Схема микросхемы: Схемы для начинающих радиолюбителей | Простые и рабочие схемы!

МИКРОСХЕМЫ

   В этой статье мы поговорим о микросхемах, какие типы бывают, как устроены и где используются. Вообще, в современной электронной технике трудно найти устройство, в котором бы не использовались микросхемы. Даже самые дешёвые китайские игрушки задействуют различные планарные, залитые компаундом чипы, на которые возложена функция управления. Причём с каждым годом они становятся всё более сложными внутри, но более простыми в эксплуатации и меньшими по размерам, снаружи. Можно сказать, что идёт постоянная эволюция микросхем.

Фото цифровой микросхемы

Фото цифровой микросхемы

   Микросхема представляет собой электронное устройство или его часть способную выполнять ту или иную задачу. Если бы потребовалось решить такую задачу, которую решают многие микросхемы, на дискретных элементах, на транзисторах, то устройство, вместо маленького прямоугольника размерами 1 сантиметр на 5 сантиметров, занимало бы целый шкаф, и было бы намного менее надежным. А ведь так выглядели вычислительные машины ещё пол-сотни лет назад!

Электронный шкаф управления фото

Электронный шкаф управления — фото

   Конечно, для работы микросхемы недостаточно просто подать питание на неё, необходим еще так называемый «обвес”, то есть те вспомогательные детали на плате, вместе с которыми микросхема сможет выполнять свою функцию.

Обвес микросхемы

Обвес микросхемы — рисунок

   На рисунке выше красным выделена сама микросхема все остальные детали — это её «обвес”. Очень часто микросхемы при своей работе нагреваются, это могут быть микросхемы стабилизаторов, усилителей, микропроцессоров и других устройств. В таком случае чтобы микросхема не сгорела её нужно прикрепить на радиатор. Микросхемы, которые при работе должны нагреваться, проектируются сразу со специальной теплоотводящей пластиной — поверхностью, находящейся обычно с обратной стороны микросхемы, которая должна плотно прилегать к радиатору.

Фото микросхемы со стороны крепления к радиатору

Фото микросхемы со стороны крепления к радиатору

   Но в соединении даже у тщательно отшлифованных радиатора и пластины, все равно будут микроскопические зазоры, в результате которых тепло от микросхемы будет менее эффективно передаваться радиатору. Для того чтобы заполнить эти зазоры применяют теплопроводящую пасту. Ту самую, которую мы наносим на процессор компьютера, перед тем как закрепить на нем сверху радиатор. Одна из наиболее широко применяемых паст, это КПТ–8

Паста КПТ-8

Паста КПТ-8

   Усилители на микросхемах можно спаять буквально за 1-2 вечера, и они начинают работать сразу, не нуждаясь в сложной настройке и высокой квалификации настраивающего. Отдельно хочу сказать про микросхемы автомобильных усилителей, из обвеса там иногда бывает буквально 4-5 деталей. Чтобы собрать такой усилитель, при определенной аккуратности, не требуется даже печатная плата (хотя она желательна) и можно собрать все навесным монтажем, прямо на выводах микросхемы.

Усилитель собранный навесным монтажем

Усилитель собранный навесным монтажем

   Правда, такой усилитель после сборки лучше сразу поместить в корпус, потому, что такая конструкция ненадежна, и в случае случайного замыкания проводов можно легко спалить микросхему. Поэтому рекомендую всем начинающим, пусть потратить немного больше времени, но сделать печатную плату. 

Регулируемый стабилизатор напряжения на микросхеме

Регулируемый стабилизатор напряжения на микросхеме

   Регулируемые блоки питания на микросхемах — стабилизаторах даже проще в изготовлении, чем аналогичные на транзисторах. Посмотрите, сколько деталей заменяет простейшая микросхема LM317:


   Микросхемы на печатных платах в электронных устройствах могут быть припаяны как непосредственно, к дорожкам печати, так и посажены в специальные панельки. 

Панелька по дип микросхему

Панелька под дип микросхему — фото

   Разница заключается в том, что в первом случае для того чтобы нам заменить микросхему нам придется её предварительно выпаять. А во втором случае, когда мы посадили микросхему в панельку, нам достаточно достать микросхему из панельки, и её можно с легкостью заменить на другую. Типичный пример замены микропроцессора в компьютере.

ПК Socket-478 процессора

ПК Socket-478 процессора

   Также, к примеру, если вы собираете устройство на микроконтроллере на печатной плате, и не предусмотрели внутрисхемное программирование, вы сможете, если впаяли в плату не саму микросхему, а панельку, в которую она вставляется, то микросхему можно достать и подключить к специальной плате программатора. 

Вид платы программатора с панельками

Вид платы программатора с панельками

   В таких платах уже впаяны панельки под разные корпуса микроконтроллеров для программирования.

Аналоговые и цифровые микросхемы

   Микросхемы выпускаются различных типов, они могут быть как аналоговыми так и цифровыми. Первые, как становится ясно из названия, работают с аналоговой формой сигнала, вторые же работают с цифровой формой сигнала. Аналоговый сигнал может принимать различную форму.

Аналоговый сигнал рисунок

Аналоговый сигнал рисунок

   Цифровой сигнал это последовательность единиц и нулей, высокого и низкого уровня сигналов. Высокий уровень обеспечивается подачей на вывод 5 вольт или напряжения близкого к этому, низкий уровень это отсутствие напряжения или 0 вольт. 

Цифровя форма сигнала рисунок

Цифровя форма сигнала рисунок

   Существуют также микросхемы АЦП (аналогово — цифровой преобразователь) и ЦАП (цифро — аналоговый преобразователь) которые осуществляет преобразование сигнала из аналогового в цифровой, и наоборот. Типичный пример АЦП используется в мультиметре, для преобразования измеряемых электрических величин и отображения их на экране мультиметра. На рисунке ниже АЦП — это черная капля, к которой со всех сторон подходят дорожки. 

Фото АЦП мультиметра

Фото АЦП мультиметра

Микроконтроллеры

   Сравнительно недавно, по сравнению с выпуском транзисторов и микросхем, был налажен выпуск микроконтроллеров. Что же такое микроконтроллер? 

Микроконтроллер в Dip корпусе

Микроконтроллер в Dip корпусе

   Это специальная микросхема, может выпускаться как в Dip так и в SMD исполнении, в память которой может быть записана программа, так называемый Hex файл. Это файл откомпилированной прошивки, которая пишется в специальном редакторе программного кода. Но мало написать прошивку, нужно перенести, прошить, её в память микроконтроллера. 

Программатор фото

Программатор — фото

   Для этой цели служит программатор. Как многим известно, есть много разных типов микронтроллеров —
AVR
, PIC и другие, для разных типов нам требуются разные программаторы. Также существует и множество программаторов, каждый сможет найти и изготовить себе подходящий по уровню знаний и возможностей. Если нет желания делать программатор самому, то можно купить готовый в интернет магазине или заказать с Китая.

Микроконтроллер в SMD корпусе

Микроконтроллер в SMD корпусе

   На рисунке выше изображен микроконтроллер в SMD корпусе. Какие же плюсы есть в использовании микроконтроллеров? Если раньше, проектируя и собирая устройство на дискретных элементах или микросхемах, мы задавали работу устройства путем определенного, часто сложного соединения на печатной плате с использованием множества деталей. То теперь нам достаточно написать программу для микроконтроллера, которая будет делать тоже самое программным путем, зачастую быстрее и надежнее, чем схема без применения микроконтроллеров. Микроконтроллер представляет собой целый компьютер, с портами ввода — вывода, возможностью подключения дисплея и датчиков, а также управление другими устройствами.

Фото роботов на автоматизированной линии

Фото роботов на автоматизированной линии

   Конечно усовершенствование микросхем на этом не остановится, и можно предположить, что лет через 10 возникнут действительно микросхемы от слова «микро» — невидимые глазу, которые будут содержать миллиарды транзисторов и других элементов, размерами в несколько атомов — вот тогда действительно создание сложнейших электронных устройств станет доступно даже не слишком опытным радиолюбителям! Наш краткий обзор подошёл к концу, с вами был  AKV.

   Форум по МК

   Обсудить статью МИКРОСХЕМЫ


Простые электронные устройства на КМОП-микросхемах

Как уже отмечалось ранее, существуют десятки и сотни самых разнообразных цифровых микросхем. Живописному описанию каждой их них можно было бы посвятить немало страниц.

Однако в целях экономии бумаги и для демонстрации неограниченных возможностей применения всего одной микросхемы из множества других ниже будут рассмотрены простейшие устройства, использующие только одну микросхему — К561ЛЕ5.

Сенсорный пульт управления

Сенсорный пульт управления, позволяющий включать/выключать нагрузку, разработан И.А. Нечаевым (рис. 1) [Р 1/85-49]. Устройство содержит генератор, вырабатывающий импульсы частотой 300…500 Гц.

Их скважность (отношение длительности импульса к паузе) составляет 1:40 и определяется отношением сопротивлений R1 и R2. Если к сенсорной пластинке Е1 приложить палец, начнет заряжаться конденсатор С2.

Скорость и время заряда этого конденсатора зависит от сопротивления между контактами. В соответствии с заряд-но-разрядными процессами будет изменяться величина управляющего сигнала, проходящего через схему управления.

Схема сенсорного пульта управления

Рис. 1. Схема сенсорного пульта управления.

Изменяя силу и время прижатия пальцев к сенсорным площадкам Е1 и Е2, можно управлять уровнем выходных сигналов, интенсивностью свечения светодиодов HL1 и HL2.

Для настройки схемы при использовании сенсорных площадок различной конфигурации и площади, возможно, придется подобрать емкости конденсаторов С2 и СЗ.

Цветорегулятор

Несложный цветорегулятор можно собрать используя генератор импульсов управляемой скважности (рис. 2). Изменяя соотношение пауза/импульс с помощью потенциометра R2 можно управлять средней силой тока, протекающего через светодиоды HL1 и HL2.

Схема цветорегулятора

Рис. 2. Схема цветорегулятора.

Если эти светодиоды отличаются по цвету свечения, объединив их под общим светособирающим экраном, можно добиться плавного изменения цвета суммарного свечения. В качестве нагрузки можно включить лампы накаливания, получив таким образом регулятор света. Для этого придется выполнить выходные каскады на более мощных транзисторах.

Схема сенсорного выключателя

На рис. 3 показана схема сенсорного выключателя конструкции И.А. Нечаева [Р 4/89-62]. Прикосновение к площадкам Е1 и Е2 позволяет включать или выключать ток в нагрузке (светодиоды HL1 и HL2).

Схема сенсорного выключателя

Рис. 3. Схема сенсорного выключателя.

Работает сенсорный выключатель следующим образом: в момент включения питания конденсаторы С1 и С2 разряжены, на входах соответствующих логических элементов устанавливаются логический нуль (выводы 1, 2 микросхемы DD1) и логическая единица (выводы 3, 5, 6 микросхемы DD1).

Соответственно, на выходе второго логического элемента установится логический нуль, а на выходе третьего — логическая единица, четвертого — снова нуль. Следовательно, один из элементов нагрузки — светодиод — будет включен, другой — выключен.

Резистор R3 создает цепь положительной обратной связи, обеспечивающей устойчивое состояние сенсорного выключателя. Для того чтобы переключить нагрузку, достаточно коснуться пальцем до сенсорных площадок Е1 и Е2.

С конденсатора С2 уровень логической единицы окажется поданным через сопротивление пальца и резистор R1 на вход первого логического элемента.

Поскольку на входе первого элемента устанавливается значение логической единицы, все остальные логические элементы одновременно изменят свое состояние. Выходные каскады переключатся.

На конденсаторе С1 установится значение логической единицы, на конденсаторе С2 — логического нуля. Для повторного переключения элементов схемы необходимо снова прикоснуться к сенсорным площадкам.

Это прикосновение приведет к очередной перезарядке конденсаторов С1 и С2 и переключению схемы в другое устойчивое состояние.

Сенсорный выключатель устойчиво работает в диапазоне питающих напряжений от 6 до 12 6. Взамен светодиодных индикаторов или параллельно им может быть включена и иная нагрузка, например, обмотка реле, управляющего работой бытовой техники, генератор звуковых или световых сигналов и т.п.

Модель электронного светофора

Модель электронного светофора (рис. 4) позволяет поочередно переключать разноцветные светодиоды, имитируя работу настоящего светофора [Рл 10/98-15].

Времязадающая цепь генератора (R2, С2) определяет частоту переключения зеленого и красного светодиодов, а цепь R1, С1 определяет время свечения желтого светодиода. Продолжительность свечения зеленого и красного светодиодов составляет около 10 сек и определяется постоянной времени R2C2, где сопротивление выражено в МОм, а емкость — в мкФ.

Схема светофора

Рис. 4. Схема электронного «светофора».

Светофон

Светофон (рис. 5) представляет собой электронную игрушку — звуковой генератор [Р 1/90-60]. Частота генерации определяется уровнем освещенности чувствительного к свету (hv) элемента R1 (фотосопротивления, фотодиода) при приближении к нему руки. Для того чтобы звучание происходило по желанию «музыканта», включение звука происходит при отпускании пальца от сенсорных площадок Е1 и Е2.

Схема светофона

Рис. 5. Схема светофона.

При использовании фоточувствительных приборов различного типа вероятно потребуется подбор емкости конденсатора С1, а также включение параллельно (или последовательно) фоточувствительному элементу (фотосопротивлению, фотодиоду) резисторов, задающих диапазон изменения генерируемой звуковой частоты.

Отметим попутно, что при самостоятельной доработке устройства в качестве управляющего элемента (рис. 5) можно использовать термосопротивление, имеющее малую тепловую инерцию, например, бусинкового типа.

Устройство, полученное при этом, можно наименовать термофоном или эолофоном (от греческого aiolos — ветер и phone — голос, звук) — оно будет изменять частоту звука при обдувании терморезистора.

Электромузыкальный прибор, управляемый наэлектризованным предметом (электронофон), можно получить, включив полевой транзистор вместо резистора R1.

Терменвокс

Идея терменвокса была предложена в эпоху раннего «средневековья» радиоэлектроники — на рубеже 20-30-х годов XX века изобретателем и музыкантом Львом Терменом.

В основу действия этого электромузыкального инструмента заложен принцип сопоставления (вычитания) частот двух генераторов.

Один из генераторов является эталонным, второй — управляется приближением (удалением) ладони руки. Чем ближе ладонь, тем заметнее уход частоты второго генератора, тем выше звук на выходе устройства.

Схема простого самодельного терменвокса

Рис. 6. Схема простого самодельного терменвокса.

Модель терменвокса, одного из самых первых электромузыкальных инструментов, может быть собрана по схеме на рис. 6. Это устройство является упрощенной модификацией схемы Э. Апрелева [М 6/92-28].

Сигналы двух генераторов вычитаются в специальном смесителе сигналов. Разностная частота поступает на звукоизлучатель или усилитель низкой частоты.

Исходная частота работы генераторов близка к 90 кГц. Антенной устройства является медный или алюминиевый прут диаметром 2…4 мм длиной 25…40 мм.

Разумеется, представленная на рис. 6 схема формирования звука заметно упрощена. В частности, для «реального» инструмента обязательно необходима регулировка громкости звучания инструмента. Для этого обычно используют аналогичный второй канал.

Изображенная на рис. 6 наиболее упрощенная модель терменвокса построена на основе двух генераторов, выполненных на микросхеме.

Начальная частота генерации обоих генераторов одинакова и устанавливается конденсатором СЗ и потенциометром R1. Выходные сигналы с генераторов через диоды VD1 и VD2 поступают на вход усилителя низкой частоты (транзистор VT1).

При приближении руки к антенне WA1 изменяется частота работы верхнего по схеме генератора, что вызывает появление звука изменяющейся тональности в телефонном капсюле.

Оригинальный металлоискатель, реагирующий на появление металлического (токопроводящего) предмета в поле антенны устройства также может быть собран по схеме на рис. 6.

В сочетании с обычным металлоискателем это позволит более уверенно распознавать различные предметы (магнитные, диамагнитные, токопроводящие и токонепроводящие), попадающие в поле действия поисковой катушки или электрода.

Электромузыкальный инструмент

На микросхеме DD1 К561ЛЕ5 (рис. 7) может быть собран электромузыкальный инструмент [Рл 9/97-28]. Генератор импульсов на трех инверторах микросхемы DD1 управляется ключами S1 — Sn.

Генератор прямоугольных импульсов будет работать на частоте, определяемой подключаемыми к общей шине резисторами R1 — Rn (десятки, сотни кОм).

Схема электромузыкального инструмента на микросхеме

Рис. 7. Схема электромузыкального инструмента на микросхеме.

Ключи-клавиши S1 — Sn и ключ S2 должны замыкаться единовременно (зависимо). Как упростить коммутацию, исключив ключ SA2, следует подумать самостоятельно. Сигнал звуковой частоты через усилительный каскад (транзистор VT1) поступает на телефонный капсюль BF1 или внешний усилитель.

Индикатор электрического поля

Индикатор электрического поля или простейшего типа может быть собран по схемам, представленным на рис. 8 и 11 [Рл 9/98-16].

Входы неиспользуемых инверторов /ШОГ7-микросхем необходимо соединить с общим проводом или шиной питания (рис. 8). При приближении индикатора к сетевому проводу в первой схеме вырабатываются звуковые сигналы, воспроизводимые пьезокерамическим излучателем, во второй схеме устройство реагирует на переменное электрическое поле звуковыми сигналами.

Схема искателя электропроводки

Рис. 8. Схема искателя электропроводки.

Схема индикатора электрического поля

Рис. 11. Схема индикатора электрического поля.

Фотореле, термореле

Фото- или термореле может быть выполнено по схеме, приведенной в книге Л.Д. Пономарева и А.Н. Евсеева (рис. 9). Устройство содержит регулируемый резистивный делитель напряжения, состоящий из резистора-датчика R1 и потенциометра R2.

К средней точке этого делителя подключен вход триггера Шмитта, составленный из двух логических элементов КМОП-млк-росхемы. К выходу триггера подсоединены эмиттерный повторитель и тиристорный коммутатор постоянного тока. Вместо тиристора может быть использован его транзисторный аналог.

Схема фотореле, термореле

Рис. 9. Схема фотореле, термореле.

При изменении сопротивления датчика триггер Шмитта переключается из одного устойчивого состояния в другое.

Соответственно, выходной сигнал через согласующий эмиттер-ный повторитель подается на управляющий электрод тиристора VS1. Происходит включение тиристора, срабатывает реле К1 или иная нагрузка. Для отключения нагрузки необходимо «сбросить» состояние тиристора, т.е. кратковременно отключить питание.

 

Такая схема может быть использована для контроля технологических и иных процессов, предупреждения критических и аварийных ситуаций, оповещения персонала о нештатном режиме работы оборудования и т.д.

Для того чтобы устройство самостоятельно включалось и отключалось, вместо тиристора следует установить кремниевый транзистор, рассчитанный на ток нагрузки.

Индикатор перегорания предохранителя

Индикатор перегорания предохранителя Л. Тесленко (рис. 10) содержит генератор импульсов на микросхеме и светодиодный индикатор [Р 11/85-44].

Схема индикатора перегорания предохранителя

Рис. 10. Схема индикатора перегорания предохранителя.

Когда предохранитель цел, на вход инвертора (вывод 8 микросхемы DD1) подается напряжение высокого уровня, запрещающее работу генератора.

Стоит перегореть предохранителю, вывод 8 через сопротивление нагрузки оказывается присоединенным к общей шине. Генератор начнет работать, при этом светодиод мигает с частотой около 5 Гц.

Для индикации перегорания предохранителя при «оборванной» нагрузке параллельно сопротивлению нагрузки желательно включить резистор величиной около 1 МОм.

Простой металлоискатель

Металлоискатель на микросхеме DD1 K561ЛE5, выполненный по традиционной схеме сравнения частот опорного и поискового генераторов [Р 8/89-65], показан на рис. 12.

Схема металлоискателя

Рис. 12. Схема металлоискателя.

Частота опорного генератора определяется емкостью конденсатора С1 и суммарным сопротивлением резисторов R1 и R2.

Частота поискового генератора зависит от параметров LC-контура поисковой катушки (L1, С2). При приближении поисковой катушки к металлическому предмету ее индуктивность меняется, изменяя частоту генерации поискового генератора.

Сигналы с обоих генераторов через развязывающие конденсаторы С4 и С5 поступают на диодный детектор, выполненный по схеме удвоения напряжения.

Нагрузкой детектора является высокоомный телефонный капсюль BF1, и в нем выделяется сигнал разностной частоты. При использовании низкоомного телефонного капсюля может потребоваться дополнительный каскад усиления. Конденсатор С6 шунтирует на общий провод высокочастотные составляющие смешиваемых сигналов.

Поисковая катушка размещена внутри алюминиевого или медного незамкнутого кольца диаметром 200 мм. Диаметр трубки — 8 мм. Для намотки использован провод, например, ПЭЛШО диаметром 0,5 мм.

Количество витков определяется по принципу «сколько войдет». Выводы катушки присоединяют к схеме, а саму трубку соединяют с общей шиной.

Налаживание металлоискателя заключается в установке частоты опорного генератора до появления в телефонном капсюле звуковых сигналов низкой частоты. При этим, возможно, придется подобрать емкость конденсатора С1 или С2.

Устройство для рефлексотерапии

Схема прибора — электронного устройства для рефлексотерапии, разработанного И. Скулкиным — показана на рис. 13 [Рл 2/97-26]. Узел поиска биологически активных точек (БАТ) содержит усилитель на составном транзисторе VT1 — VT3 и генератор импульсов на микросхеме DD1.

Схема прибора для рефлексотерапии

Рис. 13. Схема прибора для рефлексотерапии.

Поисковый (активный) электрод (А) представляет собой закругленную иглу диаметром 1 мм. Пассивный электрод (П) состоит из отрезка телескопической антенны.

При поиске БАТ на теле человека этот электрод зажимают в руке. Когда поисковый электрод попадает на БАТ, сопротивление участка кожи резко уменьшается, а устройство реагирует на это включением светодиода.

Полярность напряжения, прикладываемого к биологически активной точке, можно изменять переключателем SA1, а переключатель SA2 переводит устройство из режима поиска БАТ в режим воздействия на них. Частоту и ток воздействия задают потенциометры R2 и R4, соответственно.

Для проверки готовности прибора к работе следует в режиме «Поиск» (SA2) установить максимальный ток воздействия и замкнуть электроды. При этом должен загореться светодиод HL1.

Электронный телеграфный ключ

Электронный телеграфный ключ на одной микросхеме K561J1E5 (рис. 14) выполнен по традиционной для таких ключей схеме [Рл KB и УКВ 1/96-23]. Релаксационный генератор собран на логических элементах с разными RC-цепями, ответственными за формирование посылок тире и точек.

Схема электронного телеграфного ключа

Рис. 14. Схема электронного телеграфного ключа.

При нажатии на телеграфный ключ (замыкании зарядной цепи) заряжается группа конденсаторов С1 — СЗ (тире) или С2, СЗ (точка). Когда напряжение на входе логического элемента DD1.1 превысит определенный пороговый уровень, произойдет его переключение, и на выходе установится значение логического нуля.

Процесс заряда конденсаторов прервется, и они начнут разряжаться через сопротивления R2 и R3. При снижении напряжения на конденсаторах ниже определенного значения первый логический элемент вновь переключится, и процесс зарядки/разрядки конденсаторов повторится.

Этот процесс будет продолжаться до тех пор, пока замкнута контактная группа телеграфного манипулятора. Длительность точек и тире определяется постоянными времени зарядных и разрядных цепей (RC). Конденсаторы С1 — СЗ должны иметь малые токи утечки.

Для звуковой индикации генерируемых телеграфных сигналов предназначен генератор, выполненный на третьем и четвертом элементах микросхемы.

Генератор нагружен на пье-зокерамический излучатель типа ЗП-19. При использовании индуктивного излучателя (телефонного капсюля) последовательно с ним необходимо включить разделительный конденсатор емкостью более 0,1 мкФ.

Одновременно со звуковой, в схему введена световая индикация на светодиоде НИ (АЛ307), что позволяет визуально контролировать наличие телеграфных посылок. Для коммутации цепей передающего устройства использован буферный каскад на транзисторе VT1 (КТ315), нагруженный на реле.

Как и для других простейших телеграфных ключей, использующих подобный способ формирования точек и тире, данной конструкции присущи те же недостатки: необходимость подстройки соотношения продолжительности точек/тире сопротивлением R1 при изменении скорости передачи.

Механическая часть манипулятора может быть изготовлена из отрезка ножовочного полотна с примыкающими к нему контактными группами. В качестве таких контактов можно воспользоваться контактами разобранного крупногабаритного реле.

Многоголосый имитатор звуков

«Многоголосый» имитатор звуков, описанный М. Холодовым (рис. 15), содержит два последовательно включенных и управляемых генератора [Р 7/87-34]. Один из них работает на частоте 1…3 Гц, второй вырабатывает колебания частотой 0,2…2 кГц.

Если в цепь управления (клеммы XS1 и XS2) подключить рези-стивно-емкостной датчик, то на выходе устройства можно получить различные звуковые эффекты, разнообразие проявления которых ограничено только фантазией экспериментатора.

Если ко входу имитатора подключить переменное сопротивление 100 кОм и вращать его ручку, на выходе устройства звук будет напоминать трели соловья, затем щебетание воробья, кряканье утки, кваканье лягушки…

Схема многоголосого имитатора звуков

Рис. 15. Схема многоголосого имитатора звуков.

Устройство собрано на микросхеме К561ЛА7 (элементы И-НЕ). Имитатор при желании можно выполнить и на элементах ИЛИ-НЕ (К561ЛЕ5). Для этого потребуется самостоятельная переработка схемы.


Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Схемы

Ночник на светодиодах, т.е. его схема, представлен на рисунке ниже:

В схеме на рисунке 1 применены сверхяркие белые светодиоды (HL1 ÷ HL4), используемые в ручных фонарях, светильниках и лампах. Каждый светодиод светится при напряжении около 3,6 вольта. Так для четырёх светодиодов, включённых последовательно, необходимо напряжение порядка 14,4 вольта.

Требуемое напряжение питания ночника на светодиодах обеспечивает стабилитрон VD5, питаемый от бестранформаторного выпрямителя, состоящего из гасящих элементов C1, R1, R2 и выпрямительного моста на диодах VD1 ÷ VD4. Включение ночника осуществляется при помощи фоторезистора RK1, управляющего ключом на транзисторе VT1.

При обычном дневном освещении фоторезистор RK1 имеет низкое сопротивление, порядка 100 ÷ 200* Ом, что надежно удерживает транзистор VT1в закрытом состоянии. При наступлении сумерек его сопротивление увеличивается, а смещение на базе транзистора начинает повышаться, пока не подойдет к порогу открывания транзистора. При достижении порога открывания, транзистора открывается и включает светодиоды HL1 ÷ HL4. При наступлении светлого времени суток, сопротивление фоторезистора уменьшается, а светодиоды гаснут. Настройка порога включения ночника на светодиодах производится резистором R3.

В схеме ночника на светодиодах (Рис. 1) применены следующие детали: конденсатор С1 – любой на напряжение не менее 400 вольт, диоды VD1 ÷ VD4 на напряжение не менее 400 вольт и на ток больше 400 мА, транзистор VT1 типа КТ503Г или ему подобный, стабилитрон VD5 на напряжение 16 ÷ 18 вольт или составленный из двух на нужное напряжение, конденсатор С2 на напряжение 50 вольт.

Ночник на светодиодах конструктивно может иметь любой подходящий полупрозрачный (матовый) корпус. Важно, чтобы фоторезистор имел прозрачный защитный глазок (лучше с линзой) на корпусе конструкции.

Если нет фоторезистора, то схему можно упростить, а включение ночника на светодиодах производить при необходимости переключателем, как показано на схеме ниже (Рис.2):

Схема выпрямителя такая же, как и в предыдущей схеме на рисунке 1. Необходимость установки стабилитрона в схеме на рисунке 2 отпадает, так как светодиоды в известном смысле сами являются стабилизаторами.

Первая микросхема 🙂 / Хабр


Очень рад в подробностях рассказать о своей первой интегральной схеме и поделиться перипетиями этого проекта, которым занимался на протяжении прошлого года. Надеюсь, мой успех вдохновит других и поможет начать революцию в производстве домашних микросхем. Когда я приступил к этому проекту, то понятия не имел, во что ввязался, но в итоге узнал больше, чем когда-либо думал, о физике, химии, оптике, электронике и многих других областях.

Кроме того, мои усилия сопровождались лишь самыми положительными отзывами и поддержкой со всего мира. Искренне благодарен всем, кто мне помогал, давал советы и вдохновлял на этот проект. Особенно моим удивительным родителям, которые не только всегда поддерживают и поощряют меня как только могут, но и предоставили рабочее место и смирились с затратами на электроэнергию… Спасибо!

Без дальнейших церемоний представляю первую интегральную схему (ИС), изготовленную литографическим способом в домашних (гаражных) условиях — PMOS-чип двойного дифференциального усилителя Z1.

Я говорю «изготовленную литографическим способом», потому что Джери Эллсуорт изготовила первые транзисторы и логические вентили (с соединениями, тщательно проложенными вручную проводящей эпоксидной смолой) и показала миру, что это возможно. Вдохновленный её работой, я представляю интегральные схемы, созданные масштабируемым, стандартным фотолитографическим процессом. Излишне говорить, что это логический шаг вперёд по сравнению с моим предыдущей работой, где я воспроизвёл полевой транзистор Джери.


Я разработал усилитель Z1, когда искал простой чип для тестирования и настройки своего процесса. Макет сделан в Magic VLSI для процесса PMOS с четырьмя масками (активная/легированная область, подзатворный оксид, контактное окно и верхний металлический слой). У PMOS есть преимущество перед NMOS, если учесть ионные примеси из-за изготовления в гараже. Маски разработаны с соотношением сторон 16:9 для упрощения проекции.


Макет Magic VLSI


Генерация маски


Активная область


Затвор


Контакт


Металл

Размер затвора приблизительно 175 мкм, хотя на чипе для проверки выполнены элементы размером до 2 мкм. Каждая секция усилителя (центральная и правая) содержит три транзистора (два для двухтактной схемы с общим катодным сопротивлением и один в качестве источника тока/нагрузочного резистора), что означает в общей сложности шесть транзисторов на ИС. В левой части резисторы, конденсаторы, диоды и другие тестовые элементы, чтобы изучить характеристики техпроцесса. Каждый узел дифференциальных пар выходит отдельным штифтом на выводной рамке, поэтому его можно изучать, а при необходимости добавить внешнее смещение.


Процесс изготовления состоит из 66 отдельных шагов и занимает примерно 12 часов. Выход достигает 80% для больших элементов, но сильно зависит от количества выпитого кофе в конкретный день. Я также записал видео на YouTube о теории производства микросхем и отдельно об изготовлении МОП-транзисторов.

Кремниевые пластины 50 мм (2″) разбиваются на кристаллы 5,08×3,175 мм (площадь около 16 мм²) волоконным лазером Epilog. Такой размер кристалла выбран, чтобы он помещался в 24-контактный DIP-корпус Kyocera.


Пластина N-типа 50 мм


Пластина N-типа 50 мм

Сначала с пластины снимается нативная окись быстрым погружением в разбавленный фтороводород с последующей интенсивной обработкой травильной смесью «пиранья» (смесь серной кислоты и перекиси водорода), смесью RCA 1 (вода, аммиак, перекись водорода), смесью RCA 2 (вода, соляная кислота, перекись водорода) и повторным погружением во фтороводород.

Защитный окисел термически выращивается в водяном паре окружающего воздуха (влажное оксидирование) до толщины 5000−8000 Å.


Влажное термическое оксидирование


Влажное термическое оксидирование


Трубчатая печь


Оксидированная пластина

Оксидированная пластина готова к формированию рисунка на активной/легированной (Р-типа) области. Фоторезист AZ4210 наносится на вращающуюся примерно на 3000 оборотах в минуту подолжку, формируя плёнку толщиной около 3,5 мкм, которая аккуратно подсушивается при 90°С на электроплитке.

Процесс литографии детально

Маску активной зоны обрабатывает мой фотолитографический степпер Mark IV в ультрафиолете с шагом 365 нм — и структура отрабатывается в растворе гидроксида калия.


Структура резиста


Структура резиста


30-минутная подсушка


Травление активной зоны

После этого структура резиста плотно затвердела и применяется несколько других трюков, чтобы обеспечить хорошее сцепление и химическую стойкость во время следующего вытравливания во фтороводороде, который переносит эту структуру на слой подзатворного оксида и открывает окна к голому кремнию для легирования. Эти регионы позже станут истоком и стоком транзистора.


Частицы замыкают затвор


Легированные кристаллы с вытравленными затворами

После этого производится легирование, то есть введение примесей из твёрдого или жидкого источника. В качестве твёрдого источника применяется диск нитрида бора, размещённый поблизости (менее 2 мм) от пластины в трубчатой печи. Как вариант, можно приготовить жидкостный источник из фосфорной или борной кислоты в воде или растворителе — и провести легирование по стандартному процессу преднанесения/погружения во фтороводород/диффундирования/удаления глазури.

Вышеупомянутые шаги формирования рисунка затем повторяются дважды для подзатворного оксида и контактного слоя. Подзатворный оксид должен быть гораздо тоньше (менее ~750 Å), чем защитный оксид, поэтому зоны между стоком/истоком вытравливаются — и там выращивается более тонкий оксид. Затем, поскольку вся пластина оксидировалась на шаге легирования, нужно вытравить контактные окна, чтобы установить контакт металлического слоя с легированными зонами истока/стока.

Теперь все транзисторы сформированы и готовы к межсоединениям с выходом на выводную рамку. Защитный слой алюминия (400−500 нм) распыляется или термически напыляется на пластину. Альтернативой был бы метод взрывной литографии (lift-off process), когда сначала формируется фоторезист, а затем осаждается металл.


Напылённый металл


Напылённый металл

Затем на слое металла формируется рисунок методом фотолитографии и происходит травление в горячей фосфорной кислоте, чтобы завершить изготовление интегральной схемы. Заключительные шаги перед тестированием — это визуальный осмотр и высокотемпературный отжиг алюминия для формирования омических переходов.

Микросхема теперь готова для упаковки и тестирования.

У меня нет установки микросварки (принимаю пожертвования!), поэтому сейчас процесс тестирования ограничен прощупыванием пластины острым пинцетом или использованием платы flip-chip (трудно выровнять) c подключением к характериографу. Дифференциальный усилитель также эмпирически тестируется в цепи для проверки работоспособности.


Кривая IV


Кривая IV

Кривая FET Ids/Vds от с предыдущего устройства NMOS

Конечно, эти кривые далеки от идеальных (в том числе из-за излишнего сопротивления контактов и других подобных факторов), но я ожидаю улучшения характеристик, если раздобуду установку микросварки. Этим могут частично объясняться и некоторые отличия от кристалла к кристаллу. Скоро я добавлю на эту страницу новые кривые IV, характеристики транзистора и дифференциального усилителя.

Делаем микросхемы дома — часть 3 / Хабр

Прошло чуть больше года после предыдущих статей о моем проекте создания микросхем дома (1, 2), люди продолжают интересоваться результатами — а значит пора рассказать о прогрессе.

Напомню цель проекта: научиться изготавливать несложные кремниевые цифровые микросхемы в «домашних» условиях. Это никоим образом не позволит конкурировать с серийным производством — помимо того, что оно на порядки более совершенное (~22нм против ~20мкм, каждый транзистор в миллион раз меньше по площади), так еще и чудовищно дешевое (этот пункт не сразу стал очевиден). Тем не менее, даже простейшие работающие микросхемы, изготовленные в домашних условиях будут иметь как минимум образовательную и конечно декоративную ценность.

Как я уже упоминал в комментариях к другому топику, попытка выйти с этим проектом на kickstarter провалилась — проект не прошел модерацию из-за отсутствия прототипа. Это заставило в очередной раз переосмыслить пути коммерциализации этой упрощенной технологии. Возможность релиза технологии домашних микросхем в виде RepRap-подобного opensource-кита покрыта туманом: очень уж много опасной, дорогой и нестойкой химии — так просто рассылать по почте не выйдет. Также по видимому отсутствует возможность делать мелкие партии микросхем дешевле серийных заводов: сейчас минимальные тестовые партии микросхем можно изготавливать примерно по 30-50$ штука (в партии ~25 штук), и существенно дешевле 30$ за микросхему сделать это на самодельной упрощенной установке не получится. Кроме того, не смотря на низкую цену на обычных заводах — любительские микросхемы практически никто не делает, задач где они имели бы преимущества перед FPGA/CPLD/микроконтроллерами практически нет, а стоимость и сложность разработки — остается очень высокой.

Но как я уже упоминал выше — даже с этими недостатками проект остается для меня интересным.

Из того, что уже упоминалось в моих других статьях в последние месяцы — куплен кислородный концентратор, позволяет получить ~95% кислород без головной боли. Из вредных примесей — похоже только углекислый газ (35ppm), будем надеяться, этого будет достаточно. Также едет из Китая генератор озона (ему на входе нужен кислород) — есть результаты исследований, показывающих что им удобно растить тонкие подзатворные диэлектрики и использовать как один из этапов для очистки пластин.

Уже достаточно давно куплен металлографический микроскоп, и исследованы кучи существующих микросхем. В целом, стало намного понятнее с чем придется иметь дело. И наконец, поскольку микроскоп — симметричный прибор, его можно использовать для проекции уменьшенного изображения при фотолитографии. Совмещение изображения — визуальное и ручное. Источник освещения для проецирования — даже не обязательно УФ диодом делать, белый свет также вполне подойдет — качество изображения позволяет (хотя мощные 405нм диоды у меня тоже есть). Достижимые таким образом нормы фотолитографии — микронные (если сильно постараться — то до ~350нм), но смысла сильно уменьшать транзисторы нет — т.к. пропорционально уменьшается и «размер кадра», контакты к которым придется приваривать выводы станут слишком мелкими. Так что придется первоначально ограничиться нормами 10-20мкм, как и планировалось.

Микроскоп несколько поколебал веру как в отечественных производителей, так и в китайских. Оказалось, некоторые «отечественные» микроскопы — перемаркированные китайцы за 200-300% цены. С другой стороны — один из объективов похоже немного кривоват и предметный столик имел небольшой дефект литья — пришлось дорабатывать напильником (в прямом смысле этого слова).

Один из важных химических элементов для производства микросхем — вода. Опять-же в Китае куплен кондуктометр — измеритель электропроводности воды. По электропроводности можно оценить количество растворенных солей (+-50%, если не известно что именно растворено). В воде обычно растворены соли калия, натрия, кальция и марганца — и все они очень опасны для микросхем (особенно натрий и калий), т.к. их ионы могут быстро двигаться в кремнии и оксиде кремния при обычных температурах и изменять электрические параметры транзисторов (для полевых транзисторов — пороговое напряжение, утечку).

Измерил имеющиеся образцы воды, и получил следующее:

Концентрация примесей
Водопроводная вода 219ppm
«Новый» бытовой фильтр 118ppm
«Старый» бытовой фильтр 210ppm
Кипяченая вода из нового фильтра 140ppm
(!!! 2 раза перепроверял)
Бидистиллированная вода из Русхима
(Не похоже на бидистиллированную)
10ppm
Деионизировнаная вода из института микробиологии 0ppm
Деионизированная после 6 часов на воздухе
(Из-за растворения углекислого газа из воздуха)
8ppm
«Правильная» деионизированная вода — должна иметь 0.1ppm и менее, что меньше того, что может измерить мой прибор. Тем не менее, сразу видно, что далеко не любой источник воды подойдет. Куплены ионообменные смолы — они используются для очистки воды до деионизированной. Оказалось, закрома родины очень глубоки — одна из банок расфасована в 1968-м году

Также удалось купить и TMAH (тетраметиламмония гидроксид) — используется как проявитель для фоторезиста, не содержащий ионов щелочных металлов (которые как мы знаем — зло).

Для вакуумной системы — вместо покупки вакуумной резины (несколько раз пытался — но так и не осилил), нашелся в Китае вот такой вот gasket maker — паста, которую можно выдавить в нужную форму, она затвердевает — и становится резиновой.

По печке: для теплоизоляции — куплено вот такое базальтовое полотно, используется для теплоизоляции ядерных реакторов. Выдерживает 1000-1200 градусов.

Под микроскопом — видно отдельные нити расплавленного базальта, из которых сплетено полотно. Вот это настоящие нанотехнологии!!! В голове по началу не укладывается: как из камня можно сделать тончайшие нити, и соткать гибкий материал? (масштаб: 1 пиксель ~ 3 микрометра):

Найдены и порезаны кварцевые трубки для печки разного диаметра. Первый уровень теплоизоляции — воздушный зазор межу вставленными друг в друга трубками.

Изначально я думал питать печку прямо от 220 вольт — но все-же благоразумно решил перейти на питание постоянным напряжением 48 Вольт — это позволит как точнее регулировать и контролировать мощность, так и сделает конструкцию безопаснее. Куплены 2 блока питания на 400Вт. Как китайцы такой блок производят и доставляют за 19$ — загадка:

Для контроля температуры — изначально были куплены высокотемпературные термопары, рассчитанные на 1200 градусов (про них писал в прошлой серии — но фотографии не было). Размер конечно конский. Вероятно будет проще следить за уровнем инфракрасного излучения на длине волны 1мкм — кварц для него прозрачен.

И наконец — инертная среда для печки. В моем случае это Аргон. Из-за особенностей разделения газов — аргон получается чище, чем азот, хоть и несколько дороже. Я купил маленький 10л баллон, и регулятор. Регулятор внезапно не подошел — резьба не совпадает, нужно или переходник искать, или другой регулятор покупать.

Оказалось, сжатые газы продают рядом с домом (жизнь в промышленной зоне Москвы имеет свои преимущества) — и я приехал за ним с тележкой. Рабочий не оценил мой порыв — и настоятельно рекомендовал завернуть баллон в картон, чтобы прохожие не переживали. За 15 минут мы справились с камуфляжем. В общем, встреча с реальным миром вечно дарит сюрпризы 🙂

Самое главное — удалось досконально разобраться в том, как работает микросхемы по NMOS технологии, зачем там 3 напряжения питания (или 2, со снижением скорости). Также наконец найден качественный open-source софт для разработки простых микросхем, в том числе поддерживающий и NMOS процесс — gnuelectric:

Из того, что упоминал в предыдущей статье — TEOS видимо не нужен, слишком сложно с ним работать, HMDS — не обязателен, по крайней мере для «больших» транзисторов.

Генератор азота — это конечно удобно, работать с пластинами в инертной атмосфере и не возиться с баллонами, но также не критично.

Единственное, что серьёзно могло бы облегчить работу — это образцы spin-on dopants и spin-on glass. В России по различным причинам их не используют и не производят, за рубежем — производителей мало, продается большими партиями и стоит дорого (тысячи $). Компания Emulsitone, у которой покупала образцы Jeri Ellsworth когда делала свои транзисторы — похоже загнулась, с ними связаться так и не удалось. Но это также не обязательный пункт — работать можно и без них (с фосфорной и борной кислотами, POCl3 и BBr3), хоть и намного сложнее / несколько опаснее.

И наконец — конечно не хватает спонсора для моих проектов, иногда между дополнительными затратами времени и дополнительными затратами денег приходится выбирать первое. Если кто-то из компаний или частных лиц имеет желание спонсировать мои проекты (условия обсуждаемы) — вы знаете, где меня найти :-).
Update: Ориентировочная смета есть, высылаю по запросу — т.е. представление на что именно нужны деньги — есть.

В прошлой статье я упоминал о моём классическом микроэлектронном проекте — я хотел разработать и производить на серийных заводах микроконтроллеры. Исследовав под микроскопом конкурентов (нормы производства, площадь), и узнав цены производства на практически всех заводах (как отечественных, так и зарубежных) — стало понятно, что бизнес это хороший, хоть и очень капиталоемкий. Тем не менее, тут похоже пока не судьба — в Сколково проект дважды завернули, из-за отсутствия у меня профильного опыта. С одной стороны они безусловно правы, с другой — пришел бы Цукерберг в Сколково, а ему «А сколько социальных сетей вы уже создали?». Вводить в команду фиктивных членов — совершенно нет желания. Так что жизнь как всегда вносит коррективы в радужные планы — видимо сначала придется зарабатывать деньги на проект другими путями, и вернуться к нему через 3-5 лет (если он тогда еще будет кому-то нужен). Следующий шаг — сборка печки с управляющей электроникой, и наконец производство первых образцов. Для начала — кремниевые диоды, исследование их характеристик, солнечные батареи, затем — полевые транзисторы, возможно и биполярные. Можно попробовать сделать диоды Шоттки — но с ними все не так просто (высокие требования к интерфейсу металл-полупроводник и краям диода).

Затем нужно думать, как в домашних условиях сделать ультразвуковую или термокомпрессионную сварку проволоки с кремниевой пластиной — это нужно для подключения выводов.

Надеюсь, в обозримом будущем домашние микросхемы мы все-же увидим 🙂

Делаем микросхемы дома — шаги 0 и 1 / Хабр

В этой статье я расскажу о начале своей работы над совершенно безбашенной задачей: конечная цель в том, чтобы получить рабочую микросхему по «толстым» нормам (5-10µm) дома. Это не первое апреля и я не сумасшедший, это просто моё хобби.

Возникла эта идея не сейчас и неспроста. С детства я хотел быть газосварщиком, и… делать микросхемы. И если по первому пункту мне достаточно быстро удалось сделать дома сварочный аппарат (бутан-водород/кислород), то с микросхемами все никак не складывалось. Долгое время все мысли останавливались на том, что я не знал где можно взять собственно полупроводники необходимой чистоты (и мысли останавливались на ковырянии мощных транзисторов), пока на форуме не подсказали что в принципе, можно и купить пластины. Затем я даже наткнулся на человека, который 20 лет работал над похожей задачей, и в итоге сдался. Пожалуй, тут можно было опустить руки и перестать тратить время на глупые мечты. Но, однажды я увидел ролик чудовищно гениальной женщины – Jeri Ellsworth – она смогла сделать отдельные полевые транзисторы на основе заводских пластин – и тогда я решил, что настало время поплотнее заняться этой проблемой.

В этой статьях я расскажу о своём текущем прогрессе, но не ждите быстрого продолжения – весь процесс может легко занять пару лет.

Шаг 0:

Были скуплены все книги по теме из местных Интернет-магазинов (как раз на 1 полку), повыкачаны из торрентов все доступные сборники оцифрованных книг. Теоретической информации там конечно много, но с практической стороны – многое покрыто мраком. Даже старые техпроцессы в деталях не описаны нигде, и потому придется много пробовать. Также перерыл интернет в поисках местных поставщиков всех потенциально необходимых материалов (собственно кремний, фоторезисты, химия, газы). Пока найти не удалось местную компанию которая может изготавливать асферическую оптику из оптического/кварцевого стекла – но это в ближайший год не станет препятствием.
Шаг 1: Кремний

Монокристаллический кремний – сердце домашней микросхемы. Вырастить дома – хоть и реально (по моим безумным меркам), но чертовски дорого. Потому я стал гуглить местных производителей кремния – кто-то говорил что они свернули производство и занимаются только сдачей помещений в аренду, кто-то не отвечал, пока наконец я не дошел до компании Терасил – там я наконец смог купить все что мне нужно. Самое главное – разрезанные и отполированные пластины монокристаллического кремния легированного в P и N тип (справа на фото).

Далее – куча разбитых пластин для тренировки. Потренировался раскалывать пластину на кусочки (оказалось, что они все с ориентацией кристаллической решетки 111 – раскалываются треугольниками, а не квадратами). Т.к они еще не отполированы – я попробовал и отполировать – провал полный: паста гои кремний не берет, нужна алмазная паста. Если со временем получится полировать, можно будет пробовать делать солнечные батареи (а из монокристаллического кремния они получаются довольно эффективные).

И наконец – кусочки монокристаллического кремния. Те что толстые слева – погрязнее (но достаточно чистые для микросхем), 2 тоненьких справа – сверхчистые, намного выше требований чистоты кремния для обычных микросхем. Само собой, разрезать их дома не выйдет (если конечно не завалялась алмазная дисковая пила) – только разбить. Нужны для того чтобы пробовать осаждать пленки аморфного кремния химическим (PE CVD Sih5) или физическим (испарение в вакууме) путем.

Какие дальше стоят задачи

  • В первую очередь – строительство печи на 1200 градусов для маленького образца. Промышленные печи под такую температуру в квартире не поставить, и стоят огого. Потому буду пробовать нагревать образец галогеновыми лампами с рефлекторами.
  • Переезд в отдельную квартиру: меня сразу выгонят увидев бородатого мужика в противогазе и резиновых перчатках с кучей подозрительных баночек.
  • Далее – необходимая химия и фоторезисты – и можно пробовать делать 1 транзистор по процессу Jeri.
Что я ищу и пока не нахожу

В первую очередь – это информация. Хотелось бы иметь контакты людей, которые работают на производстве – ведь я соберу все грабли, которые технологи собирали последние 50 лет Затем – информация о техпроцессах и главное – библиотеки под толстые техпроцессы – пока мне их не удалось достать, а из отдельных транзисторов особо не по-проектируешь. Ну и наконец, хочу найти разработчика ASIC, который показал бы мне основные шаги разработки (кое-что я думаю что знаю, но много пробелов и я могу ошибаться сильно). По всем этим вопросам приглашаю на форум по этому проекту (English only).

Комментарии / мнения — в студию.

Как читать электрические схемы ⋆ diodov.net

Программирование микроконтроллеров Курсы

При изучении электроники возникает вопрос, как читать электрические схемы. Естественным желанием начинающего электронщика или радиолюбителя является спаять какое-то интересное электронное устройство. Однако на начальном пути достаточных теоретических знаний и практических навыков как всегда не хватает. Поэтому устройство собирают вслепую. И часто бывает, что спаянное устройство, на Электрическая схемакоторое было затрачено много времени, сил и терпения, — не работает, что вызывает только разочарование и отбивает желание у начинающего радиолюбителя заниматься электроникой, так и не ощутив все прелести данной науки. Хотя, как оказывается, схема не заработала из-за допущения сущего пустяковой ошибки. На исправление такой ошибки у более опытного радиолюбителя ушло бы меньше минуты.

В данной статье приведены полезные рекомендации, которые позволят свести к минимуму количество ошибок. Помогут начинающему радиолюбителю собирать различные электронные устройства, которые заработают с первого раза.

Как научиться читать электрические схемы

Любая радиоэлектронная аппаратура состоит из отдельных радиодеталей, спаянных (соединенных) между собой определенным образом. Все радиодетали, их соединения и дополнительные обозначения отображаются на специальном чертеже. Такой чертеж называется электрической схемой. Каждая радиодеталь имеет свое обозначение, которое правильно называется условное графическое обозначение, сокращенно – УГО. К УГО мы вернемся дальше в этой статье.

Монтажница радиоэлектронной аппаратурыПринципиально можно выделить два этапа совершенствования чтения электрических схем. Первый этап характерен для монтажников радиоэлектронной аппаратуры. Они просто собирают (паяют) устройства не углубляясь в назначение и принцип работы основных его узлов. По сути дела – это скучная работа, хотя, хорошо паять, нужно еще поучиться. Лично мне гораздо интересней паять то, что я полностью понимаю, как оно работает. Появляются множества вариантов для маневров. Понимаешь какой номинал, например резистора или конденсатора критичный в данной случае, а каким можно пренебречь и заменить другим. Какой транзистор можно заменить аналогом, а где следует использовать транзистор только указанной серии. Поэтому лично мне ближе второй этап.

Второй этап присущ разработчикам радиоэлектронной аппаратуры. Такой этап является самый интересный и творческий, поскольку совершенствоваться в разработке электронных схем можно бесконечно.

По этому направлению написаны целые тома книг, наиболее известной из которых является «Искусство схемотехники». Именно к этому этапу мы будем стремиться подойти. Однако здесь уже потребуются и глубокие теоретические знания, но все оно того стоит.

Учиться читать электрические схемы мы будем из самых простых примеров и постепенно продвигаться дальше.

Обозначение источников питания

Любое радиоэлектронное устройство способно выполнять свои функции только при наличии электроэнергии. Принципиально выделяют два типа источников электроэнергии: постоянного и переменного тока. В данной статье рассматриваются исключительно источниках постоянного тока. К ним относятся батарейки или гальванические элементы, аккумуляторные батареи, различного рода блоки питания и т.п.

В мире насчитывается тысячи тысяч разных аккумуляторов, гальванических элементов и т.п., которые отличаются как внешним видом, так и конструкцией. Однако всех их объединяет общее функциональное назначение – снабжать постоянным током электронную аппаратуру. Поэтому на чертежах электрических схем источники они обозначаются единообразно, но все же с некоторыми небольшими отличиями.

Электрические схемы принято рисовать слева на право, то есть так, как и писать текст. Однако такого правила далеко не всегда придерживаются, особенно радиолюбители. Но, тем не менее, такое правило следует взять на вооружение и применять в дальнейшем.

Обозначение батарейки на чертеже электрической схемыГальванический элемент или одна батарейка, неважно «пальчиковая», «мизинчиковая» или таблеточного типа, обозначается следующим образом: две параллельные черточки разной длины. Черточка большей длины обозначает положительный полюс – плюс «+», а короткая – минус «-».

Также для большей наглядности могут проставляться знаки полярности батарейки. Гальванический элемент или батарейка имеет стандартное буквенное обозначение G.

Обозначение аккумуляторов на чертежах электрических схемОднако радиолюбители не всегда придерживаются такой шифровки и часто вместо G пишут букву E, которая обозначает, что данный гальванический элемент является источником электродвижущей силы (ЭДС). Также рядом может указываться величина ЭДС, например 1,5 В.

Иногда вместо изображения источника питания показывают только его клеммы.

Группа гальванических элементов, которые могут повторно перезаряжаться, аккумуляторной батареей. На чертежах электрических схем они обозначается аналогично. Только между параллельными черточками находится пунктирная линия и применяется буквенное обозначение GB. Вторая буква как раз и обозначает «батарея».

Обозначение проводов и их соединений на схемах

Электрические провода выполняют функцию объединения всех электронных элементов в единую цепь. Они выполняют роль «трубопровода» — снабжают электронные компонент электронами. Провода характеризуются множеством параметров: сечением, материалом, изоляцией и т.п. Мы же будем иметь дело с монтажными гибкими проводами.

На печатных платах проводами служат токопроводящие дорожки. Вне зависимости от вида проводника (проволока или дорожка) на чертежах электрических схем они обозначаются единым образом – прямой линией.

Например, для того, что бы засветить лампу накаливания необходимо напряжение от аккумуляторной батареи подвести с помощью соединительных проводов к лампочке. Тогда цепь будет замкнута и в ней начнет протекать ток, который вызовет нагрев нити лампы накаливания до свечения.

Простая электрическая цепь

Проводник принять обозначать прямой линией: горизонтальной или вертикальной. Согласно стандарту, провода или токоведущие дорожки могут изображаться под углом 90 или 135 градусов.

В разветвленных цепях проводники часто пересекаются. Если при этом не образуется электрическая связь, то точка в месте пересечения не ставится.

Обозначение проводов и их соединений на чертежах электрических схем

Если в месте пересечения проводников образуется электрическая связь, то это место обозначается точкой, называемой электрическим узлом. В узле могут пересекаться одновременно несколько проводников. Здесь я советую познакомиться с первым законом Кирхгофа.

Обозначение общего провода

В сложных электрических цепях с целью улучшения читаемости схемы часто проводники, соединенные с отрицательной клеммой источника питания, не изображают. А вместо них применяют знаки, обозначающие отрицательных провод, который еще называют общий или масса или шасси или земля.

Общий провод, масса, отрицательный провод, GND

Рядом со знаком заземления часто, особенно в англоязычных схемах, делается надпись GND, сокращенно от GRAUND – земля.

Обозначение общего провода на электрических схемах

Однако следует знать, что общий провод не обязательно должен быть отрицательным, он также может быть и положительным. Особенно часто за положительный общий провод принимался в старых советских схемах, в которых преимущественно использовались транзисторы pnp структуры.

Поэтому, когда говорят, что потенциал в какой-то точке схемы равен какому-то напряжению, то это означает, что напряжение между указанной точкой и «минусом» блока питания равен соответствующему значению.

Например, если напряжение в точке 1 равно 8 В, а в точке 2 оно имеет величину 4 В, то нужно положительный щуп вольтметра установить в соответствующую точку, а отрицательный – к общему проводу или отрицательной клемме.

Потенциал в точке электрической схемы

Таким подходом довольно часто пользуются, поскольку это очень удобно с практической точки зрения, так как достаточно указать только одну точку.

Особенно часто это применяется при настройке или регулировке радиоэлектронной аппаратуре. Поэтому учиться читать электрические схемы гораздо проще, пользуясь потенциалами в конкретных точках.

Условное графическое обозначение радиодеталей

Основу любого электронного устройства составляют радиодетали. К ним относятся резисторы, светодиоды, транзисторы, конденсаторы, различные микросхемы и т. д. Чтобы научиться читать электрические схемы нужно хорошо знать условные графические обозначения всех радиодеталей.

Для примера рассмотрим следующий чертеж. Он состоит из батареи гальванических элементов GB1, резистора R1 и светодиода VD1. Условное графическое обозначение (УГО) резистора имеет вид прямоугольника с двумя выводами. На чертежах он обозначается буквой R, после которой ставится его порядковый номер, например R1, R2, R5 и т. д.

Как читать электрические схемы

Поскольку важным параметром резистора помимо сопротивления является мощность рассеивания, то ее значение также указывается в обозначении.

УГО светодиода имеет вид треугольника с риской у его вершины; и двумя стрелочками, острия которых направлены от треугольника. Один вывод светодиода называется анодом, а второй – катодом.

Обозначение светодиода на электрических схемах

Светодиод, как и «обычный» диод, пропускает ток только в одном направлении – от анода к катоду. Данный полупроводниковый прибор обозначается VD, а его тип указывается в спецификации или в описании к схеме. Характеристики конкретного типа светодиода приводятся в справочниках или «даташитах».

Как читать электрические схемы реально

Давайте вернемся к простейшей схеме, состоящей из батареи гальванических элементов GB1, резистора R1 и светодиода VD1.

Как мы видим – цепь замкнута. Поэтому в ней протекает электрический ток I, который имеет одинаковое значение, поскольку все элементы соединены последовательно. Направление электрического тока I от положительной клеммы GB1 через резистор R1, светодиод VD1 к отрицательной клемме.

Назначение всех элементов вполне понятно. Конечной целью является свечение светодиода. Однако, чтобы он не перегрелся и не вышел из строя резистор ограничивает величину тока.

Величина напряжения, согласно второму закона Кирхгофа, на всех элементах может отличаться и зависит от сопротивления резистора R1 и светодиод VD1.

Если измерить вольтметром напряжение на R1 и VD1, а затем полученные значения сложить, то их сумма будет равна напряжению на GB1: V1 = V2 + V3.

Как научиться читать электрические схемы

Соберем по данному чертежу реальное устройство.

Схема подключения светодиода

Как читать электрические схемы с минимальным набором радиодеталей мы разобрались. Теперь можем перейти к более сложному варианту.

Добавляем радиодетали

Рассмотрим следующую схему, состоящую из четырех параллельных ветвей. Первая представляет собой лишь аккумуляторную батарею GB1, напряжением 4,5 В. Во второй ветви последовательно соединены нормально замкнутые контакты K1.1 электромагнитного реле K1, резистора R1 и светодиода VD1. Далее по чертежу находится кнопка SB1.

Как читать чертежи электрических схем

Третья параллельная ветвь состоит из электромагнитного реле K1, шунтированного в обратном направлении диодом VD2.

В четвертой ветви имеются нормально разомкнутые контакты K1.2 и бузер BA1.

Здесь присутствуют элементы, ранее нами не рассмотрены в данной статье: SB1 – это кнопка без фиксации положения. Пока она нажата ее, контакты замкнуты. Но как только мы перестанем нажимать и уберем палец с кнопки, контакты разомкнутся. Такие кнопки еще называют тактовыми.

Кнопки без фиксации обозначение на электрических схемах

Следующий элемент– это электромагнитное реле K1. Принцип работы его заключается в следующем. Когда на катушку подано напряжение, замыкаются его разомкнутые контакты и размыкаются замкнутые контакты.

Электромагнитное реле обозначение на чертежах электрических схем

Все контакты, которые соответствуют реле K1, обозначаются K1.1, K1.2 и т. д. Первая цифра означает принадлежность их соответствующему реле.

Бузер

Следующий элемент, ранее не знакомый нам, — это бузер. Бузер в какой-то степени можно сравнить с маленьким динамиком. При подаче переменного напряжения на его выводы раздается звук соответствующей частоты. Однако в нашей схеме отсутствует переменное напряжение. Поэтому мы будем применять активный бузер, который имеет встроенный генератор переменного тока.

Бузер обозначение на чертежах электрических схем

Пассивный бузер – для переменного тока.

Активный бузер – для постоянного тока.

Активный бузер имеет полярность, поэтому следует ее придерживаться.

Теперь мы уже можем рассмотреть, как читать электрическую схему в целом.

В исходном состоянии контакты K1.1 находятся в замкнутом положении. Поэтому ток протекает по цепи от GB1 через K1.1, R1, VD1 и возвращается снова к GB1.

При нажатии кнопки SB1 ее контакты замыкаются, и создается путь для протекания тока через катушку K1. Когда реле получило питание ее нормально замкнутые контакты K1.1 размыкаются, а нормально замкнутые контакты K1.2 замыкаются. В результате гаснет светодиод VD1 и раздается звук бузера BA1.

Теперь вернемся к параметрам электромагнитного реле K1. В спецификации или на чертеже обязательно указывается серия применяемого реле, например HLS‑4078‑DC5V. Такое реле рассчитано на номинальное рабочее напряжение 5 В. Однако GB1 = 4,5 В, но реле имеет некоторый допустимы диапазон срабатывания, поэтому оно будет хорошо работать и при напряжении 4,5 В.

Для выбора бузера часто достаточно знать лишь его напряжение, однако иногда нужно знать и ток. Также следует не забывать и о его типе – пассивный или активный.

Диод VD2 серии 1N4148 предназначен для защиты элементов, которые производят размыкание цепи, от перенапряжения. В данном случае можно обойтись и без него, поскольку цепь размыкает кнопка SB1. Но если ее размыкает транзистор или тиристор, то VD2 нужно обязательно устанавливать.

Учимся читать схемы с транзисторами

На данном чертеже мы видим транзистор VT1 и двигатель M1. Для определенности будем применять транзистор типа 2N2222, который работает в режиме электронного ключа.

Как научиться читать электрические схемы быстро

Чтобы транзистор открылся, нужно на его базу подать положительный потенциал относительно эмиттера – для npn типа; для pnp типа нужно подавать отрицательный потенциал относительно эмиттера.

Кнопка SA1 с фиксацией, то есть он сохраняет свое положение после нажатия. Двигатель M1 постоянного тока.

В исходном состоянии цепь разомкнута контактами SA1. При нажатии кнопки SA1 создается несколько путей протеканию тока. Первый путь – «+» GB1 – контакты SA1 – резистор R1 – переход база-эмиттер транзистора VT1 – «-» GB1. Под действием протекающего тока через переход база-эмиттер транзистор открывается и образуется второй путь току – «+»GB1SA1 – катушка реле K1 – коллектор-эмиттер VT1 – «-» GB1.

Получив питание, реле K1 замыкает свои разомкнутые контакты K1.1 в цепи двигателя M1. Таким образом, создается третий путь: «+» GB1SA1K1.1M1 – «-» GB1.

Теперь давайте все подытожим. Для того чтобы научиться читать электрические схемы, на первых порах достаточно лишь четко понимать законы Кирхгофа, Ома, электромагнитной индукции; способы соединения резисторов, конденсаторов; также следует знать назначение всех элементом. Также поначалу следует собирать те устройства, на которые имеются максимально подробные описания назначения отдельных компонентов и узлов.

Разобраться в общем подходе к разработке электронных устройств по чертежам, с множеством практических и наглядных примеров поможет мой очень полезный для начинающих курс Как читать электрические схемы и создавать электронные устройства. Пройдя данный курс, Вы сразу почувствуете, что перешли от новичка на новый уровень.Электроника для начинающих

Еще статьи по данной теме

Определение

в кембриджском словаре английского языка

Система контроля позволила пользователю сканировать поверхность гибридных микросхем. Это создает эксклюзивные микросхемы для обработки информации, которая отражается в свойствах рецептивного поля каждого типа ганглиозных клеток.

Эти примеры взяты из Cambridge English Corpus и из источников в Интернете. Любые мнения в примерах не отражают мнение редакторов Cambridge Dictionary, Cambridge University Press или ее лицензиаров.

Еще примеры Меньше примеров

Кружки представляют собой абстрактные нейроны (или нейронные микросхемы), состояния которых представлены активациями.Выдвигается гипотеза о том, что коленчатые афферентные синапсы и синапсы корзиночных клеток могут быть пространственно спарены в микросхеме позвоночника-стержня. На основе этого потенциального числового сходства выдвинута гипотеза о синаптическом соединении коленчатой ​​корзины в микросхеме позвоночник-стержень .Однако общая анестезия изменяет как отдельные клетки, так и динамику сети, ограничивая нашу способность понимать правила функционирования кортикальной микросхемы .В оргтехнике, компьютерах, бытовой электронике, электрических компонентах и ​​микросхемах дефицит существенно увеличился. То, что произошло, можно проиллюстрировать, проследив историю типичной стандартной микросхемы , известной как «четверной вентиль».Микросхема и микросхема делают это проще и дешевле, но такие интерфейсы вызывают затухание. ,

определение микросхем по The Free Dictionary

Эти услуги и расходные материалы напрямую поддерживают инициативы DLA по предотвращению подделки, программы проверки и тестирования продукции, специфичные для микросхем FSC 5962, действующих в Агентстве. Вступает в силу с выпуском данных индекса цен производителей (PPI) за июль 2018 г. 9 августа 2018 г., Бюро Департамент статистики труда начал использовать гедонистическое моделирование для оценки скорректированных с учетом качества цен на микропроцессоры для ноутбуков в рамках индексов PPI для интегрированных микросхем: также известный как QML Class Y, сертификация признана высшей гарантией качества и надежности для керамических, негерметичных Микросхемы Flip-Chip для аэрокосмической и оборонной промышленности (AandD).От физических механизмов и воздействия космоса на микросхемы и стратегий проектирования для борьбы с космическим излучением до специального исследовательского оборудования и технологических особенностей диодов, схем и влияния различных излучений на каждый из них — все это содержит диаграммы, графики, расчеты допусков и дискуссии, необходимые для любого проекта создания космической электроники. Помимо основного материала о современных подходах к разработке и применению элементной микроэлектронной базы бортового радиоэлектронного оборудования космических аппаратов, систем двойного и специального назначения, Белоус, Саладуха, и Шведов предоставляют обширную справочную информацию и вспомогательные материалы, такие как конфигурация современных космических аппаратов, роль бортового электронного оборудования в достижении цели проекта, статистика аварий и отказов космических аппаратов, причины широкого использования поддельных микросхем в России и способы остановить это, а также воздействие ионизирующего космического излучения и потока высоких Скорость и микрочастицы высоких энергий (космическая пыль) на радиоэлектронном оборудовании в космических приложениях.В году, закончившемся 31 декабря 2015 года, компания, занимающаяся разработкой, производством и продажей пассивных электронных компонентов, известных как резисторы, и гибридных микросхем, продала 32,9 млн. Фунтов стерлингов по сравнению с 39,2 млн. Фунтов стерлингов годом ранее. Сертификация проводных соединений (25-27 августа, Вифлеем, Пенсильвания), Сертификация процессов и выявление дефектов: гибриды, микросхемы и модули RF / MMIC (15-18 сентября, Пасадена, Калифорния) и технология упаковки в микроволновой печи (7-9 декабря, Сан-Диего, Калифорния) .CML Microcircuits (Maldon, Essex) выпустила процессор общей платформы PMR для поддержки цифровых / аналоговых FDMA PMR / LMR и цифровых систем TDMA с 2 слотами.Компании, упомянутые в этом отчете: Америка, APAC, EMEAKey Vendors, Cirrus Logic, STMicroelectronics, Texas Instruments, Wolfson Micro, Analog Devices, AMS, Broadcom, CML Microcircuits, Conexant, Exstreamer, Integrated Device Technology, Maxim Integrated Исследователи показывают, что слабая связь обеспечивает каркас пресинаптической пластичности, отличительный признак синаптической передачи сигналов в микросхемах гиппокампа. ,

Microcircuit на итальянском языке, перевод, англо-итальянский словарь

en 91/131 / EEC: Решение Комиссии от 11 марта 1991 г. о принятии обязательств, предложенных некоторыми экспортерами в связи с антидемпинговыми процедурами в отношении импорта определенных типов электронных микросхем известные как EPROM (стираемые программируемые запоминающие устройства только для чтения), происходящие из Японии и прекращающие расследование в отношении этих экспортеров

EurLex-2 it Nonostante quanto disposto nell

en 2.«Микросхемы микропроцессора», «микросхемы микрокомпьютера», микросхемы микроконтроллера, интегральные схемы памяти, изготовленные из составного полупроводника, аналого-цифровые преобразователи, цифро-аналоговые преобразователи, электрооптические или «оптические интегральные схемы», предназначенные для «обработки сигналов» », Программируемые логические устройства, интегральные схемы нейронных сетей, специализированные интегральные схемы, для которых либо функция неизвестна, либо состояние управления оборудования, в котором будет использоваться интегральная схема, неизвестно, процессоры быстрого преобразования Фурье (БПФ), электрические стираемые программируемые постоянные запоминающие устройства (EEPROM), флэш-памяти или статические запоминающие устройства с произвольным доступом (SRAM), имеющие любую из следующих характеристик:

EurLex-2 it E ‘un nome strano, Prior Walter, c’ era un Walter прима ди луи?

и 1.«Микросхемы» аналого-цифрового преобразователя, которые «защищены от излучения» или обладают всеми следующими характеристиками:

EurLex-2 it Riprendiamo daccapo

en Настоящим на импорт определенных электронные микросхемы, известные как динамические запоминающие устройства с произвольным доступом (DRAM), всех типов, плотностей и вариаций, независимо от того, собраны ли они на обработанной пластине или микросхемах (матрицах), изготовленные с использованием различных технологических процессов Metal Oxide-Semiconductors (MOS), включая дополнительные типы MOS (CMOS) любой плотности (включая будущую), независимо от скорости доступа, конфигурации, пакета или кадра и т. Д.

EurLex-2 it Le modalità diale riferimento sono decise dagli Statimbri

en «Микросхемы микропроцессора», «Микросхемы микрокомпьютера» и микроконтроллеры, изготовленные из составного полупроводника с тактовой частотой, превышающей 40 МГц. ;

eurlex-diff-2018-06-20 it Государственный indietro

en ПОСТАНОВЛЕНИЕ СОВЕТА (ЕС) № 664/96 от 29 марта 1996 г., продлевающее приостановление действия окончательной антидемпинговой пошлины на импорт определенных типов электронных микросхем, известных как Eproms (стираемые программируемые запоминающие устройства только для чтения), происходящие из Японии

EurLex-2 it Il padre di Sarah sta andando alla scuola

en Временные антидемпинговые пошлины на импорт определенных типов электронных Микросхемы, известные как DRAM (динамическая память с произвольным доступом), происходящие из Японии, настоящим продлеваются на период не более двух месяцев с 27 мая 1990 года.

EurLex-2 it gli исходные ингредиенты, не относящиеся к сельскому хозяйству, не содержащие продуктов, изменяемые, не обрабатываемые и не являющиеся авторскими авторами в процессе преобразования

и N.B. 2: Сюда входят наборы микросхем, которые предназначены для совместной работы, чтобы обеспечить функцию «микропроцессорной микросхемы».

EurLex-2 it Cioe ‘, non l’ ho evitata

en расширение временных антидемпинговых пошлин на импорт определенных типов электронных микросхем, известных как DRAM (динамическая память с произвольным доступом) из Японии

EurLex-2 it se sviluppa i sintomi di una grave reazione Allergica (quali difficoltà respratoria, affanno o

и «Микросхема микрокомпьютера» (3) означает «монолитную интегральную схему» или «многокристальную интегральную схему», содержащую арифметическую интегральную схему. логический блок (ALU), способный выполнять инструкции общего назначения из внутренней памяти для данных, содержащихся во внутренней памяти.

EurLex-2 it Non sento la pressione sanguigna

en «Микропроцессорная микросхема» (3) означает «монолитную интегральную схему» или «многокристальную интегральную схему», содержащую арифметико-логический блок (ALU), способный выполнять серия инструкций общего назначения с внешнего хранилища.

EurLex-2 it Eppoi …… come si farà con i suoi «scarti»?

en Уведомление о возбуждении антисубсидийной процедуры в отношении импорта определенных электронных микросхем, известных как DRAM (динамические запоминающие устройства с произвольным доступом) из Республики Корея

EurLex-2 it Una vita finisce, un ‘altra inizia

en 92/494 / EEC: Решение Комиссии от 12 октября 1992 г. о принятии обязательства в связи с антидемпинговым разбирательством в отношении импорта определенных типов электронных микросхем, известных как DRAM (динамические запоминающие устройства с произвольным доступом) из Японии, и прекращение расследования в отношении производителя, о котором идет речь

EurLex-2 it E tu a me #, #, ma # te le abbuono

en 3E002 «Технология» в соответствии с Общей технологической запиской, кроме указанной в 3E001, для «разработки» или «производства» «микропроцессорной микросхемы», «микрокомпьютерной микросхемы» или ядра микроконтроллерной микросхемы, имеющей ari thmetic логический блок с шириной доступа 32 бита или более и любой из следующих функций или характеристик:

eurlex-diff-2018-06-20 it E io me ne frego!

en Рассмотрение вопроса, переданного в Суд для вынесения предварительного решения, не выявило каких-либо факторов такого рода, которые могли бы повлиять на действительность Постановления Комиссии (ЕЭС) № 165/90 от 23 января 1990 г., вводящего временные антидемпинговые меры. пошлина на импорт определенных типов электронных микросхем, известных как DRAM (динамические запоминающие устройства с произвольным доступом), происходящих из Японии, принимая обязательства, предлагаемые некоторыми экспортерами в связи с антидемпинговыми процедурами в отношении импорта этих продуктов, и прекращение расследования в их отношении, поскольку с поправками, внесенными исправлением, опубликованным 10 февраля 1990 г.

EurLex-2 it SARAH, кредо che tu ti stia facendo un ‘idea esagerata di questa situazione

en Поправка к Регламенту (ЕС) № 1480/2003, устанавливающая окончательную компенсационную пошлину и собирающая определенную временную пошлину, импорт определенных электронных микросхем, известных как DRAM (динамическая память произвольного доступа) из Республики Корея

EurLex-2 it Signore.Ecco il suo vestiario per il banchetto

en Если интегральная схема является кремниевой — на основе «микросхемы микрокомпьютера» или микросхемы микроконтроллера, описанной в 3А001.a.3. при длине слова операнда (данных) 8 бит или менее состояние управления интегральной схемы определяется в 3A001.a.3.

EurLex-2 it Владимир Ремек svolge l’interrogazione orale

en (1) Комиссия Постановлением (ЕЭС) № 165/90 (2) ввела временную антидемпинговую пошлину на импорт определенных типы электронных микросхем, известные как DRAM (динамические запоминающие устройства с произвольным доступом), происходящие из Японии, приняли обязательства, предложенные некоторыми экспортерами в связи с антидемпинговыми процедурами в отношении импорта этих продуктов, и прекратили расследование в этом отношении.

EurLex-2 it Più in general, la domanda dell’onorevole Scapagnini pone il problem dell’applicazione del trattato Euratom e degli impegni presi nella carta europea dell’energia.

en Регламент Совета (ЕС) № № / № от № декабря №, вносящий поправки в Регламент (ЕС) № № / №, устанавливающий окончательную компенсационную пошлину и окончательно собирающий временную пошлину, налагаемую на импорт определенных электронных микросхем, известных как DRAM (динамический случайный доступ к памяти) из Республики Корея

oj4 it invita la Commissione a sostenere, mediante adeguamenti regolamentari, la Promozione delle colture per scopi non alimentari, nella misura in cui essa risponde a criteri di sviluppo val sostenere Agricoltura multifunzionale in tutta l’UE

en ПОСТАНОВЛЕНИЕ СОВЕТА (ЕС) № 2335/97 от 24 ноября 1997 г., отменяющее Регламент (EEC) № 611/93 в отношении введения окончательной антидемпинговой пошлины на импорт в Сообщество некоторых электронных микросхем, известных как DRAM, произведенных в Республике Корея

EurLex-2 it Il GEPD comprende la needità di raccogliere un’ampia serie di informazioni, inclusi dati personali, come sopra specificato, ma rileva che si devono prevedere regole strict in materia di conservazione e di diffusion di tali dati

en 3.«Микросхемы микропроцессора», «микросхемы микрокомпьютера» и микросхемы микроконтроллера, имеющие любую из следующих характеристик:

EurLex-2 it Decisione della Commissione, dell ‘# dicembre #, relativa all’autorizzazione di metodidic. suino в Словении [notificata con il numero C #]

en «Микропроцессорная микросхема» (3) означает «монолитную интегральную схему» или «многокристальную интегральную схему», содержащую арифметико-логический блок (ALU), способный выполнять ряд общих инструкции назначения из внешнего хранилища.

EurLex-2 it Sono così felice di essere tornato в Луизиане

en Если интегральная схема представляет собой кремниевую «микросхему микрокомпьютера» или микросхему микроконтроллера, описанную в 3A001.a.3. при длине слова операнда (данных) 8 бит или менее состояние управления интегральной схемы определяется в 3A001.a.3.

EurLex-2 it Ti chiedo scusa

en Комиссия была проинформирована о том, что компенсационная пошлина на импорт определенных электронных микросхем, известных как DRAM (динамическая память с произвольным доступом) из Республики Корея, возможно, не выполняется. взимается с определенного импорта указанных DRAM.

EurLex-2 it Codici dei tipi di prodotti

en В эти подзаголовки также включены электронные бесконтактные карты / метки, обычно состоящие из катушки, которая активируется сигналом от считывателя и вырабатывает напряжение для питания микросхемы, генератор кода, который при приеме сигнала от катушки генерирует данные, и антенна передачи сигнала.

Eurlex2019 it Medie nel periodo di riferimento di cui all’articolo #, paragrafo #, del regolamento (CE) n.Микросхема

— перевод на итальянском языке — esempi inglese

В основе al termine ricercato questi esempi potrebbero context parole volgari.

В base al termine ricercato questi esempi potrebbero context parole colloquiali.

Говорю вам, у него в кармане была микросхема .

Пытаемся найти конкретную микросхему .

Но это новенькая микросхема .

Сенько Бробин, директор Контрразведки по всей Восточной Европе, пока не смог сломать Дина или найти микросхему .

Сенко Бробин, руководитель службы безопасности всей Европы, не находящейся под рукой и являющийся дальним частным деканом, не входящий в систему с microcircuito .

Ваша миссия, если вы решите ее принять, — вытащить Дина и микросхему до того, как он сломается.

Эта миссия, она принимает решение о принятии решений, восстанавливает Дин и микросхем … прежде всего Дина.

В одной из них находится микросхема , которая нам нужна.

Это случай электронных платежных систем, для которых правила устанавливаются консорциумами (например, EMV) и ассоциациями (ABI, CBI, microcircuit ).

Это может быть система электронного управления, соответствующая качеству стабилизации звука в консорциумах (ad esempio EMV) и ассоциациях (ABI, CBI, Microcircuito ).

Если я его отошлю, скажете, где микросхема ?

Обратите внимание, что микросхема представляет собой небольшую кремниевую микросхему , встроенную в карту, а металлический дизайн золотого или серебристого цвета на поверхности карты является контактом.

Этот чип представляет собой пикколо microcircuito из силикона, включенного в схему, и имеет дизайн в цвете металло или ардженто, лучше всего на карте и в контакте.

Карта с микрочипом — это карта, в которую встроен микрочип, микросхема , которая, как правило, изготовлена ​​из кремния, хотя это не обязательно, и которая выполняет функции, необходимые для электроники.

Чип-карта — это карта, которая встроена в микросхему, un microcircuito , которая является общей для силикона, не требующего обязательного использования, и имеет возможность пользоваться электронными функциями.

Посмотрим на микросхему , Дан.

А теперь отдайте мне эту микросхему .

Сходи к Бойлану — там делают микросхему .

Вай да Бойлан. Stanno facendo un circuit lì.

Не удалось найти каноническую микросхему , которая соответствует кортикальному столбу, и не был расшифрован генетический механизм, определяющий, как построить столбец.

Non si è ancora trovato un microcircuito modello che corrisponda alla colna corticale, e non sono stati decifrati meccanismi генетические, которые кодифицируют для создания детского колонны.

Проект включает: Базы данных: 3D реконструированные модели нейронов, синапсов, синаптических путей, микросхема , статистика , компьютерные модели нейронов, виртуальные нейроны.

Этот проект включает: База данных: 3D-моделирование нейронов, синапсы, синапсы, микросхем, статистики, компьютерные модели нейронов и виртуальных нейронов.

Отсутствует микросхема .

Биоорганическая микросхема , взаимодействующая напрямую между мозгом и машиной.

Un microchip bio organo che mette in comunicazione macchina e cervello.

«Микросхема микропроцессора » (3) означает «монолитную интегральную схему» или «многокристальную интегральную схему», содержащую арифметико-логический блок (АЛУ), способный выполнять серию инструкций общего назначения из внешнего хранилища.

NB: « Crittoanalisi «: Анализ критической системы и / о делле суеверит, чтобы дать возможность рисовать различные конфиденциальные данные или данные, содержащиеся в тексте в кьяро. «Синтетизатор частоты» (3).

«Микросхема микропроцессора » (3) означает «монолитную интегральную схему» или «многокристальную интегральную схему», содержащую арифметико-логический блок (АЛУ), способный выполнять серию инструкций общего назначения из внешнего хранилища.

«Матрис» (1) (2) ( 8 ) (9). Fase sostanzialmentecontina che riempie lo spazio fra Particelle, materiali filiformi o волокна. «Memoria centrale» (4).

«Микросхема микропроцессора » (3) означает «монолитную интегральную схему» или «многокристальную интегральную схему», содержащую арифметико-логический блок (АЛУ), способный выполнять серию инструкций общего назначения из внешнего хранилища.

Trattamento di immagini esterne portatrici di informazioni mediante algoritmi quali la сжатие в темпе, фильтрация, история, выбор, корреляция, свертывание или преобразование в доминант (per es. Trasformata Rapida di Fourier) , ,

0 comments on “Схема микросхемы: Схемы для начинающих радиолюбителей | Простые и рабочие схемы!

Добавить комментарий

Ваш адрес email не будет опубликован.