Схема ибп apc – Схемотехника источника бесперебойного питания APC SmartUPS 1000

СХЕМА BACK UPS

   Источник бесперебойного питания, или как в простонародье его называют ЮПС (BACK UPS) — это по сути повышающий преобразователь и зарядное устройство в одном корпусе. Устройство очень полезное, особенно для владельцев ПК. Устройство может автономно питать компьютер, если по каким-то причинам внезапно выключили электричество. К сожалению, встроенный аккумулятор не позволяет питать компьютер в течении долгого времени, поскольку его емкость ограничена 7-ю амперами (в некоторых мощных моделях стоит АКБ до 15-20А). Перейдем к самому аккумулятору. 

   В источниках бесперебойного напряжения используется закрытый гелиевый или кислотный аккумулятор. Встроенный аккумулятор рассчитан обычно на емкость от 7 до 8 Ампер/час, напряжение — 12 вольт. Аккумулятор полностью герметичен, это позволяет использовать устройство в любом состоянии. Помимо аккумулятора, внутри можно разглядеть громадный трансформатор, в данном случае на 400-500 ватт. Трансформатор работает в двух режимах —

 1) как повышающий трансформатор для преобразователя напряжения.

 2) как понижающий сетевой трансформатор для зарядки встроенного аккумулятора. 

   При работе в обычном режиме нагрузка питается отфильтрованным напряжением сети. Для подавления электромагнитных и помех во входных цепях используются фильтры. Если входное напряжение становится ниже или выше установленной величины или вообще исчезает, то включается инвертор, который в нормальном режиме находится в отключенном состоянии. Преобразуя постоянное напряжение батарей в переменное, инвертор осуществляет питание нагрузки от батарей. BACK UPS класса Off-line неэкономично работают в электросетях с частыми и значительными отклонениями напряжения от номинальной величины, поскольку частый переход на работу от батарей уменьшает срок службы последних. Мощность выпускаемых производителями Back-UPS находится в диапазоне 250-1200 ВА. Схема источника бесперебойного напряжения BACK UPS достаточно сложна. В архиве вы можете скачать большой сборник принципиальных схем, а ниже приведены несколько уменьшенных копий — клик для увеличения. 

   Тут можно встретить специальный контроллер, который отвечает за правильную работу устройства. Контроллер активирует реле, когда сетевое напряжение отсутствует и если бесперебойник включен, то он будет работать как преобразователь напряжения. Если напряжение в сети снова появляется, то контролер отключает преобразователь и устройство превращается в зарядное устройство. Емкость встроенного аккумулятора может хватать до 10 — 30 минут, если, разумеется, устройство питает компьютер. Подробнее почитать про работу и назначение узлов бесперебойника можно почитать в этой книге. 

   BACK UPS может быть использован в качестве резервного источника питания, вообще рекомендуется иметь каждому дому по бесперебойнику. Если бесперебойный ИП предназначен для бытовых потребностей, то желательно выпаять с платы сигнализатор, он напоминает, что устройство работает как преобразователь, напоминание писком он делает в каждые 5 секунд, а это надоедает. На выходе преобразователя чистые 210-240 вольт 50 герц, но что касается формы импульсов, там явно не чистый синус. BACK UPS может питать любую бытовую технику, в том числе и активную, разумеется, если мощность устройства позволит этого.

el-shema.ru

Доработка источника бесперебойного питания APC Back-UPS 600I своими руками

Введение

UPS указанной модели в случае отключения питания к силу своей схемной реализации способен лишь обесточить нагрузку, сам он остается включенным. В данной статье описывается, как устранить этот недостаток.
Описанное здесь устройство можно использовать с любой моделью Back-UPS, но в этом случае приведенная здесь информация о коммуникационном порте может оказаться неверной.

Обзор UPS, коммуникационного порта и интерфейсного кабеля 940-0020B

Источник бесперебойного питания APC Back UPS 600I имеет топологию StandBy (Off-Line) – рис. 1.

Рис. 1. Топология StandBy

UPS, построенный по данной схеме, нередко называют термином "Off-Line UPS". В каждый конкpетный момент вpемени он может находиться в одном из 2 pежимов pаботы - Stand-by или On-line. В случае, когда напpяжение в сети находится в допустимых пpеделах (Standby mode), transfer switch пеpеключен на пpотекание тока нагpузки по цепи "Surge suppressor - Filter". В этом pежиме UPS ничем не отличается от обыкновенного сетевого фильтpа. Hикакой стабилизации напpяжения не пpоисходит. Во вpемя pаботы в этом pежиме также пpоисходит заpядка аккумулятоpных батаpей UPS.

В случае выхода напpяжения сети за допустимые пpеделы, transfer switch пеpеключается на питание нагpузки по цепи "Battery - DC/AC inverter" (On-line mode), т.е. от энеpгии аккумулятоpной батаpеи, пpеобpазуемой инвеpтоpом в AC 220V. Так как пеpеключение контактов и запуск инвеpтоpа не могут пpоисходить мгновенно, питание нагpузки будет пpеpвано на некотоpое вpемя (Transfer Time). Большинство Standby UPS обеспечивают Transfer Time поpядка 4-8 ms. Особенность данной системы в том, что пеpеключение в On-Line пpи выходе напpяжения сети за допустимые пpеделы пpоисходит немедленно, а возвpат в Standby mode - с обязательной задеpжкой в несколько секунд. Иначе, пpи многокpатных бpосках напpяжения в сети, происходило бы непpеpывное пеpеключение Standby/On-Line и обpатно, что пpивело бы к значительным искажениям тока нагpузки и возможному выходу ее из стpоя или к сбою в ее pаботе.

Пpи этом следует учесть, что данная схема обычно не обладает возможностью стабилизации напpяжения пpи pаботе в Standby mode и, следовательно, пеpеходит в On-Line пpи каждом отклонении напpяжения сети. Разpяд аккумулятоpной батаpеи пpоисходит намного быстpее, чем обpатный заpяд. Мощность battery charger'а для данной схемы обычно выбиpается сpавнительно малой, и pасхода энеpгии от батаpей во вpемя brownout'ов не компенсиpует. Следовательно, для применения в случае низкого качества питающей сети данная топология UPS малопpигодна по двум пpичинам: 

  • а) Пpи частых пеpеходах в On-Line батаpея достаточно быстpо pазpяжается, не успевая восстановить заpяд за вpемя Standby mode, в pезультате чего UPS теpяет способность обеспечить аваpийное питание нагpузки в течение тpебуемого вpемени;

  • б) Частое повтоpение циклов pазpяд/заpяд сокpащает сpок службы аккумулятоpных батаpей.

Описание топологии взято из [1] (см. список используемых источников в конце статьи).

Коммуникационный порт

UPS имеет коммуникационный порт (рис. 2) для связи с COM-портом компьютера.

Рис. 2. Коммуникационный порт APC Back UPS

Назначение ножек порта:

  1. 1. Shutdown UPS. При батарейном питании напряжение высокого уровня RS-232 вызывает отключение инвертора и обесточивание нагрузки. UPS реагрует на этот сигнал только при питании нагрузки от батареи. На сайте APC указано, что сигнал должен действовать в течении 1 секунды, однако экспериментальная проверка показала, что UPS реагирует на сигнал немедленно.

  2. 2. Line Fail. В уровнях RS-232. Высокий уровень означает переход на батарейное питание.

  3. 3. Line Fail. Открытый коллектор. Нормально открыт.

  4. 4. GND

  5. 5. Battery Low. Открытый коллектор. Нормально открыт.

  6. 6. Line Fail. Открытый коллектор. Нормально закрыт.

  7. 7. Не используется.

  8. 8. Не используется

  9. 9. GND

Высокий уровень RS-232 – около +12в относительно земли порта, низкий – около –12в.

Примечание: при разработке каких-либо промежуточных схем можно использовать и ТТЛ уровни. UPS и COM-порт на них реагируют нормально.

Информация о разводке порте и назначении его контактов официальная, взята из [2] (см. список используемых источников в конце статьи).

Коммуникационный кабель

Через этот порт UPS можно подключить к COM-порту компьютера с помощью кабеля с кодом 940-0020B. Схема электрическая принципиальная кабеля приведена на рис. 3.

Рис. 3. Схема кабеля 940-0020B

Когда пропадает внешнее питание (отключили свет, например) на линии Line Fail является высокий уровень. Программа мониторинга UPS (например, PowerChute) обнаруживает это и, выполнив указанные ей действия, начинает выключение компьютера, после чего активизируется линия Shutdown, инвертор UPS отключается и компьютер обесточивается. Однако, здесь есть две особенности.

  • 1. Как отмечено в [1], Windows при завершении работы компьютера блокирует COM-порт и программа не может управлять 4 ногой порта. Smart UPS решает эту проблему введением специальной задержки (порядка 6 сек) между появлением сигнала Shutdown и обесточиванием нагрузки. В Back UPS такая задержка не предусмотрена и поэтому под Windows 2000 PowerChute Plus 5.2.1 не обесточивает нагрузку, хотя системная служба UPS в той же Win 2000 это делает. Исключение составляет Windows 2003 Server, в которой и системная служба и PowerChute обесточивают нагрузку. PowerChute Business Edition ведет себя также.

  • 2. У данной модели UPS выключатель такой конструкции, что его можно выключить только вручную, поэтому UPS полностью не выключается, а продолжает пищать, даже когда инвертор (нагрузка) выключились.

Первую проблему без использования довольно сложных схем решить невозможно, а предлагаемое в данной статье простое устройство решает вторую проблему – при обесточивании нагрузки UPS выключается автоматически.

Описание устройства

Основная идея предлагаемого устройства – выключение UPS при обесточивании нагрузки путем введения обратной связи в цепь выключателя UPS. Схема электрическая принципиальная устройства изображена на рис. 4.

Рис. 4. Устройство автоматического отключения UPS и его компоненты

Устройство подключается к UPS в двух местах – к выходным клеммам UPS (параллельно нагрузке) и вместо родного выключателя UPS. Родной выключатель при этом удаляется. 
Функционирует устройство следующим образом:

Пусть входное напряжение 220 В в норме. Включаем UPS нажатием кнопки “ON”. На выходных клеммах UPS появляется напряжение 220В. Реле K1 включается и своими контактами шунтирует кнопку “ON”, которую теперь можно отпустить. Для того, чтобы вручную выключить UPS необходимо нажать кнопку “OFF”. Цепь выключателя разрывается, UPS выключается, на выходе исчезает 220В, реле отключается, его контакты размыкаются. Кнопку “OFF” можно отпустить.

При исчезновении питания компьютер активизирует линию Shutdown порта, на выходе пропадает напряжение, реле отключается, его контакты размыкаются и выключают UPS.
Светодиод VD1 – зеленого цвета, индицирует включенное состояние UPS, VD2 – красный, загорается при исчезновении входного напряжения 220 В.

Выключатели SW1 и SW2 – с фиксацией, их можно использовать для «аварийного» включения UPS, если, например, сгорел трансформатор или реле (хотя это маловероятно – у меня UPS работает часов по 15 в сутки каждый день, устройство функционирует в течении 2 с небольшим лет и ничего пока не сгорело). Для этого необходимо выключить SW1. Питание на трансформатор и реле не подается, кнопки “ON”/”OFF” перестают функционировать, а SW2 превращается в выключатель UPS (без всякой автоматики, как родной выключатель, только без индикации).

Резистор R1 необходим для сокращения времени разряда электролитического конденсатора блока питания и, следовательно, ускорения отключения реле. Использование контактов 3 и 4 порта UPS не влияют на работоспособность кабеля 940-0020B, т.к. контакт 3 не используется схемой кабеля.

Рекомендации по изготовлению

Вся схема, кроме SW1 размещается в передней части корпуса UPS. Родной выключатель UPS необходимо удалить, после чего необходимо пробником (омметром) проверить, какие из четырех контактов являются контактами выключателя. У меня это – два ближних контакта (разъем расположен вдоль платы), если смотреть спереди. Другие 2 (дальние) – лампа в выключателе, индицирующая включенное состояние UPS и сбой электропитания.
Наш выключатель подключается к контактам выключателя на плате. Контакты лампы оставить неподключенными, т.к. в нашей схеме она не используется, ее заменяют светодиоды.

Питание 220 В следует взять с выходных клемм UPS.

Кнопки SB1, SB2, выключатель SW2 и оба светодиода можно разместить на месте родного выключателя. SW1 размещается на задней панели UPS рядом с выходными клеммами.
Провода, идущие к коммуникационному порту UPS припаиваются к соответствующим ножкам порта на плате.

Подбор деталей

Сразу скажу, что расчетом мощности трансформатора, его магнитопровода, обмоток и их намоткой я не занимался. Я взял готовый трансформатор подходящих габаритов, т.к. между батареей UPS и его передней стенкой довольно мало места (5-6 см). Выключатель SW1 я смонтировал на задней стенке UPS, все остальные элементы – спереди, между батареей и передней стенкой корпуса UPS.

Внимание! Перед сборкой не забудьте отключить UPS от сети, отключить батарею и разрядить электролиты на плате включением UPS без входного сетевого напряжения и батареи. При этом UPS издаст кратковременный звуковой сигнал.

Найти реле на 5 вольт может оказаться довольно трудной задачей – мне с трудом удалось найти только PЭC59. В таком случае можно взять, например, РЭС22, трансформатор на 12-15 вольт, увеличить токоограничивающие резисторы R2 и R3 до 2-3 кОм и использовать электролитический конденсатор C1 на напряжение не менее 16 в. R1 при этом можно не ставить, т.к. РЭС22 штука довольно мощная и электролит блока питания разряжается достаточно быстро.

В цепи выключателя действует напряжение 12 вольт при токе макс. 65 mA. Токи и напряжения переходных процессов не измерялись.

Хотелось бы обратить внимание на следующую особенность некоторых реле (например, того же РЭС59). У них есть электрическая связь между корпусом и контактной группой, поэтому при использовании такого реле необходимо позаботиться об изолировании его корпуса от металлического корпуса UPS. Если этого не сделать, то при первом же включении сгорит предохранитель на 1А, расположенный на плате UPS в цепи выключателя. По внешнему виду этот предохранитель похож на небольшой резистор или диод. Мне пришлось впаивать туда обычный стеклянный предохранитель отечественного (советского) производства взамен сгоревшего родного. Реле РЭС22 лишено этого недостатка.

Известные недостатки схемы

То, чего позволяет достичь устройство, сказано выше. Плюсом схемы также является ее предельная простота и дешевизна, т.к. она собирается из широко распространенных, доступных и дешевых деталей и для ее сборки не требуется хороших знаний, навыков и богатого опыта сборки/наладки электронных схем.

Очевидным минусом схемы является то, что она подключается к выходу UPS как нагрузка (компьютер) и поэтому полезная выходная мощность UPS немного снижается. Наколько именно, я сказать не могу, т.к. не измерял мощность моей схемы. Но величина этой потери довольно мала (у меня на UPS’е висят 2 компьютера с мониторами и заметного уменьшения времени работы от батареи я не заметил). Тем, для кого это критично, можно посоветовать точный расчет потребляемых токов реле, светодиодов, мощности трансформатора, его обмоток и его самостоятельное изготовление с тем чтобы снизить потери мощности.

Еще один минус схемы заключается в том, что она занимает 3-ю ногу порта UPS. Но т.к. стандартный кабель 940-0020B ее не использует, этим можно пренебречь. Если 3-я нога порта для чего-то необходима, то можно либо вообще отказаться от светодиода VD2, либо использовать 6 ногу порта. Правда во втором случае придется подключать VD2 через электронный ключ (инвертор) на транзисторе, т.к. логика работы 6-й ноги обратна логике 3-ей (когда питание 220В в норме земля, сбой - обрыв).

Недостатком также является то, что светодиод VD1 на приведенной схеме на самом деле показывает не состояние UPS (включен/выключен), а наличие какого-то напряжения на реле. Это приводит к тому, что светодиод может еще светиться, хотя реле уже отключилось и наоборот (в зависимости от используемого реле, светодиода и резистора R2). Исправить этот недостаток можно введением второй контактной группы реле в цепь светодиода. Здесь реле РЭС59 уже не годится, т.к. у него только одна контактная группа. Можно использовать РЭС22, у которого 4 группы. Строго говоря, при этом решении тоже возможны временные отклонения, т.к. контактные пары у электромеханических реле редко срабатывают строго одновременно, но это уже отличия иного, гораздо меньшего порядка и заметить их «на глаз» практически невозможно.

Правильно собранное устройство при исправных деталях не нуждается в какой-либо настройке и начинает работать сразу после включения. К сожалению, предоставить фотографии готового устройства не могу за неимением у меня возможности перегнать их в компьютер.

Это устройство я собрал 2 с небольшим года назад. Оно работает нормально и по сей день.
По идее, таким же образом можно доработать любой Back UPS, но я дорабатывал свой Back UPS 600I.

Список используемых источников

  1. UPS FAQ Сергея Полубарьева (http://ups.miem.edu.ru/ups_faq0.html)

  2. Knowledge Base на сайте фирмы APC (http://www.apcc.com/support/answers.cfm). 

Павел Негробов
hd44780(a)yandex.ru

09/03.2005


www.hwp.ru

новые схемы UPS APC и модернизация

В инете легко найти схемы на старые "железные" UPS APC Back-UPS моделей 250\400\600 и некоторые Smart"ы.
На более свежие модели тима 650MI (тоже "железный", улучшенный 600-й типа) или "пластмассовые" 350\475\500\650\800 (индексы ES, CS, RS, EI и др.) уже хрен найдёшь.
Но и на этот раз нашлось спасение - рутрекер.

Сервисные руководства по источникам бесперебойного питания APC [2006, PDF/DOC, RUS/ENG]

наткнулся на раздучу год назад, скачал на всяк. случай, авось пригодится. Пригодилось.

Оказывается "Бэки" выдают не 220 и не 230 вольт, а порядка 240-250 вольт на активную нагрузку (лампочку). Это не страшно. Если мерить тестором - 196 вольт (т.к. не синус). Дерьмо заключается в том, что в ёмкостную они загоняют все 270-280 !!! Я питал от юпсов что угодно, ничего ещё не сгорело. Но согласитесь, питать hi-fi усилок или av-ресивер (не с импульсным бп) такой напругой не есть гуд. Для усилка всёж надо напряжение поубавить (до 240) или использовать с более высокоомными колонками (иначе если врубешь "на всю", перегреется выход). Смех смехом, а усилок обретёт "недокументированный" прирост мощности.

В "железных" есть регулировка напряжения (потенциометр VR3), в пластмассовых уменьшение напруги - за счёт уменьшения сопротивления в цепи ОС. Но не всё так просто. Если уменьшить напряжение на 10% юпс понимает что где-то косяк и вырубается. Чем больше нагрузка и меньше напряжение питания (11-12в), тем ему легче, это понятно. При напряжении АКБ 14 и отсутствии нагрузки инвертор до предела уменьшает скважность, но это не спасает, на х.х. работать никак. Ещё можно программу контроллера переписать, тогда юпс чё захочешь будет выдавать!

Следующее извращение - хочу объединить впараллель 2 или больше ИБП (чтоб из 12 делать много 220, а не из 24 или 48). В простейшем случае, наверно, лучше от ШИМ-контроллера одного юпса раскачать оба транса. А вот если объединять 3, 4 и более ИБП нужно будет просто синхронизировать их ШИМ"ы (выв. 6 IC6 3524). Сейчас курю схемы по этому поводу. Ну и надеюсь трансформаторы индусы намотали с одинаковым количеством витков .

Кто чё думает?

P.S.
Интересно, но все, кроме BF350\500 ("длинный удлинитель"), эйписишные бэки выполнен на низкочастотном трансформаторе (заниженной мощности, что в бэках, что в смартах, поэтому последние неоправданно греются). Типа чем проще - тем надёжней, хотя бесперебойники в широком смысле простотой схемотехники не отличаются...

Единственый в семействе "длинный удлинитель", у которого двойное преобразование 12VDC -> 300\350VAC (десятки кГц) -> 300\350VDC -> 230VAC 50\60Гц.
BF350\500 - самая голимая (ненадёжная, рано или поздно дохнет, причём фиерией) модель. Но не из-за принципа работы. А из-за недочётов в расчёте. Дохнет не инвертор (ключевая часть устройства), а БП заряда АКБ.

Этой бедой страдает и Back-UPS CS (модернизированный "пластмассовый"), выполненный аналогично старому Back-Pro - то бишь со стабилизатором напряжения. Если не ошибаюсь это называется Line-Interactive. Внешних отличий, кроме индекса, от простого Off-Line "пластмассового" CS или RS нет. В Line-Interactive стоит автотрансформатор, отличие - 3 или 4 HV вывода вместо 2-х. Это обусловлено отводом от основной обмотки (древнющие Смарты) или наличием компенсационной обмотки (все современные). Переключение обмоток позволяет изменять напряжение на нагрузке (ступенчато стабилизировать). В старинных бэках тоже 3 вывода, но это для коррекции выхода.

Ещё небольшой на%бок APC приподнесла в виде Smart-UPS 620. Схематически и конструктивно (кроме цвета и формы морды) и по параметрам - это Back-Pro 650, по цене - Smart-UPS 700, но без желанного многими "синуса" на выходе.

caves.ru

Бесперебойник схема принципиальная. Трехфазные источники бесперебойного питания ups, apc

Удивляет полное отсутствие информации о таких распространенных приборах, как источники бесперебойного питания. Мы прорываем информационную блокаду и приступаем к публикации материалов по их устройству и ремонту. Из статьи Вы получите общее представление о существующих типах бесперебойников и более подробное, на уровне принципиальной схемы, - о наиболее распространенных моделях Smart-UPS.

Надежность работы компьютеров во многом определяется качеством электрической сети. Последствиями таких перебоев электропитания, как скачки, подъемы, спады и потеря напряжения, могут оказаться блокировка клавиатуры, потеря данных, повреждение системной платы и пр. Для защиты дорогостоящих компьютеров от неприятностей, связанных с силовой сетью, используют источники бесперебойного питания (ИБП). ИБП позволяет избавиться от проблем, связанных с плохим качеством электропитания или его временным отсутствием, но не является долговременным альтернативным источником электропитания, как генератор.

По данным экспертно-аналитического центра «СК ПРЕСС», в 2000 г. объем продаж ИБП на российском рынке составил 582 тыс. шт. Если сравнить эти оценки с данными о продажах компьютеров (1,78 млн. штук), то получается, что в 2000 г. каждый третий приобретенный компьютер оснащается индивидуальным ИБП.

Подавляющую часть российского рынка ИБП занимает продукция шести компаний: APC, Chloride, Invensys, IMV, Liebert, Powercom. Продукция компании APC уже который год сохраняет лидирующую позицию на российском рынке ИБП.

ИБП делятся на три основных класса: Off-line (или stand-by), Line-interactive и On-line. Эти устройства имеют различные конструкции и характеристики.

Рис. 1. Блок-схема ИБП класса Off-line

Блок-схема ИБП класса Off-line приведена на рис. 1. При работе в нормальном режиме нагрузка питается отфильтрованным напряжением электросети. Для подавления электромагнитных и радиочастотных помех во входных цепях используются фильтры EMI/RFI Noise на металло-оксидных варисторах. Если входное напряжение становится ниже или выше установленной величины или вообще исчезает, то включается инвертор, который в нормальном режиме находится в отключенном состоянии. Преобразуя постоянное напряжение батарей в переменное, инвертор осуществляет питание нагрузки от батарей. Форма его выходного напряжения - прямоугольные импульсы положительной и отрицательной полярности с амплитудой 300 В и частотой 50 Гц. ИБП класса Off-line неэкономично работают в электросетях с частыми и значительными отклонениями напряжения от номинальной величины, поскольку частый переход на работу от батарей уменьшает срок службы последних. Мощность выпускаемых фирмой АРС ИБП класса Off-line модели Back-UPS находится в диапазоне 250...1250 ВА, а модели Back-UPS Pro -в диапазоне 2S0...1400 ВА.

Рис. 2. Блок-схема ИБП класса Line-interactive

Блок-схема ИБП класса Line-interactive приведена на рис. 2. Так же, как и ИБП класса Off-line, они ретранслируют переменное напряжение электросети в нагрузку, поглощая при этом относительно небольшие всплески напряжения и сглаживая помехи. Входные цепи используют фильтр EMI/RFI Noise на металло-оксидных варисторах для подавления электромагнитных и радиочастотных помех. Если в электросети произошла авария, то ИБП синхронно, без потери фазы колебания, включает инвертор для питания нагрузки от батарей, при этом синусоидальная форма выходного напряжения достигается фильтрацией ШИМ-колебания. Схема использует специальный инвертор для подзарядки батареи, который работает и во время скачков сетевого напряжения. Диапазон работы без подключения батареи расширен за счет использования во входных цепях ИБП автотрансформатора с переключаемой обмоткой. Переход на питание от батареи происходит, когда напряжение электросети выходит за границы диапазона. Мощность выпускаемых фирмой АРС ИБП класса Line-interactive модели Smart-UPS составляет 250...5000 ВА.

Рис. 3. Блок-схема ИБП класса On-line

Блок-схема ИБП класса On-line приведена на рис. 3. Эти ИБП преобразуют переменное входное напряжение в постоянное, которое затем с помощью ШИМ-инвертора преобразуется снова в переменное со стабильными параметрами. Поскольку нагрузку всегда питает инвертор, то нет необходимости в переключении с внешней сети на инвертор, и время переключения равно нулю. За счет инерционного звена постоянного тока, каким является батарея, происходит изоляция нагрузки от аномалий сети и формируется очень стабильное выходное напряжение. Даже при больших отклонениях входного напряжения ИБП продолжает питать нагрузку чистым синусоидальным напряжением с отклонением не более +5% от устанавливаемого пользователем номинального значения. ИБП класса On-line фирмы АРС имеют следующие выходные мощности: модели Matrix UPS - 3000 и 5000 ВА, модели Symmetra Power Array - 8000, 12000 и 16000 ВА.

Модели Back-UPS не используют микропроцессор, а в моделях Back-UPS Pro, Smart-UPS, Smart/VS, Matrix и Symmetna микропроцессор используется.

offlink.ru

Ремонт APC Back UPS RS 500

Эта модель источника бесперебойного питания тоже является частым гостем на рабочих столах сервисных инженеров. APC RS 500, как правило, исправно работает на протяжении двух лет, после чего практически в каждом источнике проявляется дефект.

Ремонт бесперебойника APC-500:

Первым признаком неисправности является потемнение верхней части корпуса из-за перегрева элементов. ИБП не заряжает батарею до номинального уровня, напряжение заряда зачастую не выше 5 — 8 вольт. При этом аккумулятор выходит из строя, а UPS просто не включается.

Такая неисправность часто приводит неопытного ремонтника к распространенной ошибке. Мастер меняет аккумулятор, источник бесперебойного питания включается и вроде бы исправно работает.

Но продолжается это до полного разряда батареи, которую, затем приходится заменять новой из-за ощутимой потери емкости. Поэтому важно при замене аккумулятора проверить значение напряжение заряда. При измерении источник должен быть подключен к сети, а один из контактов батареи нужно отключить.

Источник не включается или светится индикатор разряда батареи

APC Back UPS RS 500 является источником типа Stand-by, заряд аккумулятора производится от преобразователя, собранного на микросхеме ШИМ контроллера UC3843.

Схема преобразователя

Запускается схема когда напряжение на конденсаторе С7 достигнет значения 7.8-9.0 вольт. Это напряжение получается на делителе R28, R139. После запуска ШИМ-контроллер питается от трансформатора по цепи диод D7, R50. Из-за утечки этого самого конденсатора С7 (22мкФ х 16в) начинает греться резистор R28, снижается выходное напряжение источника, а также заряд батареи.

Фото преобразователя

Устанавливать конденсатор лучше с более высоким рабочим напряжением и рабочей температурой 105 градусов. Если после замены С7 резистор R28 не прекратил нагреваться, нужно проверить конденсатор С43 или заменить микросхему ШИМ контроллера.

Завышенное напряжение заряда, шум при работе

Еще одна неисправность ИБП, это завышенное до 18 вольт напряжение заряда. Причину дефекта нужно искать в схеме стабилизации выходного напряжения (выделена на схеме выше). Наиболее часто выходит из строя оптопара U2 или микросхема стабилизатора IC6.

Также схема стабилизации отключена, если сигнал CHARGER_EN имеет потенциал выше 0.8 вольта. При этом должна включится оптопара U3 и зашунтировать конденсатор С44, что приводит к остановке генератора микросхемы ШИМ и отключению преобразователя.

Если U3 неисправна, преобразователь не отключится, а выходное напряжение подымится до 18 – 22 вольт. Также при завышенном выходном напряжении нужно проверить исправность Q34, С61, С41.

Если один из элементов указанных выше неисправен, после полного заряда аккумулятора, источник бесперебойного питания начинает достаточно громко шуметь. Еще шумят ИБП более ранних выпусков из-за конденсатора С22 номиналом 0.1мкФ х 400в, позже его заменили на 10мкФ х 400в (см. фото выше).

Сгоревшие резисторы

Практически в каждом источнике, можно обнаружить сгоревшие резисторы номиналом 10 ом. Это R150 и R151. Они подключены в RC цепях гашения искры на контактах реле RY3.

Резисторы R150, R151

Какого либо заметного влияния на работу ИБП сгоревшие резисторы не оказывают, но чтобы позже не понадобилась замена реле, элементы нужно обязательно заменять.

Скачать схему блока питания APC RS 500

Замена батареи ИБП APC-500:

www.nimafirst.com.ua

APC Back-UPS ES 525 (640-0395)

Этой заметкой хочется обратить внимание на стандартную поломку, которая ремонтникам ни разу не ремонтировавшими ИБП APC, может доставить много хлопот по поиску неисправности, что в отсутствие схем ремонт становится иногда невыполнимой задачей.

Источник бесперебойного питания APC Back-UPS ES 525, шильдик BE525_RS, шасси 640-0395B-Z_REV02, схемы в интернете найти наверно можно, но мы не нашли. Но ремонтировать, и  довольно успешно этого представителя семейства ИБП, можно без проблем. Основные поломки, а их 90%,  делятся на три вида, и поэтому рассмотрим только эту категорию.

Шильдик BE525_RS

  ИБП при включении уходит в перегрузку. Добавочными признаками является при работе с инвертора потребление от нового аккумулятора  на холостом ходу 8-12А, вместо 0,5-0,7А.

Меняем конденсаторы 22мкФ*16В!!!

Начинаем ремонт- диагностику со стандартной для ИБП APC процедуры (процедура относится ко всем видам шасси 640-XXX) –замены, именно замены, конденсаторов 22мкФ*16В. Их легко заметить и поменять.

Внимание! Игнорирование этого пункта может сильно осложнить диагностику в отсутствие ремонтной документации.

 Эти маленькие конденсаторы могут работать при номинале в 12 мкФ, и почти не нарушать алгоритм работы ИБП, но при номиналах 0,5-8 мкФ – ИБП начинает довольно серьезно сбоить.  При особом нежелании менять все конденсаторы (имеются ввиду 22мкФ*16В), меняем только конденсаторы в цепи формирования  -8вольт (минус восемь вольт). Найти эту цепочку довольно легко, так как этот формирователь  выполнен обычно на генераторе звуковой частоты, то оба конденсатора стоят возле бипера-пищалки (там где генератор собран на специализированной микросхеме найти конденсаторы цепи формирования -8вольт несколько сложнее).  После извлечения конденсаторов из платы, проверяем конденсаторы, емкость в  0,5-8 мкФ говорит о том, что дефект выявлен и неисправность устранена, емкость в 12-18мкФ ни о чем не говорит.

Внимание! Игнорирование этого пункта может сильно осложнить диагностику в отсутствие ремонтной документации.
Внимание! Габариты шасси ИБП позволяют устанавливать конденсаторы 22мкФ*50В, поэтому желательно менять конденсаторы на такое рабочее напряжение.

 

  Конденсаторы 22мкФ*16В заменены, а ИБП все равно не может пройти внутренний тест, при включении уходит в перегрузку.

Эта поломка характерна для шасси 640-0395B-Z_REV02, но думается и для других ИПБ Back-UPS актуальна.  Меняем реле RY4, для диагностики  залипших контактов достаточно легко постучать пластиковой ручкой отвертки по корпусу реле, а вот для отгоревших контактов, простукивание не поможет.

Рис.1 Реле RY4 возможный виновник неработоспособности ИБП

  Конденсаторы 22мкФ*16В заменены, а ИБП при включении сразу отключается. Добавочным признаком  является - нет зарядки  и/или напряжение на клеммах (при отключенном аккумуляторе ) меньше 13,5В.

Практические советы. Проверено на личном опыте.

Проверяем цепи заряда ИБП APC Back-UPS ES 525  без аккумулятора.

- извлекаем аккумулятор из ИБП

- подключаем ИБП в розетку, не включая кнопкой "Вкл". Напряжение на пустых аккумуляторных клеммах должно появиться, не менее 13,5 В

- включаем ИБП, нажимаем кнопку "Вкл". ИБП должен включится. Напряжение на пустых аккумуляторных клеммах не должно пропасть или уменьшится ниже 13,5В

Так как схемы на шасси 640-0395B-Z_REV02 найти не удалось - то просто обратим внимание на поддерживающие диоды D21, D22(маркировка B140 1A 40V), которые выходят из строя. Дефект обычно проявляется как утечка под напряжением, найти их  можно по микросхеме IC4 (LM2575T-ADJ пятиножка в корпусе силового транзистора) - эти диоды подключены ко второй ножке микросхемы и между собой они подключены паралельно.

Рис. 2 Выходные диоды D21, D20  склонные к выходу из строя

Отдельно следует заострить внимание на две цепочки - токоограничивающий резистор R31(0,51 Ом) (на рис. 4 это резистор R65 (0,51 Ом)) , он задает ток заряда аккумулятора. Резистивный делитель R95 (16,5кОм) и R96 (1.54кОм)  (на рис. 4 это резисторы R66(26,7кОм) и R67(2.43 кОм) соответсвенно) задает выходное напряжение напряжения заряда аккумулятора.

Немного теории.

Несмотря на отсутствие в интернете схемы на шасси 640-0395B-Z_REV02, но описание отдельных цепей можно найти, а большинство решений реализованных в одном ИБП, можно встретить с небольшими изменениями в другом. Вот описание зарядного устройства неизвестного ИБП с сайта mirpu.ru, информация взята один в один.

В UPS традиционно применяется микросхема LM2575-ADJ, которая в отличие от других микросхем семейства предназначена для формирования не фиксированного выходного напряжения, а регулируемого. Величина выходного напряжения при этом задается внешним делителем, устанавливающим соответствующее напряжение на входе FEEDBACK. В схеме на рис.1  таким делителем, формирующим сигнал обратной связи, являются R66/R67. Номиналы именно этих двух резисторов задают величину выходного напряжения зарядного устройства, т.е. величину напряжения, прикладываемого к аккумуляторной батарее. Изменение номинала этих резисторов будет приводить к изменению ширины импульсов на выходе LM2575

Рис. 3

Источником энергии для данного зарядного устройства является силовой трансформатор Т, одна из обмоток которого подключается к питающей сети 220В. К другой обмотке этого трансформатора подключается зарядное устройство через разъемы J4 и J5. На этих разъемах присутствует пониженное переменное напряжение, появляющееся сразу же, как только UPS подключается к питающей сети. Это переменное напряжение выпрямляется двухполупериодным полумостовым выпрямителем, состоящим из диодов D21-D24. Далее выпрямленное напряжение сглаживается конденсатором C42, в результате чего получается постоянное напряжение величиной примерно +18В. В схеме первичного выпрямителя мы встречаем еще два транзистора Q12 и Q13. Но эти транзисторы не имеют никакого отношения к зарядному устройству. Дело в том, что обмотка трансформатора, подключаемая с помощью J4 и J5, одновременно является еще и фиксирующей обмоткой (Clamp), т.е. обмотка является двухфункциональной (понижающая обмотка – при работе от сети, и фиксирующая обмотка – при работе от аккумуляторов). Транзисторы Q12 и Q13 начинают переключаться только в тот момент времени, когда UPS переходит на работу от аккумулятора и начинает формировать выходное импульсно-прямоугольное напряжение, «пауза на нуле» в котором создается именно с помощью обмотки Clamp и транзисторов Q12/Q13.

Итак, полученное постоянное напряжение +18В прикладывается к входу микросхемы LM2575 (конт.1 – IN). Но подается это напряжение через токовый датчик, с помощью которого отслеживается величина тока, потребляемого схемой зарядного устройства. Таким образом, данное зарядное устройство обеспечивает ограничение зарядного тока аккумулятора.

Непосредственно токовым датчиком является низкоомный резистор R65. Через этот резистор протекает весь ток, потребляемый микросхемой LM2575 (т.е. ток, потребляемый аккумулятором). Падение напряжения на этом резисторе отслеживается транзистором Q11. Увеличение тока приводит к увеличению падения напряжения на резисторе R65 и к открыванию транзистора Q11. Открываясь, транзистор Q11 подает дополнительное смещение на вход обратной связи FEEDBACK (конт.4), что приводит к уменьшению ширины импульсов на выходе микросхемы OUT (конт.2), т.е. приводит к уменьшению величины зарядного напряжения.

Включение и выключение зарядного устройства осуществляется сигналом CHARGE, подаваемым на конт.5. Этот сигнал генерируется микропроцессором UPS и представляет собой дискретный сигнал. Установка сигнала в низкий уровень приводит к запуску зарядного устройства и началу заряда аккумуляторов. В момент перехода на работу от аккумуляторов, микропроцессор устанавливает сигнал CHARGE в высокий уровень, и зарядное устройство выключается.

Импульсы, сформированные на выходе LM2575 (конт.2), сглаживаются дросселем L1и конденсатором С41, в результате чего создается постоянное напряжение величиной 13.6-13.8 В. Это напряжение на схеме обозначается XFMRLVCT и 12UNFILT. Конденсатор C44 обеспечивает дополнительное сглаживание напряжения. К аккумуляторной батарее это напряжение прикладывается через предохранитель F2. Параллельно включенные диоды D19/D20 являются выпрямительными диодами, поддерживающими в нагрузке ток в те моменты времени, когда отсутствует напряжение на выходе LM2575 (мертвое время импульса). Ток нагрузки в этот момент времени создается за счет энергии само-ЭДС дросселя L1.

Данное зарядное устройство не позволяет регулировать зарядное напряжение аккумулятора, но обеспечивает ограничение зарядного тока.

Комментарий zival

В нашем случае есть несколько различий описанного зарядного устройства и рассматриваемого используемого в шасси 640-0395B-Z_REV02.

Рис. 4 Различия зарядных устройств

Последняя поломка хоть и имела быть, но встречается редко.

  Конденсаторы 22мкФ*16В заменены, ИБП при включении уходит в перегрузку. Добавочными признаками при подключении ИБП к компьютеру, нет серийного номера и/или названия модели ИБП.

Без программатора тут ловить нечего, слетели настройки в флешке U8 (ISSI 346A3GRU) Просто перезаливаем дамп настроек для APC Back-UPS ES 525, шильдик BE525_RS, шасси 640-0395B-Z_REV02. В программаторе шьем как IS93C46 (1024бит=7Fh) после прошивки поменяется номер ИБП.   Диагностика сильно упрощается при наличии кабеля 940-0127B и программы Power Chute Personal Edition, в программе Power Chute не определяется серийный номер и/или модель ИБП.

Рис. 5 Кабель 940-0127B

Cделать самостоятельно такой кабель довольно проблематично, но можно, нужен 10pin коннектор  RJ50-10.

Рис. 6 Коннектор RJ50-10 по сравнению с обыкновенным RJ45

 Практика

APC Back-UPS ES 525 при включении пищит.

Источник бесперебойного питания (ИБП) APC Back-UPS ES 525 (шасси 640-0395B-Z_REV02)
Заявленная неисправность.
Вновь установленных аккумуляторов хватает на 1-2 месяца работы.
Дополнительные признаки.
При включении, при тестировании инвертора потребление от аккумулятора достигает 8А, напряжение на выходных розетках 165В. После перехода в режим работы с инвертора, загорается перегрузка.
Ремонтные работы.
Замена конденсаторов С41 (22мкФ*25В), С42(22мкФ*25В) ставшая уже типовой устраняет неисправность. Тех прогон 2 часа дефекта не выявил.

Рис. 7 Виновники неисправности APC Back-UPS ES 525 (шасси 640-0395B-Z_REV02) - C41, C42(22мкФ*25В)

Количество ремонтов.
3.
Дополнительно.
Неисправные конденсаторы имеют емкость 4-5 мкФ, остальные 16мкФ, замене подлежат все шесть конденсаторов 22мкФ*25В

 

UPD 28/01/2015 Наш читатель предложил использовать в ремонте литературу, в которой есть схемы и описание работы Back UPS ES525. Скачать.

zipstore.ru

Обзор источника бесперебойного питания APC Back-UPS ES 700

В нашей лаборатории вновь тестируется ИБП известной фирмы APC. Продукцию этой фирмы мы уже тестировали. Выводы были неоднозначными. Сегодня мы проведем очередное тестирование  продукции данного известнейшего бренда.

Описание

Тестируемый ИБП принадлежит к серии Back-UPS ES, по данным производителя, это "Оптимальные по цене устройства батарейного резервирования и защиты электропитания для домашних компьютеров" и "Лучшее соотношение цены и качества для защиты компьютерных систем в домашних условиях".

Производитель заявляет следующие характеристики изделия:

Входное напряжение, частота Номинальное 230 В, 50/60 Гц
Выходное (при работе от батарей) напряжение, частота 230 В / 50 Гц
Автоматический регулятор напряжения Нет
Выходная мощность 700 ВА / 405 Ватт
Форма выходного сигнала ступенчатая аппроксимация синусоиды
Время автономной работы от батареи 50% / 100% загрузки 15,1 / 3,9 минут
Функция запуска оборудования без подключения к электросети Есть
Тип, напряжение и емкость батареи RBC17 — Необслуживаемая герметичная свинцово-кислотная батарея с загущенным электролитом
Время зарядки батарей до уровня 90% после разряда до уровня отключения нагрузки под половинной нагрузкой. 16 часов
Индикаторы светодиод, показывающий
— On Line (работа от сети)
— On Battery (работа от батарей)
— Replace battery(замена батареи)
Звуковая сигнализация Сигнал перехода в режим работы от аккумуляторов, особый сигнал исчерпания заряда батарей, сигнал перегрузки.
Самодиагностика при включении и контроль программным обеспечением
Защита от перегрузок при работе от сети Постоянно действующий многополюсный шумовой фильтр: амплитуда остаточного напряжения 0,5% по нормативам IEEE: ограничение всплеска напряжения без временной задержки: соответствие требованиям UL 1449. Поглощаемая энергия 310 Джоулей.
Защита линий передачи данных Защита телефонии, розетка RJ-11.
Защита 10/100 Base-T Ethernet, розетка RJ-45.
Интерфейс USB
Мониторинг программное обеспечение поддерживает Windows 98/ME/2000/XP
MAC OS X 10.2/10.3
Размеры Ш×Д×В 230×285×86 мм
Вес 6,8 кг
Выходные разъемы

 

4×Schuko CEE7 (Батарейное резервное питание)
4×Schuko CEE7 (Защита от всплесков напряжения)
Уровень акустического шума на расстоянии 1 метра от поверхности устройства 45 dBA
Соответствие требованиям CE,GOST,NEMKO
Условия работы

0—15000 метров
0—95% (без конденсации)
от 0 до +40°C

 

 

ИБП поставляется в красочно оформленной коробке размером 132×300×366 мм, вес запакованного комплекта 7,3 Кг. Для удобства транспортировки коробка снабжена пластиковой ручкой. Судя по стикеру на коробке, тестируемый ИБП произведен на Филиппинах.

Комплект поставки включает в себя:

  • инструкция по эксплуатации на Русском и Английском языках
  • карта гарантийной регистрации с конвертом для почтовой пересылки
  • 3 листа объясняющие условия Lifetime Equipment Protection Programm*
  • инструкция по технике безопасности на 18 языках, включая Русский
  • лист Quality Assurance Test
  • телефоны и адреса представительств APC в мире
  • интерфейсный кабель для связи с ПК (USB)
  • телефонный кабель RJ-11 (6P2C)
  • CD с программным обеспечением PowerChute Personal Edition**

* — Lifetime Equipment Protection Programm является пожизненной страховкой защищаемого посредством APC оборудования. В случае повреждения оборудования по линии сетевого питания, APC обязуется его заменить или отремонтировать. Сумма страхового возмещения достигает $200,000 для Австралии, и 100,000 Евро - для ряда европейских стран. На Российский рынок условия страховки не распространяются.

Качество комплектации можно оценить как удовлетворительное. На изделие установлена стандартная гарантия на три года от даты выпуска ИБП. Дата выпуска определяется по серийному номеру.

Корпус ИБП выполнен полностью из пластика и состоит двух половинок — верхней и нижней. Они соединены посредством пазов и четырех шурупов. Качество литья и пластика очень хорошее, облоя не обнаружено. В верхней части ИБП находится светодиодный индикатор, меняющий цвет в зависимости от режима работы ИБП - On line (зеленый), On battery (мигающий зеленый), Replace battery (красный). Справа от индикатора находится утопленная для защиты от случайного нажатия кнопка Power. Также на верхней панели находятся два блока евро-розеток по четыре штуки. Один блок подключен через фильтр, а второй имеет батарейное питание. Справа, на торце ИБП находятся гнезда RJ-45, одно для подключения к USB-порту ПК, а два других для защиты телефонии и компьютерной сети. По центру находится шнур питания длиной 1,83 метра, и многоразовый автоматический предохранитель на 10 A.

В нижней части ИБП находится крышка батарейного отсека. Задняя панель содержит прорези для шурупов. Возможен подвес как вертикально, так и горизонтально.

Внутреннее устройство

В ИБП установлен сменный батарейный картридж RBC17 производства APC.

Его ёмкость 9 Ач, рабочее напряжение 12 В. Картридж представляет собой обычную батарею CP 1290 производства китайской фирмы Vision.

Следует отметить, что батарея серии CP рассчитана на режим 20-ти часового разряда. При часовом режиме разряда ее емкость, по данным производителя, составляет всего 5,8 Ач. Типичное время разряда батареи при работе в ИБП составляет 10—30 минут. В таком режиме емкость составит менее 4 Ач. Ресурс батареи 200 циклов 20 часового 100% разряда. При более интенсивном разряде ресурс может быть меньше.

Замена батареи возможна силами пользователя. Процедура замены описана и показана на картинках в инструкции. Никаких инструментов для этого не понадобится, крышка батарейного отсека крепится на защелке и легко сдвигается вниз.

Вся основная электроника расположена на одной двухсторонней печатной плате, находящейся в верхней части корпуса ИБП. Батарейный отсек отделен от электроники перегородкой. Сама плата и монтаж элементов на ней, на первый взгляд, выполнена качественно, подписано соответствие элементов принципиальной схеме. Широко используются планарные компоненты. Монтаж элементов односторонний.

Фильтр от помех выполнен по упрощенной схеме, два варистора и конденсатор. Ферритовые кольца надеты на сетевые провода.

Защита RJ-45 полноценная, для всех четырех пар компьютерной сети и телефонии.

Коммутацию осуществляет реле, максимальный коммутируемый ток составляет 12 А при напряжении 250 В, что в данном случае позволяет подключать нагрузку с максимальной пиковой мощностью до 3000 ВА.

Инвертор на двух транзисторах IRF 2805 производства компании International Rectifier, формирует двухступенчатую аппроксимацию синуса. Инвертор выполнен по обычной, низкочастотной схеме, с трансформатором. Что странно, в аналогичной по форме и содержанию продукции конкурентов применяется высокочастотная схема. Потребляемая ИБП мощность, при работе от батарей без нагрузки составила 7 Вт. Каждый транзистор имеет мощность 330 Вт и диапазон рабочих температур до 175° Цельсия. Транзисторы расположены на двух массивных радиаторах площадью по 40 кв.см. каждый. Вид и качество формируемого сигнала при разной нагрузке хорошо видны на осциллограмме.

И вновь мы наблюдаем импульсы на фронтах сигнала. Совершенно другой инвертор, с неизменно неудовлетворительным результатом. На приведенной далее осциллограмме, показан фрагмент сигнала при 50% нагрузке.

Этот недостаток схемотехники приводит к повышенной потребляемой мощности, снижению КПД и появлению на выходе ИБП электромагнитной помехи в диапазоне 15—17 КГц.

Тестирование

Тестируемый ИБП не оснащен автотрансформаторным регулятором напряжения. Тем не менее, мы приводим график зависимости выходного напряжения от входного. Гистерезис при переключении составляет 5 В в области повышенного напряжения, и 10 В - при пониженном напряжении.

В ИБП APC Back-UPS ES 700 посредством прилагаемого программного обеспечения PowerChute есть возможность установить диапазон выходных напряжений, от 188—208 и до 252—272 В с шагом в 1 В. Приведенный выше график отражает работу ИБП с настройками 208—244. Даже в этом, минимальном диапазоне ИБП работает неудовлетворительно, выдавая на выход напряжение, превышающее номинал на 14%, и пониженного на 11% по отношению к номиналу. Это может привести к выходу из строя подключенного оборудования и не обеспечивает его бесперебойную работу.

При выходе напряжения в питающей сети за установленный диапазон, ИБП переходит на аккумуляторное питание, оповещая об этом пользователя посредством звукового сигнала. При переключении на батареи, ИБП выдает короткий сигнал периодичностью в 40 секунд. Работу ИБП с батареей, разряженной до критического уровня, сопровождает сигнал периодичностью в 0,6 секунды.

Время перехода на батарею определялось по осциллограмме при номинальной нагрузке 405 Вт. Время перехода на батарейное питание составило 5 mс.

ИБП был протестирован на время работы от батарей при различном уровне нагрузки. Синтетические тесты проводились на нагрузке из резисторов в 40%, 50%, 60%, 80% и 100% от номинала ИБП. Выходное напряжение измерялось цифровым мультиметром UT60E. Во время работы без нагрузки оно составило 229 В.

 

Проценты

40%

50% 60% 80% 100%
Нагрузка 160 Вт 200 Вт 240 Вт 320 Вт 400 Вт

 

Как видим, во всем диапазоне нагрузок ИБП укладывается в ГОСТ-13109-97 и выдает в среднем 227 В. Лишь при полной нагрузке наблюдалось некоторое уменьшение напряжения, не выходящее за границы нормы. Рекомендуемая по результатам тестов мощность нагрузки ИБП составляет не более 400 Вт.

Для испытаний на реальной нагрузке использовался тестовый компьютер следующей конфигурации:

Всего было собрано четыре варианта конфигурации тестового компьютера:

  1. Integrated SiS Mirage, БП 400 Вт с пассивным PFC: DIVX-SiS
  2. ATI X700, БП 400 Вт с пассивным PFC: DIVX-ATI
  3. ATI X700, БП 400 Вт с пассивным PFC: 3DM5-ATI
  4. ATI X700, БП 550 Вт с активным PFC и автовольтажем: 3DM5-ATI-PFC

На диаграмме слева направо:

DIVX-SiS — Конфигурация со встроенным в материнскую плату видеоадаптером. Воспроизведение с жесткого диска HD-фильма Шрек (1280×720×24×1700 kbps битрейт видео, AC3 дорожка 384 kbps). Загрузка процессора 17–25%.

DIVX-ATI — Воспроизведение с жесткого диска HD-фильма Шрек (1280×720×24×1700 kbps битрейт видео, AC3 дорожка 384 kbps). Загрузка процессора 17–25%.

 3DM5-ATI — Выполнялся тестовый пакет 3Dmark05 v1.1.0, 1024×768 в режиме GT1, что должно имитировать работу современной игрушки.

 3DM5-ATI-PFC — Конфигурация с блоком питания мощностью 550 Вт, активный PFC, автовольтаж 127–230 В. Выполнялся тестовый пакет 3Dmark05 v1.1.0, 1024?768 в режиме GT1, что должно имитировать работу современной игрушки.

 

Параметры зарядки АКБ являются одним из важнейших факторов, влияющих на срок службы батареи, а, следовательно, и самого ИБП. Для применяемых в картридже батарей CP 1290 производителем установлен максимальный зарядный ток 2,8 А. Учитывая важность режима зарядки батареи, было сделано два теста. В первом (жёлтая линия) ИБП был разряжен на нагрузку в 100% (400 Вт) до автовыключения, во втором (красная линия) после разряда на нагрузку в 50% (300 Вт), ИБП последовательно разряжался на меньшую нагрузку до полного разряда батареи.

Восстановление заряда после глубокого разряда заняло 19 часов. Полная зарядка батареи потребовала более 30 часов, ток заряда в начале составил 370 mA. В течение 19 часов ток заряда составлял в среднем 350 mA. Еще 10 часов потребовалось для достижения зарядного токи в 50 mA и напряжения 13,6 В. Восстановление после интенсивного разряда заняло 9 часов. По результатам измерений, работа схемы зарядки признана удовлетворительной. К недостаткам следует отнести маленький зарядный ток, к достоинствам — его стабильность при низком напряжении питающей сети.

Для проверки системы "холодного старта" ИБП был подключен к нагрузке без подключения к сети. ИБП включился при полной номинальной нагрузке. Для проверки совместимости с блоками питания, имеющими активный PFC и широкий диапазон входных напряжений, ИБП был подключен к компьютеру с блоком питания FSP550-60PLN, оснащенный активным PFC и имеющий диапазон входных напряжений 100—240 В. Проблем при совместной работе не возникло.

Для связи с компьютером у ИБП предусмотрен Data Port и кабель RJ-45—USB A. Для проверки интерфейса связи с PC, ИБП был подключен к порту USB прилагаемым кабелем. ИБП поддерживает стандарт Smart Battery, он автоматически определился в системе Windows XP, и в диспетчере устройств появились следующие устройства:

Утилита RMClock из тестового пакета RightMark определила батарею ИБП:

Благодаря поддержке стандарта Smart Battery, базовые функции управления электропитанием доступны встроенными средствами операционной системы.

В трее появляется знакомая всем владельцам ноутбуков иконка. 

В комплекте поставляется фирменное программное обеспечение PowerChute Personal Edition 1.5. Оно обеспечивает более широкие возможности управления электропитанием и настройками ИБП.

Его установка происходила автоматически и не вызвала проблем. Более детально эта программа рассмотрена в отдельной статье.

Вывод

Тестируемый ИБП является типичным устройством для домашнего применения. Самым, на наш взгляд, существенным недостатком, с точки зрения эргономики, является применения разъема RJ-45 для связи с ПК по интерфейсу USB. И если в ИБП, допускающем монтаж в стойку, это еще оправданно (можно завести в патч-панель), то в "домашнем" ИБП подобное недопустимо. Регулировка напряжений, при достижении которых ИБП переходит на батарейное питание, недостаточна для соответствия выходного напряжения ГОСТу.

Достоинства
  • Стабильность выходного напряжения при работе от батареи
  • Возможность монтажа на стену
  • Евро-розетки обеспечивают удобство подключения
  • Полноценная защита телефонии и локальной сети
  • Поддержка стандарта Smart Battery
  • Качественное программное обеспечения в комплекте
Недостатки
  • Упрощенный сетевой фильтр
  • Импульсы на фронтах сигнала при работе от батареи
  • RJ-45 разъем USB.
  • Выходное напряжение при работе от сети превышает ±10%

 

 

 

ИБП APC Back-UPS ES 700 предоставлен российским представительством APC

 

 

www.ixbt.com

0 comments on “Схема ибп apc – Схемотехника источника бесперебойного питания APC SmartUPS 1000

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *