Терморегулятор вентилятора – Терморегулятор кулера своими руками Схема и Фото

Терморегулятор для вентилятора своими руками – Поделки для авто

Сегодня рассмотрим принцип действия системы охлаждения радиатора, а точнее систему управления вентилятором. Вентилятор в автомобиле служит для охлаждения двигателя при его нагреве, однако постоянная работа вентилятора совсем не требуется, во-первых, она бессмысленна, когда радиатор не требует дополнительного охлаждения, во-вторых постоянная работа вентилятора сильно нагружает бортовую сеть, что также ни есть хорошо.

Поэтому нам необходимо обеспечить включение вентилятора при определенном нагреве радиатора (или жидкости в нем). Сама схема представлена на чертеже ниже, помимо включения при определенном нагреве схема обеспечивает плавное включение вентилятора и уменьшает звуковые шумы, что хорошо скажется на сроке службы вентилятора.

Основным элементом в схеме является терморезистор с отрицательным коэффициентом температурной зависимости. Рабочее сопротивление 5-50 кОм все зависит от марки терморезистора. Терморезистор приваривается непосредственно к радиатору. Операция очень ответственная, терморезистор обязательно должен касаться радиатора, при плохой сварке потом придется все переделывать, поэтому этому моменту уделяем особое внимание.

Все номиналы или их определение расписано в схеме, для подбора R1 замеряем мультиметром значение сопротивления терморезистора делим на 5. Полученный результат даст вам понять примерный диапазон значения переменного резистора. Устанавливаем необходимые значения резистора, распаиваем схему и начинаем отладку работы прибора.

Показанная на схеме RC цепочка указана штрихпунктирной линией, потому что не всегда требуется. В случае если при отладке схема будет «хондрить» ее надо будет довесить. Вращая переменный резистор и измеряя сторонним прибором температуру радиатора выставляем необходимую нам температуру включения вентилятора.

Вентилятор достаточно мощный прибор поэтому транзистор, коммутирующий ток через него, обязательно устанавливаем на теплоотвод или на корпус автомобиля, однако в этом случае необходимо обеспечить изоляцию корпуса транзистора от кузова, это обычно делается с помощью слюдяной прокладки. В качестве замены КТ815, можно взять КТ819 или иностранный аналог.

Автор; Ака Касьян

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai

Терморегулятор для вентилятора ПК, видеокарты, процессора и др. куллеров без встроенных датчиков температуры .

Основная проблема воздушного охлаждения ПК- шум. При увеличении скорости вентиляторов увеличивается и шум. Шум раздражает, отрицательно влияет на наше здоровье и производительность.
Так почему бы не начать бороться с ним? Решение - терморегулятор. В большинстве ПК вентиляторы вращаются с максимальной скоростью, вне зависимости от загруженности процессора и внешней температуры. Современные вентиляторы ПК имеют встроенные терморегуляторы, впрочем как и некоторые материнские платы.
Идея использования терморегулятора сама по себе не нова, сейчас вентиляторы с функцией терморегуляции довольно распространены. К сожалению, большинство из них имеют свои недостатки:

  • Температура процессора устанавливается автоматически. Недостатком такого подхода является отсутствие возможности подстройки вентилятора под конкретную модель процессора (рабочие температуры разных процессоров отличаются). Очевидно, что такие вентиляторы совершенно не подходят для overclocking'a.
  • Большинство вентиляторов регулируют скорость вращения лопастей, однако не могут отключиться полностью. Это особо актуально для вентиляторов, используемых в корпусах ПК. К тому же существуют процессоры, которые при отсутствии загрузки вообще не требуют охлаждения.
  • Каждый вентилятор требует отдельный сенсор. Поэтому наилучшим решением будет создать терморегулятор для вентилятора самостоятельно.

За смешную цену - до 4$, терморегулятор будет иметь следующие особенности:

  • Возможность подстройки температуры пользователем.Настройка температуры сможет производиться в большом диапазоне, поэтому терморегулятор можно будет применять как для вентиляторов, используемых в корпусе ПК, так и для вентиляторов, используемых с процессором.
  • Вентилятор отключается, если температура достигает определенного минимума.
  • Возможность одновременного использования одного сенсора с несколькими вентиляторами. Итак, теперь, покончив с теорией, можно приступать непосредственно к сборке устройства.

Нам понадобиться всего лишь три (!) элемента:

  • Силовой MOSFET транзистор (N канальный)
  • Потенциометр 5,1-10 кОм
  • Сенсор температуры NTC с сопротивление примерно 1-10 кОм (термистор)

Достать любой элемент не составит никакого труда. 
Особых требований к MOSFET'у нет - напряжение более 12 В и ток более 5A - n канал.
Как найти именно n-канальный , очень просто, ищите любой попавшийся под руку MOSFET , например с материнской платы 

и смотрите по названию в интернете его даташит (pdf), если стрелка (средняя - затвор ) внутрь , то это n-канал , если стрелка - наружу , то это P-канал подробнее в Википедии

Собирая устройство, был использован 13N03LA  MOSFET со старой материнской платы. 
Естественно надо чтобы сам MOSFET оказался годным  🙂
Оттуда же может быть взят и термистор  


 

 

Если материнка поновее и датчик встроен в процессор, поищите термистор на старой плате или в сгоревшем блоке питания или в сгоревшей лампе эномке .

 

 

Не стоит ломать новые изделия , т.к. стоимость термистора несколько центов.

NTC термистор -Вы можете использовать любой термистор, единственные параметры - сопротивление ( 1-10 кОм)

Потенциометр (подстроечник) - любой , обычно надо ставить вдвое меньше по сопротивлению , чем термистор.

 

Схема терморегулятора:

 

 

 

 

 как видно из схемы - ставим любой, что есть под рукой 🙂
например

 

 

 

 

монтажная схема 

 

 

пример собранного устройства

 

 


Возможно, вам понадобятся:

  • Изоляция. Не смотря на то что устройство не требует отдельного корпуса, изолировать его просто необходимо. Можно воспользоваться как термотрубками, так и старой доброй изоляционной лентой.
  • Макетная плата. Необязательна, но для удобства все же стоит воспользоваться.
  • Радиатор для транзистора. В нормальных условиях необязателен, однако при использовании более трех вентиляторов, может придется установить.

Когда все будет собрано - устройство будет выглядеть довольно компактно
 Если у Вас возникают проблемы при обращении с паяльником - используйте макетную плату.
Если кулер имеет вывод датчика вращения , его не используем.
Параллельно каждому кулеру желательно поставить конденсатор примерно 10 мкф -16В 

Предупреждение !
Убедитесь, что вы хорошо изолировали устройство. 
Не допускайте контакта устройства с корпусом и др. элементами ПК. 
Не пытайтесь подключить провод сигнала к материнской плате - это может повредить ее. Теперь необходимо настроить терморегулятор. Для этого включаем «холодный» компьютер.
Регулируем сопротивление потенциометра и устанавливаем его на значении, при котором лопасти вентилятора не вращаются. Когда температура начинает приближаться к максимальной уменьшаем сопротивление до того как вентилятор начинает слабо вращаться. Не жалейте времени настраивая нужное сопротивление, т.к. от этого зависит эффективность всего устройства. Если настройки неправильны компьютер перегреется или же вентилятора будут работать на максимальной мощности все время. Если вы добавили дополнительный вентилятор необходимо настроить терморегулятор заново.

Внимание! 
Вы собираете это устройство на свой страх и риск, автор и администрация сайта не несет никакой ответственности за последствия использования этого устройства.

2zv.ru

Терморегулятор вентилятора блока питания ПК CAVR.ru

Рассказать в:
Не так давно попался в руки блок питания enhance p520n от домашнего компьютера. Помимо основной платы блока питания, в ней обнаружилась еще небольшое устройство. Это был терморегулятор скорости вращения вентилятора. Схема простенькая, содержит всего два транзистора, четыре резистора, диод и конденсатор. Схема устройства показана на рисунке 1.

Данный регулятор можно применять не только для блоков питания, но и в усилителях мощности низкой частоты, сварочных аппаратах, мощных преобразователях, регуляторах мощности и т.д. Зачем зря жужжать, если все ПП (полупроводниковые приборы) холодные. Диод vd1, стоящий на плате и в указанной схеме по всей вероятности нужен только в конкретном ИИП, поэтому его можно убрать. На плате стоит диод 1n4002. Первый транзистор можно заменить на отечественный— КТ3102. Импортный транзистор c1384 по документации рассчитан на ток коллектора 1А, напряжение коллектор-эмиттер 60В, постоянная рассеиваемая мощность коллектора 1 ватт. Можно попробовать заменить на наш КТ814 с любой буквой или на КТ972. Электролитический конденсатор должен быть на напряжение 16 вольт.
Начальную скорость вращения вентилятора выбирают изменением величины сопротивления резистора r1. Схема работает следующим образом. Когда температура внутри контролируемого объема или непосредственно теплоотвода ПП невысокая, то транзистор vt2 призакрыт и вентилятор имеет не большую скорость вращения. При увеличении температуры начинает уменьшаться сопротивление терморезистора rt, что в свою очередь приведет к уменьшению напряжения на базе vt1, начнет уменьшаться и ток коллектора этого транзистора. Уменьшение тока через первый транзистор приведет к увеличению тока база-эмиттер второго транзистора vt2 (уменьшится шунтирующее действие транзистора vt1 на переход база-эмиттер vt2). Транзистор vt2 начнет открываться, напряжение на вентиляторе начнет возрастать, Скорость его вращения увеличится.
Для большей универсальности в схему можно ввести стабилизатор напряжения, например, КР142ЕН8Б. У этой микросхемы максимальное входное напряжение во всем диапазоне температур равно 35 вольт.
Вид платы показан на фото 1, а рисунок печатной платы на рисунке 2.
В случае применения поверхностного монтажа, плату можно будет закрепить непосредственно на контролируемом теплоотводе для ПП, сделав в ней соответствующее отверстие для винта крепления.
Раздел: [Все для "кулера" (Вентилятора)]
Сохрани статью в:
Оставь свой комментарий или вопрос:

www.cavr.ru

Терморегулятор для вентилятора автомобиля, автоэлектрика – Поделки для авто

Терморегулятор для вентилятора, с уверенностью можно использовать для автомобиля, в помощь приходит автоэлектрика. Подобная система, неоднократно доказала свою доступность, простоту и надёжность. Основу устройства, составляют всего лишь три компонента – подстроечный резистор, силовой транзистор и термистор на 10 килоОМ. Терморегулятор – сделай сам!

Потребуется мощный транзистор, поскольку он будет являться, силовой частью регулятора и во время подключения вентиляторов повышенной мощности, именно через него, протекает большой ток. В качестве датчика температуры, будет использоваться термистор. Для более точной настройки устройства, подстроечный резистор, на 10 килоОМ, лучше взять многооборотный.

Установку нужной температуры, также как и чувствительность к температуре, регулируют путём вращения переменного резистора. Термистор, по сути, является переменным резистором, его сопротивление, напрямую зависит от температуры, чем она выше – тем меньше сопротивление у термистора. Куллер, следовательно, будет увеличивать вращения, именно при больших температурах.

Термистор, играет роль термодатчика и крепится либо на радиатор, либо на блок двигателя.

Подобная система, буквально создана, для старых, отечественных марок автомобилей, в которых вентилятор работает, не зависимо от того, какая температура воды в двигателе. При желании, можно заменить полевой транзистор более мощным, например IRF3205, IRZF44, IRL3705, IRFZ40, IRFZ48, IRFZ46. Кстати, IRF3205 является достаточно сильным, его рассеивающая мощность составляет 200 ватт. Вне зависимости от вашего выбора, транзистор необходимо укрепить на теплоотвод (но при маломощных нагрузках, до 50, теплоотвод не потребуется), его просто прикрепляют на кузов автомобиля, через изолирующие пластинки и обязательно, шайбы.

Следом, необходимо добиться нужной степени температурного срабатывания системы. Этого можно добиться, медленно вращая переменный резистор.

Известно, что термисторы делятся на два вида, с отрицательным и положительным температурным коэффициентом. И, как следствие, при понижении температуры, сопротивление уменьшается, а с повышением, соответственно увеличивается. В рассмотренном опыте, был использован термистор с положительным коэффициентом температуры.

Когда термистор разогревается и достигает определённой температуры, то его сопротивление резко увеличивается и на затвор силового ключа, прекращается подача тока. Благодаря этому, закрывается полевой ключ и при прекращении нагрева, уменьшается сопротивление термистора (в данном опыте, 220 – 230 Ом при температуре в комнате 19 градусов). На затвор ключа, возобновляется подача тока, благодаря чему он открывается и подаёт напряжение на вентилятор.

Если поставить вместо нагрузки (маленького вентилятора) автомобильное реле, то с лёгкостью можно подсоединить автомобильный вентилятор включения охлаждения, то есть карлсона))), а если ещё и переменный резистор вывести на панель приборов или просто в салон авто, то можно будет регулировать порог срабатывания вентилятора прямо на ходу.

Используя эту простейшую схему, можно соорудить довольно чувствительный датчик температуры, который с успехом можно применить в быту. А если использовать более точные переменные резисторы (многооборотные), вполне реально добиться, срабатывания и отключения разного устройства от температуры человеческого тела.

Управлять мощными сетевыми нагрузками, становится, возможно, подключив вместо вентилятора, электромагнитное реле на необходимое напряжение и ток. Автоматическое включение и выключение обогревателя, когда температура в комнате выше или ниже нормы, может служить тому примером.
Также, схожее устройство, можно соорудить, используя биполярные транзисторы, применяя германиевые диоды, вместо термодатчиков.

И ещё хочу отметить один момент, если у вас произошла неприятность или вы просто решили починить кузов своего автомобиля, то есть отличный центр, который занимается именно кузовным ремонтом машины. Доверьтесь профессионалам и ваш кузов снова будет как новенький.

Благодарю за внимание.

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai

Терморегулятор для вентилятора своими руками – Поделки для авто

Сегодня рассмотрим принцип действия системы охлаждения радиатора, а точнее систему управления вентилятором. Вентилятор в автомобиле служит для охлаждения двигателя при его нагреве, однако постоянная работа вентилятора совсем не требуется, во-первых, она бессмысленна, когда радиатор не требует дополнительного охлаждения, во-вторых постоянная работа вентилятора сильно нагружает бортовую сеть, что также ни есть хорошо.

Поэтому нам необходимо обеспечить включение вентилятора при определенном нагреве радиатора (или жидкости в нем). Сама схема представлена на чертеже ниже, помимо включения при определенном нагреве схема обеспечивает плавное включение вентилятора и уменьшает звуковые шумы, что хорошо скажется на сроке службы вентилятора.

Основным элементом в схеме является терморезистор с отрицательным коэффициентом температурной зависимости. Рабочее сопротивление 5-50 кОм все зависит от марки терморезистора. Терморезистор приваривается непосредственно к радиатору. Операция очень ответственная, терморезистор обязательно должен касаться радиатора, при плохой сварке потом придется все переделывать, поэтому этому моменту уделяем особое внимание.

Все номиналы или их определение расписано в схеме, для подбора R1 замеряем мультиметром значение сопротивления терморезистора делим на 5. Полученный результат даст вам понять примерный диапазон значения переменного резистора. Устанавливаем необходимые значения резистора, распаиваем схему и начинаем отладку работы прибора.

Показанная на схеме RC цепочка указана штрихпунктирной линией, потому что не всегда требуется. В случае если при отладке схема будет «хондрить» ее надо будет довесить. Вращая переменный резистор и измеряя сторонним прибором температуру радиатора выставляем необходимую нам температуру включения вентилятора.

Вентилятор достаточно мощный прибор поэтому транзистор, коммутирующий ток через него, обязательно устанавливаем на теплоотвод или на корпус автомобиля, однако в этом случае необходимо обеспечить изоляцию корпуса транзистора от кузова, это обычно делается с помощью слюдяной прокладки. В качестве замены КТ815, можно взять КТ819 или иностранный аналог.

Автор; Ака Касьян

Похожие статьи:

xn----7sbgjfsnhxbk7a.xn--p1ai

Термостат W1209. Автозапуск вентиляторов системного блока

Всем огромный привет!
Хочу поделиться своим рецептом эффективной системы охлаждения корпуса системного блока. Проект реализован на основе электронного термостата W1209.
Подробно расписывать все характеристики устройства не буду, на муське уже есть отличный обзор!
Я же хочу уделить внимание одному из возможных способов применения это платки.
Небольшая предыстория.
Собрал я для своих неприхотливых геймерских нужд бюджетный ПК. Из охлаждения, не считая вентиляторов видеокарты и кулера процессора, в корпусе были установлены дополнительно три 120-ти мм вентилятора со светодиодной подсветкой. Один на выдув теплого воздуха и два на вдув.

После сборки я проверил температуры ЦП и видеокарты под нагрузкой и в повседневных задачах.
Центральный процессор с боксовским кулером не прогревался выше 56 градусов под нагрузкой, а в обычном режиме температура колеблется в пределах 34-36 градусов.
При прохождении стресс-теста видеокарты, температура поднималась максимум до 59 градусов, в обычных задачах около 26-27 градусов.


Затем я прогнал еще один стресс-тест видеокарты, но уже с работающими дополнительными вентиляторами, которые установлены на вдув. Тест показал, что падение температуры на видеокарте оказалось незначительным, всего 5-6 градусов.

И тут я задумался, а зачем мне постоянно работающие два дополнительных вентилятора, если они недостаточно эффективно охлаждают систему. С другой стороны 5-6 градусов в экстремальных нагрузках лучше, чем ничего.
Сначала я подумал об установке реобаса, но проблема в том, что мой корпус AeroCool QS-240 не позволяет это сделать без вмешательства в геометрию кузова.=)

Тогда-то я и вспомнил о заказанном мною с AliExpress электронном термостате.
Размер платы всего 40х48х14мм, что позволяет практически беспрепятственно установить его в любом удобном месте системного блока. Термодатчик закреплен на проводе длиной 30см, а этого более, чем достаточно, но при необходимости его можно с легкостью удлинить. Помимо этого три кнопки управления и 3-х разрядный индикатор. И не красного цвета, а синего, за счет чего он отлично вписался в общий вид всей системы.


Для работы термостата необходимо питание 12В, которое можно взять с любого molex разъема блока питания, и эти же 12В нужны и для вентиляторов.
Кратковременное нажатие на кнопку «SET» позволяет выбрать температуру включения реле с помощью кнопок "+" и "-". Если зажать кнопку «SET» на несколько секунд, то откроется меню дополнительных настроек.

Расшифровка пунктов меню

P0 — Режим работы С (охладитель) либо H (нагреватель), по умолчанию С
Фактически просто инвертирует логику работы термостата.
P1 — гистерезис переключения 0,1 — 15,0ºС, по умолчанию 2,0ºС
Несимметричный (в минус от уставки), позволяет снизить нагрузку на реле и исполнитель в ущерб точности поддержания температуры.
P2 — максимальная уставка температуры -45ºС 110ºС, по умолчанию 110ºС
Позволяет сузить диапазон уставки сверху
P3 — минимальная уставка температуры -50ºС 105ºС, по умолчанию -50ºС
Позволяет сузить диапазон уставки снизу
P4 — коррекция измеряемой температуры -7,0ºС 7,0ºС, по умолчанию 0,0ºС
Позволяет проводить простейшую калибровку для повышения точности измерения (только сдвиг характеристики).
P5 — задержка срабатывания в минутах 0-10мин, по умолчанию 0мин
Иногда необходима для задержки срабатывания исполнителя, критично например для компрессора холодильника.
P6 — ограничение отображаемой температуры сверху (перегрев) 0ºС-110ºС, по умолчанию OFF
Лучше без необходимости не трогать, т.к. при некорректной настройке дисплей будет постоянно отображать "---" в любом режиме и придётся скидывать настройки в состояние по умолчанию, для этого надо при очередном включении питания удерживать нажатыми кнопки + и -.
Все настройки сохраняются после отключения питания.


Принцип работы элементарно прост. Необходимо выставить температуру включения реле и значение гистерезиса, для отключения устройства.
Но перед этим нужно сделать калибровку. Для этого берем стакан холодный воды и лед.

Перемешиваем и опускаем туда термодатчик. В идеале на дисплее должна отобразится цифра равная нулю, если так, то дальнейшая калибровка не нужна, если же на дисплее число отличное от нуля, то записываем его и с помощью кнопок управления переходим в пункт меню P4, где необходимо установить значение полученной погрешности. В моем случае термодатчик выдал температуру в +1.2 градуса, значит выставляем погрешность -1.2 градуса.

Для проверки калибровки проделываем еще один перетест.
Теперь можно приступить к замерам температуры в корпусе.
Для этого, с помощью двухстороннего скотча, я приклеил термодатчик на радиатор видеокарты, именно от ее температуры и будет зависеть работа вентиляторов.

При желании можно закрепить на радиаторе процессора, или просто удобно разместить в корпусе системного блока, все зависит от конкретно ваших потребностей. Я же хотел автоматический запуск вентиляторов только тогда, когда нагружена видеокарта.
После установки датчика запускаем стресс-тест видеокарты, и смотрим за показаниями температуры ядра видеочипа и показаниями температуры термостата на поверхности радиатора.
Проделываем еще один тест, но уже без нагрузки на видеокарту, то есть обычные повседневные задачи.
Сверяем полученные значения и делаем выводы.
В моем случае, максимальная температура видеоядра составляла 60 градусов (+ -), при этом температура на термостате была в пределах 46-47 градусов.

В обычном рабочем режиме температура на поверхности радиатора около 27 градусов.

В итоге я решил, для запуска термостата выставить температуру в 31 градус.

А в пункте P1 оставил значение гистерезиса по умолчание, то есть равное 2-ум градусам. Это означает, что как только температура на поверхности радиатора видеокарты поднимется до значения 31 градус — реле сработает и запустит вентиляторы охлаждения. После того, как температура упадет на 2 градуса ниже заданного значения, то есть до 29 градусов, реле разомкнется и отключит дополнительные вентиляторы.
Всё просто.

После всех замеров и настроек, монтируем термостат в удобное место, подключаем питание и вентиляторы. Для этого я заранее подготовил два молекс разъема (папа и мама) и небольшую перемычку. У каждого разъема только два контакта +12В и земля.


Соединить все это необходимо следующим образом.
Разъем папа:
+12В в колодку +12В;
Земля в колодку GND;
Разъем мама:
+12В в колодку K0;
Земля в колодку GND;
Перемычка ставится между +12В и K1.
Папу подключаем к блоку питания, а маму к вентиляторам.

Спасибо всем, кто дочитал мой обзор до конца. Если остались вопросы, то пишите их в комментариях, обязательно постараюсь всем ответить.

Ну и посмотрите видео, тут наглядно показан весь процесс.

Всем удачи и всем пока.

mysku.ru

Автоматическое управление вентилятором | Все своими руками

Опубликовал admin | Дата 22 января, 2016

     Не так давно попался в руки блок питания Enhance P520N от домашнего компьютера. Помимо основной платы блока питания, в ней обнаружилась еще небольшое устройство. Это был терморегулятор скорости вращения вентилятора. Схема простенькая, содержит всего два транзистора, четыре резистора, диод и конденсатор. Схема устройства показана на рисунке 1.


     Данный регулятор можно применять не только для блоков питания, но и в усилителях мощности низкой частоты, сварочных аппаратах, мощных преобразователях, регуляторах мощности и т.д. Зачем зря жужжать, если все ПП (полупроводниковые приборы) холодные. Диод VD1, стоящий на плате и в указанной схеме по всей вероятности нужен только в конкретном ИИП, поэтому его можно убрать. На плате стоит диод 1N4002. Первый транзистор можно заменить на отечественный — КТ3102. Импортный транзистор C1384 по документации рассчитан на ток коллектора 1А, напряжение коллектор-эмиттер 60В, постоянная рассеиваемая мощность коллектора 1 ватт. Можно попробовать заменить на наш КТ814 с любой буквой или на КТ972. Электролитический конденсатор должен быть на напряжение 16 вольт.

Начальную скорость вращения вентилятора выбирают изменением величины сопротивления резистора R1. Схема работает следующим образом. Когда температура внутри контролируемого объема или непосредственно теплоотвода ПП невысокая, то транзистор VT2 призакрыт и вентилятор имеет не большую скорость вращения. При увеличении температуры начинает уменьшаться сопротивление терморезистора Rt, что в свою очередь приведет к уменьшению напряжения на базе VT1, начнет уменьшаться и ток коллектора этого транзистора. Уменьшение тока через первый транзистор приведет к увеличению тока база-эмиттер второго транзистора VT2 (уменьшится шунтирующее действие транзистора VT1 на переход база-эмиттер VT2). Транзистор VT2 начнет открываться, напряжение на вентиляторе начнет возрастать, Скорость его вращения увеличится.
     Для большей универсальности в схему можно ввести стабилизатор напряжения, например, КР142ЕН8Б. У этой микросхемы максимальное входное напряжение во всем диапазоне температур равно 35 вольт.
     Вид платы показан на фото 1, а рисунок печатной платы на рисунке 2.


     

В случае применения поверхностного монтажа, плату можно будет закрепить непосредственно на контролируемом теплоотводе для ПП, сделав в ней соответствующее отверстие для винта крепления.

Обсудить эту статью на - форуме "Радиоэлектроника, вопросы и ответы".

Просмотров:9 563


www.kondratev-v.ru

0 comments on “Терморегулятор вентилятора – Терморегулятор кулера своими руками Схема и Фото

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *