Активное сопротивление меди – Понятие удельного электрического сопротивления медного проводника

Электрическое сопротивление силовых кабелей

Сопротивление — физическая единица, показывающая способность сдерживать электрический ток. Разные виды проводников имеют свой показатель этой характеристики, из чего вытекают их особенности.

Что такое сопротивление, его природа

Сопротивление (обозначается латинской буквой R) — это одна из главных характеристик проводников. В зависимости от сферы применения это свойство может играть как положительную, так и отрицательную роль при использовании проводника.

В первую очередь проводниками могут быть металлы и металлические сплавы. Атомы в металле имеют свободные электроны, которые и являются носители заряда. Электроны в металле все время беспорядочно двигаются от атома к атому. Если к ним подключить электрический ток, то их движение становится упорядоченным. При столкновении электрона с атомной структурой электрон отдаёт свою энергию металлу, тем самым нагревая его. Чем больше структурных препятствий на пути электрона, тем больше R металла.

Особенности активного сопротивления

Активное сопротивление — это единица, показывающая R на участке в электрической цепи, на котором электрическая энергия переходит в тепловую, механическую или любую другую энергию. Из-за того что переменный тоκ проходит неравномерно, R переменного и постоянного тока будет различаться при их равных параметрах. Это правило действует на электрокабели и электролинии. Но для электрокабелей из цветных металлов с частотой переменного напряжения 50 Герц это правило практически неприменимо, так как в этом случае активное R всегда одинаково при любом токе.

Стальные электропровода имеют лучшее активное R в сравнении с цветными металлами.

Виды сопротивлений

Всего есть четыре вида сопротивления:

  • Омическое. Это R постоянного тока.
  • Активное. Это R переменного тока.
  • Индуктивное (XL). Это отношение самоиндукционного тока катушки к току от генератора.
  • Емкостное. Это отношение силы конденсатора к его заряду.

Удельное сопротивление

Удельное сопротивление (ρ) — это единица, показывающая способность проводника затруднять прохождение электрического тока.

С помощью него можно оценивать параметры электрических проводников из разных материалов.
ρ проводника всегда увеличивается при увеличении длины и уменьшении сечения, в интернациональной системе длина проводника равна 1 метру, а сечение -1 мм2.

Активное сопротивление проводов, кабелей и линий

Из-за того что переменный ток проходит неравномерно, то при одинаковых условиях тока переменного и постоянного R будет отличаться. Как уже было сказано, стальные электропровода имеют лучшее активное R по сравнению с проводниками из цветных металлов, которые имеют одинаковое R при любой силе тока.

Напротив, активное R электрокабелей из стали всегда зависит от электрического тока, поэтому удельную постоянную проводимость в этом случае никогда не используют. Активное R электрокабеля определяют с помощью формулы: R=l/у*s.

Индуктивное сопротивление проводов, кабелей и линий

Индуктивное R на один км с пятьюдесятью герцами определяем по специальной формуле:

  • x=0,144*lg(2*a(cp))/d+0,016*μ=х0’+х»0,
  • а(ср) – ср. длина между осью нескольких проводов, более подробно
  • a(cp)=3 корень(а1*а2*а3),
  • а1, а2 и а3 — длина между осью в различных фазах. d — наружный диаметр. μ— относительная магнитная проницаемость. х’0 — внешнее вне линии. x»0 — внутреннее внутри линии.

Сопротивление изоляции кабеля

Для нахождения R изоляции кабеля нужно исходить из его вида. Есть следующие разновидности:

  1. 1000 В и больше — высоковольтные.
  2. Ниже 1000 В — низковольтные.
  3. Контрольные электрокабели — защитные цепи, вторичные цепи РУ (реле указательных), цепи питания электроприводов и так далее.

Для измерения R изоляции необходимо специализированное устройство. Высоковольтные и низковольтные определяются при напряжении 2500 В, когда контрольные — от 500 до 2500 В. Если используется высоковольтный со значением больше 1000 В, то его R изоляции должно быть не меньше 10 МОм. Если используется низковольтный со значением меньше 1000 В, то его R изоляции должно быть не меньше 0,5 Мом. У контрольных кабелей R изоляции должно быть не меньше 1 МОм.

Высоковольтные провода нулевого сопротивления

Высоковольтные провода с нулевым R лучше и надежнее обычных, из-за использования в них силикона они не становятся твердыми на морозе, не становятся сухими с течением времени и от температуры.

«Нулевые» высоковольтные провода имеют разницу по сравнению с обычными высоковольтными проводами с полимерными жилами: R в них измеряется в Омах и десятых Ом, тогда как в обычных – в тысячах.

Помимо этого, у него есть и другие преимущества, в первую очередь больший срок эксплуатации.

Биметаллический кабель

Биметаллические кабели состоят из обычной проволоки из стали, покрытой медью и имеют малое удельное R. Биметаллические электрокабели производят из малого количество меди, что значительно удешевляет их. При этом они способны выдержать в 5 раз большую нагрузку, чем чисто стальные, и в 6 раз большую, чем медные. В связи с этим их активно используют в линиях электропередачи, а также шинах распределяющих устройств и разных частей электроприборов.

При выборе проводников необходимо учитывать условия их эксплуатации и выбирать в соответствии с ними кабель с подходящими свойствами, в первую очередь – сопротивлением.

pauk.top

Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов.





Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Электрическое сопротивление и проводимость проводников, растворов, почв….  / / Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов.

Таблица удельных сопротивлений проводников. Таблица удельных сопротивлений металлов. Зависимость сопротивления металлов от температуры. Температурный коэффициент электрического сопротивления металлов α .

  • В разумных температурных пределах вокруг некоторой точки зависимость удельного сопротивления металлов от температуры описывается как:
  • ΔR = α*R*ΔT, где α — температурный коэффициент электрического сопротивления.
  • Ниже приведена таблица значений α для ряда металлов в диапазоне температур от 0 до 100 ° C.
Зависимость сопротивления металлов от температуры. Температурный коэффициент электрического сопротивления металлов α .
Проводник

Удельное сопротивление
ρ, Ом*мм2

α, 10 -3*C-1(или K -1)
Алюминий

0,028

4,2

Бронза

0,095 — 0,1

Висмут

1,2

Вольфрам

0,05

5

Железо

0,1

6

Золото

0,023

4

Иридий

0,0474

Константан ( сплав Ni-Cu + Mn)

0,5

0,05!

Латунь

0,025 — 0,108

0,1-0,4

Магний

0,045

3,9

Манганин (сплав меди марганца и никеля — приборный)

0,43 — 0,51

0,01!!

Медь

0,0175

4,3

Молибден

0,059

Нейзильбер (сплав меди цинка и никеля)

0,2

0,25

Натрий

0,047

Никелин ( сплав меди и никеля)

0,42

0,1

Никель

0,087

6,5

Нихром ( сплав никеля хрома железы и марганца)

dpva.ru

Значения удельных активных сопротивлений для медных и алюминиевых проводов и кабелей

Сечение, мм

Провода и кабели, Ом/км

Сечение, мм2

Провода и кабели, Ом/км

медные

алюминие­вые

медные

алюминие­вые

1

18,9

35

0,54

0,92

1,5

12,6

50

0,39

0,64

2,5

7,55

12,6

70

0,28

0,46

4

4,56

7,90

95

0,2

0,34

6

3,06

5,26

120

0,158

0,27

10

1,84

3,16

150

0,123

0.21

16

1,20

1,98

185

0.103

0,17

25

0,74

1,28

240

0,17

0,132

Индуктивное сопротивление проводов и кабелей. Как уже отмечалось, при перемен­ном токе в линии вокруг ее проводов создается переменное магнитное поле, которое обу­словливает индуктивное сопротивление линии. Величина сопротивления зависит от рас­стояния между проводами линии, диаметра провода, относительной магнитной проницае­мости, частоты переменного тока.

Значение индуктивного сопротивления 1 км трехфазной воздушной линии для любого расположения проводов, материала проводов и частоты переменного тока можно определить по формуле (Ом/км)

— угловая частота;

— среднее геометрическое расстояние между осями проводов, мм;

d — диаметр провода, мм;

— относительная магнитная проницаемость провода. Среднее геометрическое расстояние между осями трех проводов трехфазной линии, проложенных в одной плоскости, определяется выражением

При горизонтальном или вертикальном расположении проводов трехфазной линии в »лпой плоскости с расстоянием между проводами

Д

Из формулы видно, что первый член представляет собой индуктивное сопро-‘пвление, обусловленное внешним магнитным полем, и называется внешним индуктивным сопротивлением

Оно зависит не от материала провода и значения протекающего тока, а от расстояния между проводами и диаметра провода. Поскольку расстояние между проводами выбирают в зависимости от значения напряжения, внешнее индуктивное сопротивление тем больше, чем больше номинальное напряжение линии. Оно больше у воздушной линии, чем у ка­лькой, так как жилы кабеля расположены значительно ближе друг к другу. Увеличение учения проводов линии ведет к незначительному уменьшению внешнего индуктивного ^противления.

Второй член формулы представляет собой индуктивное сопротивление провода, созданное переменным магнитным полем внутри проводника, и называется внутренним индуктивным сопротивлением х0«. Оно зависит только от магнитной проницаемости материала провода и, следовательно, от значения тока.

Таким образом, формулу можно представить в виде суммы внешнего и ] реннего индуктивных сопротивлений:

Внутреннее индуктивное сопротивление х()» стальных проводов в отличие от прово. дов из цветных металлов имеет преобладающее значение. Это вызвано тем, что внутренне индуктивное сопротивление пропорционально магнитной проницаемости, зависящей о протекающего тока в проводе. Если для проводов из цветных металлов μ= 1, то для стоп­ных проводов р. может достигать значения 103 и даже больше.

Для линии с проводами из цветных металлов (немагнитных), у которых μ=1, и припромышленной частоте переменного тока 50 Гц внутреннее индуктивное сопротивление по сравнению с внешним составляет ничтожно малую величину и им обычно пре­небрегают: в этом случае формула примет следующий вид (Ом/км):

Для определения индуктивного сопротивления (Ом/км) воздушной или кабельтн-линии протяженностью l (км) пользуются выражением

где индуктивное сопротивление 1 км провода или кабеля на фазу; l — длина линии

Для практических расчетов индуктивные сопротивления трехфазных линий х(), Ом/км. можно определять по табл. 6.4

Таблица 4.4

studfiles.net

Практическое пособие по определению возможной причастности токов короткого замыкания к воспламенению изоляции проводников, страница 15

Примечание. *Относится к трансформаторам старых стандартных мощностей, снятым с производства. Сопротивления трансформаторов приведены к низшему напряжению.

Таблица 2.

Активные и индуктивные сопротивления проводов и кабелей с алюминиевыми и медными жилами (для напряжений до 500 В) при номинальной нагрузке [10].

Сечение, мм2

Сопротивление, мОм/м

Сечение, мм2

Сопротивление, мОм/м

Активное, r

Индуктивное, x

Активное, r

Индуктивное, x

Алюминий

Медь

Провода открыто проложенные

Провода в трубках или кабели

Алюминий

Медь

Провода открыто проложенные

Провода в трубках или кабели

1,5

22,2

13,35

0,11

50

0,67

0,4

0,25

0,06

2,5

13,3

8

0,09

70

0,48

0,29

0,24

0,06

4

8,35

5

0,33

0,1

95

0,35

0,21

0,23

0,06

6

5,55

3,33

0,32

0,09

120

0,28

0,17

0,22

0,06

10

3,33

2

0,31

0,07

150

0,22

0,13

0,21

0,06

16

2,08

1,25

0,29

0,07

185

0,18

0,11

0,21

0,06

25

1,33

0,8

0,27

0,07

240

0,08

0,2

35

0,95

0,57

0,26

0,06

300

0,12

0,07

0,19

0,06

Таблица 3.

Активное и индуктивное сопротивления алюминиевых и сталеалюминиевых проводов [17].

Марка провода

Активное сопротивление, мОм/м

Индуктивное сопротивление, мОм/м, при среднем геометрическом расстоянии между проводами, мм

400

600

1000

2000

3000

4000

5000

Алюминиевые провода

А16

1,98

0,332

0,358

А25

1,28

0,318

0,345

А35

0,92

0,312

0,326

0,37

0,41

А50

0,64

0,297

0,325

0,36

0,4

0,42

0,44

А70

0,46

0,283

0,315

0,35

0,39

0,41

0,43

А95

0,34

0,277

0,302

0,33

0,38

0,4

0,42

А120

0,21

0,27

0,297

0,31

0,36

0,39

0,4

0,42

А185

0,17

0,31

0,35

0,38

0,39

0,41

А240

0,13

0,3

0,34

0,37

0,39

0,4

А300

0,11

0,29

0,34

0,36

0,37

0,39

А400

0,08

0,28

0,33

0,35

0,36

0,38

А500

0,06

0,28

0,32

0,35

0,36

0,37

А600

0,05

0,27

0,31

0,34

0,36

0,37

Сталеалюминиевые провода

АС10

3,12

0,342

0,368

АС16

2,06

0,318

0,354

0,33

0,43

АС25

1,38

0,316

0,342

0,38

0,41

0,43

АС35

0,9

0,301

0,327

0,37

0,4

0,43

0,44

АС 50

0,65

0,292

0,319

0,35

0,39

0,42

0,43

АС 70

0,46

0,34

0,38

0,41

0,42

0,44

AC 95

0,33

0,33

0,37

0,4

0,41

0,43

AC 120

0,27

0,32

0,36

0,39

0,4

0,42

AC 150

0,21

0,35

0,38

0,4

0,41

AC 185

0,17

0,37

0,39

0,41

AC 240

0,13

0,36

0,38

0,4

AC 300

0,11

0,35

0,37

0,39

vunivere.ru

Метод расчета активного сопротивления цилиндрического провода с учетом поверхностного эффекта



В данной статье рассматривается вопрос влияния высших гармоник тока на активное сопротивление цилиндрического провода в диапазоне частот от 50 до 2000 Гц. Выведена расчетная формула для активного сопротивления цилиндрического провода на произвольной частоте. Проанализированы закономерности изменения активного сопротивления медных и алюминиевых проводов в зависимости от частоты и площади поперечного сечения.

Ключевые слова: поверхностный эффект, несинусоидальность, активное сопротивления медного провода, активное сопротивление алюминиевого провода

This article has shown the problem of high-harmonics influence on cylindrical wire resistance according to the frequency range from 50 to 2000 Hz. Cylindrical wire resistance estimation for any frequency has been deduced.We have also analyzed cylindrical wire resistance dependence of copper and aluminum wires due to the frequency and cross section area.

Keywords: skin effect, high-harmonics, copper wire resistance, aluminum wire resistance

В Российской Федерации системы электроснабжения общего назначения работают на фиксированной частоте 50 Гц. Кроме основной гармоники, в сетях присутствуют также высшие гармоники токов и напряжений [1]. Исследования указывают на то, что при наличии в сети нелинейных нагрузок, наибольшим искажениям подвергается форма кривой тока, в то время как кривая напряжения практически не изменяется [5, 6]. Это объясняется тем, что реальные генераторы по своим свойствам близки к идеальным источникам ЭДС. Высшие гармоники тока приводят к дополнительному нагреву проводников линии электропередачи, в результате чего, с одной стороны возникают дополнительные потери мощности, с другой происходит ускоренный износ изоляции, изоляторов, растяжение проводов и другие негативные последствия [2]. По мере увеличения частоты, начинает проявляться поверхностный эффект, приводящий к перераспределению плотности тока в сечении проводника, от центра к поверхности, в результате изменяется его сопротивление, что в свою очередь влияет на потери мощности и энергии в линиях электропередачи электрической распределительной сети.

Задача данного исследования: определить степень изменения плотности тока в сечении провода и его сопротивления в зависимости от частоты гармоники тока протекающего по проводнику. Это позволит более точно рассчитать дополнительные потери мощности на нагрев проводов, обусловленные несинусоидальностью питающего напряжения электрической распределительной сети.

Провод можно приближенно представить в виде цилиндрического проводника, длина которого многократно превышает радиус. Для нахождения плотности тока используют уравнения Максвелла, решение которых производится в цилиндрической системе координат [3]. В результате выражения для плотности тока и напряженности магнитного поля в любой точке сечения цилиндрического проводника:

(1)

(2)

где — комплексная плотность тока, А/м2; — напряженность магнитного поля, А/м; — комплексный ток, А; J0 — функция Бесселя 1-го рода 0-го порядка; J1 — функция Бесселя 1-го рода 1-го порядка; r — радиус текущей поверхности тока в проводе, м; a — радиус провода, м; — комплексное волновое число, м-1; — круговая частота, рад/с; f — циклическая частота, Гц; — абсолютная магнитная проницаемость, Гн/м; µ — относительная магнитная проницаемость; µ 0= 4·π·10–7 Гн/м — магнитная постоянная.

Формулы (1), (2) не учитывают «эффект близости», т. к. для этого необходимо точно знать пространственное расположение проводников. При расстоянии между проводами многократно превышающем радиус и невысоких значениях тока «эффектом близости» можно пренебречь.

Мощность рассеиваемую цилиндрическим проводом определяют по закону Джоуля-Ленца в комплексной форме:

(3)

С другой стороны рассеиваемую мощность находим, используя теорему Умова-Пойнтинга [3]:

(4)

Приравнивая выражения (3) и (4) получаем:

(5)

В результате комплексное сопротивление выражаем формулой:

(6)

Вектор напряженности электрического поля вычисляем по формуле:

(7)

где σ — удельная проводимость, См/м.

Учитывая, что площадь боковой поверхности цилиндрического проводника равна S=2·π·a·lи радиус поверхности равен радиусу провода r=a получаем:

где l — длина проводника, м.

Таким образом, окончательное выражение для комплексного сопротивления цилиндрического провода приняло вид:

Активное сопротивление при этом определяем, как действительную часть полного комплексного сопротивления:

(8)

Рассчитаем сопротивления медных проводов и алюминиевых проводов марок А, АКП, АН, АНКП, АЖ, АЖКП. Сечения выберем самые распространенные: 16, 25, 35, 50, 70, 95, 120, 150, 185 мм2 [4], хотя каких-либо ограничений по сечению проводов нет. Единственное условие данного метода: длина должна быть много больше радиуса l>>a. Удельная проводимость меди σCu=56·106 См/м, а удельная проводимость алюминия σAl=37·106 См/м. Относительная магнитная проницаемость обоих материалов приблизительно равна µ=1 (медь является диамагнетиком, а алюминий парамагнетиком). Радиус провода выражаем из формулы площади круга:

,

где s — площадь сечения провода, мм2.

Расчета активного сопротивления медных проводов различных сечений, выполнен в диапазоне частот 0–2 кГц (рисунок 1.). Аналогичный расчет проведен для алюминиевых проводов (рисунок 2.). Выбор диапазона обосновывается тем, что согласно ГОСТ Р54149–2010, гармоники нормируются до 40-й включительно, что соответствует наибольшему значению частоты 2кГц [1].

Рис. 1. Зависимость активного сопротивления медных проводов различных сечений от частоты

Семейства графиков (рисунки 1, 2) показывает зависимость погонного сопротивления проводов как от их сечения, так и от частоты. В полосе частот от 0 до 2000 Гц (рисунок 1.) величина возрастания сопротивления от 10,4 % до 183,9 %, в зависимости от сечения провода. Причем наибольший, в процентном отношении, прирост сопротивления наблюдается на больших сечениях. Например, при сечении 16 мм2 погонное сопротивление увеличивается с 1,08 до 1,19 Ом/км, что составляет 10,4 %, а при наибольшем сечении 185 мм2 погонное сопротивление увеличивается с 0,09 до 0,27 Ом/км, что в пересчете на проценты составляет 183,9 %. Это объясняется большей неравномерностью плотности тока при большем радиусе сечений проводов.

Рис. 2. Зависимость активного сопротивления алюминиевых проводов различных сечений от частоты

Результаты, полученные для алюминиевых проводов (рисунок 2.), аналогичны результатам для медных проводов. Сопротивление возрастает на величину от 4,4 % до 133,8 %, в зависимости от сечения провода, наименьший прирост погонного сопротивления наблюдается при сечении 16 мм2, в этом случае погонное сопротивление увеличивается с 1,69 до 1,76 Ом/км, что составляет 4,4 %, а при наибольшем приведенном на графике сечении 185 мм2 погонное сопротивление увеличивается с 0,15 до 0, 34 Ом/км, что в пересчете на проценты составляет 133,8 %.

Таким образом для проводников большего сечения поверхностный эффект оказывает более выраженное влияние на сопротивление (для меди сопротивление возросло на 183,9 %, а для алюминия на 133,8 %, в полосе частот от 0 до 2000 Гц), уменьшение же сечения приводит к существенному возрастанию активного сопротивления (рисунки 1,2.). Проводники с большей удельной проводимостью более подвержены влиянию поверхностного эффекта. При равном сечении, по мере увеличения частоты, активное сопротивление медного провода возрастает быстрее, чем активное сопротивление алюминиевого провода.

Литература:

  1. ГОСТ 32144–2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. [Текст] — М.: Стандартинформ — 2014г. — 38 с.
  2. Григорьев О. Высшие гармоники в сетях электроснабжения 0,4 кВ/ О. Григорьев, В. Петухов, В. Соколов, И. Красилов [Текст] //«Новости электротехники», № 6(18) 2002–1(19) 2003.
  3. Бессонов Л. А. Теоретические основы электротехники [Текст] — М.: Высшая школа — 1964г. — 750 с.
  4. Будзко И. А. Элетроснабжение сельского хозяйства/ И. А. Будзко, Т. Б. Лещинская, В. И. Сукманов [Текст] — М: Колос — 2000 г. — 536 с.
  5. Бессонов Л. А. Линейные электрические цепи / Л. А. Бессонов. — М: Высшая школа, 1983. — 336 с.
  6. Лосев А. К. Теория Линейных электрических цепей / А. К. Лосев. — М: Высшая школа, 1987. — 512 с.

Основные термины (генерируются автоматически): активное сопротивление, погонное сопротивление, поверхностный эффект, цилиндрический провод, провод, сечение, цилиндрический проводник, радиус провода, сечение провода, алюминиевый провод.

moluch.ru

Сопротивление медного провода: таблица

Содержание:
  1. Понятия и значение сопротивления
  2. Как рассчитать сопротивление
  3. Видео: Как выбрать кабель

При проектировании электрических сетей в квартирах или частных домах в обязательном порядке выполняется расчет сечения проводов и кабелей. Для проведения вычислений используются такие показатели, как значение потребляемой мощности и сила тока, которая будет проходить по сети. Сопротивление не принимается в расчет из-за малой протяженности кабельных линий. Однако этот показатель необходим при большой длине ЛЭП и перепадах напряжения на различных участках. Особое значение имеет сопротивление медного провода. Такие провода все чаще используются в современных сетях, поэтому их физические свойства должны обязательно учитываться при проектировании.

Понятия и значение сопротивления

Электрическое сопротивление материалов широко используется и учитывается в электротехнике. Данная величина позволяет установить основные параметры проводов и кабелей, особенно при скрытом способе их прокладки. В первую очередь устанавливается точная длина проложенной линии и материал, использованный для производства провода. Вычислив первоначальные данные, вполне возможно определить диаметр и сечение измеряемого кабеля.

По сравнению с обычной электрической проводкой, в электронике параметрам сопротивления придается решающее значение. Оно рассматривается и сопоставляется в совокупности с другими показателями, присутствующими в электронных схемах. В этих случаях неправильно подобранное сопротивление провода, может вызвать сбой в работе всех элементов системы. Такое может произойти, если для подключения к блоку питания компьютера воспользоваться слишком тонким проводом. Произойдет незначительное снижение напряжения в проводнике, что вызовет некорректную работу компьютера.

Сопротивление в медном проводе зависит от многих факторов, и в первую очередь от физических свойств самого материала. Кроме того, учитывается диаметр или сечение проводника, определяемые по формуле или специальной таблице.

Таблица

На сопротивление медного проводника оказывают влияние несколько дополнительных физических величин. Прежде всего должна учитываться температура окружающей среды. Всем известно, что при повышении температуры проводника, наблюдается рост его сопротивления. Одновременно с этим происходит снижение силы тока из-за обратно пропорциональной зависимости обеих величин. В первую очередь это касается металлов с положительным температурным коэффициентом. Примером отрицательного коэффициента является вольфрамовый сплав, применяющийся в лампах накаливания. В этом сплаве сила тока не снижается даже при очень высоком нагреве.

Как рассчитать сопротивление

Для расчетов сопротивления медного провода существует несколько способов. К наиболее простым относится табличный вариант, где указаны взаимосвязанные параметры. Поэтому, кроме сопротивления, определяется сила тока, диаметр или сечение провода.

Во втором случае используются разнообразные онлайн-калькуляторы. В каждый из них вставляется набор физических величин медного провода, с помощью которых получаются точные результаты. В большинстве подобных калькуляторов используется удельное сопротивление меди в размере 0,0172 Ом*мм2/м. В некоторых случаях такое усредненное значение может повлиять на точность вычислений.

Наиболее сложным вариантом считаются ручные вычисления, с использованием формулы: R = p x L/S, в которой р – удельное сопротивление меди, L – длина проводника и S – сечение этого проводника. Следует отметить, что сопротивление медного провода таблица определяет, как одно из наиболее низких. Более низким значением обладает лишь серебро.

electric-220.ru

Таблица удельного электросопротивления медных проводников

Одним из самых распространённых металлов для изготовления проводов является медь. Её электросопротивление минимальное из доступных по цене металлов. Оно меньше только у драгоценных металлов (серебра и золота) и зависит от разных факторов.

Формула вычисления сопротивления проводника

Что такое электрический ток

На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.

Определение. Электрический ток – это направленное движение заряженных частиц.

Удельное сопротивление

Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:

p=(R*S)/l.

Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.

Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:

  • Материал. У разных металлов различная плотность атомов и количество свободных электронов;
  • Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
  • Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.

На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.

Удельное сопротивление металлов

Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.

Проводимость и электросопротивление

Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:

R=(p*l)/S.

Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:

g=1/R.

Проводимость жидкостей

Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.

Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.

Электросопротивление проводов

Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.

В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.

Сопротивление проводов

Выбор сечения кабеля

Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.

Выбор по допустимому нагреву

При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:

P=I²*R.

В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.

Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.

Таблица выбора сечения провода по допустимому нагреву

Допустимые потери напряжения

Кроме нагрева, при прохождении электрического тока по проводам происходит уменьшение напряжения возле нагрузки. Эту величину можно рассчитать по закону Ома:

U=I*R.

Справка. По нормам ПУЭ оно должно составлять не более 5% или в сети 220В – не больше 11В.

Поэтому, чем длиннее кабель, тем больше должно быть его сечение. Определить его можно по таблицам или при помощи онлайн-калькулятора. В отличие от выбора сечения по допустимому нагреву, потери напряжения не зависят от условий прокладки и материала изоляции.

В сети 220В напряжение подаётся по двум проводам: фазному и нулевому, поэтому расчёт производится по двойной длине кабеля. В кабеле из предыдущего примера оно составит U=I*R=30A*2*0.074Ом=4,44В. Это немного, но при длине 25 метров получается 11,1В – предельно допустимая величина, придётся увеличивать сечение.

Максимально допустимая длина кабеля данного сечения

Электросопротивление других металлов

Кроме меди и алюминия, в электротехнике используются другие металлы и сплавы:

  • Железо. Удельное сопротивление стали выше, но она прочнее, чем медь и алюминий. Стальные жилы вплетаются в кабеля, предназначенные для прокладки по воздуху. Сопротивление железа слишком велико для передачи электроэнергии, поэтому при расчёте сечения жилы не учитываются. Кроме того, оно более тугоплавкое, и из него изготавливаются вывода для подключения нагревателей в электропечах большой мощности;
  • Нихром (сплав никеля и хрома) и фехраль (железо, хром и алюминий). Они обладают низкой проводимостью и тугоплавкостью. Из этих сплавов изготавливаются проволочные резисторы и нагреватели;
  • Вольфрам. Его электросопротивление велико, но это тугоплавкий металл (3422 °C). Из него изготавливаются нити накала в электролампах и электроды для аргонно-дуговой сварки;
  • Константан и манганин (медь, никель и марганец). Удельное сопротивление этих проводников не меняется при изменениях температуры. Применяются в претензионных приборах для изготовления резисторов;
  • Драгоценные металлы – золото и серебро. Обладают самой высокой удельной проводимостью, но из-за большой цены их применение ограничено.

Индуктивное сопротивление

Формулы для расчёта проводимости проводов справедливы только в сети постоянного тока или в прямых проводниках при низкой частоте. В катушках и в высокочастотных сетях появляется индуктивное сопротивление, во много раз превышающее обычное. Кроме того, ток высокой частоты распространяется только по поверхности провода. Поэтому его иногда покрывают тонким слоем серебра или используют литцендрат.

Справка. Литцендрат – это многожильный провод, каждая жила в котором изолирована от остальных. Это делается для увеличения поверхности и проводимости в сетях высокой частоты.

Удельное сопротивление меди, гибкость, относительно невысокая цена и механическая прочность делают этот металл, вместе с алюминием, самым распространенным материалом для изготовления проводов.

Видео

Оцените статью:

elquanta.ru

0 comments on “Активное сопротивление меди – Понятие удельного электрического сопротивления медного проводника

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *