Термопара принцип работы: устройство и принцип работы простым языком, типы

принцип работы, устройство, типы и виды, проверка работы

Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С — керамика с повышенным содержанием Al2O3, свыше 1400°С — керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Схема подключения термопары

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы
  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.
Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Что такое термопара, принцип действия, основные виды и типыЧто такое термопара, принцип действия, основные виды и типы

Причины выхода из строя термопары:

  1. Неиспользование защитного экранирующего устройства;
  2. Изменение химического состава электродов;
  3. Окислительные процессы, развивающиеся при высоких температурах;
  4. Поломка контрольно-измерительного прибора и т.д.

Преимущества и недостатки использования термопар

Достоинствами использования данного устройства можно назвать:

  • Большой температурный диапазон измерений;
  • Высокая точность;
  • Простота и надежность.

К недостаткам следует отнести:

  • Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
  • Структурные изменения металлов при изготовлении прибора;
  • Зависимость от состава атмосферы, затраты на герметизацию;
  • Погрешность измерений из-за воздействия электромагнитных волн.

Термопара принцип работы

Что такое термопара, принцип действия

Термопара – это устройство для измерения температур во всех отраслях науки и техники. 

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера.

Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом.

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Схема подключения термопары

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Устройство и принцип действия

Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.

Особенности устройства промышленной термопары

Термодатчики изготавливаются по большей части из неблагородных металлов. От воздействия внешней среды их закрывают трубой с фланцем, служащим для крепления прибора. Защитная арматура предохраняет проводники от влияния агрессивной среды и делается без шва. Материалом служит обычная (до 600ºС) или нержавеющая (до 1100ºС) сталь. Термоэлектроды изолируют друг от друга асбестом, фарфоровыми трубками или керамическими бусами.

Если терминал расположен близко, то провода термопары подключаются к нему напрямую, без дополнительных разъемов. При расположении измерительного прибора на удалении, при включении его в цепь свободные концы термопары размещаются в литой головке, прикрепленной к защитной трубе. Внутри располагаются латунные клеммники на фарфоровом основании для подключения компенсационных проводов, изготовленных из таких же материалов, что и термоэлектроды, но не обладающих точными и строго контролируемыми характеристиками. Они имеют меньшую стоимость и большую толщину. Их вводят в головку через штуцер с асбестовой прокладкой. Керамика служит для выравнивания температуры во всех местах соединения. Сверху располагается резьбовая защитная крышка с герметичным уплотнением.

На провода нельзя устанавливать обжимные оконцеватели, поскольку они могут ухудшить точность показаний. Из проволоки делают кольцо и зажимают его под винт.

Корректировка изменения температуры на клеммах может производиться электронным прибором, что повышает точность измерений.

Недостатки термопары

Недостатков у термопары не так много, в особенности если сравнивать с ближайшими конкурентами (температурными датчиками других типов), но все же они есть, и было бы несправедливо о них умолчать.

Так, разность потенциала измеряется в милливольтах. Поэтому необходимо применять весьма чувствительные потенциометры. А если учесть, что не всегда приборы учета можно разместить в непосредственной близости от места сбора экспериментальных данных, то приходится применять некие усилители. Это доставляет ряд неудобств и приводит к лишним затратам при организации и подготовке производства.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи

Погрешность измерений

Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.

состоит из следующих составных частей:

  • случайная погрешность, вызванная особенностями изготовления термопары;

  • погрешность, вызванная нарушением температурного режима «холодного» контакта;

  • погрешность, причиной которой послужили внешние помехи;

  • погрешность контрольной аппаратуры.

Устройство и принцип действия термопары

Действительно, постоянно находиться в зоне открытого пламени может далеко не каждый материал. Термоэлемент же изготовлен из металла, точнее, из нескольких металлов, поэтому высокой температуры не боится. При работе газовой котельной установки без него никак не обойтись, выход из строя термопары означает полную остановку агрегата и немедленный ремонт. Все дело в том, что термоэлемент работает совместно с электромагнитным отсекающим клапаном, перекрывающим вход в топливный тракт. Стоит только этой детали выйти из строя, как клапан закроется, подача топлива прекратится и горелочное устройство потухнет.

Чтобы лучше понять принцип работы термопары газового котла, стоит рассмотреть схему, представленную на рисунке.

Схема термопары

В основе этого принципа лежит следующее физическое явление: если надежно соединить между собой 2 разнородных металла, а потом место соединения нагревать, то на холодных концах этого спая появится разница потенциалов, то есть, напряжение. А при подключении к ним измерительного прибора цепь замкнется и возникнет постоянный электрический ток. Напряжение будет совсем небольшим, но этого вполне достаточно, чтобы в чувствительной катушке электромагнитного клапана возникла индукция и он открылся, позволяя топливу пройти к запальнику.

Для справки. Некоторые современные электромагнитные клапаны настолько чувствительны, что остаются открытыми, пока напряжение на входе не станет ниже 20 мВ. Термоэлемент в обычном рабочем режиме вырабатывает напряжение порядка 40—50 мВ.

Соответственно, устройство термопары газового котла основано на описанном явлении, носящем название эффекта Зеебека. Две детали из различных металлов прочно соединяются между собой в одной или нескольких точках, при этом качество соединения играет большую роль. Оно влияет на рабочие параметры элемента и долговечность его эксплуатации. Место соединения и будет той самой рабочей частью, помещаемой в зону открытого огня.

Поскольку для изготовления термоэлементов применяется множество различных пар металлов, не вдаваясь в подробности, отметим, что в термопаре для газового котла используется пара хромель – алюминий. К холодным концам этих металлов приварены проводники, заключенные в защитную оболочку. Второй конец проводников вставляется в соответствующее гнездо автоматики агрегата и закрепляется с помощью зажимной гайки.

В процессе розжига запальника и горелки газового котла для подачи топлива мы открываем электромагнитный клапан вручную, нажимая на его шток. Газ попадает на запальник и поджигается, а термопара находится рядом и нагревается от его пламени. Спустя 10—30 сек кнопку можно отпускать, так как термоэлемент уже начал вырабатывать напряжение, удерживающее шток клапана в открытом состоянии.

Схема подключения термопары

Наиболее распространенными способами подключения измерительных приборов к термопарам являются так называемый простой способ, а также дифференцированный. Суть первого метода заключается в следующем: прибор (потенциометр или гальванометр) напрямую соединяется с двумя проводниками. При дифференцированном методе спаивается не одни, а оба конца проводников, при этом один из электродов «разрывается» измерительным прибором.

Нельзя не упомянуть и о так называемом дистанционном способе подключения термопары. Принцип работы остается неизменным. Разница лишь в том, что в цепь добавляются удлинительные провода. Для этих целей не подойдет обычный медный шнур, так как компенсационные провода в обязательном порядке должны выполняться из тех же материалов, что и проводники термопары.

 

Как работает датчик пламени в газовом котле

Датчик ионизации пламени – прибор, который призван обеспечить безопасную работу газового котельного оборудования. Устройство следит за наличием огня, и при обнаружении отсутствия пламени автоматически отключает котел. Принцип работы датчика пламени газового котла предусматривает следующее:

  • функционал основан на образовании ионов и электронов при зажигании пламени. Образование ионного тока вызывает процесс притягивания ионов к электроду ионизации. Устройство подключается к датчику контроля горения;
  • если при проверке датчиком контроля горения обнаруживается образование достаточного уровня ионов, это означает, что котел работает в штатном режиме. В случае снижения уровня ионов датчик блокирует работу котельного оборудования.

К ключевым причинам срабатывания датчика ионизации относят загрязнение клапана и некорректное соотношение уровня «газ-воздух». Также это происходит при оседании большого количества пыли на устройстве розжига.

Основные типы термопар для газового котла

При изготовлении термоэлектрических преобразователей применяют сплавы благородных и неблагородных металлов. Для конкретных диапазонов рабочих температур используют определенные группы сплавов.

В зависимости от металлических пар, применяемых при изготовлении, приборы делятся на несколько типов.

Для работы котельного оборудования на газовом топливе чаще всего используют следующие типы устройств:

  • термопара типа E. Заводская маркировка ТХКн, представляет собой пластины из хромеля и константана. Прибор предназначен для температурного диапазона от 0°C и до +600°C;
  • тип J. Предусматривает композицию из железа и константана, маркировка ТЖК. Используется для рабочих температур в пределах от -100°C и до +1200°C;
  • тип Kс маркировкой ТХА, изготавливается на основе пластин из хромеля и алюмеля. Температурный диапазон применения термопары типа Kзначительный – от -200°C и до +1350°C;
  • тип Lс маркировкой ТХК. Элементы конструкции представляют собой хромель и копель. Устройство предназначено для температур от -200°C и до +850°C.

Термопара для газового котла типа J

Следующие образцы продукции находят применение в сфере тяжелой промышленности:

  • тип Sс маркировкой ТПП10 представляет собой композицию платинородий-платина. Применяется в установках при температурном режиме до +1700°C;
  • тип Bс маркировкой ТПР состоит из композиции пластин платинородий-платинородий. Продукт предназначен для температурного диапазона от -100°C и до +1800°C.

Также изготавливаются и другие варианты аналогичных приборов из сплавов благородных металлов, которые актуальны в тяжелой промышленности и литейном производстве.

Термопара в системе газового контроля

При эксплуатации газового оборудования требуется энергонезависимая автоматика, что способствует оперативному перекрытию подачи газа в случае, если внезапно погаснет пламя. В современных отопительных котлах с газовой горелкой предусмотрена система газ-контроль, которая включает в себя электромагнитный клапан и термопару. К составным элементам электроклапана относятся:

  • сердечник с обмоткой;
  • колпачок;
  • возвратная пружина;
  • якорь;
  • резинка, перекрывающая подачу газа.

При нажатии на кнопку подачи газа, шток заглубляется внутрь катушки и заряжается пружина. По регламенту клапан подачи следует удерживать около 30 секунд, чтобы термопара прогрелась, и на концах образовалось напряжение для удержания клапана внутри катушки. Термопара начинает остывать, если гаснет горелка. Что дальше происходит:

  • это сопровождается уменьшением напряжения на концах термопары;
  • возвратная сила пружины превышает электромагнитную силу, которая удерживает шток внутри катушки;
  • клапан возвращается в исходное положение и перекрывается подача газа.

В этом заключается работа термопары в газовом котле. Система газ-контроль на термопаре отличается высокой надежностью, в том числе и благодаря тому, что она способна функционировать без подключения к энергосети.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

принцип действия, схемы, таблица типов термопар и т.д.

Термопары — это наиболее распространенное устройство для измерения температуры. Термопары генерируют напряжение при нагревании и возникающий ток позволяет проводить измерения температуры. Отличается своей простотой, невысокой стоимостью, но внушительной долговечностью. Благодаря своим преимуществам, термопара используется повсеместно.

Стандартная термопара Стандартная термопара
Рекомендуем обратить внимание и на другие приборы для измерения температуры.

Принцип работы термопары

Термопара представляет собой два провода, изготовленных из различных металлов. Эти два провода скреплены или сварены вместе и образуют спай. Когда на этот спай оказывают воздействие изменения температуры, то термопара реагирует на них генерируя напряжение, пропорциональное по величине изменениям температуры.

Если термопара подсоединена к электрической цепи, то величина генерируемого напряжения будет отображаться на шкале измерительного прибора. Затем показания прибора могут быть преобразованы в температурные показания с помощью таблицы. На некоторых приборах шкала откалибрована непосредственно в градусах.

Термопара в электрической цепи Термопара в электрической цепи

Спай термопары

В конструкции большинства термопар предусмотрен только один спай. Однако, когда термопара подсоединяется к электрической цепи, то в точках ее подсоединения может образовываться еще один спай.

Цепь термопары Цепь термопары

Цепь, показанная на рисунке, состоит из трех проводов, помеченных как А, В и С. Провода скручены между собой и помечены как D и Е. Спай представляет собой дополнительный спай, который образуется, когда термопара подсоединяется к цепи. Этот спай называется свободным (холодным) спаем термопары. Спай Е — это рабочий (горячий) спай. В цепи находится измерительный прибор, который измеряет разницу величин напряжения на двух спаях.

Два спая соединены таким образом, что их напряжение противодействует друг другу. Таким образом, на обоих спаях генерируется одна и та же величина напряжения и показания прибора будут равны нулю. Так как существует прямо пропорциональная зависимость между температурой и величиной напряжения, генерируемой спаем термопары, то два спая будут генерировать одни и те же величины напряжения, когда температура на них будет одинаковой.

Воздействие нагрева одного спая термопары Воздействие нагрева одного спая термопары

Когда спай термопары нагревается, величина напряжения повышается прямо пропорционально. Поток электронов от нагретого спая протекает через другой спай, через измерительный прибор и возвращается обратно на горячий спай. Прибор показывает разницу напряжения между двумя спаями. Разность напряжения между двумя спаями. Разность напряжения, показываемая прибором, преобразуется в температурные показания либо с помощью таблицы, либо прямо отображается на шкале, которая откалибрована в градусах.

Холодный спай термопары

Холодный спай часто представляет собой точку, где свободные концы проводов термопары подсоединяются к измерительному прибору.

В силу того, что измерительный прибор в цепи термопары в действительности измеряет разность напряжения между двумя спаями, то напряжение холодного спая должно поддерживаться на неизменном уровне, насколько это возможно. Поддерживая напряжение на холодном спае на неизменном уровне мы тем самым гарантируем, что отклонение в показаниях измерительного прибора свидетельствует о изменении температуры на рабочем спае.

Если температура вокруг холодного спая меняется, то величина напряжения на холодном спае также изменится. В результате изменится напряжение на холодном спае. И как следствие разница в напряжении на двух спаях тоже изменится, что в конечном итоге приведет к неточным показаниям температуры.

Для того, чтобы сохранить температуру на холодном спае на неизменном уровне во многих термопарах используются компенсирующие резисторы. Резистор находится в том же месте, что и холодный спай, так что температура воздействует на спай и резистор одновременно.

Цепь термопары с компенсирующим резистором Цепь термопары с компенсирующим резистором

Рабочий спай термопары (горячий)

Рабочий спай — это спай, который подвержен воздействию технологического процесса, чья температура измеряется. Ввиду того, что напряжение, генерируемое термопарой прямо пропорционально ее температуре, то при нагревании рабочего спая, он генерирует больше напряжения, а при охлаждении — меньше.

Рабочий спай и холодный спай Рабочий спай и холодный спай

Типы термопары

Термопары конструируются с учетом диапазона измеряемых температур и могут изготавливаться из комбинаций различных металлов. Комбинация используемых металлов определяет диапазон температур, измеряемых термопарой. По этой причине была разработана маркировка с помощью букв для обозначения различных типов термопар. Каждому типу присвоено соответствующее буквенное обозначение, и это буквенное обозначение указывает на комбинацию используемых металлов в данной термопаре.

Буквенные обозначения и диапазон температур для различных типов термопар Типы термопар и диапазон их температур

Когда термопара подключается к электрической цепи, то она не будет работать нормально пока не будет соблюдена полярность при подключении. Плюсовые провода должны быть соединены вместе и подсоединены к плюсовому выводу цепи, а минусовые к минусовому. Если провода перепутать, то рабочий спай и холодный спай не будут в противофазе и показания температуры будут неточными. Одним из способов определения полярности проводов термопары -это определение по цвету изоляции на проводах. Помните, что минусовой провод во всех термопарах — красный.

Цвет изоляции проводов термопар Цвет изоляции проводов термопар

Во многих случаях приходится использовать провода для удлинения протяженности цепи термопары. Цвет изоляции соединительных проводов также несет в себе информацию. Цвет внешней изоляции соединительных проводов — разный, в зависимости от производителя, однако цвет первичной изоляции проводов обычно соответствует кодировке, указанной в таблице выше.

Неисправности термопары

Если термопара выдает неточные показания температуры, и было проверено, что нет ослабленных соединений, то причина может крыться либо в регистрирующем приборе, либо в самой термопаре, первым обычно проверяется регистрирующий прибор, так как приборы чаще выходят из строя, чем термопары.

Более того, если прибор показывает хоть какие-нибудь показания, пусть даже неточные, то, скорей всего, дело не в термопаре. Если термопара неисправна, то обычно она не выдает вообще никакого напряжения, и прибор не будет выдавать никаких показаний. Если показаний на приборе нет совсем, то вероятно дело в термопаре.

Если Вы подозреваете, что термопара вышла из строя, то проверьте ее сигнал на выходе с помощью прибора, который называется милливольтный потенциометр, который используется для измерения малых величин напряжения.

Потенциометр Потенциометр

Принцип действия термопар

Термопары самое известное средство измерения для многих сфер деятельности, таких как, промышленность, медицинские лаборатории, жилые дома и научные лаборатории. Применяются они для измерения температуры. Это связано с тем, что термопары имеют высоким диапазон измерения(от -270 до + 2500С), отличную точность, высокую надежность, низкую цену и свободную заменяемость. Для корректного применения нужно понимать ее принцип действия и структуру.

Принцип действия и структура термопар

Состоит термопара из двух проводников и трубки, которая служит защитой для термоэлектродов. Термоэлектроды состоят из неблагородных и благородных металлов, чаще всего из сплавов, закрепленные друг с другом на одном конце(рабочий конец или горячий спай), таким образом они образуют одну из частей устройства. Другие концы термопары (свободные концы или холодный спай) соединены с прибором измерения напряжения. Посередине двух несоединенными выводами возникает ЭДС, величина зависит от температуры рабочего конца.

структура термопапры

Одинаковые термопреобразователи объединенные параллельно замыкают цепь, по правилу Зеебека, мы рассмотрим далее это правило, между ними образуется контактная разность потенциалов или термоэлектрический эффект, при соприкосновении на проводниках появляются электрические заряды, между их свободными концами возникает различие потенциалов, и он зависит от разности температур. Только тогда, когда температура между термоэлектродами одинакова, разница потенциалов приравнивается к нулю.

Например: Помещая спай с различными от нуля коэффициентами, в две кипящие кастрюли с жидкостью, температура первой 50, а второй 45, то разность потенциалов будет равна 5.

Разность потенциалов определяется разностью температур источников. Так же зависит материал из которого сделаны электроды термопары. Пример: У термопары Хромель-Алюмель температурный коэффициент равен 41, а у Хромель-Константан коэффициент равен 68.

Явление Зеебека

Состоит в следующем. Если в замкнутом контуре из двух разнородных проводников, а лучше полупроводников так, как эффект сильнее выражен для полупроводников, поддерживать места соединения этих проводников, обще принято называть, спаи, при разных температурах, то в такой цепи пойдет ток. Направление тока зависит от того какая из температур, какого спая выше. При одной разности в одном направлении, при другой разности в другом.

Это устройство, будучи разрезанным в одном из мест используется в качестве термопары, датчика температуры. В схеме 2, далее, будет показано спай 1, мы будем нагревать или охлаждать, а другой спай внутри гальванометра, который находится при комнатной температуре. В зависимости от того какая будет температура спая Т1 выше комнатной или ниже, стрелка гальванометра, будет отклоняться либо в одну, либо в другую сторону.

Если в цепи термопары обе проволоки из одного материала то ничего происходить не будет. Проверить это очень просто, возьмите две медные проволоки с изоляцией, меры безопасности никто не отменял, подсоедините их одними концами к гальванометру, а другими скрутите вместе (но лучше спаять), и начните нагревать, так же можно опустить в воду с кусочками льда. Если вы взяли одинаковые проволоки, то стрелка прибора останется на нуле. Но если вы возьмете разные проволоки и точно так же подсоедините их к прибору, а другие концы скрутите. И после этого будете нагревать или охлаждать, оголенные концы проводов, то вы сможете наблюдать, как и в какую сторону будет отклоняться стрелка гальванометра.

структура термопапры

Методы подключения

Есть несколько методов включения преобразователя, но мы рассмотрим самые распространенные: простой и дифференциальный. Простой — измерительный прибор включается напрямую к двум термопарам. Дифференцированный — применяются проводники с разными соотношениями термо-ЭДС, соединённые в двух концах, а измерительный прибор подключается в разрыв одного из проводников.

Во время дистанционного включения, ставятся удлинительные либо компенсационные провода. Удлинительные провода создаются из тех же металлов, что и термоэлектроды, но с разными размерами. Компенсационные — изготовляются из благородных металлов, но их состав, отличается от состава термоэлектродов.

конструкция и принцип работы датчика, виды устройств для измерения температуры

Устройство термопарыТермоэлектрический преобразователь, или термопара, представляет собой устройство, используемое в промышленности и медицине при проведении научных экспериментов, а также в системах автоматики. С помощью этого прибора проводятся замеры температуры. Для определения разности температурных показателей зон применяются дифференциальные устройства, которые представляют собой две термопары, соединенные навстречу друг другу.

Конструктивные особенности

Если относиться более скрупулезно к процессу замера температуры, то эта процедура осуществляется с помощью термоэлектрического термометра. Основным чувствительным элементом этого прибора считается термопара.

Сам процесс измерения происходит за счет создания в термопаре электродвижущей силы. Существуют некоторые особенности устройства термопары:

  • Виды термопарЭлектроды соединяются в термопарах для измерения высоких температур в одной точке с помощью электрической дуговой сварки. При замере небольших показателей такой контакт выполняется с помощью пайки. Особенные соединения в вольфрам-рениевых и вольфрамо-молибденовых устройствах проводятся с помощью плотных скруток без дополнительной обработки.
  • Соединение элементов проводится только в рабочей зоне, а по остальной длине они изолированы друг от друга.
  • Метод изоляции осуществляется в зависимости от верхнего значения температуры. При диапазоне величины от 100 до 120 °C используется любой тип изоляции, в том числе и воздушный. При температуре до 1300 °C применяются трубки или бусы из фарфора. Если величина достигает до 2000 °C, то применяется изоляционный материал из оксида алюминия, магния, бериллия и циркония.
  • В зависимости от среды использования датчика, в которой происходит замер температуры, применяется наружный защитный чехол. Выполняется он в виде трубки из металла или керамики. Такая защита обеспечивает гидроизоляцию и поверхностное предохранение термопары от механических воздействий. Материал наружного чехла должен выдерживать высокую температуру воздействия и обладать отличной теплопроводностью.

Конструкция датчика во многом зависит от условий его применения. При создании термопары во внимание принимается диапазон измеряемых температур, состояние внешней среды, тепловая инерционность и т. д.

Принцип действия

Работа термопары основана на принципе термоэлектрического эффекта. Это явление было открыто физиком из Германии Т. Зеебеком в начале XIX века. Его суть состоит в следующем:

  • Как использовать термопаруЕсли соединить два термоэлектрода из разных металлов или сплавов в замкнутую электрическую цепь, а их рабочую поверхность подвергнуть воздействию разных температур, то по ней начнет протекать электрический ток.
  • Цепь, состоящая только из двух разных электродов, называется термоэлементом.
  • Работает термопара за счет электродвижущей силы, которая вызывает ток в цепи и зависит от материала элементов и разности температуры их соединения.
  • Элемент, из которого поступает ток от горячего соединения к холодному, считается положительным электродом, а от холодного к горячему — отрицательным.
  • Если говорить простым языком, то зная температуру одного соединения, которая поддерживается обычно постоянной, в результате измерения значения тока можно узнать величину нагрева другого соединения.

Термопара ПП расшифровывается как платинородий-платиновый, где первым идет обозначение положительного электрода, а вторым — отрицательного. Величина электродвижущей силы составляет небольшую величину, которая измеряется милливольтами при разнице температуры в 100 К (173,15 °C).

Принцип действия термопары

Виды устройств

Каждый вид термопар имеет свое обозначение, и разделены они согласно общепринятому стандарту. Каждый тип электродов имеет свое сокращение: ТХА, ТХК, ТВР и т. д. Распределяются преобразователи соответственно классификации:

  • Измерение термопаройТип E — представляет собой сплав хромеля и константана. Характеристикой этого устройства считается высокая чувствительность и производительность. Особенно это подходит для использования при крайне низких температурах.
  • J — относится к сплаву железа и константана. Отличается высокой чувствительностью, которая может достигать до 50 мкВ/ °C.
  • Вид K — считается самым популярным устройством, состоящим из сплава хромеля и алюминия. Эти термопары могут определить температуру в диапазоне от -200 °C до +1350 °C. Приборы используются в схемах, расположенных в неокисляющих и инертных условиях без признаков старения. При применении устройств в довольно кислой среде хромель быстро разъедается и приходит в негодность для измерения температуры термопарой.
  • Тип M — представляет сплавы никеля с молибденом или кобальтом. Устройства могут выдерживать до 1400 °C и применяются в установках, работающих по принципу вакуумных печей.
  • Вид N — нихросил-нисиловые устройства, отличием которых считается устойчивость к окислению. Используются они для измерения температур в диапазоне от -270 до +1300 °C.

Существуют термопары, выполненные из сплавов родия и платины. Относятся они к типам B, S, R и считаются самыми стабильными устройствами. К минусам этих преобразователей относится высокая цена и низкая чувствительность.

При высоких температурах широко используются устройства из сплавов рения и вольфрама. Кроме того, по назначению и условиям эксплуатации термопары могут бывать погружаемыми и поверхностными.

По конструкции крепления устройства обладают статическим и подвижным штуцером или фланцем. Широкое применение термоэлектрические преобразователи нашли в устройстве компьютеров, которые обычно подсоединяются через COM порт и предназначены для измерения температуры внутри корпуса.

Компенсационные провода

Компенсационные проводаВ состав термопар входят компенсационные провода, которые выглядят как удлинители для подсоединения устройств к измерительному прибору. Если устроить свободные концы в головке термоэлектрического преобразователя, то практически его подсоединение выполнить нельзя, так как прибор работает при очень высоких температурах.

Кроме того, не всегда прибор, на который поступают данные, можно расположить недалеко от датчиков. Поэтому часто требуется подсоединение измерительного прибора на расстоянии от места, где установлены датчики. Эту задачу с успехом решают компенсационные провода. Обычно их изготавливают из того же материала, что и термоэлектрические датчики.

Удлинительные провода находятся на участках с более низкими температурами, поэтому существует возможность изготавливать их из более дешевого материала. При использовании компенсационных проводов необходимо учитывать возможность появления паразитных электродвижущих сил. Провода должны обеспечить отведение свободных концов от термопары в зону с пониженной и постоянной температурой.

Источники погрешностей измерений

Термопары для высоких температурНа выполнение правильного процесса измерения влияют внешние источники, техническое состояние средств измерения и другие условия. На точность измерения с использованием термоэлектрического преобразователя влияет изменение электродвижущей силы.

Это явление называется термоэлектрической нестабильностью используемых сплавов. В процессе эксплуатации стало известно, что сплавы электродов изменяют свою ЭДС, которая приводит к искажению показаний.

Во время длительной эксплуатации при высоких температурах такие ошибки могут достигать больших величин, что приводит к снижению точности измерений.

Основными причинами нестабильности измерений считаются:

  • взаимодействие термоэлектродов с внешней средой;
  • влияние на датчики изолирующих и защитных устройств;
  • взаимодействие электродов друг с другом;
  • внутренние процессы, которые возникают при изменении температуры;
  • влияние радиации, электромагнитных полей и перепадов давления.

Под воздействием высокой температуры происходит снижение сопротивления изоляции датчиков, которое приводит к искажению измерений. Часто источником возникновения ошибок при замерах становится неправильный выбор термоэлектрода, так как его сопротивление не совпадает с показаниями электрической цепи. Изменение электродвижущей силы по длине термоэлектрического преобразователя тоже приводит к возникновению ошибок при получении показателей.

принцип работы, устройство, типы, замена

Для приготовления пищи в быту зачастую применяются газовые плиты, в которых устанавливаются специальные устройства контроля температуры. За счет ряда преимуществ для измерения используется термопара. Как правило, одно упоминание об этом незамысловатом устройстве вызывает ряд трудностей в понимании его назначения и принципа работы. Поэтому в данной статье мы рассмотрим назначение и принцип действия термопары для газовой плиты.

Что такое термопара?

Термопара представляет собой датчик, преобразующий  изменение температуры в электрический сигнал. В дальнейшем электрическая энергия от такого датчика участвует в работе электроники и автоматики плит, газовых котлах и колонках. При изменении электрического потенциала на концах термопары в определенных пределах происходит блокировка газконтроля и горение в газовой плите прекращается. Такое устройство позволяет, как поддерживать подачу газа к пламени горелки, так и прерывать его подачу в аварийных ситуациях.

Физически термопара представляет собой электрический контакт между двумя проводниками из различных материалов. Такой контакт может обеспечиваться посредством:

  • Пайки – обеспечивает хороший контакт для легкоплавких материалов;
  • Сварки – обеспечивает наиболее точные измерения, но и наиболее энергоемкий процесс при изготовлении контакта, хорошо подходит для тугоплавких материалов;
  • Обжима – наиболее простой способ, но обеспечивает достаточно низкую точность, поскольку при температурном расширении и сужении нарушается плотность контакта.

В зависимости от параметров работы газовых колонок или плит применяются соответствующие способы соединения проводников. Следует отметить, что термопара плиты – это сам контакт, в то время, как все остальные составляющие (провода, экран, выводы и т.д.) представляют собой термометр.

Принцип работы

Принцип работы термопары заключается в наличии определенного уровня электрического заряда у любого металла. Его уровень составляет порядка нескольких микровольт, эта величина определяет способность электронов металла совершать направленное движение в замкнутой электрической цепи. При соединении двух металлов с различным уровнем потенциала, в точке контакта возникает переход электронов из зоны с большим потенциалом в зону с меньшим.

В холодном состоянии на выходе получается небольшое напряжение, но, при увеличении температуры этих материалов с одной стороны, увеличивается и разность потенциалов, соответственно, растет величина вырабатываемой термопарой ЭДС. В физике такое явление получило название эффекта Зеебека, по фамилии ученного, открывшего процесс. Пример выработки термоэдс приведен на рисунке 1:

принцип работы термопарыРис. 1: принцип работы термопары

На практике для соединения используются материалы с различными по направленности термоэдс. К примеру, в термопаре из алюмеля и хромеля величина потенциала изменяется на – 17,3 мкВ и + 24 мкВ соответственно при изменении температуры на один градус Цельсия. Таким образом, при нагревании этого соединения до 300ºС, на выходе возникнет напряжение равное 24 мВ.

Если рассмотреть схему работы (рис. 2), в ее цепи включены  три элемента: термопара, термореле и электромагнитный клапан. Термопара специально располагается вблизи очага горения, чтобы моментально реагировать на основные процессы в духовых шкафах.

Схема работыРис. 2: Схема работы

Посмотрите на рисунок, при нагревании контакта термопары в ней возникает ЭДС, которая обуславливает протекание электрического тока через цепь термореле к катушке электромагнита. Когда от электрического поджига зажигается газ, происходит нагревание одного конца термопары в духовке, благодаря описанному выше эффекту в цепи возникает ЭДС. При замкнутых контактах термореле электрический ток протекает от термопары через замкнутые контакты термореле по катушке электромагнитного клапана. При нагревании термопары величина тока в катушке становится достаточной для перемещения и удержания сердечника катушки, который открывает клапан подачи газа.

В случае нагрева духовки до установленной вами величины срабатывает термореле и разрывает свои контакты в цепи. Из-за чего катушка теряет возбуждение и магнитный поток больше не удерживает сердечник, который возвращается в исходное положение и закрывает клапан газконтроля. При отсутствии подачи газа пламя в плите гаснет.

Если возникает аварийная ситуация, когда в системе происходит утечка газа или перебой, при котором прекращается подача, а через какой-то промежуток снова возобновляется, срабатывает система газконтроля. Как только в плите тухнет газ, она стремительно остывает, из-за чего снижается и ЭДС, и величина тока в цепи электромагнита клапана. Клапан полностью закрывается и даже при возобновлении газового снабжения печи, клапан предотвращает его проникновение в духовку.

Таким образом, термопара осуществляет функцию газконтроля как в  штатной ситуации, так и в аварийной.

Устройство и конструкция

Пример конструкции термопарыРис. 3: пример конструкции термопары

Конструктивно термопару можно подразделить на такие элементы:

  • Спай термопары – состоит из двух проводников, реже полупроводников, соединенных в одну цепь;
  • Изолированные металлы – продолжают вывод рабочих проводников от места спайки до точки подключения к электрической цепи, на всей протяженности провода изолируются друг от друга;
  • Экранирующее покрытие – выполняется в виде металлической трубки по всей длине датчика температуры и проводов его подключения.

Спай включает в себя две проволоки из разнородных материалов. В состав которых могут входить цветные и благородные металлы, как правило, в сплавах. В зависимости от состава проводников термопары подразделяются на несколько типов, особенности которых приведены в таблице.

Таблица 1. Типы термопары

Тип термопары Сплав Российская маркировка Диапазон температур, °С Особенности термопары
K хромель-алюмель TXA от -200 °С
до +1000 °С
Возможность работы в нейтральной атмосфере либо атмосфере с избытком кислорода
L хромель-копель TXK от -200 °С
до +800 °С
Самая высокая чувствительностью из всех промышленных термопар. Свойственна только высокая термоэлектрическая стабильность при температурах до 600 °С.
E хромель-константан TXKn от -40 °С
до +900 °С
Высокая чувствительность.
T медь-константан TMKn от -250 °С
до +300 °С
Может работать в атмосфере, в которой  небольшой избыток или недостаток кислорода. Не чувствительна к повышенной влажности.
J железо-константан ТЖК от -100 °С
до +1200 °С
Хорошо работает в разряженной атмосфере. Невысокая стоимость обусловлена входящим в состав железом.
А вольфрам-рений ТВР выше +1800 °С Хорошие показатели механических свойств при высокой температуре. Может работать при частых и резких теплосменах и при больших нагрузках. Неприхотливость при изготовлении и монтаже, так как имеют небольшую чувствительность к загрязнениям.
N нихросил-нисил ТНН от -200 °С
до +1300 °С
В группе неблагородных металлов считается самой точной термопарой. Высокая стабильность при температурах от 200 до 500 °С.
B платинородий-платинородиевая ТПР от +100 °С
до +1800 °С
Высокая механическая прочность. Большая стабильность при высоких температурах. Небольшая склонность к росту зерна и охрупчиванию. Невысокая чувствительность к загрязнению.
S платинородий-платина ТПП10 от 0 °С
до +1700 °С
Высокая точность измерений. Хорошая воспроизводимость и стабильность термоЭДС.
R платинородий-платиновая ТПП14 от 0 °С
до +1700 °С
Обладает свойствами, идентичными термопаре типа S.

Как видите из таблицы, различный тип обуславливает разный рабочий диапазон температур, чувствительность к ее изменению, стабильность при длительной нагрузке и другие характеристики. Что обязательно следует учитывать при выборе конкретной модели для плиты в случае замены или установки с нуля.

В зависимости от рабочей температуры подбирается и соответствующий материал для изоляции витой скрутки проводников термопары. К примеру, до 120ºС могут применяться любые виды, до 1300ºС фарфоровые. Существуют модели и свыше 1300 ºС, в которых для изоляции используются окислы магния, бериллия и алюминия, но из-за того, что в бытовых приборах такие температуры отсутствуют, приобретать и рассматривать подобные термопары нецелесообразно.

Проверка, чистка, замена

Если плита начала плохо загораться, вполне вероятно, что термопара засорилась или вышла со строя. Но стоит отметить, что причина неисправности может и не затрагивать этот элемент. Для проверки следует выполнить такие действия – поверните ручку духовки и подожгите газ. Если после того, как вы отпустите ручку, духовка тухнет, это первый признак, что система газконтроля не открывает клапан подачи газа в плите.

Скорее всего, что поверхность измерительного элемента засорилась, и он не воспринимает температурные изменения в окружающей среде. Чтобы починить газовое оборудование в плитах фирм Гефест, Ariston, Indesit, Gorenje      и т.д. следует для начала почистить термопару в плите, для этого:

  • Предварительно закройте газовые краники и отключите плиту от сети внешнего электроснабжения; Перекрыть подачу газа на духовкуРис. 4: перекрыть подачу газа на духовку
  • Откройте духовку и удалите из нее все лишнее – вы должны свободно проникнуть внутрь, если что-то вам мешает, уберите это, при необходимости можете снять дверцу с плиты; Удалите из духовки все лишнееРис. 5: удалите из духовки все лишнее
  • Найдите саму термопару – как правило, она расположена в верхней части духовки, ее обязательно устанавливают вблизи рассекателя пламени; Термопара в духовкеРис. 6: термопара в духовке
  • При обнаружении нагара, копоти и прочего мусора на ее поверхности их следует очистить при помощи мелкой наждачки, очищать ударным методом категорически запрещено, так как вы можете повредить термопару безвозвратно;
  • Соберите удаленный мусор и опробуйте работоспособность.

Если такой ремонт газконтроля не принес желаемого результата, следует проверить термопару при помощи мультиметра или милливольтметра. Для этого вам понадобится добраться до места подключения термопары к электрической сети плиты. Как правило, она располагается под передней панелью или верхней крышкой, где находиться переключатель температуры или газовый клапан. Здесь также могли отойти контакты, тогда их достаточно просто поправить, если нет, переходите к измерениям.

Установите предел измерения мультиметра в районе десятков милливольт. Подключите щупы к выводам термопары и подогрейте измерительный элемент (не обязательно открытым огнем, но это довольно доступный способ).

Проверка термопары мультиметромРис. 7: проверка термопары мультиметром

Если милливольтметр покажет изменение напряжения на выводах, устройство исправно и причина в чем-то другом. В противном случае вы могли неправильно установить предел для вашей модели термопары или  автоматика газконтроля неисправна.

Замена термопары газовой плиты

В большинстве случаев, выход со строя характеризуется перегоранием проводников. Их самостоятельная пайка или сваривание в домашних условиях возможны, но нецелесообразны, так как после сращивания невозможно обеспечить прежнюю точность измерений. Поэтому оптимальным вариантом является замена термопары. Для этого:

  • Приобретите в интернете новую модель для замены, лучше это делать по коду термопары, который можно обнаружить на самом устройстве либо в паспорте газовой плиты;
  • Также отключите плиту от электрической сети и системы газоснабжения;
  • Снимите переднюю панель и верхнюю крышку плиты и отключите электрические выводы в месте их подключения к электромагнитному клапану; Снимите переднюю панель или верхнюю крышкуРис. 8: Снимите переднюю панель или верхнюю крышку
  • Открутите в духовке гайку крепления и выньте термопару, если крепежный элемент сразу не поддается, не прилагайте чрезмерный усилий, чтобы не сломать место крепления, используйте WD-40 или любой другой растворитель; Открутите термопаруРис. 9: Открутите термопару
  • Установите новую термопару в отверстие и закрепите ее по аналогии с предыдущей, подключите к цепи внутренней электропроводки плиты; Установите новую термопаруРис. 10: Установите новую термопару
  • Соберите в обратной последовательности и опробуйте работоспособность газовой плиты.

Советы по безопасности

Ввиду того, что термопара отвечает за безопасную работу газовой плиты, следует проследить, чтобы во время замены и эксплуатации обеспечивались оптимальные условия:

  • При первых признаках утечки газа сразу перекрывайте газовые краны и обеспечьте проветривание помещения;
  • Направление измерительного элемента должно равномерно приближаться к пламени или располагаться вдоль источника тепла;
  • Проволока не должна испытывать механической нагрузки или натяжения, но и свободно болтаться она так же не должна;
  • При замене одной модели на другую, выбирайте подходящую по параметрам и температурному режиму для вашей плиты.

Если самостоятельно вам не получается выполнить данную процедуру или после замены вы ощущаете запах газа, сразу обратитесь в газовую службу для предотвращения аварийной ситуации.

Видео по теме

Термопара: принцип действия, устройство

Существует множество разнообразных устройств и механизмов, позволяющих измерять температуру. Некоторые из них применяются в повседневной жизни, какие-то — для различных физических исследований, в производственных процессах и других отраслях.

Одним из таких устройств является термопара. Принцип действия и схему данного устройства мы рассмотрим в последующих разделах.

Физическая основа работы термопары

Принцип работы термопары основан на обычных физических процессах. Впервые эффект, на основе которого работает данное устройство, был исследован немецким ученым Томасом Зеебеком.

термопара принцип действия

Суть явления, на котором держится принцип действия термопары, в следующем. В замкнутом электрическом контуре, состоящем из двух проводников различного вида, при воздействии определенной температуры окружающей среды возникает электричество.

Получаемый электрический поток и температура окружающей среды, воздействующая на проводники, находятся в линейной зависимости. То есть чем выше температура, тем больший электрический ток вырабатывается термопарой. На этом и основан принцип действия термопары и термометра сопротивления.

При этом один контакт термопары находится в точке, где необходимо измерять температуру, он именуется «горячим». Второй контакт, другими словами — «холодный», — в противоположном направлении. Применение для измерения термопар допускается лишь в том случае, когда температура воздуха в помещении меньше, чем в месте измерения.

Такова краткая схема работы термопары, принцип действия. Виды термопар мы рассмотрим в следующем разделе.

Виды термопар

В каждой отрасли промышленности, где необходимы измерения температуры, в основном применяется термопара. Устройство и принцип работы различных видов данного агрегата приведены ниже.

Хромель-алюминиевые термопары

Данные схемы термопар применяются в большинстве случаев для производства различных датчиков и щупов, позволяющих контролировать температуру в промышленном производстве.

принцип действия термопары

Их отличительными особенностями можно назвать довольно низкую цену и огромный диапазон измеряемой температуры. Они позволяют зафиксировать температуру от -200 до +13000 градусов Цельсия.

Нецелесообразно применять термопары с подобными сплавами в цехах и на объектах с высоким содержанием серы в воздухе, так как этот химический элемент негативно влияет как на хром, так и на алюминий, вызывая нарушения в функционировании устройства.

Хромель-копелевые термопары

Принцип действия термопары, контактная группа которой состоит из этих сплавов, такой же. Но эти устройства работают в основном в жидкости либо газообразной среде, обладающей нейтральными, неагрессивными свойствами. Верхний температурный показатель не превышает +8000 градусов Цельсия.

Применяется подобная термопара, принцип действия которой позволяет использовать ее для установления степени нагрева каких-либо поверхностей, например, для определения температуры мартеновских печей либо иных подобных конструкций.

Железо-константановые термопары

Данное сочетание контактов в термопаре не настолько распространено, как первая из рассматриваемых разновидностей. Принцип работы термопары такой же, однако подобная комбинация хорошо показала себя в разреженной атмосфере. Максимальный уровень замеряемой температуры не должен превышать +12500 градусов Цельсия.

принцип работы термопары

Однако, если температура начинает подниматься выше +7000 градусов, существует опасность нарушения точности измерений в связи с изменением физико-химических свойств железа. Имеют место даже случаи коррозии железного контакта термопары при наличии в окружающем воздухе водных паров.

Платинородий-платиновые термопары

Наиболее дорогая в изготовлении термопара. Принцип действия такой же, однако отличается она от своих собратьев очень стабильными и достоверными показаниями температуры. Имеет пониженную чувствительность.

Основная область применения данных устройств — измерение высоких температур.

Вольфрам-рениевые термопары

Также применяются для измерения сверхвысоких температур. Максимальный предел, который можно зафиксировать с помощью данной схемы, достигает 25 тысяч градусов по шкале Цельсия.

Их применение требует соблюдения некоторых условий. Так, в процессе измерения температуры нужно полностью устранить окружающую атмосферу, которая оказывает негативное воздействие на контакты в результате процесса окисления.

Для этого вольфрам-рениевые термопары обычно помещают в защитные кожухи, заполненные инертным газом, защищающим их элементы.

Выше была рассмотрена каждая существующая термопара, устройство, принцип работы ее в зависимости от применяемых сплавов. Теперь рассмотрим некоторые конструктивные особенности.

термопара устройство принцип работы

Конструкции термопар

Существует две основные разновидности конструкций термопар.

  • С применением изоляционного слоя. Данная конструкция термопары предусматривает изолирование рабочего слоя устройства от электрического тока. Подобная схема позволяет использовать термопару в технологическом процессе без изоляции входа от земли.

  • Без применения изоляционного слоя. Такие термопары могут подключаться лишь к измерительным схемам, входы которых не имеют контакта с землей. Если данное условие не соблюдается, в устройстве возникнет две независимых замкнутых схемы, в результате чего показания, полученные с помощью термопары, не будут соответствовать действительности.

измерения термопар

Бегущая термопара и ее применение

Существует отдельная разновидность данного устройства, именуемая «бегущей». Принцип действия бегущей термопары мы сейчас рассмотрим более подробно.

Эта конструкция применяется в основном для определения температуры стальной заготовки при ее обработке на токарных, фрезерных и иных подобных станках.

принцип действия бегущей термопары

Следует отметить, что в данном случае возможно использование и обычной термопары, однако, если процесс изготовления требует высокой точности температурного режима, бегущую термопару трудно переоценить.

При применении данного метода в заготовку заранее запаивают ее контактные элементы. Затем, в процессе обработки болванки, данные контакты постоянно подвергаются воздействию резца или иного рабочего инструмента станка, в результате чего спай (который является главным элементом при снятии температурных показателей) как бы «бежит» по контактам.

Этот эффект повсеместно применяется в металлообрабатывающей промышленности.

Технологические особенности конструкций термопар

При изготовлении рабочей схемы термопары производится спайка двух металлических контактов, которые, как известно, изготовлены из разных материалов. Место соединения носит название «спай».

Следует отметить, что делать данное соединение с помощью спайки необязательно. Достаточно просто скрутить вместе два контакта. Но такой способ производства не будет обладать достаточным уровнем надежности, а также может давать погрешности при снятии температурных показателей.

Если необходимо измерение высоких температур, спайка металлов заменяется на их сварку. Это связано с тем, что в большинстве случаев припой, применяемый при соединении, имеет низкую температуру плавления и разрушается при превышении ее уровня.

Схемы, при изготовлении которых была применена сварка, выдерживают более широкий диапазон температуры. Но и этот способ соединения имеет свои недостатки. Внутренняя структура металла при воздействии высокой температуры в процессе сваривания может измениться, что повлияет на качество получаемых данных.

Кроме того, следует контролировать состояние контактов термопары в процессе ее эксплуатации. Так, возможно изменение характеристик металлов в схеме вследствие воздействия агрессивной окружающей среды. Может произойти окисление либо взаимная диффузия материалов. В подобной ситуации следует заменить рабочую схему термопары.

Разновидности спаев термопар

Современная индустрия производит несколько конструкций, которые применяются при изготовлении термопар:

  • с открытым спаем;

  • с изолированным спаем;

  • с заземленным спаем.

Особенностью термопар с открытым спаем является плохая сопротивляемость внешнему воздействию.

Следующие два типа конструкции могут применяться при измерении температур в агрессивных средах, оказывающих разрушительное влияние на контактную пару.

Кроме того, в настоящее время промышленность осваивает схемы производства термопар по полупроводниковым технологиям.

принцип действия термопары и термометра сопротивления

Погрешность измерений

Правильность температурных показателей, получаемых с помощью термопары, зависит от материала контактной группы, а также внешних факторов. К последним можно отнести давление, радиационный фон либо иные причины, способные повлиять на физико-химические показатели металлов, из которых изготовлены контакты.

Погрешность измерений состоит из следующих составных частей:

  • случайная погрешность, вызванная особенностями изготовления термопары;

  • погрешность, вызванная нарушением температурного режима «холодного» контакта;

  • погрешность, причиной которой послужили внешние помехи;

  • погрешность контрольной аппаратуры.

Преимущества использования термопар

К преимуществам использования подобных устройств для контроля температуры, независимо от области применения, можно отнести:

  • большой промежуток показателей, которые способны быть зафиксированы с помощью термопары;

  • спайку термопары, которая непосредственно участвует в снятии показаний, можно расположить в непосредственном контакте с точкой измерения;

  • несложный процесс изготовления термопар, их прочность и долговечность эксплуатации.

Недостатки измерения температуры с помощью термопары

К недостаткам применения термопары следует отнести:

  • Необходимость в постоянном контроле температуры «холодного» контакта термопары. Это отличительная особенность конструкции измерительных приборов, в основе которых лежит термопара. Принцип действия данной схемы сужает область ее применения. Они могут быть использованы только в том случае, если температура окружающего воздуха ниже температуры в точке измерения.

  • Нарушение внутренней структуры металлов, применяемых при изготовлении термопары. Дело в том, что в результате воздействия внешней окружающей среды контакты теряют свою однородность, что вызывает погрешности в получаемых температурных показателях.

  • В процессе измерения контактная группа термопары обычно подвержена негативному влиянию окружающей среды, что вызывает нарушения в процессе работы. Это опять же требует герметизации контактов, что вызывает дополнительные затраты на обслуживание подобных датчиков.

  • Существует опасность воздействия электромагнитных волн на термопару, конструкция которой предусматривает длинную контактную группу. Это также может сказаться на результатах измерений.

  • В некоторых случаях встречается нарушение линейной зависимости между электрическим током, возникающим в термопаре, и температурой в месте измерения. Подобная ситуация требует калибровки контрольной аппаратуры.

Заключение

Несмотря на имеющиеся недостатки, метод измерения температуры с помощью термопар, который был впервые изобретен и опробован еще в 19 веке, нашел свое широкое применение во всех отраслях современной промышленности.

Кроме того, существуют такие области применения, где использование термопар является единственным способом получения температурных данных. А ознакомившись с данным материалом, вы достаточно полно разобрались в основных принципах их работы.

Конструкция, принцип работы и применение

В 1821 году физик по имени Томас Зеебек обнаружил, что когда два разных металлических провода были соединены на обоих концах одного соединения в цепи, когда температура, приложенная к соединению, будет прохождение тока через цепь, известную как электромагнитное поле (ЭМП). Энергия, производимая цепью, называется эффектом Зеебека. Используя эффект Томаса Зеебека в качестве ориентира, оба итальянских физика, а именно Леопольдо Нобили и Македонио Меллони, в 1826 году совместно разработали термоэлектрическую батарею, которая называется тепловым умножителем, она была основана на открытии термоэлектричества Зеебека путем объединения гальванометра. а также термобатарея для расчета излучения.Некоторые люди идентифицировали Нобили как первооткрывателя термопары.

Что такое термопара?

Термопару можно определить как своего рода датчик температуры, который используется для измерения температуры в одной конкретной точке в виде ЭДС или электрического тока. Этот датчик состоит из двух разнородных металлических проводов, соединенных вместе в одном стыке. На этом переходе можно измерить температуру, а изменение температуры металлической проволоки стимулирует напряжения.


Thermocouple Thermocouple Термопара

Величина ЭДС, генерируемая в термопаре, очень мала (милливольт), поэтому для расчета ЭДС, создаваемой в цепи, необходимо использовать очень чувствительные устройства. Обычными устройствами, используемыми для расчета ЭДС, являются потенциометр балансировки напряжения и обычный гальванометр. Из этих двух балансировочный потенциометр используется физически или механически.

Принцип работы термопары

Принцип работы термопары в основном зависит от трех эффектов, а именно Зеебека, Пельтье и Томпсона.

См. Эффект Бека

Этот тип эффекта возникает среди двух разнородных металлов. Когда тепло поступает к любой металлической проволоке, поток электронов переходит от горячей металлической проволоки к холодной. Следовательно, в цепи стимулирует постоянный ток.

PCBWay PCBWay

Эффект Пельтье

Этот эффект Пельтье противоположен эффекту Зеебека. Этот эффект утверждает, что разница температур между любыми двумя разнородными проводниками может быть образована путем применения изменения потенциала между ними.

Эффект Томпсона

Этот эффект заявляет, что, когда два несопоставимых металла соединяются вместе, и если они образуют два соединения, тогда напряжение вызывает общую длину проводника из-за градиента температуры. Это физическое слово, которое демонстрирует изменение скорости и направления температуры в определенном месте.

Конструкция термопары

Конструкция термопары показана ниже. Он состоит из двух разных металлических проводов, соединенных вместе на конце соединения.Соединение мыслит как измерительный конец. Конец соединения подразделяется на три типа: незаземленный, заземленный и открытый.

Незаземленное соединение

В этом типе соединения проводники полностью отделены от защитной крышки. Область применения этого соединения в основном включает работы по установке высокого давления. Основное преимущество использования этой функции — уменьшение эффекта паразитного магнитного поля.

Заземленное соединение

В этом типе соединения металлические провода и защитная крышка соединяются вместе.Эта функция используется для измерения температуры в кислой атмосфере и обеспечивает устойчивость к шуму.

Открытое соединение

Открытое соединение применимо в областях, где требуется быстрое реагирование. Этот тип спая используется для измерения температуры газа. Металл, используемый для изготовления термопары, в основном зависит от расчетного диапазона температур.

Construction of Thermocouple Construction of Thermocouple Конструкция термопары

Обычно термопара конструируется с двумя разными металлическими проводами, а именно железом и константаном, которые входят в детектирующий элемент путем соединения в одном спайе, который называется горячим спаем.Он состоит из двух спая, один спай подключается с помощью вольтметра или передатчика, а холодный спай и второй спай связаны в процессе, который называется горячим спаем.

Работа термопары

Принципиальная схема термопары показана на рисунке ниже. Эта схема может быть построена из двух разных металлов, которые соединяются вместе путем образования двух переходов. Два металла соединены сваркой.

На вышеприведенной диаграмме соединения обозначены P & Q, а температуры обозначены T1, & T2.Когда температуры спая отличаются друг от друга, в цепи генерируется электромагнитная сила.

Working of Thermocouple Working of Thermocouple Работа термопары

Если температура на конце перехода превращается в эквивалент, то эквивалент, а также обратная электромагнитная сила создается в цепи, и ток через нее не протекает. Точно так же температура на конце перехода становится несбалансированной, а затем в этой цепи возникает изменение потенциала.

Величина индукции электромагнитной силы в цепи зависит от материалов, используемых для изготовления термопар. Полный ток по цепи рассчитывается измерительными приборами.

Электромагнитная сила, индуцированная в цепи, рассчитывается по следующему уравнению:

E = a (∆Ө) + b (∆Ө) 2

Где ∆Ө — это также разница температур между горячим концом спая термопары. в качестве эталонного конца спая термопары a и b являются константами

Преимущества и недостатки термопары

К преимуществам относятся следующие.

  • Высокая точность
  • Он надежен и может использоваться как в суровых, так и в тяжелых условиях вибрации.
  • Тепловая реакция быстрая
  • Рабочий диапазон температур широкий.
  • Широкий диапазон рабочих температур
  • Стоимость низкая и очень стабильная

К недостаткам можно отнести следующее.

  • Нелинейность
  • Наименьшая стабильность
  • Низкое напряжение
  • Требуется ссылка
  • Наименьшая чувствительность
  • Перекалибровка термопары затруднена

Применения термопары

Некоторые из следующих применений термопар включают в себя следующие.

  • Они используются в качестве датчиков температуры в термостатах в офисах, домах, офисах и на предприятиях.
  • Они используются в промышленности для контроля температуры металлов в чугуне, алюминии и металле.
  • Они используются в пищевой промышленности для криогенных и низкотемпературных применений. Термопары используются в качестве теплового насоса для термоэлектрического охлаждения.
  • Используются для измерения температуры на химических заводах, нефтяных заводах.
  • Они используются в газовых машинах для обнаружения пилотного пламени.

Итак, это все о термопаре. Из приведенной выше информации, наконец, мы можем сделать вывод, что измерение выхода термопары может быть рассчитано с использованием таких методов, как мультиметр, потенциометр и усилитель с помощью устройств вывода. Основное назначение термопары — обеспечить последовательные и прямые измерения температуры в нескольких различных приложениях.

Источник изображения: Nptel

.Принцип работы

и его применение

Чтобы узнать о , что такое термопара , мы должны знать ее определение . Термопару можно определить как устройство, состоящее, по крайней мере, из 2 соединенных металлов, которое образует 2 соединения. Один из переходов подключен к корпусу устройства, температуру которого необходимо измерить, а второй — к объекту, температура которого уже известна. Неизвестный температурный спай известен как измерительный или горячий спай, в то время как известный температурный спай известен как эталонный или холодный спай.

Следовательно, термопара может называться устройством, способным измерять температуру неизвестного объекта со ссылкой на объект, температура которого известна. Одно из ключевых применений и термопары предназначено для измерения разности напряжений или ЭДС в цепи.

Принцип работы термопары

Всего существует 3 эффекта, на которых основан принцип работы термопары. Все три эффекта — это эффект Томсона, Пельтье и Зеебека, которые подробно описаны ниже.

  1. Эффект Томсона: Эффект Томсона имеет дело с двумя металлами или объектами, которые соединяются вместе, образуя 2 определенных соединения. В цепи существует потенциал, из-за которого градиент температуры сближается по всей длине проводников.
  2. Эффект Пельтье: Эффект Пельтье имеет дело с двумя металлами или объектами, которые не похожи друг на друга и соединяются вместе, образуя 2 соединения. ЭДС создается между схемами из-за разницы температур между двумя переходами.
  3. Эффект Зеебека: Эффект Зеебека имеет дело с двумя металлами или объектами, независимо от того, соединены ли они одинаковыми или разными. Затем между сформированными переходами генерируется ЭДС, которая определяет разницу температур объектов или металлов.

Работа термопары

Ниже приведены принципиальные схемы термопар.

Thermocouple Circuit Thermocouple Circuit

Схема термопары

Здесь подробно обсуждается принцип термопары .Конструкция термопары уже показана на первом рисунке, которая состоит из двух разных металлов, названных A и B, которые соединяются вместе, образуя 2 конкретных соединения, названных p и q, имеющих температуры T1 и T2. Обе температуры поддерживаются хорошо. Формирование термопары невозможно без образования спая, и, как показано на рисунке, оба спая поддерживаются при разных температурах, поэтому формируется эффект Пельтье, и ЭДС генерируется через схему.

В случае, если температура обоих переходов одинакова, то возникает одинаковая, но противоположная генерация ЭДС с обеих сторон переходов, и полный ток, протекающий через переходы, равен нулю. Однако, если переходы должны поддерживаться при разных температурах, тогда сумма ЭДС не будет равна нулю, и через переходы будет протекать некоторый ток. Следует помнить, что полный ток, протекающий через цепь, полностью зависит от типов металлов, используемых в цепи, а также от образующихся переходов.

Устройства для измерения ЭДС цепи термопары

Может быть много устройств, которые могут быть использованы для измерения ЭДС цепи термопары. Степень развития ЭДС в схеме термопары зависит от металлов, однако в большинстве случаев величина ЭДС очень мала, обычно в милливольтах. Поэтому очень важна чувствительность прибора, измеряющего ЭДС. Всего существует 2 устройства, которые в основном используются для измерения ЭДС, известные как потенциометр балансировки напряжения и гальванометр.

Thermocouple Diagram Thermocouple Diagram

Схема термопары

На схеме термопары ниже показаны устройства для измерения ЭДС в цепи термопары. Здесь p-переход должен быть соединен с металлом, температура которого неизвестна, а q-переход должен быть соединен с металлом, температура которого известна, или эталонным металлом. В некоторых случаях эталонный спай должен быть подключен к ледяному стержню, чтобы поддерживать его температуру, как у льда, как показано на рисунке ниже.Устройство для измерения ЭДС может быть легко откалибровано в соответствии с входной температурой, так что калибровка устройства может быть выполнена мгновенно.

Thermocouple Diagram1 Thermocouple Diagram1

Уравнения цепи термопары

Как уже подробно объяснялось, термопара — это устройство, состоящее из двух разных металлов или элементов, которые соединяются вместе для образования соединения, также известного как измерительный конец. Металлы известны как термоэлементы. Эти металлы также иногда называют ножками термопар.Оба конца соединений отличаются друг от друга названиями отрицательных и положительных концов. Всего имеется две температуры T1 и T2, о которых упоминалось ранее. Это может быть показано на рисунке ниже для измерения выхода термопары .

Thermocouple Output Measurement Thermocouple Output Measurement

Измерение выхода термопары

Поскольку существует разница температур как между хвостовиком, так и между спаями термопары, поэтому разница напряжений должна быть измерена между двумя термоэлементами термопары на конце хвоста.Это делает термопару преобразователем напряжения температуры. Отношение разности напряжений между хвостовиком и спаем термопары определяется следующим уравнением.

Thermocouple Equation Thermocouple Equation

Уравнение термопары

Здесь ЭДС известна как электродвижущая сила или также известна как напряжение, создаваемое термопарой на хвосте, в то время как T1 и T2 — температуры, которые снимаются с измерительного конца и эталонного конца, в то время как S12 — это известен как коэффициент Зеебека обоих металлов термопары.Коэффициент Зеебека сильно зависит от материала, из которого изготовлены металлы термопар. Из уравнения, упомянутого выше, можно сделать вывод, что:

  • Существует нулевое напряжение, которое измеряется в случае, если оба термоэлемента состоят из одного и того же материала. Следовательно, существует необходимость в изготовлении термоэлементов из разнородных материалов, чтобы измерять некоторую температуру с помощью чувствительного устройства.
  • Снова происходит измерение нулевого напряжения в случае, если нет разницы в существовании температуры между концом соединения и концом.Следовательно, для работы термопары должна быть некоторая разница температур.
  • Коэффициент возврата сильно зависит от температуры.
.

Принцип работы термопары Измерительные приборы

ТЕРМОПАРЫ

Термопара состоит из двух разнородных металлов, соединенных вместе на одном конце, которые создают напряжение (выраженное в милливольтах) при изменении температуры. Место соединения двух металлов, называемое чувствительным переходом, соединяется с удлинительными проводами. Для изготовления термопары можно использовать любые два разнородных металла.

P Принцип работы

  • Когда два разнородных металла соединяются вместе, на стыке генерируется небольшое напряжение, называемое напряжением термопреобразователя .Это называется эффектом Пельтье .
  • Если температура соединения изменяется, это вызывает изменение напряжения, что может быть измерено входными цепями электронного контроллера. Выходное напряжение — это напряжение, пропорциональное разнице температур между спаем и свободными концами. Это называется эффектом Томпсона .
  • Оба этих эффекта можно комбинировать для измерения температуры. Удерживая один спай при известной температуре (эталонный спай) и измеряя напряжение, можно определить температуру чувствительного спая.Генерируемое напряжение прямо пропорционально разнице температур. Комбинированный эффект известен как эффект термоспая или эффект Зеебека .

На рисунке справа показана простая схема термопары. Thermocouple Effect Thermocouple Effect

Напряжение измеряется для определения температуры. На практике провода A и B подключаются к цифровому вольтметру (DVM), цифровому мультиметру (DMM), системе сбора цифровых данных или другому устройству измерения напряжения.Если измерительный прибор имеет очень высокий входной импеданс, напряжение, создаваемое термопаром, можно измерить точно.

Однако основная проблема с измерением температуры термопарами заключается в том, что провода A и B должны подключаться к выводам вольтметра, которые обычно сделаны из меди. Если ни провод A, ни провод B сами по себе не медные, при подключении к DVM образуется еще два термопреобразователя ! (Металлы термопар обычно не такие, как у проводов цифрового мультиметра.Эти дополнительные термопары также создают напряжение термопары, которое может вызвать ошибку при попытке измерить напряжение с чувствительного спая.

Thermocouple Diagram Thermocouple Diagram

Как можно решить эту проблему?

Одним из простых решений является добавление четвертого термопреобразователя, называемого опорным спаем , путем вставки дополнительной длины металлического провода A в схему, как показано ниже. Эталонный спай состоит из металлов A и B, как показано на рисунке.

Thermocouple Reference Junction Thermocouple Reference Junction

Эта модифицированная схема анализируется следующим образом:

При такой компоновке все еще образуются два дополнительных спая термопары, где компенсированная термопара подключается к вольтметру (DVM). Два соединения с DVM теперь находятся между металлом A и медью. Эти два перехода расположены близко друг к другу, , и при той же температуре , так что их напряжения термоперехода идентичны и компенсируют друг друга.Между тем, новый эталонный спай помещается в место, где эталонная температура T R известна точно, обычно в ванне с ледяной водой с фиксированной температурой T R = 0 ° C. Если чувствительный переход также имеет температуру 0 ° C (T s = 0 o C), напряжение, генерируемое чувствительным переходом, будет равно и противоположно напряжению, генерируемому опорным переходом. Следовательно, V o = 0, когда T s = 0 ° C. Однако, если температура чувствительного перехода не равна T R , V o будет отличным от нуля.

Таким образом, V o является уникальной функцией температуры датчика T s и двух металлов, используемых для термопары . Таким образом, для известной эталонной температуры и известных материалов провода термопары для измерения температуры можно использовать выходное напряжение V o . Это фундаментальная концепция использования термопар.

Материалы термопар

Термопары могут быть изготовлены из нескольких различных комбинаций материалов.Характеристики материала термопары обычно определяются при использовании этого материала с платиной. Наиболее важным фактором, который следует учитывать при выборе пары материалов, является «термоэлектрическая разница» между двумя материалами. Значительная разница между двумя материалами приведет к улучшению характеристик термопары.

На рисунке ниже показаны характеристики наиболее часто используемых материалов при использовании с платиной. Например: хромель-константан отлично подходит для температур до 2000 ° F; Никель / никель-молибден иногда заменяет хромель-алюмель; и вольфрам-рений используется для температур до 5000 ° F.Некоторые комбинации, используемые для специализированных приложений, включают хромель-белое золото, молибден-вольфрам, вольфрам-иридий и иридий / иридий-родий.

На рисунке ниже показаны характеристики материала термопары при использовании с платиной.

Thermoelectric Thermoelectric

Характеристики типов термопар

Из бесконечного числа комбинаций термопар Американское общество приборостроения (ISA) признает 12. Большинство этих типов термопар имеют однобуквенные обозначения; наиболее распространены J, K, T и E.Состав термопар соответствует международным стандартам, но цветовая кодировка их проводов разная. Например, в США отрицательный вывод всегда красный, в то время как остальной мир использует красный цвет для обозначения положительного вывода. Часто стандартные типы термопар упоминаются по их торговым наименованиям. Например, термопара

  • A типа K имеет цвет желтый и использует хромель алюмель, , которые являются торговыми наименованиями сплавов проволоки Ni-Cr и Ni-Al.
  • Термопара типа J имеет цвет черный и использует железо и константан в качестве составляющих металлов. (Константан представляет собой сплав никеля и меди.)
  • Термопара типа T имеет цвет синий и использует медь и константан в качестве металлов.
  • A тип S термопара использует Pt / Rh-Pt
  • A тип E термопара использует Ni / Cr-Con
  • A тип N термопара использует Ni / Cr / Si- Ni / Si

Каждая калибровка имеет свой диапазон температур и среду, хотя максимальная температура зависит от диаметра провода, используемого в термопаре Temperature Vs Voltage Reference Table for Type J Temperature Vs Voltage Reference Table for Type J.Различия в составе сплава и состоянии стыка между проволоками являются источниками погрешности измерения температуры. Стандартная погрешность провода термопары варьируется от ± 0,8 ° C до ± 4,4 ° C, в зависимости от типа используемой термопары. Термопара типа K рекомендуется для большинства приложений общего назначения. Он предлагает широкий диапазон температур, низкую стандартную ошибку и хорошую коррозионную стойкость. Фактически, многие цифровые мультиметры (DMM) могут измерять температуру, вставляя термопару типа K со стандартными соединениями.

Напряжение, создаваемое термопарой, изменяется почти , но не точно, линейно с температурой. Следовательно, нет простых уравнений, связывающих напряжение термопары с температурой. Напротив, напряжение представлено в таблице как функция температуры для различных стандартных термопар. Чтобы преобразовать показания в милливольтах в соответствующую температуру, вы должны обратиться к таблицам, подобным приведенной ниже. Эти таблицы можно получить у производителя термопар, и в них указана конкретная температура, соответствующая серии показаний в милливольтах. По соглашению, эталонная температура для таблиц термопар составляет 0ºC.

Выбор типа термопары

Поскольку термопары измеряют в широком диапазоне температур и могут быть относительно прочными, они очень часто используются в промышленности.

При выборе термопары используются следующие критерии:

  1. Диапазон температур.
  2. Химическая стойкость материала термопары или оболочки.
  3. Устойчивость к истиранию и вибрации.
  4. Требования к установке (может потребоваться совместимость с существующим оборудованием; существующие отверстия могут определять диаметр зонда).

Стандартные характеристики

Диаметр: Стандартные диаметры: 0,010 ″, 0,020 ″, 0,032 ″, 0,040 ″, 1/16 ″, 1/8 ″, 3/16 ″ и 1/4 ″ с двумя провода.

Длина: Стандартные термопары имеют длину погружения 12 дюймов. Другая длина изготавливается на заказ.

Оболочки: Нержавеющая сталь 304 и инконель являются стандартными.

Изоляция: Оксид магния является стандартным. Минимальное сопротивление изоляции между проводом или проводом с оболочкой составляет 1,5 МОм при напряжении постоянного тока 500 В для всех диаметров.

Калибровка: железо-константан (J), хромель алюмель (K), медь-константан (T) и хромель-константан (E) являются стандартными калибровками.

Гибка: Легко изгибается и формуется. Радиус изгиба должен быть не менее двойного диаметра оболочки.

Полярность: В производстве термопар стандартной практикой является окрашивание отрицательного вывода в красный цвет.

Соединения для термопар:

Доступны зонды для термопар в оболочке с одним из трех типов соединения: заземленный, незаземленный или открытый.

Заземленное соединение — В этом типе провода термопары физически прикреплены к внутренней стороне стенки зонда. Это приводит к хорошей теплопередаче снаружи через стенку зонда к спайу термопары. Заземленный переход рекомендуется для измерения статических или текущих температур агрессивных газов и жидкостей, а также для приложений с высоким давлением.Спай заземленной термопары приварен к защитной оболочке, обеспечивая более быстрый отклик, чем спай незаземленного типа.

Незаземленное соединение — В подземном зонде спай термопары отделен от стенки зонда. Время отклика уменьшается по сравнению с заземленным типом, но незаземленный обеспечивает электрическую изоляцию 1,5 M1 / ​​2 при 500 В постоянного тока для всех диаметров. Незаземленный спай рекомендуется для измерений в агрессивных средах, где желательно, чтобы термопара была электрически изолирована от оболочки и экранирована ею.Термопара из сварной проволоки физически изолирована от оболочки термопары порошком MgO (мягкий).

Открытый спай — В стиле открытого спая термопара выступает из конца оболочки и подвергается воздействию окружающей среды. Этот тип обеспечивает лучшее время отклика, но его можно использовать только в некоррозионных и не находящихся под давлением приложениях. Соединение выходит за пределы защитной металлической оболочки, обеспечивая точный и быстрый отклик.Изоляция оболочки герметизирована в местах соединения, чтобы предотвратить проникновение влаги или газа, которое может вызвать ошибки.

Types of Thermocouple Junctions Types of Thermocouple Junctions

Таким образом, открытый переход обеспечивает самое быстрое время отклика, за которым следует заземленный переход. Решения по измерению температуры могут повлиять на ожидаемые результаты процесса или нарушить их. Выбор правильного датчика для приложения может быть сложной задачей, но обработка этого измеренного сигнала также очень важна.

T Законы гермопары

Сначала несколько обозначений :

Пусть T 1 будет температурой ванны 1, а T 2 будет температурой ванны 2.

Пусть V 1-R определяется как напряжение, создаваемое термопарой при температуре T 1 , когда используется надлежащий эталонный спай при температуре T R (T R = эталонная температура = 0 o С). V 1-R — это напряжение, указанное в таблице термопар при температуре T 1 .

Пусть V 1-2 определяется как разница в напряжении между V 1-R и V 2-R ,

V1-2 = V1-R — V2-R

Условные обозначения :

Ошибки отрицательного знака могут быть проблематичными при работе с этими уравнениями, если одно из них не согласовано.

По соглашению, таблицы термопар сконструированы таким образом, что на более высокая температура дает на более высокое напряжение термопары .

Другими словами, всегда предполагается, что два провода термопары (назовем их провод A и провод B) подключены к вольтметру таким образом, что напряжение составляет плюс , когда измеряемая температура на больше. , чем эталонная температура. Аналогично, напряжение составляет отрицательное значение , когда измеряемая температура на меньше, чем на контрольная температура.

Поскольку стандартная эталонная температура для таблиц термопар составляет 0ºC, положительные температуры в единицах ºC дают положительные термопереходные напряжения, а отрицательные температуры в единицах o C дают отрицательные термопереходные напряжения.

Обратите внимание, что если провода подключены к вольтметру по схеме напротив , то, конечно, напряжения будут иметь противоположный знак.

К термопарам применяются три закона или правила:

  • Закон промежуточных металлов

«Третий (промежуточный) металлический провод может быть вставлен последовательно с одним из проводов. без изменения показания напряжения (при условии, что два новых перехода имеют одинаковую температуру) ».

Рассмотрим схему ниже, где прямоугольник вокруг термопары указывает на баню с постоянной температурой (например, кастрюлю с кипящей водой или баню с ледяной водой). Law of intermediate metals Law of intermediate metals

Закон промежуточных металлов гласит, что показание напряжения V 1-2 не изменится, если добавить третий (промежуточный) провод на одной линии с любым из проводов в цепи, как показано ниже: Thermocouple Junctions Thermocouple Junctions

На приведенной выше диаграмме предполагается, что оба новых перехода (между металлом B и металлом C) имеют одинаковую температуру, т.е.е. температура окружающей среды, T a .

Легко видеть, что здесь должен соблюдаться закон промежуточных металлов, поскольку любое напряжение, генерируемое на одном из новых переходов, в точности отменяется равным и противоположным напряжением, генерируемым на другом новом переходе.

Точно так же металл C можно вставить в любое другое место цепи без какого-либо влияния на выходное напряжение, при условии, что два новых перехода имеют одинаковую температуру. Например, рассмотрим следующую модифицированную схему:

Law of intermediate metals Modified Law of intermediate metals Modified

Опять же, если два новых перехода (на этот раз между металлами A и C) имеют одинаковую температуру, нет никакого общего влияния на выходное напряжение.

  • Закон промежуточных температур

«Если идентичные термопары измеряют разницу температур между T 1 и T 2 , и разницу температур между T 2 и T 3 , тогда сумма соответствующих напряжений V 1-2 + V 2-3 должна равняться напряжению V 1-3 генерируется идентичной термопарой, измеряющей разность температур между T 1 и T 3 ”.

Математическая формулировка закона промежуточных температур:

V 1-3 = V 1-2 + V 2-3 для любых трех температур, T 1 , T 2 , и Т 3 .

Рассмотрим схему ниже, где показаны шесть термопар, по два в каждой ванне с постоянной температурой. Примечание. Во избежание путаницы на схеме медные выводы цифрового вольтметра больше не показаны. Также, для краткости, буквы A и B обозначают металл A и металл B, два разных типа проводов для термопар.law of intermediate temperatures law of intermediate temperatures

Согласно принятой здесь системе обозначений,

V1-3 = V1-R — V3-R,

, что может быть записано как

V1-3 = (V1-R — V2-R) + (V2 -R — V3-R)

Но поскольку (также по определению)

V1-2 = V1-R — V2-R и

V2-3 = V2-R — V3-R,

следует непосредственно что

V1-3 = V1-2 + V2-3.

«Для данного набора из 3 проводов термопар, A, B и C, все измеряют одинаковую разницу температур T 1 — T 2 , напряжение, измеренное проводами A и C должны равняться сумме напряжения, измеренного проводами A и B, и напряжения, измеренного проводами B и C ”.

Рассмотрим установку ниже, где показаны шесть термопреобразователей, три в ванне с постоянной температурой T 1 и три в ванне с постоянной температурой T 2 . Как указано выше, буквы A, B и C обозначают различные типы проводов для термопар.

Law of additive voltages Law of additive voltages

Математически закон аддитивных напряжений можно сформулировать следующим образом:

V1-2 (провода A и C) = V1-2 (провода A и B) + V1-2 (провода B и C)

Или, переставив по разности напряжений ,

V1-2 (провода A и B) = V1-2 (провода A и C) — V1-2 (провода B и C).

Термобатарея

Термобатарея определяется как несколько последовательно соединенных термопар. Например, термобатарея с тремя чувствительными переходами показана ниже:

Thermopile Thermopile

При увеличении T 2 выходное напряжение значительно увеличивается. Преимущество термобатареи (по сравнению с одним чувствительным переходом) повышенная чувствительность .

Здесь выходное напряжение в три раза больше, чем вырабатывается только одной термопарой при других идентичных условиях, как показано ниже:

Thermopile construction Thermopile construction

При достаточном количестве чувствительных переходов термобатарея может фактически генерировать полезное напряжение.Например, термоэлектрических часто используются для управления запорными вентилями в печах .

Также читайте: Основы термопар и датчиков RTD

.

Что такое термопара? — Определение, принцип работы, конструкция, преимущества и недостатки

Определение: Термопара — это устройство для измерения температуры. Он используется для измерения температуры в одной конкретной точке. Другими словами, это тип датчика, который используется для измерения температуры в виде электрического тока или ЭДС.

Термопара состоит из двух проволок из разных металлов, сваренных на концах. Сварной участок создавал стык, где обычно измеряли температуру.Изменение температуры провода вызывает появление напряжения.

Принцип работы термопары

Принцип работы термопары зависит от трех эффектов.

Обратный эффект — Обратный эффект возникает между двумя разными металлами. Когда тепло поступает к любому из металлов, электроны начинают переходить от горячего металла к холодному. Таким образом, в цепи возникает постоянный ток.

thermocouple-instrument

Короче говоря, — это явление, при котором разница температур между двумя разными металлами вызывает разность потенциалов между ними .Эффект Зее-Бека производит небольшие напряжения на один градус температуры.

Эффект Пельтье — Эффект Пельтье является обратным эффекту Зеебека. Эффект Пельтье утверждает, что разница температур может быть создана между любыми двумя разными проводниками путем приложения разности потенциалов между ними.

Эффект Томпсона — Эффект Томпсона утверждает, что , когда два разнородных металла соединяются вместе, и если они создают два соединения, тогда напряжение индуцирует всю длину проводника из-за температурного градиента .Температурный градиент — это физический термин, который показывает направление и скорость изменения температуры в определенном месте.

Конструкция термопары

Термопара состоит из двух разнородных металлов. Эти металлы свариваются в месте соединения. Это соединение считается точкой измерения. Точки соединения подразделяются на три типа.

  1. Незаземленный переход — В незаземленном переходе проводники полностью изолированы от защитной оболочки .Используется для работ с высоким давлением. Основное преимущество использования такого типа перехода заключается в том, что он снижает влияние паразитного магнитного поля.
  2. Заземленное соединение — В таком типе соединения металл и защитная оболочка свариваются друг с другом. Заземленный переход используется для измерения температуры в агрессивной среде. Этот переход обеспечивает устойчивость к шуму.
  3. Открытое соединение — Такой тип соединения используется там, где требуется быстрое срабатывание.Открытый спай используется для измерения температуры газа.

thermocouple-junctions-11 Материал, из которого изготовлена ​​термопара, зависит от диапазона измерения температуры.

Работа термопары

Схема термопары показана на рисунке ниже. Схема состоит из двух разнородных металлов. Эти металлы соединены вместе таким образом, что образуют два соединения. Металлы прикрепляются к стыку посредством сварки.

iron-consonant-thermouple Пусть P и Q — два спая термопар.T 1 и T 2 — это температуры на стыках. Поскольку температуры переходов отличаются друг от друга, в цепи генерируется ЭДС.

Если температура в переходе становится равной, в цепи генерируется равная и противоположная ЭДС, и через нее протекает нулевой ток. Если температуры соединения становятся неравными, в цепи возникает разность потенциалов. Величина индукции ЭДС в цепи зависит от типа материала, из которого изготовлена ​​термопара.Полный ток, протекающий по цепи, измеряется измерительными приборами.

ЭДС, наводимая в цепи термопары, определяется уравнением equation-for-thermocouples где Δθ — разница температур между горячим спаем термопары и эталонным спаем термопары.
а, б — постоянные

Измерение выхода термопары

Выходная ЭДС, полученная от термопар, может быть измерена следующими методами.

  1. Мультиметр — это более простой метод измерения выходной ЭДС термопары. Мультиметр подключается к холодным спаям термопары . Прогиб стрелки мультиметра равен току, протекающему через счетчик.
  2. Потенциометр — Выход термопары также можно измерить с помощью потенциометра постоянного тока.
  3. Усилитель с устройствами вывода — Выходной сигнал, получаемый от термопар, усиливается через усилитель и затем подается на регистрирующий или индикаторный прибор.

Преимущества термопары

Ниже приведены преимущества термопар.

  1. Термопара дешевле, чем другие приборы для измерения температуры.
  2. Термопара имеет быстрое время отклика.
  3. Имеет широкий температурный диапазон.

Недостатки термопар

  1. Термопара имеет низкую точность.
  2. Повторная калибровка термопары затруднена.

Никелевый сплав, сплав платина / родий, сплав вольфрама / рения, хромель-золото, сплав железа — это названия сплавов, используемых для изготовления термопары.

,

0 comments on “Термопара принцип работы: устройство и принцип работы простым языком, типы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *