таким образом, даже если в вашем учебнике по математике тема нахождения квадратного корня без калькулятора может полностью отсутствовать, подумайте о том, чтобы позволить студентам изучить и практиковать хотя бы метод «угадывай и проверь». Поскольку он на самом деле имеет дело с КОНЦЕПЦИЕЙ квадратного корня, я бы счел его необходимым для обучения студентов.

В зависимости от ситуации и учащихся, метод «угадай и проверь» можно выполнить либо с помощью простого калькулятора, не имеющего кнопки квадратного корня, либо с помощью вычислений с использованием бумаги и карандаша.

Нахождение квадратного корня методом угадывания и проверки

Чтобы найти десятичное приближение, скажем, к √2, сначала сделайте первоначальное предположение, затем возведите его в квадрат и, в зависимости от того, насколько близко вы подошли, улучшите свое предположение.Поскольку этот метод включает возведение в квадрат предположения (умножение самого числа на само число), он использует фактическое определение квадратного корня , и поэтому может быть очень полезным при обучении концепции квадратного корня.


Пример: что такое квадратный корень из 20?

Вы можете начать с того, что заметите, что, поскольку √16 = 4 и √25 = 5, то √20 должно быть между 4 и 5.

Тогда угадайте √20; скажем, например, что это 4.5. Возведите это в квадрат, посмотрите, будет ли результат больше или меньше 20, и улучшите свое предположение на основе этого.Повторяйте этот процесс, пока не получите желаемую точность (количество десятичных знаков). Это так просто, и это может стать отличным экспериментом для студентов!


Пример: найти √6 до 4 знаков после запятой

Поскольку 2 2 = 4 и 3 2 = 9, мы знаем, что √6 находится между 2 и 3. Давайте предположим (или оценим), что это 2,5. В квадрате получаем 2,5 2 = 6,25. Это слишком много, поэтому мы немного уменьшаем нашу оценку. Давайте попробуем 2.4 дальше. Чтобы найти квадратный корень из 6 с четырьмя десятичными знаками, нам нужно повторять этот процесс, пока у нас не будет пять десятичных знаков, а затем мы округлим результат.

9 5 945
Оценка Квадрат оценки Высокая / низкая
2,4 5,76 Слишком низкая
2,45 6,006625 Слишком высокая 9199 2,919 5.997601 Слишком мало
2.4495 6.00005025 Слишком много, поэтому квадратный корень из 6 должен быть между 2.449 и 2.4495.
2.4493 5.99 Слишком низко
2.4494 5.99956036 Слишком мало, поэтому квадратный корень из 6 должен находиться между 2,4494 и 2,4495
2.44945
поэтому квадратный корень из 6 должен находиться в диапазоне от 2,44945 до 2,4495.

Этого достаточно итераций, поскольку теперь мы знаем, что √6 будет округлено до 2,4495 (а не до 2,4494).


Нахождение квадратных корней с помощью алгоритма

Существует также алгоритм вычисления квадратного корня, напоминающий алгоритм деления в столбик, и его изучали в школах за несколько дней до появления калькуляторов. См. Пример ниже, чтобы узнать это. Хотя изучение этого алгоритма может быть необязательным в современном мире с калькуляторами, разработка некоторых примеров может использоваться в качестве упражнения в основных операциях для учащихся средней школы, а изучение логики, лежащей в основе этого, может быть хорошим упражнением для мышления для учащихся средней школы.


Пример: найти √645 с точностью до одного десятичного знака.

Сначала сгруппируйте числа под корнем попарно справа налево, оставляя одна или две цифры слева (в данном случае 6). Для каждой пары чисел вы получите одну цифру квадратного корня.

Для начала найдите номер чей квадрат меньше или равен первой паре или первому числу, и напишите это над линией квадратного корня (2):

Затем продолжайте так:

2
6 .45
- 4
(4 _) 2 45
1 45 900
2
6 .45
- 4
(45) 2
Квадрат 2, дающий 4, напишите, что под 6 и вычтите.Сбейте следующую пару цифр. Затем удвойте число над квадратным корнем символьная строка (выделена) и запишите его в скобках, поставив рядом с ним пустую строку, как показано. Дальше подумайте, какое однозначное число что-то могло перейдите в пустую строку так, чтобы сорок- что-то умножить на что-то быть меньше или равно 245.
45 х 5 = 225
46 x 6 = 276, поэтому 5 работает.
2

5

6 .45 . 00
- 4
(45) 2 45
- 2 25
20 00
2

5

6 .45 . 00
- 4
(45) 2 45
- 2 25
(50_) 20 00
2

5

. 3
6 .45 . 00
- 4
(45) 2 45
- 2 25
(503) 20 00
Напишите 5 в начале строки.Вычислите 5 x 45, напишите, что ниже 245, вычтите, введите следующую пару цифр (в данном случае десятичные цифры 00). Затем удвойте число над линией (25) и напишите удвоенное число (50) в скобках с пустой строкой рядом с ним как указано: Подумайте, что однозначное число что-то может пойти на пустом линия так что пятьсот- что-то раз что-то будет меньше или равно 2000.503 х 3 = 1509
504 x 4 = 2016, поэтому 3 работает.
2

5

. 3
6 .45 . 00 .00
- 4
(45) 2 45
- 2 25
(503) 20 00
- 15 09

4

91 00
2

5

. 3
6 .45 . 00 .00
- 4
(45) 2 45
- 2 25
(503) 20 00
- 15 09
(506_)

4

91 00
2

5

. 3 9
6 .45 . 00 .00
- 4
(45) 2 45
- 2 25
(503) 20 00
- 15 09
(506_) 4 91 00
Вычислите 3 x 503, напишите, что ниже 2000, вычесть, сбейте следующие цифры. Затем удвойте "число" 253, которое находится над линией (без учета десятичной точки), и в скобках напишите удвоенное число 506 с пустой строкой рядом как указано: 5068 х 8 = 40544
5069 x 9 = 45621, что меньше 49100, поэтому 9 работает.

Таким образом, до одного десятичного знака, 645 = 25.4

Комментарии посетителей

Я смутно помню, как изучал алгоритм извлечения квадратного корня в K-12, но, честно говоря, я не вижу в этом алгоритме никакой ценности, кроме любопытства. И я не из «реформаторской» толпы. Я полностью верю, что студентам не дадут калькулятор для использования до продвинутой алгебры или предварительного исчисления, а затем только научный калькулятор (не построение графиков). Вы действительно верите, что ученик уровня K-7 поймет, как / почему работает этот алгоритм?

Я был рад узнать, что вы рекомендовали метод «оценки и проверки».Это то, что я также порекомендовал своей дочери, которая сейчас изучает квадратные корни в программе своей домашней школы. Метод «оценки и проверки» - хорошее упражнение в оценке, умножении, а также запоминании полных квадратов.

Другой метод, более подходящий для студентов в классе алгебры, - это упростить радикал с помощью принятого метода. Затем найдите оставшийся квадратный корень с помощью метода оценки. Например, чтобы найти SQRT (1400), упростите до SQRT (100) * SQRT (14), что равно 10 * SQRT (14).Затем найдите SQRT (14) методом оценки. Для квадратных корней из полных квадратов даже оценка не требуется.

Можно даже превратить задачу нахождения квадратного корня в упражнение по компьютерному программированию, попросив студентов написать программу на javascript или другом языке, чтобы использовать систематический числовой метод вычисления этого квадратного корня с помощью метода проверки и предположения. Или, на уровне исчисления, студент может написать программу, которая использует полином Тейлора для вычисления квадратного корня.

Майкл Саковски
Инструктор математики


Привет,

Обратил внимание на несколько комментариев, связанных с использованием алгоритма для поиска квадратный корень из числа. В некоторых комментариях говорилось, что находить результат с помощью бумаги и ручки против калькулятора - это архаично. Что Может быть и так. Однако, когда я был на первом курсе в старшей школе (начало 70-х) Герр Куиннелл упомянул - когда класс подходил к концу - некоторые из того, что можно делать с математикой, в том числе находить квадратные корни.Итак, я спросил его, как это было сделано. Он показал мне метод алгоритма на борту.

Я не могу говорить о ценности знания того, как это используется в других профессии. В электронике нахождение квадратного корня является неотъемлемой частью часть дизайна. У нас есть детали, называемые резисторами. Они помогают в ограничении тока в схемах. Эти детали имеют номинальную мощность. Номинал резистора измеряется в «омах». В математическом смысле это можно найти, разделив вольт по амперам.10 вольт разделить на 0,001 ампера - это сопротивление 10 000 Ом. В качестве примера квадратного корня, если я знаю, что резистор на 10000 Ом имеет мощность 0,25 Вт Я могу рассчитать максимальное напряжение наихудшего случая, которое может появиться на нем, прежде, чем может произойти повреждение. Это можно найти, взяв сопротивление значение - умножение номинальная мощность - и нахождение квадратного корня. Корень квадратный из 2500 равен 50. Эта часть выдерживала 50 вольт.

Моя точка зрения - я мог рассчитать результат «искусственно».Так как кто-то нашел время, чтобы показать мне, как вычислить квадратный корень на доске, Мне не нужно было искать калькулятор. К тому времени я бы нашел калькулятор я уже придумал ответ. Найдите время, чтобы показать студентам то, как делаются такие вещи, как квадратный корень, имеет значение. На самом деле они не могут поставить это можно использовать позже в жизни - но некоторые просто могут.

Гарт Цена, CET


Я просто писал еще один комментарий, и каким-то образом компьютер отправил его до того, как я закончил.Я, должно быть, нажал не ту клавишу. Позвольте мне закончить, сказав, что дети впервые в мире и исследуют его. Вычисление квадратного корня от руки было бы для них увлекательным занятием и отличным способом узнать о других темах математики. Да, кстати, у меня вообще не было уроков по квадратным корням до старшей школы, а потом мы не научились их вычислять. Нас учили множить число под радикалом и извлекать точные квадраты, оставляя не идеальные квадраты под корнем.ПОТОМУ ЧТО ДАЖЕ УЧИТЕЛЬ НЕ ЗНАЛ, КАК СДЕЛАТЬ ПРАВИЛЬНО. До свидания с Богом

Роберт Монро


это один из лучших сайтов, которые я посетил для правильного решения проблемы. Вы можете называть меня аркаиком, но когда я ходил в школу, они учили деление в столбик, чтобы находить квадратный корень из числа.
В БОЛЬШИНСТВЕ ЭТО УЧИТ ДУМАТЬ. Использование калькулятора - это чистая лень. Я чувствую, что наши дети думают, что получение основ в школе (РАННЕЕ) - это архаично.Вот почему, когда вы заходите в магазин и выставляете счет 16,75, и вы передаете кассиру двадцатидолларовую купюру, однодолларовую купюру и 75 центов, они понятия не имеют, какой должна быть сдача, если кассовый аппарат не сообщает им, сколько чтобы дать тебе. Это приводит к ленивому мышлению ИЛИ НЕМЫШЛЕНИЮ ВООБЩЕ.
Спасибо за ваше время.

Раш Керлин


Я искал в Интернете давно забытую процедуру нахождения квадратного корня вручную и наткнулся на вашу веб-страницу. и хотел сказать, что многие (или вся) критика стандартного алгоритма называет его «архаичным», «тупиковым» методом и т. д.в пользу вавилонского метода не может быть оправдано. Дело в том, что использование бумаги и карандаша для деления длинных чисел или нахождения квадратных корней является архаичным и представляет собой тупиковый процесс в 21 веке, независимо от того, какую рутину мы используем, поскольку мы больше не делаем этого из практических соображений. расчеты. Итак, вопрос в том, чему мы должны научить, чтобы познакомить студентов с фундаментальными техниками? Вавилонский метод - это численный метод, в отличие от другого метода, и имеет смысл обучить стандартной программе, которая работает сначала для любых чисел, а затем для других приближенных численных методов, вместо того, чтобы использовать численные методы типа предиктора-корректора, утверждающие, что они имеют применение где-то еще.Если мы пойдем с методами типа предиктор-корректор, необходимо также провести анализ ошибок, что не требуется для стандартного метода, поскольку в стандартной подпрограмме правильные цифры добавляются одну за другой на каждом шаге (в отличие от вавилонского метода, где содержание цифр может изменяться при каждом усреднении).

С наилучшими пожеланиями,
Карл I. Яков
Профессор, Школа инженерии полимеров, текстиля и волокон
Профессор, Школа машиностроения им. Г. В. Вудраффа,
Технологический институт Джорджии


Вы ответили на вопрос "Поиск квадратного корня с помощью алгоритма".Я заметил, что ответ был оспорен несколькими людьми по нескольким причинам. Я хотел бы отметить, что предложенное решение является старейшим методом вычисления квадратного корня в западном мире. Меня описал Леонардо Пикано, также известный как Фибоначчи, в его книге Liber Abaci, глава 14. Первое издание было «написано» в 1202 году, а второе издание было «написано» в 1228 году. Я говорю «написано», потому что это было буквально написано от руки, как и все копии. Работа Иоганна Гутенберга над печатным станком началась только в 1436 году.
Леонардо научился этому методу во время своих арабских путешествий по Средиземному морю, а арабы научились этому у индуистской нации вокруг современной Индии. Метод в примере, который вы показываете, включает в себя некоторую современную интерпретацию, облегчающую чтение. Леонардо также показал геометрическую взаимосвязь, которая связана с тем, что мы сегодня понимаем под «аккордами». Это очень простое решение вопроса без использования калькулятора.

Дэвид Т. Кэрротт, доктор философии


Я прочитал ваше предложение по вычислению квадратного корня без калькулятора.Я преподаю математику для учителей начальной школы и развивающие математические курсы (алгебра) для взрослых. Я считаю, что следует сосредоточиться на понимании числа, а не на упражнении по заученному алгоритму. Я предлагаю вам попросить ученика определить пару полных квадратов, между которыми находится число. Например, при нахождении sqrt 645 он попадает между sqrt 625, который равен 25, и sqrt 676, который равен 26. Таким образом, sqrt 645 должен быть между 25 и 26. Где он находится между? Всего 50 номеров от 676 до 625.645 на 20 чисел больше 625, поэтому 20/50 = 0,4. Таким образом, sqrt 645 очень близко к 25,4
Этот метод предоставляет учащимся процесс, который улучшает их понимание чисел, не ожидая, что они запомнят алгоритм, и дает ответ с точностью до десятых.

Андреа С. Леви, Ed.D.


В настоящее время я учусь в MCC. Я изучаю курс для учителей начальной математики. Мы должны составить план урока, чтобы научить младших школьников пользоваться теоремой Пифагора.Мне нужно научиться разбирать теорию Пифагора для элементарного ребенка. Я застрял в квадратной корневой части.

Прочтите мой ответ на этот вопрос.


Метод, который вы показываете в статье, архаичен. Есть НАМНОГО более эффективный алгоритм. (Это алгоритм, который фактически используется негласно внутри калькулятора, когда вы нажимаете кнопку извлечения квадратного корня.)

1. Оцените квадратный корень как минимум с 1 цифрой.
2. Разделите эту оценку на число, квадратный корень которого вы хотите найти.
3. Найдите среднее значение частного и делителя. Результатом становится новая оценка.

Прелесть этого метода в том, что точность оценки растет очень быстро. Каждый цикл по существу удваивает количество правильных цифр. От 1-значной начальной точки вы можете получить 4-значный результат за два цикла. Если вы уже знаете квадратный корень из нескольких цифр, например sqrt (2) = 1,414, один цикл деления и среднего даст вам удвоение цифр (в данном случае восемь).

Этот метод не только позволяет вручную находить квадратные корни, но и может использоваться, если у вас есть только дешевый четырехфункциональный калькулятор. Если ученики могут получить квадратный корень вручную, они не найдут квадратного корня таким загадочным. Также этот метод является хорошим первым примером последовательного решения проблемы.

Дэвид Чендлер

Другой способ называется вавилонским методом угадать и разделить, и он действительно быстрее. Это также то же самое, что и при применении метода Ньютона.См., Например, поиск квадратного корня из 20 с использованием 10 в качестве начального предположения:

Предположение Разделить Найти среднее
10 20/10 = 2 среднее 10 и 2, чтобы дать новое предположение 6
6 20/6 = 3,333 среднее значение 3,333 и 6 дает 4,6666
4,666 20 / 4,666 = 4,1414 среднее значение 4.666,4,1414 = 4,4048
4,4048 20 / 4,4048 = 4,5454 среднее значение = 4,4700
4,4700 20 / 4,4700 = 4,4742 среднее значение = 4,4721
4,4721 4,47217 среднее значение = 4,47214
Это уже с 4 десятичными знаками
4,47214 20 / 4,47214 = 4,472132 среднее значение = 4,472135
4.472135 20 / 4,472135 = 4,472137 среднее значение = 4,472136

Плакат утверждает, что метод статьи «архаичен» и что «вавилонский метод» более эффективен. На первый взгляд может показаться, что это так, потому что в примере с плакатом вычисляется квадратный корень из двузначного целого числа 20 вместо 645 в примере статьи.

Однако я фактически разработал пример статьи (квадратный корень из 645), используя оба метода, и обнаружил, что вавилонский метод требует 9 «циклов деления и среднего», чтобы прийти к ответу.Кроме того, вавилонский метод требует от ученика выполнения пятизначного деления в столбик - немалый подвиг для ученика начальной или средней школы. С другой стороны, метод, описанный в статье, требует от студента выполнить только одну задачу из четырех шагов и длинного деления, решив самое большее полдюжины или около того задач умножения из четырех цифр на 1 цифру.

Следовательно, разумно сделать вывод, что вавилонский метод больше подходит для решения с помощью калькулятора или решения с помощью компьютера, в то время как метод статьи больше подходит для решения с помощью карандаша и бумаги.

Поскольку предметом статьи было научить ученика начальной или средней школы легко находить квадратные корни карандашным методом, «архаичный» метод статьи кажется наиболее подходящим.

Алексей


В ответ на сообщение Алекса: как вам понадобилось 9 циклов, чтобы произвести 25,4 цикла с использованием вавилонского метода на 645? Это займет 1,5 шага, если вы используете свое предположение как 25
1) 645/25 = 25,8
(25 + 25,8) / 2 = 25,4

2) 645/25.4 ≈ 25,39

Вавилонский метод очень эффективен, если уже известно много полных квадратов для приближения к исходному значению. Я считаю, что студенты не могут понять причины, лежащие в основе алгоритма в этом посте, в то время как метод деления и среднего кажется более интуитивным, если они раньше работали со средними.

Даниил


Я сомневаюсь в том, чтобы обучать методу деления в столбик для извлечения квадратных корней. Вавилонский метод легче запомнить и понять, и он дает столько же практики в базовой арифметике.Что еще более важно, он имеет четкую связь с такими темами, как метод Ньютона и рекурсивные последовательности, которые будут встречаться в исчислении и за его пределами. Метод длинного деления несколько быстрее для ручного расчета, но он не приводит к другим важным темам - это тупик.

Дэвид


Я учился на старых компьютерных схемах и двоичных аппаратных алгоритмах. Метод, используемый для вычисления корня из 645, является методом, используемым в высокопроизводительных двоичных вычислениях, поскольку он требует только сдвига, вычитания и сравнения, которые являются командами одного цикла / этапа или перенаправлены на сопроцессор.Преобразуйте число в двоичное, разделите его на 2 битовые группы и используйте описанную выше процедуру. Умножение и деление требует от 10 до сотен циклов / стадий и уничтожает преформ и конвейеры. Квадратный корень вычисляется быстрее, чем деление, поскольку деление выполняется через 1 бит за цикл / этап, а квадратный корень проходит через 2 бита за цикл.

Брэд



что такое квадратный корень из -1?

Тамара Ярдли

-1 не может иметь квадратный корень (по крайней мере, не действительный), потому что любые два числа с одинаковым «знаком» (+/- положительный или отрицательный) при умножении будут равны положительному числу.Попробуйте: +2 × +2 = 4 и -2 × -2 = 4.

Так как квадратный корень из числа должен равняться этому числу при умножении на себя. Когда вы умножаете это число на себя и задаете его как полное уравнение (n * n = x), два множителя (n и n) либо положительны, либо отрицательны, так как это одно и то же число. Следовательно, их продукт будет положительным. Никакое действительное число, умноженное само на себя, не будет равно отрицательному числу, поэтому -1 не может иметь действительный квадратный корень.

Блейк

Квадратный корень из -1 не является действительным числом.Обозначается буквой i и называется мнимой единицей. Из i и его кратных мы получаем чисто мнимые числа, такие как 2i, 5.6i, -12i и так далее. Это приводит к совершенно новой системе счисления комплексных чисел, в которой числа имеют действительную и мнимую части (например, 5 + 3i или -20 - 40i). И с помощью этой системы счисления можно сделать много увлекательной математики!


Я пытался найти в сети старый способ вычисления квадратного корня путем деления в столбик. ДА, я нашел это.Прочтите ответы и не соглашусь со многими плакатами.

Найти квадрат 645 легко, если вы знаете 252 и 262, но я никогда не запоминал квадраты чисел от 1 до 30 или около того, я запоминал только до 12X12 (старая имперская система)

Угадать, что в квадрате 645 будет около 25, это здорово, но если вы угадаете, что это 2, то перед вами стоит более серьезная проблема.

Я вижу, что «другие» плакаты находят более легкие и быстрые способы ... вот в чем проблема сегодня. Будем искать легкий путь без понимания.С вашим методом это может сделать любой, у кого есть навыки деления в столбик и простое умножение. Самое простое решение - купить калькулятор и избегать всех умственных способностей. ржу не могу

корень квадратный из 645 мммм 20
645/20 = 32,25, среднее 52,25 = 26,25
645 / 26,25 = 24,57, среднее значение 50,82 = 25,41

Метод усреднения, похоже, работает, но он не учит большому разделению ... вроде как выше / ниже в The Price is Right.

Я предполагаю, что квадрат 645 равен 25.41 .... ничего себе, это работает с первого раза, чему я научился, ничего.

Используя метод усреднения, каков квадратный корень из 9331671 .... моя первая предполагаемая оценка - 10, получайте удовольствие!
9331671/10 = 933167,1 + 10 = 9331681,1 / 2 = 466588,55
9331671 / 466588,55 = 19,999785 + 466588,55 = 466607,57 / 2 = 233303,285
9331671 / 233303,285 = 39,99802 + 233303,285 = 233343,27 / 2 = 116671,235
...
...
...
...
...
Ах да, это дети из 3 или 4 класса, которые занимаются длинной математикой с 8-значными числами... так много для усреднения. И какова степень значимости, поскольку мы работаем с одним десятичным знаком или 3 ... не нужно «усреднять» слишком рано, иначе мы можем потерять значащие цифры. Если мы работаем с миллиардами, то слишком быстрое снижение цифр может иметь ОГРОМНУЮ разницу.

Адриан


Я непрофессионал, который зашел на сайт через поиск в Google на тему «как вычислить квадратный корень». Я прочитал презентацию, затем посмотрел ответы. Я должен сказать, что был встревожен комментарием Андреа С.Леви, редактор Д., где она предположила, что запоминание алгоритма менее желательно, чем понимание числа.

В настоящее время я работаю техническим писателем в фирме, которая занимается разработкой программного обеспечения для кредитных союзов. Понимание всех алгоритмов, используемых в финансовом мире, крайне важно для нас, чтобы делать то, что мы делаем. Фактически, один из расчетов, который мы используем для определения амортизации потребительского кредита с комиссией за определенный период времени, поразительно похож на представление квадратного корня. Расчет должен быть написан инженером-программистом для машины, чтобы в конечном итоге он оставался в сознании человека.Если инженер не знает алгоритм, тысячи потребителей несут ответственность за это. Я полагаю, что запоминание - это просто еще один инструмент в коробке. Используйте его, когда это уместно.

С уважением,
Майкл Келли
Ньюбери-Парк, Калифорния.


Последний комментатор на странице (Адриан) сказал, что она никогда не учила квадраты от 1 до 30. Это напоминает трюк, который я недавно изучил для нахождения квадратов, близких к 50. Начните с квадрата 50, 2500, добавьте в 100 раз больше расстояние между 50 и числом, а затем сложите квадрат расстояния 50 и числа.Например, 43 2 = 2500 - 700 + 49 = 1849. Это происходит от простого тождества FOIL (50 + x) 2 = 2500 - 100x + x 2 . В этом тождестве x - это расстояние между 50 и числом. Если число 43 (как в моем примере), x равно -7. Если число 54, то x равно 4. Таким образом, если вы запомните свои квадраты от 1 до 25, вы получите квадраты от 26 до 75 «бесплатно».

Если идея запоминания квадратов от 1 до 25 кажется сложной, это не так. Несколько недель назад, не зная этого трюка, я знал сразу около 13 человек, а еще несколько разбросались тут и там.Я составил в Excel таблицу, в которой перечислены числа от 1 до 25 рядом с их квадратами, распечатал ее и повесил на стену своего кабинета. Квадраты, которые я не запомнил в этих первых 25, теперь я могу получить за несколько секунд (например, для квадрата 23 я все еще считаю от 20 квадратов: 400, 441, 484, * 529 *). Даже не зная их всех, я могу найти квадраты от 1 до 75 менее чем за 10 секунд (мыслительный процесс для нахождения 73 в квадрате навскидку: «73 больше 23 больше, чем 50. Что снова возведено в квадрат 23? 400, 441, 484, 529! 2500! + 2300 + 529 = 5329.Сделанный!")

Дэвид Леви


См. Также

Другой пример использования алгоритма извлечения квадратного корня

Объяснение того, почему работает этот алгоритм извлечения квадратного корня.

0 comments on “Таблица арифметических квадратных корней: Таблица квадратных корней | Алгебра

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *