Конспект «Магнитное поле. Теория, формулы, схемы»
Подобно тому, как покоящийся электрический заряд действует на другой заряд посредством электрического поля, электрический ток действует на другой ток посредством магнитного поля. Действие магнитного поля на постоянные магниты сводится к действию его на заряды, движущиеся в атомах вещества и создающие микроскопические круговые токи.
Учение об электромагнетизме основано на двух положениях:
- магнитное поле действует на движущиеся заряды и токи;
- магнитное поле возникает вокруг токов и движущихся зарядов.
Взаимодействие магнитов
Постоянный магнит (или магнитная стрелка) ориентируется вдоль магнитного меридиана Земли. Тот его конец, который указывает на север, называется северным полюсом (N), а противоположный конец — южным полюсом (S). Приближая два магнита друг к другу, заметим, что одноименные их полюсы отталкиваются, а разноименные — притягиваются (рис. 1
Если разделить полюса, разрезав постоянный магнит на две части, то мы обнаружим, что каждая из них тоже будет иметь два полюса, т. е. будет постоянным магнитом (рис. 2). Оба полюса — северный и южный, — неотделимые друг от друга, равноправны.
Магнитное поле, создаваемое Землей или постоянными магнитами, изображается, подобно электрическому полю, магнитными силовыми линиями. Картину силовых линий магнитного поля какого-либо магнита можно получить, помещая над ним лист бумаги, на котором насыпаны равномерным слоем железные опилки. Попадая в магнитное поле, опилки намагничиваются — у каждой из них появляется северный и южный полюсы. Противоположные полюсы стремятся сблизиться друг с другом, но этому мешает трение опилок о бумагу. Если постучать по бумаге пальцем, трение уменьшится и опилки притянутся друг к другу, образуя цепочки, изображающие линии магнитного поля.
На рис. 3 показано расположение в поле прямого магнита опилок и маленьких магнитных стрелок, указывающих направление линий магнитного поля. За это направление принято направление северного полюса магнитной стрелки.
Опыт Эрстэда. Магнитное поле тока
В начале XIX в. датский ученый Эрстэд сделал важное открытие, обнаружив действие электрического тока на постоянные магниты. Он поместил длинный провод вблизи магнитной стрелки. При пропускании по проводу тока стрелка поворачивалась, стремясь расположиться перпендикулярно ему (рис. 4). Это можно было объяснить возникновением вокруг проводника магнитного поля.
Магнитные силовые линии поля, созданного прямым проводником с током, представляют собой концентрические окружности, расположенные в перпендикулярной к нему плоскости, с центрами в точке, через которую проходит ток (
Если винт вращать по направлению линий поля, он будет двигаться в направлении тока в проводнике.
Силовой характеристикой магнитного поля является вектор магнитной индукции B. В каждой точке он направлен по касательной к линии поля. Линии электрического поля начинаются на положительных зарядах и оканчиваются на отрицательных, а сила, действующая в этом поле на заряд, направлена по касательной к линии в каждой ее точке. В отличие от электрического, линии магнитного поля замкнуты, что связано с отсутствием в природе «магнитных зарядов».
Магнитное поле тока принципиально ничем не отличается от поля, созданного постоянным магнитом. В этом смысле аналогом плоского магнита является длинный соленоид — катушка из провода, длина которой значительно больше ее диаметра. Схема линий созданного им магнитного поля, изображенная на рис. 6 , аналогична таковой для плоского магнита (рис. 3). Кружочками обозначены сечения провода, образующего обмотку соленоида. Токи, текущие по проводу от наблюдателя, обозначены крестиками, а токи противоположного направления — к наблюдателю — обозначены точками. Такие же обозначения приняты и для линий магнитного поля, когда они перпендикулярны плоскости чертежа (рис. 7 а, б).
Направление тока в обмотке соленоида и направление линий магнитного поля внутри него также связаны правилом правого винта, которое в этом случае формулируется так:
Если смотреть вдоль оси соленоида, то текущий по направлению часовой стрелки ток создает в нем магнитное поле, направление которого совпадает с направлением движения правого винта (рис. 8)
Исходя из этого правила, легко сообразить, что у соленоида, изображенного на
Магнитное поле внутри соленоида является однородным — вектор магнитной индукции имеет там постоянное значение (B = const). В этом отношении соленоид подобен плоскому конденсатору, внутри которого создается однородное электрическое поле.
Сила, действующая в магнитном поле на проводник с током
Опытным путем было установлено, что на проводник с током в магнитном поле действует сила. В однородном поле прямолинейный проводник длиной l, по которому течет ток I, расположенный перпендикулярно вектору поля B, испытывает действие силы: F = I l B.
Направление силы определяется правилом левой руки:
Если четыре вытянутых пальца левой руки расположить по направлению тока в проводнике, а ладонь — перпендикулярно вектору B, то отставленный большой палец укажет направление силы, действующей на проводник (рис. 9).
Следует отметить, что сила, действующая на проводник с током в магнитном поле, направлена не по касательной к его силовым линиям, подобно электрической силе, а перпендикулярна им. На проводник, расположенный вдоль силовых линий, магнитная сила не действует.Уравнение F = IlB позволяет дать количественную характеристику индукции магнитного поля.
Отношение не зависит от свойств проводника и характеризует само магнитное поле.
Модуль вектора магнитной индукции B численно равен силе, действующей на расположенный перпендикулярно к нему проводник единичной длины, по которому течет ток силой один ампер.
В системе СИ единицей индукции магнитного поля служит тесла (Тл):
Магнитное поле. Таблицы, схемы, формулы
(Взаимодействие магнитов, опыт Эрстеда, вектор магнитной индукции, направление вектора, принцип суперпозиции. Графическое изображение магнитных полей, линии магнитной индукции. Магнитный поток, энергетическая характеристика поля. Магнитные силы, сила Ампера, сила Лоренца. Движение заряженных частиц в магнитном поле. Магнитные свойства вещества, гипотеза Ампера)
Дополнительные материалы по теме: Электромагнитные явления
Конспект по теме «Магнитное поле. Теория, формулы, схемы».
Следующая тема «Электромагнитная индукция»
uchitel.pro
Что такое магнитное поле: источники магнитных полей
В данной статье вы узнаете что такое магнитное поле, как его измерить, а так же поговорим про источники магнитных полей и подробно рассмотрим закон Био-Савара-Лапласа.
Определение магнитного поля
Магнитное поле связано с понятием магнитной силы. Знание магнитного поля вокруг объекта (а также внутри него) позволяет нам определить величину силы, действующей на движущийся заряд или магнит, помещенный в его окружение.
Большинство из вас точно знают о магнетизме и знают, что два намагниченных объекта взаимодействуют друг с другом. Мы знаем, что когда мы объединяем два магнита, в зависимости от их взаимного расположения, я могу притягивать (когда противоположные полюса находятся близко друг к другу) или отталкивать (когда одинаковые полюса близко друг к другу). Зная поле от одного магнита и положение другого, вы можете точно рассчитать эту силу. Магнитное поле чаще всего представлено графически одним из двух способов:
- Магнитное поле, с математической точки зрения, является векторным полем . Это означает, что каждой точке пространства назначен вектор, который мы можем проиллюстрировать стрелкой с правильным направлением и длиной. Направление говорит нам, как бы подходила стрелка магнита, расположенная в данной точке, тогда как длина пропорциональна величине силы, которая будет действовать на находящийся там объект. Желая «увидеть» магнитное поле, мы могли бы просто положить множество крошечных компасов вокруг исследуемого магнита и наблюдать за расположением их стрелок. Тем не менее, мы должны помнить, что это не даст нам информацию о значении поля (насколько оно сильное), а только о его направлении.
2. Другой способ проиллюстрировать магнитное поле — это использовать силовые линии . Вместо того, чтобы рисовать много маленьких стрелок, в этом случае мы используем непрерывные линии. Насколько плотно мы их рисуем, зависит от нас.
Линии поля характеризуются следующими свойствами:
- Магнитные силовые линии никогда не пересекаются.
- Плотность линий поля больше в областях, где поле сильнее. Таким образом, на основе чертежа вы можете узнать значение поля (насколько оно сильное) в данной точке.
- Линии поля не заканчиваются и не начинаются в любой точке; они всегда образуют замкнутые петли, которые проходят через материал, являющийся источником поля.
- Чтобы полностью проиллюстрировать магнитное поле, необходимо указать возврат, в котором вектор поля направлен в данную точку. Обычно это делается путем рисования стрелок на линиях стрелок. Однако есть еще один метод, который использует понятие полюсов. По историческим причинам область, из которой «выходят» силовые линии, называется Северным полюсом (N), а та, в которую они «входят» — Южным полюсом (S). В этом правиле линии всегда направлены с севера на юг. Буквы «N» и «S» обычно располагаются по краям магнита, но это всего лишь вопрос принятия — на самом деле ничто не отличает эти крайние точки.
- Линии поля на самом деле легко показать. Обычно это делается с помощью железных опилок, разбросанных по поверхности (например, по листу бумаги) вокруг магнита. Каждый кусок металла ведет себя как маленький магнит с северным и южным полюсами (и, следовательно, также как магнитная стрелка). Опилки спонтанно удаляются друг от друга, потому что, будучи намагниченными, они отталкивают друг друга. В конечном итоге они образуют узор, представляющий магнитное поле (конечно, конечный эффект немного отличается, в зависимости от того, как распалась стружка, а также от их формы, массы и магнитных свойств).
Как измерить магнитное поле
В связи с тем, что магнитное поле является векторным полем, для того, чтобы полностью его описать, вам нужны как его интенсивность, так и направление. Направление поля относительно легко определить. Просто используйте компас — его стрелка установится в направлении магнитного поля Земли. Магнитные компасы известны и используются в навигации (с использованием магнитного поля Земли) с 11-го века. Измерение значений поля немного сложнее. Первые магнитометры появились только в 19 веке. Большинство из них были основаны на наблюдении за поведением электрона, помещенного в магнитное поле. Точные измерения слабых магнитных полей стали возможными только в 1988 году с открытием явления гигантского магнитосопротивления, которое наблюдалось в некоторых материалах со слоистой структурой. Это явление быстро нашло применение при конструировании жестких дисков, на которых сохраняются данные с компьютеров. Результат был значительным — емкость дисков увеличилась на целые порядки всего за несколько лет с момента появления новой технологии (примерно с 0,01 до 10 GB / см^2 ). Если вы хотите описать магнитное поле количественно (то есть, скажем, насколько оно сильное), мы должны указать, говорим ли мы о магнитной индукции В или о напряженности магнитного поля H. В системе СИ единицей магнитной индукции является тесла (символ T в честь Николы Теслы ). Значение магнитной индукции в теслах определяется величиной силы, которая будет влиять на нагрузку, движущуюся в исследуемом поле. Значение индукции магнитного поля, создаваемой средними магнитами на холодильник, составляет ~ 0,001 Т и магнитная индукция земного поля 5 * 10–5 Т. Другая, иногда используемая, единица — Гаусс (символ G). Преобразование единицы очень просто: 1 T = 10^4 G. На практике Гаусс часто используется, потому что поле магнитной индукции, равное 1 тесле, уже очень велико, и мы редко имеем дело с этим порядком величины. Альтернатива магнитной индукции В величина напряженности магнитного поля H. Оба, как векторы, направлены вдоль силовых линий, принимая другие значения внутри магнитных материалов. В некоторых сложных случаях величина H это полезно, но для наших целей B будет вполне достаточно.
Источники магнитных полей
Перейдем теперь к принципам, описывающим метод формирования магнитного поля в окрестности движущихся электрических зарядов и токов. Самая основная зависимость — это закон, описывающий величину и направление магнитного поля, создаваемого движущимся точечным зарядом. Этот закон будет использован позже для получения закона Био — Савара — Лапласа, закона Ампера, закона Гаусса для магнитного поля и создает полезную альтернативную формулировку взаимосвязи между магнитными полями и их источниками.
Экспериментально показано, что значение B снова пропорционально q и 1/r2. Однако направление вектора B НЕ находится на прямой линии между точечным источником и точкой поля. С другой стороны, он перпендикулярен плоскости, определяемой этой прямой и скорости заряда v. Кроме того, значение поля пропорционально синусу угла между этими двумя направлениями
Мы можем записать эту зависимость более компактным способом, используя произведение вектора v на единичный вектор. Мы получаем здесь окончательное выражение в поле B в виде
μ0 — магнитная проницаемость вакуума, которая имеет значение
Когда мы изменяем угол наблюдения поля B на фиксированном расстоянии R от движущегося заряда, тогда изменения могут быть представлены как в анимации:
Поверхности с одинаковым значением и направлением поля B вокруг движущейся нагрузки могут быть представлены в виде системы коаксиальных оболочек
Конечно, не имеет значения, перемещается ли нагрузка относительно наблюдателя или наблюдатель относительно нагрузки. Простое объяснение вышесказанного:
Наэлектризованный кот создает магнитное поле B, когда он проходит мимо вас, а также когда вы проходите мимо спящего кота.
Поверхности с постоянным значением B могут быть представлены более ярко, как показано на анимации ниже
В конце мы можем записать выражение для магнитной силы F, действующей между двумя нагрузками, точка движется относительно наблюдателя от скорости V и V’. Поскольку сила F будет силой Лоренца, в которой поле B исходит от движущегося груза, мы можем написать
Таким образом, искомая сила выражается уравнением
где r — расстояние между двумя движущимися грузами.
Магнитное поле проводника с током
В проводнике с током каждый движущийся электрон создает вокруг себя магнитную «оболочечную» систему. Поскольку эти оболочки расположены близко друг к другу, проводник окружен цилиндрическим полем B. Поверхности с постоянным значением B образуют систему, которая больше не требует оболочек, а только коаксиальных цилиндров.
Направления тока I и вектора B, который генерирует этот ток, соответствуют правилу правой руки: большой палец указывает направление тока, а оставшиеся пальцы показывают, как поле B окружает направляющую
Если проводник с током I делится на бесконечно короткие отрезки длиной d 1 , то в каждом из них заряд dq будет двигаться, а на расстоянии r, магнитное поле этого отрезка тока d, B будет
meanders.ru
Представление о магнитном поле / Habr
Мы все знаем, что такое постоянные магниты. Магниты – это металлические тела, притягивающиеся к другим магнитам и к некоторым металлам. То, что располагается вокруг магнита и взаимодействует с окружающими предметами (притягивает или отталкивает некоторые из них), называется магнитным полем.Источником любого магнитного поля являются движущиеся заряженные частицы. А направленное движение заряженных частиц называется электрическим током. То есть, любое магнитное поле вызывается исключительно электрическим током.
За направление электрического тока принимают направление движения положительно заряженных частиц. Если же движутся отрицательные заряды, то направление тока считается обратным движению таких зарядов. Представьте себе, что по кольцевой трубе течет вода. Но мы будем считать, что некий «ток» при этом движется в противоположном направлении. Электрический ток обозначается буквой I.
В металлах ток образуется движением электронов – отрицательно заряженных частиц. На рисунке ниже, электроны движутся по проводнику справа налево. Но считается, что электрический ток направлен слева направо.
Это произошло потому, что когда начали изучение электрические явления, не было известно, какими именно носителями чаще всего переносится ток.
Если мы посмотрим на этот проводник с левой стороны, так, чтобы ток шел «от нас», то магнитное поле этого тока будет направлено вокруг него по часовой стрелке.
Если рядом с этим проводником расположить компас, то его стрелка развернется перпендикулярно проводнику, параллельно «силовым линиям магнитного поля» — параллельно черной кольцевой стрелке на рисунке.
Если мы возьмем шарик, имеющий положительный заряд (имеющий дефицит электронов) и бросим его вперед, то вокруг этого шарика появится точно такое же кольцевое магнитное поле, закручивающееся вокруг него по часовой стрелке.
Ведь здесь тоже имеет место направленное движение заряда. А направленное движение зарядов есть электрический ток. Если есть ток, вокруг него должно быть магнитное поле.
Движущийся заряд (или множество зарядов – в случае электрического тока в проводнике) создает вокруг себя «тоннель» из магнитного поля. Стенки этого «тоннеля» «плотнее» вблизи движущего заряда. Чем дальше от движущегося заряда, тем слабее напряженность («сила») создаваемого им магнитного поля. Тем слабее реагирует на это поле стрелка компаса.
Закономерность распределение напряженности магнитного поля вокруг его источника такая же, как закономерность распределения электрического поля вокруг заряженного тела – она обратно пропорциональна квадрату расстояния до источника поля.
Если положительно заряженный шарик перемещается по кругу, то кольца магнитных полей, образующихся вокруг него по мере его движения, суммируются, и мы получим магнитное поле, направленное перпендикулярно плоскости, в которой перемещается заряд:
Магнитный «тоннель» вокруг заряда оказывается свернутым в кольцо и напоминает по форме тор (бублик).
Такой же эффект получается, если свернуть в кольцо проводник с током. Проводник с током, свернутый в многовитковую катушку называется электромагнитом. Вокруг катушки складываются магнитные поля движущихся в ней заряженных частиц — электронов.
А если заряженный шарик вращать вокруг его оси, то у него появится магнитное поле, как у Земли, направленное вдоль оси вращения. В данном случае током, вызывающим появление магнитного поля, является круговое движение заряда вокруг оси шарика – круговой электрический ток.
Здесь, по сути, происходит то же самое, что и при движении шарика по кольцевой орбите. Только радиус этой орбиты уменьшен до радиуса самого шарика.
Все сказанное выше справедливо и для шарика заряженного отрицательно, но его магнитное поле будет направлено в противоположную сторону.
Данный эффект был обнаружен в опытах Роуланда и Эйхенвальда. Эти господа регистрировали магнитные поля вблизи вращающихся заряженных дисков: рядом с этими дисками начинала отклоняться стрелка компаса. Направления магнитных полей в зависимости от знака заряда дисков и направления их вращения, показаны на рисунке:
При вращении незаряженного диска, магнитные поля не обнаруживались. Не было магнитных полей и вблизи неподвижных заряженных дисков.
Модель магнитного поля движущегося заряда
Чтобы запомнить направление магнитного поля движущегося положительного заряда, мы представим себя на его месте. Поднимем правую руку вверх, затем укажем ею направо, затем опустим ее вниз, затем укажем влево и вернем руку в исходное положение – вверх. Затем повторим это движение. Наша рука описывает круги по часовой стрелке. Теперь начнем движение вперед, продолжая вращать рукой. Движение нашего тела – аналог движения положительного заряда, а вращение руки по часовой стрелке – аналог магнитного поля заряда.
Теперь представьте себе, что вокруг нас находится тонкая и прочная эластичная паутина, похожая на струны пространства, которые мы рисовали, создавая модель электрического поля.
Когда мы движемся сквозь эту трехмерную «паутину», из-за вращения руки, она, деформируясь, смещается по часовой стрелке, образуя подобие спирали, словно бы наматываясь в катушку вокруг заряда.
Сзади, за нами, «паутина» восстанавливает свою правильную структуру. Примерно так можно представлять себе магнитное поле положительного заряда, движущегося прямо.
А теперь попробуйте двигаться не прямо вперед, а по кругу, например, поворачивая при ходьбе налево, при этом вращая рукой по часовой стрелке. Представьте себе, что вы движетесь через нечто, напоминающее желе. Из-за вращения вашей руки, внутри круга, по которому вы движетесь, «желе» будет смещаться вверх, образуя горб над центром круга. А под центром круга, образуется впадина из-за того, что часть желе сместилось вверх. Так можно представлять себе формирование северного (горб сверху) и южного (впадина снизу) полюсов при движении заряда по кольцу или его вращения.
Если при ходьбе вы будете поворачивать направо, то «горб» (северный полюс) сформируется снизу.
Аналогично можно сформировать представление о магнитном поле движущегося отрицательного заряда. Только вращать рукой нужно в противоположную сторону – против часовой стрелки. Соответственно, магнитное поле будет направлено в противоположную сторону. Просто каждый раз следите за тем, в какой сторону ваша рука выталкивает «желе».
Такая модель наглядно демонстрирует то, почему северный полюс одного магнита притягивается к южному полюсу другого магнита: «горб» одного из магнитов втягивается во «впадину» второго магнита.
И еще эта модель показывает, почему не существуют отдельных северных и южных полюсов магнитов, как бы мы их не разрезали – магнитное поле представляет собой вихревую (замкнутую) «деформацию пространства» вокруг траектории движущегося заряда.
Спин
У электрона было обнаружено магнитное поле, такое, какое у него должно быть в том случае, если бы он был шариком, вращающимся вокруг своей оси. Это магнитное поле назвали спином (от английского to spin — вращаться).
Кроме того, у электрона существует еще и орбитальный магнитный момент. Ведь электрон не только «вращается», но движется по орбите вокруг ядра атома. А движение заряженного тела порождает магнитное поле. Так как электрон заряжен отрицательно, магнитное поле, вызванное его движением по орбите, будет выглядеть так:
Если направление магнитного поля, вызванного движением электрона по орбите, совпадает с направлением магнитного поля самого электрона (его спином), эти поля складываются и усиливаются. Если же эти магнитные поля направлены в разные стороны, они вычитаются и ослабляют друг друга.
Кроме того, могут суммироваться или вычитаться друг из друга магнитные поля других электронов атома. Этим объясняется наличие или отсутствие магнетизма (реакции на внешнее магнитное поле или наличие собственного магнитного поля) некоторых веществ.
Эта статья — отрывок из книги об азах химии. Сама книга здесь:
sites.google.com/site/kontrudar13/himia
UPD: Материал предназначен, в первую очередь, для школьников средних классов. Возможно, Хабр не место для подобных вещей, Но где место? Нет его.
habr.com
Магнитное поле Земли — Википедия
Обтекание магнитосферы Земли солнечным ветромМагни́тное по́ле Земли́ или геомагни́тное по́ле — магнитное поле, генерируемое внутриземными источниками. Предмет изучения геомагнетизма. Появилось 4,2 млрд лет назад[1].
Строение и характеристики магнитного поля Земли[править | править код]
Собственное магнитное поле Земли (геомагнитное поле) можно разделить на cледующие основные части[2]:
- главное поле,
- поля мировых аномалий,
- внешнее магнитное поле.
Главное поле[править | править код]
Земля как магнитный диполь.Более чем на 90 % оно состоит из поля, источник которого находится внутри Земли, в жидком внешнем ядре, — эта часть называется главным, основным или нормальным полем[3][4][5]. Оно аппроксимируется в виде ряда по гармоникам — ряда Гаусса, а в первом приближении вблизи поверхности Земли (до трёх её радиусов) близко к полю магнитного диполя, то есть имеет такой вид, как будто земной шар представляет собой полосовой магнит с осью, направленной приблизительно с севера на юг[2][6][3][7][8]. Центр этого диполя смещен относительно центра Земли, а ось наклонена к оси вращения Земли на угол около 10°. На такой же угол отстоят от соответствующих географических полюсов геомагнитные полюса — точки пересечения оси диполя с поверхностью Земли[4]. Их положение в различные моменты времени вычисляется в рамках той или иной модели магнитного поля, определяющей тем или иным образом первые три коэффициента в ряду Гаусса[3]. Эти глобальные модели — такие как Международное геомагнитное аналитическое поле (International Geomagnetic Reference Field, IGRF)[9] и Всемирная магнитная модель (World Magnetic Model, WMM)[en][10] — создаются различными международными геофизическими организациями, и каждые 5 лет утверждаются и публикуются обновлённые наборы коэффициентов Гаусса, определяющих все данные о состоянии геомагнитного поля и его параметрах[4]. Так, согласно модели WMM2015, северный геомагнитный полюс (по сути это южный полюс магнита) имеет координаты 80,37° с. ш. и 72,62° з. д., южный геомагнитный полюс — 80,37° ю. ш., 107,38° в. д., наклон оси диполя относительно оси вращения Земли — 9,63°[3][11].
Поля мировых аномалий[править | править код]
Реальные силовые линии магнитного поля Земли, хотя в среднем и близки к силовым линиям диполя, отличаются от них местными нерегулярностями, связанными с наличием намагниченных пород в коре, расположенных близко к поверхности. Из-за этого в некоторых местах на земной поверхности параметры поля сильно отличаются от значений в близлежащих районах, образуя так называемые магнитные аномалии[2][4][7][8]. Они могут накладываться одна на другую, если вызывающие их намагниченные тела залегают на разных глубинах[5].
Существование магнитных полей протяжённых локальных областей внешних оболочек приводит к тому, что истинные магнитные полюса — точки (вернее, небольшие области), в которых силовые линии магнитного поля абсолютно вертикальны, — не совпадают с геомагнитными, при этом они лежат не на самой поверхности Земли, а под ней[4][3][6]. Координаты магнитных полюсов на тот или иной момент времени также вычисляются в рамках различных моделей геомагнитного поля путём нахождения итеративным методом всех коэффициентов в ряду Гаусса. Так, согласно актуальной модели WMM, в 2015 г. северный магнитный полюс находился в точке 86° с. ш., 159° з. д., а южный — 64° ю. ш., 137° в.д[3]. Значения актуальной модели IGRF12 немного отличаются: 86,3° с. ш., 160° з. д., для северного полюса, 64,3° ю. ш., 136,6° в.д для южного[11].
Соответственно, магнитная ось — прямая, проходящая через магнитные полюса, — не проходит через центр Земли и не является её диаметром[6][7].
Положения всех полюсов постоянно смещаются — геомагнитный полюс прецессирует относительно географического с периодом около 1200 лет[2].
Внешнее магнитное поле[править | править код]
Оно определяется источниками в виде токовых систем, находящимися за пределами земной поверхности, в её атмосфере[2][4]. В верхней части атмосферы (100 км и выше) — ионосфере — её молекулы ионизируются, формируя плотную холодную плазму, поднимающуюся выше, поэтому часть магнитосферы Земли выше ионосферы, простирающаяся на расстояние до трёх её радиусов, называется плазмосферой. Плазма удерживается магнитным полем Земли, но её состояние определяется его взаимодействием с солнечным ветром — потоком плазмы солнечной короны[12].
Таким образом, на большем удалении от поверхности Земли магнитное поле несимметрично, так как искажается под действием солнечного ветра: со стороны Солнца оно сжимается, а в направлении от Солнца приобретает «шлейф», который простирается на сотни тысяч километров, выходя за орбиту Луны[2]. Эта своеобразная «хвостатая» форма возникает, когда плазма солнечного ветра и солнечных корпускулярных потоков как бы обтекают земную магнитосферу — область околоземного космического пространства, ещё контролируемая магнитным полем Земли, а не Солнца и других межпланетных источников[2][4][7][8]; она отделяется от межпланетного пространства магнитопаузой, где динамическое давление солнечного ветра уравновешивается давлением собственного магнитного поля. Подсолнечная точка магнитосферы в среднем находится на расстоянии 10 земных радиусов R⊕; при слабом солнечном ветре это расстояние достигает 15—20 R⊕, а в период магнитных возмущений на Земле магнитопауза может заходить за геостационарную орбиту (6,6 R⊕)[2]. Вытянутый хвост на ночной стороне имеет диаметр около 40 R⊕ и длину более 900 R⊕; начиная с расстояния примерно 8 R⊕, он разделен на части плоским нейтральным слоем, в котором индукция поля близка к нулю[2][4][7][8].
Искажение магнитного поля Земли под действием солнечного ветраГеомагнитное поле вследствие специфической конфигурации линий индукции создает для заряженных частиц — протонов и электронов — магнитную ловушку. Оно захватывает и удерживает огромное их количество, так что магнитосфера является своеобразным резервуаром заряженных частиц. Общая их масса, по различным оценкам, составляет от 1 кг до 10 кг. Они формируют так называемый радиационный пояс, охватывающий Землю со всех сторон, кроме приполярных областей. Его условно разделяют на два — внутренний и внешний. Нижняя граница внутреннего пояса находится на высоте около 500 км, его толщина — несколько тысяч километров. Внешний пояс находится на высоте 10—15 тыс. км. Частицы радиационного пояса под действием силы Лоренца совершают сложные периодические движения из Северного полушария в Южное и обратно, одновременно медленно перемещаясь вокруг Земли по азимуту. В зависимости от энергии они совершают полный оборот вокруг Земли за время от нескольких минут до суток[7].
Магнитосфера не подпускает к земле потоки космических частиц[8]. Однако в её хвосте, на больших расстояниях от Земли напряженность геомагнитного поля, а следовательно, и его защитные свойства, ослабляются, и некоторые частицы солнечной плазмы получают возможность попасть вовнутрь магнитосферы и магнитных ловушек радиационных поясов. Хвост таким образом служит местом формирования потоков высыпающихся частиц, вызывающих полярные сияния и авроральные токи[2]. В полярных областях часть потока солнечной плазмы вторгается в верхние слои атмосферы из радиационного пояса Земли и, сталкиваясь с молекулами кислорода и азота, возбуждает их или ионизирует, а при обратном переходе в невозбужденное состояние атомы кислорода излучают фотоны с λ = 0,56 мкм и λ = 0,63 мкм, ионизированные же молекулы азота при рекомбинации высвечивают синие и фиолетовые полосы спектра. При этом наблюдаются полярные сияния, особенно динамичные и яркие во время магнитных бурь. Они происходят при возмущениях в магнитосфере, вызванных увеличением плотности и скорости солнечного ветра при усилении солнечной активности[8][7].
Параметры поля[править | править код]
Наглядное представление о положении линий магнитной индукции поля Земли даёт магнитная стрелка, закреплённая таким образом, что может свободно вращаться и вокруг вертикальной, и вокруг горизонтальной оси (например, в кардановом подвесе), — в каждой точке вблизи поверхности Земли она устанавливается определённым образом вдоль этих линий.
Поскольку магнитные и географические полюса не совпадают, магнитная стрелка указывает направление с севера на юг только приблизительно. Вертикальную плоскость, в которой устанавливается магнитная стрелка, называют плоскостью магнитного меридиана данного места, а линию, по которой эта плоскость пересекается с поверхностью Земли, — магнитным меридианом[6][8]. Таким образом, магнитные меридианы — это проекции силовых линий магнитного поля Земли на её поверхность, сходящиеся в северном и южном магнитных полюсах[13]. Угол между направлениями магнитного и географического меридианов называют магнитным склонением. Оно может быть западным (часто обозначается знаком «−») или восточным (знак «+») в зависимости от того, к западу или востоку отклоняется северный полюс магнитной стрелки от вертикальной плоскости географического меридиана[6][7][8].
Далее, линии магнитного поля Земли, вообще говоря, не параллельны её поверхности. Это означает, что магнитная индукция поля Земли не лежит в плоскости горизонта данного места, а образует с этой плоскостью некий угол — он называется магнитным наклонением[6][8]. Оно близко к нулю лишь в точках магнитного экватора — окружности большого круга в плоскости, которая перпендикулярна к магнитной оси[3].
Магнитное склонение и магнитное наклонение определяют направление магнитной индукции поля Земли в каждом конкретном месте. А численное значение этой величины можно найти, зная наклонение и одну из проекций вектора магнитной индукции B{\displaystyle \mathbf {B} } — на вертикальную или горизонтальную ось (последнее оказывается более удобным на практике). Таким образом, три этих параметра — магнитное склонение, наклонение и модуль вектора магнитной индукции B (либо вектора напряжённости магнитного поля H{\displaystyle \mathbf {H} }) — полностью характеризуют геомагнитное поле в данном месте. Их точное знание для максимально большого числа пунктов на Земле имеет чрезвычайно важное значение[6][8]. Составляются специальные магнитные карты, на которых нанесены изогоны (линии одинакового склонения) и изоклины (линии одинакового наклонения), необходимые для ориентации с помощью компаса[8].
В среднем интенсивность магнитного поля Земли колеблется от 25 до 65 мкТл (0,25—0,65 Гс) и сильно зависит от географического положения[3]. Это соответствует средней напряжённости поля около 0,5 Э (40 А/м)[2]. На магнитном экваторе её величина около 0,34 Э, у магнитных полюсов — около 0,66 Э. В некоторых районах (магнитных аномалий) напряжённость резко возрастает: в районе Курской магнитной аномалии она достигает 2 Э[7].
Магнитный дипольный момент Земли на 2015 год составлял 7,72⋅1025Гс·см³ (или 7,72⋅1022 А·м²), уменьшаясь в среднем за последние десятилетия на 0,007⋅1025 Гс·см³ в год[11].
Схема динамо-механизма: конвекционные потоки расплавленного металла во внешнем ядре формируют циркулирующие по замкнутому контуру токи, которые генерируют магнитное поле[14]. Из-за вращения твёрдого ядра согласно теореме Тейлора-Праудмена[en] скорость потоков постоянна вдоль вертикальной оси образующихся таким образом столбов Тейлора[en], заключённых внутри цилиндра, ограничивающего внутреннее ядро, и подобных циклонам и антициклонам в атмосфере Земли[15][16]. Первичные (по/против часовой стрелки) и вторичные (вертикальные сходящиеся/расходящиеся на экваторе) потоки вытягивают и поворачивают линии магнитного поля, превращая азимутальную компоненту в меридиональную и затем обратно[17].Впервые объяснить существование магнитных полей Земли и Солнца попытался Дж. Лармор в 1919 году[18], предложив концепцию динамо, согласно которой поддержание магнитного поля небесного тела происходит под действием гидродинамического движения электропроводящей среды. Однако в 1934 году Т. Каулинг[en][19] доказал теорему о невозможности поддержания осесимметричного магнитного поля посредством гидродинамического динамо-механизма. А поскольку большинство изучаемых небесных тел (и тем более Земля) считались аксиально-симметричными, на основании этого можно было сделать предположение, что их поле тоже будет аксиально-симметричным, и тогда его генерация по такому принципу будет невозможна согласно этой теореме[20]. Даже Альберт Эйнштейн скептически относился к осуществимости такого динамо при условии невозможности существования простых (симметричных) решений. Лишь гораздо позже было показано, что не у всех уравнений с аксиальной симметрией, описывающих процесс генерации магнитного поля, решение будет аксиально-симметричным, и в 1950-х гг. несимметричные решения были найдены[20][15].
С тех пор теория динамо успешно развивается, и на сегодняшний день общепринятым наиболее вероятным объяснением происхождения магнитного поля Земли и других планет является самовозбуждающийся динамо-механизм, основанный на генерации электрического тока в проводнике при его движении в магнитном поле, порождаемом и усиливаемом самими этими токами. Необходимые условия создаются в ядре Земли: в жидком внешнем ядре, состоящем в основном из железа при температуре порядка 4—6 тысяч кельвин, которое отлично проводит ток, создаются конвективные потоки, отводящие от твёрдого внутреннего ядра тепло (генерируемое благодаря распаду радиоактивных элементов либо освобождению скрытой теплоты при затвердевании вещества на границе между внутренним и внешним ядром по мере постепенного остывания планеты). Силы Кориолиса закручивают эти потоки в характерные спирали, образующие так называемые столбы Тейлора[en]. Благодаря трению слоёв они приобретают электрический заряд, формируя контурные токи. Таким образом, создаётся система токов, циркулирующих по проводящему контуру в движущихся в (изначально присутствующем, пусть и очень слабом) магнитном поле проводниках, как в диске Фарадея. Она создает магнитное поле, которое при благоприятной геометрии течений усиливает начальное поле, а это, в свою очередь, усиливает ток, и процесс усиления продолжается до тех пор, пока растущие с увеличением тока потери на джоулево тепло не уравновесят притоки энергии, поступающей за счет гидродинамических движений[14][21][16][22]. Высказывались предположения, что динамо может возбуждаться за счёт прецессии или приливных сил, то есть что источником энергии является вращение Земли, однако наиболее распространена и разработана гипотеза о том, что это всё же именно термохимическая конвекция[17].
Математически этот процесс описывается магнитогидродинамическим уравнением индукции[en][16][17][23]
- ∂B∂t=∇×(u×B)+η∇2B{\displaystyle {\frac {\partial \mathbf {B} }{\partial t}}=\mathbf {\nabla } \times (\mathbf {u} \times \mathbf {B} )+\eta \mathbf {\nabla } ^{2}\mathbf {B} },
где u — скорость потока жидкости, B — магнитная индукция, η = 1/μσ — магнитная вязкость[en] (коэффициент магнитной диффузии), σ — электропроводность жидкости, а μ — магнитная проницаемость, практически не отличающаяся при такой высокой температуре ядра от μ0 — проницаемости вакуума. Первое слагаемое в правой части соответствует формированию магнитного поля, а второе — его подавлению. При u=0 (без динамо) решение этого уравнения — поле, полностью угасающее через 6⋅104 лет[23].
Однако для полного описания необходимо записать систему магнитогидродинамических уравнений. В приближении Буссинеска (в рамках которого пренебрегается т. н. вековым охлаждением и все физические характеристики жидкости полагаются постоянными, кроме силы Архимеда, при расчёте которой учитываются изменения плотности вследствие разности температур и — в общем случае — концентрации лёгких элементов) это[16][17][23]:
- ρ0(∂u∂t+u⋅∇u)=−∇P+ρ0ν∇2u+ρg¯−2ρ0Ω×u+J×B{\displaystyle \rho _{0}\left({\frac {\partial \mathbf {u} }{\partial t}}+\mathbf {u} \cdot \mathbf {\nabla } \mathbf {u} \right)=-\nabla P+\rho _{0}\nu \mathbf {\nabla } ^{2}\mathbf {u} +\rho {\bar {\mathbf {g} }}-2\rho _{0}\mathbf {\Omega } \times \mathbf {u} +\mathbf {J} \times \mathbf {B} }.
Здесь ρ — плотность, ν — кинематическая вязкость, P=p−ρ02|Ω×r|2{\displaystyle P=p-{\frac {\rho _{0}}{2}}|\mathbf {\Omega } \times \mathbf {r} |^{2}} — «эффективное» давление с учётом центробежной силы (хотя в некоторых моделях она полагается пренебрежимо малой), g¯=g0rR0{\displaystyle {\bar {\mathbf {g} }}=g_{0}{\frac {\mathbf {r} }{R_{0}}}} — сила тяготения (R0 — радиус внешнего ядра), Ω — угловая скорость вращения мантии, полагаемая равной скорости вращения внутреннего ядра, J=1μ∇×B{\displaystyle \mathbf {J} ={\frac {1}{\mu }}\nabla \times \mathbf {B} } — плотность тока согласно закону Ампера, индекс «0» всюду обозначает значения на границе внешнего ядра. Левая часть уравнения — производная от импульса на единицу объёма, то есть производная по времени от величины ρ0V, увлекаемой движением жидкости; правая часть — сумма сил, вызывающих это изменение импульса: градиент давления[en], вязкость, гравитация (сила Архимеда), вращение (сила Кориолиса) и магнитное поле (сила Лоренца)[16].
Вращение Земли — один из важнейших факторов формирования геомагнитного поля, и его механизм схож с процессами в атмосфере Земли, приводящим к завихрению воздушных масс против часовой стрелки в северном полушарии и в обратном направлении в южном — циклонам и антициклонам. Аналогичные завихрения конвекционных потоков в ядре приводят к тому, что отдельные турбулентные конвекционные движения приобретают крупномасштабную (при усреднении по пульсациям скорости) зеркальную асимметрию и в совокупности приводят к генерации динамо в макроскопических масштабах благодаря электродвижущей силе, направленной уже вдоль, а не перпендикулярно среднему (которое определяется усреднением реального поля по его возможным статистическим реализациям) магнитному полю ⟨ε⟩=α⟨B⟩{\displaystyle \langle \mathbf {\varepsilon } \rangle =\alpha \langle \mathbf {B} \rangle }, где ε — ЭДС, а α — коэффициент пропорциональности, из-за которого этот механизм и получил название альфа-эффект[22][24]. В общем случае α — тензор, однако зеркальная антисимметрия даёт псевдоскаляр, которого и требует по построению эта формула, так как ε — истинный вектор, а B — псевдовектор[25]. Динамо, основанное исключительно на α-эффекте, называют α2-динамо, поскольку его действие выражается произведением двух членов, содержащих этот коэффициент[23], — оно характеризуется практически стационарным полем, испытывающим небольшие кратковременные вариации (порядка сотен лет для Земли) и долговременные полные инверсии (порядка миллиона лет для Земли). Возможен также механизм с действием омега-эффекта (более существенного для Солнца, чем для Земли, однако необходимого для объяснения природы наблюдаемого дрейфа геомагнитных неоднородностей) — это измеряемое градиентом скорости дифференциальное вращение, которое из направленного к наблюдателю полоидального (вытянутого вдоль меридианов, BS) магнитного поля создаёт скрытое в проводящем ядре планеты тороидальное (вытянутое вдоль параллелей, BT) поле. Альфа-эффект замыкает цикл генерации — превращая тороидальное поле в полоидальное за счёт вихрей, характеризуемых отрицательной спиральностью (эта характеристика выражается соотношением u⋅∇×u{\displaystyle \mathbf {u} \cdot \mathbf {\nabla } \times \mathbf {u} } и непосредственно связана с величиной α) в Северном полушарии и положительной в Южном: восходящие и нисходящие потоки в конвекционных цилиндрах вытягивают и поворачивают BT-линии в S-направлении[26][20][15][17]. Такая схема обычно называется αω-эффектом, она даёт переменные поля, и при этом BT>>BS, тогда как для α2-механизма эти компоненты сравнимы (экспериментально на сегодняшний день удалось получить только грубую оценку |BS|<|BT|<100|BS|). И если источником полоидального поля может быть только альфа-эффект, то тороидального — оба, причём если оба вносят существенный вклад, соответствующий механизм иногда обозначают α2ω. Большинство теоретических моделей магнитного динамо — типа α2. В обоих случаях, как альфа, так и омега-эффектов, таким образом снимаются ограничения теоремы Каулинга[16][23]. Однако существует ряд геометрий течений, для которых динамо также невозможно (например, чисто тороидальное поле скоростей[23][27]), в то же время при определённых условиях оно возможно и при нулевой суммарной завихрённости ∇×u{\displaystyle \mathbf {\nabla } \times \mathbf {u} } и нулевой спиральности; возможны и другие эффекты, приводящие к возникновению ЭДС, параллельной магнитному полю[25].
- ∂T∂t+u⋅∇T=κ∇2T+ϵ{\displaystyle {\frac {\partial T}{\partial t}}+\mathbf {u} \cdot \mathbf {\nabla } T=\kappa \mathbf {\nabla } ^{2}T+\epsilon },
где T — температура, κ = k/(ρcp) — температуропроводность (коэффициент тепловой диффузии), k — теплопроводность, cp — удельная теплоёмкость среды при постоянном давлении. Последнее слагаемое, ε, пропорционально выделению тепла, генерируемого теми или иными растворёнными в жидкости источниками (такими как радиоактивный распад), на единицу массы. В моделях, учитывающих перенос не только тепла, но и вещества, записывается соответствующее аналогичное уравнение относительно переменной ξ — массовой доли лёгких элементов (считается, что это сера и кислород) в составе ядра:
- ∂ξ∂t+u⋅∇ξ=κξ∇2ξ+ϵξ{\displaystyle {\frac {\partial \xi }{\partial t}}+\mathbf {u} \cdot \mathbf {\nabla } \xi =\kappa _{\xi }\mathbf {\nabla } ^{2}\xi +\epsilon _{\xi }},
где κξ — коэффициент (молекулярной) диффузии. В большинстве моделей динамо, однако для простоты разность температур и концентраций лёгких элементов объединяются в одну отвечающую за плавучесть переменную.
- ∇⋅u=0{\displaystyle \mathbf {\nabla } \cdot \mathbf {u} =0}.
- ∇⋅B=0{\displaystyle \mathbf {\nabla } \cdot \mathbf {B} =0}.
- ρ=ρ0[1−α(T−T0)]{\displaystyle \rho =\rho _{0}\left[1-\alpha (T-T_{0})\right]},
где α — коэффициент линейного теплового расширения (обозначение совпадает с коэффициентом пропорциональности в уравнении для альфа-эффекта). В общем случае, при учёте массопереноса, в квадратных скобках присутствует также слагаемое αξ(ξ−ξ0){\displaystyle \alpha _{\xi }(\xi -\xi _{0})}. Здесь α=−1ρ(∂ρ∂T)P,ξ{\displaystyle \alpha =-{\frac {1}{\rho }}\left({\frac {\partial \rho }{\partial T}}\right)_{P,\xi }}, αξ=−1ρ(∂ρ∂ξ)P,T{\displaystyle \alpha _{\xi }=-{\frac {1}{\rho }}\left({\frac {\partial \rho }{\partial \xi }}\right)_{P,T}}.
Естественно, необходимы также граничные условия для скорости потока, магнитного поля и разности температур, и многое зависит от того, как они ставятся в той или иной модели. Наибольший разброс имеет место в отношении потока тепла и вещества на границах между внутренним и внешним ядром, а также между внешним ядром и мантией, причём существенную роль играет неоднородность мантии и процессов в ней из-за тектоники плит[16][17][28], которые, что немаловажно, протекают на порядки медленнее, нежели в ядре, что значительно осложняет комплексный анализ задачи.
Удобнее решать эту систему уравнений в безразмерном виде, вводя характерные величины длины, времени, скорости, магнитного поля и т. д.; тогда в них будут входить следующие безразмерные параметры[16][17][29]:
Параметр | Формула | Определение | Значение в ядре Земли | Примечание |
---|---|---|---|---|
Входные параметры | ||||
Число Рэлея | Ra=g0αβ0R03νκ{\displaystyle Ra={\frac {g_{0}\alpha \beta _{0}R_{0}^{3}}{\nu \kappa }}}, где β0 — градиент температур на границе внешнего ядра (при r=R0). В зависимости от модели, встречаются и другие определения: g0αβ0DΩκ{\displaystyle {\frac {g_{0}\alpha \beta _{0}D}{\Omega \kappa }}} (D — толщина внешнего ядра), g0αQ |
ru.wikipedia.org
Магнитное поле. Источники и свойства. Правила и применение
При подключении к двум параллельным проводникам электрического тока, они будут притягиваться или отталкиваться, в зависимости от направления (полярности) подключенного тока. Это объясняется явлением возникновения материи особого рода вокруг этих проводников. Эта материя называется магнитное поле (МП). Магнитной силой называется сила, с которой проводники действуют друг на друга.
Теория магнетизма возникла еще в древности, в античной цивилизации Азии. В Магнезии в горах нашли особую породу, куски которой могли притягиваться между собой. По названию места эту породу назвали «магнетиками». Стержневой магнит содержит два полюса. На полюсах особенно сильно обнаруживаются его магнитные свойства.
Магнит, висящий на нитке, своими полюсами будет показывать стороны горизонта. Его полюса будут повернуты на север и юг. На таком принципе действует устройство компаса. Разноименные полюсы двух магнитов притягиваются, а одноименные отталкиваются.
Ученые обнаружили, что намагниченная стрелка, находящаяся возле проводника, отклоняется при прохождении по нему электрического тока. Это говорит о том, что вокруг него образуется МП.
Магнитное поле оказывает влияние на:
- Перемещающиеся электрические заряды.
- Вещества, называемые ферромагнетиками: железо, чугун, их сплавы.
Постоянные магниты – тела, имеющие общий магнитный момент заряженных частиц (электронов).
1 — Южный полюс магнита
2 — Северный полюс магнита
3 — МП на примере металлических опилок
4 — Направление магнитного поля
Силовые линии появляются при приближении постоянного магнита к бумажному листу, на который насыпан слой железных опилок. На рисунке четко видны места полюсов с ориентированными силовыми линиями.
Источники магнитного поля
- Электрическое поле, меняющееся во времени.
- Подвижные заряды.
- Постоянные магниты.
С детства нам знакомы постоянные магниты. Они использовались в качестве игрушек, которые притягивали к себе различные металлические детали. Их прикрепляли к холодильнику, они были встроены в различные игрушки.
Электрические заряды, которые находятся в движении, чаще всего имеют больше магнитной энергии, по сравнению с постоянными магнитами.
Свойства
- Главным отличительным признаком и свойством магнитного поля является относительность. Если неподвижно оставить заряженное тело в некоторой системе отсчета, а рядом расположить магнитную стрелку, то она укажет на север, и при этом не «почувствует» постороннего поля, кроме поля земли. А если заряженное тело начать двигать возле стрелки, то вокруг тела появится МП. В результате становится ясно, что МП формируется только при передвижении некоторого заряда.
- Магнитное поле способно воздействовать и влиять на электрический ток. Его можно обнаружить, если проконтролировать движение заряженных электронов. В магнитном поле частицы с зарядом отклонятся, проводники с протекающим током будут перемещаться. Рамка с подключенным питанием тока станет поворачиваться, а намагниченные материалы переместятся на некоторое расстояние. Стрелка компаса чаще всего окрашивается в синий цвет. Она является полоской намагниченной стали. Компас ориентируется всегда на север, так как у Земли есть МП. Вся планета – это как большой магнит со своими полюсами.
Магнитное поле не воспринимается человеческими органами, и может фиксироваться только особыми приборами и датчиками. Оно бывает переменного и постоянного вида. Переменное поле обычно создается специальными индукторами, которые функционируют от переменного тока. Постоянное поле формируется неизменным электрическим полем.
Основные правила
Правило буравчика
Силовая линия изображается в плоскости, которая расположена под углом 900 к пути движения тока таким образом, чтобы в каждой точке сила была направлена по касательной к линии.
Чтобы определить направление магнитных сил, нужно вспомнить правило буравчика с правой резьбой.
Буравчик нужно расположить по одной оси с вектором тока, рукоятку вращать таким образом, чтобы буравчик двигался в сторону его направления. В этом случае ориентация линий определится вращением рукоятки буравчика.
Правило буравчика для кольца
Поступательное перемещение буравчика в проводнике, выполненном в виде кольца, показывает, как ориентирована индукция, вращение совпадает с течением тока.
Силовые линии имеют свое продолжение внутри магнита и не могут быть разомкнутыми.
Магнитное поле разных источников суммируются между собой. При этом они создают общее поле.
Магниты с одинаковыми полюсами отталкиваются, а с разными – притягиваются. Значение силы взаимодействия зависит от удаленности между ними. При приближении полюсов сила возрастает.
Параметры магнитного поля
- Сцепление потоков (Ψ).
- Вектор магнитной индукции (В).
- Магнитный поток (Ф).
Интенсивность магнитного поля вычисляется размером вектора магнитной индукции, которая зависит от силы F, и формируется током I по проводнику, имеющему длину l: В = F / (I * l).
Магнитная индукция измеряется в Тесла (Тл), в честь ученого, изучавшего явления магнетизма и занимавшегося их методами расчета. 1 Тл равна индукции магнитного потока силой 1 Н на длине 1 м прямого проводника, находящегося под углом 900 к направлению поля, при протекающем токе в один ампер:
1 Тл = 1 х Н / (А х м).
Правило левой руки
Правило находит направление вектора магнитной индукции.
Если ладонь левой руки разместить в поле, чтобы линии магнитного поля входили в ладонь из северного полюса под 900, а 4 пальца разместить по течению тока, большой палец покажет направление магнитной силы.
Если проводник находится под другим углом, то сила будет прямо зависеть от тока и проекции проводника на плоскость, находящуюся под прямым углом.
Сила не зависит от вида материала проводника и его сечения. Если проводник отсутствует, а заряды движутся в другой среде, то сила не изменится.
При направлении вектора магнитного поля в одну сторону одной величины, поле называется равномерным. Различные среды влияют на размер вектора индукции.
Магнитный поток
Магнитная индукция, проходящая по некоторой площади S и ограниченная этой площадью, является магнитным потоком.
Если площадь имеет наклон на некоторый угол α к линии индукции, магнитный поток снижается на размер косинуса этого угла. Наибольшая его величина образуется при нахождении площади под прямым углом к магнитной индукции:
Ф = В * S.
Магнитный поток измеряется в такой единице, как «вебер», который равен протеканием индукции величиной 1 Тл по площади в 1 м2.
Потокосцепление
Такое понятие применяется для создания общего значения магнитного потока, который создан от некоторого числа проводников, находящихся между магнитными полюсами.
В случае, когда одинаковый ток I протекает по обмотке с количеством витков n, общий магнитный поток, образованный всеми витками, является потокосцеплением.
Потокосцепление Ψ измеряется в веберах, и равно: Ψ = n * Ф.
Магнитные свойства
Магнитная проницаемость определяет, насколько магнитное поле в определенной среде ниже или выше индукции поля в вакууме. Вещество называют намагниченным, если оно образует свое магнитное поле. При помещении вещества в магнитное поле у него появляется намагниченность.
Ученые определили причину, по которой тела получают магнитные свойства. Согласно гипотезе ученых внутри веществ есть электрические токи микроскопической величины. Электрон обладает своим магнитным моментом, который имеет квантовую природу, движется по некоторой орбите в атомах. Именно такими малыми токами определяются магнитные свойства.
Если токи движутся беспорядочно, то магнитные поля, вызываемые ими, самокомпенсируются. Внешнее поле делает токи упорядоченными, поэтому формируется магнитное поле. Это является намагниченностью вещества.
Различные вещества можно разделить по свойствам взаимодействия с магнитными полями. Их разделяют на группы:
- Парамагнетики – вещества, имеющие свойства намагничивания в направлении внешнего поля, обладающие низкой возможностью магнетизма. Они имеют положительную напряженность поля. К таким веществам относят хлорное железо, марганец, платину и т. д.
- Ферримагнетики – вещества с неуравновешенными по направлению и значению магнитными моментами. В них характерно наличие некомпенсированного антиферромагнетизма. Напряженность поля и температура влияет на их магнитную восприимчивость (различные оксиды).
- Ферромагнетики – вещества с повышенной положительной восприимчивостью, зависящей от напряженности и температуры (кристаллы кобальта, никеля и т. д.).
- Диамагнетики – обладают свойством намагничивания в противоположном направлении внешнего поля, то есть, отрицательное значение магнитной восприимчивости, не зависящая от напряженности. При отсутствии поля у этого вещества не будет магнитных свойств. К таким веществам относятся: серебро, висмут, азот, цинк, водород и другие вещества.
- Антиферромагнетики – обладают уравновешенным магнитным моментом, вследствие чего образуется низкая степень намагничивания вещества. У них при нагревании осуществляется фазовый переход вещества, при котором возникают парамагнитные свойства. При снижении температуры ниже определенной границы, такие свойства появляться не будут (хром, марганец).
Рассмотренные магнетики также классифицируются еще по двум категориям:
- Магнитомягкие материалы. Они обладают низкой коэрцитивной силой. При маломощных магнитных полях они могут войти в насыщение. При процессе перемагничивания у них наблюдаются незначительные потери. Вследствие этого такие материалы используются для производства сердечников электрических устройств, функционирующих на переменном напряжении (асинхронный электродвигатель, генератор, трансформатор).
- Магнитотвердые материалы. Они обладают повышенной величиной коэрцитивной силы. Чтобы их перемагнитить, потребуется сильное магнитное поле. Такие материалы используются в производстве постоянных магнитов.
Магнитные свойства различных веществ находят свое использование в технических проектах и изобретениях.
Магнитные цепи
Объединение нескольких магнитных веществ называется магнитной цепью. Они являются подобием электрических цепей и определяются аналогичными законами математики.
На базе магнитных цепей действуют электрические приборы, индуктивности, трансформаторы. У функционирующего электромагнита поток протекает по магнитопроводу, изготовленному из ферромагнитного материала и воздуху, который не является ферромагнетиком. Объединение этих компонентов является магнитной цепью. Множество электрических устройств в своей конструкции содержат магнитные цепи.
Похожие темы:
electrosam.ru
Магнитное поле — Эфиродинамика Вики
Магнитное поле или электромагнитное поле (эфиродинамика) — материальное, но невещественное тело, объект или даже поле. В самом общем виде представляет собой замкнутые потоки эфира кольцевой (провод с током) или тороидальной (виток с током, катушка) формы. Магнитное поле порождается движущимися зарядами как сумма их кольцевых вращений, распространяющееся в эфире..
В бытовом плане, понятия магнитного и электромагнитного поля не схожи только тем, что электромагнитное имеет искусственный электротехнический способ возникновения. В современной физике, понятие электромагнитного поля является более общим, однако при нету никаких реальных оснований отличать эти понятия друг от друга.
- Магнитное поле имеет эфиродинамическую, вихревую природу.
- Магнитное поле катушки является тороидальными или кольцевыми потоками эфира.
- Движение эфира замкнуто само на себя, однако распространяется в перпендикулярном направлении со скоростью света.
- Отношение перпендикулярных скоростей ( скорости эфира в потоке к скорости распространения) даёт значение индукции магнитного поля:
Тор как минимальный элемент электромагнитного поля
Электрическое и магнитное поля всегда взаимосвязаны, но не в каждом случае проявляют себя при измерениях приборами, где-то они в сумме дают ноль. Всё обусловлено законами сохранения энергии и движения. Считается, что линии электрического поля имеют начало и конец, а магнитного поля – замкнуты. Однако, если рассматривать поле как поток эфира (поток чего-то, что несёт с собой энергию и не переносит атомов вещества), то в случае электрического поля в начале потока происходило бы самопроизвольное уменьшение количества эфира (энергии), а на его конце – накопление, что пока не наблюдалось на практике. Значит, у электрических линий есть два потока эфира: из начала в конец и от конца – к началу. Удалось найти соответствующую иллюстрацию (рис. 15) такого процесса в газе [11, c. 22], аналогичную вихрю в трубе Ранка [12] (два вихря, вложенные один в другой).
Ниже приведены опыты в бассейне: тарелкой, как веслом, зачерпнули воду, от этого образовался вихрьполубублик [13]. В две образовавшиеся на поверхности воды воронки вылили красители: красный и синий. Стало видно, что вихрь не просто крутится, но и одновременно выворачивается наизнанку, как чулок (рис. 16). Любопытен тот факт, что причиной образования вихря стала вязкость воды. Она же послужит причиной его затухания и распада.
Наибольшую устойчивость и длительность жизни будет иметь короткий вихрь, в котором вся энергия сосредоточена в малом объёме. В этом случае меньше энергии будет тратиться на преодоление трения стенок вихря о среду. Самая удачная геометрическая фигура для такого вихря – это тор. Например, сплющим тело смерча до высоты, равной его диаметру (рис. 17) или уменьшим длину вихрей в воде, сжав их по углу от 180 градусов до 5-10 градусов (рис. 18). Вращательное движение в смерче нарисовано предположительно, а для водяных вихрей, благодаря наличию видео, указано реальное направление. (В северном полушарии вращение воздуха в смерчах происходит, как правило, против хода часовой стрелки, в южном – по ходу стрелки, но бывают исключения).
В стабилизировавшемся вихре, особенно на его концах, происходит перераспределение скоростей движения всего потока так, что суммарная кинетическая энергия остаётся постоянной. Назовём скорости как в первоисточнике: тороидальная (поступательная) и кольцевая (вращательная) [1, с. 109]. Разложение общей скорости потока в тороиде на две взаимно перпендикулярные составляющие показано на рисунке 19. Согласно теории В. А. Ацюковского, «электрический заряд есть циркуляция плотности потока кольцевой скорости эфира по всей поверхности частицы» [14, с. 40], а «поскольку ориентация частиц определяется тороидальным движением, то магнитный момент частиц отождествляется с тороидальным движением эфира на её поверхности» [14, с. 55]. В этом утверждении имеется неточность: переставлены названия полей местами, но идея взаимного превращения электрического и магнитного полей справедлива.
Дело в том, что нас учили так: «магнитное поле взаимодействует только с магнитным полем, а электрическое – с электрическим». Однако, ознакомившись с теорией решения изобретательских задач (ТРИЗ), узнаем, что невозможно придумать что-то принципиально новое, если мыслить привычными категориями, не отказаться от общепринятых мнений и суждений. Психологическая инерция заставляет нас думать шаблонно, и это часто заводит размышления в тупик. Глядя на силовые линии магнита, очень хочется отнести магнитное поле к тороидальному движению эфира. Однако не стоит забывать, что магнит – это система частиц, и его магнитное поле – это проявление взаимодействия многих частиц (рис. 20). Система – это совокупность упорядоченно взаимодействующих элементов, обладающая свойствами, не сводящимися к свойствам отдельных элементов (пример: система «самолёт» может летать, а каждая её отдельная часть сама по себе летать не может.). Иначе, какой смысл организовывать взаимодействие нескольких предметов с целью получения нового свойства или качества, если оно уже есть у одного из имеющихся предметов? Поэтому неверно приписывать «системное свойство» её отдельным частям. Далее будет показано, почему магнитные линии относятся к кольцевому движению.
Тело постоянного магнита состоит из атомов и элементарных частиц, которые обладают зарядом и магнитным моментом. Значит, искать источник магнитного поля надо в строении электронов и протонов. В модели Ацюковского протон похож на луковицу (рис. 21), т. к. эфирный тороид немного деформируется из-за высокой скорости течения эфира в его центральном отверстии.
Я считаю, что такая модель недостаточно конкретизирована, поскольку не поясняется, почему и сколько витков должно быть по каждому направлению. А это важно для распределения энергий. В предлагаемой альтернативной модели каждый элемент эфира (амер) делает два оборота: один раз по малой окружности тороида, проходя через центральное отверстие, второй раз движется в перпендикулярной плоскости – по большой окружности, вокруг отверстия, затем траектория движения повторяется. Это отвечает принципу наименьшего действия. Такой путь будет кратчайшим, что соответствует минимальной энергии вращающейся частицы. В предлагаемой модели протона (и электрона) нет деформации из-за высокой скорости течения эфира в отверстии, сохраняется симметрия формы и бублик остаётся бубликом, или, скорее, круглой бусинкой (например, шаровая молния – это тор, но сжатый внешним давлением эфира почти до формы шара).
При своём движении амеры должны «заметать» всю поверхность тора. Для этого, как уже говорилось, им необходимо сделать один оборот в плоскости тора и ещё один оборот в перпендикулярной ей плоскости. Выполним моделирование на бумажной ленте (рис. 22). Пусть средняя линия полоски бумаги – это траектория движения амера. Закручиваем один конец ленты на 360 градусов – это будет эквивалентом движения частицы при её прохождении сквозь отверстие (тороидальная составляющая). Соединим концы перекрученной полоски, образовав кольцо (рис. 22, а), – это будет эквивалентно кружению частицы вокруг отверстия (кольцевая составляющая). Вращение идёт попеременно то по большому, то по малому радиусу (рис. 22, в). Взяв множество таких тонких бумажных ленточек и склеив из них более-менее круглый бублик, мы получим модель электромагнитного тора. Частицы эфира будут двигаться в нём, вращаясь и заворачиваясь, не сталкиваясь друг с другом.
Полученную траекторию движения можно представить в виде ниточки, приклеенной вдоль ленты Мёбиуса (рис. 23), которая сделает два витка и не пересечётся сама с собой. При этом, проходя первый виток, она подойдёт к своему началу, но с другой стороны бумаги, а что-бы замкнуться, ей надо сделать ещё один оборот.
Нитка образует спираль с двумя витками одинакового радиуса. Если теперь перенести спираль на тор и изменить радиусы витков (рис. 22, в), то получится модель, напоминающая улитку, строение галактики, спираль Фибоначчи (рис. 24). Стоит упомянуть, что числа Фибо-наччи проявляются в живых формах: расположение листьев и лепестков у растений, семян у подсолнуха, пластинок у сосновых шишек. Гармония тела и лица человека заключается в пропорции золотого сечения.
На основе проведённого моделирования предлагаются улучшенные модели протона и электрона в виде вихревых эфирных тороидов (рис. 25). Магнитное поле у тороида отличается от электрического поля только направлением вектора скорости движения эфира. Математически эти два поля есть проекции общей скорости ? закрученного потока на взаимно перпендикулярные направления В (?x) и Е (?y). Максвелл отдавал предпочтение трактованию магнитного поля как вращательного движения в связи с тем, что Фарадей обнаружил свойство магнитного поля поворачивать плоскость поляризации света в некоторых кристаллах [15, с. 17]. Поэтому в описываемой здесь модели кольцевое вращение отождествляется с магнитным полем, а заворачивающееся внутрь, тороидальное, – с электрическим.
Итак, подытожим. Нет большой разницы между магнитным и электрическим полями – и то и другое представляет собой общий поток эфира, который, будучи разложен на поступательную и вращательную составляющие, может рассматриваться как два поля разной «структуры». Понятие «линия поля» используется только для наглядного способа отображения направлений потоков эфира [16, с. 511]. Никакой внутренней структуры эти воображаемые линии не имеют [16, с. 542]. Сложив вместе две компоненты поля, мы получим электромагнитный тор – это будет «элементарная частица» электромагнитного поля. Пока не известно, существует ли минимальный размер для такой частицы, но ясно одно – нельзя сделать, чтобы одно поле существовало без другого, можно только скомпенсировать действие одного из полей. Например, на поверхности заряженной проводящей сферы это будет подобие множества фонтанов эфира. Магнитное поле сферы стелется по её поверхности и не обнаруживается компасом. Аналогично с магнитом: эфирные потоки снаружи будут течь в одном направлении, взаимодействуя с магнитной стрелкой, а электрическое поле не будет выходить за пределы магнита.
Магнитное поле проводника с постоянным током
В электротехнике электромагнитные поля создаются электронами. Если рассмотреть отдельную частицу, то околоэлектронный эфир из-за наличия вязкости будет увлекаться в движение вращающейся поверхностью частицы, и около электрона создастся вихревая трубка эфира (условно её можно сравнить с цилиндром). Исследованием силовых трубок эфира занимался Фарадей [22]. В образовавшейся вихревой трубке потоки эфира перемещаются по кольцам в плоскости, перпендикулярной оси трубки (кружатся по кругу), и перемещаются возвратно-поступательно параллельно оси цилиндра. Это можно представить, как две пружинки, вставленные одна в другую, только намотанные в разных направлениях (так расположены швейные нитки в соседних слоях катушки). В направлении, в котором электрон «выдувает» эфир из своего отверстия, длина трубки больше. По
другую сторону от электрона вихрь значительно короче (рис. 26).
Когда электроны равномерно распределены по объёму проводника и хаотично ориенти-рованы, то магнитное поле не будет обнаруживаться. Стрелка компаса слишком велика для таких измерений: магнитные линии множества электронов будут толкать её то вправо, то влево, в сумме давая ноль. Но если в цепи есть электрический ток, вызванный разностью потенциалов на концах проводника, то электроны в проводнике будут развернуты по линиям электрического поля (как баранки на верёвочке, рис. 27). Часть потоков эфира скомпенсируется (красные линии), а часть наоборот – просуммируется в своём воздействии на компас (синие линии). Электроны начнут двигаться к «плюсу» источника питания за счёт того, что они развернулись по электрическому полю (поляризовались), и их вращение теперь направлено преимущественно в одну сторону. «Преимущественно», потому что поляризация не полная – она «сбивается» при столкновении с другими частицами.
Опыт Эрстеда [17] показал, что линии магнитного поля около проводника располагаются перпендикулярно направлению протекания тока. «Косых составляющих» потока эфира от комбинации электрического и магнитного поля [14, с. 129] около проводника нет.
Магнитное поле протонов и электронов
Пришло время поговорить о том, в какую сторону крутится электрон, а в какую – протон. Как узнать, куда направлен их магнитный момент? На рисунке 28 изображена икс-частица, у которой известно только тороидальное вращение. Как будет показано позже, она выстроится в магнитном поле так, чтобы эфир, выдуваемый ею из отверстия, был антинаправлен потокам внешнего магнитного поля. Это устойчивое положение, обусловленное минимальным давлением на периферии частицы. Зная по опытам, куда отклонится положительно или отрицательно заряженная частица в магнитном поле, мы можем нарисовать направление скорости кольцевого вращения υк.
Что заставило частицу отклониться от первоначального направления движения? Сила Лоренца, а если рассмотреть поближе, то механизм воздействия описывается силой Магнуса, действующей со стороны газоподобного эфира на вращающуюся частицу. У нас частица влетает в магнитное поле по инерции – важный момент! Если она летит по инерции, то эфир будет тормозить её, оказывать сопротивление. А если разгоняющее поле всё ещё действует, то его поток будет, наоборот, способствовать движению, и сила Лоренца в этом случае окажется направленной в другую сторону. На летящую по инерции частицу среда окажет тормозящее действие в виде набегающего встречного потока, скорость которого обозначена υcр. Скорости движения среды относительно частицы υcр и вращения эфира в частице υк не будут в точности складываться так, как изображено на рисунке 29, но качественно картина будет именно такой. Уменьшение скорости в газе (эфире) эквивалентно повышению давления. Тороид начнёт перемещаться под действием возросшего давления среды в сторону пониженного давления.
Стоит подробнее рассмотреть эффект Магнуса, так как в книге по эфиродинамике в этом месте есть неточность [2, с. 71]. Цилиндр вращается на месте, сам не движется, а набегающий на него воздух создаёт силу Магнуса (рис. 30). Сверху поток однозначно тормозит вращение цилиндра, в одном из слоёв будет нулевая скорость – там давление максимально. Снизу, в зависимости от отношения скоростей υпотока и υк , набегающий поток или слабее тормозит вращение цилиндра или даже способствует раскручиванию. Но, в любом случае, в данной ситуации итоговая скорость нижнего потока будет больше и давление там понизится. Эскиз графика давлений около вращающегося цилиндра будет выглядеть так, как показано на рисунке 30. В зависимости от соотношения скоростей вращения цилиндра и скорости потока графики будут немного разные, но знак разницы давлений ΔР сверху и снизу от цилиндра от этого не изменится и сила будет направлена в одну и ту же сторону.
Постоянные магниты
Поле постоянного магнита создаётся потоком электронов, каждый из которых вносит свой маленький вклад в общее поле. Если, образно говоря, потянуть за длинный лепесток траекторию, по которой движутся амеры около электрона, то можно вытянуть её наружу. Тогда получится её сфотографировать – возле магнита будет «цветок», как на рисунке 51 [11, с. 9] (фотография получена с использованием магнитооптического эффекта Керра [22, с. 17]).
Природу постоянных магнитов можно представить через вихрь эфира (силовую трубку электрического поля), который порождает поляризацию электронов, и явление, аналогичное
протеканию тока в сверхпроводнике. После снятия с металлической заготовки внешнего магнитного поля поляризованные электроны некоторое время остаются на своих местах.
Их электрические потоки объединяются и формируют множество больших вихревых трубок, точно так же, как в электрической цепи. Логично предположить, что электроны
перемещаются внутри них в сверхпроводящем режиме, иначе только что изготовленный магнит разогрелся бы от выделения джоулева тепла, которое обычно сопровождает
постоянный электрический ток. Вероятно, тот факт, что эфирные трубки замыкаются внутри магнита, позволяет им совместно с электронами сформировать электромагнитное
поле, подобное полю атомов. Оно создаёт сопротивление колеблющимся атомам кристаллической решётки и не позволяет им пересекать и разрушать эфиропроводы. Как именно
расположены вихревые трубки в магните, сложно сказать наверняка, поскольку это зависит от технологии изготовления. Но, предположительно, они располагаются
концентрическими окружностями, повторяя собой воображаемые линии магнитного поля, которые стали причиной появления такого расположения электронов (рис. 52). Силовые
трубки, идущие по поверхности магнита (как при протекании постоянного тока по проводнику), скорее всего, отсутствуют. Лишившись подпитки энергией, из многих вихрей
вскоре остаются только те, которые нашли себе место между атомами, где сопротивление их эфирным потокам минимально.
Если где-то нарушается симметрия поля магнита, значит какая-то из эфирных трубок замкнулась сама на себя раньше времени. Тогда образуется локальный магнитный полюс и неравномерность поля может быть зафиксирована магнитными датчиками (проще всего – железными опилками). По причине наличия у электронов массы и, следовательно, инерции, не стоит сильно ударять по магниту – это приведёт к смещению электронов, вылету их за пределы эфирных трубок, к частичному размагничиванию (уничтожению эфиропроводов)
и локальному нагреву магнита. То же самое будет происходить с нагревом магнита: при больших тепловых скоростях будет множество соударений электронов с атомами и разрушение эфирных вихрей, которые удерживали и поддерживали потоки электронов. Также возможно пережимание и разрушение вихревых трубок, если два соседних с трубкой атома при колебаниях настолько сблизились, что перекрыли вихрь своими электронными оболочками.
Не исключается наличие спиралевидной траектории движения электронов вместо круговой (рис. 53). Поскольку внешнее поле не может исчезнуть моментально, за время своего уменьшения до нуля оно может нарушить круговую симметрию. Это не нарушит симметрии внешнего поля магнита, потому что у половины электронов первого витка магнитное поле будет иметь наклон в одну сторону (по нисходящей спирали), а у второй половины (по восходящей спирали) наклон будет в противоположную сторону.
Взаимодействие двух магнитов проще рассматривать как притяжение или отталкивание двух кольцевых токов одинаковой или разной направленности. Как именно токи воздействуют друг на друга, определяется силой Ампера. Такой механизм взаимодействия магнитов представляет собой версию, альтернативную предложенной В. А. Ацюковским [14, с. 130].
Галерея изображений
Рис. 15 – Газовый вихрь в атмосфере.
Рис. 16 – Вихри в воде.
Рис. 17 – Движение потоков в вихре.
Рис. 18 – Разворот и закручивание основного потока.
Рис. 19 – Потоки эфира в вихревом тороиде (по Ацюковскому).
Рис. 20 – Разница между системой и её частями.
Рис. 21 – Эфирная модель протона (по Ацюковскому) в разрезе.
Рис. 22 – Моделирование траектории движения амера в тороиде.
Рис. 23 – Лента Мёбиуса.
Рис. 24 – Траектория движения амера по тору.
Рис. 25 – Тороподобные модели элементарных частиц.
Рис. 26 – Разложение общего движения на кольцевое В и тороидальное Е.
Рис. 27 – Проводник с током.
Рис. 28 – Движение частиц в магнитном поле.
Рис. 29 – Эффект Магнуса, объясняющий появление силы Лоренца, действующей на подвижную частицу.
Рис. 30 – Распределение давлений около цилиндра, вращающегося в потоке газа.
Рис. 51 – Поле возле магнита.
Рис. 52 – Упрощённая модель постоянного магнита.
Рис. 53 – Спиральная модель постоянного магнита.
Литература
1. Ацюковский В.А. — Эфиродинамическая картина мира. Цикл лекций 2000–2001 гг. – М.: Петит, 2010. – 540 с.
2. Ацюковский В.А. — Общая эфиродинамика. Моделирование структур вещества и полей на основе представлений о газоподобном эфире, 2008. – 584 с.
11. Uncovering the Missing Secrets of Magnetism — 15 August 2015.
12. Вихревой эффект — 21 августа 2015.
13. Fun with Vortex Rings in the Pool — 17 August 2015.
14. Ацюковский В.А.— Эфиродинамические основы электромагнетизма – М.: Энергоатомиздат, 2011. – 188 с.
16. Фарадей М. — Экспериментальные исследования по электричеству: Пер. с англ. – М.: Издательство академии наук СССР, 1947. – Т. 1. – 848 с.
17. Опыт Эрстеда – 11 августа 2015
22. Сверхпроводимость – 11 августа 2015.
Анонимные отзывы
Вырази своё мнение! Это бесплатно, безопасно, без регистрации и рекламы.
См. Популярные статьи
См. Журнал комментариев (всего 23)
См. Журнал форума
- ↑ Жужа М.М. — Эфиродинамика: от элементарных частиц до вихревой модели атома, 2017 г.
etherdynamics.wiki
Что такое магнитное поле. Магнитное поле, что оно собой представляет. Что собой представляет магнитное поле? Как и где оно появляется?
О магнитном поле мы еще помним со школы, вот только что оно собой представляет, “всплывает” в воспоминаниях не у каждого. Давайте освежим то, что проходили, а возможно, расскажем что-то новенькое, полезное и интересное.
1
Определение магнитного поляМагнитным полем называют силовое поле, которое воздействует на движущиеся электрические заряды (частицы). Благодаря этому силовому полю предметы притягиваются друг к другу. Различают два вида магнитных полей:
- Гравитационное – формируется исключительно вблизи элементарных частиц и вирируется в своей силе исходя из особенностей и строения этих частиц.
- Динамическое, вырабатывается в предметах с движущимися электрозарядами (передатчики тока, намагниченные вещества).
Впервые обозначение магнитному полю было введено М.Фарадеем в 1845 году, правда значение его было немного ошибочно, так как считалось, что и электрическое, и магнитное воздействие и взаимодействие осуществляется исходя из одного и того же материального поля. Позже в 1873 году, Д.Максвелл “презентовал” квантовую теорию, в которой эти понятия стали разделять, а ранее выведенное силовое поле было названо электромагнитным полем.
2
Как появляется магнитное поле?Не воспринимаются человеческим глазом магнитные поля разных предметов, а зафиксировать его могут только специальные датчики. Источником появления магнитного силового поля в микроскопическом масштабе является движение намагниченных (заряженных) микрочастиц, которыми выступают:
- ионы;
- электроны;
- протоны.
Их движение происходит благодаря спиновому магнитному моменту, который присутствует у каждой микрочастицы.
3
Магнитное поле, где его можно найти?Как бы странно это ни звучало, но почти все окружающие нас предметы обладают собственным магнитным полем. Хотя в понятии многих магнитное поле имеется только у камушка под названием магнит, который притягивает к себе железные предметы. На самом деле, сила притяжения есть во всех предметах, только проявляется она в меньшей валентности.
Также следует уточнить, что силовое поле, называемое магнитным, появляется только при условии, что электрические заряды или тела движутся.
Недвижимые заряды имеют электрическое силовое поле (оно может присутствовать и в движущихся зарядах). Получается, что источниками магнитного поля выступают:
- постоянные магниты;
- подвижные заряды.
sovetclub.ru