Что представляет собой магнитное поле: Что такое магнитные поля? (статья)

Что такое магнитное поле Земли

Магнитное поле Земли или геомагнитное поле — магнитное поле, генерируемое внутриземными источниками. Предмет изучения геомагнетизма. Появилось 4,2 млрд лет назад

Магнитное поле Земли похоже на магнитное поле гигантского постоянного магнита, наклоненного на угол в 11 градусов к оси ее вращения. Но здесь существует нюанс, суть которого заключается в том, что температура Кюри для железа составляет всего 770°C, тогда как температура железного ядра Земли значительно выше, и только на его поверхности составляет порядка 6000°C. При такой температуре наш магнит никак не сумел бы удержать свою намагниченность. Значит, поскольку ядро нашей планеты не магнитное, земной магнетизм имеет иную природу. Итак, откуда же берется магнитное поле Земли?

Как известно, магнитные поля окружают собой электрические токи, поэтому есть все основания предполагать, что циркулирующие в расплавленном металлическом ядре токи — это и есть источник земного магнитного поля.

Форма магнитного поля Земли действительно подобна магнитному полю витка с током.

Величина измеренного на поверхности Земли магнитного поля — около половины Гаусса, при этом силовые линии как-бы выходят из планеты со стороны южного полюса и входят в ее северный полюс. При этом по всей поверхности планеты магнитная индукция изменяется от 0,3 до 0,6 Гаусс.

Практически наличие у Земли магнитного поля объясняется динамо-эффектом, возникающим от циркулирующего в ее ядре тока, но это магнитное поле не является всегда постоянным по направлению. Образцы скальных пород, взятые в одних и тех же местах, но имеющие различный возраст, отличаются направлением намагниченности. Геологи сообщают, что за последние 71 миллион лет магнитное поле Земли разворачивалось 171 раз!

Хотя детально динамо-эффект не изучен, вращение Земли определенно играет важную роль в генерации токов, которые, как предполагается, являются источником магнитного поля Земли.

Зонд «Mariner 2», исследовавший Венеру, обнаружил, что у Венеры такого магнитного поля нет, хотя в ее ядре, как и в ядре Земли, содержится достаточно железа.

Разгадка состоит в том, что период вращения Венеры вокруг своей оси равен 243 дням на Земле, то есть динамо-генератор Венеры вращается в 243 раза медленнее, а этого не достаточно чтобы произвести реальный динамо-эффект.

Взаимодействуя с частичками солнечного ветра, магнитное поле Земли порождает условия для возникновения вблизи полюсов так называемых полярных сияний.

Северная сторона стрелки компаса — это магнитный северный полюс, который всегда ориентируется по направлению к географическому северному полюсу, практически являющемуся магнитным южным полюсом. Ведь, как известно, противоположные магнитные полюса взаимно притягиваются.

Тем не менее, простой вопрос: «как Земля получает свое магнитное поле?» — до сих пор не имеет однозначного ответа. Понятно, что генерация магнитного поля связана с вращением планеты вокруг своей оси, ибо Венера с подобным составом ядра, но вращающимся в 243 раза медленнее, не имеет измеримого магнитного поля.

Кажется правдоподобным, что от вращения жидкости металлического ядра, составляющей основную долю этого ядра, возникает картина вращающегося проводника, создающего динамо-эффект и работающего подобно электрическому генератору.

Конвекция в жидкости наружной части ядра приводит к ее циркуляции по отношению к Земле. Это значит, что электропроводящий материал перемещается относительно магнитного поля. Если он оказывается заряжен благодаря трению между слоями в ядре, то вполне возможен эффект витка с током. Такой ток вполне в состоянии поддерживать магнитное поле Земли. Масштабные компьютерные модели подтверждают реальность данной теории.

В 50-е годы, в рамках стратегии «холодной войны», суда ВМС США буксировали чувствительные магнитометры по дну океана, в то время они искали способ обнаружения советских подводных лодок. В ходе наблюдений выяснилось, что магнитное поле Земли колеблется в пределах 10% по отношению к магнетизму непосредственно пород морского дна, имевших противоположное направление намагниченности. Получилась картина разворотов, происходивших до 4 миллионов лет назад, это было подсчитано калий-аргоновым археологическим методом.

Ранее ЭлектроВести писали, что страны мира в 2018 году исчерпали объем возобновляемых ресурсов, который планета может воспроизвести за год, уже к 1 августа — быстрее, чем когда-либо ранее, говорится в сообщении Всемирного фонда дикой природы (WWF).

По материалам: electrik.info.

Магнитное поле – внеурочная деятельность (конкурсная работа) – Корпорация Российский учебник (издательство Дрофа – Вентана)

  • Участник: Обрезкова Алиса Сергеевна
  • Руководитель: Гурьянова Галина Александровна

Техника безопасности

  1. Будьте внимательны, дисциплинированны, аккуратны, точно выполняйте указания учителя.
  2. Перед тем как приступить к выполнению работы, тщательно изучите её описание, уясните ход её выполнения.
  3. Не оставляйте рабочего места без разрешения учителя.
  4. Располагайте приборы, материалы, оборудование на рабочем месте в порядке, указанном учителем.
  5. Не держите на рабочем столе предметы, не требующиеся при выполнении задания.
  6. Не устанавливайте на краю стола штатив, во избежание его падения.
  7. После выполнения измерений электронным секундомером выключите его, отсоединив разъём.
  8. Источник тока электрической цепи подключайте в последнюю очередь. Не включать собранную цепь без проверки и разрешения учителя.
  9. При сборке электрической цепи провода располагайте аккуратно, а наконечники плотно соединяйте с клеммами.
  10. Следите, чтобы изоляция проводов была исправна, а на концах проводников были наконечники.
  11. Не касайтесь руками мест соединений. Не использовать провода с нарушенной изоляцией. Все изменения в цепи производите после отключения источника тока.
  12. При проведении опытов не допускайте предельных нагрузок измерительных приборов. После снятия показаний цепь разомкнуть. По указанию учителя разобрать цепь.
  13. При сборке электрической цепи провода располагайте аккуратно, а наконечники плотно соединяйте с клеммами.
  14. Обнаружив неисправность в электрических устройствах, находящихся под напряжением, немедленно отключите источник электропитания и сообщите об этом учителю.
  15. Берегите оборудование и используйте его по назначению.
  16. При получении травмы обратитесь к учителю.

Введение

В своей работе по теме «Магнитное поле» я проведу и объясню три эксперимента, описанные в учебнике Перышкина А.В. Физика. 8 класс.

Цель работы: расширение кругозора, повышение эрудиции, развитие интереса к экспериментальной физике, умений демонстрировать и объяснять опыты, научиться работать самостоятельно.

Выдвигаемая гипотеза: проверить на опытах предположение, что вокруг проводника с электрическим током существует магнитное поле, которое возможно имеет закономерность в направлении и связано с направлением тока.

Магнитные явления были известны ещё в древнем мире: компас был изобретён более 4000 лет назад, и к XII веку он стал известен в Европе. Однако только в XIX веке была обнаружена связь между электричеством и магнетизмом, и возникло представление о магнитном поле.

Первыми экспериментами, показавшими, что между электрическими и магнитными явлениями имеется связь, были опыты датского физика Х. Эрстеда (1777-1851). В своём знаменитом опыте, описываемом ныне во всех школьных учебниках физики и проведённом в 1820 году, он обнаружил, что провод, по которому идёт ток, действует на магнитную стрелку (то есть подвижный магнит).

Эрстед не только провёл свой опыт, но и сделал правильный вывод: «электрический конфликт не ограничен проводящей проволокой, а имеет довольно обширную сферу активности вокруг этой проволоки». Переводя на современный язык, это можно понимать так: «действие тока есть не только внутри провода (его нагревание), но и вокруг (магнитное поле)».

Открытие Эрстеда вызвало необычайный интерес его современников-физиков и послужило началом ряда исследований, показавших сходство магнитного действия тока и действия постоянного магнита. Для поиска ответа проделаем опыт.

Опыт № 1. Дугообразный электромагнит

Возьму дугообразный электромагнит и закреплю его в штативе. Соединю катушки электромагнита через ключ с источником тока. Поднесу якорь к сердечнику и замкну ключ. Якорь притянулся к сердечнику. На крючок якоря буду подвешивать грузы 0,5 кг, потом 1 кг. Якорь не отрывается. Разомкну ключ, и грузы упадут.

Вывод из опыта № 1

Вокруг катушки с током существует магнитное поле. Железо, введенное внутрь катушки, усиливает магнитное действие катушки. Намагничивается сердечник и притягивает якорь с подвешенным грузом. Катушка с током, как и магнитная стрелка, имеет два полюса – северный и южный. Электромагниты обладают большой подъемной силой.

4 мая 1825 года Вильям Стерджен (английский ученый) на заседании Британского общества ремесел продемонстрировал работу своего электромагнита. Это был согнутый в виде подковы железный стержень длиной 30 см и диаметром 1,3 см. На нем в один слой была намотана медная проволока, подключенная к химическому источнику тока. Электромагнит Стерджена удерживал груз, весом в 1,5 раза превосходящим вес самого магнита. При весе в 2 кг он поднимал металлический груз в 3,6 кг. На тот момент он был намного мощнее природных магнитов того же размера. Еще в 1823 году ученый на основе электромагнита построил «вращающееся колесо Стерджена» — по сути первую модель электромотора.

Стерджена, Джеймс Джоуль, экспериментируя с электромагнитом учителя, в том же 1825 году смог увеличить подъемную силу до 20 кг. С этого момента начинается своеобразная гонка между учеными по совершенствованию электромагнита и наращиванию его подъемной силы. Через семь лет после своего изобретения Уильям Стерджен создает электромагнит с подъемной силой в 160 кг, а еще через восемь лет – электромагнит с подъемной силой в 550 кг.

Кстати подковообразная форма электромагнита, очень удачная как показали дальнейшие исследования, была выбрана Уильямом Стердженом чисто случайно. Эта форма используются и по сей день. Хотя конечно же в наше время изготавливаются электромагниты самых разнообразных форм.

Вскоре после того, как было построено еще несколько крупных магнитов и все убедились в их силе, надежности, компактности и удобстве, было предложено использовать электромагниты для подъема железных и стальных деталей на металлургических и металлообрабатывающих заводах.

В России вплоть до революции Общество конно-железных дорог и омнибусов использовало магниты для очистки овса от железных гвоздей. В Европе и Америке магниты широко применяли на мельницах по очистке зерна.

В 30-х годах нашего столетия был создан один из крупнейших электромагнитов, предназначенный для устройства, с помощью которого разрушали бракованное литье. Груз, выполняющий эту операцию, весил 200000 Н. Использование электромагнита в этом устройстве позволяло сбрасывать груз обычным поворотом выключателя.

Вскоре были созданы еще более крупные магниты, способные поднимать груз весом до 500000 Н.

Магнитная очистка зерна на мельницах стала прообразом одного из чрезвычайно важных в настоящее время применений магнитов. Речь идет о так называемых магнитах сепараторах. Принцип их действия состоит в том, что смесь полезного вещества и «пустой породы» подается по конвейеру и проходит мимо полюсов магнита. Если пустая порода магнитна, то она будет извлечена из смеси. Принцип сепаратора с использованием естественных магнитов был предложен еще в 1792 г., т.е. до изобретения электромагнита.

Электромагниты нашли широкое применение в промышленности, технике, медицине. Например, в батискафе французского профессора Пиккара, исследовавшего не так давно глубочайшие океанские впадины, мощный электромагнит удерживал железный балласт.

С их помощью можно также поднимать и перемещать массивные объекты, например, автомобили перед утилизацией. Они также используются в транспортировке. Поезда в Азии и Европе используют электромагниты для перевозки автомобилей. Это помогает им двигаться на феноменальных скоростях.

Генеральный директор компании Walker Magnetics, г-н Брайан Твейтс с гордостью представляет самый большой в мире подвесной электромагнит. Его вес (88 т) примерно на 22 т превышает вес действующего победителя Книги Рекордов Гиннеса из США. Его грузоподъемность составляет приблизительно 270 тонн.  

Электромагниты получили настолько широкое распространение, что трудно назвать область техники, где бы они не применялись в том или ином виде. Они содержатся во многих бытовых приборах — электробритвах, магнитофонах, телевизорах и т.п. Устройства техники связи — телефония, телеграфия и радио немыслимы без их применения.

Электромагниты являются неотъемлемой частью электрических машин, многих устройств промышленной автоматики, аппаратуры регулирования и защиты разнообразных электротехнических установок. Развивающейся областью применения электромагнитов является медицинская аппаратура. Наконец, гигантские электромагниты для ускорения элементарных частиц применяются в синхрофазотронах.

Вес электромагнитов колеблется от долей грамма до сотен тонн, а потребляемая при их работе электрическая мощность — от милливатт до десятков тысяч киловатт.

Опыт № 2. Магнитные линии катушки с током

Возьму катушку, смонтированную на подставке из оргстекла, соединю ее через ключ с источником тока. На подставку насыпаю ровным слоем металлические опилки. Замыкаю ключ и чуть-чуть постукиваю по платформе. Цепочки, которые образуют в магнитном поле железные опилки, показывают форму магнитных линий магнитного поля. Магнитные линии магнитного поля катушки с током являются замкнутыми линиями. Вне катушки они направлены от северного полюса катушки к южному.

Вывод из опыта № 2
  1. Вокруг катушки с током есть магнитное поле 
  2. Катушка с током похожа на полосовой магнит и у нее есть тоже два полюса – северный и южный
  3. Чем больше число витков в катушке, тем сильнее её магнитное поле.
  4. Чем больше сила тока, тем сильнее магнитное поле.
  5. Наличие сердечника усиливает магнитное поле.

Цилиндрическую катушку индуктивности, длина которой на много превышает диаметр называют соленоидом, магнитное поле внутри длинного соленоида однородно.

Опыт № 3. Магнитное поле прямого проводника с током

Беру прибор, в котором прямой проводник пропущен сквозь лист картона. На картон насыпаю тонкий и равномерный слой железных опилок, включаю ток, и опилки слегка встряхиваю. Под действием магнитного поля тока железные опилки располагаются вокруг проводника не беспорядочно, а по концентрическим окружностям.

Вывод из опыта № 3

Магнитные линии магнитного поля тока представляют собой кривые, охватывающие проводник.

Вывод из проделанных опытов

Проведенные опыты подтверждают выдвинутую гипотезу. Магнитное поле существует вокруг любого проводника с током, т.е. вокруг движущихся электрических зарядов. Электрический ток и магнитное поле неотделимы друг от друга. Ток следует рассматривать как источник магнитного поля.

Человека пронизывают мириады магнитных полей различного происхождения. Мы привыкли к магниту и относимся к нему снисходительно, как к устаревшему атрибуту школьных уроков физики, порой даже не подозревая, сколько магнитов вокруг нас. Я подсчитала – у меня в квартире их десятки: в электробритве, динамике, магнитофоне, в банке с гвоздями, наконец, я сама тоже магнит: биотоки, текущие во мне, рождаю вокруг причудливый пульсирующий узор магнитных линий. Земля, на которой мы живем, — гигантский голубой магнит. Солнце – желтый плазменный шар – еще более грандиозный магнит. Галактики и туманности, едва различимые радиотелескопами, — непостижимые по размерам магниты…

Ссылка на видеоролик: https://yadi.sk/i/fEaNL3z_3Jfbx3


Магнитное поле и его свойства

Магнитное поле это материя, которая возникает вокруг источников электрического тока, а также вокруг постоянных магнитов. В пространстве магнитное поле отображается как совокупление сил, которые способны оказать воздействие на намагниченные тела. Это действие объясняется наличием движущих разрядов на молекулярном уровне.

Магнитное поле формируется только вокруг электрических зарядов, которые находятся в движении. Именно поэтому магнитное и электрическое поле являются, неотъемлемыми и вместе формируют электромагнитное поле. Компоненты магнитного поля взаимосвязаны и воздействуют друг на друга, изменяя свои свойства.

Свойства магнитного поля:
1. Магнитное поле возникает под воздействие движущих зарядов электрического тока.
2. В любой своей точке магнитное поле характеризуется вектором физической величины под названием магнитная индукция, которая является силовой характеристикой магнитного поля.
3. Магнитное поле может воздействовать только на магниты, на токопроводящие проводники и движущиеся заряды.
4. Магнитное поле может быть постоянного и переменного типа
5. Магнитное поле измеряется только специальными приборами и не может быть воспринятым органами чувств человека.
6. Магнитное поля является электродинамическим, так как порождается только при движении заряженных частиц и оказывает влияние только на заряды, которые находятся в движении.
7. Заряженные частицы двигаются по перпендикулярной траектории.

Размер магнитного поля зависит от скорости изменения магнитного поля. Соответственно этому признаку существуют два вида магнитного поля: динамичное магнитное поле и гравитационное магнитное поле. Гравитационное магнитное поле возникает только вблизи элементарных частиц и формируется в зависимости от особенностей строения этих частиц.

Магнитный момент
возникает в том случае, когда магнитное поле воздействует на токопроводящую раму. Другими словами, магнитный момент это вектор, который расположен на ту линию, которая идет перпендикулярно раме.

Магнитное поле можно изобразить графически с помощью магнитных силовых линий. Эти линии проводятся в таком направлении, так чтобы направление сил поля совпало с направлением самой силовой линии. Магнитные силовые линии являются непрерывными и замкнутыми одновременно.

Направление магнитного поля определяется с помощью магнитной стрелки. Силовые линии определяют также полярность магнита, конец с выходом силовых линий это северный полюс, а конец, с входом этих линий, это южный полюс.

Очень удобно наглядно оценить магнитное поле с помощью обычных железных опилок и листка бумаги.
Если мы на постоянный магнит положим лист бумаги, а сверху насыпим опилок, то частички железа выстроятся соответственно силовым линиям магнитного поля.

Направление силовых линий для проводника удобно определять по знаменитому правилу буравчика или правилу правой руки. Если мы обхватим проводник рукой так, чтобы большой палец смотрел по направлению тока(от плюса к минусу), то 4 оставшиеся пальцы покажут нам направление силовых линий магнитного поля.

А направление силы Лоренца — силы, с которой действует магнитное поле на заряженную частицу или проводник с током, по правилу левой руки.
Если мы расположим левую руку в магнитном поле так, что 4 пальца смотрели по направлению тока в проводнике , а силовые линии входили в ладонь, то большой палец укажет направление силы Лоренца, силы действующей на проводник помещенный в магнитное поле.

На этом собственно всё. Появившиеся вопросы обязательно задавайте в комментариях.

Заметка: учите инглиш? — рейтинг школ английского языка (http://www. schoolrate.ru/) будет вам полезен при выборе.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

раскрыта тайна магнитного поля Земли

Учёные заглянули в самое начало эволюции планеты и обнаружили, что её знаменитый антирадиационный щит на самом деле возник не так, как мы привыкли думать.

Как устроена магнитосфера Земли

Планета находится в гигантском облаке смертоносных частиц, идущих от Солнца и от всей Галактики в целом. И мы живём на этой планете потому, что данные частицы на нас не обрушиваются: сильное магнитное поле Земли заставляет их огибать её и следовать дальше в космос. Притом мощный солнечный ветер как бы сплющивает магнитосферу с той стороны, которая смотрит на светило. Но даже при этом она простирается на 70 тысяч километров — это добрый десяток радиусов Земли. А с другой стороны магнитное поле образует и вовсе исполинский шлейф на пару сотен земных радиусов.

Что создаёт магнитное поле Земли

В 1905 году Альберт Эйнштейн назвал этот вопрос одной из главных загадок физики XX века. Надо признать, спустя сто лет нельзя сказать, что она разгадана окончательно. Мы знаем, что магнитное поле возникает там, где есть электрический ток. Значит, планета Земля представляет собой гигантский электрогенератор. Спрашивается, как в недрах возникает это электричество? Самой убедительной считают теорию динамо: сначала от трения потоков расплавленное вещество электризуется, возникает ток — и вместе с ним магнитное поле, а потом эти же потоки проходят сквозь поле — и из-за этого опять возникает ток. И так далее бесконечно. А трение возникает, например, потому, что в жидких (или, скорее, вязких) слоях планеты идёт конвекция: более горячее вещество поднимается кверху, менее горячее опускается вниз. К тому же планета вращается вокруг своей оси, а это неизбежно означает какие-то движения в её разнородных недрах.

Где рождается земной магнетизм

До сих пор мы были уверены, что, разумеется, в ядре. Оно состоит из двух частей: внешней жидкой оболочки из расплавленного железа и сердцевины — она тоже железная, но из-за неимоверного давления твёрдая. И вот при взаимодействии твёрдой и жидкой частей возникает теплообмен, конвективные потоки и, как следствие, электричество. Как известно, железо прекрасно проводит ток, так что всё сходится.

Впрочем, как выясняется, всё, да не всё. Дело в том, что сердцевина стала твёрдой сравнительно недавно — полтора миллиарда лет назад. Но учёные убеждены, что магнитное поле Земли возникло никак не позже 4,2 миллиарда лет назад. По сути, оно родилось вскоре после самой планеты — ей как раз примерно четыре с половиной миллиарда лет. Возник вопрос, что создавало магнетизм на ранних этапах эволюции Земли.

Зацепка появилась в 2007 году. Тогда французские учёные заявили, что нижний слой земной мантии оставался жидким примерно пару миллиардов лет. Сейчас, надо сказать, мантия почти вся твёрдая, опять же из-за давления. Лишь в самой верхней части остаётся вязкая магма, которая иногда вырывается на поверхность из жерл вулканов.

Проблема в том, что даже в виде пластичной жижи мантийное вещество всегда считали очень плохим проводником электричества. Но дело в том, что тестировать его где-то в лаборатории — это совсем не то, что понаблюдать за ним в недрах Земли. Поэтому учёные из Калифорнийского университета в Сан-Диего решили всё выяснить самым, вероятно, продвинутым на сегодняшний день способом — путём вычислений, основанных на принципах квантовой механики. Это позволило смоделировать поведение вещества не здесь, на поверхности, а именно у самого земного ядра. Так вот, выяснилось, что на такой глубине мантия вполне себе электропроводна — во всяком случае, динамо поддерживать может.

Значит, именно мантия изначально защищала Землю своим покрывалом. И без неё жизни на планете могло и не быть.

Самое интересное из мира науки и технологий — в телеграм-канале автора.

Подпишитесь на LIFE

Магнитное поле Земли онлайн – Наука – Коммерсантъ

Развитие наземных и космических систем глобального мониторинга, а также внедрение современной аппаратуры, обеспечивающей высокочастотную регистрацию геофизических параметров, привели к беспрецедентному росту объемов регистрируемых данных в науках о Земле. Эффективная передача, хранение и обработка геофизической информации требуют адекватных методов и алгоритмов. В Геофизическом центре РАН разработан аппаратно-программный комплекс, автоматизирующий сбор и обработку магнитограмм от российских обсерваторий.


Результаты оперативного анализа геомагнитной активности на примере данных обсерватории «Магадан» во время магнитной бури 20 декабря 2015 года. Момент внезапного начала магнитной бури отмечен черной стрелкой (предоставлено ГЦ РАН). График — исходная магнитограмма горизонтальной составляющей магнитного поля. На втором графике (ниже) показана оценка часовых амплитуд геомагнитных возмущений. Третий график характеризует меру аномальности поля, построенную на принципах нечеткой математики. На четвертом графике представлена почасовая оценка скорости изменения магнитного поля. На нижнем графике показаны результаты оперативного расчета K-индекса геомагнитной активности. На графиках перечисленных индикаторов геомагнитной активности красным цветом отмечены сильно аномальные значения, фиолетовым — аномальные значения, зеленым — слабо аномальные значения и синим — фоновые значения

Последние достижения в области и работы с «большими данными» позволяют решить проблему эффективной обработки значительных массивов геофизических измерений. Современные методы системного анализа и искусственного интеллекта позволяют реализовать автоматизированное многокритериальное распознавание экстремальных явлений различной природы. Комплексный анализ наземных и спутниковых данных позволяет оперативно и с высокой точностью моделировать элементы магнитного поля Земли, что крайне важно для решения многих фундаментальных и практических задач.

Геомагнитное поле, регистрируемое на поверхности Земли и в околоземном пространстве, можно разделить на внутреннее и внешнее. Источником внутреннего магнитного поля Земли являются процессы, протекающие в ее недрах (рис. 1а). Внутреннее поле меняется медленно — в течение десятков и сотен лет (вековые вариации). Внешнее же поле формируется сложной и крайне изменчивой пространственной структурой электрических токов в магнитосфере и ионосфере Земли, образующихся под воздействием Солнца (рис. 1б).

Геомагнитную активность формируют относительно короткопериодные вариации внешнего магнитного поля, обусловленные солнечной активностью. Эффект от магнитосферных и ионосферных токов наблюдается на

Источник магнитного поля Земли в жидком ядре (ось вращения вертикальна и центрирована) (предоставлено Scientific American)

Земле в виде отклонений параметров магнитного поля — на временных масштабах от секунд до десятков часов. Повышенный уровень геомагнитной активности и геомагнитные вариации экстремальной амплитуды могут представлять опасность для технологических систем (ЛЭП, трубопроводов, спутников и т. п.). Поэтому геомагнитный мониторинг в режиме реального времени весьма важен для обеспечения технологической безопасности. Продолжительные наблюдения за изменением внутреннего поля также важны для понимания причин его эволюции.

INTERMAGNET

Непрерывные измерения параметров геомагнитного поля выполняются на обсерваториях по всему миру. Современные магнитные обсерватории — это высокотехнологичные объекты, функционирующие продолжительное время и обеспечивающие высокоточную оперативную регистрацию магнитного поля, что позволяет определять как вековые, так и короткопериодические вариации. Наиболее развитой сетью магнитных наблюдений, предоставляющей данные высшего стандарта качества, является международная сеть ИНТЕРМАГНЕТ (INTERMAGNET — International Real-Time Magnetic Observatory Network). Она включает около 140 обсерваторий.

Визуализация результатов модельных расчетов магнитного поля Земли на сферическом экране

Фото: Геофизический центр (ГЦ) РАН

За последние годы значительные успехи были достигнуты в развитии наземных магнитных наблюдений в России. При поддержке ФГБУН «Геофизический центр РАН» (ГЦ РАН) — одной из ведущих научных организаций, выполняющих исследования в данной области, были проведены работы по модернизации обсерваторий для соответствия международным стандартам. Результатом явилось, в частности, официальное включение обсерватории «Санкт-Петербург» в сеть ИНТЕРМАГНЕТ в июне 2016 года. Также при участии ГЦ РАН в Архангельской области развернута новая обсерватория «Климовская». На рис. 2 представлена карта российской сети магнитных наблюдений. Данные от 13 обсерваторий, 9 из которых включены в ИНТЕРМАГНЕТ, передаются в аналитический Центр геомагнитных данных в ГЦ РАН.

Данные предварительные, окончательные и квазиокончательные


Оперативные магнитограммы, передаваемые обсерваториями сети ИНТЕРМАГНЕТ, имеют статус предварительных данных. Они могут содержать техногенные помехи и пропуски, однако доступны пользователям с минимальной задержкой. Магнитограммам, которые прошли сложную и трудоемкую процедуру коррекции и очистки от помех, присваивается статус окончательных данных. Подготовка окончательных данных для конкретной обсерватории за один год выполняется в основном вручную и может занимать до двух лет. Для ускорения подготовки очищенных данных несколько лет назад был представлен новый тип магнитограмм — квазиокончательные данные. По характеристикам они близки к окончательным, но на их подготовку требуется значительно меньше времени. Квазиокончательные данные формируются непосредственно на магнитных обсерваториях. Их подготовка выполняется специалистами также преимущественно вручную.

Российский АПК объединяет и автоматизирует

Разработанный в ГЦ РАН аппаратно-программный комплекс (АПК) автоматизирует и ускоряет процедуру оперативного сбора магнитограмм от российских обсерваторий и подготовки квазиокончательных и окончательных данных. Это становится возможным благодаря использованию современных алгоритмов, включающих элементы искусственного интеллекта. Большинство операций выполняется в квазиреальном времени, что дает возможность оперативной оценки магнитной активности, необходимой для формирования точных прогнозов. Разработанный АПК представляет собой первую систему, выполняющую подготовку квазиокончательных магнитограмм, а также распознавание и многокритериальную классификацию экстремальных геомагнитных явлений в автоматизированном режиме. Внедрение подобных интеллектуальных систем качественно выделяет российскую сеть обсерваторий по сравнению с мировым уровнем. Ведь на многих обсерваториях ИНТЕРМАГНЕТ и сейчас магнитограммы анализируются вручную, что приводит к существенной задержке (до двух лет) в подготовке окончательных данных.

Другим важным достоинством разработанного АПК является возможность объединения геомагнитных данных из разных источников. Наряду с наземными обсерваториями, глобальное покрытие магнитными измерениями обеспечивается низкоорбитальными спутниками. Текущая спутниковая группировка Swarm, выполняющая исследования магнитного поля Земли, была запущена в ноябре 2013 года с космодрома Плесецк при помощи российской ракеты-носителя «Рокот». Миссия Swarm состоит из трех идентичных аппаратов (рис. 3), разработанных Европейским космическим агентством. Основные цели миссии — измерение характеристик магнитного поля для исследования процессов в земном ядре, мантии, литосфере, океанах, ионосфере и магнитосфере.

Оборудование российских магнитных обсерваторий модернизируется для соответствия международным стандартам

Включение в разработанный АПК данных Swarm делает его инновационным инструментом для координированной обработки и совместного анализа наземных и спутниковых данных, тем самым существенно расширяя области его применения.

АПК является ядром аналитического Центра геомагнитных данных российского сегмента сети ИНТЕРМАГНЕТ. Комплекс базируется на последних достижениях в области мониторинга геофизических процессов и интеллектуального анализа данных. АПК построен по модульному принципу, обладает гибкостью и имеет большой потенциал для расширения функциональных возможностей. Технологические подходы, использованные при создании АПК, позволяют его легко тиражировать, превращая в стандартизированное решение.

Солнечный ветер и магнитосфера Земли (изображено не в масштабе) (предоставлено University of Waikato)

Основные функции АПК:

· автоматическая загрузка и систематизация исходных наземных и спутниковых магнитных измерений;

· автоматизированная фильтрация обсерваторских данных от искусственных помех и их верификация;

· распознавание, классификация и кодирование данных об экстремальных геомагнитных явлениях;

· модельные расчеты в режиме онлайн.

Схема функционирования АПК представлена на рис. 4.

Исходные и обработанные обсерваторские магнитограммы, данные от спутников, результаты анализа и модельных расчетов хранятся в единой реляционной базе данных под управлением СУБД. Это предоставляет большую гибкость при формировании запросов и обеспечивает удобный и гибкий интерактивный доступ ко всему массиву данных, хранящихся в базе. Такой подход реализован впервые и не имеет аналогов в зарубежных центрах.

Разработанная система обладает широкими возможностями визуализации геомагнитных данных, включая использование современного проекционного оборудования со сферическим экраном.

Концепция, заложенная в основу системы, соответствует современной парадигме развития информационных технологий в части обращения с «большими данными». АПК повышает скорость получения достоверных данных о магнитном поле Земли. Объединение информации, полученной из разных источников — наземных и спутниковых,- обеспечивает многообразие собираемых данных, а также увеличивает объем наших знаний о процессах, происходящих на планете. Функциональность АПК делает его исключительно востребованным инструментом для экспертов и представителей власти при оценке и снижении рисков, вызванных экстремальными геомагнитными явлениями.

АПК в 2014-2016 годах в рамках проекта «Разработка инновационной технологии и создание экспериментального образца аппаратно-программного комплекса для мониторинга экстремальных геомагнитных явлений с использованием наземных и спутниковых данных» (соглашение N14.607.21.0058) ФЦП Минобрнауки «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 годы».

Алексей Гвишиани, профессор, академик РАН, директор ФГБУН «Геофизический центр РАН»

Анатолий Александрович Соловьев, член-корреспондент РАН, заместитель директора ФГБУН «Геофизический центр РАН»


Из-за чего образуется магнитное поле

Действие магнитного поля распространяется на все виды жизни на Земле и жизни планет. Эта материя, с помощью которой взаимодействуют заряженные частицы.  

Магнит – это предмет, который долгое время находится в одном состоянии, в намагниченном состоянии. С помощью этого свойства такие предметы, как магниты притягивают другие предметы, состоящие из железа и их сплавов. Магниты имеют два полюса – северный и южный, самое сильное магнитное поле располагается около полюсов. 

Магниты бывают натуральными, сделанные из железной руды магнитного железняка. Также магниты бывают искусственными, произведенные человеком. Их делают путем внесения железа в магнитное поле. 

Магнитное поле бывает отрицательным и положительным. Два отрицательных поля и два положительных поля отталкиваются друг от друга, а два поля с разными полюсами будут притягиваться. Это происходит из-за взаимодействия друг с другом магнитных полей. Магнитное поле – вещь не постоянная. Оно может внезапно появиться и внезапно пропасть, все зависит от внешних факторов, влияющих на магнитное поле. 

Элементарные магнитные поля создаются благодаря движению электронов вокруг ядра атома и движению вокруг своей оси. Само магнитное поле образуется благодаря внесению железного предмета во внешнее магнитное поле, тогда элементарные магнитные поля в железном предмете ориентируются во внешнем магнитном поле абсолютно одинаково. После этих небольших преобразований обычный предмет из железа становится магнитом, со своими магнитными полями. 

Действие магнитного поля влияет только на самого себя, а на электрическое поле оно никак не влияет. Есть электрическая заряженная частица, которая непременно движется, вокруг этой частицу и существует магнитное поле. Есть вторая электрическая заряженная частица, вокруг которой также существует магнитное поле. И эти два магнитных поля друг с другом взаимодействуют. 
Действие магнитного поля – это взаимодействия нескольких тел, такие как притягивание и отталкивание. Различаются эти взаимодействия только по интенсивности действия. Например, все электрические двигатели работают по принципу взаимного магнитного отталкивания. 

Наша планета, Земля, как и многие другие планеты, имеет магнитное поле. Магнитное поле Земли возникло из-за того, что наше планета постоянно движется вокруг Солнца и вокруг своей оси. Ядро нашей планеты состоит металла и является проводником электричества. Магнитное поле оказывает благотворное влияние на жизнь целой планеты и взаимодействия около земного пространства. Например, магнитное поле защищает все живое на земле от неблагоприятных воздействий солнца. Также защищает искусственные спутники Земли. Даже красивые полярные сияния вызваны магнитным полем Земли.

Магнитное поле катушки с током — урок. Физика, 8 класс.

Практический интерес представляет собой магнитное поле катушки с током.

Катушка получится, если плотно, виток к витку, намотать провод в достаточно длинную спираль (рис. 1). В катушке может быть несколько десятков, сотен или даже тысяч витков.

Соленоид (от греч. solen — «канал», «труба» и eidos — «подобный») — разновидность катушки с током. Обычно под термином «соленоид» подразумевается цилиндрическая обмотка из провода, причём длина такой обмотки многократно превышает её диаметр.

 

Рис. 1. Изображение катушки

 

Рассмотрим рисунок 2. Мы видим цепь, состоящую из источника тока, реостата и катушки. Катушка содержит большое число витков провода. При протекании тока по цепи железные опилки притягиваются к торцу катушки. А если тока нет, то притяжение не наблюдается.

 

Рис. 2. Изображение цепи с катушкой, реостатом и источником тока

 

Если катушка в этом опыте будет подвешена на проводах, то при протекании тока в цепи, она установится в пространстве строго определённым образом. Точно так же, как и магнитная стрелка компаса (в направлении север — юг).

Это наблюдение позволяет сделать вывод, что катушка с током тоже имеет магнитные полюсы (рис. 3).

 

Рис. 3. Изображение катушки, подвешенной на проводах с током

 

Логично предположить, что у катушки магнитное поле тоже имеется. Для доказательства можно воспользоваться железными опилками  (рис. 4).

 

Рис. 4. Изображение катушки с железными опилками

 

Железные опилки располагаются, образуя замкнутые кривые.

За направление линий магнитного поля принято направление от северного полюса катушки к южному (вне катушки с током).

 

Сила магнитного поля постоянного магнита невелика. Другое дело – электромагнит. Сила магнитного поля электромагнита можно изменяться. Ее можно увеличивать или уменьшать. Основная часть любого электромагнита – катушка с намотанным на нее проводом. Рассмотрим опыт, изображенный на рисунке 2. По виткам катушки протекает ток, и она притягивает к себе железные предметы (так проявляется магнитное действие тока). Если увеличить количество витков в катушке, не меняя силу тока в ней, то ее магнитное действие усилится, о чем свидетельствует увеличение количества притягиваемых предметов.

 

Магнитное действие катушки с током прямо пропорциональна числу витков в ней.

Соберём электрическую цепь из катушки, реостата (рис. 5), при помощи которого будем изменять силу тока в катушке.

Действие магнитного поля катушки с током прямо пропорционально силе тока.

 

Рис. 5. Изображение цепи с реостатом, ключом, катушкой и источником тока

  

Усиление магнитного поля произойдёт при использовании железного сердечника (рис. 6).

Сердечник — металлический стержень для усиления мощности электромагнита.

Сердечник, введённый внутрь катушки с током, усиливает магнитное действие катушки.

 

Рис. 6. Изображение цепи с реостатом, ключом, катушкой с железным сердечником и источником тока

 

Направление магнитного поля тока связано с направлением тока в катушке.

Определить направление линий магнитного поля катушки с током можно при помощи правила правой руки, или правила правого буравчика.

 

Принято считать, что та сторона катушки или витка с током, откуда линии магнитного поля выходят, — это и есть северный магнитный полюс (\(N\)), а сторона, куда линии входят, — это южный магнитный полюс (\(S\)) (рис. 7).

 

Рис. 7. Изображение катушки и магнитных полюсов

Источники:

Рис. 1. Указание авторства не требуется: Трансформатор Спираль Власть Технология, https://pixabay.com/images/id-5508211/, 2020-08-23, бесплатно для коммерческого использования.
Рис. 2. Указание авторства не требуется: Трансформатор Спираль Власть Технология, https://pixabay.com/images/id-5508211/, 2020-08-23, бесплатно для коммерческого использования.
Рис. 3. Указание авторства не требуется: Трансформатор Спираль Власть Технология, https://pixabay.com/images/id-5508211/, 2020-08-23, бесплатно для коммерческого использования.

Рис. 4. Изображение катушки с железными опилками. © ЯКласс.

Рис. 5. Изображение цепи с реостатом, ключом, катушкой и источником тока. © ЯКласс.

Рис. 6. Изображение цепи с реостатом, ключом, катушкой с железным сердечником и источником тока. © ЯКласс.

Рис. 7. Изображение катушки и магнитных полюсов. © ЯКласс.

Происхождение магнитного поля Земли остается загадкой | MIT News

Микроскопические минералы, извлеченные из древнего обнажения Джек-Хиллз в Западной Австралии, были предметом интенсивных геологических исследований, поскольку они, похоже, несут на себе следы магнитного поля Земли, появившиеся еще 4,2 миллиарда лет назад. Это почти на 1 миллиард лет раньше, чем предполагалось, когда возникло магнитное поле, и почти во времена образования самой планеты.

Но какой бы интригующей ни была эта история происхождения, команда под руководством Массачусетского технологического института нашла доказательства обратного. В статье, опубликованной сегодня в журнале Science Advances , команда исследователей исследовала кристаллы того же типа, называемые цирконами, которые были обнаружены в том же обнажении, и пришла к выводу, что собранные ими цирконы ненадежны для регистрации древних магнитных полей.

Другими словами, до сих пор неизвестно, существовало ли магнитное поле Земли раньше, чем 3,5 миллиарда лет назад.

«Нет надежных доказательств существования магнитного поля до 3,5 миллиардов лет назад, и даже если бы поле существовало, будет очень трудно найти доказательства его существования в цирконах Jack Hills», — говорит Кауэ Борлина, аспирантка в Департаменте наук о Земле, атмосфере и планетах Массачусетского технологического института (EAPS). «Это важный результат в том смысле, что мы знаем, чего больше не искать».

Борлина является первым автором статьи, в которую также входят профессор EAPS Бенджамин Вайс, главный научный сотрудник Эдуардо Лима и научный сотрудник Джахандар Рамезан из Массачусетского технологического института, а также другие сотрудники из Кембриджского университета, Гарвардского университета, Калифорнийского университета в Лос-Анджелесе, Университет Алабамы и Принстонский университет.

Возбужденное поле

Считается, что магнитное поле Земли играет важную роль в обеспечении обитаемости планеты. Магнитное поле не только задает направление стрелок компаса, но и действует как своего рода щит, отражающий солнечный ветер, который в противном случае мог бы разъедать атмосферу.

Ученые знают, что сегодня магнитное поле Земли создается за счет затвердевания жидкого железного ядра планеты. Охлаждение и кристаллизация ядра приводит в движение окружающее жидкое железо, создавая мощные электрические токи, которые создают магнитное поле, простирающееся далеко в космос.Это магнитное поле известно как геодинамо.

Многочисленные доказательства показали, что магнитное поле Земли существовало по крайней мере 3,5 миллиарда лет назад. Однако считается, что ядро ​​планеты начало затвердевать всего 1 миллиард лет назад, а это означает, что магнитное поле должно было быть вызвано каким-то другим механизмом до 1 миллиарда лет назад. Уточнение того, когда именно сформировалось магнитное поле, могло помочь ученым с самого начала выяснить, что его породило.

Борлина говорит, что происхождение магнитного поля Земли может также пролить свет на ранние условия, в которых зародились первые формы жизни на Земле.

«В первый миллиард лет Земли, между 4,4 и 3,5 миллиардами лет, именно тогда зарождалась жизнь», — говорит Борлина. «Наличие магнитного поля в то время имеет разные последствия для окружающей среды, в которой на Земле зародилась жизнь. Это мотивация нашей работы ».

«Не могу доверять циркону»

Ученые традиционно использовали минералы в древних породах для определения ориентации и интенсивности магнитного поля Земли во времени.По мере образования и охлаждения горных пород электроны в отдельных зернах могут смещаться в направлении окружающего магнитного поля. Как только горная порода остывает до определенной температуры, известной как температура Кюри, ориентация электронов, так сказать, устанавливается в камне. Ученые могут определить свой возраст и использовать стандартные магнитометры для измерения их ориентации, оценки силы и ориентации магнитного поля Земли в данный момент времени.

С 2001 года Вайс и его группа изучают намагничивание горных пород и зерен циркона в Джек-Хиллз с непростой целью установить, содержат ли они древние записи магнитного поля Земли.

«Цирконы Джек-Хиллз — одни из самых слабомагнитных объектов, изученных в истории палеомагнетизма», — говорит Вайс. «Кроме того, эти цирконы включают самые старые из известных материалов Земли, а это означает, что существует множество геологических событий, которые могли бы сбросить их магнитные записи».

В 2015 году отдельная исследовательская группа, которая также начала изучать цирконы Джек-Хиллз, утверждала, что они нашли доказательства магнитного материала в цирконах, возраст которых составляет 4,2 миллиарда лет — первое свидетельство того, что магнитное поле Земли могло существовать до 3.5 миллиардов лет назад.

Но Борлина отмечает, что команда не подтвердила, действительно ли обнаруженный ими магнитный материал сформировался во время или после кристалла циркона, образовавшегося 4,2 миллиарда лет назад — цель, которую он и его команда взяли на себя в своей новой статье.

Борлина, Вайс и их коллеги собрали породы на том же обнажении Джека Хиллз и из этих образцов извлекли 3754 зерна циркона, каждое около 150 микрометров в длину, что примерно равно ширине человеческого волоса. Используя стандартные методы датирования, они определили возраст каждого зерна циркона, который колебался от 1 миллиарда до 4 лет.2 миллиарда лет.

Около 250 кристаллов были старше 3,5 миллиардов лет. Команда изолировала и визуализировала эти образцы, ища признаки трещин или вторичных материалов, таких как минералы, которые могли отложиться на кристалле или внутри него после того, как он полностью сформировался, и искала доказательства того, что они значительно нагреваются за последние несколько миллиардов. лет с момента их образования. Из этих 250 они идентифицировали только три циркона, которые были относительно свободны от таких примесей и, следовательно, могли содержать подходящие магнитные записи.

Затем команда провела подробные эксперименты с этими тремя цирконами, чтобы определить, какие виды магнитных материалов они могут содержать. В конце концов они определили, что магнитный минерал под названием магнетит присутствует в двух из трех цирконов. Используя квантовый алмазный магнитометр высокого разрешения, команда исследовала поперечные сечения каждого из двух цирконов, чтобы отобразить расположение магнетита в каждом кристалле.

Они обнаружили магнетит, лежащий вдоль трещин или поврежденных зон внутри цирконов.По словам Борлина, такие трещины — это пути, по которым вода и другие элементы попадают внутрь породы. Такие трещины могли пропускать вторичный магнетит, который оседал в кристалле намного позже, чем когда первоначально образовался циркон. В любом случае, говорит Борлина, доказательства очевидны: эти цирконы нельзя использовать в качестве надежных регистраторов магнитного поля Земли.

«Это свидетельство того, что мы не можем доверять этим измерениям циркона для регистрации магнитного поля Земли», — говорит Борлина. «Мы показали это до 3.5 миллиардов лет назад мы до сих пор не знаем, когда возникло магнитное поле Земли ».

«Для меня эти результаты вызывают большие сомнения в способности цирконов Джека Хиллса достоверно регистрировать интенсивность палеомагнитного поля до 3,5 миллиардов лет», — говорит Энди Биггин, профессор палеомагнетизма Ливерпульского университета, не участвовал в исследовании. «Тем не менее, эти дебаты, как палеомагнитный эквивалент Брексита, бушуют с 2015 года, и я был бы очень удивлен, если бы это было последнее слово по этому поводу.Практически невозможно доказать отрицательный результат, и ни методы, ни интерпретации не подлежат сомнению ».

Несмотря на эти новые результаты, Вайс подчеркивает, что предыдущие магнитные анализы этих цирконов все еще очень ценны.

«Команда, которая сообщила о первоначальном магнитном исследовании циркона, заслуживает большой похвалы за попытку решить эту чрезвычайно сложную проблему», — говорит Вайс. «В результате всей работы обеих групп мы теперь намного лучше понимаем, как изучать магнетизм древних геологических материалов.Теперь мы можем начать применять эти знания к другим минеральным зернам и зернам с других планетных тел ».

Это исследование частично поддержано Национальным научным фондом.

линий магнитного поля | Блестящая вики по математике и науке

Земля :

Возможно, вы читали об разрушительных солнечных вспышках, вызванных солнечными бурями, или о прекрасных образцах ионизации, которые формируют Северное сияние (Северное сияние). Оба эти явления связаны с магнитными полями планет и звезд.\ text {th} В 17 веке китайские путешественники заметили, что с компасами в море шутят. Исследователи предположили, что вращение Земли и присутствие железа в мантии Земли могли вызвать этот аномальный магнетизм. Эти теории вскоре были опровергнуты и заменены теорией геодинамо, которая утверждает, что многие ионы движутся в мантии под поверхностью нашей Земли, тем самым создавая ток, который создает магнитное поле.

Обратите внимание: как и у любого стержневого магнита, наша Земля также имеет два полюса, с той разницей, что эти полюса не совпадают с нашими географическими северным и южным полюсами, и поэтому известны как магнитные полюса.Из свойств стержневых магнитов мы знаем, что силовые линии магнитного поля, ответственные за поле, берут начало на севере и заканчиваются на южном полюсе и, таким образом, представляют собой замкнутые контуры. Хотя иногда считается, что Земля имеет огромный магнит в своем ядре, это совсем не так, но дает хорошую картину для тематического исследования.

Как упоминалось ранее, магнитное поле Земли отклоняет вредные солнечные вспышки, унося ионизированные частицы. Рассмотрим заряженную частицу, падающую от Солнца.Направляясь прямо к Земле, он встречает магнитное поле, перпендикулярное его движению, и отклоняется. Это создает своего рода защитный щит вокруг Земли и может выдерживать типичные солнечные вспышки. Эффект магнитного экранирования проиллюстрирован ниже:

Ускорители частиц :

Ускорители элементарных частиц используются для ускорения элементарных частиц и атомов до огромных скоростей, приближающихся к скорости света.Затем частицы сталкиваются, и продукты этих столкновений тщательно анализируются на предмет признаков гипотетических или полностью новых частиц. Ускорители также используются для генерации излучения, используемого при лечении рака, например, при протонной терапии.

Ускорители

бывают нескольких типов, основными из которых являются циклотрон и синхотрон.

Циклотрон :

Механизм циклотрона сочетает в себе постоянное магнитное поле с переключающимся электрическим полем, чтобы удерживать частицы на спиральных траекториях все увеличивающегося радиуса.2} {r} .qvB = mrv2.

Это означает, что qB / m = v / rqB / m = v / rqB / m = v / r. Поскольку частота траектории определяется выражением 2πr / v2 \ pi r / v2πr / v, это предполагает, что частота орбиты составляет всего 1 / T = 2πm / qB1 / T = 2 \ pi m / qB1 / T = 2πm / qB. Мы замечаем, что это не зависит от энергии или радиуса. Таким образом, частица любой энергии будет поддерживать частоту 1 / T1 / T1 / T, даже если ее энергия меняется! Мы можем использовать эту невероятную регулярность траектории (даже если она спиралевидная) для создания простого ускорителя.

Рассмотрим область, в которой мы поддерживаем постоянное магнитное поле с напряженностью BBB. Далее рассмотрим разделительную линию (граница между красным и синим на диаграмме ниже). Когда частицы находятся справа от этой линии, электрическое поле указывает влево, ускоряя их влево через зазор, а когда частицы находятся слева, поле указывает вправо, и они ускоряются вправо. Поскольку магнитное поле удерживает частицы на траекториях с постоянной частотой, частицы регулярно ускоряются до более высокой энергии каждый раз, когда они пересекают зазор и движутся по траекториям с увеличивающимся радиусом.

Рассматривая это во временной области, мы видим, что мы можем запитать этот ускоритель электрическим полем, которое меняет ориентацию каждые T = qB / 2πmT = qB / 2 \ pi mT = qB / 2πm секунд. Черная линия соответствует красно-синему интерфейсу выше.

Таким образом, используя переключающееся EEE-поле (направленное прямо через зазор) и однородное BBB-поле (ориентированное вертикально) в тандеме, мы можем ускорять заряженные частицы по спиральным траекториям, которые затем могут быть выпущены из ускорителя и использованы для последующего использования. цели (т.е. столкновения, терапия и др.)

Синхотрон :

Синхротрон — это усовершенствованная форма циклотрона; это тип кругового ускорителя, в котором дипольные магниты используются для направления движения частицы, а квадрупольные магниты используются для сохранения фокусировки пучка заряженных частиц.

Большой адронный коллайдер

Высокочастотное поле RF (радиочастоты) используется для передачи энергии частицам, и путь остается постоянным независимо от энергии.Различие между циклотроном и синхротроном видно из-за генерации синхротронного излучения.

Синхротронное излучение возникает, когда электрон высокой энергии (скорость приближается к скорости света) проходит через дипольный магнит и испытывает боковую силу, вызывающую центростремительное ускорение. На этой стадии электрон испускает интенсивное излучение, касательное к его траектории, известное как синхротронное излучение.

Фотон :

Фотоны, конечно же, являются фундаментальными квантами света; на данной частоте интенсивность светового потока может изменяться только с шагом одного фотона.. Это поле изменяется в пространстве и времени, что означает, что оно создает магнитное поле в соответствии с законом индукции Фарадея. Магнитное поле сдвигается на полпериода и колеблется перпендикулярно электрическому полю. Очевидно, что аргумент применяется в обратном порядке (распространяющееся магнитное поле порождает перпендикулярно колеблющееся электрическое поле), так что они неразделимы.

Визуализируя этот результат, мы видим, что электромагнитная волна, распространяющаяся в пространстве, состоит из связанных полей EEE и BBB, колеблющихся поперек общей оси, которая является направлением волны.

Линии поля представляют собой стрелки, указывающие от оси распространения до амплитуды каждой волны.

Магнитное поле — Energy Education

Рис. 1: Силовые линии магнитного поля от стержневого магнита, визуализированные с помощью железных опилок. [1]

Магнитные поля создаются путем изменения электрических полей, обычно движущихся зарядов, таких как электроны, часто в форме макроскопического электрического тока (например, тока в проводе) или микроскопического тока (например, на атомной орбите). ). [2] В одном из самых прекрасных примеров симметрии в физике изменение магнитных полей создает электрические поля. Эти электрические поля, возникающие в результате изменения магнитных полей, являются тем, как электрические генераторы могут создавать электрический ток.

Магнитное поле — это векторное поле, то есть оно имеет определенную величину и направление в любой точке. Единицей измерения магнитного поля в системе СИ является Тесла (Тл) в честь физика Николы Тесла с единицами Н / А · м. Tesla — это огромная единица с довольно большим магнитным полем в 1 Тл.Меньшая единица — Гаусс (названный в честь великого физика и математика Карла Фридриха Эммануэля Гаусса) составляет одну десятитысячную Тесла. Магнитное поле Земли составляет примерно 1 Гаусс (но оно меняется в зависимости от того, где производятся измерения), поэтому 1 Тл — это магнитное поле в десять тысяч раз сильнее, чем у Земли!

Магниты — это материалы, намагниченность которых обусловлена ​​микроскопическими свойствами атомов, а создаваемое ими магнитное поле характеризуется их северным и южным полюсами.Направление этих магнитных полей всегда указывает от северного полюса к южному полюсу. Это соглашение можно использовать для определения силы, которую магнит будет прикладывать к заряду, и того, как один магнит будет взаимодействовать с другими магнитами.

Магнитные поля отличаются от электрических и гравитационных полей тем, что сила, которую они прикладывают к объекту, не параллельна полю. Магнитное поле фактически действует перпендикулярно движущемуся заряду в его присутствии. Чтобы узнать больше о том, как эта сила применяется к движущемуся заряду, посетите сайт Hyperphysics.

  • Силовые линии магнитного поля
  • Рис. 2: Силовые линии магнитного поля от взаимодействия магнитных полей между севером и югом. [3]

  • Рис. 3. Силовые линии магнитного поля от отталкивающего магнитного взаимодействия (Север-Север или Юг-Юг) [4]

Магнитное поле Земли

У Земли есть собственное магнитное поле, которое первоначально предполагалось из-за состава железа в ядре, но теперь предполагается, что оно создается циркулирующими электрическими токами в жидком ядре. [5] Магнитное поле Земли защищает жизнь от вредных солнечных ветров с Солнца, заряженные частицы которого в противном случае разрушили бы озоновый слой, защищающий Землю от вредного ультрафиолетового излучения (показано на Рисунке 4). [6] Взаимодействие магнитного поля Земли и солнечного ветра вызывает хорошо известные явления полярных сияний, показанные на рисунке 5.

  • Магнитное поле Земли и солнечный ветер
  • Рисунок 4: Магнитное поле Земли защищает планету от резких солнечных ветров. [7] Обратите внимание, что расстояние от Земли до Солнца на этом изображении не в масштабе, Земля находится намного дальше от Солнца, чем следует из этого изображения.

  • Рис. 5: Северное сияние, продукт взаимодействия магнитного поля Земли и солнечного ветра. [8]

Конвенция Земли об именах полюсов

Хотя логично предположить, что Северный и Южный полюсы на Земле представляют собой Северный и Южный полюсы очень большого стержневого магнита, это не так.Северный полюс — это направление, на которое указывает северный конец компаса. То, что люди на Земле обычно называют Северным полюсом в географическом смысле, на самом деле является южным магнитным полюсом, и наоборот. Это означает, что если стрелка компаса указывает на географический Северный полюс Земли, стрелка компаса совмещена с южным магнитным полюсом. [9] [10]

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

  1. ↑ Wikimedia Commons [Online], Доступно: http: // upload.wikimedia.org/wikipedia/commons/5/57/Magnet0873.png
  2. ↑ Hyperphysics, Magnetic Field [Online], Доступно: http://hyperphysics.phy-astr.gsu.edu/hbase/mintage/magfie.html
  3. ↑ Wikimedia Commons [Online], доступно: http://upload.wikimedia.org/wikipedia/commons/f/fb/Magnets_field_of_bar_magnets_attracting.png
  4. ↑ http://upload.wikimedia.org/wikipedia/commons/1/14/Magnets_field_of_bar_magnets_repelling.png
  5. ↑ Hyperphysics, Magnetic Field of the Earth [Online], Доступно: http: // hyperphysics.phy-astr.gsu.edu/hbase/mintage/magearth.html
  6. ↑ природа, Солнечный ветер ударяет по озоновому слою [Онлайн], Доступно: http://www.nature.com/news/2005/050228/full/news050228-12.html
  7. ↑ NASA Sun Earth на Flickr [Online], доступно: https://www.flickr.com/photos/gsfc/4445502419/
  8. ↑ Wikimedia Commons [Online], доступно: http://commons. wikimedia.org/wiki/File:The_Aurora_Borealis_or_Nintage_Lights_shine_above_Bear_Lake_in_Alaska_050910-F-MS415-009.jpg
  9. ↑ Hyperphysics, Magnets and Electromagnets [Online], Доступно: http: // hyperphysics.phy-astr.gsu.edu/hbase/mintage/elemag.html
  10. ↑ R. Serway и C. Vuille, «Magnets» в Essentials of College Physics [Online], Доступно: http://books.google.ca/books?id=8n4NCyRgUMEC&pg=PA493&redir_esc=y#v=onepage&q&f= ложный

11.2 Магнитные поля и линии — Университетская физика, Том 2

Задачи обучения

К концу этого раздела вы сможете:

  • Определите магнитное поле на основе движущегося заряда, на который действует сила
  • Примените правило правой руки для определения направления магнитной силы на основе движения заряда в магнитном поле
  • Нарисуйте линии магнитного поля, чтобы понять, в какую сторону направлено магнитное поле и насколько оно сильно в определенной области космоса

Мы обрисовали в общих чертах свойства магнитов, описали их поведение и перечислили некоторые области применения магнитных свойств. Несмотря на то, что не существует таких вещей, как изолированные магнитные заряды, мы все же можем определить притяжение и отталкивание магнитов как основанное на поле. В этом разделе мы определяем магнитное поле, определяем его направление на основе правила правой руки и обсуждаем, как рисовать силовые линии магнитного поля.

Определение магнитного поля

Магнитное поле определяется силой, которую испытывает заряженная частица, движущаяся в этом поле, после того, как мы учтем гравитационные и любые дополнительные электрические силы, возможные на заряд.Величина этой силы пропорциональна величине заряда q , скорости заряженной частицы v и величине приложенного магнитного поля. Направление этой силы перпендикулярно как направлению движущейся заряженной частицы, так и направлению приложенного магнитного поля. Основываясь на этих наблюдениях, мы определяем напряженность магнитного поля B на основе магнитной силы F → F → на заряде q , движущемся со скоростью v → v → как векторное произведение скорости и магнитного поля, т. Е.

F → = qv → × B →.F → = qv → × B →.

11,1

Фактически, именно так мы определяем магнитное поле B → B → — в терминах силы, действующей на заряженную частицу, движущуюся в магнитном поле. Величина силы определяется из определения перекрестного произведения, поскольку оно относится к величине каждого из векторов. Другими словами, величина силы удовлетворяет

, где θ — угол между скоростью и магнитным полем.

Единица СИ для напряженности магнитного поля B называется тесла (Тл) в честь эксцентричного, но блестящего изобретателя Николы Тесла (1856–1943), где

Иногда используется меньшая единица измерения, называемая гауссом (G), где 1G = 10−4T, 1G = 10−4T.Самые сильные постоянные магниты имеют поля около 2 Тл; сверхпроводящие электромагниты могут достигать 10 Тл или более. Магнитное поле Земли на ее поверхности составляет всего около 5 × 10–5 Тл, 5 × 10–5 Тл или 0,5 Гс.

Стратегия решения проблем

Направление магнитного поля по правилу правой руки

Направление магнитной силы F → F → перпендикулярно плоскости, образованной v → v → и B →, B →, как определено по правому правилу-1 (или RHR-1), которое проиллюстрировано на рисунке 11. 4.

  1. Сориентируйте правую руку так, чтобы пальцы сгибались в плоскости, определяемой векторами скорости и магнитного поля.
  2. Правой рукой проведите пальцами от скорости к магнитному полю под наименьшим возможным углом.
  3. Магнитная сила направлена ​​туда, куда указывает ваш большой палец.
  4. Если заряд был отрицательным, измените направление, определенное этими шагами.
Рисунок 11.4 Магнитные поля действуют на движущиеся заряды. Направление магнитной силы на движущийся заряд перпендикулярно плоскости, образованной v → v → и B → B →, и следует правилу правой руки-1 (RHR-1), как показано.Величина силы пропорциональна q, v, B, q, v, B и синусу угла между v → v → и B → .B →.

На статические заряды не действует магнитная сила. Однако на заряды, движущиеся под углом к ​​магнитному полю, действует магнитная сила. Когда заряды неподвижны, их электрические поля не влияют на магниты. Однако, когда заряды движутся, они создают магнитные поля, которые действуют на другие магниты. Когда есть относительное движение, возникает связь между электрическими и магнитными силами — одна влияет на другую.

Пример 11.1

Альфа-частица, движущаяся в магнитном поле
Альфа-частица (q = 3,2 · 10−19C) (q = 3,2 · 10−19C) движется через однородное магнитное поле величиной 1,5 Тл. Поле прямо параллельно положительной оси z прямоугольника. система координат рисунка 11.5. Какова магнитная сила на альфа-частицу, когда она движется (а) в положительном направлении x со скоростью 5,0 × 104 м / с? 5,0 × 104 м / с? (б) в отрицательном направлении y со скоростью 5.) × 104 м / с?

Рис. 11.5 Магнитные силы на альфа-частицу, движущуюся в однородном магнитном поле. Поле на каждом рисунке одинаковое, но скорость разная.

Стратегия
Нам дан заряд, его скорость, сила и направление магнитного поля. Таким образом, мы можем использовать уравнение F → = qv → × B → F → = qv → × B → или F = qvBsinθF = qvBsinθ для вычисления силы. Направление силы определяется RHR-1.
Решение
  1. Во-первых, чтобы определить направление, начните с того, что пальцы будут указывать в положительном направлении x ..
  2. Во-первых, чтобы определить направленность, начните с того, что пальцы будут указывать в отрицательном направлении y . Проведите пальцами вверх в направлении магнитного поля, как в предыдущей задаче. Ваш большой палец должен быть открыт в отрицательном направлении x . Это должно соответствовать математическому ответу. Чтобы вычислить силу, мы используем заданный заряд, скорость и магнитное поле, а также определение магнитной силы в форме перекрестного произведения, чтобы вычислить: F → = qv → × B → = (3.. Альтернативный подход — использовать уравнение 11.2 для определения величины силы. Это применимо к обеим частям (а) и (б). Поскольку скорость перпендикулярна магнитному полю, угол между ними составляет 90 градусов. Следовательно, величина силы равна: F = qvBsinθ = (3,2 · 10−19C) (5,0 · 104 м / с) (1,5T) sin (90 °) = 2,4 · 10−14N. F = qvBsinθ = (3,2 · 10−19C) (5,0 · 104 м / s) (1,5T) sin (90 °) = 2,4 × 10−14N.
  3. Поскольку скорость и магнитное поле параллельны друг другу, нет никакой ориентации вашей руки, которая приведет к направлению силы.Следовательно, сила, действующая на этот движущийся заряд, равна нулю. Это подтверждается перекрестным произведением. Когда вы пересекаете два вектора, указывающих в одном направлении, результат равен нулю.
  4. Во-первых, чтобы определить направление, ваши пальцы могут указывать в любом направлении; однако вы должны поднять пальцы вверх в направлении магнитного поля. Вращая руку, обратите внимание, что большой палец может указывать в любом направлении x или y , но не в направлении z .) × 10−15N. Это решение можно переписать с точки зрения величины и угла в плоскости xy : | F → | = Fx2 + Fy2 = (- 14,4) 2 + (- 9,6) 2 × 10−15N = 1,7 × 10−14Nθ = tan − 1 (FyFx) = tan − 1 (−9,6 × 10−15N − 14,4 × 10−15N) = 34 °. | F → | = Fx2 + Fy2 = (- 14,4) 2 + (- 9,6) 2 × 10−15N = 1,7 × 10−14Nθ = tan − 1 (FyFx) = tan − 1 (−9,6 × 10−15N − 14,4 × 10−15N) = 34 °. Величину силы также можно рассчитать с помощью уравнения 11.2. Однако скорость в этом вопросе состоит из трех компонентов. Компонентой скорости z можно пренебречь, потому что она параллельна магнитному полю и, следовательно, не создает силы.Величина скорости вычисляется из компонентов x и y . Угол между скоростью в плоскости xy и магнитным полем в плоскости z составляет 90 градусов. Следовательно, сила рассчитывается следующим образом: | v → | = (2) 2 + (- 3) 2 × 104 мс = 3,6 × 104 мсF = qvBsinθ = (3,2 × 10−19C) (3,6 × 104 м / с) (1,5T) sin (90 °) = 1,7 × 10−14N. | V → | = (2) 2 + (- 3) 2 × 104 мс = 3,6 × 104 мсF = qvBsinθ = (3,2 × 10−19C) (3,6 × 104 м / с) (1,5T) sin (90 ° ) = 1,7 × 10−14Н. Это та же величина силы, рассчитанная с помощью единичных векторов.
Значение
Перекрестное произведение в этой формуле дает третий вектор, который должен быть перпендикулярен двум другим. Другие физические величины, такие как угловой момент, также имеют три вектора, которые связаны перекрестным произведением. Обратите внимание, что типичные значения силы в задачах магнитной силы намного больше, чем сила тяжести. Следовательно, для изолированного заряда магнитная сила является доминирующей силой, управляющей движением заряда.

Проверьте свое понимание 11.1

Повторите предыдущую задачу с магнитным полем в направлении x , а не в направлении z . Проверьте свои ответы с помощью RHR-1.

Представление магнитных полей

Представление магнитных полей в виде силовых линий очень полезно для визуализации силы и направления магнитного поля. Как показано на рисунке 11. 6, каждая из этих линий образует замкнутый цикл, даже если это не показано ограничениями пространства, доступного для рисунка.Силовые линии выходят из северного полюса (N), огибают южный полюс (S) и проходят через стержневой магнит обратно к северному полюсу.

У линий магнитного поля есть несколько жестких правил:

  1. Направление магнитного поля касается силовой линии в любой точке пространства. Маленький компас укажет направление линии поля.
  2. Сила поля пропорциональна близости линий. Он точно пропорционален количеству линий на единицу площади, перпендикулярной линиям (так называемая поверхностная плотность).
  3. Силовые линии магнитного поля никогда не могут пересекаться, а это означает, что поле уникально в любой точке пространства.
  4. Линии магнитного поля непрерывны, образуют замкнутые контуры без начала и конца. Они направлены от северного полюса к южному.

Последнее свойство связано с тем, что северный и южный полюса не могут быть разделены. Это явное отличие от силовых линий электрического поля, которые обычно начинаются с положительных зарядов и заканчиваются отрицательными зарядами или на бесконечности.Если бы изолированные магнитные заряды (называемые магнитными монополями) существовали, то силовые линии магнитного поля начинались бы и заканчивались на них.

Рис. 11.6. Линии магнитного поля определяют направление, в котором указывает маленький компас, когда его помещают в определенное место в поле. Сила поля пропорциональна близости (или плотности) линий. Если бы можно было исследовать внутреннюю часть магнита, было бы обнаружено, что силовые линии образуют непрерывные замкнутые контуры. Чтобы уместиться в разумном пространстве, некоторые из этих рисунков могут не показывать замыкание петель; однако, если бы было предоставлено достаточно места, петли были бы закрыты.

Что такое магнитное поле? — Видео и стенограмма урока

Обнаружение магнитного поля с помощью компаса

Распространенное заблуждение, что компас — это просто инструмент, показывающий вам направление, в котором вы движетесь. Компас — это действительно датчик направления магнитного поля. Разве это не звучит необычно? Путаница возникает из-за того, что мы почти всегда используем компас для определения направления магнитного поля Земли, чтобы узнать, в каком направлении мы движемся по поверхности Земли.Хотя это отличное практическое применение для компаса, мы собираемся провести гипотетический эксперимент, используя компас, чтобы изобразить силовые линии магнитного поля гигантского стержневого магнита.

Термин « магнитное поле » в основном относится к пространству вокруг магнита, где другие магниты будут испытывать силу. Проблема в том, что мы не можем обнаружить магнитное поле нашими собственными чувствами, поэтому нам нужно использовать компас, чтобы помочь нам «увидеть» поле. Компас — это не что иное, как крошечный магнит, подвешенный так, что он может свободно вращаться в ответ на магнитное поле.Как и все магниты, у иглы есть северный и южный полюсы, которые притягиваются и отталкиваются полюсами других магнитов. Когда компас находится в сильном магнитном поле, силы притяжения и отталкивания поворачивают стрелку до тех пор, пока она не будет точно совмещена с направлением поля.

В магнитном поле стрелка компаса будет двигаться параллельно направлению поля.

Для нашего эксперимента мы представим, что у нас есть стержневой магнит размером с школьный автобус, стоящий на большом открытом пространстве.Это должно помочь вам визуализировать ходьбу вокруг магнита и убедить вас в том, что мы имеем дело с очень сильным магнитным полем! С компасом в руке мы начнем с северного полюса и проследим за ориентацией стрелки. Мы бы увидели, что игла направлена ​​прямо от магнита. Если бы мы начали идти в том направлении, в котором указывала стрелка, мы бы обнаружили, что по мере удаления от столба игла начала поворачиваться в сторону. Продолжая следовать за стрелкой, мы в конечном итоге обойдем магнит и придем к южному полюсу. Здесь игла должна указывать прямо на магнит. Нарисовав путь, по которому мы прошли, мы получили бы схему, которая выглядела примерно так:

Схема одиночной линии поля

Если мы повторим этот эксперимент еще несколько раз, но начиная с немного других мест, наша диаграмма в конечном итоге будет выглядеть так:

Расстояние между силовыми линиями зависит от силы магнитного поля.

Каждая из линий называется линией поля , и она показывает направление магнитного поля в различных местах вокруг магнита. Эта диаграмма говорит нам о нескольких вещах. Во-первых, это показывает нам, что направление магнитного поля всегда считается исходящим от северного полюса и переходящим в южный полюс. На самом деле это просто соглашение, но оно соблюдается повсеместно. Второе, на что следует обратить внимание, это то, что расстояние между линиями указывает на силу магнитного поля. Мы можем видеть, что силовые линии наиболее близко расположены около полюсов магнита (где поле наиболее сильное) и расходятся дальше по мере удаления от полюсов. Если вы когда-нибудь играли с магнитами, вы, вероятно, чувствовали, насколько изменяется сила между двумя магнитами, когда полюса становятся все ближе и ближе друг к другу.

магнетизм | Национальное географическое общество

Магнетизм — это сила, проявляемая магнитами, когда они притягиваются или отталкиваются друг от друга. Магнетизм вызывается движением электрических зарядов.

Каждое вещество состоит из крошечных единиц, называемых атомами. В каждом атоме есть электроны, частицы, несущие электрические заряды. Вращаясь, как волчки, электроны вращаются вокруг ядра или остова атома. Их движение генерирует электрический ток и заставляет каждый электрон действовать как микроскопический магнит.

В большинстве веществ одинаковое количество электронов вращается в противоположных направлениях, что нейтрализует их магнетизм. Вот почему такие материалы, как ткань или бумага, считаются слабомагнитными.В таких веществах, как железо, кобальт и никель, большинство электронов вращаются в одном направлении. Это делает атомы в этих веществах сильно магнитными, но они еще не магниты.

Чтобы стать намагниченным, другое сильно магнитное вещество должно войти в магнитное поле существующего магнита. Магнитное поле — это область вокруг магнита, обладающая магнитной силой.

Все магниты имеют северный и южный полюса. Противоположные полюса притягиваются друг к другу, а одни и те же полюса отталкиваются.Когда вы протираете кусок железа по магниту, северные полюса атомов в железе выстраиваются в одном направлении. Сила, создаваемая выровненными атомами, создает магнитное поле. Железка стала магнитом.

Некоторые вещества могут намагничиваться электрическим током. Когда электричество проходит через катушку с проволокой, создается магнитное поле. Однако поле вокруг катушки исчезнет, ​​как только отключится электрический ток.

Геомагнитные полюса

Земля — ​​это магнит.Ученые не до конца понимают, почему, но они думают, что движение расплавленного металла во внешнем ядре Земли порождает электрические токи. Токи создают магнитное поле с невидимыми силовыми линиями, протекающими между магнитными полюсами Земли.

Геомагнитные полюса не совпадают с Северным и Южным полюсами. Магнитные полюса Земли часто перемещаются из-за активности далеко под поверхностью Земли. Смещение геомагнитных полюсов фиксируется в породах, которые образуются, когда расплавленный материал, называемый магмой, проникает сквозь земную кору и изливается в виде лавы.Когда лава остывает и превращается в твердую породу, сильно магнитные частицы внутри породы намагничиваются магнитным полем Земли. Частицы выстраиваются вдоль силовых линий в поле Земли. Таким образом, камни фиксируют положение геомагнитных полюсов Земли в то время.

Как ни странно, магнитные записи пород, образовавшихся в одно и то же время, похоже, указывают на разные местоположения полюсов. Согласно теории тектоники плит, скальные плиты, составляющие твердую оболочку Земли, постоянно перемещаются.Таким образом, плиты, на которых застывала порода, переместились с тех пор, как породы зафиксировали положение геомагнитных полюсов. Эти магнитные записи также показывают, что геомагнитные полюса менялись на противоположный вид — сотни раз с момента образования Земли.

Магнитное поле Земли не движется быстро и часто не меняется. Следовательно, это может быть полезным инструментом, помогающим людям сориентироваться. Сотни лет люди использовали магнитные компасы для навигации по магнитному полю Земли.Магнитная стрелка компаса совпадает с магнитными полюсами Земли. Северный конец магнита указывает на северный магнитный полюс.

Магнитное поле Земли доминирует в области, называемой магнитосферой, которая охватывает планету и ее атмосферу. Солнечный ветер, заряженные частицы от Солнца, прижимает магнитосферу к Земле со стороны, обращенной к Солнцу, и растягивает ее в форме капли на теневой стороне.

Магнитосфера защищает Землю от большинства частиц, но некоторые из них просачиваются сквозь нее и попадают в ловушку.Когда частицы солнечного ветра сталкиваются с атомами газа в верхних слоях атмосферы вокруг геомагнитных полюсов, они создают световые эффекты, называемые полярными сияниями. Эти полярные сияния появляются над такими местами, как Аляска, Канада и Скандинавия, где их иногда называют «Северным сиянием». «Южное сияние» можно увидеть в Антарктиде и Новой Зеландии.

Магнитное поле Земли

Магнитосфера защищает поверхность Земли от заряженных частиц солнечного ветра и генерируется электрическими токами, расположенными во многих различных частях Земли.Он сжимается на дневной (солнечной) стороне за счет силы приходящих частиц и расширяется на ночной стороне. (Изображение не в масштабе.) Разница между магнитным севером и «истинным» севером.

Магнитное поле Земли (и поверхностное магнитное поле ) приблизительно представляет собой магнитный диполь с S-полюсом магнитного поля около географического северного полюса Земли (см. Северный магнитный полюс) и другим северным полюсом магнитного поля рядом с географическим географическим полюсом Земли. южный полюс (см. Южный магнитный полюс).Благодаря этому компас можно использовать для навигации. Причину возникновения поля можно объяснить теорией динамо. Магнитное поле распространяется бесконечно, но ослабевает по мере удаления от источника. Магнитное поле Земли, также называемое геомагнитным полем , которое эффективно распространяется на несколько десятков тысяч километров в космос, формирует магнитосферу Земли. Палеомагнитное исследование австралийского красного дацита и подушечного базальта оценило возраст магнитного поля как минимум 3,5 миллиарда лет. [1] [2]

Предметное значение

Моделирование взаимодействия между магнитным полем Земли и межпланетным магнитным полем.

Земля в значительной степени защищена от солнечного ветра, потока энергичных заряженных частиц, исходящих от Солнца, своим магнитным полем, которое отклоняет большинство заряженных частиц. Некоторые из заряженных частиц солнечного ветра захвачены в радиационном поясе Ван Аллена.Меньшему количеству частиц солнечного ветра удается перемещаться, как по линии передачи электромагнитной энергии, в верхние слои атмосферы и ионосферу Земли в зонах полярных сияний. Единственный раз, когда солнечный ветер наблюдается на Земле, — это когда он достаточно силен, чтобы вызывать такие явления, как полярное сияние и геомагнитные бури. Яркие полярные сияния сильно нагревают ионосферу, заставляя ее плазму расширяться в магнитосферу, увеличивая размер плазменной геосферы и вызывая утечку атмосферного вещества в солнечный ветер.Геомагнитные бури возникают, когда давление плазмы, содержащейся внутри магнитосферы, достаточно велико, чтобы раздуваться и тем самым искажать геомагнитное поле.

Солнечный ветер отвечает за общую форму магнитосферы Земли, и колебания ее скорости, плотности, направления и увлекаемого магнитного поля сильно влияют на локальную космическую среду Земли. Например, уровни ионизирующего излучения и радиопомех могут варьироваться от сотен до тысяч раз; а форма и расположение магнитопаузы и головной ударной волны перед ней могут изменяться на несколько радиусов Земли, подвергая геосинхронные спутники прямому солнечному ветру.Эти явления собирательно называются космической погодой. Механизм атмосферного разрыва вызван захватом газа пузырьками магнитного поля, которые срываются солнечными ветрами. [3] Изменения напряженности магнитного поля коррелировали с изменением количества осадков в тропиках. [4]

Магнитные полюса и магнитный диполь

Основные статьи: Северный магнитный полюс и Южный магнитный полюс Магнитное склонение от истинного севера в 1700

Положение магнитных полюсов можно определить как минимум двумя способами [5] .

Часто магнитный (наклонный) полюс рассматривается как точка на поверхности Земли, где магнитное поле полностью вертикально. Другими словами, угол наклона поля Земли составляет 90 ° на северном магнитном полюсе и -90 ° на южном магнитном полюсе. На магнитном полюсе компас, удерживаемый в горизонтальной плоскости, указывает случайным образом, в то время как в противном случае он указывает почти на северный магнитный полюс или от Южного магнитного полюса, хотя существуют местные отклонения. Два полюса перемещаются независимо друг от друга и не находятся в прямо противоположных положениях на земном шаре.Магнитный полюс падения может быстро перемещаться, для Северного магнитного полюса [6] проводились наблюдения до 40 км в год.

Магнитное поле Земли можно точно описать полем магнитного диполя, расположенного рядом с центром Земли. Ориентация диполя определяется осью. Два положения, где ось диполя, которая лучше всего соответствует геомагнитному полю, пересекает поверхность Земли, называются Северным и Южным геомагнитными полюсами. Для наилучшего соответствия диполь, представляющий геомагнитное поле, должен быть размещен примерно в 500 км от центра Земли.Это заставляет внутренний радиационный пояс опускаться ниже в южной части Атлантического океана, где поверхностное поле является самым слабым, создавая то, что называется южноатлантической аномалией.

Если бы магнитное поле Земли было идеально дипольным, геомагнитный и магнитный полюса падения совпадали. Однако важные недиполярные члены в точном описании геомагнитного поля приводят к тому, что положения двух типов полюсов находятся в разных местах.

Характеристики поля

Напряженность поля у поверхности Земли составляет менее 30 микротесла (0.3 гаусса) на территории, включающей большую часть Южной Америки и Южной Африки, до более чем 60 микротеслов (0,6 гаусса) вокруг магнитных полюсов в северной Канаде и на юге Австралии, а также в части Сибири. Средняя напряженность магнитного поля во внешнем ядре Земли составила 25 Гаусс, что в 50 раз сильнее, чем магнитное поле на поверхности. [9] [10]

Поле аналогично полю стержневого магнита. Магнитное поле Земли в основном вызвано электрическими токами в жидком внешнем ядре.Ядро Земли горячее, чем 1043 К, температура точки Кюри, выше которой ориентация спинов в железе становится случайной. Такая рандомизация приводит к потере намагниченности вещества.

Конвекция расплавленного железа во внешнем жидком ядре, наряду с эффектом Кориолиса, вызванным общим вращением планеты, имеет тенденцию организовывать эти «электрические токи» в валки, выровненные вдоль полярной оси север-юг. Когда проводящая жидкость течет через существующее магнитное поле, индуцируются электрические токи, которые, в свою очередь, создают другое магнитное поле.Когда это магнитное поле усиливает исходное магнитное поле, создается динамо-машина, которая поддерживает себя. Это называется теорией динамо, и она объясняет, как поддерживается магнитное поле Земли.

Еще одна особенность, которая магнитно отличает Землю от стержневого магнита, — это ее магнитосфера. На больших расстояниях от планеты преобладает поверхностное магнитное поле. Электрические токи, индуцированные в ионосфере, также создают магнитные поля. Такое поле всегда создается вблизи того места, где атмосфера находится ближе всего к Солнцу, вызывая ежедневные изменения, которые могут отклонять поверхностные магнитные поля на величину до одного градуса. Типичные ежедневные изменения напряженности поля составляют около 25 нанотесла (нТл) (т.е. ~ 1: 2 000), с вариациями в течение нескольких секунд, как правило, около 1 нТл (т.е. ~ 1: 50 000). [11]

Вариации магнитного поля

Геомагнитные вариации с момента последнего обращения.

Токи в ядре Земли, создающие ее магнитное поле, возникли по крайней мере 3 450 миллионов лет назад. [12] [13]

Магнитометры обнаруживают мельчайшие отклонения в магнитном поле Земли, вызванные железными артефактами, печами, некоторыми типами каменных построек и даже канавами и мусором в археологической геофизике.С помощью магнитных инструментов, адаптированных на основе бортовых детекторов магнитных аномалий, разработанных во время Второй мировой войны для обнаружения подводных лодок, были нанесены на карту магнитные вариации на дне океана. Базальт — богатая железом вулканическая порода, составляющая дно океана — содержит сильно магнитный минерал (магнетит) и может локально искажать показания компаса. Искажение было признано исландскими мореплавателями еще в конце 18 века. Что еще более важно, поскольку присутствие магнетита придает базальту измеримые магнитные свойства, эти магнитные вариации предоставили еще один способ изучения глубоководного дна океана.Когда вновь образованная порода охлаждается, такие магнитные материалы регистрируют магнитное поле Земли.

Часто магнитосфера Земли поражается солнечными вспышками, вызывающими геомагнитные бури, вызывающие проявления полярных сияний. Кратковременная нестабильность магнитного поля измеряется с помощью K-индекса.

Недавно в магнитном поле были обнаружены утечки, которые взаимодействуют с солнечным ветром Солнца способом, противоположным первоначальной гипотезе. Во время солнечных бурь это может привести к крупномасштабным отключениям электроэнергии и сбоям в работе искусственных спутников. [14]

См. Также Магнитная аномалия

Инверсия магнитного поля

Основная статья: Геомагнитная инверсия

На основе изучения лавовых потоков базальта во всем мире было предложено, что магнитное поле Земли меняет направление на противоположное. с интервалами от десятков тысяч до многих миллионов лет, со средним интервалом примерно 300 000 лет. [15] Однако последнее подобное событие, названное инверсией Брюнес – Матуяма, произошло примерно 780 000 лет назад.

Нет четкой теории относительно того, как могли произойти геомагнитные инверсии. Некоторые ученые создали модели ядра Земли, в которых магнитное поле лишь квазистабильно, а полюса могут самопроизвольно перемещаться из одной ориентации в другую в течение от нескольких сотен до нескольких тысяч лет. Другие ученые предполагают, что геодинамо сначала отключается самопроизвольно или из-за какого-то внешнего воздействия, такого как удар кометы, а затем перезапускается, когда магнитный «северный» полюс указывает либо на север, либо на юг.Внешние события вряд ли будут обычными причинами инверсий магнитного поля из-за отсутствия корреляции между возрастом ударных кратеров и временем инверсий. Независимо от причины, когда магнитный полюс переключается из одного полушария в другое, это называется инверсией, тогда как временные изменения наклона диполя, которые перемещают ось диполя через экватор, а затем возвращаются к исходной полярности, известны как отклонения.

Исследования потоков лавы на горе Стинс, штат Орегон, показывают, что магнитное поле могло смещаться со скоростью до 6 градусов в день в какой-то момент истории Земли, что значительно бросает вызов популярному пониманию того, как работает магнитное поле Земли. . [16]

Палеомагнитные исследования, подобные этим, обычно состоят из измерений остаточной намагниченности магматической породы в результате вулканических событий. Осадки, отложенные на дне океана, ориентируются в соответствии с местным магнитным полем, сигнал, который может быть записан по мере их затвердевания. Хотя залежи магматических пород в основном парамагнитны, они действительно содержат следы ферри- и антиферромагнитных материалов в виде оксидов железа, что дает им способность обладать остаточной намагниченностью.Фактически, эта характеристика довольно часто встречается во многих других типах горных пород и отложений, обнаруженных по всему миру. Одним из наиболее распространенных оксидов, обнаруживаемых в естественных отложениях горных пород, является магнетит.

В качестве примера того, как это свойство магматических пород позволяет нам определить, что поле Земли в прошлом менялось, рассмотрим измерения магнетизма на океанских хребтах. Прежде чем магма выйдет из мантии через трещину, она имеет чрезвычайно высокую температуру, превышающую температуру Кюри любого оксида железа, который она может содержать.Лава начинает охлаждаться и затвердевать, когда попадает в океан, позволяя этим оксидам железа в конечном итоге восстановить свои магнитные свойства, в частности, способность удерживать остаточную намагниченность. Если предположить, что единственное магнитное поле, присутствующее в этих местах, связано с самой Землей, эта затвердевшая порода становится намагниченной в направлении геомагнитного поля. Хотя напряженность поля довольно мала, а содержание железа в типичных образцах горных пород невелико, относительно небольшая остаточная намагниченность образцов находится в пределах разрешающей способности современных магнитометров.Затем можно измерить возраст и намагниченность застывших образцов лавы, чтобы определить ориентацию геомагнитного поля в древние эпохи.

Обнаружение магнитного поля

Отклонения модели магнитного поля от данных измерений, данных, созданных спутниками с чувствительными магнитометрами

Напряженность магнитного поля Земли была измерена Карлом Фридрихом Гауссом в 1835 году и с тех пор неоднократно измерялась, показывая относительное уменьшение около 10% за последние 150 лет. [17] Спутник Magsat и более поздние спутники использовали 3-осевые векторные магнитометры для исследования трехмерной структуры магнитного поля Земли. Более поздний спутник Эрстеда позволил провести сравнение, показывающее динамическое геодинамо в действии, которое, по-видимому, порождает альтернативный полюс под Атлантическим океаном к западу от Южной Африки. [18]

Правительства иногда используют подразделения, специализирующиеся на измерении магнитного поля Земли. Это геомагнитные обсерватории, обычно входящие в состав национальной геологической службы, например, обсерватория Эскдалемуир Британской геологической службы. Такие обсерватории могут измерять и прогнозировать магнитные условия, которые иногда влияют на связь, электроэнергию и другую деятельность человека. (См. Магнитную бурю.)

Международная сеть магнитных обсерваторий в реальном времени с более чем 100 взаимосвязанными геомагнитными обсерваториями по всему миру с 1991 года регистрирует магнитное поле Земли.

Военные определяют местные характеристики геомагнитного поля по порядку. для обнаружения аномалий на естественном фоне, которые могут быть вызваны значительным металлическим объектом, например, затопленной подводной лодкой.Как правило, эти детекторы магнитных аномалий используются в самолетах, таких как британский Nimrod, или буксируются в качестве инструмента или набора инструментов с надводных кораблей.

В коммерческих целях геофизические разведочные компании также используют магнитные детекторы для выявления естественных аномалий рудных тел, таких как Курская магнитная аномалия.

Животные, включая птиц и черепах, могут обнаруживать магнитное поле Земли и использовать это поле для навигации во время миграции. [19] Коровы и дикие олени склонны выстраивать свои тела с севера на юг во время отдыха, но не тогда, когда животные находятся под высоковольтными линиями электропередач, что заставляет исследователей полагать, что причиной этого является магнетизм. Дайсон, П.Дж. (2009). «Биология: электрические коровы». Nature 458 (7237): 389. DOI: 10.1038 / 458389a. PMID 19325587.

Внешние ссылки


  • Уильям Дж. Брод, Будет ли компас указывать на юг? . New York Times, 13 июля 2004 г.
  • John Roach, Почему меняется магнитное поле Земли? . National Geographic, 27 сентября 2004 г.
  • Когда север идет на юг . Проекты в области научных вычислений, 1996.
  • Трехмерный имитатор заряженных частиц в магнитном поле Земли . Инструмент, предназначенный для трехмерного моделирования заряженных частиц в магнитосфере. [Требуется подключаемый модуль VRML]
  • Великий Магнит, Земля , История открытия магнитного поля Земли Дэвидом П.

0 comments on “Что представляет собой магнитное поле: Что такое магнитные поля? (статья)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *