Четвертьволновая антенна – Теория радиоволн: антенны / Habr

Теория радиоволн: антенны / Habr

Помимо свойств радиоволн, необходимо тщательно подбирать антенны, для достижения максимальных показателей при приеме/передаче сигнала.
Давайте ближе познакомимся с различными типами антенн и их предназначением.


Антенны — преобразуют энергию высокочастотного колебания от передатчика в электромагнитную волну, способную распространяться в пространстве. Или в случае приема, производит обратное преобразование — электромагнитную волну, в ВЧ колебания.

Диаграмма направленности — графическое представление коэффициента усиления антенны, в зависимости от ориентации антенны в пространстве.

Антенны

Симметричный вибратор

В простейшем случае состоит из двух токопроводящих отрезков, каждый из которых равен 1/4 длины волны.

Широко применяется для приема телевизионных передач, как самостоятельно, так и в составе комбинированных антенн.

Так, к примеру, если диапазон метровых волн телепередач проходит через отметку 200 МГц, то длина волны будет равна 1,5 м.
Каждый отрезок симметричного вибратора будет равен 0,375 метра.

Диаграмма направленности симметричного вибратора

В идеальных условиях, диаграмма направленности горизонтальной плоскости, представляет собой вытянутую восьмерку, расположенную перпендикулярно антенне. В вертикальной плоскости, диаграмма представляет собой окружность.
В реальных условиях, на горизонтальной диаграмме присутствуют четыре небольших лепестка, расположенных под углом 90 градусов друг к другу.
Из диаграммы можем сделать вывод о том, как располагать антенну, для достижения максимального усиления.

В случае не правильно подобранной длины вибратора, диаграмма направленности примет следующий вид:

Основное применение, в диапазонах коротких, метровых и дециметровых волн.

Несимметричный вибратор

Или попросту штыревая антенна, представляет из себя «половину» симметричного вибратора, установленного вертикально.
В качестве длины вибратора, применяют 1, 1/2 или 1/4 длины волны.

Диаграмма направленности следующая:

Представляет собой рассеченную вдоль «восьмерку». За счет того, что вторая половина «восьмерки» поглощается землей, коэффициент направленного действия у несимметричного вибратора в два раза больше, чем у симметричного, за счет того, что вся мощность излучается в более узком направлении.
Основное применение, в диапазонах ДВ, КВ, СВ, активно устанавливаются в качестве антенн на транспорте.

Наклонная V-образная

Конструкция не жесткая, собирается путем растягивания токопроводящих элемементов на кольях.

Имеет смещение диаграммы направленности в стороны противоположную острию буквы V

Применяется для связи в КВ диапазоне. Является штатной антенной военных радиостанций.

Антенна бегущей волны

Также имеет название — антенна наклонный луч.

Представляет из себя наклонную растяжку, длина которой в несколько раз больше длины волны. Высота подвеса антенны от 1 до 5 метров, в зависимости от диапазона работы.
Диаграмма направленности имеет ярко выраженный направленный лепесток, что говорит о хорошем усилении антенны.

Широко применяется в военных радиостанциях в КВ диапазоне.
В развернутом и свернутом состоянии выглядит так:

Антенна волновой канал


Здесь: 1 — фидер, 2 — рефлектор, 3 — директоры, 4 — активный вибратор.

Антенна с параллельными вибраторами и директорами, близкими к 0,5 длины волны, расположенными вдоль линии максимального излучения. Вибратор — активный, к нему подводятся ВЧ колебания, в директорах, наводятся ВЧ токи за счет поглощения ЭМ волны. Расстояние между рифлектором и директорами подпирается таким образом, чтобы при совпадении фаз ВЧ токов образовывался эффект бегущей волны.

За счет такой конструкции, антенна имеет явную направленность:

Рамочная антенна

Направленность — двулепестковая

Применяется для приема ТВ программ дециметрового диапазона.

Как разновидность — рамочная антенна с рефлектором:

Логопериодическая антенна

Свойства усиления большинства антенн сильно меняются в зависимости от длины волны. Одной из антенн, с постоянной диаграммой направленности на разных частотах, является ЛПА.

Отношение максимальной к минимальной длине волн для таких антенн превышает 10 — это довольно высокий коэффициент.
Такой эффект достигается применением разных по длине вибраторов, закрепленных на параллельных несущих.

Диаграмма направленности следующая:

Активно применяется в сотовой связи при строительстве репитеров, используя способность антенн, принимать сигналы сразу в нескольких частотных диапазонах: 900, 1800 и 2100 МГц.

Поляризация

Поляризация — это направленность вектора электрической составляющей электромагнитной волны в пространстве.
Различают: вертикальную, горизонтальную и круговую поляризацию.


Поляризация зависит от типа антенны и ее расположения.
К примеру, вертикально расположенный несимметричный вибратор, дает вертикальную поляризацию, а горизонтально расположенный — горизонтальную.

Антенны горизонтальной поляризации дают больший эффект, т.к. природные и индустриальные помехи, имеют в основном вертикальную поляризацию.
Горизонтально поляризованные волны, отражаются от препятствий менее интенсивно, чем вертикально.
При распространении вертикально поляризованных волн, земная поверхность поглощает на 25% меньше их энергии.

При прохождении ионосферы, происходит вращение плоскости поляризации, как следствие, на приемной стороне не совпадает вектор поляризации и КПД приемной части падает. Для решения проблемы, применяют круговую поляризацию.

Все эти факторы факторы следует учитывать при расчете радиолиний с максимальной эффективностью.

PS:

Данная статья обрисовывает лишь небольшую часть антенн и не претендует на замену учебнику антенно-фидерных устройств.

habr.com

J-антенна — Википедия

Материал из Википедии — свободной энциклопедии

J- антенны представляют собой обычные полуволновые штыревые антенны[1]. Впервые использовались в 1909 году для  дирижаблей,[2] где свешивались с его хвоста. Четвертьволновый кусок антенны представляет собой резонатор, предназначенный для настройки согласования антенны с питающим кабелем.   

J-антенны по своей конструкции напоминают латинскую букву J и представляют собой всенаправленные полуволновые антенны. Согласование сопротивлений антенны с питающей линией достигается путем перемещения запитки  вдоль резонатора до тех пор, пока не сравняются импедансы. Будучи полуволновой антенной, она формирует сплюснутую к земле диаграмму направленности[3].

J-антенна излучает или принимает электромагнитные волны вертикальной поляризации. Плечи резонатора антенны должны быть расположены в вертикальном положении.

Коэффициент усиления и диаграмма направленности[править | править код]

Диаграмма направленности антенны в Е-плоскости относительно  диполя.

Усиление подобных всенаправленных антенн в максимуме диаграммы направленности составляет около 2.2 дб.

[4].

На основе подобных J-антенн можно делать направленные антенны. Для направленных антенн рефлектор и директор закрепляют около J-антенны на противоположных местах от вибратора. Направление излучения антенны будет происходить в сторону директора, который имеет длину, меньшую, чем вибратор и рефлектор.

J-антенны обычно изготовляют из металлических труб,  коаксиального или двухжильного кабеля.[5]

Варианты J-антенн

Возможны разные варианты конструкции антенн — с согнутым диполем, удлиненным диполем и др. [6].

Удлиненные антенны дают прирост усиления около 1, 5 дБ. за счёт сжимания диаграммы в вертикальной плоскости.

Диаграммы направленности J-антенн разных вариантов в Е-плоскости

По диаграммам направленности антенн видно, что максимальное усиление  достигается в удлиненных антеннах.

В настоящее время J-антенны используются в основном в радиолюбительских целях. Нижняя часть антенны может быть заземлена и использоваться, как молниеотвод. Заземление не влияет на работу приемо-передающего оборудования и характеристики антенны, но защитит приемник от удара молнией. С такими антеннами можно работать и в грозу.

ru.wikipedia.org

Немного о электромагнитных волнах или DVB-T2 антенна. — DRIVE2

Уверен, что кому-нибудь пригодится.

Предыстория вопроса такая… поскольку я 20 лет проработал в области ТВ, я его ненавижу:) и практически не смотрю:) но возникла необходимость в одном месте настроить ТВ… Платить за то шайзе которое транслируют в эфире и кабеле — безумие… Спутниковая антенна — дороговата и морочлива в настройке а 700 арабских каналов нахрен никому не нужны:) Выход один — T2. Купил тюнер за 20$, подключил, вставил отвёртку как обычно вместо антенны… нихрена))) Зашёл в магазин, думаю куплю антенну, 20$ антенна ))) Да вы чё охренели ?)

Так получилось, что я с детства дружу с радиоволнами и немного понимаю что к чему, в частности получал образование в одном военном ВУЗе по антенно фидерным устройствам… в перерывах между Научным Коммунизмом, Строевым шагом и прочей хренью)))
Тюнер я сам не соберу, конечно, но АНТЕННУ легко)

Хм… полез смотреть частоту передатчиков)) Она присутствовала даже в инструкции к тюнеру.

Оказалось, что в связи с особенностями DVB-T вещания, оно ведётся 4-мя пакетами по 8 каналов, в результате и получаются 32 канала.

На примере Киевской области находим…

т.е. к примеру для Киева 26,29,31 и 49 каналы, а им соответствуют частоты

т.е. грубо говоря все частоты T2 лежат в диапазоне 500-800 Мгц. Что это нам даёт, да всё !

Дальше не вдаваясь в высокие материи (а поверьте мне на слово — электромагнитное излучение это очень высокие материи-самый сложный предмет, которые мне приходилось когда-либо изучать это именно Электродинамика и Распространение Радиоволн, ну ещё разве что Статистическая Радиотехника) ) объясню всё на пальцах. Внимание самый важный момент для понимания !

Известно, что напряжённость магнитного поля «живёт» в пространстве по «синусоиде» или «косинусоиде» кому как удобно:) Вообще как оно живёт это поле, знает только Господь Бог, который его придумал, а мы его описываем волновыми законами:) Поглядим на рисунок…

www.drive2.ru

UA3AQL — радиоклуб «Дельта» — Изготовление четвертьволновой антенны

Практический опыт походов с использованием радиостанций однозначно показал, что для связи в группе в полевых условиях используется в 99% случаев одна-единственная частота, и от ней требуется наибольшая эффективность (расход батареи/дальность связи). Отсюда возникла идея и необходимость создания острорезонансных антенн на рабочую частоту группы. Кроме этого к этой антенне есть такое требование, как доступность, т.е. возможность изготовить из подручных средств с минимальным капиталовложением.
Это вполне возможно, если сделать самостоятельно четверть-волновой штырь рассчитанный на рабочую частоту. Почему самостоятельно? Потому что рабочая частота у каждой группы может быть своя. Первые же полевые испытания на граничных для радиообмена дистанциях и горизонтах дали ошеломляющий результат — связь была установлена при помощи такой антенны через перевал с корреспондентом находящимся вне зоны радиовидимости.

 

Отчёт 2010г. «Чулышман». Улаганский перевал.
Стоянка на Улаганском перевале
Пока я ставил на дороге пустую бутыль как маяк и поворачивал знак в надписью в сторону ложного перевала, Грей вызывает Гоба:
— Гоб Грею на связь…
Но тот молчит. Вызываю я (у меня самодельная четвертьволновая антенна), и он с шумком отвечает. Я ему рассказываю, как нас найти и что мы встали, но чувствую, что он ничего не в состоянии понять. Зато сказал, что выехал к верхнему озеру, точнее поднялся на это плато. Ладно, будет ближе — разрисуем. Ракету дадим, если темно совсем будет.
А пока мы спускаемся к озеру на стоянку. От автотуристов как назло уже слышна какая-то похабная быдло-попса в духе ‘Алёна даст’, что немного нервирует — хочется услышать голос озера, кедров и сосен вокруг, а тут под боком эти… Люди, в-общем. Но выбора не много, и мы как скидываем рюкзаки с велов, сразу приступаем к ремонту.
— Есть кто на связи? — с шумом прорывается из рации голос Гоба.
— На связи Беркут.
— Я упал!!! Пуу… Пуу… Пуу… Пуу… Пуу… — рация запищала прерывистым тональником словно на том конце бросили трубку телефона, ‘занято’…
— Беркут, это.. а что, в рации Гоба есть автоцензура?
— Гоб, на связь, каковы потери?
Но в ответ — тишина. Мы вызываем и переглядываемся. Похоже, что-то случилось. А у нас велы разобраны. Только Тиреа в порядке.
— Гоб, ответь на связь…
— Да жив я, жив, только вот кровяки много.
— Помощь…
— Не надо, на стоянке залижем. Ехать могу, я уже иду к вам вверх.
— Так, похоже, всё же надо спасать.. — задумчиво заметил Грей. — Но у меня вел разобран.
— А мой цепляет так, что я спаситель никакущий.
— Но я один не справлюсь, надо вдвоём, — Тиреа понял, что ехать ему.
— Я как сделаю за тобой поеду.
— Хорошо, только поскорее.
Закат на Улаганском перевале

Тиреа впрыгнул в седло, и растворился в сумерках. Я занялся велом. С крылом сначала казалось дело швах — напополам, крепление сломано напрочь, склеить сшить не выйдет в следствии особенностей формы. Но потом пришла альтернативная мысль. Ну да, крыло пополам. То есть это стало два крыла… Вот я и прикрепил заднюю половинку на старый болт в рулевую колонку, а переднюю — на крепление в ‘горилле’ для стандартных крыльев.
Хуже дело с багажником. Заднее колесо никак не хотело вставать так, что бы поворачиваться нормально. Я и крыло подпилил и поправил багажник. Всё равно никак. Максимум, чего добился — это небольшого и ненадёжного зазора, который тут же просядет при нагрузке.
У Грея дела лучше — колесо перестало спускать. Видимо залитый туда антипрокол таки работает. Но он всё равно сменил камеру., и стал ставить палатку. На связь вышел Гоблин. Тиреа до него добрался.
— Не надо мне помогать. Я дойду. Тиреа рядом. Идём вверх к перевалу.
Я несколько удивился. Рация работает через перевал. По идее не должна на этом диапазоне, видимо где-то есть ‘просвет’.
— А моя вообще не берёт. — Грей собирает дуги палатки, — наверно из-за антенны, завтра поменяю на самодельную.

В этом эпизоде связь между Гобом и Беркутом проходила не только через перевал и в общем-то гору, но и на предельной для леса дальности при связи в лесу с земли — около 5-ти километров. Надо сказать, что после приведённого случая Грей уже не снимал со своей рации самодельную острорезонансную антенну.

Что нужно?

Для начала, необходимо установить длину этой самой антенны, и какой разъём находится у радиостанции для антенного выхода.
Длину мы рассчитываем по формуле L=(300/Fр)/4.
Где L — длинна штыря в метрах, Fр — частота требуемого резонанса в Мегагерцах (с учётом килогерц).
Мы используем диапазон VHF, поэтому у нас длинна около полуметра, но в данном случае нужен точный расчёт. Например, для частоты 145.500мГц L=515mm, а для частоты 155,350мГц L=482mm. Это важно для последующего подбора материала для излучателя антенны.
Что касается разъёмов, то тут всё зависит от модели и производителя портативного трансивера (рации). Диапазон используемых разъёмов достаточно велик, в основном это коаксиальные разъёмы типов BNC, TNC, SMA, SMA-R. Однако профессиональные рации часто используют не коаксиальные, а винтовые разъёмы, у которых нет «земли» а один единственный контакт, идущий на излучатель, но их мы рассмотрим отдельно, потому как технология изготовления самодельной антенны для них имеет свои особенности.
В остальном это коакисальные разъёмы. Например, китайские широкораспостранённые радиостанции под разными брендами (Baofeng, Pofung, Wouxun а так же выпускаемые ими аппараты под лейблом Kenwood) используют разъём SMA-reverse (SMA-R). Любительские радиостанции Alinco, Kenwood (Japan) — BNC-разъём. У радиостанций Yaesu серий VX-FT — разъём типа SMA.
После того, как тип разъёма определён, начинаем готовить всё остальное, что нам понадобится.
  • 1. Ответный разъём для антенного выхода (как на «родной» антене», желательно под пайку или обжим).
    2. Сталистая проволока, диаметром от 0,75мм. и длинной на 1-2см больше чем необходимая длинна L. (можно использовать толстые шторные струны, очень хорошо, дёшево и удобно использовать сталистое основание автомобильных щёток-дворников — они плоские и упругие, но надо смотреть чтобы длинна была больше требуемой).
    3. Паяльник.
    4. Припой
    5. Кислотный флюс, для пайки всех металлов (стали).
    6. Термоусадка с клеевой основой (внутри специальные герметизирующий термоклей) диаметром 6-8мм и 15мм. длинной кусков 10см максимум.
    7. Копмаундная смесь — эпоксидный клей или «Поксипол».
    8. Термоусадка обычная, разных диаметров от 2мм (на излучатель) до 17мм (внешний корпус разъёма)
    9. Трубка из изолирующего материала. Хорошо подходит изоляция коаксиальных кабелей между оплёткой и центральной жилой для бытовых телевизионных антенн, особенно старые кабеля советского пр-ва, они жёсткие и толстые.
    10. Дремель или бормашинка с насадкой, если нет — то надфиль, способный обрабатывать сталистую проволоку.
Теперь всё в сборе, можно начинать собирать антенну.

Изготовление.


Сначала нужно припаять излучатель к центральному штырьку разъёма. Сталистая проволока, если не входит в отверстие под пайку, как и плоский прут от автодворника, нужно подпилить с одного конца и обработать так, что бы этот конец влез в отверстие в штырьке (надфилем или дремелем).
Обтачивание излучателя и готовность к пайке.

 

Облудить, и соответственно припаять (паяльник, припой, флюс). На этом часть связанная с пайкой заканчивается.
Теперь самое сложное. Конструкции разъёмов могут быть самые разные, но их объединяет одно, что они не очень-то рассчитаны на крепление там столь жёсткого штыря-излучателя, и поэтому его надо зафиксировать в разъёме так, чтобы при сильных боковых нагрузках и перегибах не возникало усилия расшатывающего пайку. Это очень важно, поскольку если сделать в этой части халатно, то в какой-то момент у вас отвалится пайка, и это не будет визуально заметно, и возникнет ситуация, когда выходной каскад радиостанции просто сгорит, и останетесь без связи. Для того, чтобы этого избежать, должно быть максимально жёсткое крепления основания излучателя в разъёме, на достаточно большую высоту от него. Вот тут и нужны будут компаунды-клеи и трубки. Для примера ниже будет рассмотрен случай с разъёмом типа SMA под пайку (с TNC практически аналогично). Итак, после того, как штырь-излучатель припаян к центральному штырьку разъёма, в сборе мы видим примерно такую картину:

Суть дальнейших действий по сути заключается в устранении той пустоты, что над фторопластовой шайбой вверху разъёма. Заполнять её надо прочным диэлектрическим материалом. Начать придётся с изоляции самого излучателя, обтянув его по всей длине тонкой термоусадкой желаемого цвета. Во избежание случайного выдёргивания его из корпуса разъёма в последствии рекомендуется в нижней части, которая внутри корпуса разъёма, сделать несколько небольших зубцов насечек, и не обтягивать термоусадкой, а сразу залить эпокидной смолой или поксиполом, установив его тем самым «намертво». Но этого недостаточно, чтобы не выломать пайку. Далее обтягиваем термоусадкой, и заполняем трубкой оставшиеся пространство. Когда всё сделано правильно, колебания центрального штыря и изгиб его становится возможен только в нескольких сантиметрах от корпуса разъёма.
Следующий этап — это гидроизоляция и монолитизация корпуса. Монолитность нужна для увеличения надёжности конструкции. Разъёмы рассчитаны на применение на кабеле, который не покрутишь чтобы привинтить разъём. С антеннами другой случай, мы их должны вращать целиком, чтобы завернуть на рации, а подлезть пальцами к основанию и закрутить штатным способом довольно сложно. Все это решается с помощью термоусадок с клеевой основой, и для надёжности и эстетического вида снаружи можно обтянуть обычной. В итоге должно получится примерно такая конструкция, как на рисунке справа:
Про винтовые разъёмы. В случае, если рация с винтовым разъёмом, как это часто у Motorola, Vertex, Maxon и профессиональные Kenwood, вместо разъёма нужно подобрать винт, который в него вкручивается, и гайку на него. Гайкой ограничить длинну винта, на который тот вкручивается в рацию, и припаять ей к винту, или зафиксировать каким-либо ещё доступным способом. После этого, обработать верх винта так, чтобы удобно было его изолировать, срезав, например, головку. Далее всё просто: сверлим отверстие, хоть насквозь, по оси винта, в которое впаиваем наш штырь излучатель, и сверху обтягиваем это всё термоусадками до нужного нам эстетического и практического вида.

Настройка и маркировка.


Теперь, если нужно, маркируем основание на требуемую частоту, и отмеряем точно длину L от указанного на рисунке места. Т.е. от той точки, где заканчивается корпус разъёма электрически соединённый с «землёй» рации. В случае с винтом отсчёт производить от самого разъёма на рации.
В итоге прикручиваем изделие в рации и получаем примерно это:
С технической стороны можно считать работу над антенной законченной, но есть ещё момент, который стоит решить сразу, не отходя от производства. Это верхний кончик антенны. Он получается достаточно острым и жёстким, и может собой повредить или экипировку, или самого обладателя рации. Поэтому, чтобы избежать подобных неприятностей в походах, нужно его сделать так, чтобы он не представлял опасности. Для этого можно или напаять на него дополнительный слой из кусков оставшейся термоусаодки, или обтянуть её вместе с каким-то небольшим булавочным набалдашником, круглым или сферическим, но так, чтобы он не отвалился в процессе эксплуатации.

Готово.


На этом изготовление четвертьволнового штыря для походной радиостанции заканчивается, осталось испытать в действии и насладится результатом. По наблюдениям дальность или качество связи, при использовании обоими корреспондентами сети таких антенн, увеличивается минимум в 2 раза по сравнению, например, с штатными «резинками». Есть небольшое замечание: чем толще излучатель, тем ровнее АЧХ антенны в прилегающих к резонансу частотах, причём без ухудшения параметров на частоте резонанса. Но толстый излучатель не гибок, и может разболтать разъём уже самой рации. В этом плане плоская проволока из автодворников является самым удобным компромиссом.

 

ua3aql.narod.ru

433 МГц четвертьволновая антенна: длиннее — лучше?

При расчете длины антенных элементов не забывайте использовать скорость распространения, которая меньше «c», скорости электромагнитного излучения в свободном пространстве. Для фактора скорости 95% — правильное предположение … точное число простых проводов ускользает от меня в данный момент. Кроме того, скорость электромагнитного излучения в коаксиальном кабеле значительно ниже, и она указана для каждого типа коаксиального кабеля. 66% — это правильное предположение. Это имеет огромное значение, если вы пытаетесь настроить длину фидерного кабеля … это не имеет отношения к делу, но стоит знать, все равно.

ОП поинтересовался использованием «более длинного провода», и я хочу предостеречь нас об этом. Йоханнес с превосходством добавил, что ОП действительно начинался с четвертьволнового диполя, который использует фантомную вторую половину (земля, как зеркало), чтобы сделать более подходящую антенну … полуволновой диполь. Правильная ориентация четвертьволнового элемента … исходного провода … была бы НОРМАЛЬНОЙ и ПРЯМОЙ … то есть, чтобы найти то зеркало (землю), от которого оно зависит. Я не знаю, как высоко над землей эта конфигурация должна быть; возможно, Йоханнес может ответить на это.

Что еще более важно, полуволновой диполь прощает неофитов из-за его простой «пончик» (всенаправленная) диаграмма направленности, под прямыми углами и вокруг, к проводу (ам). Другими словами, он связывается с другими антеннами, которые имеют взаимные горизонтальные отношения. Там нет усиления в направлении самого провода … (вертикально).

Принцип «взаимности» говорит, что передающая и приемная антенны используют одну и ту же книгу правил! Ну, это легко принять в ситуациях с низким энергопотреблением, как это.

Если вы начинаете использовать более длинные дипольные антенны, вы инстинктивно ищете более высокий «коэффициент усиления». Это не простая вещь! Вы ДОЛЖНЫ придерживаться правила использования общих длин, которые кратны половине длины волны (уменьшается на коэффициент скорости). Если ваш диполь симметричен, это хорошо для новичков. Суть в следующем: более длинные антенны имеют более высокий коэффициент усиления … но также имеют все более сложные схемы дисперсии / приема; iow «доли». (1 для простого диполя на 1/2 длины волны, 3 для диполя на 3/2 волны … включая оба элемента диполя в этом описании длины) и т. Д. Вы должны ухватиться за эти доли, или вы собираетесь это делать некоторые серьезные царапины на спине, интересно, что происходит. Опять же, то, что хорошо для передатчика, хорошо и для приемной антенны.

Тогда есть отражения и экраны. Хранить вдали от металлических предметов. Посмотрите вверх (люди никогда не смотрят вверх, ха-ха) на любую обычную телевизионную антенну на крыше, и вы увидите один активный диполь (между прочим, горизонтально поляризованный, кстати) и множество отражающих элементов с горизонтальной поляризацией … Антенны УКВ имеют отражатели DIPOLE в РАЗНЫХ длинах. Когда голубь сидел на «Дольше всего» и повредил его, вы можете вспомнить потерю «Канала 2» … если вы достаточно взрослые, чтобы помнить, что люди привыкли зависеть от воздушных волн, а не от кабельного телевидения. просмотр.

askentire.net

На какой диапазон эта антенна? Измеряем характеристики антенн с помощью OSA103 Mini

— На какой диапазон эта антенна?
— Не знаю, проверь.
— КАААК?!?!

Как определить, что за антенна у вас в руках, если на ней нет маркировки? Как понять, какая антенна лучше или хуже? Эта проблема меня мучила давно.
В статье простым языком описывается методика измерения характеристик антенн, и способ определения частотного диапазона антенны.

Опытным радиоинженерам эта информация может показаться банальной, а методика измерения — недостаточно точной. Статья рассчитана на тех, кто вообще ничего не понимает в радиоэлектронике, как я.

TL;DR Мы будем измерять КСВ антенн на различных частотах с помощью прибора OSA 103 Mini и направленного ответвителя, строить график зависимости КСВ от частоты.

Теория


Когда передатчик посылает сигнал в антенну, часть энергии излучается в воздух, а часть отражается и возвращается назад. Соотношение между излучаемой и отраженной энергией характеризуют с помощью коэффициента стоячей волны (КСВ или SWR). Чем меньше КСВ, тем большая часть энергии передатчика излучается в виде радиоволн. При КСВ = 1 отражения нет (вся энергия излучается). КСВ у реальной антенны всегда больше 1.

Если посылать в антенну сигнал разной частоты и одновременно измерять КСВ, можно найти, на какой частоте отражение будет минимальным. Это и будет рабочий диапазон антенны. Также можно сравнить между собой разные антенны для одного диапазона и найти, какая из них лучше.


Часть сигнала передатчика отражается от антенны

Антенна, рассчитанная на определенную частоту, в теории, должна иметь наименьший КСВ на своих рабочих частотах. Значит достаточно поизлучать в антенну разными частотами и найти, на какой частоте отражение наименьшее, то есть максимальное количество энергии улетело в виде радиоволн.

Имея возможность генерировать сигнал на разных частотах и измерять отражение, мы сможем построить график, у которого по оси X будет частота, а по оси Y — коэффициент отражения сигнала. В результате там, где на графике будет провал (то есть наименьшее отражение сигнала), будет рабочий диапазон антенны.


Воображаемый график зависимости отражения от частоты. На всем диапазоне отражение 100%, кроме рабочей частоты антенны.

Прибор Osa103 Mini


Для измерений мы будем использовать OSA103 Mini. Это универсальный измерительный прибор, который объединяет осциллограф, генератор сигнала, анализатор спектра, измеритель АЧХ/ФЧХ, векторный антенный анализатор, измеритель LC, и даже SDR-трансивер. Рабочий диапазон OSA103 Mini ограничен 100 МГц, модуль OSA-6G расширяет частотный диапазон в режиме ИАЧХ до 6 ГГц. Родная программа со всеми функциями весит 3 Мб, работает под Windows и через wine в Linux.


Osa103 Mini — универсальный измерительный прибор для радиолюбителей и инженеров

Направленный ответвитель



Направленный ответвитель (directional coupler) — устройство, которое отводит небольшую часть ВЧ-сигнала, идущего в определенном направлении. В нашем случае он должен ответвлять часть отражённого сигнала (идущего от антенны назад в генератор) для его измерения.
Наглядное объяснение работы направленного ответвителя: youtube.com/watch?v=iBK9ZIx9YaY

Основные характеристики направленного ответвителя:

  • Рабочие частоты — диапазон частот, на которых основные показатели не выходят за пределы нормы. Мой ответвитель рассчитан на частоты от 1 до 1000 МГц
  • Ответвление (Coupling) — какая часть сигнала (в децибелах) будет отводится при направлении волны из IN в OUT
  • Направленность (Directivity) — насколько меньше сигнала будет отводится при движении сигнала в обратном направлении из OUT в IN

На первый взгляд это выглядит достаточно запутанно. Для наглядности представим ответвитель как водопроводную трубку, с небольшим отводом внутри. Отвод сделан таким образом, что при движении воды в прямом направлении (от IN к OUT), отводится существенная часть воды. Количество воды, которое отводится при этом направлении, определяется параметром Coupling в даташите ответвителя.

При движении воды в обратном направлении отводится значительно меньше воды. Ее следует воспринимать как побочное явление. Количество воды, которое отводится при этом движении, определяется параметром Directivity в даташите. Чем этот параметр меньше (больше значение dB), тем лучше для нашей задачи.

Принципиальная схема


Так как мы хотим измерять уровень сигнала, отраженный от антенны, подключаем ее к IN ответвителя, а генератор к OUT. Таким образом на приёмник попадёт часть отражённого от антенны сигнала для измерения.


Схема подключения ответвителя. Отраженный сигнал отводится на приемник

Измерительная установка


Соберём установку для измерения КСВ в соответствии с принципиальной схемой. На выходе генератора прибора дополнительно установим аттенюатор с затуханием 15 дБ. Это улучшит согласование ответвителя с выходом генератора и повысит точность измерения. Аттенюатор можно взять с затуханием в 5..15 дБ. Величина затухания автоматически учтётся при последующей калибровке.
Аттенюатор ослабляет сигнал на фиксированное число децибел. Главной характеристикой аттенюатора является коэффициент затухания (аттенюации) сигнала и рабочий диапазон частот. На частотах вне рабочего диапазона характеристики аттенюатора могут непредсказуемо изменяться.

Так выглядит финальная установка. Нужно также не забыть подать сигнал промежуточной частоты (ПЧ) с модуля OSA-6G на основную плату прибора. Для этого соединяем порт IF OUTPUT на основной плате с INPUT на модуле OSA-6G.

Для снижения уровня помех от импульсного источника питания ноутбука все замеры я провожу при питании ноутбука от батареи.


Калибровка


Перед началом измерений необходимо убедиться в исправности всех узлов прибора и качестве кабелей, для этого соединяем генератор и приемник кабелем напрямую, включаем генератор и проводим измерение АЧХ. Получаем почти ровный график на 0dB. Это значит, что на всем диапазоне частот вся излучаемая мощность генератора дошла до приемника.


Подключение генератора напрямую к приемнику

Добавим в схему аттенюатор. Видно почти ровное ослабление сигнала на 15dB на всем диапазоне.

Подключение генератора через аттенюатор на 15dB к приемнику

Подключим генератор к разъему OUT ответвителя, а приемник к CPL ответвителя. Так как к порту IN не подключено нагрузки, весь генерируемый сигнал должен отражаться, и часть ответвляться на приемник. Согласно даташиту на наш ответвитель (ZEDC-15-2B), параметр Coupling равен ~15db, значит мы должны увидеть горизонтальную линию на уровне около -30 дБ (coupling + затухание аттенюатора). Но так как рабочий диапазон ответвителя ограничен 1 ГГц, все измерения выше этой частоты можно считать не имеющими смысла. Это отчетливо видно на графике, после 1 ГГц показания хаотичны и не имеют смысла. Поэтому все дальнейшие измерения мы будем проводить в рабочем диапазоне ответвителя.


Подключение ответвителя без нагрузки. Виден предел рабочего диапазона ответвителя.

Так как данные измерений выше 1 ГГц, в нашем случае, не имеют смысла, ограничим максимальную частоту генератора до рабочих значений ответвителя. При замерах получаем ровную линию.


Ограничение диапазона генератора до рабочего диапазона ответвителя

Для того, чтобы наглядно измерять КСВ антенн, нам нужно выполнить калибровку, чтобы принять текущие параметры схемы (100% отражение) как точку отсчета, то есть ноль dB. Для этого в программе OSA103 Mini есть встроенная функция калибровки. Калибровка выполняется без подключенной антенны (нагрузки), данные калибровки записываются в файл и в дальнейшем автоматически учитываются при построении графиков.


Функция калибровки ИАЧХ в программе OSA103 Mini

Применив результаты калибровки и запустив измерения без нагрузки, мы получаем ровный график на 0dB.


График после выполнения калибровки

Измеряем антенны


Теперь можно приступить к измерению антенн. Благодаря калибровке, мы будем видеть и измерять уменьшение отражения после подключения антенны.

Антенна с Aliexpress на 433MHz


Антенна с маркировкой 443MHz. Видно, что наиболее эффективно антенна работает на диапазоне 446MHz, на этой частоте КСВ равно 1.16. При этом, на заявленной частоте показатели существенно хуже, на 433MHz КСВ 4,2.

Неизвестная антенна 1


Антенна без маркировки. Судя по графику, рассчитана на 800 МГц, предположительно для GSM-диапазона. Справедливости ради нужно сказать, что эта антенна также работает на 1800 МГц, но из-за ограничений ответвителя я не могу делать корректные замеры на этих частотах.

Неизвестная антенна 2


Еще одна антенна, которая давно валяется у меня в коробках. Судя по всему, тоже для GSM-диапазона, но уже лучше предыдущей. На частоте 764 МГц КСВ близок к единице, на 900 МГц КСВ — 1.4.

Неизвестная антенна 3


Это похоже на антенну Wi-Fi, но коннектор почему-то SMA-Male, а не RP-SMA, как у всех Wi-Fi-антенн. Судя по измерениям, на частотах до 1 ГГц эта антенна бесполезна. Опять же, из-за ограничений ответвителя мы не узнаем, что это за антенна.

Телескопическая антенна


Попробуем рассчитать, на сколько нужно выдвинуть телескопическую антенну для диапазона 433MHz. Формула расчета длины волны: λ = C/f, где C — скорость света, f — частота.
299.792.458 / 443.000.000 = 0.69719176279

Полная длина волны — 69,24 см
Половина длины волны — 34,62 см
Четверть длины волны — 17,31 см

Рассчитанная таким образом антенна оказалась абсолютно бесполезна. На частоте 433MHz значение КСВ — 11.

Экспериментально выдвигая антенну, мне удалось добиться минимального КСВ 2.8 при длине антенны около 50 см. При этом оказалось, что толщина секций имеет большое значение. То есть, при выдвигании только тонких крайних секций, результат был лучше, чем при выдвигании на ту же длину только толстых секций. Не знаю, насколько впредь стоит полагаться на эти расчеты с длиной телескопической антенны, потому что на практике они не работают. Может быть с другими антеннами или частотами это работает иначе, не знаю.

Кусок провода на 433MHz


Часто во разных приборах, вроде радиовыключателей, можно видеть кусок прямого провода в качестве антенны. Я отрезал кусок провода, равного четверти длины волны 433 МГц (17,3см), и залудил конец так, чтобы он плотно вставлялся в разъем SMA Female.

Результат получился странный: такой провод неплохо работает на 360 МГц но бесполезен на 433 МГц.

Я начал по кусочку обрезать провод с конца и смотреть на показания. Провал на графике начал медленно сдвигаться в вправо, в сторону 433 МГц. В итоге, на длине провода около 15,5 см, мне удалось получить наименьшее значение КСВ 1.8 на частоте 438 МГц. Дальнейшее укорачивание кабеля привело к росту КСВ.

Заключение


Из-за ограничений ответвителя не удалось измерять антенны на диапазоны выше 1 ГГц, например, антенны Wi-Fi. Это можно было сделать, будь у меня более широкополосный ответвитель.

Ответвитель, соединительные кабели, прибор и даже ноутбук – это части получающейся антенной системы. Их геометрия, положение в пространстве и окружающие предметы влияют на результат измерения. После установки на реальную радиостанцию или модем, частота может сдвинуться, т.к. корпус радиостанции, модема, тело оператора станут частью антенны.

OSA103 Mini — очень крутой многофункциональный прибор. Выражаю благодарность его разработчику за консультацию при проведении замеров.

habr.com

Справочник по антеннам для радаров / Habr

Статья на перевод предложена alessandro893. Материал взят с обширного справочного сайта, описывающего, в частности, принципы работы и устройство радаров.

Антенна – это электрическое устройство, преобразующее электроэнергию в радиоволны и наоборот. Антенна используется не только в радарах, но и в глушилках, системах предупреждения об облучении и в системах коммуникаций. При передаче антенна концентрирует энергию передатчика радара и формирует луч, направляемый в нужную сторону. При приёме антенна собирает возвращающуюся энергию радара, содержащуюся в отражённых сигналах, и передаёт их на приёмник. Антенны часто различаются по форме луча и эффективности.


Слева – изотропная антенна, справа – направленная




Дипольная антенна, или диполь – самый простой и популярный класс антенн. Состоит из двух одинаковых проводников, проводов или стержней, обычно с двусторонней симметрией. У передающих устройств к ней подаётся ток, а у принимающих – принимается сигнал между двумя половинами антенны. Обе стороны фидера у передатчика или приёмника соединены с одним из проводников. Диполи – резонирующие антенны, то есть их элементы служат резонаторами, в которых стоячие волны переходят от одного конца к другому. Так что длина элементов диполя определяется длиной радиоволны.

Диаграмма направленности


Диполи – это ненаправленные антенны. В связи с этим их часто используют в системах связи.


Несимметричная антенна представляет собой половину дипольной, и монтируется перпендикулярно проводящей поверхности, горизонтальному отражающему элементу. Коэффициент направленного действия монопольной антенны вдвое больше, чем у дипольной антенны удвоенной длины, поскольку под горизонтальным отражающим элементом нет никакого излучения. В связи с этим КНД такой антенны в два раза выше, и она способна передавать волны дальше, используя ту же самую мощность передачи.

Диаграмма направленности



Антенна Яги – направленная антенна, состоящая из нескольких параллельных элементов, расположенных на одной линии. Часто состоят из одного элемента-облучателя, обычно диполя или петлевого вибратора. Только этот элемент испытывает возбуждение. Остальные элементы паразитные – они отражают или помогают передавать энергию в нужном направлении. Облучатель (активный вибратор) обычно находится вторым с конца, как на картинке ниже. Её размер подбирается с целью достижения резонанса при наличии паразитных элементов (для диполя это обычно 0,45 – 0,48 от длины волны). Элемент слева от облучателя – отражатель (рефлектор). Он обычно длиннее облучателя. Отражатель обычно один, поскольку добавление дополнительных отражателей мало влияет на эффективность. Он влияет на отношение мощностей сигналов антенны, излучаемых в направлениях назад/вперед (усиление в максимальном направлении по отношению к противоположному). Справа от облучателя находятся элементы-директоры, которые обычно короче облучателя. У антенны Яги очень узкий диапазон рабочих частот, а максимальное усиление составляет примерно 17 дБ.

Диаграмма направленности



Тип антенны, часто используемой на УКВ и УВЧ-передатчиках. Состоит из облучателя (это может быть диполь или массив Яги), укреплённого перед двумя плоскими прямоугольными отражающими экранами, соединёнными под углом, обычно в 90°. В качестве отражателя может выступать лист металла или решётка (для низкочастотных радаров), уменьшающая вес и уменьшающая сопротивление ветру. У уголковых антенн широкий диапазон, а усиление составляет порядка 10-15 дБ.

Диаграмма направленности


Вибраторная логопериодическая (логарифмическая периодическая) антенна, или логопериодическая решетка из симметричных вибраторов


Логопериодическая антенна (ЛПА) состоит из нескольких полуволновых дипольных излучателей постепенно увеличивающейся длины. Каждый состоит из пары металлических стержней. Диполи крепятся близко, один за другим, и подключаются к фидеру параллельно, с противоположными фазами. По виду такая антенна похожа на антенну Яги, но работает она по-другому. Добавление элементов к антенне Яги увеличивает её направленность (усиление), а добавление элементов к ЛПА увеличивает её полосу частот. Её главное преимущество перед другими антеннами – чрезвычайно широкий диапазон рабочих частот. Длины элементов антенны относятся друг к другу по логарифмическому закону. Длина самого длинного из элементов составляет 1/2 от длины волны самой низкой из частот, а самого короткого – 1/2 от длины волны самой высокой частоты.

Диаграмма направленности



Спиральная антенна состоит из проводника, закрученного в виде спирали. Обычно они монтируются над горизонтальным отражающим элементом. Фидер соединяется с нижней частью спирали и горизонтальной плоскостью. Они могут работать в двух режимах – нормальном и осевом.

Нормальный (поперечный) режим: размеры спирали (диаметр и наклон) малы по сравнению с длиной волны передаваемой частоты. Антенна работает так же, как закороченный диполь или монополь, с такой же схемой излучения. Излучение линейно поляризуется параллельно оси спирали. Такой режим используется в компактных антеннах у портативных и мобильных раций.

Осевой режим: размеры спирали сравнимы с длиной волны. Антенна работает как направленная, передавая луч с конца спирали вдоль её оси. Излучает радиоволны круговой поляризации. Часто используется для спутниковой связи.

Диаграмма направленности



Ромбическая антенна – широкополосная направленная антенна, состоящего из одного-трёх параллельных проводов, закреплённых над землёй в виде ромба, поддерживаемого в каждой вершине вышками или столбами, к которым провода крепятся при помощи изоляторов. Все четыре стороны антенны одинаковой длины, обычно не менее одной длины волны, или длиннее. Часто используются для связи и работы в диапазоне декаметровых волн.

Диаграмма направленности


Двумерная антенная решётка


Многоэлементный массив диполей, используемых в КВ диапазонах (1,6 – 30 МГц), состоящий из рядов и столбцов диполей. Количество рядов может быть 1, 2, 3, 4 или 6. Количество столбцов – 2 или 4. Диполи горизонтально поляризованы, а отражающий экран располагается за массивом диполей для обеспечения усиленного луча. Количество столбцов диполей определяет ширину азимутального луча. Для 2 столбцов ширина диаграммы направленности составляет около 50°, для 4 столбцов — 30°. Главный луч можно отклонять на 15° или 30° для получения максимального охвата в 90°.

Количество рядов и высота самого нижнего элемента над землёй определяет угол возвышения и размер обслуживаемой территории. Массив из двух рядов обладает углом в 20°, а из четырёх – в 10°. Излучение двумерной решётки обычно подходит к ионосфере под небольшим углом, и из-за низкой частоты часто отражается обратно к поверхности земли. Поскольку излучение может многократно отражаться между ионосферой и землёй, действие антенны не ограничено горизонтом. В результате такая антенна часто используется для связи на дальние расстояния.

Диаграмма направленности



Рупорная антенна состоит из расширяющегося металлического волновода в форме рупора, собирающего радиоволны в луч. У рупорных антенн очень широкий диапазон рабочих частот, они могут работать с 20-кратным разрывом его границ – к примеру, от 1 до 20 ГГц. Усиление варьируется от 10 до 25 дБ, и часто они используются в качестве облучателей более крупных антенн.

Диаграмма направленности



Одна из самых популярных антенн для радаров – параболический отражатель. Облучатель располагается в фокусе параболы, и энергия радара направляется на поверхность отражателя. Чаще всего в качестве облучателя используется рупорная антенна, но можно использовать и дипольную, и спиральную.

Поскольку точечный источник энергии находится в фокусе, он преобразуется в волновой фронт постоянной фазы, что делает параболу хорошо приспособленной для использования в радарах. Изменяя размер и форму отражающей поверхности, можно создавать лучи и схемы излучения различной формы. Направленность параболических антенн гораздо лучше, чем у Яги или дипольной, усиление может достигать 30-35 дБ. Главный их недостаток – неприспособленность к низким частотам из-за размера. Ещё один – облучатель может блокировать часть сигнала.

Диаграмма направленности



Антенна Кассегрена очень похожа на обычную параболическую, но использует систему из двух отражателей для создания и фокусировки луча радара. Основной отражатель параболический, а вспомогательный – гиперболический. Облучатель находится в одном из двух фокусов гиперболы. Энергия радара из передатчика отражается от вспомогательного отражателя на основной и фокусируется. Возвращающаяся от цели энергия собирается основным отражателем и отражается в виде сходящегося в одной точке луча на вспомогательный. Затем она отражается вспомогательным отражателем и собирается в точке, где расположен облучатель. Чем больше вспомогательный отражатель, тем ближе он может быть к основному. Такая конструкция уменьшает осевые размеры радара, но увеличивает затенение раскрыва. Небольшой вспомогательный отражатель, наоборот, уменьшает затенение раскрыва, но его нужно располагать подальше от основного. Преимущества по сравнению с параболической антенной: компактность (несмотря на наличие второго отражателя, общее расстояние между двумя отражателями меньше, чем расстояние от облучателя до рефлектора параболической антенны), уменьшение потерь (приёмник можно разместить близко от рупорного излучателя), уменьшение интерференции по боковому лепестку для наземных радаров. Основные недостатки: сильнее блокируется луч (размер вспомогательного отражателя и облучателя больше, чем размер облучателя обычной параболической антенны), плохо работает с широким диапазоном волн.

Диаграмма направленности




Слева – антенна Грегори, справа — Кассегрена

Параболическая антенна Грегори очень похожа по структуре на антенну Кассегрена. Отличие в том, что вспомогательный отражатель искривлён в противоположную сторону. Конструкция Грегори может использовать меньший по размерам вспомогательный отражатель по сравнению с антенной Кассегрена, в результате чего перекрывается меньшая часть луча.


Как следует из названия, излучатель и вспомогательный отражатель (если это антенна Грегори) у офсетной антенны смещены от центра основного отражателя, чтобы не блокировать луч. Такая схема часто используется на параболических антеннах и антеннах Грегори для увеличения эффективности.

Антенна Кассегрена с плоской фазовой пластиной


Ещё одна схема, предназначенная для борьбы с блокированием луча вспомогательным отражателем,- это антенна Кассегрена с плоской пластиной. Она работает с учётом поляризации волн. У электромагнитной волны есть 2 компоненты, магнитная и электрическая, всегда находящиеся перпендикулярно друг другу и направлению движения. Поляризация волны определяется ориентацией электрического поля, она бывает линейной (вертикальной/горизонтальной) или круговой (круговой или эллиптической, закрученной по или против часовой стрелки). Самое интересное в поляризации – это поляризатор, или процесс фильтрации волн, оставляющий только волны, поляризованные в одном направлении или в одной плоскости. Обычно поляризатор изготавливают из материала с параллельным расположением атомов, или это может быть решётка из параллельных проводов, расстояние между которыми меньше, чем длина волны. Часто принимается, что расстояние должно быть примерно в половину длины волны.

Распространённое заблуждение состоит в том, что электромагнитная волна и поляризатор работают схожим образом с колеблющимся тросом и дощатым забором – то есть, к примеру, горизонтально поляризованная волна должна блокироваться экраном с вертикальными щелями.

На самом деле, электромагнитные волны ведут себя не так, как механические. Решётка из параллельных горизонтальных проводов полностью блокирует и отражает горизонтально поляризованную радиоволну и пропускает вертикально поляризованную – и на оборот. Причина следующая: когда электрическое поле, или волна, параллельны проводу, они возбуждают электроны по длина провода, и поскольку длина провода многократно превышает его толщину, электроны могут легко двигаться и поглощают большую часть энергии волны. Движение электронов приведёт к появлению тока, а ток создаст свои волны. Эти волны погасят волны передачи и будут вести себя как отражённые. С другой стороны, когда электрическое поле волны перпендикулярно проводам, оно будет возбуждать электроны по ширине провода. Поскольку электроны не смогут активно двигаться таким образом, отражаться будет очень малая часть энергии.

Важно отметить, что, хотя на большинстве иллюстраций у радиоволн всего 1 магнитное и 1 электрическое поле, это не значит, что они осциллируют строго в одной плоскости. На самом деле можно представлять, что электрические и магнитные поля состоят из нескольких подполей, складывающихся векторно. К примеру, у вертикально поляризованной волны из двух подполей результат сложения их векторов вертикальный. Когда два подполя совпадают по фазе, результирующее электрическое поле всегда будет стационарным в одной плоскости. Но если одно из подполей медленнее другого, тогда результирующее поле начнёт вращаться вокруг направления движения волны (это часто называют эллиптической поляризацией). Если одно подполе медленнее других ровно на четверть длины волны (фаза отличается на 90 градусов), то мы получим круговую поляризацию:

Для преобразования линейной поляризации волны в круговую поляризацию и обратно необходимо замедлить одно из подполей относительно других ровно на четверть длины волны. Для этого чаще всего используется решётка (четвертьволновая фазовая пластина) из параллельных проводов с расстоянием между ними в 1/4 длины волны, расположенных под углом в 45 градусов к горизонтали.
У проходящей через устройство волны линейная поляризация превращается в круговую, а круговая – в линейную.

Работающая по этому принципу антенна Кассегрена с плоской фазовой пластиной состоит из двух отражателей равного размера. Вспомогательный отражает только волны с горизонтальной поляризацией и пропускает волны с вертикальной поляризацией. Основной отражает все волны. Пластина вспомогательного отражателя располагается перед основным. Он состоит из двух частей – это пластина со щелями, идущими под углом в 45°, и пластина с горизонтальными щелями шириной менее 1/4 длины волны.

Допустим, облучатель передаёт волну с круговой поляризацией против часовой стрелки. Волна проходит через четвертьволновую пластину и превращается в волну с горизонтальной поляризацией. Она отражается от горизонтальных проводов. Она опять проходит через четвертьволновую пластину, уже с другой стороны, и для неё провода пластины ориентированы уже зеркально, то есть, будто бы повёрнуты на 90°. Предыдущее изменение поляризации отменяется, так что волна снова приобретает круговую поляризацию против часовой стрелки и идёт обратно к основному отражателю. Отражатель меняет поляризацию с идущей против часовой стрелки на идущую по часовой. Она проходит через горизонтальные щели вспомогательного отражателя без сопротивления и уходит в направлении целей вертикально поляризованной. В режиме приёма всё происходит наоборот.


Хотя у описанных антенн довольно большое усиление по отношению к размеру апертуры, у всех них есть общие недостатки: большая восприимчивость по боковым лепесткам (подверженность мешающим отражениям от земной поверхности и чувствительность к целям с низкой эффективной площадью рассеяния), уменьшение эффективности из-за блокирования луча (проблема с блокированием есть у малых радаров, которые можно использовать на летающих аппаратах; большие радары, где проблема с блокированием меньше, нельзя использовать в воздухе). В результате была придумана новая схема антенны – щелевая. Она выполнена в виде металлической поверхности, обычно плоской, в котором прорезаны отверстия или щели. Когда её облучают на нужной частоте, электромагнитные волны испускаются из каждого слота – то есть, слоты выступают в роли отдельных антенн и формируют массив. Поскольку луч, идущий из каждого слота, слабый, их боковые лепестки также очень малы. Щелевые антенны характеризуются высоким усилением, малыми боковыми лепестками и малым весом. В них могут отсутствовать выступающие части, что в ряде случаев является их важным преимуществом (например, при установке на летательных аппаратах).

Диаграмма направленности


Пассивная фазированная антенная решётка (ПФАР) [passive electronically scanned array, PESA]



Радар с МИГ-31

С ранних времён создания радаров разработчиков преследовала одна проблема: баланс между точностью, дальностью и временем сканирования радара. Она возникает оттого, что у радаров с более узкой шириной пучка повышается точность (увеличивается разрешение) и дальность при той же мощности (концентрация мощности). Но чем меньше ширина пучка, тем дольше радар сканирует всё поле зрения. Более того, радару с большим усилением потребуются антенны большего размера, что неудобно для быстрого сканирования. Для достижения практичной точности на низких частотах радару потребовались бы настолько громадные антенны, что их было бы затруднительно поворачивать с механической точки зрения. Для решения этой проблемы была создана пассивная фазированная антенная решётка. Она полагается не на механику, а на интерференцию волн для управления лучом. Если две или более волн одного типа осциллируют и встречаются в одной точке пространства, суммарная амплитуда волн складывается примерно так же, как складываются волны на воде. В зависимости от фаз этих волн интерференция может усиливать или ослаблять их.

Луч можно формировать и управлять им электронным способом, контролируя разность фаз группы передающих элементов – таким образом можно контролировать, в каких местах происходит усиливающая или ослабляющая интерференция. Из этого следует, что в радаре самолёта для управления лучом из стороны в сторону должно быть не менее двух передающих элементов.

Обычно радар с ПФАР состоит из 1 облучателя, одного МШУ (малошумящего усилителя), одного распределителя мощности, 1000-2000 передающих элементов и равного количества фазовращателей.

Передающими элементами могут быть изотропные или направленные антенны. Некоторые типичные виды передающих элементов:

На первых поколениях истребителей чаще всего использовались патч-антенны (полосковые антенны), поскольку их проще всего разрабатывать.

Современные массивы с активной фазой используют желобковые излучатели из-за их широкополосных возможностей и улучшенного усиления:

Вне зависимости от типа используемой антенны увеличение количества излучающих элементов улучшает характеристики направленности радара.

Как мы знаем, при одинаковой частоте радара увеличение апертуры приводит к уменьшению ширины пучка, что увеличивает дальность и точность. Но у фазированных решёток не стоит увеличивать расстояние между излучающими элементами в попытке увеличения апертуры и уменьшения стоимости радара. Поскольку если расстояние между элементами больше, чем рабочая частота, могут появляться побочные лепестки, заметно ухудшающие эффективность радара.

Самая важная и дорогая часть ПФАР – фазовращатели. Без них невозможно управлять фазой сигнала и направлением луча.

Они бывают разных видов, но в целом их можно разделить на четыре типа.

Фазовращатели с временной задержкой


Простейший тип фазовращателей. Сигналу на прохождение линии передачи нужно время. Эта задержка, равная фазовому сдвигу сигнала, зависит от длины линии передачи, частоты сигнала и фазовой скорости сигнала в передающем материале. Переключая сигнал между двумя или более линиями передач заданной длины, можно управлять фазовым сдвигом. Переключающие элементы – это механические реле, pin-диоды, полевые транзисторы или микроэлектромеханические системы. pin-диоды часто используются из-за высокой скорости, низких потерь и простых цепей смещения, обеспечивающих изменение сопротивления от 10 кОм до 1 Ом.

Задержка, сек = фазовый сдвиг ° / (360 * частота, Гц)

Их недостаток в увеличении фазовой ошибки с увеличением частоты и увеличении размера с уменьшением частоты. Также изменение фазы изменяется в зависимости от частоты, поэтому для слишком малых и больших частот они неприменимы.

Отражательный/квадратурный фазовращатель


Обычно это квадратурное устройство связи, разделяющее входной сигнал на два сигнала, различающихся по фазе на 90°, которые затем отражаются. Затем они комбинируются по фазе на выходе. Эта схема работает благодаря тому, что отражение сигнала от проводящих линий могут быть смещены по фазе по отношению к падавшему сигналу. Сдвиг по фазе изменяется от 0° (открытая цепь, нулевая ёмкость варактора) до -180° (цепь закорочена, ёмкость варактора бесконечна). Такие фазовращателя обладают широким диапазоном работы. Однако физические ограничения варакторов приводят к тому, что на практике сдвиг по фазе может достигать только 160°. Но для большего сдвига возможно комбинировать несколько таких цепей.

Векторный IQ-модулятор


Так же, как и у отражательного фазовращателя, здесь сигнал разделяется на два выхода с 90-градусным смещением фазы. Входящая фаза без смещения называется I-каналом, а квадратура с 90-градусным смещением называется Q-каналом. Затем каждый сигнал проходит через двухфазный модулятор, способный сдвигать фазу сигнала. Каждый сигнал подвергается сдвигу фазы на 0° или 180°, что позволяет выбрать любую пару квадратурных векторов. Затем два сигнала рекомбинируются. Поскольку затухание обоих сигналов можно контролировать, у выходящего сигнала контролируется не только фаза, но и амплитуда.

Фазовращатель на фильтрах верхних/нижних частот


Был изготовлен для решения проблемы фазовращателей с временной задержкой, не способных работать на большом диапазоне частот. Работает путём переключения пути сигнала между фильтрами верхних и нижних частот. Похож на фазовращатель с временной задержкой, только вместо линий передачи используются фильтры. Фильтр верхних частот состоит из последовательности индукторов и конденсаторов, обеспечивающих опережение по фазе. Такой фазовращатель обеспечивает постоянный сдвиг фазы в диапазоне рабочих частот. Также его размер гораздо меньше, чем у предыдущих перечисленных фазовращателей, поэтому он чаще всего используется в радарах.

Если подытожить, то по сравнению с обычной отражающей антенной, основными преимуществами ПФАР будут: высокая скорость сканирования (увеличение количества отслеживаемых целей, уменьшение вероятности обнаружения станцией предупреждения об облучении), оптимизация времени нахождения на цели, высокое усиление и малые боковые лепестки (тяжелее заглушить и обнаружить), случайная последовательность сканирования (сложнее заглушить), возможность использовать особые техники модуляции и обнаружения для извлечения сигнала из шума. Основные недостатки – высокая стоимость, невозможность сканирования шире 60 градусов в ширину (поле зрения стационарного фазового массива – 120 градусов, механический радар может расширить его до 360).

Активная фазированная антенная решётка [Active Electronically Scanned Array, AESA]


Снаружи АФАР (AESA) и ПФАР (PESA) отличить сложно, но внутри они кардинально различаются. ПФАР использует один или два высокомощных усилителя, передающего один сигнал, который затем делится на тысячи путей для тысяч фазовращателей и элементов. Радар с АФАР состоит из тысячи модулей приёма/передачи. Поскольку передатчики находятся непосредственно в самих элементах, у него нет отдельных приёмника и передатчика. Различия в архитектуре представлены на картинке.

У АФАР большинство компонентов, таких, как усилитель слабых сигналов, усилитель большой мощности, дуплексор, фазовращатель уменьшены и собраны в одном корпусе под названием модуля приёма/передачи. Каждый из модулей представляет собой небольшой радар. Архитектура их следующая:

Хотя АФАР (AESA) и ПФАР (PESA) используют интерференцию волн для формирования и отклонения луча, уникальный дизайн АФАР даёт много преимуществ по сравнению с ПФАР. К примеру, усилитель слабого сигнала находится рядом с приёмником, до компонентов, где теряется часть сигнала, поэтому у него отношение сигнал/шум лучше, чем у ПФАР.

Во-вторых, у обычного радара возможность уменьшения паразитной интерференции ограничена ошибками нестабильности аппаратуры. Больше всего в эти ошибки вносят вклад аналого-цифровой преобразователь, преобразователь с понижением частоты, усилителей высокой мощности, усилители слабых сигналов и генератор волн. У АФАР с распределённой группой усилителей высокой мощности и усилителей слабых сигналов такие ошибки можно уменьшать. В результате у АФАР повышается чувствительность в шумных условиях.

Более того, при равных возможностях обнаружения у АФАР меньше рабочий цикл и пиковая мощность. Также, поскольку отдельные модули АФАР не полагаются на один усилитель, они могут одновременно передавать сигналы с разными частотами. В результате АФАР может создавать несколько отдельных лучей, разделяя массив на подмассивы. Возможность работать на нескольких частотах приносит многозадачность и способность развёртывать системы радиоэлектронного подавления в любом месте по отношению к радару. Но формирование слишком большого количества одновременных лучей уменьшает дальность действия радара.

Два главных недостатка АФАР – высокая стоимость и ограниченность поля зрения 60 градусами.

Гибридные электронно-механические фазированная антенные решётки

Очень высокая скорость сканирования ФАР сочетается с ограничением поля зрения. Для решения этой проблемы на современных радарах ФАР располагаются на подвижном диске, что увеличивает поле зрения. Не стоит путать поле зрения с шириной пучка. Ширина пучка относится к лучу радара, а поле зрения – общий размер сканируемого пространства. Узкие пучки часто нужны для улучшения точности и дальности действия, а узкое поле зрения обычно не нужно.

habr.com

0 comments on “Четвертьволновая антенна – Теория радиоволн: антенны / Habr

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *