Разговорные устройства телефонного аппарата: 2. Устройство телефонного аппарата и основы телефонной связи.

2. Устройство телефонного аппарата и основы телефонной связи.

УСТРОЙСТВО ТЕЛЕФОННОГО АППАРАТА И ОСНОВЫ ТЕЛЕФОННОЙ СВЯЗИ

В состав телефонных аппаратов, предназначаемых для работы в телефонных сетях, входят следующие обязательные элементы: микрофон и телефон, объединенные в микротелефонную трубку, вызывное устройство, трансформатор, разделительный конденсатор, номеронабиратель, рычажный переключатель. На принципиальных электрических схемах телефонный аппарат обозначают буквой Е.

Кратко рассмотрим назначение основных элементов телефонного аппарата.

Микрофон служит для преобразования звуковых колебаний речи и электрический сигнал звуковой частоты. Микрофоны могут быть угольными, конденсаторными, электродинамическими, электромагнитными, пьезоэлектрическими. Их можно классифицировать на активные и пассивные. Активные микрофоны непосредственно преобразуют звуковую энергию в электрическую. В пассивных же микрофонах звуковая энергия преобразуется в изменение какого-либо параметра (чаще всего — емкости и сопротивления). Для работы такого микрофона обязательно требуется вспомогательный источник питания.

В массовых телефонных аппаратах применяют, как правило, угольные микрофоны, в которых под действием звуковых волн изменяется электрическое сопротивление угольного порошка, находящегося под мембраной. Наиболее широко используют микрофонные капсюли типов МК-10, МК-16, обладающие достаточно высокой чувствительностью (в описываемых устройствах применены в основном угольные микрофоны). На принципиальных схемах микрофон обозначают латинскими буквами ВМ.

Следует отметить, что в последнее время ряд телефонных аппаратов оснащают также конденсаторными микрофонами типов МКЭ-3, КМ-4, КМ-7.

Телефоном называют прибор, предназначенный для преобразования электрических сигналов в звуковые и рассчитанный для работы в условиях нагрузки на ухо человека. В зависимости от конструктивных особенностей телефоны подразделяют на электромагнитные, электродинамические, с дифференциальной магнитной системой и пьезоэлектрические. В телефонных аппаратах наибольшее распространение получили телефоны электромагнитного типа. В таких телефонах катушки закреплены неподвижно. Под действием протекающего в катушках тока возникает переменное магнитное поле, приводящее в движение подвижную мембрану, которая и излучает звуковые колебания. В современных телефонных аппаратах применяют в

основном телефонные капсюли типа ТК-67, а в аппаратах устаревших конструкций — также ТК-47 и ТА-4.

Полоса рабочих частот для микрофонов и телефонов, используемых в телефонных аппаратах, составляет примерно 300...3500 Гц. На принципиальных схемах телефон обозначают латинскими буквами BF.

Для удобства пользования микрофон и телефон объединены в микротелефонной трубке.

Вызывное устройство служит для преобразования вызывного сигнала переменного тока в звуковой сигнал. Применяют электромагнитные или электронные вызывные устройства. Первое из них представляет собой одно- или двухкатушечный звонок. Звуковой сигнал образуется в результате удара бойка о звонковые чашки. Протекающий в катушках ток частотой 16...50 Гц создаст переменное магнитное поле, которое приводит в движение якорь с бойком. Как правило, в телефонных звонках используют постоянные магниты, создающие определенную полярность магнитопровода, поэтому такие звонки называют поляризованными. Сопротивление обмоток звонка постоянному току составляет 1,5...3 кОм, рабочее напряжение 30...50 В. На принципиальных схемах звонок обозначают латинскими буквами НА.

Электронное вызывное устройство преобразует вызывной сигнал в звуковой тональный сигнал, который может имитировать, например, пение птицы. В качестве акустического излучателя при этом используют телефон или пьезоэлектрический вызывной прибор ВП-1. Такие вызывные устройства применяют, например, в современных телефонных аппаратах ТА-1131 "Лана", ТА-1165 "Стелла" и др. Электронные вызывные устройства выполняют на транзисторах.

Трансформатор телефонного аппарата предназначен для связи отдельных элементов разговорной части и для согласования их сопротивлений с входным сопротивлением абонентской линии. Он, кроме того, позволяет устранять так называемый местный эффект, о чем будет сказано ниже. Трансформаторы изготавливают с отдельными обмотками или в виде автотрансформаторов.

Разделительный конденсатор служит элементом подключения вызывного устройства к абонентской линии в режиме ожидания и приема вызова. При этом обеспечивается практически бесконечно большое сопротивление телефонного аппарата постоянному току и малое сопротивление — переменному. В телефонных аппаратах применяют разделительные конденсаторы типов МБМ, К73-П емкостью 0,25...1 мкф и на номинальное напряжение 160...250 В.

Номеронабиратель обеспечивает подачу импульсов набора номера в абонентскую линию с целью установления требуемого соединения. Импульсы служат для периодических замыканий и размыканий линии. В современных телефонных аппаратах применяют механические и электронные номеронабиратели. Дисковый механический номеронабиратель имеет диск с десятью отверстиями. При вращении диска по часовой стрелке заводится пружина механизма номеронабирателя. После отпускания диска он вращается в обратную сторону под действием пружины, при этом происходит периодическое размыкание контактов, коммутирующих абонентскую линию. Необходимая скорость и равномерность вращения диска достигаются наличием центробежного регулятора или фрикционного механизма. Формирование импульсов при свободном движении диска обеспечивает их стабильную частоту и необходимый интервал между импульсными посылками, соответствующими двум соседним цифрам набираемого номера. Необходимый интервал обеспечивается благодаря тому, что число размыканий импульсных контактов всегда выбирается на одно-два больше, чем требуется подать импульсов в линию. Этим обеспечивается гарантированная пауза между пачками импульсов (0,2...0,8 с). При этом указанные лишние импульсы в линию нс поступают, поскольку в это время импульсные контакты шунтируются одной из групп контактов номеронабирателя. Имеются также контакты, замыкающие телефон при наборе номера, чтобы исключить неприятные щелчки. Частота импульсов, формируемых номеронабирателем, должна составлять (10±1) имп./с. Число проводов, соединяющих номеронабиратель с другими элементами телефонного аппарата, может быть 3 — 5.

Электронные номеронабиратели, которыми комплектуются многие современные телефонные аппараты (например, ТА-5, ТА-7, ТА-101), выполнены на интегральных микросхемах и транзисторах. Набор номера осуществляют нажатием кнопок клавиатуры — так называемой тастатуры. Поскольку скорость нажатия кнопок может быть сколь угодно большой, в среднем на наборе одной цифры номера экономится 0,5 с. Кроме того, тастатурные номеронабиратели предоставляют пользователям различные удобства, экономящие время:

запоминание последнего набранного номера, возможность запоминания нескольких десятков номеров и др. Питание электронных номеронабирателей осуществляется как от абонентской линии, так и от сети напряжением 220 В через блок питания.

Рычажный переключатель обеспечивает подключение к абонентской линии вызывного устройства телефонного аппарата в нерабочем состоянии (микротелефонная трубка лежит) и разговорных цепей или номеронабирателя в рабочем состоянии (трубка снята). Рычажный переключатель представляет собой группы из нескольких переключающих контактов, срабатывающих при снятии телефонной трубки.

Кроме перечисленных элементов в состав телефонного аппарата входят также резисторы, конденсаторы, диоды, транзисторы, образующие разговорную цепь аппарата.

Рассмотрим устройство телефонного аппарата (ТА) в целом.

При работе телефонного аппарата в разговорном режиме возникает местный эффект, т.е. прослушивание собственной речи в телефоне аппарата. Местный эффект объясняется тем, что ток, протекающий через микрофон, поступает нс только в абонентскую линию, но и в собственный телефон. Для устранения этого нежелательного явления в современных телефонных аппаратах используют противо-местные устройства.

Существуют различные типы подобных устройств. Рассмотрим одно из них — противоместное устройство мостового типа (рис. 1).

1-21.jpg

Микрофон ВМ1, телефон BF1, балансный контур Zб и линия Zл связаны между собой обмотками трансформатора Т1: линейной I, балансной II и телефонной III. Во время разговора, когда сопротивление микрофона изменяется, разговорные токи звуковой частоты протекают по двум цепям: линейной и балансной. Из схемы видно, что токи, протекающие через обмотки I и II, суммируются с противоположными знаками, поэтому ток в обмотке 111 будет отсутствовать в том случае, если токи в линейной и балансной обмотках равны по величине. Это достигается соответствующим выбором элементов балансного контура Zб, параметры которого зависят от параметров линии Zл. Сопротивление линии содержит активную и емкостную составляющие, поэтому балансный контур выполняют из резисторов и конденсаторов.

Полное устранение местного эффекта достигается только на одной определенной частоте и определенных параметрах линии, что в реальных условиях невыполнимо, поскольку речевой сигнал содержит широкий спектр частот, а параметры линии изменяются в широких пределах (зависят от удаленности абонента от АТС, переходных сопротивлений и емкостей в кабелях и др.), поэтому на практике местный эффект не уничтожается полностью, а только ослабляется.

Рассмотрим схему телефонного аппарата ТА-72М-5 (рис. 2), предназначенного для работы в городских сетях. Его коммутационно-вызывную часть образуют рычажный переключатель SA1, звонок НА1, разделительный конденсатор С1 и номеронабиратель SA2. Разговорная часть телефонного аппарата состоит из телефона BF1, микрофона ВМ 1, трансформатора Т 1, балансного контура (конденсаторы С1 и С2, резисторы R1—R3) и ограничительных диодов VD1, VD2. Разговорная часть выполнена по противоместной схеме мостового

типа.

В исходном состоянии контактов рычажного переключателя SA1 и номеронабирателя SA2, показанном на схеме, к линии подключены последовательно соединенные между собой звонок НА1 и конденсатор С1, а разговорная часть отключена. При появлении вызывного напряжения на зажимах 1 и 4 телефонного аппарата ток протекает по цепи: зажим 1 — перемычка — зажим 3 — обмотка звонка — нормально замкнутые контакты SA1.2 рычажного переключателя — конденсатор С1 — зажим 4. (Направление тока выбрано условно — с таким же успехом его можно было бы считать протекающим от зажима 4 к зажиму 1.) Услышав звонок, абонент снимает трубку. При этом контакты SA1.1 и SA1.2 переключаются в другое положение, отключая вызывную цепь и подключая к линии разговорную цепь. Сопротивление постоянному току между зажимами 1 и 4 изменяется от очень большого (сотни килоом — мегаомы) до относительно малого (сотни ом), это фиксируется приборами телефонной станции, и они переключаются в разговорный режим.

При наборе номера контакты SA2.1 номеронабирателя находятся в замкнутом состоянии во время прямого и возвратного вращения диска, что обеспечивает шунтирование разговорной цепи и исключает прослушивание щелчков в телефоне. При возвратном вращении диска номеронабирателя контакты SA2.2 разрывают линейную цепь, и приборы станции по числу таких размыканий фиксируют номер вызываемого абонента.

Диоды VD1 и VD2 ограничивают выбросы напряжения на обмотках телефона и исключают резкие звуки, неприятные для уха.

Для работы в сетях телефонных станций ручного обслуживания используют телефонные аппараты без номеронабирателя. Схема одного из таких аппаратов (типа ТА-68ЦБ-2) показана на рис. 3. Основным отличием его от предыдущего аппарата является отсутствие контактов номеронабирателя и одной группы контактов рычажного переключателя, в связи с чем звонок и конденсатор С1 остаются подключенными к линии и в разговорном режиме. Однако они практически нс оказывают влияния на работу телефонного аппарата в таком режиме.

В устройствах телефонной связи, которые описаны в этой книге, можно использовать выпускаемые промышленностью телефонные аппараты как с номеронабирателем (ТА-68, ТА-72М-5, ТА-1146 и др.), так и без него (ТА-68ЦБ-2 и другие аналогичные). Но телефонные аппараты без номеронабирателя годятся только для телефонных коммутаторов с ручным управлением. Если в распоряжении радиолюбителя имеется телефонный аппарат, у которого исправны лишь трубка и звонок, его также можно использовать. В этом случае соединение элементов осуществляют в соответствии со схемой, приведенной на рис. 4. Конденсатор С1 — типа К73-17, МБМ, МБГО. Следует отметить, что в таком телефонном аппарате в полной мере будет проявляться местный эффект, но ради простоты можно несколько поступиться удобством.

Рассмотрим кратко, каким образом осуществляется коммутация телефонных линий в городских АТС. С 1876 г., когда шотландец А.Г.Белл изобрел первый в мире двухпроводный телефон, принцип телефонной связи нс претерпел существенных изменений.

Схема организации телефонной связи между двумя абонентами показана на рис. 5. Ток питания телефонных аппаратов El, E2 про-

1-22.jpg

ходит через дроссели L1 и L2. Дроссели необходимы для того, чтобы не происходило замыкание разговорного (переменного) тока через источник питания постоянного тока Uпит, внутреннее сопротивление которого очень мало и составляет доли ома. Источник постоянного тока принято называть центральной батареей (ЦБ). Дроссели L1 и L2 имеют относительно небольшое сопротивление постоянному току (обычно не более 1 кОм). Индуктивность дросселей достаточно велика и в диапазоне частот разговорных токов (300...3500 Гц) создаст столь значительное сопротивление разговорному (переменному) току, что он практически не ответвляется в ЦБ и протекает в контуре между аппаратами Е1 и Е2. На АТС в качестве дросселей обычно используются обмотки двухобмоточных реле, причем эти реле одновременно служат для получения сигнала о вызове станции абонентом и сигнала окончания разговора (отбоя).

Индуктор формирует переменное вызывное напряжение частотой 16...50 Гц, которое приводит в действие вызывное устройство нужного телефонного аппарата.

Коммутация абонентов первоначально выполнялась на АТС вручную, затем стали использовать шаговые искатели, а в настоящее время коммутация осуществляется квазиэлектронным или электронным способом. Устройства коммутации АТС управляются импульса

1-23.jpg

ми постоянного тока, которые создаются номеронабирателем телефонного аппарата при наборе абонентом цифр номера вызываемого абонента.

Рисунок 6 иллюстрирует простейший принцип установления соединения на АТС. Телефонный аппарат первого абонента Е1 подключен к ЦБ (Uпит) через обмотки двухобмоточного реле К1. При снятии первым абонентом микротелефонной трубки аппарата Е1 реле К1 срабатывает и контактами К 1.2 подаст питание на обмотку реле К2. Это реле устроено таким образом, что отпускание якоря происходит не сразу после снятия напряжения с его обмотки, а с некоторой задержкой (в данном случае эта задержка составляет около 0,1 с). Контакты реле К2.2 подготавливают цепь питания шагового искателя КЗ. При наборе абонентом Е1 номера вызываемого абонента цепи питания обмоток реле К1 будут прерываться контактами номеронабирателя телефонного аппарата Е1 (это происходит при возвратном движении диска номеронабирателя). Контактами К1.1 подаются импульсы питания на обмотку шагового искателя КЗ соответственно цифре номера вызываемого абонента. По окончании вращения диска номеронабирателя телефонного аппарата Е1 контакты шагового искателя соединят линию вызывающего абонента с линией вызываемого, после чего абоненты смогут вести разговор.

Когда по окончании разговора абонент положит микротелефонную трубку на аппарат Е1, реле К1 отпустит, его контакты К 1.2 разомкнут цепь питания реле К2, которое спустя 0,1 с также отпустит. При этом через контакты К2.1, КЗ.4 и КЗ.3 будет подано питание на обмотку шагового искателя КЗ. Контакт КЗ.4 скользит по сплошной ламели шагового искателя и разомкнется только тогда, когда шаговый искатель придет в исходное состояние. Контакт КЗ.3 — это самопрерывающий контакт шагового искателя, который прерывает цепь питания обмотки шагового искателя при притяжении якоря к сердеч-

1-24.jpg

нику. Благодаря этому контакту на обмотке КЗ формируется серия импульсов, которые последовательно устанавливают контакты КЗ.1 и КЗ.2 в исходное положение.

Четкость работы абонентских реле и шагового искателя зависит от времени размыкания контактов номеронабирателя, которое не должно превышать 0,1 с. В противном случае при размыкании контактов К 1.2 реле К2 не сможет удержать якорь, и соединения не произойдет. Поэтому параметры номеронабирателей телефонных аппаратов должны соответствовать следующим требованиям:

1) частота импульсов номеронабирателя 10±1 имп/с;

2) период повторения импульсов 0,95...0,105 с;

3) пауза между сериями импульсов не менее 0,64 с;

4) отношение времени размыкания к времени замыкания импульсного контакта номеронабирателя, называемое импульсным коэффициентом, в зависимости от типа АТС 1,3...1,9.

Центральная батарея АТС осуществляет питание линий абонентов постоянным напряжением Uпит = 60 В. При снятии микротелефонной трубки телефонного аппарата линия АТС оказывается нагруженной на внутреннее сопротивление телефонного аппарата, в результате напряжение на зажимах линии падает до 10...20 В (в зависимости от удаленности абонента от АТС и типа применяемого аппарата). Внутреннее сопротивление телефонного аппарата при снятой трубке может составлять 200...800 Ом, а рабочий (разговорный) ток через аппарат — 20...40 мА. Приведенное к гнездам абонента сопротивление АТС, которое включает сопротивления линии, обмоток реле К1 (см.рис. 5) и внутреннее сопротивление центральной батареи, может составлять от 600 Ом до 2 кОм.

Для телефонного аппарата с дисковым номеронабирателем набор номера абонента осуществляется следующим образом: при вращении

1-25.jpg

1-26.jpg

диска по часовой стрелке до пальцевого упора контакты номеронабирателя замыкают линию, а при возвратном вращении линия размыкается такое число раз, которое соответствует набранной цифре. На рис. 7 показана временная диаграмма работы телефонного аппарата.

В качестве вызывного сигнала на АТС используется переменное напряжение 80...120 В частотой 16...30 Гц.

В устройствах телефонной связи, описанных в книге, применяют два способа соединения линий телефонных аппаратов: параллельное и последовательное (рис. 8).

Схема с параллельным соединением телефонных аппаратов была рассмотрена выше (рис. 5). Отличие схемы, приведенной на рис. 8,а, состоит в том, что вместо двух катушек индуктивности включен стабилизатор тока СТ, т.е. двухполюсник, ток через который сохраняется неизменным при изменении параметров внешней цепи в определенных пределах.

В любом случае справедливо соотношение L1 + L2 = L= const. поэтому изменение тока в цепи первого абонента вызывает точно такое же изменение тока в цепи второго абонента, но с противоположным знаком. При этом обеспечивается максимально возможная громкость разговора. Практически в переговорных устройствах вместо стабилизатора тока можно использовать резистор сопротивлением 1...5 кОм, однако следует учесть, что при этом громкость разговора несколько снизится.

На рис. 8,6 приведена схема последовательного соединения телефонных аппаратов. При таком соединении разговорный ток одного аппарата полностью протекает через второй аппарат, что обеспечивает максимально возможную громкость разговора (при данных условиях).

Следует заметить, что в городских АТС последовательный способ соединения линий телефонных аппаратов нс используется из-за сложности коммутации аппаратов. (В книге данный способ применяется в переговорных устройствах и коммутаторах с ручным управлением.)

 

2. Устройство телефонного аппарата и основы телефонной связи.

УСТРОЙСТВО ТЕЛЕФОННОГО АППАРАТА И ОСНОВЫ ТЕЛЕФОННОЙ СВЯЗИ

В состав телефонных аппаратов, предназначаемых для работы в телефонных сетях, входят следующие обязательные элементы: микрофон и телефон, объединенные в микротелефонную трубку, вызывное устройство, трансформатор, разделительный конденсатор, номеронабиратель, рычажный переключатель. На принципиальных электрических схемах телефонный аппарат обозначают буквой Е.

Кратко рассмотрим назначение основных элементов телефонного аппарата.

Микрофон служит для преобразования звуковых колебаний речи и электрический сигнал звуковой частоты. Микрофоны могут быть угольными, конденсаторными, электродинамическими, электромагнитными, пьезоэлектрическими. Их можно классифицировать на активные и пассивные. Активные микрофоны непосредственно преобразуют звуковую энергию в электрическую. В пассивных же микрофонах звуковая энергия преобразуется в изменение какого-либо параметра (чаще всего — емкости и сопротивления). Для работы такого микрофона обязательно требуется вспомогательный источник питания.

В массовых телефонных аппаратах применяют, как правило, угольные микрофоны, в которых под действием звуковых волн изменяется электрическое сопротивление угольного порошка, находящегося под мембраной. Наиболее широко используют микрофонные капсюли типов МК-10, МК-16, обладающие достаточно высокой чувствительностью (в описываемых устройствах применены в основном угольные микрофоны). На принципиальных схемах микрофон обозначают латинскими буквами ВМ.

Следует отметить, что в последнее время ряд телефонных аппаратов оснащают также конденсаторными микрофонами типов МКЭ-3, КМ-4, КМ-7.

Телефоном называют прибор, предназначенный для преобразования электрических сигналов в звуковые и рассчитанный для работы в условиях нагрузки на ухо человека. В зависимости от конструктивных особенностей телефоны подразделяют на электромагнитные, электродинамические, с дифференциальной магнитной системой и пьезоэлектрические. В телефонных аппаратах наибольшее распространение получили телефоны электромагнитного типа. В таких телефонах катушки закреплены неподвижно. Под действием протекающего в катушках тока возникает переменное магнитное поле, приводящее в движение подвижную мембрану, которая и излучает звуковые колебания. В современных телефонных аппаратах применяют в

основном телефонные капсюли типа ТК-67, а в аппаратах устаревших конструкций — также ТК-47 и ТА-4.

Полоса рабочих частот для микрофонов и телефонов, используемых в телефонных аппаратах, составляет примерно 300...3500 Гц. На принципиальных схемах телефон обозначают латинскими буквами BF.

Для удобства пользования микрофон и телефон объединены в микротелефонной трубке.

Вызывное устройство служит для преобразования вызывного сигнала переменного тока в звуковой сигнал. Применяют электромагнитные или электронные вызывные устройства. Первое из них представляет собой одно- или двухкатушечный звонок. Звуковой сигнал образуется в результате удара бойка о звонковые чашки. Протекающий в катушках ток частотой 16...50 Гц создаст переменное магнитное поле, которое приводит в движение якорь с бойком. Как правило, в телефонных звонках используют постоянные магниты, создающие определенную полярность магнитопровода, поэтому такие звонки называют поляризованными. Сопротивление обмоток звонка постоянному току составляет 1,5...3 кОм, рабочее напряжение 30...50 В. На принципиальных схемах звонок обозначают латинскими буквами НА.

Электронное вызывное устройство преобразует вызывной сигнал в звуковой тональный сигнал, который может имитировать, например, пение птицы. В качестве акустического излучателя при этом используют телефон или пьезоэлектрический вызывной прибор ВП-1. Такие вызывные устройства применяют, например, в современных телефонных аппаратах ТА-1131 "Лана", ТА-1165 "Стелла" и др. Электронные вызывные устройства выполняют на транзисторах.

Трансформатор телефонного аппарата предназначен для связи отдельных элементов разговорной части и для согласования их сопротивлений с входным сопротивлением абонентской линии. Он, кроме того, позволяет устранять так называемый местный эффект, о чем будет сказано ниже. Трансформаторы изготавливают с отдельными обмотками или в виде автотрансформаторов.

Разделительный конденсатор служит элементом подключения вызывного устройства к абонентской линии в режиме ожидания и приема вызова. При этом обеспечивается практически бесконечно большое сопротивление телефонного аппарата постоянному току и малое сопротивление — переменному. В телефонных аппаратах применяют разделительные конденсаторы типов МБМ, К73-П емкостью 0,25...1 мкф и на номинальное напряжение 160...250 В.

Номеронабиратель обеспечивает подачу импульсов набора номера в абонентскую линию с целью установления требуемого соединения. Импульсы служат для периодических замыканий и размыканий линии. В современных телефонных аппаратах применяют механические и электронные номеронабиратели. Дисковый механический номеронабиратель имеет диск с десятью отверстиями. При вращении диска по часовой стрелке заводится пружина механизма номеронабирателя. После отпускания диска он вращается в обратную сторону под действием пружины, при этом происходит периодическое размыкание контактов, коммутирующих абонентскую линию. Необходимая скорость и равномерность вращения диска достигаются наличием центробежного регулятора или фрикционного механизма. Формирование импульсов при свободном движении диска обеспечивает их стабильную частоту и необходимый интервал между импульсными посылками, соответствующими двум соседним цифрам набираемого номера. Необходимый интервал обеспечивается благодаря тому, что число размыканий импульсных контактов всегда выбирается на одно-два больше, чем требуется подать импульсов в линию. Этим обеспечивается гарантированная пауза между пачками импульсов (0,2...0,8 с). При этом указанные лишние импульсы в линию нс поступают, поскольку в это время импульсные контакты шунтируются одной из групп контактов номеронабирателя. Имеются также контакты, замыкающие телефон при наборе номера, чтобы исключить неприятные щелчки. Частота импульсов, формируемых номеронабирателем, должна составлять (10±1) имп./с. Число проводов, соединяющих номеронабиратель с другими элементами телефонного аппарата, может быть 3 — 5.

Электронные номеронабиратели, которыми комплектуются многие современные телефонные аппараты (например, ТА-5, ТА-7, ТА-101), выполнены на интегральных микросхемах и транзисторах. Набор номера осуществляют нажатием кнопок клавиатуры — так называемой тастатуры. Поскольку скорость нажатия кнопок может быть сколь угодно большой, в среднем на наборе одной цифры номера экономится 0,5 с. Кроме того, тастатурные номеронабиратели предоставляют пользователям различные удобства, экономящие время:

запоминание последнего набранного номера, возможность запоминания нескольких десятков номеров и др. Питание электронных номеронабирателей осуществляется как от абонентской линии, так и от сети напряжением 220 В через блок питания.

Рычажный переключатель обеспечивает подключение к абонентской линии вызывного устройства телефонного аппарата в нерабочем состоянии (микротелефонная трубка лежит) и разговорных цепей или номеронабирателя в рабочем состоянии (трубка снята). Рычажный переключатель представляет собой группы из нескольких переключающих контактов, срабатывающих при снятии телефонной трубки.

Кроме перечисленных элементов в состав телефонного аппарата входят также резисторы, конденсаторы, диоды, транзисторы, образующие разговорную цепь аппарата.

Рассмотрим устройство телефонного аппарата (ТА) в целом.

При работе телефонного аппарата в разговорном режиме возникает местный эффект, т.е. прослушивание собственной речи в телефоне аппарата. Местный эффект объясняется тем, что ток, протекающий через микрофон, поступает нс только в абонентскую линию, но и в собственный телефон. Для устранения этого нежелательного явления в современных телефонных аппаратах используют противо-местные устройства.

Существуют различные типы подобных устройств. Рассмотрим одно из них — противоместное устройство мостового типа (рис. 1).

1-21.jpg

Микрофон ВМ1, телефон BF1, балансный контур Zб и линия Zл связаны между собой обмотками трансформатора Т1: линейной I, балансной II и телефонной III. Во время разговора, когда сопротивление микрофона изменяется, разговорные токи звуковой частоты протекают по двум цепям: линейной и балансной. Из схемы видно, что токи, протекающие через обмотки I и II, суммируются с противоположными знаками, поэтому ток в обмотке 111 будет отсутствовать в том случае, если токи в линейной и балансной обмотках равны по величине. Это достигается соответствующим выбором элементов балансного контура Zб, параметры которого зависят от параметров линии Zл. Сопротивление линии содержит активную и емкостную составляющие, поэтому балансный контур выполняют из резисторов и конденсаторов.

Полное устранение местного эффекта достигается только на одной определенной частоте и определенных параметрах линии, что в реальных условиях невыполнимо, поскольку речевой сигнал содержит широкий спектр частот, а параметры линии изменяются в широких пределах (зависят от удаленности абонента от АТС, переходных сопротивлений и емкостей в кабелях и др.), поэтому на практике местный эффект не уничтожается полностью, а только ослабляется.

Рассмотрим схему телефонного аппарата ТА-72М-5 (рис. 2), предназначенного для работы в городских сетях. Его коммутационно-вызывную часть образуют рычажный переключатель SA1, звонок НА1, разделительный конденсатор С1 и номеронабиратель SA2. Разговорная часть телефонного аппарата состоит из телефона BF1, микрофона ВМ 1, трансформатора Т 1, балансного контура (конденсаторы С1 и С2, резисторы R1—R3) и ограничительных диодов VD1, VD2. Разговорная часть выполнена по противоместной схеме мостового

типа.

В исходном состоянии контактов рычажного переключателя SA1 и номеронабирателя SA2, показанном на схеме, к линии подключены последовательно соединенные между собой звонок НА1 и конденсатор С1, а разговорная часть отключена. При появлении вызывного напряжения на зажимах 1 и 4 телефонного аппарата ток протекает по цепи: зажим 1 — перемычка — зажим 3 — обмотка звонка — нормально замкнутые контакты SA1.2 рычажного переключателя — конденсатор С1 — зажим 4. (Направление тока выбрано условно — с таким же успехом его можно было бы считать протекающим от зажима 4 к зажиму 1.) Услышав звонок, абонент снимает трубку. При этом контакты SA1.1 и SA1.2 переключаются в другое положение, отключая вызывную цепь и подключая к линии разговорную цепь. Сопротивление постоянному току между зажимами 1 и 4 изменяется от очень большого (сотни килоом — мегаомы) до относительно малого (сотни ом), это фиксируется приборами телефонной станции, и они переключаются в разговорный режим.

При наборе номера контакты SA2.1 номеронабирателя находятся в замкнутом состоянии во время прямого и возвратного вращения диска, что обеспечивает шунтирование разговорной цепи и исключает прослушивание щелчков в телефоне. При возвратном вращении диска номеронабирателя контакты SA2.2 разрывают линейную цепь, и приборы станции по числу таких размыканий фиксируют номер вызываемого абонента.

Диоды VD1 и VD2 ограничивают выбросы напряжения на обмотках телефона и исключают резкие звуки, неприятные для уха.

Для работы в сетях телефонных станций ручного обслуживания используют телефонные аппараты без номеронабирателя. Схема одного из таких аппаратов (типа ТА-68ЦБ-2) показана на рис. 3. Основным отличием его от предыдущего аппарата является отсутствие контактов номеронабирателя и одной группы контактов рычажного переключателя, в связи с чем звонок и конденсатор С1 остаются подключенными к линии и в разговорном режиме. Однако они практически нс оказывают влияния на работу телефонного аппарата в таком режиме.

В устройствах телефонной связи, которые описаны в этой книге, можно использовать выпускаемые промышленностью телефонные аппараты как с номеронабирателем (ТА-68, ТА-72М-5, ТА-1146 и др.), так и без него (ТА-68ЦБ-2 и другие аналогичные). Но телефонные аппараты без номеронабирателя годятся только для телефонных коммутаторов с ручным управлением. Если в распоряжении радиолюбителя имеется телефонный аппарат, у которого исправны лишь трубка и звонок, его также можно использовать. В этом случае соединение элементов осуществляют в соответствии со схемой, приведенной на рис. 4. Конденсатор С1 — типа К73-17, МБМ, МБГО. Следует отметить, что в таком телефонном аппарате в полной мере будет проявляться местный эффект, но ради простоты можно несколько поступиться удобством.

Рассмотрим кратко, каким образом осуществляется коммутация телефонных линий в городских АТС. С 1876 г., когда шотландец А.Г.Белл изобрел первый в мире двухпроводный телефон, принцип телефонной связи нс претерпел существенных изменений.

Схема организации телефонной связи между двумя абонентами показана на рис. 5. Ток питания телефонных аппаратов El, E2 про-

1-22.jpg

ходит через дроссели L1 и L2. Дроссели необходимы для того, чтобы не происходило замыкание разговорного (переменного) тока через источник питания постоянного тока Uпит, внутреннее сопротивление которого очень мало и составляет доли ома. Источник постоянного тока принято называть центральной батареей (ЦБ). Дроссели L1 и L2 имеют относительно небольшое сопротивление постоянному току (обычно не более 1 кОм). Индуктивность дросселей достаточно велика и в диапазоне частот разговорных токов (300...3500 Гц) создаст столь значительное сопротивление разговорному (переменному) току, что он практически не ответвляется в ЦБ и протекает в контуре между аппаратами Е1 и Е2. На АТС в качестве дросселей обычно используются обмотки двухобмоточных реле, причем эти реле одновременно служат для получения сигнала о вызове станции абонентом и сигнала окончания разговора (отбоя).

Индуктор формирует переменное вызывное напряжение частотой 16...50 Гц, которое приводит в действие вызывное устройство нужного телефонного аппарата.

Коммутация абонентов первоначально выполнялась на АТС вручную, затем стали использовать шаговые искатели, а в настоящее время коммутация осуществляется квазиэлектронным или электронным способом. Устройства коммутации АТС управляются импульса

1-23.jpg

ми постоянного тока, которые создаются номеронабирателем телефонного аппарата при наборе абонентом цифр номера вызываемого абонента.

Рисунок 6 иллюстрирует простейший принцип установления соединения на АТС. Телефонный аппарат первого абонента Е1 подключен к ЦБ (Uпит) через обмотки двухобмоточного реле К1. При снятии первым абонентом микротелефонной трубки аппарата Е1 реле К1 срабатывает и контактами К 1.2 подаст питание на обмотку реле К2. Это реле устроено таким образом, что отпускание якоря происходит не сразу после снятия напряжения с его обмотки, а с некоторой задержкой (в данном случае эта задержка составляет около 0,1 с). Контакты реле К2.2 подготавливают цепь питания шагового искателя КЗ. При наборе абонентом Е1 номера вызываемого абонента цепи питания обмоток реле К1 будут прерываться контактами номеронабирателя телефонного аппарата Е1 (это происходит при возвратном движении диска номеронабирателя). Контактами К1.1 подаются импульсы питания на обмотку шагового искателя КЗ соответственно цифре номера вызываемого абонента. По окончании вращения диска номеронабирателя телефонного аппарата Е1 контакты шагового искателя соединят линию вызывающего абонента с линией вызываемого, после чего абоненты смогут вести разговор.

Когда по окончании разговора абонент положит микротелефонную трубку на аппарат Е1, реле К1 отпустит, его контакты К 1.2 разомкнут цепь питания реле К2, которое спустя 0,1 с также отпустит. При этом через контакты К2.1, КЗ.4 и КЗ.3 будет подано питание на обмотку шагового искателя КЗ. Контакт КЗ.4 скользит по сплошной ламели шагового искателя и разомкнется только тогда, когда шаговый искатель придет в исходное состояние. Контакт КЗ.3 — это самопрерывающий контакт шагового искателя, который прерывает цепь питания обмотки шагового искателя при притяжении якоря к сердеч-

1-24.jpg

нику. Благодаря этому контакту на обмотке КЗ формируется серия импульсов, которые последовательно устанавливают контакты КЗ.1 и КЗ.2 в исходное положение.

Четкость работы абонентских реле и шагового искателя зависит от времени размыкания контактов номеронабирателя, которое не должно превышать 0,1 с. В противном случае при размыкании контактов К 1.2 реле К2 не сможет удержать якорь, и соединения не произойдет. Поэтому параметры номеронабирателей телефонных аппаратов должны соответствовать следующим требованиям:

1) частота импульсов номеронабирателя 10±1 имп/с;

2) период повторения импульсов 0,95...0,105 с;

3) пауза между сериями импульсов не менее 0,64 с;

4) отношение времени размыкания к времени замыкания импульсного контакта номеронабирателя, называемое импульсным коэффициентом, в зависимости от типа АТС 1,3...1,9.

Центральная батарея АТС осуществляет питание линий абонентов постоянным напряжением Uпит = 60 В. При снятии микротелефонной трубки телефонного аппарата линия АТС оказывается нагруженной на внутреннее сопротивление телефонного аппарата, в результате напряжение на зажимах линии падает до 10...20 В (в зависимости от удаленности абонента от АТС и типа применяемого аппарата). Внутреннее сопротивление телефонного аппарата при снятой трубке может составлять 200...800 Ом, а рабочий (разговорный) ток через аппарат — 20...40 мА. Приведенное к гнездам абонента сопротивление АТС, которое включает сопротивления линии, обмоток реле К1 (см.рис. 5) и внутреннее сопротивление центральной батареи, может составлять от 600 Ом до 2 кОм.

Для телефонного аппарата с дисковым номеронабирателем набор номера абонента осуществляется следующим образом: при вращении

1-25.jpg

1-26.jpg

диска по часовой стрелке до пальцевого упора контакты номеронабирателя замыкают линию, а при возвратном вращении линия размыкается такое число раз, которое соответствует набранной цифре. На рис. 7 показана временная диаграмма работы телефонного аппарата.

В качестве вызывного сигнала на АТС используется переменное напряжение 80...120 В частотой 16...30 Гц.

В устройствах телефонной связи, описанных в книге, применяют два способа соединения линий телефонных аппаратов: параллельное и последовательное (рис. 8).

Схема с параллельным соединением телефонных аппаратов была рассмотрена выше (рис. 5). Отличие схемы, приведенной на рис. 8,а, состоит в том, что вместо двух катушек индуктивности включен стабилизатор тока СТ, т.е. двухполюсник, ток через который сохраняется неизменным при изменении параметров внешней цепи в определенных пределах.

В любом случае справедливо соотношение L1 + L2 = L= const. поэтому изменение тока в цепи первого абонента вызывает точно такое же изменение тока в цепи второго абонента, но с противоположным знаком. При этом обеспечивается максимально возможная громкость разговора. Практически в переговорных устройствах вместо стабилизатора тока можно использовать резистор сопротивлением 1...5 кОм, однако следует учесть, что при этом громкость разговора несколько снизится.

На рис. 8,6 приведена схема последовательного соединения телефонных аппаратов. При таком соединении разговорный ток одного аппарата полностью протекает через второй аппарат, что обеспечивает максимально возможную громкость разговора (при данных условиях).

Следует заметить, что в городских АТС последовательный способ соединения линий телефонных аппаратов нс используется из-за сложности коммутации аппаратов. (В книге данный способ применяется в переговорных устройствах и коммутаторах с ручным управлением.)

 

Разговорные узлы телефонных аппаратов

- автоматическая регулировка усиления сигнала телефонной линии.

Цоколёвка ИС КР1064УН1 приведена на рис. 3.45, назначение выводов в табл. 3.11.

Табл. 3.11. Назначение выводов ИС КР1064УН1.
Вывод Обозначение Назначение
1 LN Положительный вход линии.
2 GAS1 Регулировка коэффициента усиления передающего усилителя.
3 GAS2 Регулировка коэффициента усиления передающего усилителя.
4 QR- Инверсный выход приёмного усилителя.
5 QR+ Неинверсный выход приёмного усилителя.
6 GAR Регулировка коэффициента усиления приёмного усилителя.
7 MIK- Инверсный вход микрофонного усилителя.
8 MIK+ Неинверсный вход микрофонного усилителя.
9 STAB Выход стабилизатора тока.
10 OV Отрицательный вход линии.
11 IR Вход приёмного усилителя.
12 PD Вход снижения мощности потребления.
13 DTMF Вход многочастотного набора.
14 MUTE Вход блокировки микрофонного усилителя.
15 UST Выход "напряжение питания периферийных устройств".
16 REG Вход регулировки напряжения питания.
17 AGC Вход АРУ.
18 SPLE Вход общей регулировки усиления.
Основные характеристики микросхемы разговорного узла КР1064УН1 приведены в табл. 3.12.

Табл. 3.12. Основные характеристики ИС КР1064УН1.
Параметр Обозначение Значение
Напряжение внутреннего стабилизированного источника
питания при подключении к телефонной линии.
ULN 4 - 4,5 В
Диапазон изменения тока линии. ILN 10 - 100 мА
Ток потребления, не более, при "низком" уровне на входе PD /
"высоком" уровне на входе PD
ICCL / Iссн 3 мА / 100 мкА
Ток потребления периферийными устройствами при ILN - 35 мА, не более IP 3,0 мА
Диапазон усиления - микрофонного усилителя - приёмного усилителя AVD AVD 44 - 60 дБ 17 - 39 дБ
Частотный диапазон F 200 - 20000 Гц

На рис. 3.46 приведена схема включения ИС КР1064УН1. Микросхема и её периферийные компоненты используют питание телефонной линии, с помощью которого ИС вырабатывает собственное стабилизированное напряжение UST. Выход UST может быть использован для питания ИС ЭНН и других периферийных компонентов.

Внутренний стабилизатор тока включается с помощью резистора R10 сопротивлением 3,6 кОм, подключаемого с вывода 9 (STAB) на корпус.

Резистор R8 задаёт ток нагрузки линии. Изменение сопротивления резистора R8 влияет на коэффициент усиления микрофонного усилителя, усилителя сигнала приёма, местный эффект и максимальную амплитуду выходного сигнала на линию.

Микросхема содержит микрофонный усилитель со сбалансированным входным сопротивлением 64 кОм (2

При подаче на вход MUTE (вывод 14) "высокого" уровня отключаются микрофонный и телефонный усилители, что даёт возможность передачи сигнала многочастотного кода с микросхемы номеронабирателя, подаваемого на вход DTMF (вывод 18). Коэффициент усиления усилителя сигнала DTMF составляет 26,6 дБ и регулируется одновременно с микрофонным усилителем с помощью резистора R9.

Приёмный усилитель имеет один вход IR (вывод 11) и два комплементарных выхода: прямой QR+ (вывод 5) и инверсный QR- (вывод 4). В зависимости от чувствительности и типа динамической головки могут быть задействован один или оба выхода. Коэффициент усиления приёмного усилителя составляет 26 дБ и регулируется в диапазоне ±8 дБ с помощью резистора R13. При использовании одновременно двух выходов усилителя усиление возрастает на 6 дБ, но при этом необходимо использовать прослушивающее устройство с сопротивлением выше 450 Ом (высокоомные динамические, магнитные и пьезоэлектрические прослушивающие устройства). Подключение конденсаторов С10 и С12 необходимо для стабильной работы усилителя.

Компенсация потерь в линии достигается автоматическим изменением коэффициента усиления микрофонного и приёмного усилителей. Это достигается включением резистора R11 с вывода 17 на корпус. Сопротивление резистора R11 выбирается в зависимости от напряжения питания в линии АТС и сопротивления питающего моста. Если нет необходимости в использовании АРУ, вывод 17 остаётся свободным. Усилители при этом обеспечивают максимальное усиление.

В течение импульсного набора происходит разрыв линии, вследствие чего прерывается питание периферийных устройств, подключенных к выводу 15 Интервалы прерывания сглаживаются конденсатором СЗ. "Высокий" уровень на входе PD (вывод 17) снижает потребление тока с 1 мА до 65 мкА и отсоединяет конденсатор С9, подключенный к выводу 16. Вследствие этого стабилизатор не имеет задержки включения после прерывания линии и форма тока Icс в течение импульсного набора остаётся неискажённой.
Резисторы R3 - R8 составляют цепь компенсации местного эффекта.

НПО "ИНТЕГРАЛ" в г. Минске выпускает микросхему разговорного узла ЭКР1436ХА1 (аналог ТЕА1068). Эта микросхема имеет несколько лучшие характеристики, чем НС КР1064УН1. В частности, в два раза снижен ток потребления. Цоколёвка ИС ЭКР1436ХА1 и схема включения такие же, как и КР1064УН1. На рис. 3.47 приведена схема включения ИС ЭКР1436ХА1 со специальным мостом подавления местного эффекта. Цепь компенсации местного эффекта состоит из резисторов R3, R6, R7, R9 - R11, R13.

На рис. 3.48 представлена схема разговорного узла на широко распространённой микросхеме К157УД2. ИС К157УД2 представляет собой двухканальный операционный усилитель (ОУ) универсального назначения, обладающий низким уровнем собственных шумов и малым током потребления. ОУ допускает большой диапазон входных дифференциальных напряжений, имеет защиту от коротких замыканий на выходе. Номинальное напряжение питания ±1б В, но микросхема сохраняет работоспособность при напряжении питания от ±3 В,что даёт возможность использовать её в схеме разговорного узла телефона.

На DA1.1 собран усилитель сигнала микрофона, а на DA1.2 усилитель сигнала приёма с линии. ОУ включены по схеме неинвертирующего усилителя переменного тока. На транзисторе VT1, резисторах R1 и R3, конденсаторе С1 стабилитроне VD1, диоде VD2 и светодиоде VD3 собран источник питания который обеспечивает двухполярное питание ОУ. Транзистор VT2 обеспечивает усиление по току сигнала микрофона с выхода DA1.1. Резисторы R9 и R10 представляют собой элементы противоместной схемы. Конденсатор С5 в цепи резистора обратной связи предназначен для исключения автоколебаний. Конденсаторы С4 и С9 предназначены для устойчивой работы ОУ с замкнутой обратной связью. Ёмкость конденсатора зависит от глубины обратной связи.

     Разговорный узел ТА с "громкой связью"

Выпускается ИС для громкоговорящего ТА ЭКР1436ХА2 (аналог фирмы MOTOROLA"- МС34118). АО "СВЕТЛАНА" в г. С-Петербурге производит эту микросхему с маркировкой КР1064ХА1. Цоколёвка ИС ЭКР1436ХА2 приведена на рис. 3.49, назначение выводов - в табл.3.13.

Структурная схема ИС ЭКР1436ХА2 приведена на рис. 3.50.

ИС ЭКР1436ХА2 представляет собой управляемый голосом усилитель для ТА с громкой связью. ИС включает в себя все необходимые усилители, аттенюаторы, детекторы уровня и логическую схему управления, являющиеся основой для высококачественных телефонных систем.

Микросхема включает в себя микрофонный усилитель с регулировкой усиления и блокировкой усилителя, приёмный и передающий аттенюаторы, работающие в дополняющем режиме, детекторы уровня на входах и выходах обоих аттенюаторов и идентификаторы фонового шума для каналов передачи и приёма. Детектор сигнала частотного набора номера блокирует выход приёмного идентификатора фонового шума во время сигнала частотного набора.

Микросхема содержит также два линейных усилителя мощности, которые могут использоваться для создания гибридной схемы связи с внешним трансформатором связи. Для фильтрации шума (50 Гц и др.) в приёмном канале может использоваться фильтр верхних частот. Вход блокировки микросхемы позволяет отключить питание всей схемы громкой связи в то время, когда этот режим не используется. ИС ЭКР1436ХА2 может работать как от источника питания, так и от телефонной линии. Напряжение питания ИС находится в пределах от 2,8 до 6,5 В. Типовой ток потребления 5мА.

Табл. 3.13. Назначение выводов ИС ЭКР1436ХА2.
№ вывода Обозначение Назначение
1 FO Выход фильтра. Выходное сопротивление менее 50 Ом.
2 FI Вход фильтра. Входное сопротивление более 1 МОм.
3 CD Вход блокировки микросхемы. "Низкий" уровень ("Высокий" уровень (> 2,0 В) запрещает работу ИС. Номинальное входное сопротивление при этом составляет 90 кОм.
4 VCC Напряжение питания. Рабочее напряжение находится в пределах от 2,8 до 6,5 В при потребляемом токе около 5,0 мА. При снижении VCC от 3,5 до 2,8 В схема АРУ понижает усиление приёмного аттенюатора до -25 дБ в режиме приёма.
б НТО+ Выход второго парафазного усилителя. Имеет фиксированный коэффициент усиления и равен -1. Выходной сигнал противофазный относительно выхода НТО-.
6 нто- Выход первого парафазного усилителя. Коэффициент усиления устанавливается внешними резисторами.
7 HTI Вход первого парафазного усилителя. Уровень постоянного напряжения примерно равен VB.
8 тхо Выход передающего аттенюатора. Уровень постоянного напряжения примерно равен VB.
9 TXI Вход передающего аттенюатора. Максимальный уровень входного сигнала 350 мВ. Входное сопротивление равно 10 кОм.
10 мсо Выход микрофонного усилителя. Коэффициент усиления устанавливается внешними резисторами.
11 MCI Вход микрофонного усилителя. Уровень постоянного напряжения примерно равен VB.
12 MUT Вход блокировки микрофона. "Низкий" уровень ("Высокий" уровень (> 2,0 В) блокирует микрофонный усилитель, не оказывая влияния на остальные узлы схемы.
13 VLC Вход управления громкостью. Приёмный аттенюатор имеет максимальное усиление в режиме приёма при напряжении на входе VLC равном VB. При напряжении на входе VLC равном 0,3 В усиление приёмного аттенюатора менее -35 дБ. На усиление в режиме передачи не влияет.
14 CT Вход установления постоянной времени переключения аттенюаторов при помощи внешней RC-цепи.
15 VB Выходное напряжение равное половине VCC. Это напряжение необходимо в качестве общей точки по переменному току и для управления уровнем громкости.
16 CPT Вход установления постоянной времени идентификатора фонового шума передачи при помощи внешней RC-цепи.
17 TU2 Вход детектора уровня передачи со стороны микрофона.
18 TL02 Выход детектора уровня передачи со стороны микрофона и вход идентификатора фонового шума передачи.
19 RL02 Выход детектора уровня приёма со стороны громкоговорителя.
20 RLI2 Вход детектора уровня приёма со стороны громкоговорителя.
21 RXI Вход приёмного аттенюатора и детектора сигнала частотного набора номера. Максимальный уровень входного сигнала 360 мВ. Входное сопротивление равно 10 кОм.
22 RXO Выход приёмного аттенюатора. Уровень постоянного напряжения примерно равен VB.
23 TU1 Вход детектора уровня передачи со стороны линии.
24 TL01 Выход детектора уровня передачи со стороны линии.
25 RL01 Выход детектора уровня приёма со стороны линии и вход идентификатора фонового шума приёма.
26 RLI1 Вход детектора уровня приёма со стороны линии.
27 CPR Вход установления постоянной времени идентификатора фонового шума приёма при помощи внешней RC-цепи.
28 GND Общая точка схемы по постоянному току.

В обыкновенном телефоне оба абонента могут разговаривать одновременно и при этом передача разговора происходит в обоих направлениях. В громкоговорящем телефоне этот режим реализовать трудно. Вследствие высокого усиления в передающем и приёмном канале это приводит к возникновению самовозбуждения из-за обратной связи схемы и акустической связи громкоговорителя и микрофона. Поэтому в схеме реализован такой режим, что когда один из абонентов разговаривает, то включается соответствующий канал (передающий или приёмный) и выключается другой канал (уменьшается усиление канала). В этом случае усиление в петле обратной связи поддерживается меньше единицы. ИС ЭКР1436ХА2 обладает детекторами уровня, аттенюаторами и переключающей логической схемой, необходимой для правильной работы громкоговорящего ТА.

На рис. 3.51 приведена принципиальная электрическая схема громкоговорящего узла ТА на ИС ЭКР1436ХА2.

Часть схемы, обведённая пунктирной рамкой выполняет функцию индуктивности. Её можно заменить дросселем индуктивностью 1 Гн. Стабилитрон VD3 и конденсатор СЗ формируют питание схемы напряжением 5,6 В. Конденсатор фильтра СЗ на плате телефона необходимо расположить рядом с выводом 4 ИС. В ИС реализовано дополнительное напряжение питания VB (вывод 15), равное половине напряжения питания VCC. Это напряжение необходимо в качестве общей точки для переменного тока и обеспечивает регулировку уровня громкости путём изменения напряжения на входе VLC (вывод 13). При подаче на вход CD (вывод 3) "высокого" уровня происходит блокировка микросхемы, что позволяет снизить потребляемую мощность.

Резисторы R4 и R5 задают ток питания электретного микрофона ВМ1. Входное сопротивление микрофонного усилителя составляет 10 кОм. Коэффициент усиления микрофонного усилителя определяется резисторами R6 и R9 (Ку = R9/R6). Конденсатор С8 предотвращает возбуждение усилителя. "Высокий" уровень на входе MUT (вывод 12) блокирует работу микрофонного усилителя.

Через конденсатор С9 сигнал с выхода микрофонного усилителя поступает на вход передающего аттенюатора TXI (вывод 9), а через конденсатор С8 и резистор R7 на вход детектора уровня передачи TU2 (вывод 17). С выхода передающего аттенюатора ТХО (вывод 8) через резистор R11 и конденсатор С11 сигнал микрофона поступает на вход парафазного усилителя HTI (вывод 7). Коэффициент усиления первого парафазного усилителя определяется резисторами R11 и R12. Коэффициент усиления второго парафазного усилителя фиксирован и равен -1. Выходное сопротивление парафазных усилителей менее 10 Ом. С выхода второго парафазного усилителя НТО+ (вывод 5) сигнал микрофона через резистор R14 и конденсатор С18 подаётся на базу транзистора VT3. Транзистор согласует выходное сопротивление парафазного усилителя с импедансом линии.

Сигнал с линии через конденсатор С17, С19 и резистор R17 поступает на вход фильтра FI (вывод 2). Элементы фильтра R20, R24, С22 и С23 подобраны таким образом, чтобы срезать помехи сетевой частоты 50 Гц, которые могут на водиться на внешние провода телефонной линии. Конденсаторы С17, С19 и резисторы R17, R18 представляют собой балансную цепь для согласования с импедансом линии. С выхода фильтра FO (вывод 1) сигнал поступает через раздели тельный конденсатор С20 на вход приёмного аттенюатора RXI (вывод 21) и через конденсатор С21 и резистор R19 на вход детектора уровня приёма RLI1 (вывод 26). С выхода приёмного аттенюатора RXO (вывод 22) через конденсатор С26 и резистор R25 сигнал подаётся на вход VIN (вывод 4) усилителя мощности на ИС ЭКР1436УН1. Резисторы R25 и R26 задают коэффициент усиления усилителя мощности DA2. Конденсатор С27 предназначен для исключения возбуждения усилителя. С выхода усилителя мощности V01 (вывод 5) усиленный сигнал подаётся на громкоговоритель, а также через конденсатор С28 и резистор R27 на вход детектора уровня приёма RLI2 (вывод 20).

Четыре детектора уровня (два в приёмном канале и два в канале передачи) обеспечивают на своих выходах постоянное напряжение, пропорциональное уровню сигнала на входах. Это достигается подключением конденсаторов С13, С14, С15 и С16 на выходах детекторов уровня. Конденсаторы имеют небольшое время заряда и большое время разряда, задаваемое внутренним источником тока 4 мкА. Конденсаторы на всех четырёх выходах должны иметь одинаковую ёмкость (±10%). Компараторы сравнивают уровни сигналов приёма и передачи с выходов детекторов уровня и в зависимости от того, уровень какого сигнала выше, посредством схемы управления аттенюаторами открывается соответствующий аттенюатор (передачи или приёма).

Передающий и приёмный аттенюаторы работают в дополняющем режиме, т. е. когда один имеет максимальное усиление (+6,0 дБ), то другой имеет максимальное ослабление сигнала (-46 дБ), и наоборот. Они не могут быть полностью включены или полностью выключены. Сумма их коэффициентов передачи остаётся постоянной и имеет значение -40 дБ. Аттенюаторы управляются схемой управления аттенюаторами. Резистор R28 и конденсатор С25 на входе СТ (вывод 14) задают время переключения аттенюаторов. Напряжение 240 мВ на входе СТ (вывод 14) относительно напряжения VB открывает приёмный аттенюатор и закрывает передающий. Напряжение -240 мВ переводит микросхему в режим передачи. Напряжение на входе СТ равное напряжению VB переводит микросхему в режим ожидания (коэффициент передачи обоих аттенюаторов равен -20 дБ).

Резисторы R7, R8 и конденсаторы С6, С7 задают постоянную времени на входах СРТ (вывод 10) и CPR (вывод 27) идентификаторов фонового шума. Их назначение состоит в том, чтобы отличить сигнал речи (который содержит характерные всплески уровня) от фонового шума (сигнал сравнительно постоянного ровня). Выход идентификаторов фонового шума связан со схемой управления аттенюаторами.

ИС ЭКР1436УН1, которая применяется в схеме громкой связи ТА имеет зарубежный аналог фирмы MOTOROLA -МС34119. АО "СВЕТЛАНА в г. С-Петербурге выпускает эту микросхему с маркировкой КР1064УН2. Цоколёвка ИС ЭКР1436УН1 приведена на рис. 3.52.

ИС создаёт максимум усиления при минимальном напряжении питания 2,0 В. Максимальное напряжение питания ИС 16 В. Типовой ток потребления 2,7 мА. Максимальное напряжение входного сигнала ±1 В. Разделительные конденсаторы к громкоговорителю не нужны. ИС допускает применение громкоговорителей с сопротивлением от 8 до 100 Ом. Выходная мощность составляет 250 мВт при работе с громкоговорителем на 32 Ом. Усилитель на ИС ЭКР1436УН1 обладает низкими нелинейными искажениями.

Подачей "высокого" уровня (=> 2,0 В) на вход CD (вывод 1) устанавливается режим пониженной потребяемой мощности (ток покоя 65 мкА). "Низкий" уровень (

Структурная схема и типовая схема включения ИС ЭКР1436УН1 приведены на рис. 3.53.

Резисторами R1 и R2 устанавливается коэффициент усиления УНЧ, который может составлять от 0 до 46 дБ. Входы FC2 (вывод 2) и FC1 (вывод 3) предназначены для подключения корректирующих ёмкостей. Вход FC1 (вывод 3) является общей точкой по переменному току. Конденсатор С2 позволяет увеличить коэффициент подавления нестабильности источника питания. Этот вывод может быть использован как дополнительный вход. Конденсатор СЗ увеличивает подавление пульсации источника питания и также влияет на величину времени включения. Допускается оставлять этот вывод свободным, если достаточно ёмкости, подключенной к выводу FC1.

В зарубежных ТА часто применяется ИС громкой связи МС31018 и её аналог SC77655S. Упрощённая структурная схема ИС МС31018 приведена на рис. 3.55.

Структурная схема ИС МС34018 аналогична ИС МС34118. Основное отличие состоит в том, что в ИС МС34018 есть свой усилитель приёма и отсутствуют парафазные усилители и фильтр высоких частот. Детекторов уровня не четыре, как в ИС МС34118, а два. Схема включения ИС МС34018 приведена на рис. 3.56.

Часть схемы, обведённая пунктирной рамкой, выполняет функцию индуктивности. Её можно заменить дросселем, индуктивностью 1 Гн. Транзистор VT3, подключенный к выходу передающего аттенюатора ТХО (вывод 4), включен по схеме эмиттерного повторителя. С выхода эмиттерного повторителя сигнал подаётся на базу транзистора VT4, который усиливает сигнал и передаёт его в линию.

Резисторы R20, R22, R23 и конденсатор С18 представляют собой балансную цепь для согласования с импедансом линии.

Конденсатор С4 на выходе детектора уровня передачи TLO (вывод в) и С5 на выходе детектора уровня приёма RLO) (вывод 8) обеспечивают постоянное напряжение на выходах детекторов уровня, пропорциональное уровню сигнала на входе. Время разряда конденсаторов задаётся резисторами R7 и R8. Сигналы с выходов детекторов уровня сравниваются компаратором. С выхода компаратора сигнал поступает на схему управления аттенюаторами, который включает соответствующий канал (передачи или приёма), в зависимости от того, уровень какого сигнала выше.

Переключение аттенюаторов в ИС МС34018 осуществляется также, как и в ИС МС34118. Резистор R9 и конденсатор С6 на входе XDC (вывод 23) задают время переключения аттенюаторов. Напряжение на входе XDC на 150 мВ меньше, чем VCC переключает аттенюаторы в режим приёма, а напряжение на 6 мВ меньше, чем VCC переключает аттенюаторы в режим передачи.

Схема громкой связи на дискретных элементах представлена на рис. 3.57. Эта схема встречается в недорогих ТА низкого класса типа TECHNIKA.

Дроссель L1 предназначен для увеличения максимального тока питания усилителя приёма. Выходной каскад усилителя приёма выполнен по двухтактной схеме на транзисторах VT4, VT5 и обеспечивает номинальную выходную мощность 250 мВт на нагрузку 50 Ом. Диоды VD3 и VD4 смещают двухтактный каскад в состояние проводимости для устранения переходных искажений. Резистор R16 и конденсатор С11 представляют собой цепь отрицательной обратной связи для исключения возбуждения усилителя. Переменный резистор R9 и резистор R8 обеспечивают согласование схемы с импедансом линии для максимального подавления местного эффекта. Переменным резистором R11 можно регулировать громкость приёмного усилителя.

Резисторы Rl, R2 и конденсатор С1 составляют цепь питания микрофона ВМ1. Усилитель сигнала микрофона выполнен на транзисторах VT1 и VT2.

Недостаток данной схемы в том, что в ней отсутствует управление усилителями приёма и передачи для их работы в дополняющем режиме.



Устройство телефонного аппарата и основы телефонной связи

В состав телефонных аппаратов, предназначаемых для работы в телефонных сетях, входят следующие обязательные элементы: микрофон и телефон, объединенные в микротелефонную трубку, вызывное устройство, трансформатор, разделительный конденсатор, номеронабиратель, рычажный переключатель. На принципиальных электрических схемах телефонный аппарат обозначают буквой Е.

Кратко рассмотрим назначение основных элементов телефонного аппарата.

Микрофон служит для преобразования звуковых колебаний речи и электрический сигнал звуковой частоты. Микрофоны могут быть угольными, конденсаторными, электродинамическими, электромагнитными, пьезоэлектрическими. Их можно классифицировать на активные и пассивные. Активные микрофоны непосредственно преобразуют звуковую энергию в электрическую. В пассивных же микрофонах звуковая энергия преобразуется в изменение какого-либо параметра (чаще всего — емкости и сопротивления). Для работы такого микрофона обязательно требуется вспомогательный источник питания.

В массовых телефонных аппаратах применяют, как правило, угольные микрофоны, в которых под действием звуковых волн изменяется электрическое сопротивление угольного порошка, находящегося под мембраной. Наиболее широко используют микрофонные капсюли типов МК-10, МК-16, обладающие достаточно высокой чувствительностью (в описываемых устройствах применены в основном угольные микрофоны). На принципиальных схемах микрофон обозначают латинскими буквами ВМ.

Следует отметить, что в последнее время ряд телефонных аппаратов оснащают также конденсаторными микрофонами типов МКЭ-3, КМ-4, КМ-7.

Телефоном называют прибор, предназначенный для преобразования электрических сигналов в звуковые и рассчитанный для работы в условиях нагрузки на ухо человека. В зависимости от конструктивных особенностей телефоны подразделяют на электромагнитные, электродинамические, с дифференциальной магнитной системой и пьезоэлектрические. В телефонных аппаратах наибольшее распространение получили телефоны электромагнитного типа. В таких телефонах катушки закреплены неподвижно. Под действием протекающего в катушках тока возникает переменное магнитное поле, приводящее в движение подвижную мембрану, которая и излучает звуковые колебания. В современных телефонных аппаратах применяют в основном телефонные капсюли типа ТК-67, а в аппаратах устаревших конструкций — также ТК-47 и ТА-4.

Полоса рабочих частот для микрофонов и телефонов, используемых в телефонных аппаратах, составляет примерно 300...3500 Гц. На принципиальных схемах телефон обозначают латинскими буквами BF.

Для удобства пользования микрофон и телефон объединены в микротелефонной трубке.

Вызывное устройство служит для преобразования вызывного сигнала переменного тока в звуковой сигнал. Применяют электромагнитные или электронные вызывные устройства. Первое из них представляет собой одно- или двухкатушечный звонок. Звуковой сигнал образуется в результате удара бойка о звонковые чашки. Протекающий в катушках ток частотой 16...50 Гц создаст переменное магнитное поле, которое приводит в движение якорь с бойком. Как правило, в телефонных звонках используют постоянные магниты, создающие определенную полярность магнитопровода, поэтому такие звонки называют поляризованными. Сопротивление обмоток звонка постоянному току составляет 1,5...3 кОм, рабочее напряжение 30...50 В. На принципиальных схемах звонок обозначают латинскими буквами НА.

Электронное вызывное устройство преобразует вызывной сигнал в звуковой тональный сигнал, который может имитировать, например, пение птицы. В качестве акустического излучателя при этом используют телефон или пьезоэлектрический вызывной прибор ВП-1. Такие вызывные устройства применяют, например, в современных телефонных аппаратах ТА-1131 "Лана", ТА-1165 "Стелла" и др. Электронные вызывные устройства выполняют на транзисторах.

Трансформатор телефонного аппарата предназначен для связи отдельных элементов разговорной части и для согласования их сопротивлений с входным сопротивлением абонентской линии. Он, кроме того, позволяет устранять так называемый местный эффект, о чем будет сказано ниже. Трансформаторы изготавливают с отдельными обмотками или в виде автотрансформаторов.

Разделительный конденсатор служит элементом подключения вызывного устройства к абонентской линии в режиме ожидания и приема вызова. При этом обеспечивается практически бесконечно большое сопротивление телефонного аппарата постоянному току и малое сопротивление — переменному. В телефонных аппаратах применяют разделительные конденсаторы типов МБМ, К73-П емкостью 0,25...1 мкф и на номинальное напряжение 160...250 В.

Номеронабиратель обеспечивает подачу импульсов набора номера в абонентскую линию с целью установления требуемого соединения. Импульсы служат для периодических замыканий и размыканий линии. В современных телефонных аппаратах применяют механические и электронные номеронабиратели. Дисковый механический номеронабиратель имеет диск с десятью отверстиями. При вращении диска по часовой стрелке заводится пружина механизма номеронабирателя. После отпускания диска он вращается в обратную сторону под действием пружины, при этом происходит периодическое размыкание контактов, коммутирующих абонентскую линию. Необходимая скорость и равномерность вращения диска достигаются наличием центробежного регулятора или фрикционного механизма. Формирование импульсов при свободном движении диска обеспечивает их стабильную частоту и необходимый интервал между импульсными посылками, соответствующими двум соседним цифрам набираемого номера. Необходимый интервал обеспечивается благодаря тому, что число размыканий импульсных контактов всегда выбирается на одно-два больше, чем требуется подать импульсов в линию. Этим обеспечивается гарантированная пауза между пачками импульсов (0,2...0,8 с). При этом указанные лишние импульсы в линию нс поступают, поскольку в это время импульсные контакты шунтируются одной из групп контактов номеронабирателя. Имеются также контакты, замыкающие телефон при наборе номера, чтобы исключить неприятные щелчки. Частота импульсов, формируемых номеронабирателем, должна составлять (10±1) имп./с. Число проводов, соединяющих номеронабиратель с другими элементами телефонного аппарата, может быть 3 — 5.

Электронные номеронабиратели, которыми комплектуются многие современные телефонные аппараты (например, ТА-5, ТА-7, ТА-101), выполнены на интегральных микросхемах и транзисторах. Набор номера осуществляют нажатием кнопок клавиатуры — так называемой тастатуры. Поскольку скорость нажатия кнопок может быть сколь угодно большой, в среднем на наборе одной цифры номера экономится 0,5 с. Кроме того, тастатурные номеронабиратели предоставляют пользователям различные удобства, экономящие время: запоминание последнего набранного номера, возможность запоминания нескольких десятков номеров и др. Питание электронных номеронабирателей осуществляется как от абонентской линии, так и от сети напряжением 220 В через блок питания.

Рычажный переключатель обеспечивает подключение к абонентской линии вызывного устройства телефонного аппарата в нерабочем состоянии (микротелефонная трубка лежит) и разговорных цепей или номеронабирателя в рабочем состоянии (трубка снята). Рычажный переключатель представляет собой группы из нескольких переключающих контактов, срабатывающих при снятии телефонной трубки.

Кроме перечисленных элементов в состав телефонного аппарата входят также резисторы, конденсаторы, диоды, транзисторы, образующие разговорную цепь аппарата.

Рассмотрим устройство телефонного аппарата (ТА) в целом.

При работе телефонного аппарата в разговорном режиме возникает местный эффект, т.е. прослушивание собственной речи в телефоне аппарата. Местный эффект объясняется тем, что ток, протекающий через микрофон, поступает нс только в абонентскую линию, но и в собственный телефон. Для устранения этого нежелательного явления в современных телефонных аппаратах используют противо-местные устройства.

Существуют различные типы подобных устройств. Рассмотрим одно из них — противоместное устройство мостового типа (рис. 1).


Микрофон ВМ1, телефон BF1, балансный контур Zб и линия Zл связаны между собой обмотками трансформатора Т1: линейной I, балансной II и телефонной III. Во время разговора, когда сопротивление микрофона изменяется, разговорные токи звуковой частоты протекают по двум цепям: линейной и балансной. Из схемы видно, что токи, протекающие через обмотки I и II, суммируются с противоположными знаками, поэтому ток в обмотке 111 будет отсутствовать в том случае, если токи в линейной и балансной обмотках равны по величине. Это достигается соответствующим выбором элементов балансного контура Zб, параметры которого зависят от параметров линии Zл. Сопротивление линии содержит активную и емкостную составляющие, поэтому балансный контур выполняют из резисторов и конденсаторов.

Полное устранение местного эффекта достигается только на одной определенной частоте и определенных параметрах линии, что в реальных условиях невыполнимо, поскольку речевой сигнал содержит широкий спектр частот, а параметры линии изменяются в широких пределах (зависят от удаленности абонента от АТС, переходных сопротивлений и емкостей в кабелях и др.), поэтому на практике местный эффект не уничтожается полностью, а только ослабляется.

Рассмотрим схему телефонного аппарата ТА-72М-5 (рис. 2), предназначенного для работы в городских сетях. Его коммутационно-вызывную часть образуют рычажный переключатель SA1, звонок НА1, разделительный конденсатор С1 и номеронабиратель SA2. Разговорная часть телефонного аппарата состоит из телефона BF1, микрофона ВМ 1, трансформатора Т 1, балансного контура (конденсаторы С1 и С2, резисторы R1—R3) и ограничительных диодов VD1, VD2. Разговорная часть выполнена по противоместной схеме мостового типа.

В исходном состоянии контактов рычажного переключателя SA1 и номеронабирателя SA2, показанном на схеме, к линии подключены последовательно соединенные между собой звонок НА1 и конденсатор С1, а разговорная часть отключена. При появлении вызывного напряжения на зажимах 1 и 4 телефонного аппарата ток протекает по цепи: зажим 1 — перемычка — зажим 3 — обмотка звонка — нормально замкнутые контакты SA1.2 рычажного переключателя — конденсатор С1 — зажим 4. (Направление тока выбрано условно — с таким же успехом его можно было бы считать протекающим от зажима 4 к зажиму 1.) Услышав звонок, абонент снимает трубку. При этом контакты SA1.1 и SA1.2 переключаются в другое положение, отключая вызывную цепь и подключая к линии разговорную цепь. Сопротивление постоянному току между зажимами 1 и 4 изменяется от очень большого (сотни килоом — мегаомы) до относительно малого (сотни ом), это фиксируется приборами телефонной станции, и они переключаются в разговорный режим.

При наборе номера контакты SA2.1 номеронабирателя находятся в замкнутом состоянии во время прямого и возвратного вращения диска, что обеспечивает шунтирование разговорной цепи и исключает прослушивание щелчков в телефоне. При возвратном вращении диска номеронабирателя контакты SA2.2 разрывают линейную цепь, и приборы станции по числу таких размыканий фиксируют номер вызываемого абонента.

Диоды VD1 и VD2 ограничивают выбросы напряжения на обмотках телефона и исключают резкие звуки, неприятные для уха.

Для работы в сетях телефонных станций ручного обслуживания используют телефонные аппараты без номеронабирателя. Схема одного из таких аппаратов (типа ТА-68ЦБ-2) показана на рис. 3. Основным отличием его от предыдущего аппарата является отсутствие контактов номеронабирателя и одной группы контактов рычажного переключателя, в связи с чем звонок и конденсатор С1 остаются подключенными к линии и в разговорном режиме. Однако они практически нс оказывают влияния на работу телефонного аппарата в таком режиме.

В устройствах телефонной связи, которые описаны в этой книге, можно использовать выпускаемые промышленностью телефонные аппараты как с номеронабирателем (ТА-68, ТА-72М-5, ТА-1146 и др.), так и без него (ТА-68ЦБ-2 и другие аналогичные). Но телефонные аппараты без номеронабирателя годятся только для телефонных коммутаторов с ручным управлением. Если в распоряжении радиолюбителя имеется телефонный аппарат, у которого исправны лишь трубка и звонок, его также можно использовать. В этом случае соединение элементов осуществляют в соответствии со схемой, приведенной на рис. 4. Конденсатор С1 — типа К73-17, МБМ, МБГО. Следует отметить, что в таком телефонном аппарате в полной мере будет проявляться местный эффект, но ради простоты можно несколько поступиться удобством.

Рассмотрим кратко, каким образом осуществляется коммутация телефонных линий в городских АТС. С 1876 г., когда шотландец А.Г.Белл изобрел первый в мире двухпроводный телефон, принцип телефонной связи нс претерпел существенных изменений.

Схема организации телефонной связи между двумя абонентами показана на рис. 5. Ток питания телефонных аппаратов El, E2 проходит через дроссели L1 и L2. Дроссели необходимы для того, чтобы не происходило замыкание разговорного (переменного) тока через источник питания постоянного тока Uпит, внутреннее сопротивление которого очень мало и составляет доли ома. Источник постоянного тока принято называть центральной батареей (ЦБ). Дроссели L1 и L2 имеют относительно небольшое сопротивление постоянному току (обычно не более 1 кОм). Индуктивность дросселей достаточно велика и в диапазоне частот разговорных токов (300...3500 Гц) создаст столь значительное сопротивление разговорному (переменному) току, что он практически не ответвляется в ЦБ и протекает в контуре между аппаратами Е1 и Е2. На АТС в качестве дросселей обычно используются обмотки двухобмоточных реле, причем эти реле одновременно служат для получения сигнала о вызове станции абонентом и сигнала окончания разговора (отбоя). 


 

Индуктор формирует переменное вызывное напряжение частотой 16...50 Гц, которое приводит в действие вызывное устройство нужного телефонного аппарата.

Коммутация абонентов первоначально выполнялась на АТС вручную, затем стали использовать шаговые искатели, а в настоящее время коммутация осуществляется квазиэлектронным или электронным способом. Устройства коммутации АТС управляются импульса ми постоянного тока, которые создаются номеронабирателем телефонного аппарата при наборе абонентом цифр номера вызываемого абонента.


Рисунок 6 иллюстрирует простейший принцип установления соединения на АТС. Телефонный аппарат первого абонента Е1 подключен к ЦБ (Uпит) через обмотки двухобмоточного реле К1. При снятии первым абонентом микротелефонной трубки аппарата Е1 реле К1 срабатывает и контактами К 1.2 подаст питание на обмотку реле К2. Это реле устроено таким образом, что отпускание якоря происходит не сразу после снятия напряжения с его обмотки, а с некоторой задержкой (в данном случае эта задержка составляет около 0,1 с). Контакты реле К2.2 подготавливают цепь питания шагового искателя КЗ. При наборе абонентом Е1 номера вызываемого абонента цепи питания обмоток реле К1 будут прерываться контактами номеронабирателя телефонного аппарата Е1 (это происходит при возвратном движении диска номеронабирателя). Контактами К1.1 подаются импульсы питания на обмотку шагового искателя КЗ соответственно цифре номера вызываемого абонента. По окончании вращения диска номеронабирателя телефонного аппарата Е1 контакты шагового искателя соединят линию вызывающего абонента с линией вызываемого, после чего абоненты смогут вести разговор.

Когда по окончании разговора абонент положит микротелефонную трубку на аппарат Е1, реле К1 отпустит, его контакты К 1.2 разомкнут цепь питания реле К2, которое спустя 0,1 с также отпустит. При этом через контакты К2.1, КЗ.4 и КЗ.3 будет подано питание на обмотку шагового искателя КЗ. Контакт КЗ.4 скользит по сплошной ламели шагового искателя и разомкнется только тогда, когда шаговый искатель придет в исходное состояние. Контакт КЗ.3 — это самопрерывающий контакт шагового искателя, который прерывает цепь питания обмотки шагового искателя при притяжении якоря к сердечнику. Благодаря этому контакту на обмотке КЗ формируется серия импульсов, которые последовательно устанавливают контакты КЗ.1 и КЗ.2 в исходное положение.


Четкость работы абонентских реле и шагового искателя зависит от времени размыкания контактов номеронабирателя, которое не должно превышать 0,1 с. В противном случае при размыкании контактов К 1.2 реле К2 не сможет удержать якорь, и соединения не произойдет. Поэтому параметры номеронабирателей телефонных аппаратов должны соответствовать следующим требованиям:

1) частота импульсов номеронабирателя 10±1 имп/с;

2) период повторения импульсов 0,95...0,105 с;

3) пауза между сериями импульсов не менее 0,64 с;

4) отношение времени размыкания к времени замыкания импульсного контакта номеронабирателя, называемое импульсным коэффициентом, в зависимости от типа АТС 1,3...1,9.

Центральная батарея АТС осуществляет питание линий абонентов постоянным напряжением Uпит = 60 В. При снятии микротелефонной трубки телефонного аппарата линия АТС оказывается нагруженной на внутреннее сопротивление телефонного аппарата, в результате напряжение на зажимах линии падает до 10...20 В (в зависимости от удаленности абонента от АТС и типа применяемого аппарата). Внутреннее сопротивление телефонного аппарата при снятой трубке может составлять 200...800 Ом, а рабочий (разговорный) ток через аппарат — 20...40 мА. Приведенное к гнездам абонента сопротивление АТС, которое включает сопротивления линии, обмоток реле К1 (см.рис. 5) и внутреннее сопротивление центральной батареи, может составлять от 600 Ом до 2 кОм.

Для телефонного аппарата с дисковым номеронабирателем набор номера абонента осуществляется следующим образом: при вращении диска по часовой стрелке до пальцевого упора контакты номеронабирателя замыкают линию, а при возвратном вращении линия размыкается такое число раз, которое соответствует набранной цифре. На рис. 7 показана временная диаграмма работы телефонного аппарата.



В качестве вызывного сигнала на АТС используется переменное напряжение 80...120 В частотой 16...30 Гц.

В устройствах телефонной связи, описанных в книге, применяют два способа соединения линий телефонных аппаратов: параллельное и последовательное (рис. 8).

Схема с параллельным соединением телефонных аппаратов была рассмотрена выше (рис. 5). Отличие схемы, приведенной на рис. 8,а, состоит в том, что вместо двух катушек индуктивности включен стабилизатор тока СТ, т.е. двухполюсник, ток через который сохраняется неизменным при изменении параметров внешней цепи в определенных пределах.

В любом случае справедливо соотношение L1 + L2 = L= const. поэтому изменение тока в цепи первого абонента вызывает точно такое же изменение тока в цепи второго абонента, но с противоположным знаком. При этом обеспечивается максимально возможная громкость разговора. Практически в переговорных устройствах вместо стабилизатора тока можно использовать резистор сопротивлением 1...5 кОм, однако следует учесть, что при этом громкость разговора несколько снизится.

На рис. 8,6 приведена схема последовательного соединения телефонных аппаратов. При таком соединении разговорный ток одного аппарата полностью протекает через второй аппарат, что обеспечивает максимально возможную громкость разговора (при данных условиях).

Следует заметить, что в городских АТС последовательный метод соединения линий телефонных аппаратов нс используется из-за сложности коммутации аппаратов. (В книге данный метод применяется в переговорных устройствах и коммутаторах с ручным управлением.)

НОУ ИНТУИТ | Лекция | Телефонные аппараты

Аннотация: Рассматриваются основные цепи телефонного аппарата — вызывные, электропитания, противоместные. Дается описание различных типов — бесшнуровые, громкоговорящие. Приводятся основные функции — автоответ, опознание номера, автонабор номера и т. п.

В настоящее время в соответствии с режимами использования известны три типа аппаратов:

  1. Телефонная трубка, гарнитура.
  2. Устройства громкоговорящей связи.
  3. Терминалы для компьютера.
Основные электрические цепи телефонного аппарата

Один из вариантов простейшего телефонного аппарата показан на рис. 2.1. На последующих рисунках (рис. 2.2-2.3) рассмотрена работа отдельных его цепей.

Рассмотрим работу каждой из цепей в отдельности.

Принципиальная схема телефонного аппарата
Рис. 2.1. Принципиальная схема телефонного аппарата

Телефонный аппарат содержит следующие части (цепи).

  1. Цепь вызывного тока.
  2. Приборы преобразования речи (микрофон и телефон).
  3. Противоместную схему (цепь, устраняющую местный эффект и улучшающую качественные характеристики аппарата).
Цепь вызывного тока ("звонок")

Цепь вызывного тока принимает сигнал "посылка вызова". Простейшая схема (рис. 2.2) состоит из звонка и разделительного конденсатора.

 Принципиальная схема телефонного аппарата в части приема акустического сигнала "посылка вызова"
Рис. 2.2. Принципиальная схема телефонного аппарата в части приема акустического сигнала "посылка вызова"

Звонок в исходном положении (при положенной телефонной трубке) включен в абонентскую линию, при снятии трубки цепь звонка отключается от линии контактом рычажного переключателя (РП). Конденсатор предназначен для того, чтобы через звонок не проходил постоянный ток от станционной батареи, обеспечивающей при состоянии "разговор" электропитание микрофона. Основные параметры цепи приема сигнала вызова определяются [2.10] ГОСТ 7153-85. Входное сопротивление этой цепи должно быть:

  • в режиме ожидания вызова на частоте 1000 Гц — не менее 10 кОм;
  • в режиме вызова на частоте 25 Гц — от 4 до 20 кОм.

Заметим, что существует еще один важный показатель: Модуль полного электрического сопротивления — нормированное значение выходного или внутреннего электрического сопротивления на 300-3400 Гц в "разговорном" состоянии устанавливается от 450 до 800 Ом.

Акустический сигнал "посылка вызова"

Этот сигнал посылается переменным током частотой f = 25 Гц и амплитудой U = 90 В. Такие параметры появились еще на начальном этапе внедрения телефонов, когда ток вырабатывался специальным прибором — "индуктором", а звонки требовали значительной мощности для своей работы. Поэтому иногда сигнал "посылка вызова" называют "индукторным", а часть аппаратуры, обеспечивающую прием и обработку этого сигнала в аппарате и на станции, — "индукторными цепями". Вид электрического сигнала с учетом постоянного напряжения электропитания микрофона показан на рис. 2.2.

Стандарт ограничивает значение напряжения посылки сигнала вызова. Предельное напряжение сигнала вызова на входе ТА (суммарно для переменной и постоянной составляющих) — В — должно быть не более 230 В. Уровень вызывного акустического сигнала соответствует 40-70 дБ (в зависимости от положения регулятора громкости).

Вид напряжения в цепи посылки вызова с учетом электропитания
Рис. 2.3. Вид напряжения в цепи посылки вызова с учетом электропитания

Как видно из рис. 2.3, переменное напряжение складывается из постоянной составляющей (-60В) и фактических колебаний амплитуды, которая равна 90 В. Таким образом, максимальные колебания величины напряжения составляют 150 В (при допустимом отклонении ±30 В). Такое высокое значение напряжения препятствовало применению микросхем в цепях посылки вызова, что долгое время увеличивало стоимость и габариты станций. В настоящее время используется очень много телефонных аппаратов с применением акустического вызова. В этом случае вместо обычного звонка устанавливается акустическое устройство, которое вырабатывает мощный акустический сигнал, но требует гораздо меньшее напряжение для получения звука, по мощности равного звуку звонка.

Акустические вызывные устройства

Акустические вызывные устройства (tone ringer), заменяющие электрический звонок в телефонном аппарате, называются электроакустическими конверторами (это либо пьезокерамические преобразователи, либо громкоговорители). Они преобразуют посылку вызова в двухполупериодные акустические сигналы с изменяемой частотой.

Принцип построения вызывного устройства на базе электронных элементов
Рис. 2.4. Принцип построения вызывного устройства на базе электронных элементов

Простейшая схема ВУ на базе пьезоэлектрического преобразователя и транзистора приведена на рис. 2.4 [3.6]. Это устройство включается в электрическую схему на место звонка. Как и на рис. 2.1, выключатель РП предназначен для отключения звонка. Конденсатор С1 является разделительным для постоянного тока линии.

Схема представляет собой мультивибратор, который работает на частоте резонанса пьезоэлектрического излучателя порядка 3,5 КГц.

Пьезоэлектрический излучатель представляет собой металлическую пластину В, на которой помещен кристалл искусственного пьезоэлектрика (двуокись кремния). Внешняя поверхность кристалла металлизирована двумя контактными плоскостями R и G. Если приложить напряжение между пластиной "В" и одной из плоскостей металлизации R, то кристалл будет деформироваться и, тем самым, создавать звуковые колебания. Упругие колебания кристалла, в свою очередь, генерируют напряжение на гранях кристалла (на плоскости металлизации — G ).

ВУ работает следующим образом.

  • Напряжение положительного полупериода вызывного сигнала через конденсатор С_1 и резистор R_{1}, являющийся коллекторной нагрузкой транзистора, прикладывается к обкладкам В-R пьезоэлектрика, что приводит к деформации последнего и излучению звукового сигнала, усиливаемого металлической мембраной (обкладкой) — В.
  • Деформация пьезоэлектрика, вызванная приложенным к обкладкам В и R напряжением, вызывает появление напряжения положительной полярности между обкладками В и G. Через резистор R3, ограничивающий ток базы, это напряжение прикладывается к эмиттерному переходу VT1 и открывает его. Открытый транзистор шунтирует обкладки В и R, что приводит к уменьшению приложенного к ним напряжения и, как следствие, к обратной деформации пьезоэлектрика.
  • Обратная деформация пьезоэлектрика вызывает появление напряжения отрицательной полярности между обкладками В и G, которое через резистор R3 прикладывается к переходу эмиттер-база транзистора VT1 и запирает его.
  • Закрытый транзистор обладает большим сопротивлением, вследствие чего практически все напряжение вызывного сигнала вновь прикладывается к обкладкам В и R пьезоэлектрика и вновь вызывает его деформацию, появление положительного напряжения, открывание транзистора, т.е. процесс повторяется.

Таким образом, на протяжении положительного полупериода вызывного сигнала АТС частотой 25 Гц возникают автоколебания с резонансной частотой пьезоэлектрика, равной приблизительно 3,5 КГц. Отрицательный полупериод вызывного сигнала запирает транзистор, и автоколебания прекращаются. Резистор R2 устанавливает начальное смещение на базе транзистора.

Вызывное устройство на базе интегральной схемы
Рис. 2.5. Вызывное устройство на базе интегральной схемы

Имеется много типов интегральных схем, реализующих эту функцию [2.6]. Рассмотрим только принцип работы вызывного устройства, которое использует интегральную схему по схеме, приведенной на рис. 2.5. Сигнал вызова абонента через ограничивающий резистор R_{1} и разделительный для постоянного тока линии конденсатор C_{1} поступает на диодный мост D1-D4.

Выпрямленный сигнал ограничивается стабилитроном D6 до величины 10 В и через диод D7 поступает на вход питания ИС. Дальнейшая работа зависит от типа ИС, список которых приведен в приложении.

С точки зрения потребителя, каждый из типов микросхем предоставляет возможности получить различные типы вызывного сигнала, например: сигнал с нарастающей громкостью, посылка вызова чередующимися частотами, выбор набора сигналов (мелодий). Сигналы поступают на пьезоэлектрический преобразователь BQ.

Что можно сделать из телефона?

Телефон. Понятие и история
⇒ Основные компоненты телефонного аппарата
• Схема и описание работы телефонного аппарата
Прозвонка: определение и типы
• Прозвонка кабельной линии телефонными трубками
Прозвонка оптоволокна
• Прозвонка ОВ с помощью измерительных приборов
• Оптоволоконные ответвители-прищепки

Схема и принцип работы проводного телефонного аппарата

Часть текста, а также схемы и диаграмма напряжений АТС-абонент взяты из книги Евсеева А.Н. «Радиолюбительские устройства телефонной связи» (М.: Радио и связь, Малип, 1999г) Параграф «Устройство телефонного аппарата и основы телефонной связи»

Основные компоненты телефонного аппарата использующего проводную связь.

В состав телефонных аппаратов, предназначаемых для работы в телефонных сетях, входят обязательные элементы: объединенные в микротелефонную трубку микрофон и телефон, вызывное устройство, трансформатор, разделительный конденсатор, номеронабиратель, рычажный переключатель.

Микрофон служит для преобразования звуковых колебаний речи и электрический сигнал звуковой частоты. Микрофоны могут быть угольными, конденсаторными, электродинамическими, электромагнитными, пьезоэлектрическими. Их можно классифицировать на активные и пассивные. Активные микрофоны непосредственно преобразуют звуковую энергию в электрическую. В пассивных же микрофонах звуковая энергия преобразуется в изменение какого-либо параметра (чаще всего — емкости и сопротивления). Для работы пассивного микрофона обязательно требуется вспомогательный источник питания. На принципиальных схемах микрофон обозначают латинскими буквами ВМ.


Устройство телефона
электромагнитного типа

Телефоном называют прибор, предназначенный для преобразования электрических сигналов в звуковые и рассчитанный для работы в условиях нагрузки на ухо человека. (Более расширенное определение на странице Телефон. Понятие и история)

В зависимости от конструкции телефоны подразделяют на электромагнитные, электродинамические, с дифференциальной магнитной системой и пьезоэлектрические. В старых телефонных аппаратах использовали телефоны электромагнитного типа. В них телефонах катушки закреплены неподвижно. Под действием протекающего в катушках тока возникает переменное магнитное поле, приводящее в движение подвижную мембрану, которая и излучает звуковые колебания.


Трубка от
старого
телефонного
аппарата

Полоса рабочих частот для микрофонов и телефонов, используемых в телефонных аппаратах, составляет примерно 300…3500 Гц. На принципиальных схемах телефон обозначают латинскими буквами BF.

Для удобства пользования микрофон и телефон объединены в микротелефонной трубке.

Вызывное устройство служит для преобразования вызывного сигнала переменного тока в звуковой сигнал. Применяют электромагнитные или электронные вызывные устройства.

В аппаратах старого типа вызывное устройство представляло собой одно- или двухкатушечный звонок. Звуковой сигнал образовывался в результате удара бойка о звонковые чашки. Протекающий в катушках ток частотой 16…50 Гц создавал переменное магнитное поле, которое приводило в движение якорь с бойком. В телефонных звонках использовали постоянные магниты, создававшие определенную полярность магнитопровода, поэтому такие звонки называли поляризованными. Сопротивление обмоток звонка постоянному току 1,5…3 кОм, рабочее напряжение 30…50 В. На принципиальных схемах звонок обозначают латинскими буквами НА.

Практически во всех современных телефонных аппаратах сейчас используется электронное вызывное устройство. Оно преобразует вызывной сигнал в звуковой тональный сигнал, который может имитировать, например, пение птицы. В качестве акустического излучателя при этом используют телефон, компактный динамик или пьезоэлектрический вызывной прибор. Схемы электронных вызывных устройств выполняют на транзисторах или интегральных микросхемах.

Трансформатор телефонного аппарата предназначен для связи отдельных элементов разговорной части и для согласования их сопротивлений с входным сопротивлением абонентской линии. Он, кроме того, позволяет устранять так называемый местный эффект.

Разделительный конденсатор служит элементом подключения вызывного устройства к абонентской линии в режиме ожидания и приема вызова. При этом обеспечивается практически бесконечно большое сопротивление телефонного аппарата постоянному току и малое сопротивление — переменному. В телефонных аппаратах применяют разделительные конденсаторы емкостью 0,25…1 мкф и на номинальное напряжение 160…250 В.


Номеронабиратель
дисковый

Номеронабиратель при импульсном наборе обеспечивает подачу импульсов набора номера в абонентскую линию с целью установления требуемого соединения. То есть линия номеронабирателем периодически замыкается и размыкается. В телефонных аппаратах применяют механические и электронные номеронабиратели.Причём дисковый механический номеронабиратель (имеет диск с десятью отверстиями) в современных аппаратах уже не устанавливается, Но для понимания принципа работы системы АТС-абонент именно его работа более наглядна.

При вращении диска по часовой стрелке заводится пружина механизма номеронабирателя. После отпускания диска он вращается в обратную сторону под действием пружины, при этом происходит периодическое размыкание контактов, замыкающих абонентскую линию. Необходимая скорость и равномерность вращения диска достигаются наличием центробежного регулятора или фрикционного механизма. Формирование импульсов при свободном движении диска обеспечивает их стабильную частоту и необходимый интервал между импульсными посылками, соответствующими двум соседним цифрам набираемого номера. Необходимый интервал обеспечивается благодаря тому, что число размыканий импульсных контактов всегда выбирается на одно два больше, чем требуется подать импульсов в линию. Этим обеспечивается гарантированная пауза между пачками импульсов (0,2…0,8 с). При этом указанные лишние импульсы в линию не поступают, поскольку в это время импульсные контакты шунтируются одной из групп контактов номеронабирателя. Имеются также контакты, замыкающие телефон при наборе номера, чтобы исключить громкие щелчки в телефоне. Частота импульсов, формируемых номеронабирателем, должна составлять (10±1) имп./с. Число проводов, соединяющих номеронабиратель с другими элементами телефонного аппарата, может быть 3 — 5.

Электронные номеронабиратели, которыми комплектуются современные телефонные аппараты, выполнены на интегральных микросхемах и транзисторах. Набор номера осуществляют нажатием кнопок клавиатуры — так называемой тастатуры. Поскольку скорость нажатия кнопок может быть сколь угодно большой, в среднем на наборе одной цифры номера экономится 0,5 с. Кроме того, тастатурные номеронабиратели предоставляют пользователям различные удобства, экономящие время: запоминание последнего набранного номера, возможность запоминания нескольких десятков номеров и др. Питание электронных номеронабирателей осуществляется как от абонентской линии, так и от сети напряжением 220 В через блок питания.

В настоящее время всё большее распространение получает тональный набор номера. В этом случае в линию аппаратом абонента посылаются не пачки импульсов а кратковременные сигналы определённых частот, каждое значение которых соответствует определённой цифре. Тональный набор номера более быстрый, так как не требуется дожидаться прохождения пачек импульсов от цифр с большим значением и нуля. Но естественно для использования тонального набора должна использоваться современная АТС с поддержкой возможности такого набора.

Тональный набор, он же DTMF или тональный сигнал (англ. Dual-Tone Multi-Frequency) — двухтональный многочастотный аналоговый сигнал, используемый для набора телефонного номера. В DTMF передаваемая цифра кодируется сигналом полученным суммированием двух синусоидальных напряжений определенной частоты. Используется две группы по четыре частоты звукового диапазона в каждой.

Таблица частот тонального набора номера DTMF
1 2 3 A 697 Гц
4 5 6 B 770 Гц
7 8 9 C 852 Гц
* 0 # D 941 Гц
1209 Гц 1336 Гц 1477 Гц 1633 Гц

В современных проводных телефонных аппаратах часто реализуется возможность выбора стандарта набора номера. Это либо переключатель «PULSE/TONE» либо возможность программно изменить вид набора. Кстати возможность этого переключения часто создаёт проблемы у несведущих пользователей. Случайно переключив переключатель «PULSE/TONE» в неправильное положение люди несут аппараты в ремонтные мастерские с проблемой «не набирается номер».

Рычажный переключатель обеспечивает подключение к абонентской линии вызывного устройства телефонного аппарата в дежурном состоянии (трубка лежит) и разговорных цепей или номеронабирателя в рабочем состоянии (трубка снята). Рычажный переключатель представляет собой группы из нескольких переключающих контактов в старых аппаратах, срабатывающих при снятии телефонной трубки; или одного контакта (иногда геркона) в аппаратах современных.

Местный эффект в телефонах и способ его ослабления.

При работе телефонного аппарата в разговорном режиме возникает местный эффект, т.е. прослушивание собственной речи в телефоне аппарата. Местный эффект объясняется тем, что ток, протекающий через микрофон, поступает не только в абонентскую линию, но и в собственный телефон. Для устранения этого нежелательного явления в современных телефонных аппаратах используют противоместные устройства.

Существуют различные типы подобных устройств. Одно из них представлено на рис. 1.

Рис.1. Функциональная схема телефонного аппарата с противоместным эффектом

Микрофон ВМ1, телефон BF1, балансный контур Zб и линия Zл связаны между собой обмотками трансформатора Т1: линейной I, балансной II и телефонной III. Во время разговора, когда сопротивление микрофона изменяется, разговорные токи звуковой частоты протекают по двум цепям: линейной и балансной. Из схемы видно, что токи, протекающие через обмотки I и II, суммируются с противоположными знаками, поэтому ток в обмотке 111 будет отсутствовать в том случае, если токи в линейной и балансной обмотках равны по величине. Это достигается соответствующим выбором элементов балансного контура Zб, параметры которого зависят от параметров линии Zл. Сопротивление линии содержит активную и емкостную составляющие, поэтому балансный контур выполняют из резисторов и конденсаторов.

Полное устранение местного эффекта достигается только на одной определенной частоте и определенных параметрах линии, что в реальности невыполнимо, так как речевой сигнал содержит широкий спектр частот, а параметры линии изменяются в широких пределах (зависят от удаленности абонента от АТС, переходных сопротивлений и емкостей в кабелях и др.). Практически же местный эффект полностью не пропадает, а только ослабляется подобными схемами.


Телефон. Понятие и история
⇒ Основные компоненты телефонного аппарата
• Схема и описание работы телефонного аппарата
Прозвонка: определение и типы
• Прозвонка кабельной линии телефонными трубками
Прозвонка оптоволокна
• Прозвонка ОВ с помощью измерительных приборов
• Оптоволоконные ответвители-прищепки

Простое автоматическое телефонное переговорное устройство


Простое автоматическое телефонное переговорное устройство

  Наверное, каждый, кто имеет отношение к радиолюбительству, сталкивался с необходимостью изготовления простого и надежного переговорного устройства. В радиолюбительской литературе встречаются схемы переговорных устройств, однако, многие из них имеют такие недостатки как громоздкая линия связи (3-х, 4-х проводная), необходимость изменения схемы телефонных аппаратов или применение специальных абонентских устройств и т.п. Описываемое ниже переговорное устройство лишено подобных недостатков, работает с любыми двухпроводными телефонными аппаратами, некритично к применяемым реле и обеспечивает связь при длине линий до нескольких километров. Вызов абонента происходит автоматически, при снятии телефонной трубки, отбой - при возвращении ее в исходное состояние.

  Рассмотрим работу устройства по принципиальной схеме. Исходное состояние схемы - при положенных трубках обоих аппаратов. Допустим, что трубку снял абонент АБ-1. Образуется шлейф линии (цепь по постоянному току), срабатывают реле А, реле ИН (плюс с VD1, обмотка реле ИН, резистор R1, обмотка реле А, аппарат АБ-1, "земля"). Сработав, реле А свой контакт 1-2 переключит в положение 1-3, а реле ИН замкнет контакты 1-2 и скоммутирует индукторное (вызывное) напряжение с обмотки III трансформатора Т1, которое через контакты 1-2 реле Б, конденсаторы С3, С4 поступит на телефонный аппарат второго абонента. При снятии трубки телефона АБ-2 сработает реле Б, вызывная цепь разомкнется, а контактами 1-3 реле Б будет создана разговорная цепь с АБ-1. Напряжение для питания микрофонов телефонных аппаратов поступает через обмотку реле ИН, которая одновременно служит дросселем, исключающим шунтирование разговорной цепи источником питания. Конденсаторы С1 и С4 нужны для прохождения разговорных и вызывных токов в обход обмоток реле. Схема автоматически переходит в исходное состояние при положенных трубках обоих телефонных аппаратов. Если по окончании разговора один из абонентов не вернет трубку в исходное состояние, то у другого абонента будет звенеть звонок. Этот недостаток можно исключить усложнением схемы и применением реле с другими группами контактов или дополнительных реле, что вряд ли в данном случае оправдано. Достаточно простого корректного пользования данным устройством.

  Длина линий связи может составлять несколько километров и ограничена лишь напряжением источника питания (при большой длине линий напряжение обмотки II нужно увеличить). В качестве абонентских реле А и Б подойдут любые реле с одной контактной группой на переключение, с током срабатывания 5…10 мА и коммутирующим напряжением контактной группы не ниже индукторного напряжения (в данном случае переменное, 80 вольт). Возможные типы применяемых реле и их параметры приведены в таблице.

Тип реле и
номер паспорта
Сопротивление обмотки, Ом Ток срабатывания,
мА
Ток отпускания,
мА
Рабочее напряжение, В.
РЭС-9        
РС4.524.204 9600 7 1,1 8,3…9,3
РС4.524.205 3400 11 1,7 13…15
РС4.524.208 9600 7 1,1 8,3…9,3
РС4.524.217 9600 7 1,1 8,3…9,3
РС4.524.218 3400 11 1,7 13…15
РС4.524.230 3400 11 1,7 13…15
РЭС-10        
РС4.524.301 4500 8 1,1 9,5…10,5
РС4.524.313 4500 8 1,1 9,5…10,5
РС4.524.316 1600 10 1,3 -
РЭС-15        
РС4.591.001 2200 8,5 2 -
РС4.591.007 1200 11,4 3 -
РЭС-22        
РФ4.500.122 2500 10,5 3,5 43,2…52,8
РФ4.500.124 2800 11 3,5 54…66
РФ4.500.125 2800 11 3,5 54…66
РФ4.500.130 2500 10,5 3,5 43,2…52,8
РЭС-34        
РС4.524.371 4200 8 1,2 -
РС4.524.375 4200 8 1,2 -
РЭС-49        
РС4.569.000 1900 8,3 0,8 24…30
РС4.569.001 1900 8,3 0,8 24…30
РС4.569.423 1900 8 1,6 22…36
РС4.569.427 1900 8 1,2 22…36
РС4.569.428 1900 8 1,6 22…36
РС4.569.429 800 12 2,2 16…20
РС4.569.430 1900 8 1,2 22…36
РЭС-54        
ХП4.500.010 4000 2,6 0,3 22…32
ХП4.500.011 4000 3,6 0,4 24…33
РЭС-60        
РС4.569.436 1700 8,4 1,8 22…34


  Номера выводов реле и их схема показаны на прилагаемых рисунках. В качестве индукторного реле ИН можно использовать любое реле, желательно с большим количеством витков обмотки, т.к. обмотка этого реле выполняет также роль дросселя (как уже упоминалось выше). Можно применить реле типа РЭС-6, РЭС-9, РЭС-10, РЭС-15, РЭС-22 или любые другие с коммутирующим напряжением контактной группы не ниже индукторного напряжения. В данной конструкции можно использовать и другие типы реле. Например, подойдут реле типа РПН, РЭС-14 (реле такого типа эксплуатируются на координатных телефонных станциях), можно использовать реле от телефонных блокираторов и диодно-релейных приставок (ДРП).

  Трансформатор может быть любой, обеспечивающий на выходе нужные напряжения. При выборе трансформатора следует помнить, что обмотка индукторного напряжения должна обеспечить ток не менее 100 мА. Если устройство будет эксплуатироваться с короткими линиями связи, напряжение индукторной обмотки может быть ниже 50 вольт, т.к. звонки у большинства телефонных аппаратов (включая электромеханические) могут нормально работать при пониженном вызывном напряжении, вплоть до 35 - 40 вольт. Можно использовать трансформатор со следующими данными: сердечник - Ш16х45, обмотки: I (сетевая) - 1320 вит. ПЭВ-2, сечением 0,23 мм., II - 110 вит. ПЭВ-2, сечением 0,35 мм., III (индукторная) - 500 вит. ПЭВ-2, сечением 0,12 мм.

  Конденсаторы С1 - С4 типа МБМ, МБГО, рабочим напряжением не ниже 160 вольт, их емкость может быть в пределах 0,5…4 мкФ. Вместо резисторов R1 и R2 лучше использовать дроссели с большим количеством витков. Можно использовать готовые, от старых ламповых телевизоров. В качестве дросселей можно использовать обмотки реле, первичные обмотки сетевых или звуковых трансформаторов. Резистор R3 служит для ограничения вызывного тока, а также предохраняет обмотку III трансформатора от возможного короткого замыкания (К.З.) при повреждениях на линии. Сопротивление резистора R3 может быть в пределах 50…150 ом. Если есть возможность, вместо R3 лучше применить миниатюрную лампу накаливания на 60 вольт (такие применяются в телефонии). Такое включение позволит визуально контролировать состояние линии вызываемого абонента, например: при неярком свечении - линия исправна; при ярком свечении - на линии К.З.; при отсутствии свечения - обрыв линии. Диодный мост VD1 - КЦ402, КЦ405, КЦ409 с любой буквой, можно использовать выпрямительные диоды на ток не менее 0,3 А. Монтаж схемы устройства выполняется навесным способом. Телефонные аппараты любого типа для двухпроводной связи, без номеронабирателя или с неисправным номеронабирателем. Налаживание схемы не требуется. В отдельных случаях при подаче индукторного (вызывного) напряжения может сработать абонентское реле. В этом случае следует убедится в исправности обходного конденсатора С1, если сработает реле А (или С4 для реле Б). Срабатывание реле может произойти и по другой причине: так как обмотка реле имеет большую индуктивность, то параллельное включение обмотки и конденсатора образует контур, резонансная частота которого может совпасть с частотой вызывного тока (в данном случае 50 Гц.). В этом случае достаточно изменить емкость конденсатора. И в заключение несколько советов тем, кто впервые имеет дело с проводной телефонной связью.

  1. Для прокладки телефонных линий используйте провода, выпускаемые для телефонии или радиосети.
  2. При больших длинах линий связи (100 м. и более) провод обязательно должен быть "парный", т.е. обе жилы должны быть расположены вместе по всей длине линии, в противном случае в линии будут прослушиваться всевозможные помехи.
  3. При прокладке линии связи в зданиях и сооружениях избегайте совместного параллельного пробега с сетевыми проводами и проводами радиосети. Рекомендуемое расстояние между линией связи и сетевыми проводами при параллельном пробеге - не менее 25 см.
  4. При пересечении силовых кабелей и проводов рекомендуемое видимое расстояние между линией связи и силовым проводом - не менее 5 см.
  5. При прокладке линий связи в зданиях, где есть локальные компьютерные сети, избегайте параллельной прокладки с сетевым кабелем, т.к. индукторный ток имеет большую амплитуду и может служить источником сбоев локальной сети.
  6. Для организации связи на большие расстояния (несколько километров) можно задействовать не использующиеся воздушные линии связи и проводного вещания, которые выполнялись, как правило, стальным проводом. В этом случае, для защиты от грозы и попадания постороннего напряжения в линию, на обоих концах линии необходимо установить грозоразрядники, а также в разрыв каждого провода поставить предохранитель на 0,15 - 0,25 А.
  7.   Литература:
    Родичев Н. Переговорное устройство с автоматическим вызовом. - В помощь радиолюбителю, выпуск 105, стр.66 - 67.
    Справочник радиолюбителя - конструктора, М. Радио и связь, 1984 г.

    В. Синицкий
    "По жизни с паяльником"

    Источник: shems.h2.ru

Разговор: телефонные диалоги

Совершенствуйте свои разговорные навыки и изучайте формальные и неформальные телефонные диалоги на английском .

Телефон:

Могу я поговорить с Питером Салином, пожалуйста?

Говоря.
Ты занят?
Могу я перезвонить?

Пожалуйста, подождите.
Извините, что заставил вас ждать
Я перевожу вас

Какой код города для Дублина?
Наберите 9, чтобы получить внешнюю линию.
Дважды нажмите клавишу со звездочкой.

Хотите оставить сообщение?
Оставьте сообщение на моей голосовой почте.
Я на встрече. Я тебе перезвоню.

Я думаю, что мы покрыли все.
Поговорим с вами в ближайшее время.
Пока, пока.

Телефонный диалог Примеры:

Представляем себя:

-Хей Джордж. Это Лиза зовет. (неофициально)
- Привет, это Джули Мэдисон.
- Привет, это Джерри из кабинета стоматолога здесь.

Попросить кого-нибудь поговорить

-Фред Фред? (неформально)
- Джексон, пожалуйста? (неформально)
-Можете поговорить с вашей сестрой? (неформально)
- Могу я поговорить с мистеромЗеленый, пожалуйста?

Соединение с кем-то

-Justa sec. Я возьму его. (неформально)
-Висеть на одну секунду. (неформально)
- Пожалуйста, подождите, и я отведу вас в его офис.
- Один момент, пожалуйста.
-Все наши операторы заняты в это время. Пожалуйста, подождите для следующего доступного человека.

Выполнение специальных запросов

- Не могли бы вы повторить это?
- Не могли бы вы написать это для меня?
- Не могли бы вы сказать немного, пожалуйста?
- Можете ли вы говорить немного медленнее, пожалуйста.Мой английский не очень сильный.
-Можешь перезвонить? Я думаю, что у нас плохая связь.
- Можете ли вы подождать минуту? | есть еще один звонок.

Прием сообщения для кого-то

- Сэмми нет. Кто это? (неформально)
- Извините, Лизы сейчас нет. Могу я спросить, кто звонит?
- Боюсь, он вышел. Хотите оставить сообщение?
- Он сейчас на обеде. Кто звонит, пожалуйста?
- Он сейчас занят. Вы можете позвонить позже?
- Я дам ему знать, что ты звонил.
-Я позабочусь, чтобы она получила сообщение.

Оставив сообщение

-Да, можете ли вы сказать ему, что его жена позвонила, пожалуйста.
- Нет, все в порядке, я перезвоню позже.
- Спасибо, не могли бы вы попросить его позвонить Брайану, когда он войдет?
-У тебя есть ручка? Я не думаю, что у него есть мой номер.
- Спасибо. Мой номер 222-3456, добавочный номер 12.

Подтверждение

- Хорошо, я все понял.


.
Словарь для телефонного разговора на английском языке

Многие из нас пользуются телефоном даже больше, чем общаются в прямом эфире с людьми, и бывают случаи, когда наше желание совпадает с желанием позвонить другому человеку и позвонить. Когда такая ситуация возникает, на ум приходит фраза Клинта Иствуда:


У меня были моменты, когда я думал о ком-то, взял трубку, чтобы позвонить ему, и они уже на линии, и я думаю, что, возможно, есть какая-то вибрация, какая-то связь.

Клинт Иствуд

В моей жизни были моменты, когда я о ком-то думал, взял трубку, чтобы позвонить, но человек уже был на линии, и я думаю, что, возможно, между людьми есть какая-то вибрация, какая-то связь…

Клинт Иствуд

Разговор - это диалог между двумя или более людьми, который может происходить в кафе на улице, в парке, в школе или в диско-клубе. Участники беседы всегда должны быть вежливым, воспитанным и приятным собеседником, чтобы чувствовать себя комфортно, чтобы поддерживать общение в будущем.Вы не должны полностью погружаться в телефон, когда мужчина сидит перед вами, т.к. Для. Это очень невежливо.

Обратите внимание на картинку! Фраза перевода: Не возражаешь, если я приклею твой телефон к твоему лбу, по крайней мере, мне показалось, что ты смотришь на меня, когда я разговариваю с тобой?

Телефонный разговор (телефонный разговор - разговор по телефону ) всегда сложнее вести, так как это способ общения, когда мы делимся информацией друг с другом только посредством слов и не можем передавать информацию средствами мимика и жесты.В этом общении мы ориентируемся только на голос человека и стараемся прислушиваться к тону, улавливать каждое слово и быстро находить нужные фразы для обратной реакции.

Теперь представьте, что мы разговариваем по телефону с деловым партнером или другом по переписке, а вот человек, который говорит только по-английски. Ко всему прочему могут быть добавлены проблемы со связью, и естественно, что в такой ситуации легко потеряться, потерять след сказанного, стыдиться снова спросить собеседника и обречиться на полный провал…

Тем не менее, нет необходимости поднимать панику, это не трагедия, и в помощь нам могут прийти такие фразы, как:

Много фонового шума.Я не очень хорошо тебя слышу. Могу я тебе перезвонить? - Есть много окружающего шума. Я вас не слышу.

Это плохое соединение. Пожалуйста, повесьте трубку, и я вам перезвоню. - Очень плохая связь. Пожалуйста, повесьте трубку, и я вам перезвоню.

В телефонном разговоре наша цель - продемонстрировать уверенность и, таким образом, произвести хорошее впечатление на собеседника, который формируется в первые 30 секунд общения.

Главное - попытаться сосредоточиться и уменьшить легкое смущение, иначе твой дрожащий голос может сыграть против тебя, и поэтому контроль над ситуацией будет утрачен, а восстановить прежнюю уверенность вряд ли удастся.Помните - профилактика лучше контролировать, чем исправлять!

В какой-то момент вам может даже показаться, что другой человек вас не понимает, и это может быть так, потому что ему тоже нужно время, чтобы привыкнуть к вашей интонации, произношению и речи. И, возможно, источник попросит вас повторить что-то несколько раз, поэтому полезно написать на отдельном листе то, что вы хотите сказать, чтобы придерживаться идеи во время разговора (запишите, что вы собираетесь сау).

У вас также есть право еще раз спросить, исключено ли что-то из разговора, потому что это вполне естественно, и прийти на помощь из следующих фраз:

Не могли бы вы повторить свою последнюю фразу, пожалуйста? - Не могли бы вы повторить последнее предложение, пожалуйста?

Извините, я вас не поймал. - Извини я не поняла тебя.

По телефону вас иногда могут попросить продиктовать имя или фамилию для написания, чтобы мы могли использовать орфографию (диктовать буквы , как они звучат в английском алфавите) или международный интеркодом (если вы не слышали):

Международный алфавит

Альфа ноябрь
Bravo Оскар
Чарли папа
Дельта Квебек
Эхо Ромео
Фокстрот Сьерра
Golf танго
Отель Униформа
Индия Виктор
Джульетта Виски
кило Рентген
Лима Янки
Майк зулу

Каждая буква связана с определенным словом, и мы будем называть эти самые слова, чтобы избежать ошибок при написании.

Например:

Питер Джонсон

Вы должны сказать: P apa E cho T ango E cho R omeo.
А затем: J Oliet O шрам H Otel N ovember S ierra O Шрам N Ovember.

Полезные фразы для телефонного разговора

Важно иметь тематический словарь, чтобы успеть произнести фразу, и поэтому я рекомендую запомнить следующие выражения.

встречает и представляет:

Привет! Это Хелен.- Привет, это Хелен.

Нелло, Петра. Жан говорит. - Привет Питер! Это - Джин.

Это Джулия здесь. Это Джулия.

Это Памела. - Это Памела.

Приглашаем на телефон

Могу / могу / могу ли я поговорить с…, пожалуйста? - Могу я поговорить с ..., пожалуйста?

Могу я поговорить с Гарри? - Будь добр, Гарри!

Ольга в? - Ольга на месте?

Отвечаем, что человека там нет:

Его здесь нет.- Он не.

Мистер Петерсон сейчас отсутствует. - мистер Петерсон ушел.

Боюсь, он сейчас отсутствует. - Боюсь, что это не сейчас.

Джейн сейчас нет. - Джейн не доступна.

Боюсь, он сейчас на встрече. - Боюсь, он на встрече.

Сейчас он разговаривает по другому телефону. - Он разговаривает по другому телефону.

В данный момент ее нет в офисе.- Это вне офиса.

Вопрос и ответ, когда люди возвращаются:

Когда он будет? - Когда он придет?

Примерно через 3 часа. - 3 часа спустя.

Не вернусь через 20 минут. - Он вернется через 20 минут.

Она вернется через час. - Это будет через час.

Мы спросили о возможности звонка:

Можете ли вы перезвонить мне, пожалуйста? - Не могли бы вы перезвонить мне, пожалуйста?

Не могли бы вы позвонить немного позже, пожалуйста? - Не могли бы вы перезвонить позже?

Попробуйте позвонить позже.- Попробуй перезвонить позже.

Просим и звоним по номеру телефона:

Какой у вас номер телефона? - Ваш номер телефона?

Можете ли вы оставить свой номер телефона, пожалуйста? - Не могли бы вы оставить свой номер?

Могу я получить ваш номер телефона, пожалуйста? - Можно мне ваш номер?

Мой номер телефона ... - мой номер телефона ...

Вы можете связаться со мной по ... - Вы можете связаться со мной по номеру ...

Позвони мне на ... - Позвони мне на номер ...

Мы просим и предлагаем что-то сказать:

Можете ли вы, пожалуйста, скажите мне ... - Скажите, пожалуйста,

Могу ли я принять сообщение? - Что я могу перевести?

МОГУ ли я узнать ваше имя и адрес? - Можно Ваше имя и адрес?

Какое сообщение вы хотели бы оставить? - Что бы вы хотели передать?

Могу / Могу / Могу ли я принять сообщение? - Я могу ему что-то передать?

Хотите оставить сообщение? - Вы хотите оставить записку?

Есть ли сообщение? - Что такое сообщение?

Скажите ему, что я позвоню вечером, пожалуйста.- Скажи ему, что я позвоню вечером, пожалуйста.

Скажи ему, что Мэри позвонила, и я перезвоню в половине третьего. - Дай это под названием Мэри, и я перезвоню тебе в 14:30.

Ответ на запрос:

Да, конечно, я передам ваше сообщение. - Да, конечно, я передам ваше сообщение.

Я позабочусь, чтобы он получил сообщение. - Я позабочусь, чтобы он получил ваше сообщение.

Мы снова просим:

Можете ли вы повторить, пожалуйста, что вы сказали? - Повтори, пожалуйста, сказал.

Не могли бы вы повторить это? - Скажи это снова, пожалуйста.

Извините, я этого не понял. Не могли бы вы сказать это еще раз, пожалуйста? - Прошу прощения. Я не совсем понимаю (а). Не могли бы вы повторить сообщение?

Извините, я вас плохо слышу. - Прошу прощения. Я не слышу тебя.

Предлагаем перезвонить:

Пожалуйста, позвоните еще раз ... - Позвоните мне, пожалуйста ...

Просим подождать:

Одна минута ... - Одна минута ...

Подожди минуту ... - Подожди минуту ...

Может / не могли бы вы провести линию, пожалуйста? - Не кладите трубку, пожалуйста.

Пожалуйста, подождите. Я просто проведу тебя до конца. - Подождите, пожалуйста, я присоединюсь.

Пожалуйста, телефон:

Пожалуйста, дайте мне номер телефона ... - Пожалуйста, дайте мне номер телефона ...

Знаете ли вы номер для ...? - Ты знаешь номер ...?

Не могли бы вы сказать мне номер для ...? - Не могли бы вы сказать мне номер ...?

При плохой связи:

Это такая ужасная линия (Это действительно плохая линия).Я ничего не слышу. - Я ничего не слышу - ужасные отношения.

Извините, сегодня здесь слишком шумно. - Извините, здесь сегодня очень шумно.

Линия просто оборвалась. - Отключить.

Эта линия такая бедная. - Очень плохая линия.

Если линия занята:

Линия занята. - Занятый.

Извините, но линия занята в данный момент. - Извините, но сейчас линия занята.

не могу дозвониться в данный момент. - Не могу дозвониться.

Пожалуйста, говорите громче:

Можете ли вы говорить немного громче, пожалуйста? - Не могли бы вы говорить немного громче?

Извините, вы можете говорить? - Извините, вы не могли бы говорить громче?

Обращаем ваше внимание на необходимость зарядки телефона:

Мне нужно пополнить свой мобильный телефон. Моя батарея очень разряжена. - Мне нужно перезарядить аккумулятор телефона почти в деревне.

Аккумулятор разряжен. - Моя батарея почти разряжена.

Мне нужно зарядить телефон. - Мне нужно зарядить телефон.

Если вы ввели неправильный номер:

Должно быть, я ошибся номером. - У меня должен быть неправильный номер.

Вы набрали неправильный номер. - Вы набрали неправильный номер.

Вы, наверное, неправильно набрали номер. - Возможно, вы ошиблись номером.

Пожалуйста, отправьте по электронной почте:

Как насчет отправки мне по электронной почте? - Может быть, я отправлю это по электронной почте?

Мы выражаем необходимость сделать звонок:

Мне нужно позвонить. - Мне нужно позвонить.

Могу ли я использовать ваш телефон? - Вы можете использовать свой телефон?

Срочно! - Это срочно!

Завершить разговор:

С нетерпением ждем от вас скоро.- Я с нетерпением жду вашего следующего звонка.

Было приятно поговорить с тобой. - Было приятно пообщаться с тобой.

Я надеюсь, что эта статья поможет вам решить проблему общения, и я желаю вам никогда не попадать в неловкие ситуации, особенно по телефону!

3882

Материалы

,
Важность телефонной связи в бизнесе | Малый бизнес

Мэри Нестор-Харпер Обновлено 12 февраля 2019 г.

Телефонные звонки от человека к человеку не выполняют основную коммуникационную роль, которую они когда-то играли до расцвета информационного века. Предприятия имеют множество других вариантов общения, таких как электронная почта, текстовые сообщения и социальные сети. Телефонная связь может быть медленнее, чем у ее коллег из новых СМИ, но она по-прежнему имеет преимущества во все более безличном мире.Телефонный звонок, который связывает звонящего с человеческим голосом, создает соединение, которое может отсутствовать в других средствах массовой информации, и все еще является важным бизнес-компонентом.

Личное и непосредственное

Если не говорить с кем-то лицом к лицу, телефонный звонок - лучший способ получить личный ответ. Если человек, которому вы позвонили, доступен, вы можете заняться бизнесом на месте. С другими формами общения, такими как текстовые сообщения или электронная почта, вы оставляете сообщение и надеетесь на быстрый ответ.Телефонные звонки имеют голосовое резервное копирование в виде голосовой почты. Вызывающий абонент может оставить подробное голосовое сообщение без ограничения определенного количества символов или ввода текстового сообщения на крошечной клавиатуре мобильного телефона.

Общение - это больше, чем слова процентов и произнесенных слов всего за 7 процентов.Этот анализ все еще широко принят в качестве основы для эффективной коммуникации сегодня.

Используемый в телефоне тон придает словам размеренность и эмоции, повышая эффективность общения. Определенный язык тела, например, улыбаться и стоять во время разговора, может проявиться в разговоре. Текстовые сообщения и электронные письма - это просто слова, открытые для интерпретации получателем, без тона голоса или языка тела.

Значение интерактивной связи

Телеконференцсвязь объединяет людей со всей организации с меньшими затратами на поездки и конференц-залы.Участники могут позвонить по бесплатному номеру и коду доступа, чтобы присоединиться к виртуальной конференц-комнате, где участники могут взаимодействовать с модератором и другими участниками. Конференц-связь можно использовать в сочетании с видеоконференцсвязью для просмотра презентаций, задавания вопросов через Интернет и обсуждения ответов со всеми участниками.

Телефонные звонки и конфиденциальность

Некоторые сообщения, такие как соболезнования, дисциплинарные вопросы, деликатные и конфиденциальные вопросы, должны обрабатываться с помощью личного телефонного звонка.Тратить время на телефонный звонок имеет больший вес, чем безличный текст или электронная почта. Без возможности двусторонней связи чувствительные вопросы могут быть неправильно истолкованы. Текстовые сообщения и электронные письма становятся законными документами и могут быть извлечены в качестве доказательств еще долго после удаления. Некоторые компании отслеживают и записывают телефонные разговоры между сотрудниками и клиентами в учебных целях. Удаленные сообщения голосовой почты не могут быть восстановлены и не оставляют запись разговора.

Безопасное использование телефонов

Телефонные звонки во время вождения могут быть опасными, но технология Bluetooth делает набор номера без рук и разговор безопасным - освобождая время в пути, чтобы обеспечить доступность для деловых звонков.Текстовые сообщения и электронная почта во время вождения опасны и, в некоторых штатах, незаконны.

телефонный разговор - англо-японский словарь

ru Когда начинается операция связи по телефонному разговору блока (120) связи по телефонному разговору, секция управления (195A) выполняет настройку для подачи принятого аудиосигнала телефонного разговора (ARS) ) от модуля (120) связи телефонного разговора к секции (213) сложения к секции (211) выбора вывода посредством спецификации вывода (SNC) и выполняет настройку вывода результата сложения к секции (213 сложения) ) с помощью команды управления сложением (ADC).

Патенты WIPO и ru Блок связи (5) передает сигнал телефонного разговора между портативным телефоном (6) и базовым блоком (1) телефонный разговор с использованием беспроводной трубки (3) осуществляется по второй телефонной линии, к которой подключен портативный телефон (6).

патент-wipo и ru Блок связи (5) выполняет передачу сигнала телефонного разговора с портативным телефоном (6) на основе спецификации Bluetooth и выполняет радиосвязь сигнала телефонного разговора с базовым блоком (1).

патенты ВОИС- JA 不 文字 (文盲 な の に そ れ を 気 が 付 か な い ふ り を す る. お か し さ)

ан Handsfree телефонный разговор помочь аппарат и громкой связи телефонный разговор система помощи

патентов -wipo ja

ru Базовый блок (1) осуществляет радиосвязь сигнала телефонного разговора с беспроводной трубкой (3), посредством чего происходит телефонный разговор с использованием беспроводной трубки (3) выполнено.

патенты-wipo ja

и сервер ретрансляции, один из которых может передать один телефонный разговор, один из которых может передать один телефонный разговор о том, что один телефонный разговор, который является одним из пользователей, может передать один телефонный разговор, который является одним из телефонных разговоров, который является одним из пользователей, который является телефонным разговором. временно использовать услуги телефонного разговора, используя альтернативный номер во множестве телефонных терминалов.

патенты ВОИС- JA ヘ ン デ ル の メ サ イ ア よ ク ラ ィ マ ッ ク ス で は み ん な 立 ち 上 が る の

ан Раскрыт метод отчетности атрибута в устройстве отчетности атрибут для вывода атрибутов первого блока телефонного разговора, который включает в себя этап ввода для ввод команды вывода атрибутов, этап извлечения для извлечения атрибутов в соответствии с введенной инструкцией вывода атрибутов, этап синтеза голоса для выполнения синтеза голоса извлеченных атрибутов и этап управления для вывода атрибутов, подвергнутых воздействию синтез голоса в первый блок телефонного разговора.

патентов-випо ja 季 語 を 集 め た も の ​​は 「「 季 」」 」時 記 記」 と 呼 れ れ 、 、 各種 も の がво время которого мужчина и женщина, которые никогда не встречались, сексуально стимулируют друг друга эротическими разговорами.

jw2019 ja

ru ru EN определяет термин дейтаграммы следующим образом: «Самодостаточный, независимый объект данных, несущий достаточную информацию, чтобы быть достаточным, чтобы быть маршрутизируется от исходного к конечному компьютеру без использования более ранних обменов между этим исходным и конечным компьютером и транспортной сетью.”- RFC 1594. Дейтаграмма должна быть автономной, не полагаясь на более ранние обмены, потому что между двумя точками связи нет фиксированной связи, как, например, в большинстве голосовых телефонных разговоров.

LASER-wikipedia2 и

ru Отверстия (34) блока динамика, отверстие (33-1) первого блока микрофона и отверстие (33-2) второго блока микрофона расположены на одной поверхности корпуса устройства (10) для помощи в телефонном разговоре.

патент-wipo и ru Google Voice предоставляет функцию, которая позволяет записывать отдельные телефонные разговоры.

support.google ja

ru В газете объясняется, что «по кабелю можно передавать до 8000 телефонных разговоров, так как многие факсы за две секунды и видеосвязь.

jw2019 ja used の used 000 000 法制 法制 法制 法制法制записей телефонных разговоров.

татоэба и considered と ould ould considered considered 』』 』』 は consideredき

jw2019 ja
ru
(Ефесянам 5:16) Как печально, когда телефонный разговор отнимает такое драгоценное время!

jw2019 ja wire の 後 、 部 民 を し し て 行政 事務 の 実 を を 官 官 官 組織 組織 組織Говорят, что телефонные разговоры этого человека «были полны нецензурной лексики и упоминаний о мафиозном бизнесе.

jw2019 ja 。 の 後 、 弟 の 性 法 法 親王 い い る 和 和 寺和родители оборвали, когда у нее кончились перемены.

jw2019 ja 金 ら に 貨幣 吹 替 (鋳 鋳) Недавно компьютер предоставил перевод телефонных разговоров между исследователями в Японии, Германии и США.

jw2019 ja て た し の 宝 宝 世界 中 の 人 あ た し に 注目 て て!

ru Барт разговаривает по телефону с оператором распределительного щита в Солвенге, а деревянный авиалайнер "Солванг Эйр", фюзеляж которого напоминает здания в городе, показан на посадке в аэропорту Спрингфилд.

ЛАЗЕР-Википедия2 и.а. そ れ に 伴 い 不正 が 行 わ れ る こ と も も 、 幕府 大 大с представителями Vale, Rio Tinto и Jindal Steel and Power по этим вопросам, включая более 35 встреч, телефонных переговоров и письменных сообщений.

hrw.org и

обработки информации (

) выполняет обработку информации (

), обрабатывает информацию в

, выполняет обработку ответа в запросам на выполнение обработки информации от множества устройств телефонного разговора для ответственного лица (59, 69).

патентов - военная заявка и (Псалом 37:10, 11; Даниил 2:44; Матфея 6: 9, 10). На следующей неделе она согласилась поговорить по телефону, чтобы обсудить, почему мы можем верить Божьим обещаниям.

jw2019 ja 位 位 (し ゃ く い) と は 、 官人 に 高 い 位 階 階 仮 に 授 け る る と。 000 000

ru После телефонного разговора между Януковичем и президентом России Владимиром Владимиром Владимировичем По просьбе Януковича омбудсмен Владимир Лукин был послан в Украину в качестве посланника, чтобы попытаться стать посредником в переговорах между правительством и оппозицией.

ЛАЗЕР-wikipedia2 JA そ れ が す な わ ち 「猿 簑」 で, 句 撰 は す こ ぶ る き び し か っ た ら し い.

ен система А телефонные переговоры содержит сервер и телефонный терминал, с помощью которого пользователь, который участвует в PoC телефонный разговор, можно говорить в желаемое время.

Патенты-WIPO ja ru Этот небольшой оптоволоконный кабель может передавать столько же или больше телефонных разговоров, чем этот большой обычный кабель

jw2019 jw2019 jaだ ャ ッ ク 黙 っ て い ら れ な い ん だ.

0 comments on “Разговорные устройства телефонного аппарата: 2. Устройство телефонного аппарата и основы телефонной связи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *