Аккумуляторы вместо батареек – . .

Грандиозное тестирование аккумуляторов AA/AAA / LampTest corporate blog / Habr

После моего грандиозного тестирования батареек многие просили провести такие же основательные тесты NiMh-аккумуляторов. За четыре месяца я протестировал 198 аккумуляторов (44 модели AA и 35 моделей AAA).


Обычно в блоге Lamptest.ru я рассказываю о тестировании светодиодных ламп, которые потребляют в 6-10 раз меньше традиционных и позволяют существенно сэкономить на оплате электроэнергии. Сегодня я хочу затронуть другой аспект экономии — использование аккумуляторов вместо батареек.

Аккумуляторы заряжались с помощью зарядных устройств La Crosse BC-700 и JAPCELL BC-4001. Аккумуляторы с ёмкостью выше 1500 mAh заряжались током 700-800 mA, аккумуляторы меньшей ёмкости током 500-600 mA.

Для определения ёмкости аккумуляторы разряжались с помощью анализатора Олега Артамонова. Аккумуляторы с ёмкостью выше 1500 mAh разряжались токами 500 mA и 2500 mA, аккумуляторы меньшей ёмкости — токами 200 mA и 1000 mA.

В основном тестировалось по два экземпляра аккумуляторов каждой модели. Для сравнения я использовал результаты худшего аккумулятора из пары, если же тестировалось четыре аккумулятора, для сравнения я брал предпоследний по ёмкости.

Начнём с самого простого — ёмкости аккумуляторов на средних токах 500/200 mA. Конечно, правильней учитывать ёмкость в ватт-часах, но на всех аккумуляторах указана ёмкость в миллиампер-часах, поэтому я буду использовать их, а все результаты в ватт-часах можно посмотреть в итоговой таблице.

Как видно из результатов тестирования, максимальная ёмкость аккумуляторов АА составляет 2550 mAh. Все аккумуляторы с красивыми числами 2600, 2700, 2800 и 2850 mAh лишь плод деятельности маркетологов. Их реальная ёмкость иногда даже меньше, чем у аккумуляторов тех же производителей с более скромными числами. На некоторых аккумуляторах с указанными большими значениями ёмкости мелким шрифтом указана минимальная ёмкость (например у Ansmann 2700, Panasonic 2700, Maha Powerex 2700 указаны значения минимальной ёмкости 2500 mAh и их реальная ёмкость близка к этому значению).

А вот у AAA всё по-честному. Максимальная указанная ёмкость 1100 mAh и фактическая ёмкость близка к этому значению.

Аккумуляторы Duracell 1300 после первого цикла заряд-разряд показали очень низкие результаты, но после нескольких циклов заряд-разряд показали те результаты, которые я учитываю.
Один из четырёх аккумуляторов Turnigy 2400 LSD имел ёмкость, на 30% меньшую, чем остальные. Предполагаю, что это брак. Его результат не учитывается.
Два аккумулятора Camelion 2800 имели ёмкость 2270 mAh и 2610 mAh (разница 13%). Хоть лучший из пары и оказался самым ёмким из всех аккумуляторов АА, я вынужден использовать данные худшего экземпляра, ведь никто не знает, какие экземпляры могут ещё попасться при покупке.
Китайские аккумуляторы BTY AA 3000 и BTY AAA 1350 имеют настолько низкую ёмкость, что место им только в помойке и в дальнейших тестах я их упоминать не буду.

В отличие от батареек, аккумуляторы нельзя относить к категории хороший/плохой просто по ёмкости, ведь в продаже есть аккумуляторы разных номинальных ёмкостей. Давайте посмотрим, насколько ёмкость протестированных аккумуляторов соответствует заявленной. Если на аккумуляторе указана не только номинальная, но и минимальная ёмкость, я буду исходить из неё. Для сравнения используются данные, полученные при разряде средним током 500/200 mA.

О качестве аккумуляторов можно судить по тому, как отличаются между собой экземпляры.

У большинства аккумуляторов экземпляры отличаются не более, чем на 5%.

В отличие от батареек, аккумуляторы почти не теряют ёмкость при больших токах разряда. Я сравнил ёмкость при токах разряда 2500 mA и 500 ma для аккумуляторов AA, имеющих ёмкость от 1500 mAh и 1000/200 mA для аккумуляторов AAA и аккумуляторов АА, имеющих ёмкость менее 1500 mAh.

Некоторые аккумуляторы на больших токах способны отдавать даже большее количество энергии, чем на малых (у таких аккумуляторов разница между ёмкостью на большом и малом токе больше 100%).

Половина из всех протестированных аккумуляторов изготовлена по технологии LSD (Low Self-Discharge — низкий саморазряд). Эти аккумуляторы продаются уже заряженными. Я измерил их ёмкость сразу после распаковки без предварительной зарядки.

В среднем LSD-аккумуляторы оказались заряжены на 70%. Конечно уровень их заряда зависел не только от качества аккумуляторов, но и от времени и условий их хранения, а дата изготовления есть лишь на некоторых аккумуляторах.

Я протестировал все аккумуляторы через неделю и месяц после зарядки. Результаты через неделю можно посмотреть в общей таблице, а вот результаты через месяц.

Удивительно, но одними из лучших по сохранению заряда в течение месяца оказались не-LSD аккумуляторы Navigator 2100 AA и GP 1000 AAA. Большинство аккумуляторов (как LSD, так и не-LSD) через месяц сохраняют 90% заряда.

Приведу цены на аккумуляторы на 1.11.2015. Опт — оптовая цена в «Источник Бэттэрис», РРЦ — рекомендованная розничная цена, Маг — минимальные цены в магазинах и интернет-магазинах (в основном это остатки, закупленные при более низком курсе валют), $ и € — цены в долларах и евро в зарубежных интернет-магазинах, руб — цены в пересчёте по текущему курсу ($1=64 руб, 1€=70.5 руб). В магазинах hobbyking.com и ru.nkon.nl доставка платная, стоимость самой дешёвой доставки при покупке 12 аккумуляторов включена в цену в таблице.

Рекомендованные розничные цены в России и цены в зарубежных интернет-магазинах часто отличаются более, чем в два раза, поэтому я сделаю два сравнения по ценам.

Первое сравнение — по стоимости 1000 mAh на основе РРЦ и цен в интернет-магазинах, если аккумуляторы не продаются в обычных магазинах.

Лидируют аккумуляторы IKEA, вслед за ними идут аккумуляторы из зарубежных интернет-магазинов PKCELL и Turnigy. Самыми дорогими на основе рекомендованных цен оказались Panasonic Eneloop.

Многие покупают аккумуляторы в зарубежных интернет-магазинах, поэтому второе сравнение я сделал по ценам зарубежных интернет магазинов и минимальным ценам, которые удалось найти в российских магазинах.

IKEA и тут опережает всех, Panasonic Eneloop оказываются совсем не такими дорогими, если их покупать через интернет, а Fujitsu, производящиеся на том же заводе по той же технологии, ещё дешевле.

Для большинства аккумуляторов производители указывают 1000 циклов заряд-разряд, некоторые производители вообще не указывают число циклов (Camelion, Turnigy, GP, Varta). Некоторые аккумуляторы имеют только 500 гарантированных циклов (IKEA LADDA 2000 LSD, Energizer PreCharged 2400, Panasonic Eneloop Pro 2450 LSD, Fujitsu 2550 LSD, IKEA LADDA 750 LSD, Energizer PreCharged 800, Panasonic 750 LSD, Fujitsu 900 LSD, Panasonic Eneloop Pro 900 LSD).
Для AA Panasonic Eneloop 1900 LSD, AAA Panasonic Eneloop 750 LSD, AA Fujitsu 1900 LSD, AAA Fujitsu 800 LSD производители гарантирует 2100 циклов.

Максимальное количество циклов — 3000 гарантируется для аккумуляторов низкой ёмкости AA Panasonic Eneloop Lite 950 LSD и AAA Panasonic Eneloop Lite 550 LSD.

Выводы:

1. Максимальная достижимая ёмкость для NiMh аккумуляторов AA — 2550 mAh, для AAA — 1060 mAh. Все аккумуляторы, на которых написано 2600, 2700, 2800 mAh и более в реальности имеют меньшую ёмкость.
2. Все аккумуляторы AA известных производителей от 950 mAh до 2450 mAh имеют реальную ёмкость не менее 97% от указанной, все аккумуляторы AAА известных производителей от 550 mAh до 1100 mAh имеют реальную ёмкость не менее 94% от указанной.
3. NiMh аккумуляторы в отличие от батареек почти не снижают количество отдаваемой энергии при больших токах разряда.
4. За месяц хранения как обычные, так и LSD аккумуляторы теряют 4-20% заряда.
5. Новые LSD аккумуляторы обычно оказываются заряжены на 70%.

Всю информацию о протестированных аккумуляторах можно посмотреть в файле excel: nadezhin.ru/lj/ljfiles/accu_ammo1.xls. Там есть данные по тестированию всех экземпляров аккумуляторов, ёмкость в ватт-часах, вес и начальное напряжение, штрихкоды, оптовые и розничные цены в рублях, цены в долларах и евро, страны происхождения, результаты всех тестирований, включая ёмкость после недели и месяца хранения.

Фотографии упаковок всех аккумуляторов можно скачать одним архивом: nadezhin.ru/lj/ljfiles/accu.rar

Аккумуляторы для тестирования предоставлены производителями и магазинами:

Ansmann, Duracell, Energizer, Varta, Robiton, GP, Panasonic — оптовой компанией Источник Бэттэрис www.istochnik.ru
Camelion, Duracell, Energizer — оптовой компанией Энергосистемы и Технологии e-s-t.ru
Ikea — компанией Ikea www.ikea.ru
Navigator, Panasonic, Varta — компанией Battery Team batteryteam.ru
Космос — группой компаний «Космоc» kosmos.ru
Fujitsu — российским представительством компании Fujitsu fujitsu-battery.ru

Maha Powerex, IMEDION, Fujitsu, Panasonic Eneloop — интернет-магазином ru.nkon.nl
Turnigy — интернет-магазином HobbyKing www.hobbyking.com

Я потратил четыре месяца на тестирование и три дня на написание этой статьи. Надеюсь, вам это пригодится.

© 2015, Алексей Надёжин

habr.com

Обзор аккумуляторов. Делай раз — берем старый фонарик 3хААА. Делай два — вставляем в него литий. Профит.

Вниз
Есть у меня фонарик «Яркий луч» на элементах 3хAAA, которому лет уже с десяток наверное. Лежит он на полке быстрого реагирования. Т.е. когда нужен быстро фонарик, берется именно он. В ту пору когда он покупался, не ходили еще по улицам люди укутанные паром с душком апельсина и вишни, мало кто знал о литиевых 18650, поэтому фонарь на трех мизинчиковых батарейках был очень распространен, как удобный, компактный и в тоже время относительно мощный. Ну и вообще мне нравился его пухлый алюминиевый бочок, яркий свет (на свежих батарейках) и тугая резиновая кнопка)) Время идет, в обиход вошли литиевые элементы питания почти без саморазряда и довольно мощные. И пришла мне мысль как-то заманстырить в мой любимый дежурный фонарик литиевую батарейку. Потому что вечно возьмешь его, а казалось бы новые батарейки уже разряжены. 18650 в него не полезет, значит надо бы что-то компактнее. Скажу сразу, что идеальным вариантом были бы 14500, а лучше 18500 (да-да, есть и такие, потом уже узнал), но на момент, когда мысль о
перделке
переделке посетила мою голову, пригрезилось мне, что наиболее подходит для этого именно 16340, которые и были заказаны. Для начала дешевые Trustfire (с защитой), на пробу так казать.

Аккумы пришли через 25 дней после заказа и были упакованы очень неплохо: в картонную коробку, затем в пузырчатый пакет и потом уже в маленький зип-пакетик.

Вот они красавцы:

Далее следует небольшой обзор собственно аккумов, кому интересно, можно развернуть кат:

Измерения

На обертке всякие умные надписи и даже уникальный порядковый номер:

Размеры вполне соответствуют формату + допуск на защиту = 16.5 х 35.5 мм

Пришли они слегка заряженные

Смотрим, что у них с емкостью. Производитель хором с продавцом заявляют о безумных 880 мАч. Как водится, ждать надо хотя бы 700 махов.

Провел Nor-test’ы сначала с током 300 мА, потом два раза по 500 мА. Результаты примерно одинаковые: 660 и 700 мАч.

Раньше, кстати, не обращал внимания на сопротивление батарейки, а в этот обратил. Ну, а толку-то. Сопротивление оказалось весьма зависимо от того, как хорошо установлены батарейки в заряднике и значения были от 34 до 85 мОм. Фиг знает, что это значит, но надежды на точность показаний никаких))Теперь перейдем к нашему несравненному фонарику. Итак. Алюминиевый корпус, сборка из 3хААА, намек на водозащиту, 1 режим свечения, 9 убогих диодов и темлячок — красота:

Многие скажут, на кой тебе это убожество, ведь можно пойти и купить за пару баксов фонарик на литие с ярким диодом и фокусировкой. И будут правы. Все так, да, но я привыкаю к вещам, да и просто жалко выбрасывать этот фонарик, предавать его забвению. К тому же этот уже есть, а другой надо все же покупать. Ну короче что есть, то есть.

Тем более, если вы дочитали до этой строчки, значит и у вас есть такой дома фонарик, который жалко выбросить, ровно как и жаль на него постоянно покупать батарейки 🙂 Сказать по правде никакого особого DIY не будет, вынужден вас разочаровать. Будет ровно то, что указано в заголовке. Ну… начнем, помолясь.

Первым делом хочу показать, как светит этот фонарь со старыми ГП и новыми Энерджайзерами. (Далее все замеры будут со сборкой на старых и новых батарейках.) Ну на фото трудно это передать, но так чтобы было понятно… со старыми батарейками можно смотреть непосредственно на диоды, с новыми — нет:

Напряжение выдаваемое сборками соединенными последовательно соответственно 3.66 и 4.74 вольт:

А вот сколько тока кушает фонарь: 60 и 670 мА. Как я понимаю, драйвера никакого просто нет, ток напрямую идет на светодиоды. Точно не знаю, не разбирал. Ну т.е. пока батарейки новые фонарь жарит по полной, но со временем накал все жиже и жиже

Тут надо вернуться к началу обзора, где я говорил про то, что вместо казалось бы подходящих 14500 я выбрал 16340. Было это продиктовано тем, что тогда еще я думал, что мне придется запихать в фонарик стабилизатор напряжения — ну типа такой мелкой платки, понижающей напряжение с переменным резистором. При этом я знал, что в LED фонарях стоят драйверы, поддерживающие определенный ток. Но тут светодиоды другие и вообще я не силен в этих электроделах. Кстати, попробовал вставить один новый Энерджайзер АА (1.5в) и потасканный АА Ni-MH аккум ГП на 2100 мАч (1.2в). Ни с тем, ни с другим фонарь не зажегся. А может там все же есть драйвер???))

Короче после замеров мне пришла в голову мысль, что если уж напряжение так гуляет в этом фонаре, почему бы не попробовать просто тупо вставить в него литиевую батарейку, напряжение в которой меняется где-то от 4.2 до 2.5 в. Так и порешил — просто вместо сборки 3хААА поставил полностью заряженный элемент 16340:

О как! Неплохое попадание по току — 570 мА. Так тому и быть. Теперь надо организовать плотное прилегание составных частей друг к другу. Для этого нам понадобится кусок картона и винтик М5х25

Сворачиваем картон трубочкой, чтобы аккум не болтался внутри фонаря и попадал своим довольно узким плюсом в пружинку. Также эта картонка убережет при необходимости от замыкания на корпус болтика-удлинителя торцевой пружинки:

Винтик мы просто ввинчиваем в пружинку на нужную длину:

Все. Заворачиваем крышку и идем тестировать фонарь — оставляем на некоторое время включенным. Поначалу был несильный нагрев, который постепенно почти сошел на нет. Как вы догадались по току, светил он поначалу примерно также, как с новыми ААА, постепенно угасая, пока не достиг яркости, при которой можно смотреть на светодиоды — аккум за 2 часа достаточно сел:

И снова попадание в 60 мА. Ну не красота ли)) Т.е. литиевый аккум почти 100% точно повторил питание от трех ААА батареек. Точно не могу сказать, сколько фонарь живет на новых батарейках ААА (типичная емкость щелочной ААА — 1000 мАч), но точно могу сказать, что большая часть заряда уходит у меня просто, пока фонарь лежит без дела. Надеюсь литий исправит эту проблему.

На этом эксперимент по замене питания 3хААА тупо на литий можно считать завершенным, причем удачно)) После этого конечно захотелось бы стабильности по току, но для этого надо купить драйвер. Самый дешевый, что я нашел, на 350 мА на Фасттече за $1.15 и даже заказал его)) Хотя не уверен, буду ли его вживлять или так оставлю.

В общем не ругайте строго за представленный колхоз и минусов не ставьте)) Всем мира и бобра!)

mysku.ru

Li-Po аккумулятор на 7.4В вместо 5 батареек AA в р/у машинку

Добрый день!
Купил ребёнку р/у машинку. Но столкнулся с одной проблемой. Хорошие батарейки стоят прилично, а учитывая что в авто их 5 штук, то их замена при активной игре сравнима со стоимостью заправки настоящего автомобиля. Решено было найти подходящий по размеру Li-Ion или Li-Po аккумулятор для установки в батарейный отсек машинки.

Зарядка для таких аккумуляторов (IMAX B6) у меня уже была и проблем с зарядкой не будет. Порыскав на АliExpress остановился на Dualsky XP08002ECO его размер идеально подходил для установки в машинку. Пришлось сделать всего две простых доработки. Первая — выкусить довольно высокие перегородки между элементами AA. Вторая — припаять хвостик с разъёмом JST для подключения Li-Po батареи. Хвостик с разъёмом JST заказал здесь.
Фото машинки

Батарейный отсек с батарейками (хвост для Li-Po уже припаял)

Батарейный отсек с выкушеными перегородками

Подключение Li-Po с помощью временного хвоста (нет штатного разъёма, есть возможность переполюсовки)

Li-Po аккумулятор в батарейном отсеке

Машина работает превосходно.
Ёмкость аккумуляторов соответствует заявленной.
Приобрёл сразу два аккумулятора для оперативной замены во время прогулки.
В пакете с аккумулятором лежали 4 наклейки с логотипом производителя батарей. На новую машинку ребёнок их наклеивать не захотел. Наклеил две на старенькую модель Toyota Corolla.

Пока не поставлю штатный хвостик с оригинальным JST разъёмом буду сам менять аккумулятор, а то ребёнок может перепутать полярность. При разряде до 7В данная машинка становится вялой и поэтому вероятность переразряда аккумулятора мала.
Технические характеристики не привожу они есть на страничке товара. Время работы машинки от аккумулятора тоже. Оно будет зависеть как от реализации электроники конкретной р/у модели, так и подстилающей поверхности по которой вы ездите. Да и погода последнее время не радует, а для дома эта модель великовата.

Это мой первый обзор сильно не пинайте. Критику приветствую.
Товар куплен за свои деньги.

mysku.ru

Суперконденсаторы вместо аккумулятора в автомобиле

Суперконденсаторы вместо аккумулятора в автомобиле
Суперконденсатор или ионистор — это что-то нечто среднее между аккумулятором и обычным конденсатором. У него много плюсов, которыми не обладает аккумуляторная батарея. Поэтому, я познакомлю вас с полностью рабочим прототипом батареи для машины на ионисторах. С помощью него можно не просто завести двигатель пару раз, а вполне полноценно эксплуатировать автомобиль неограниченное время.

Понадобится



Этого хватит для первого опытного образца.

Первое испытание с запуском двигателя


Я купил 6 суперконденсаторов и плату балансовой защиты, бывают они продаются индивидуально под каждый ионистор, а бывает и цельная линейка под шесть штук.
Собрал все воедино.
Суперконденсаторы вместо аккумулятора в автомобиле
Плата защиты исключает перезаряд суперконденсаторов напряжением выше 2,7В, поэтому использовать ее практически обязательно нужно, если включение элементов производится последовательно.
Далее я припаял клеммы и установил эту батарею на авто. Но предварительно ее необходимо зарядить небольшим током 5-7 А до рабочего напряжения. На это ушло 10-15 минут времени.
Суперконденсаторы вместо аккумулятора в автомобиле
После подключения автомобиль завелся без лишних сложностей, двигатель работал стабильно, напряжение в бортовой сети держалось на должном уровне.
В ходе этого эксперимента выяснились следующие плюсы и минут: батарея из ионисторов быстро разряжалась при выключенном зажигании, а именно где-то через 5-6 часов напряжение падало до 10 В. Это был минус, а плюс был в том, что даже при этом напряжении автомобиль все ещё заводился, так как для ионистора любое напряжение рабочее, в отличии от аккумулятора.
В итоге запустить двигатель по прошествии одних суток уже не представлялось возможным. И я решил исправить данный недостаток в следующей конструкции.

Схема


Вот схема второго прототипа батареи.
Суперконденсаторы вместо аккумулятора в автомобиле
Оговорюсь сразу: солнечной панели и второго аккумулятора в ней нет. Тут также используется линейка из суперконденсаторов с балансной платой. Также добавлен контроллер заряда аккумулятора, пара переключателей, вольтметр и сам небольшой аккумулятор емкостью 7,5АЧ.
Работа устройства такова: перед запуском авто открываем капот и счелкаем верхний по схеме переключатель. Через мощный 50 Ваттный резистор сопротивлением 1 Ом, ионистор начинает заряжаться от аккумулятора. Заряжать напрямую без этого резистора нельзя, так как для аккумулятора это будет равносильно короткому замыканию.
Суперконденсаторы вместо аккумулятора в автомобиле
На все про все уходит 15 минут времени. Для меня это не критично. После этого можно заводить авто и ехать. Также парально резистору воткнут диод Шоттки. Он служит для зарядки аккумулятора после того как двигатель запущен.
А заряжается аккумуляторная батарея через контроллер зарядки.
Суперконденсаторы вместо аккумулятора в автомобиле
Он нужен для того, чтобы каждый раз не щелкать переключатель включения, а один раз включить и ехать: встать у магазина и уйти на пару часов. И если ионистор начнет тянуть из аккумулятора ток, и разряжать его ниже 11,4 В, то контроллер зарядки тут же его отключит. Тем самым защитит батарею от полного разряда, что может ее погубить раньше срока.
Нижний по схеме переключатель служит для подключения вольтметра либо к ионисторам, либо к батарее.

Полностью рабочий экземпляр батареи на суперконденсаторах


Собрал всю схему в пластиковой коробке. Временно естественно, чисто покататься и испробовать новшество.
Суперконденсаторы вместо аккумулятора в автомобиле
Вид устройства с верху.
Суперконденсаторы вместо аккумулятора в автомобиле
Защитный контроллер.
Суперконденсаторы вместо аккумулятора в автомобиле
Мощный токоограничивающий резистор.
Суперконденсаторы вместо аккумулятора в автомобиле
Цифровой вольтметр виден через пластик.
Суперконденсаторы вместо аккумулятора в автомобиле
Устанавливаем на автомобиль вместо штатной батареи.
Суперконденсаторы вместо аккумулятора в автомобиле
Включаем зажигание и пробуем произвести пуск двигателя.
Суперконденсаторы вместо аккумулятора в автомобиле
Мотор запустился быстро, без каких либо проблем.
Суперконденсаторы вместо аккумулятора в автомобиле
Производится зарядка ионисторов и аккумуляторной батареи, о чем свидетельствуют показания вольтметра.
Суперконденсаторы вместо аккумулятора в автомобиле

Заключение


Теперь поподробнее о достоинствах и недостатка:
Плюсы:
  • В отличии от аккумулятора суперконденсаторы надежнее справляются с пиковым пусковым током. Пуск получается надежнее.
  • Низкое напряжение вполне является рабочим.
  • Имеет низкий вес, от чего всю коробку можно запросто таскать домой на всякий случай.
  • Для пуска можно произвести зарядку даже от батареек и спокойно ехать в путь.

Минусы:
  • Большой саморазряд. Передвигаться конечно можно, но если необходимо на короткий срок включить габариты или аварийную сигнализацию — мало на что хватит энергии, при заглушенном двигателе естественно.

Ну это то что пришло в голову. Теперь о стоимости. На Али Экспресс супер конденсаторы стоят не так уж и дорого. И если посчитать их 6 и балансную защиту, то выйдет дешевле чем кислотный аккумулятор.
На этом у меня все. Надеюсь мой эксперимент был для вас познавательным и интересным. Удачи всем!

Смотрите видео


sdelaysam-svoimirukami.ru

Конденсатор вместо аккумулятора / Статьи и обзоры / Элек.ру

Для накопления электроэнергии люди сначала использовали конденсаторы. Потом, когда электротехника вышла за пределы лабораторных опытов, изобрели аккумуляторы, ставшие основным средством для запасания электрической энергии. Но в начале XXI века снова предлагается использовать конденсаторы для питания электрооборудования. Насколько это возможно и уйдут ли аккумуляторы окончательно в прошлое?

Причина, по которой конденсаторы были вытеснены аккумуляторами, была связана со значительно большими значениями электроэнергии, которые они способны накапливать. Другой причиной является то, что при разряде напряжение на выходе аккумулятора меняется очень слабо, так что стабилизатор напряжения или не требуется или же может иметь очень простую конструкцию.

Главное различие между конденсаторами и аккумуляторами заключается в том, что конденсаторы непосредственно хранят электрический заряд, а аккумуляторы превращают электрическую энергию в химическую, запасают ее, а потом обратно преобразуют химическую энерию в электрическую.

При преобразованиях энергии часть ее теряется. Поэтому даже у лучших аккумуляторов КПД составляет не более 90%, в то время, как у конденсаторов он может достигать 99%. Интенсивность химических реакций зависит от температуры, поэтому на морозе аккумуляторы работают заметно хуже, чем при комнатной температуре. Кроме этого, химические реакции в аккумуляторах не полностью обратимы. Отсюда малое количество циклов заряда-разряда (порядка единиц тысяч, чаще всего ресурс аккумулятора составляет около 1000 циклов заряда-разряда), а также «эффект памяти». Напомним, что «эффект памяти» заключается в том, что аккумулятор нужно всегда разряжать до определенной величины накопленной энергии, тогда его емкость будет максимальной. Если же после разрядки в нем остается больше энергии, то емкость аккумулятора будет постепенно уменьшаться. «Эффект памяти» свойственнен практически всем серийно выпускаемым типам аккумуляторов, кроме, кислотных (включая их разновидности — гелевые и AGM). Хотя принято считать, что литий-ионным и литий-полимерным аккумуляторам он не свойственнен, на самом деле и у них он есть, просто проявляется в меньшей степени, чем в других типах. Что же касается кислотных аккумуляторов, то в них проявляется эффект сульфатации пластин, вызывающий необратимую порчу источника питания. Одной из причин является длительное нахождение аккумулятора в состоянии заряда менее, чем на 50%.

Применительно к альтернативной энергетике «эффект памяти» и сульфатация пластин являются серьезными проблемами. Дело в том, что поступление энергии от таких источников, как солнечные батареи и ветряки, сложно спрогнозировать. В результате заряд и разряд аккумуляторов происходят хаотично, в неоптимальном режиме.

Для современного ритма жизни оказывается абсолютно неприемлемо, что аккумуляторы приходится заряжать несколько часов. Например, как вы себе представляете поездку на электромобиле на дальние расстояния, если разрядившийся аккумулятор задержит вас на несколько часов в пункте зарядки? Скорость зарядки аккумулятора ограничена скоростью протекающих в нем химических процессов. Можно сократить время зарядки до 1 часа, но никак не до нескольких минут. В то же время, скорость зарядки конденсатора ограничена только максимальным током, который дает зарядное устройство.

Перечисленные недостатки аккумуляторов сделали актуальным использование вместо них конденсаторов.

Использование двойного электрического слоя

На протяжении многих десятилетий самой большой емкостью обладали электролитические конденсаторы. В них одной из обкладок являлась металлическая фольга, другой — электролит, а изоляцией между обкладками — окись металла, которой покрыта фольга. У электролитических конденсаторов емкость может достигать сотых долей фарады, что недостаточно для того, чтобы полноценно заменить аккумулятор.

Сравнение конструкций разных типов конденстаторов (Источник: Википедия)

Большую емкость, измеряемую тысячами фарад, позволяют получить конденсаторы, основанные на так называемом двойном электрическом слое. Принцип их работы следующий. Двойной электрический слой возникает при определенных условиях на границе веществ в твердой и жидкой фазах. Образуются два слоя ионов с зарядами противоположного знака, но одинаковой величины. Если очень упростить ситуацию, то образуется конденсатор, «обкладками» которого являются указанные слои ионов, расстояние между которыми равно нескольким атомам.


Суперконденсаторы различной емкости производства Maxwell

Конденсаторы, основанные на данном эффекте, иногда называют ионисторами. На самом деле, этот термин не только к конденсаторам, в которых накапливается электрический заряд, но и к другим устройствам для накопления электроэнергии — с частичным преобразованием электрической энергии в химическую наряду с сохранением электрического заряда (гибридный ионистор), а также для аккумуляторов, основанных на двойном электрическом слое (так называемые псевдоконденсаторы). Поэтому более подходящим является термин «суперконденсаторы». Иногда вместо него используется тождественный ему термин «ультраконденсатор».

Техническая реализация

Суперконденсатор представляет собой две обкладки из активированного угля, залитые электролитом. Между ними расположена мембрана, которая пропускает электролит, но препятствует физическому перемещению частиц активированного угля между обкладками.

Следует отметить, что суперконденсаторы сами по себе не имеют полярности. Этим они принципиально отличаются от электролитических конденсаторов, для которых, как правило, свойственна полярность, несоблюдение которой приводит к выходу конденсатора из строя. Тем не менее, на суперконденсаторах также наносится полярности. Связано это с тем, что суперконденсаторы сходят с заводского конвейера уже заряженными, маркировка и означает полярность этого заряда.

Параметры суперконденсаторов

Максимальная емкость отдельного суперконденсатора, достигнутая на момент написания статьи, составляет 12000 Ф. У массово выпускаемых супероконденсаторов она не превышает 3000 Ф. Максимально допустимое напряжение между обкладками не превышает 10 В. Для серийно выпускаемых суперконденсаторов этот показатель, как правило, лежит в пределах 2,3 – 2,7 В.   Низкое рабочее напряжение требует использование преобразователя напряжения с функцией стабилизатора. Дело в том, что при разряде напряжение на обкладках конденсатора изменяется в широких пределах. Построение преобразователя напряжения для подключения нагрузки и зарядного устройства являются нетривиальной задачей. Предположим, что вам нужно питать нагрузку с мощностью 60 Вт.

Для упрощения рассмотрения вопроса пренебрежем потерями в преобразователе напряжения и стабилизаторе. В том случае, если вы работаете с обычным аккумулятором с напряжением 12 В, то управляющая электроника должна выдерживать ток в 5 А. Такие электронные приборы широко распространены и стоят недорого. Но совсем другая ситуация складывается при использовании суперконденсатора, напряжение на котором составляет 2,5 В. Тогда ток, протекающий через электронные компоненты преобразователя, может достигать 24 А, что требует новых подходов к схмотехнике и современной элементной базы. Именно сложностью с построением преобразователя и стабилизатора можно объяснить тот факт, что суперконденсаторы, серийный выпуск которых был начат еще в 70-х годах XX века, только сейчас стали широко использоваться в самых разных областях.


Принципиальная схема источника бесперебойного питания
напряжением на суперконденсаторах, основные узлы реализованы
на одной микосхеме производства LinearTechnology

Суперконденсаторы могут соединяться в батареи с использованием последовательного или параллельного соединения. В первом случае повышается максимально допустимое напряжение. Во втором случае — емкость. Повышение максимально допустимого напряжения таким способом является одним из способов решения проблемы, но заплатить за нее придется снижением емкости.

Размеры суперконденсаторов, естественно, зависят от их емкости. Типичный суперконденсатор емкостью 3000 Ф представляет собой цилиндр диаметром около 5 см и длиной 14 см. При емкости 10 Ф суперконденсатор имеет размеры, сопоставимые с человеческим ногтем.

Хорошие суперконденсаторы способны выдержать сотни тысяч циклов заряда-разряда, превосходя по этому параметру аккумуляторы примерно в 100 раз. Но, как и у электролитических конденсаторов, для суперконденсаторов стоит проблема старения из-за постепенной утечки электролита. Пока сколь-нибудь полной статистики выхода из строя суперконденсаторов по данной причине не накоплено, но по косвенным данным, срок службы суперконденсаторов можно приблизительно оценить величиной 15 лет.

Накапливаемая энергия

Количество энергии, запасенной в конденсаторе, выраженное в джоулях:

E = CU2/2,
где C — емкость, выраженная в фарадах, U — напряжение на обкладках, выраженное в вольтах.

Количество энергии, запасенной в конденсаторе, выраженное в кВтч, равно:

W = CU2/7200000

Отсюда, конденсатор емкостью 3000 Ф с напряжением между обкладками 2,5 В способен запасти в себе только 0,0026 кВтч. Как это можно соотнести, например, с литий-ионным аккумулятором? Если принять его выходное напряжение не зависящим от степени разряда и равным 3,6 В, то количество энергии 0,0026 кВтч будет запасено в литий-ионном аккумуляторе емкостью 0,72 Ач. Увы, весьма скромный результат.

Применение суперконденсаторов

Системы аварийного освещения являются тем местом, где использование суперконденсаторов вместо аккумуляторов дает ощутимый выигрыш. В самом деле, именно для этого применения характерна неравномерность разрядки. Кроме этого, желательно, чтобы зарядка аварийного светильника происходила быстро, и чтобы используемый в нем резервный источник питания имел большую надежность. Источник резервного питания на основе суперконденсатора можно встроить непосредственно в светодиодную лампу T8. Такие лампы уже выпускаются рядом китайских фирм.


Грунтовый светодиодный светильник с питанием
от солнечных батарей, накопление энергии
в котором осуществляется в суперконденсаторе

Как уже отмечалось, развитие суперконденсаторов во многом связано с интересом к альтернативным источникам энергии. Но практическое применение пока ограничено светодиодными светильниками, получающими энергию от солнца.

Активно развивается такое направление как использование суперконденсаторов для запуска электрооборудования.

Суперконденсаторы способны дать большое количество энергии в короткий интервал времени. Запитывая электрооборудование в момент пуска от суперконденсатора, можно уменьшить пиковые нагрузки на электросеть и в конечном счете уменьшить запас на пусковые токи, добившись огромной экономии средств.

Соединив несколько суперконденсаторов в батарею, мы можем достичь емкости, сопоставимой с аккумуляторами, используемыми в электромобилях. Но весить эта батарея будет в несколько раз больше аккумулятора, что для транспортных средств неприемлемо. Решить проблему можно, используя суперконденсаторы на основе графена, но они пока существуют только в качестве опытных образцов. Тем не менее, перспективный вариант знаменитого «Ё-мобиля», работающий только от электричества, в качестве источника питания будет использовать суперконденсаторы нового поколения, разработка которых ведется российскими учеными.

Суперконденсаторы также дадут выигрыш при замене аккумуляторов в обычных машинах, работающих на бензине или дизельном топливе — их использование в таких транспортных средствах уже является реальностью.

Пока же самым удачным из реализованных проектов внедрения суперконденсаторов можно считать новые троллейбусы российского производства, вышедшие недавно на улицы Москвы. При прекращении подачи напряжения в контактную сеть или же при «слетании» токосъемников троллейбус может проехать на небольшой (порядка 15 км/ч) скорости несколько сотен метров в место, где он не будет мешать движению на дороге. Источником энергии при таких маневрах для него является батарея суперконденсаторов.

В общем, пока суперконденсаторы могут вытеснить аккумуляторы только в отдельных «нишах». Но технологии бурно развиваются, что позволяет ожидать, что уже в ближайшем будущем область применения суперконденсаторов значительно расширится.

Алексей Васильев

www.elec.ru

0 comments on “Аккумуляторы вместо батареек – . .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *