Что представляет собой полупроводник: Полупроводник — это… Что такое Полупроводник?

Полупроводник — это… Что такое Полупроводник?

Монокристаллический кремний — полупроводниковый материал, наиболее широко используемый в промышленности на сегодняшний день

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.[1]

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.

). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.

Механизм электрической проводимости

Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10

−19 Дж против 11,2·10−19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10−19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Дырка

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов.

Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.

Обычно подвижность дырок в полупроводнике ниже подвижности электронов.

Энергетические зоны

Между зоной проводимости Еп и валентной зоной Ев расположена зона запрещённых значений энергии электронов Ез. Разность Еп−Ев равна ширине запрещенной зоны Ез. С ростом ширины Ез число электронно-дырочных пар и проводимость собственного полупроводника уменьшается, а удельное сопротивление возрастает.

Подвижность

Подвижность электронов (верхняя кривая) и дырок (нижняя кривая) в кремнии в зависимости от концентрации атомов примеси

Подвижностью называют коэффициент пропорциональности между дрейфовой скоростью носителей тока и величиной приложенного электрического поля

При этом, вообще говоря, подвижность является тензором:

Подвижность электронов и дырок зависит от их концентрации в полупроводнике (см. рисунок). При большой концентрации носителей заряда, вероятность столкновения между ними вырастает, что приводит к уменьшению подвижности и проводимости.

Размерность подвижности — м²/(В·с).

Собственная плотность

При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:

где:

 — Постоянная Планка
 — масса электрона
 — температура;
 — уровень проводимой зоны
— уровень Ферми;

Также, плотность дырок полупроводника связана с температурой следующим соотношением:

где:

 — Постоянная Планка;
 — масса дырки;
 — температура;
 — уровень Ферми;
 — уровень валентной зоны.

Собственная плотность связана с и следующим соотношением:

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

где  — удельное сопротивление,  — подвижность электронов,  — подвижность дырок,  — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)
Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

Дырочные полупроводники (р-типа)
Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

Использование в радиотехнике

Полупроводниковый диод

Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками.

Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

где  — термодинамическое напряжение,  — концентрация электронов,  — концентрация дырок,  — собственная концентрация[2].

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость).

Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.

Транзистор

Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.

Биполярный транзистор используют для усиления электрического тока.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:

  • одноэлементные полупроводники IV группы периодической системы элементов,
  • сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно.

Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.

ГруппаIIBIIIAIVAVAVIA
Период
25 B6 C7 N
313 Al14 Si15 P16 S
430 Zn31 Ga32 Ge33 As34 Se
548 Cd49 In50 Sn51 Sb52 Te
680 Hg

Физические свойства и применение

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).

Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.

Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).

В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро.

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.

Методы получения

Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где  — ширина запрещённой зоны,  — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где  — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.

Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.

Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Список полупроводников

Полупроводниковые соединения делят на несколько типов:

  • простые полупроводниковые материалы — собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
  • в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными, и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами, серу — сульфидами, теллур — теллуридами, углерод — карбидами. Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева, к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A — первый элемент, B — второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение AIIIBV

Широкое применние получили следующие соединения:

AIIIBV
  • InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
AIIBV
AIIBVI
  • ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
AIVBVI
  • PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe

а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (AIBIIIC2VI, AIBVC2VI, AIIBIVC2V, AIIB2IIC4VI, AIIBIVC3VI).

На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe)x(HgTe)1-x, (HgTe)x(HgSe)1-x, (PbTe)x(SnTe)1-x, (PbSe)x(SnSe)1-x и других.

Соединения AIIIBV, в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах

Соединения AIIBV используют в качестве люминофоров видимой области, светодиодов, датчиков Холла, модуляторов.

Соединения AIIIBV, AIIBVI и AIVBVI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.

Окисные полупроводниковые соединения применяют для изготовления фотоэлементов, выпрямителей и сердечников высокочастотных индуктивностей.

Физические свойства соединений типа AIIIBV
ПараметрыAlSbGaSbInSbAlAsGaAsInAs
Температура плавления, К1333998798187315531218
Постоянная решётки, Å6,146,096,475,665,696,06
Ширина запрещённой зоны ΔE, эВ0,520,70,182,21,320,35
Диэлектрическая проницаемость ε8,414,015,9
Подвижность, см²/(В·с):
электронов50500060 00040003400[3]
дырок15010004000400460[3]
Показатель преломления света, n3,03,74,13,23,2
Линейный коэффициент теплового
расширения, K-1
6,9·10-65,5·10-65,7·10-65,3·10-6

Группа IV

  • собственные полупроводники
  • составной полупроводник

Группа III-V

  • 2-х компонентные полупроводники
    • Антимонид алюминия, AlSb
    • Арсенид алюминия, AlAs
    • Нитрид алюминия, AlN
    • Фосфид алюминия, AlP
    • Нитрид бора, BN
    • Фосфид бора, BP
    • Арсенид бора, BAs
    • Антимонид галлия, GaSb
    • Арсенид галлия, GaAs
    • Нитрид галлия, GaN
    • Фосфид галлия, GaP
    • Антимонид индия, InSb
    • Арсенид индия, InAs
    • Нитрид индия, InN
    • фосфид индия, InP
  • 3-х компонентные полупроводники
    • AlxGa1-xAs
    • InGaAs, InxGa1-xAs
    • InGaP
    • AlInAs
    • AlInSb
    • GaAsN
    • GaAsP
    • AlGaN
    • AlGaP
    • InGaN
    • InAsSb
    • InGaSb
  • 4-х компонентные полупроводники
    • AlGaInP, InAlGaP, InGaAlP, AlInGaP
    • AlGaAsP
    • InGaAsP
    • AlInAsP
    • AlGaAsN
    • InGaAsN
    • InAlAsN
    • GaAsSbN
  • 5-ти компонентные полупроводники

Группа II-VI

  • 2-х компонентные полупроводники
  • 3-х компонентные полупроводники
    • CdZnTe, CZT
    • HgCdTe
    • HgZnTe
    • HgZnSe

Группа I-VII

  • 2-х компонентные полупроводники

Группа IV-VI

  • 2-х компонентные полупроводники
  • 3-х компонентные полупроводники

Группа V-VI

  • 2-х компонентные полупроводники

Группа II—V

  • 2-х компонентные полупроводники

Другие

  • Разные оксиды

Органические полупроводники

Магнитные полупроводники

См.

также

Примечания

  1. Н. С. Зефиров (гл. ред.). Химическая энциклопедия. — Москва: Большая Российская Энциклопедия, 1995. — Т. 4. — С. 55. — 639 с. — 20 000 экз. — ISBN 5-85270-092-4
  2. Физические величины: справочник/ А. П. Бабичев Н. А. Бабушкина, А. М. Бартковский и др. под ред. И. С. Григорьева, Е. З. Мейлихова. — М.; Энергоатомиздат, 1991. — 1232 с — ISBN 5-283-04013-5
  3. 1 2 Индия арсенид // Химическая энциклопедия

Литература

  • Тауц Я. Фото- и термоэлектрические явления в полупроводниках. М.: Издательство иностранной литературы, 1962, 256 с.
  • Тауц Я. Оптические свойства полупроводников. М.: Мир, 1967, 74 с.

Ссылки

Полупроводник — это… Что такое Полупроводник?

Монокристаллический кремний — полупроводниковый материал, наиболее широко используемый в промышленности на сегодняшний день

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.[1]

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.

Механизм электрической проводимости

Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10−19 Дж против 11,2·10−19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10−19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Дырка

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.

Обычно подвижность дырок в полупроводнике ниже подвижности электронов.

Энергетические зоны

Между зоной проводимости Еп и валентной зоной Ев расположена зона запрещённых значений энергии электронов Ез. Разность Еп−Ев равна ширине запрещенной зоны Ез. С ростом ширины Ез число электронно-дырочных пар и проводимость собственного полупроводника уменьшается, а удельное сопротивление возрастает.

Подвижность

Подвижность электронов (верхняя кривая) и дырок (нижняя кривая) в кремнии в зависимости от концентрации атомов примеси

Подвижностью называют коэффициент пропорциональности между дрейфовой скоростью носителей тока и величиной приложенного электрического поля

При этом, вообще говоря, подвижность является тензором:

Подвижность электронов и дырок зависит от их концентрации в полупроводнике (см. рисунок). При большой концентрации носителей заряда, вероятность столкновения между ними вырастает, что приводит к уменьшению подвижности и проводимости.

Размерность подвижности — м²/(В·с).

Собственная плотность

При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:

где:

 — Постоянная Планка
 — масса электрона
 — температура;
 — уровень проводимой зоны
— уровень Ферми;

Также, плотность дырок полупроводника связана с температурой следующим соотношением:

где:

 — Постоянная Планка;
 — масса дырки;
 — температура;
 — уровень Ферми;
 — уровень валентной зоны.

Собственная плотность связана с и следующим соотношением:

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

где  — удельное сопротивление,  — подвижность электронов,  — подвижность дырок,  — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)
Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

Дырочные полупроводники (р-типа)
Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

Использование в радиотехнике

Полупроводниковый диод

Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

где  — термодинамическое напряжение,  — концентрация электронов,  — концентрация дырок,  — собственная концентрация[2].

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.

Транзистор

Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.

Биполярный транзистор используют для усиления электрического тока.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:

  • одноэлементные полупроводники IV группы периодической системы элементов,
  • сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно.

Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.

ГруппаIIBIIIAIVAVAVIA
Период
25 B6 C7 N
313 Al14 Si15 P16 S
430 Zn31 Ga32 Ge33 As34 Se
548 Cd49 In50 Sn51 Sb52 Te
680 Hg

Физические свойства и применение

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).

Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.

Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).

В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро.

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.

Методы получения

Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где  — ширина запрещённой зоны,  — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где  — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.

Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.

Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Список полупроводников

Полупроводниковые соединения делят на несколько типов:

  • простые полупроводниковые материалы — собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
  • в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными, и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами, серу — сульфидами, теллур — теллуридами, углерод — карбидами. Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева, к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A — первый элемент, B — второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение AIIIBV

Широкое применние получили следующие соединения:

AIIIBV
  • InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
AIIBV
AIIBVI
  • ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
AIVBVI
  • PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe

а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (AIBIIIC2VI, AIBVC2VI, AIIBIVC2V, AIIB2IIC4VI, AIIBIVC3VI).

На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe)x(HgTe)1-x, (HgTe)x(HgSe)1-x, (PbTe)x(SnTe)1-x, (PbSe)x(SnSe)1-x и других.

Соединения AIIIBV, в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах

Соединения AIIBV используют в качестве люминофоров видимой области, светодиодов, датчиков Холла, модуляторов.

Соединения AIIIBV, AIIBVI и AIVBVI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.

Окисные полупроводниковые соединения применяют для изготовления фотоэлементов, выпрямителей и сердечников высокочастотных индуктивностей.

Физические свойства соединений типа AIIIBV
ПараметрыAlSbGaSbInSbAlAsGaAsInAs
Температура плавления, К1333998798187315531218
Постоянная решётки, Å6,146,096,475,665,696,06
Ширина запрещённой зоны ΔE, эВ0,520,70,182,21,320,35
Диэлектрическая проницаемость ε8,414,015,9
Подвижность, см²/(В·с):
электронов50500060 00040003400[3]
дырок15010004000400460[3]
Показатель преломления света, n3,03,74,13,23,2
Линейный коэффициент теплового
расширения, K-1
6,9·10-65,5·10-65,7·10-65,3·10-6

Группа IV

  • собственные полупроводники
  • составной полупроводник

Группа III-V

  • 2-х компонентные полупроводники
    • Антимонид алюминия, AlSb
    • Арсенид алюминия, AlAs
    • Нитрид алюминия, AlN
    • Фосфид алюминия, AlP
    • Нитрид бора, BN
    • Фосфид бора, BP
    • Арсенид бора, BAs
    • Антимонид галлия, GaSb
    • Арсенид галлия, GaAs
    • Нитрид галлия, GaN
    • Фосфид галлия, GaP
    • Антимонид индия, InSb
    • Арсенид индия, InAs
    • Нитрид индия, InN
    • фосфид индия, InP
  • 3-х компонентные полупроводники
    • AlxGa1-xAs
    • InGaAs, InxGa1-xAs
    • InGaP
    • AlInAs
    • AlInSb
    • GaAsN
    • GaAsP
    • AlGaN
    • AlGaP
    • InGaN
    • InAsSb
    • InGaSb
  • 4-х компонентные полупроводники
    • AlGaInP, InAlGaP, InGaAlP, AlInGaP
    • AlGaAsP
    • InGaAsP
    • AlInAsP
    • AlGaAsN
    • InGaAsN
    • InAlAsN
    • GaAsSbN
  • 5-ти компонентные полупроводники

Группа II-VI

  • 2-х компонентные полупроводники
  • 3-х компонентные полупроводники
    • CdZnTe, CZT
    • HgCdTe
    • HgZnTe
    • HgZnSe

Группа I-VII

  • 2-х компонентные полупроводники

Группа IV-VI

  • 2-х компонентные полупроводники
  • 3-х компонентные полупроводники

Группа V-VI

  • 2-х компонентные полупроводники

Группа II—V

  • 2-х компонентные полупроводники

Другие

  • Разные оксиды

Органические полупроводники

Магнитные полупроводники

См.

также

Примечания

  1. Н. С. Зефиров (гл. ред.). Химическая энциклопедия. — Москва: Большая Российская Энциклопедия, 1995. — Т. 4. — С. 55. — 639 с. — 20 000 экз. — ISBN 5-85270-092-4
  2. Физические величины: справочник/ А. П. Бабичев Н. А. Бабушкина, А. М. Бартковский и др. под ред. И. С. Григорьева, Е. З. Мейлихова. — М.; Энергоатомиздат, 1991. — 1232 с — ISBN 5-283-04013-5
  3. 1 2 Индия арсенид // Химическая энциклопедия

Литература

  • Тауц Я. Фото- и термоэлектрические явления в полупроводниках. М.: Издательство иностранной литературы, 1962, 256 с.
  • Тауц Я. Оптические свойства полупроводников. М.: Мир, 1967, 74 с.

Ссылки

Полупроводник — это… Что такое Полупроводник?

Монокристаллический кремний — полупроводниковый материал, наиболее широко используемый в промышленности на сегодняшний день

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.[1]

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.

Механизм электрической проводимости

Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10−19 Дж против 11,2·10−19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10−19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Дырка

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.

Обычно подвижность дырок в полупроводнике ниже подвижности электронов.

Энергетические зоны

Между зоной проводимости Еп и валентной зоной Ев расположена зона запрещённых значений энергии электронов Ез. Разность Еп−Ев равна ширине запрещенной зоны Ез. С ростом ширины Ез число электронно-дырочных пар и проводимость собственного полупроводника уменьшается, а удельное сопротивление возрастает.

Подвижность

Подвижность электронов (верхняя кривая) и дырок (нижняя кривая) в кремнии в зависимости от концентрации атомов примеси

Подвижностью называют коэффициент пропорциональности между дрейфовой скоростью носителей тока и величиной приложенного электрического поля

При этом, вообще говоря, подвижность является тензором:

Подвижность электронов и дырок зависит от их концентрации в полупроводнике (см. рисунок). При большой концентрации носителей заряда, вероятность столкновения между ними вырастает, что приводит к уменьшению подвижности и проводимости.

Размерность подвижности — м²/(В·с).

Собственная плотность

При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:

где:

 — Постоянная Планка
 — масса электрона
 — температура;
 — уровень проводимой зоны
— уровень Ферми;

Также, плотность дырок полупроводника связана с температурой следующим соотношением:

где:

 — Постоянная Планка;
 — масса дырки;
 — температура;
 — уровень Ферми;
 — уровень валентной зоны.

Собственная плотность связана с и следующим соотношением:

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

где  — удельное сопротивление,  — подвижность электронов,  — подвижность дырок,  — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)
Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

Дырочные полупроводники (р-типа)
Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

Использование в радиотехнике

Полупроводниковый диод

Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

где  — термодинамическое напряжение,  — концентрация электронов,  — концентрация дырок,  — собственная концентрация[2].

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.

Транзистор

Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.

Биполярный транзистор используют для усиления электрического тока.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:

  • одноэлементные полупроводники IV группы периодической системы элементов,
  • сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно.

Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.

ГруппаIIBIIIAIVAVAVIA
Период
25 B6 C7 N
313 Al14 Si15 P16 S
430 Zn31 Ga32 Ge33 As34 Se
548 Cd49 In50 Sn51 Sb52 Te
680 Hg

Физические свойства и применение

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).

Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.

Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).

В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро.

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.

Методы получения

Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где  — ширина запрещённой зоны,  — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где  — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.

Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.

Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Список полупроводников

Полупроводниковые соединения делят на несколько типов:

  • простые полупроводниковые материалы — собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
  • в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными, и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами, серу — сульфидами, теллур — теллуридами, углерод — карбидами. Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева, к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A — первый элемент, B — второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение AIIIBV

Широкое применние получили следующие соединения:

AIIIBV
  • InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
AIIBV
AIIBVI
  • ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
AIVBVI
  • PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe

а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (AIBIIIC2VI, AIBVC2VI, AIIBIVC2V, AIIB2IIC4VI, AIIBIVC3VI).

На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe)x(HgTe)1-x, (HgTe)x(HgSe)1-x, (PbTe)x(SnTe)1-x, (PbSe)x(SnSe)1-x и других.

Соединения AIIIBV, в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах

Соединения AIIBV используют в качестве люминофоров видимой области, светодиодов, датчиков Холла, модуляторов.

Соединения AIIIBV, AIIBVI и AIVBVI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.

Окисные полупроводниковые соединения применяют для изготовления фотоэлементов, выпрямителей и сердечников высокочастотных индуктивностей.

Физические свойства соединений типа AIIIBV
ПараметрыAlSbGaSbInSbAlAsGaAsInAs
Температура плавления, К1333998798187315531218
Постоянная решётки, Å6,146,096,475,665,696,06
Ширина запрещённой зоны ΔE, эВ0,520,70,182,21,320,35
Диэлектрическая проницаемость ε8,414,015,9
Подвижность, см²/(В·с):
электронов50500060 00040003400[3]
дырок15010004000400460[3]
Показатель преломления света, n3,03,74,13,23,2
Линейный коэффициент теплового
расширения, K-1
6,9·10-65,5·10-65,7·10-65,3·10-6

Группа IV

  • собственные полупроводники
  • составной полупроводник

Группа III-V

  • 2-х компонентные полупроводники
    • Антимонид алюминия, AlSb
    • Арсенид алюминия, AlAs
    • Нитрид алюминия, AlN
    • Фосфид алюминия, AlP
    • Нитрид бора, BN
    • Фосфид бора, BP
    • Арсенид бора, BAs
    • Антимонид галлия, GaSb
    • Арсенид галлия, GaAs
    • Нитрид галлия, GaN
    • Фосфид галлия, GaP
    • Антимонид индия, InSb
    • Арсенид индия, InAs
    • Нитрид индия, InN
    • фосфид индия, InP
  • 3-х компонентные полупроводники
    • AlxGa1-xAs
    • InGaAs, InxGa1-xAs
    • InGaP
    • AlInAs
    • AlInSb
    • GaAsN
    • GaAsP
    • AlGaN
    • AlGaP
    • InGaN
    • InAsSb
    • InGaSb
  • 4-х компонентные полупроводники
    • AlGaInP, InAlGaP, InGaAlP, AlInGaP
    • AlGaAsP
    • InGaAsP
    • AlInAsP
    • AlGaAsN
    • InGaAsN
    • InAlAsN
    • GaAsSbN
  • 5-ти компонентные полупроводники

Группа II-VI

  • 2-х компонентные полупроводники
  • 3-х компонентные полупроводники
    • CdZnTe, CZT
    • HgCdTe
    • HgZnTe
    • HgZnSe

Группа I-VII

  • 2-х компонентные полупроводники

Группа IV-VI

  • 2-х компонентные полупроводники
  • 3-х компонентные полупроводники

Группа V-VI

  • 2-х компонентные полупроводники

Группа II—V

  • 2-х компонентные полупроводники

Другие

  • Разные оксиды

Органические полупроводники

Магнитные полупроводники

См.

также

Примечания

  1. Н. С. Зефиров (гл. ред.). Химическая энциклопедия. — Москва: Большая Российская Энциклопедия, 1995. — Т. 4. — С. 55. — 639 с. — 20 000 экз. — ISBN 5-85270-092-4
  2. Физические величины: справочник/ А. П. Бабичев Н. А. Бабушкина, А. М. Бартковский и др. под ред. И. С. Григорьева, Е. З. Мейлихова. — М.; Энергоатомиздат, 1991. — 1232 с — ISBN 5-283-04013-5
  3. 1 2 Индия арсенид // Химическая энциклопедия

Литература

  • Тауц Я. Фото- и термоэлектрические явления в полупроводниках. М.: Издательство иностранной литературы, 1962, 256 с.
  • Тауц Я. Оптические свойства полупроводников. М.: Мир, 1967, 74 с.

Ссылки

Полупроводник — это… Что такое Полупроводник?

Монокристаллический кремний — полупроводниковый материал, наиболее широко используемый в промышленности на сегодняшний день

Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектриками и отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры.[1]

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи температуры абсолютного нуля полупроводники имеют свойства диэлектриков.

Механизм электрической проводимости

Полупроводники характеризуются как свойствами проводников, так и диэлектриков. В полупроводниковых кристаллах атомы устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76·10−19 Дж против 11,2·10−19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4·10−19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5—2 эВ. Электронно-дырочный механизм проводимости проявляется у собственных (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Дырка

Во время разрыва связи между электроном и ядром появляется свободное место в электронной оболочке атома. Это обуславливает переход электрона с другого атома на атом со свободным местом. На атом, откуда перешёл электрон, входит другой электрон из другого атома и т. д. Это обуславливается ковалентными связями атомов. Таким образом, происходит перемещение положительного заряда без перемещения самого атома. Этот условный положительный заряд называют дыркой.

Обычно подвижность дырок в полупроводнике ниже подвижности электронов.

Энергетические зоны

Между зоной проводимости Еп и валентной зоной Ев расположена зона запрещённых значений энергии электронов Ез. Разность Еп−Ев равна ширине запрещенной зоны Ез. С ростом ширины Ез число электронно-дырочных пар и проводимость собственного полупроводника уменьшается, а удельное сопротивление возрастает.

Подвижность

Подвижность электронов (верхняя кривая) и дырок (нижняя кривая) в кремнии в зависимости от концентрации атомов примеси

Подвижностью называют коэффициент пропорциональности между дрейфовой скоростью носителей тока и величиной приложенного электрического поля

При этом, вообще говоря, подвижность является тензором:

Подвижность электронов и дырок зависит от их концентрации в полупроводнике (см. рисунок). При большой концентрации носителей заряда, вероятность столкновения между ними вырастает, что приводит к уменьшению подвижности и проводимости.

Размерность подвижности — м²/(В·с).

Собственная плотность

При термодинамическом равновесии, плотность электронов полупроводника связана с температурой следующим соотношением:

где:

 — Постоянная Планка
 — масса электрона
 — температура;
 — уровень проводимой зоны
— уровень Ферми;

Также, плотность дырок полупроводника связана с температурой следующим соотношением:

где:

 — Постоянная Планка;
 — масса дырки;
 — температура;
 — уровень Ферми;
 — уровень валентной зоны.

Собственная плотность связана с и следующим соотношением:

Виды полупроводников

По характеру проводимости

Собственная проводимость

Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».

Проводимость связана с подвижностью частиц следующим соотношением:

где  — удельное сопротивление,  — подвижность электронов,  — подвижность дырок,  — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).

Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:

Примесная проводимость

Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.

По виду проводимости

Электронные полупроводники (n-типа)
Полупроводник n-типа

Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.

Проводимость N-полупроводников приблизительно равна:

Дырочные полупроводники (р-типа)
Полупроводник p-типа

Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.

Проводимость p-полупроводников приблизительно равна:

Использование в радиотехнике

Полупроводниковый диод

Полупроводниковый диод состоит из двух типов полупроводников — дырочного и электронного. В процессе контакта между этими областями из области с полупроводником n-типа в область с полупроводником p-типа проходят электроны, которые затем рекомбинируют с дырками. Вследствие этого возникает электрическое поле между двумя областями, что устанавливает предел деления полупроводников — так называемый p-n переход. В результате в области с полупроводником p-типа возникает некомпенсированный заряд из отрицательных ионов, а в области с полупроводником n-типа возникает некомпенсированный заряд из положительных ионов. Разница между потенциалами достигает 0,3-0,6 В.

Связь между разницей потенциалов и концентрацией примесей выражается следующей формулой:

где  — термодинамическое напряжение,  — концентрация электронов,  — концентрация дырок,  — собственная концентрация[2].

В процессе подачи напряжения плюсом на p-полупроводник и минусом на n-полупроводник внешнее электрическое поле будет направлено против внутреннего электрического поля p-n перехода и при достаточном напряжении электроны преодолеют p-n переход, и в цепи диода появится электрический ток (прямая проводимость). При подаче напряжения минусом на область с полупроводником p-типа и плюсом на область с полупроводником n-типа между двумя областями возникает область, которая не имеет свободных носителей электрического тока (обратная проводимость). Обратный ток полупроводникового диода не равен нулю, так как в обоих областях всегда есть неосновные носители заряда. Для этих носителей p-n переход будет открыт.

Таким образом, p-n переход проявляет свойства односторонней проводимости, что обуславливается подачей напряжения с различной полярностью. Это свойство используют для выпрямления переменного тока.

Транзистор

Транзистор — полупроводниковое устройство, которое состоит из двух областей с полупроводниками p- или n-типа, между которыми находится область с полупроводником n- или p-типа. Таким образом, в транзисторе есть две области p-n перехода. Область кристалла между двумя переходами называют базой, а внешние области называют эмиттером и коллектором. Самой употребляемой схемой включения транзистора является схема включения с общим эмиттером, при которой через базу и эмиттер ток распространяется на коллектор.

Биполярный транзистор используют для усиления электрического тока.

Типы полупроводников в периодической системе элементов

В нижеследующей таблице представлена информация о большом количестве полупроводниковых элементов и их соединений, разделённых на несколько типов:

  • одноэлементные полупроводники IV группы периодической системы элементов,
  • сложные: двухэлементные AIIIBV и AIIBVI из третьей и пятой группы и из второй и шестой группы элементов соответственно.

Все типы полупроводников обладают интересной зависимостью ширины запрещённой зоны от периода, а именно — с увеличением периода ширина запрещённой зоны уменьшается.

ГруппаIIBIIIAIVAVAVIA
Период
25 B6 C7 N
313 Al14 Si15 P16 S
430 Zn31 Ga32 Ge33 As34 Se
548 Cd49 In50 Sn51 Sb52 Te
680 Hg

Физические свойства и применение

Прежде всего, следует сказать, что физические свойства полупроводников наиболее изучены по сравнению с металлами и диэлектриками. В немалой степени этому способствует огромное количество эффектов, которые не могут быть наблюдаемы ни в тех ни в других веществах, прежде всего связанные с устройством зонной структуры полупроводников, и наличием достаточно узкой запрещённой зоны. Конечно же, основным стимулом для изучения полупроводников является производство полупроводниковых приборов и интегральных микросхем — это в первую очередь относится к кремнию, но затрагивает и другие соединения (Ge, GaAs, InP, InSb).

Кремний — непрямозонный полупроводник, оптические свойства которого широко используются для создания фотодиодов и солнечных батарей, однако его очень трудно заставить работать в качестве источника света, и здесь вне конкуренции прямозонные полупроводники — соединения типа AIIIBV, среди которых можно выделить GaAs, GaN, которые используются для создания светодиодов и полупроводниковых лазеров.

Собственный полупроводник при температуре абсолютного нуля не имеет свободных носителей в зоне проводимости в отличие от проводников и ведёт себя как диэлектрик. При легировании ситуация может поменяться (см. вырожденные полупроводники).

В связи с тем, что технологи могут получать очень чистые вещества, встаёт вопрос о новом эталоне для числа Авогадро.

Легирование

Объёмные свойства полупроводника могут сильно зависеть от наличия дефектов в кристаллической структуре. И поэтому стремятся выращивать очень чистые вещества, в основном для электронной промышленности. Легирующие примеси вводят для управления величиной и типом проводимости полупроводника. Например, широко распространённый кремний можно легировать элементом V подгруппы периодической системы элементов — фосфором, который является донором, и создать n-Si. Для получения кремния с дырочным типом проводимости (p-Si) используют бор (акцептор). Также создают компенсированные полупроводники с тем чтобы зафиксировать уровень Ферми в середине запрещённой зоны.

Методы получения

Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.

Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.

Оптика полупроводников

Поглощение света полупроводниками обусловлено переходами между энергетическими состояниями зонной структуры. Учитывая принцип запрета Паули, электроны могут переходить только из заполненного энергетического уровня на незаполненный. В собственном полупроводнике все состояния валентной зоны заполнены, а все состояния зоны проводимости незаполненные, поэтому переходы возможны лишь из валентной зоны в зону проводимости. Для осуществления такого перехода электрон должен получить от света энергию, превышающую ширину запрещённой зоны. Фотоны с меньшей энергией не вызывают переходов между электронными состояниями полупроводника, поэтому такие полупроводники прозрачны в области частот , где  — ширина запрещённой зоны,  — постоянная Планка. Эта частота определяет фундаментальный край поглощения для полупроводника. Для полупроводников, которые зачастую применяются в электронике (кремний, германий, арсенид галлия) она лежит в инфракрасной области спектра.

Дополнительные ограничения на поглощение света полупроводников накладывают правила отбора, в частности закон сохранения импульса. Закон сохранения импульса требует, чтобы квазиимпульс конечного состояния отличался от квазиимпульса начального состояния на величину импульса поглощённого фотона. Волновое число фотона , где  — длина волны, очень мало по сравнению с волновым вектором обратной решётки полупроводника, или, что то же самое, длина волны фотона в видимой области намного больше характерного межатомного расстояния в полупроводнике, что приводит к требованию того, чтобы квазиимпульс конечного состояния при электронном переходе практически равнялся квазиимпульсу начального состояния. При частотах, близких к фундаментальному краю поглощения, это возможно только для прямозонных полупроводников. Оптические переходы в полупроводниках, при которых импульс электрона почти не меняется называются прямыми или вертикальными. Импульс конечного состояния может значительно отличаться от импульса начального состояния, если в процессе поглощения фотона участвует ещё одна, третья частица, например, фонон. Такие переходы тоже возможны, хотя и менее вероятны. Они называются непрямыми переходами.

Таким образом, прямозонные полупроводники, такие как арсенид галлия, начинают сильно поглощать свет, когда энергия кванта превышает ширину запрещённой зоны. Такие полупроводники очень удобны для использования в оптоэлектронике.

Непрямозонные полупроводники, например, кремний, поглощают в области частот света с энергией кванта чуть больше ширины запрещённой зоны значительно слабее, только благодаря непрямым переходам, интенсивность которых зависит от присутствия фононов, и следовательно, от температуры. Граничная частота прямых переходов кремния больше 3 эВ, то есть лежит в ультрафиолетовой области спектра.

При переходе электрона из валентной зоны в зону проводимости в полупроводнике возникают свободные носители заряда, а следовательно фотопроводимость.

При частотах ниже края фундаментального поглощения также возможно поглощение света, которое связано с возбуждением экситонов, электронными переходами между уровнями примесей и разрешенными зонами, а также с поглощением света на колебаниях решётки и свободных носителях. Экситонные зоны расположены в полупроводнике несколько ниже дна зоны проводимости благодаря энергии связи экситона. Экситонные спектры поглощения имеют водородоподобную структуру энергетических уровней. Аналогичным образом примеси, акцепторы или доноры, создают акцепторные или донорные уровни, лежащие в запрещённой зоне. Они значительно модифицируют спектр поглощения легированного полупроводника. Если при непрямозонном переходе одновременно с квантом света поглощается фонон, то энергия поглощенного светового кванта может быть меньше на величину энергии фонона, что приводит к поглощению на частотах несколько ниже по энергии от фундаментального края поглощения.

Список полупроводников

Полупроводниковые соединения делят на несколько типов:

  • простые полупроводниковые материалы — собственно химические элементы: бор B, углерод C, германий Ge, кремний Si, селен Se, сера S, сурьма Sb, теллур Te и йод I. Самостоятельное применение широко нашли германий, кремний и селен. Остальные чаще всего применяются в качестве легирующих добавок или в качестве компонентов сложных полупроводниковых материалов;
  • в группу сложных полупроводниковых материалов входят химические соединения, обладающие полупроводниковыми свойствами и включающие в себя два, три и более химических элементов. Полупроводниковые материалы этой группы, состоящие из двух элементов, называют бинарными, и так же, как это принято в химии, имеют наименование того компонента, металлические свойства которого выражены слабее. Так, бинарные соединения, содержащие мышьяк, называют арсенидами, серу — сульфидами, теллур — теллуридами, углерод — карбидами. Сложные полупроводниковые материалы объединяют по номеру группы Периодической системы элементов Д. И. Менделеева, к которой принадлежат компоненты соединения, и обозначают буквами латинского алфавита (A — первый элемент, B — второй и т. д.). Например, бинарное соединение фосфид индия InP имеет обозначение AIIIBV

Широкое применние получили следующие соединения:

AIIIBV
  • InSb, InAs, InP, GaSb, GaP, AlSb, GaN, InN
AIIBV
AIIBVI
  • ZnS, ZnSe, ZnTe, CdS, CdTe, HgSe, HgTe, HgS
AIVBVI
  • PbS, PbSe, PbTe, SnTe, SnS, SnSe, GeS, GeSe

а также некоторые окислы свинца, олова, германия, кремния а также феррит, аморфные стёкла и многие другие соединения (AIBIIIC2VI, AIBVC2VI, AIIBIVC2V, AIIB2IIC4VI, AIIBIVC3VI).

На основе большинства из приведённых бинарных соединений возможно получение их твёрдых растворов: (CdTe)x(HgTe)1-x, (HgTe)x(HgSe)1-x, (PbTe)x(SnTe)1-x, (PbSe)x(SnSe)1-x и других.

Соединения AIIIBV, в основном, применяются для изделий электронной техники, работающих на сверхвысоких частотах

Соединения AIIBV используют в качестве люминофоров видимой области, светодиодов, датчиков Холла, модуляторов.

Соединения AIIIBV, AIIBVI и AIVBVI применяют при изготовлении источников и приёмников света, индикаторов и модуляторов излучений.

Окисные полупроводниковые соединения применяют для изготовления фотоэлементов, выпрямителей и сердечников высокочастотных индуктивностей.

Физические свойства соединений типа AIIIBV
ПараметрыAlSbGaSbInSbAlAsGaAsInAs
Температура плавления, К1333998798187315531218
Постоянная решётки, Å6,146,096,475,665,696,06
Ширина запрещённой зоны ΔE, эВ0,520,70,182,21,320,35
Диэлектрическая проницаемость ε8,414,015,9
Подвижность, см²/(В·с):
электронов50500060 00040003400[3]
дырок15010004000400460[3]
Показатель преломления света, n3,03,74,13,23,2
Линейный коэффициент теплового
расширения, K-1
6,9·10-65,5·10-65,7·10-65,3·10-6

Группа IV

  • собственные полупроводники
  • составной полупроводник

Группа III-V

  • 2-х компонентные полупроводники
    • Антимонид алюминия, AlSb
    • Арсенид алюминия, AlAs
    • Нитрид алюминия, AlN
    • Фосфид алюминия, AlP
    • Нитрид бора, BN
    • Фосфид бора, BP
    • Арсенид бора, BAs
    • Антимонид галлия, GaSb
    • Арсенид галлия, GaAs
    • Нитрид галлия, GaN
    • Фосфид галлия, GaP
    • Антимонид индия, InSb
    • Арсенид индия, InAs
    • Нитрид индия, InN
    • фосфид индия, InP
  • 3-х компонентные полупроводники
    • AlxGa1-xAs
    • InGaAs, InxGa1-xAs
    • InGaP
    • AlInAs
    • AlInSb
    • GaAsN
    • GaAsP
    • AlGaN
    • AlGaP
    • InGaN
    • InAsSb
    • InGaSb
  • 4-х компонентные полупроводники
    • AlGaInP, InAlGaP, InGaAlP, AlInGaP
    • AlGaAsP
    • InGaAsP
    • AlInAsP
    • AlGaAsN
    • InGaAsN
    • InAlAsN
    • GaAsSbN
  • 5-ти компонентные полупроводники

Группа II-VI

  • 2-х компонентные полупроводники
  • 3-х компонентные полупроводники
    • CdZnTe, CZT
    • HgCdTe
    • HgZnTe
    • HgZnSe

Группа I-VII

  • 2-х компонентные полупроводники

Группа IV-VI

  • 2-х компонентные полупроводники
  • 3-х компонентные полупроводники

Группа V-VI

  • 2-х компонентные полупроводники

Группа II—V

  • 2-х компонентные полупроводники

Другие

  • Разные оксиды

Органические полупроводники

Магнитные полупроводники

См. также

Примечания

  1. Н. С. Зефиров (гл. ред.). Химическая энциклопедия. — Москва: Большая Российская Энциклопедия, 1995. — Т. 4. — С. 55. — 639 с. — 20 000 экз. — ISBN 5-85270-092-4
  2. Физические величины: справочник/ А. П. Бабичев Н. А. Бабушкина, А. М. Бартковский и др. под ред. И. С. Григорьева, Е. З. Мейлихова. — М.; Энергоатомиздат, 1991. — 1232 с — ISBN 5-283-04013-5
  3. 1 2 Индия арсенид // Химическая энциклопедия

Литература

  • Тауц Я. Фото- и термоэлектрические явления в полупроводниках. М.: Издательство иностранной литературы, 1962, 256 с.
  • Тауц Я. Оптические свойства полупроводников. М.: Мир, 1967, 74 с.

Ссылки

Что такое полупроводник?

Полупроводник — это кристаллический материал, который проводит электричество не столь хорошо, как металлы, но и не столь плохо, как большинство изоляторов. В общем случае электроны полупроводников крепко привязаны к своим ядрам. Однако, если в полупроводник, например, в кремний, ввести несколько атомов сурьмы, имеющей «избыток» электронов, то в этом случае свободные электроны сурьмы помогут кремнию переносить отрицательный заряд.

При замене нескольких атомов полупроводника индием, который легко присоединяет к себе дополнительные электроны, в полупроводнике образуются не занятые электронами «свободные места», или, как говорят физики, «дырки»; которые переносят положительный заряд.

Такие свойства полупроводников привели к их широкому использованию в транзисторах — устройствах для усиления тока, его блокирования или пропускания только в одном направлении. В типичном NPN транзисторе, слой полупроводника с положительной (Р) проводимостью (основание), расположен между двумя слоями полупроводника с отрицательной (N) проводимостью (эмиттером и коллектором). Когда слабый сигнал, например, от интеркома (аппарата селекторной связи), проходит через основание NPN транзистора, эмиссия электронов этот сигнал усиливает.

Строение полупроводников

Полупроводники N-типа содержат избыточное количество электронов, переносящих отрицательный заряд. Полупроводники Р-типа испытывают нехватку электронов, но зато имеют избыток дырок (вакантных мест для электронов), которые переносят положительный заряд.

Отличительные признаки полупроводников

В отличие от проводников, имеющих много свободных электронов, и изоляторов, практически их не имеющих, полупроводники содержат небольшое количество свободных электронов и так называемые дырки (белый кружочек) — вакантные места, оставленные свободными электронами. И дырки и электроны проводят электрический ток.

NPN транзистор

PNP транзистор

Дырки перемещаются от положительного эмиттера (+) к отрицательному основанию (N-слою) и далее через положительный коллектор к отрицательной клемме (-), усиливая электрический ток.

Что такое диод?

В одну сторону да, в другую — нет. Входной сигнал диода показывает переменный ток; из правого графика видно, что через диод проходит только постоянный ток.

Когда отрицательно заряженные электроны (голубые шарики) и положительно заряженные дырки (розовые шарики) расходятся от стыка слоев кремния N-типа и Р-типа в диоде, электрический ток прерывается. На нижнем рисунке справа электроны и дырки перемещаются к стыку, и в результате диод проводит ток только в одном направлении, превращая переменный ток в постоянный.

Урок 33. электрический ток в полупроводниках — Физика — 10 класс

Физика, 10 класс

Урок 33. Электрический ток в полупроводниках

Перечень вопросов, рассматриваемых на уроке:

1) собственная и примесная проводимость;

2) p-n-переход;

3) электрический ток в полупроводниках;

4) зависимость тока от напряжения;

5) зависимость силы тока от внешних условий.

Глоссарий по теме:

Полупроводник — вещество, занимающее промежуточное положение в электропроводности между проводниками и диэлектриками.

Собственная проводимость — проводимость чистых полупроводников

Примесная проводимость — проводимость, вызванная введением примесей.

Полупроводниковый диод представляет собой устройство, содержащее p-n-соединение и способное передавать ток только в одном направлении.

Транзистор представляет собой устройство, содержащее два p-n переходов, прямые направления которых противоположны.

Основная и дополнительная литература по теме урока:

1. Мякишев Г. Я., Буховцев Б. Б., Соцкий Н. Н. Физика. 10 класс. Учебник для образовательных организаций М.: Просвещение, 2017. С. 362-371.

2. Рымкевич А.П. Сборник задач физики. 10-11 класс М.: Дрофа, 2009.

Дополнительная литература.

3. Зегря Г.Г. Перел В.И. Основы физики полупроводников. М.: Физматлит, 2009.

Открытые электронные ресурсы по теме урока:

http://kvant.mccme.ru/1985/09/pervoe_znakomstvo.htm

Теоретический материал для самостоятельного изучения

В полупроводниках атомы связаны ковалентными (попарно электронными) связями, которые сильны при низких температурах и освещенности. С ростом температуры и освещенности эти связи могут разрушаться, образуя свободный электрон и «дырку».

Реальные частицы — это только электроны. Электронная проводимость обусловлена движением свободных электронов. Дырочная проводимость вызвана движением связанных электронов, которые переходят от одного атома к другому, поочередно заменяя друг друга, что эквивалентно движению «дырок» в противоположном направлении. «Дырке» условно приписывают «+» заряд.

В чистых полупроводниках концентрация свободных электронов и «дырок» одинакова.

Примеси, которые легко отдают электроны, называются донорными. Если мы их добавим, мы получим полупроводник n-типа с электронной проводимостью.

Примеси, которые легко принимают электроны, называются акцепторными. Если мы их добавим, мы получим полупроводник р-типа с дырочной проводимостью.

Когда два полупроводника с разными типами проводимости входят в контакт, образуется так называемый p-n-переход. Он имеет одностороннюю проводимость. При контакте полупроводников p- и n-типа в результате диффузии электронов в полупроводник р-типа и дырок в полупроводник n-типа образуется контактное электрическое поле. Для основных носителей заряда создан барьерный слой.

При включении в цепь p-n-перехода, когда область с электронной проводимостью связана с отрицательным полюсом источника тока, а область с дырочной проводимостью с положительным полюсом, внешнее электрическое поле ослабляет контактное поле и обеспечивает ток значительной силы, называемый прямым и обусловленным движением основных носителей заряда.

Когда переход включён обратном направлении, внешнее поле усиливает контактное поле, а пограничный слой обеднен основными носителями заряда. Очень малый ток течёт из-за движения через р-п-переход неосновных носителей заряда, которых очень мало.

Полупроводниковый диод представляет собой устройство, содержащее p-n-переход и способное пропускать ток в одном направлении и не передавать его в противоположном направлении.

Транзистор или триод полупроводника — это устройство, содержащее два p-n-перехода, прямые направления которых противоположны.

Современная электроника основана на микросхемах и микропроцессорах, которые включают в себя огромное количество транзисторов. Транзисторы стали широко распространены в современных технологиях. Они заменили электронные лампы в электрических цепях научной, промышленной и бытовой техники

Примеры и разбор решения заданий

1. Выберите правильный ответ на вопрос: «Почему сопротивление полупроводников уменьшается с ростом температуры?»

Варианты ответов:

1) концентрация свободных носителей заряда уменьшается;

2) концентрация свободных носителей заряда увеличивается;

3) скорость электронов увеличивается.

Правильный вариант: 2) концентрация свободных носителей заряда увеличивается.

Подсказка: обратите внимание, что при нагревании полупроводников в них образуется больше свободных носителей заряда.

2. Решите задачу: Концентрация электронов проводимости в германии при комнатной температуре n = 3·1019 м-3.{–10}$ Ом–1·см–1) (про­во­ди­мость ука­за­на при ком­нат­ной темп-ре). Ха­рак­тер­ной осо­бен­но­стью П. яв­ля­ет­ся силь­ная за­ви­си­мость их про­во­ди­мо­сти от темп-ры, при­чём в дос­та­точ­но ши­ро­ком ин­тер­ва­ле темпе­ра­тур про­во­ди­мость П., в от­ли­чие от ме­тал­лов, экс­по­нен­ци­аль­но уве­ли­чи­ва­ет­ся с рос­том темп-ры $T$: $$σ=σ_0\exp(–ℰ_a/kT).\tag{*}$$ Здесь $k$ – по­сто­ян­ная Больц­ма­на, $ℰ_a$ – энер­гия ак­ти­ва­ции элек­тро­нов в П., ко­то­рая мо­жет ме­нять­ся от не­сколь­ких мэВ до не­сколь­ких эВ, $σ_0$ – ко­эф. про­пор­цио­наль­но­сти, ко­то­рый так­же за­ви­сит от темп-ры, но эта за­ви­си­мость бо­лее сла­бая, чем экс­по­нен­ци­аль­ная. С по­вы­ше­ни­ем темп-ры те­п­ло­вое дви­же­ние раз­ры­ва­ет часть хи­мич. свя­зей в ато­мах П. и элек­тро­ны, чис­ло ко­то­рых про­пор­цио­наль­но $\exp(–ℰ_a/kT)$, ста­но­вят­ся сво­бод­ны­ми и уча­ст­ву­ют в элек­трич. про­во­ди­мо­сти. Энер­гия, не­об­хо­ди­мая для то­го, что­бы ра­зо­рвать хи­мич. связь и сде­лать ва­лент­ный элек­трон сво­бод­ным, на­зы­ва­ет­ся энер­ги­ей ак­ти­ва­ции.

П. и ди­элек­три­ки от­но­сят к од­но­му клас­су ма­те­риа­лов; раз­ли­чие ме­ж­ду ни­ми яв­ля­ет­ся ско­рее ко­ли­че­ст­вен­ным, чем ка­че­ст­вен­ным. Про­во­ди­мость ди­элек­три­ков так­же име­ет ак­ти­ва­ци­он­ный ха­рак­тер, од­на­ко $ℰ_a$ для них со­став­ля­ет 10 эВ и бо­лее, по­это­му собств. про­во­ди­мость ди­элек­три­ков мог­ла бы стать су­ще­ст­вен­ной толь­ко при очень вы­со­ких темп-рах, при ко­то­рых уже на­сту­па­ют струк­тур­ные из­ме­не­ния ве­ще­ст­ва. В свя­зи с этим тер­мин «П.» час­то по­ни­ма­ют в уз­ком смыс­ле как со­во­куп­ность ве­ществ, по­лу­про­вод­ни­ко­вые свой­ст­ва ко­то­рых яр­ко вы­ра­же­ны при ком­нат­ной темп-ре (300 К).

Хи­мич. свя­зи мо­гут быть ра­зо­рва­ны не толь­ко те­п­ло­вым дви­же­ни­ем, но и разл. внеш­ни­ми воз­дей­ст­вия­ми: элек­тро­маг­нит­ным из­лу­че­ни­ем, по­то­ком бы­ст­рых час­тиц, де­фор­ма­ци­ей, силь­ным элек­т­рич. и маг­нит­ным по­ля­ми и др. По­это­му для П. ха­рак­тер­на вы­со­кая чув­ст­ви­тель­ность про­во­ди­мо­сти к внеш­ним воз­дей­ст­ви­ям, а так­же к кон­цен­тра­ции струк­тур­ных де­фек­тов и при­ме­сей.

Классификация полупроводников

По аг­ре­гат­но­му со­стоя­нию П. де­лят­ся на твёр­дые и жид­кие (см. Жид­кие по­лу­про­вод­ни­ки), по внутр. струк­ту­ре – на кри­стал­лич. и аморф­ные (см. Аморф­ные и стек­ло­об­раз­ные по­лу­про­вод­ни­ки), по хи­мич. со­ста­ву – на не­ор­га­ни­че­ские и ор­га­ни­че­ские. Наи­бо­лее ши­ро­ко изу­че­ны и ис­поль­зу­ют­ся в по­лу­про­вод­ни­ко­вой элек­тро­ни­ке кри­стал­лич. не­ор­га­нич. П. К ним от­но­сят­ся:

– эле­мен­тар­ные П. – эле­мен­ты IV груп­пы ко­рот­кой фор­мы пе­рио­дич. сис­те­мы хи­мич. эле­мен­тов – уг­ле­род С (гра­фит, ал­маз, гра­фен, на­нот­руб­ки), гер­ма­ний Ge и крем­ний Si (ба­зо­вый эле­мент боль­шин­ст­ва ин­те­граль­ных схем в мик­ро­элек­тро­ни­ке), эле­мен­ты VI груп­пы – се­лен Se и тел­лур Te, а так­же их со­едине­ния, напр. кар­бид крем­ния SiC, об­ра­зую­щий слои­стые струк­ту­ры, и не­пре­рыв­ный ряд твёр­дых рас­тво­ров SixGe1–x;

– со­еди­не­ния AIIIBV, где А=Al, Ga, In; В=N, Р, As, Sb, напр. GaAs, AlAs, InAs, InSb, GaN, GaP и др.

– со­еди­не­ния AIIBVI, где А=Zn, Cd, Hg; B=S, Se, Te, напр. ZnTe, ZnSe, ZnO, ZnS, CdTe, CdS, HgTe и др.;

– со­еди­не­ния эле­мен­тов I и V групп с эле­мен­та­ми VI груп­пы, напр. PbS, PbSe, PbTe, Bi2Se3, Bi2Te3,Cu2O и др.;

– трой­ные и чет­вер­ные твёр­дые рас­т­во­ры на ос­но­ве со­еди­не­ний A III B V и A II B VI , напр. GaxAl1–xAs, GaxAl1–xN, CdxHg1–xTe, CdxMn1–xTe, GaxIn1–xAsyP1–y и др.

При­ме­ры аморф­ных и стек­ло­об­раз­ных П.: аморф­ный гид­ри­ро­ван­ный крем­ний a-Si:H, аморф­ные Ge, Se, Te, мно­го­ком­по­нент­ные стек­ло­об­раз­ные спла­вы халь­ко­ге­ни­дов на ос­но­ве S, Se, Te.

К ор­га­ни­че­ским П. от­но­сят­ся: ряд ор­га­нич. кра­си­те­лей, аро­ма­тич. со­еди­не­ния (наф­та­лин, ан­тра­цен и др.), по­ли­ме­ры с со­пря­жён­ны­ми свя­зя­ми, не­ко­то­рые при­род­ные пиг­мен­ты. Ор­га­нич. П. су­ще­ст­ву­ют в ви­де мо­но­кри­стал­лов, по­ли­кри­стал­лич. или аморф­ных по­рош­ков и плё­нок. Дос­то­ин­ст­во ор­га­нич. П. – от­но­сит. де­ше­виз­на их про­из-ва и ме­ха­нич. гиб­кость. Они при­ме­ня­ют­ся как све­то­чув­ст­вит. ма­те­риа­лы для фо­то­эле­мен­тов и ПЗС-мат­риц; на их ос­нове соз­да­ны све­то­из­лу­чаю­щие дио­ды, в т. ч. для гиб­ких эк­ра­нов и мо­ни­то­ров.

Боль­шин­ст­во изу­чен­ных П. на­хо­дят­ся в кри­стал­лич. со­стоя­нии. Свой­ст­ва та­ких П. в зна­чит. ме­ре оп­ре­де­ля­ют­ся их хи­мич. со­ста­вом и сим­мет­ри­ей кри­с­тал­лич. ре­шёт­ки. Ато­мы крем­ния, об­ла­дая че­тырь­мя ва­лент­ны­ми элек­тро­на­ми, об­ра­зу­ют ку­бич. кри­стал­лич. ре­шёт­ку ти­па ал­ма­за с ко­ва­лент­ной свя­зью ато­мов (кри­стал­ло­гра­фич. класс $m\bar 3m$, или $O_h$). Та­кую же кри­стал­лич. ре­шёт­ку име­ют гер­ма­ний и се­рое оло­во. В GaAs ка­ж­дый атом об­ра­зу­ет 4 ва­лент­ные свя­зи с бли­жай­ши­ми со­се­дя­ми, в ре­зуль­та­те че­го по­лу­ча­ет­ся кри­стал­лич. ре­шёт­ка, по­доб­ная ре­шёт­ке ал­ма­за, в ко­то­рой бли­жай­ши­ми со­се­дя­ми ка­тио­на Ga яв­ля­ют­ся анио­ны As и на­обо­рот. За счёт час­тич­но­го пе­ре­рас­пре­де­ле­ния элек­тро­нов ато­мы Ga и As ока­зы­ва­ют­ся раз­но­имён­но за­ря­жен­ны­ми и свя­зи ме­ж­ду ато­ма­ми ста­но­вят­ся час­тич­но ион­ны­ми. Кри­стал­лич. ре­шёт­ка GaAs не об­ла­да­ет цен­тром ин­вер­сии, по­это­му в та­ких П. воз­ни­ка­ют эф­фек­ты, от­сут­ст­вую­щие в цен­тро­сим­мет­рич­ных по­лу­про­вод­ни­ко­вых струк­ту­рах, напр. пье­зо­элек­три­че­ст­во (см. Пье­зо­элек­три­ки), ге­не­ра­ция 2-й оп­тич. гар­мо­ни­ки, фо­то­галь­ва­ни­че­ские эф­фек­ты. Струк­ту­рой, по­доб­ной ар­се­ни­ду гал­лия, об­ла­да­ют InAs, InP, ZnTe, ZnSe и др.

Чис­тые и струк­тур­но со­вер­шен­ные П. по­лу­ча­ют в ре­зуль­та­те кри­стал­ли­за­ции из рас­пла­ва или рас­тво­ра. Для соз­да­ния тон­ких по­лу­про­вод­ни­ко­вых плё­нок при­ме­ня­ют ме­тод эпи­так­сии из жид­кой или га­зо­вой фа­зы.

Электроны и дырки в полупроводниках

В твёр­дом те­ле вол­но­вые функ­ции ва­лент­ных элек­тро­нов со­сед­них ато­мов пе­ре­кры­ва­ют­ся, их ва­лент­ные элек­тро­ны обоб­ще­ст­в­ля­ют­ся и воз­ни­ка­ет ус­той­чи­вая хи­мич. (ко­ва­лент­ная) связь. На ка­ж­дую связь ме­ж­ду ато­ма­ми при­хо­дит­ся по два элек­тро­на, и рас­пре­де­ле­ние элек­трон­ной плот­но­сти в про­стран­ст­ве ока­зы­ва­ет­ся жё­ст­ко фик­си­ро­ван­ным. Про­во­ди­мость П. по­яв­ля­ет­ся, ес­ли ра­зо­рвать свя­зи ме­ж­ду не­ко­то­ры­ми ато­ма­ми, напр., те­п­ло­вым или оп­тич. воз­дей­ст­ви­ем, пе­ре­дав не­боль­шой час­ти ва­лент­ных элек­тро­нов до­пол­нит. энер­гию и пе­ре­ве­дя их на ва­кант­ные (пус­тые) элек­трон­ные ор­би­та­ли, рас­по­ло­жен­ные вы­ше по энер­гии. Та­кие элек­т­ро­ны мо­гут сво­бод­но пе­ре­дви­гать­ся по кри­стал­лу, пе­ре­хо­дя с од­но­го ато­ма на дру­гой, и пе­ре­но­сить от­ри­цат. элек­трич. за­ряд. Ра­зо­рван­ная связь с не­дос­тат­ком элек­тро­на (дыр­ка) так­же мо­жет пе­ре­ме­щать­ся по кри­стал­лу за счёт пе­ре­хо­да на неё элек­тро­на из со­сед­ней свя­зи. По­сколь­ку ра­зо­рван­ная связь оз­на­ча­ет на­ли­чие ло­каль­но­го по­ло­жи­тель­но­го элек­трич. за­ря­да, дыр­ки пе­ре­но­сят по­ло­жи­тель­ный за­ряд. Дыр­ки, как и элек­тро­ны, мо­гут пе­ре­ме­щать­ся на зна­чит. рас­стоя­ния в пе­рио­дич. по­тен­циа­ле кри­стал­ла без рас­сея­ния.

В иде­аль­ных кри­стал­лах, не со­дер­жа­щих де­фек­тов и при­ме­сей, элек­тро­ны и дыр­ки все­гда по­яв­ля­ют­ся па́­ра­ми в си­лу со­хра­не­ния элек­трич. за­ря­да, од­на­ко под­виж­но­сти элек­тро­нов и ды­рок, как пра­ви­ло, раз­лич­ны. В ле­ги­ро­ван­ных П. кон­цен­тра­ции сво­бод­ных элек­тро­нов и ды­рок мо­гут раз­ли­чать­ся на неск. по­ряд­ков, так что элек­тро­про­вод­ность осу­ще­ст­в­ля­ет­ся прак­ти­че­ски пол­но­стью но­си­те­ля­ми за­ря­да од­но­го ти­па.

Чередование разрешённых и запрещённых энергетических зон в кристаллических полупроводниках. Заполнение разрешённых зон: (а) при абсолютном нуле температуры; (б) при отличной от нуля температуре. Чёрны…

По­сле­до­ва­тель­ное и стро­гое опи­са­ние со­стоя­ний но­си­те­лей за­ря­да и их дви­же­ния в кри­стал­лах мож­но сде­лать в рам­ках зон­ной тео­рии. Осн. со­стоя­ние крис­тал­ла при темп-ре 0 К фор­ми­ру­ет­ся за счёт по­сле­до­ва­тель­но­го за­пол­не­ния элек­тро­на­ми наи­низ­ших энер­ге­тич. со­стоя­ний. Со­глас­но прин­ци­пу Пау­ли, в ка­ж­дом со­стоя­нии с оп­ре­де­лён­ным зна­че­ни­ем спи­на мо­жет на­хо­дить­ся толь­ко один элек­трон. В за­ви­си­мо­сти от кри­стал­лич. струк­ту­ры и от чис­ла элек­тро­нов в ка­ж­дом из ато­мов, со­став­ляю­щих кри­сталл, воз­мож­ны два слу­чая: 1) элек­тро­ны пол­но­стью за­пол­ня­ют неск. ниж­них раз­ре­шён­ных зон, а все верх­ние зо­ны ос­та­ют­ся пус­ты­ми; 2) од­на из раз­ре­шён­ных зон за­пол­не­на час­тич­но. В пер­вом слу­чае рас­пре­де­ле­ние элек­трон­ной плот­но­сти в кри­стал­ле фик­си­ро­ва­но, элек­тро­ны не мо­гут уча­ст­во­вать в про­во­ди­мо­сти и кри­сталл яв­ля­ет­ся П. или ди­элек­три­ком. Во вто­ром слу­чае часть элек­тро­нов в пре­де­лах час­тич­но за­пол­нен­ной зо­ны мо­жет сво­бод­но пе­ре­ме­щать­ся по кри­стал­лу3 и крис­талл яв­ля­ет­ся ме­тал­лом. В П. и ди­элек­три­ках верх­няя пол­но­стью за­пол­нен­ная раз­ре­шён­ная зо­на энер­гий на­зы­ва­ет­ся ва­лент­ной зо­ной, ниж­няя пус­тая зо­на – зо­ной про­во­ди­мо­сти. Энер­ге­тич. ин­тер­вал ме­ж­ду дном (ми­ни­му­мом энер­гии) зо­ны про­во­ди­мо­сти и по­тол­ком (мак­си­му­мом энер­гии) ва­лент­ной зо­ны на­зы­ва­ет­ся ши­ри­ной за­пре­щён­ной зо­ны $ℰ_g$. Раз­ли­чие ме­ж­ду П. и ди­элек­три­ка­ми чис­то ко­ли­че­ст­вен­ное: ус­лов­но счи­та­ют, что ве­ще­ст­ва с $ℰ_g<2$ эВ яв­ля­ют­ся П., а с $ℰ_g>2$ эВ – ди­элек­три­ка­ми. При от­лич­ной от ну­ля темп-ре те­п­ло­вое дви­же­ние пе­ре­рас­пре­де­ля­ет элек­тро­ны по энер­гии: часть элек­тро­нов «за­бра­сы­ва­ет­ся» из ва­лент­ной зо­ны в зо­ну про­во­ди­мо­сти. При этом по­яв­ля­ют­ся сво­бод­ные но­си­те­ли за­ря­да – элек­тро­ны в зо­не про­во­ди­мо­сти и дыр­ки в ва­лент­ной зо­не (рис.). Ко­ли­че­ст­во сво­бод­ных элек­тро­нов и ды­рок экс­по­нен­ци­аль­но за­ви­сит от темп-ры, по­это­му тем­пе­ра­тур­ная за­ви­си­мость про­во­ди­мо­сти П. оп­ре­де­ля­ет­ся фор­му­лой ( * ).

В ши­ро­ком клас­се П. ши­ри­на энер­ге­тич. зон зна­чи­тель­но пре­вы­ша­ет те­п­ло­вую энер­гию при ком­нат­ной темп-ре (0,025 эВ), по­это­му но­си­те­ли за­ря­да за­пол­ня­ют со­стоя­ния толь­ко вбли­зи экс­тре­му­мов раз­ре­шён­ных зон, т. е. вбли­зи дна зо­ны про­во­ди­мо­сти и по­тол­ка ва­лент­ной зо­ны. За­ви­си­мость энер­гии от ква­зи­им­пуль­са вбли­зи экс­тре­му­ма час­то ока­зы­ва­ет­ся квад­ра­тич­ной, и мож­но вве­сти пред­став­ле­ние об эф­фек­тив­ной мас­се но­си­те­лей за­ря­да, ко­то­рая за­ви­сит от но­ме­ра раз­ре­шён­ной зо­ны и на­прав­ле­ния ква­зи­им­пуль­са. В не­ко­то­рых П. од­но­му зна­че­нию энер­гии от­ве­ча­ет неск. экс­тре­му­мов в пер­вой зо­не Брил­лю­эна и но­си­те­ли за­ря­да рас­пре­де­ле­ны по эк­ви­ва­лент­ным «до­ли­нам» (ок­ре­ст­но­стям экс­тре­му­мов). Та­кие П. на­зы­ва­ют мно­го­до­лин­ны­ми.

Примеси и дефекты в полупроводниках

Элек­трич. про­во­ди­мость П. мо­жет быть обу­слов­ле­на как элек­тро­на­ми соб­ственных ато­мов дан­но­го ве­ще­ст­ва (соб­ст­вен­ная про­во­ди­мость), так и элек­т­рона­ми и дыр­ка­ми при­мес­ных ато­мов (при­мес­ная про­во­ди­мость). Про­цесс вне­дре­ния при­ме­сей в П. для по­лу­че­ния не­об­хо­ди­мых фи­зич. свойств на­зы­ва­ет­ся ле­ги­ро­ва­ни­ем по­лу­про­вод­ни­ков. По­сколь­ку энер­гия свя­зи но­си­те­лей за­ря­да в при­мес­ных ато­мах со­став­ля­ет от не­сколь­ких мэВ до не­сколь­ких де­сят­ков мэВ, имен­но при­мес­ная про­во­ди­мость объ­яс­ня­ет экс­по­нен­ци­аль­ный рост кон­цен­тра­ции сво­бод­ных но­си­те­лей за­ря­да в боль­шин­ст­ве П. в ин­тер­ва­ле тем­пе­ра­тур вбли­зи ком­нат­ной.

При­ме­си в П. обыч­но вво­дят в про­цес­се рос­та струк­ту­ры, они мо­гут быть до­но­ра­ми или ак­цеп­то­ра­ми, т. е. по­став­щи­ка­ми элек­тро­нов или ды­рок. Ес­ли, напр., в гер­ма­ний Ge или крем­ний Si (эле­мен­ты IV груп­пы) вве­сти при­мес­ные ато­мы эле­мен­тов V груп­пы (As, P), то 4 внеш­них элек­тро­на этих ато­мов об­ра­зу­ют ус­той­чи­вую связь с че­тырь­мя со­сед­ни­ми ато­ма­ми ре­шёт­ки, а пя­тый элек­трон ока­жет­ся не­свя­зан­ным и бу­дет удер­жи­вать­ся око­ло при­мес­но­го ато­ма толь­ко за счёт ку­ло­нов­ско­го взаи­мо­дей­ст­вия, ос­лаб­лен­но­го ди­элек­трич. по­ля­ри­за­ци­ей сре­ды. Та­кой при­мес­ный атом яв­ля­ет­ся до­но­ром и лег­ко ио­ни­зу­ет­ся при ком­нат­ной темп-ре. Ак­цеп­тор воз­ни­ка­ет, напр., при вве­де­нии в Ge или Si эле­мен­тов III груп­пы (Ga, Al). В этом слу­чае для об­ра­зо­ва­ния всех че­ты­рёх свя­зей с бли­жай­ши­ми ато­ма­ми тре­бу­ет­ся до­пол­нит. элек­трон, ко­то­рый бе­рёт­ся из внутр. обо­ло­чек ато­мов, так что при­мес­ный атом ока­зы­ва­ет­ся за­ря­жен от­ри­ца­тель­но. Элек­тро­ней­траль­ность вос­ста­нав­ли­ва­ет­ся за счёт то­го, что внутр. не­за­пол­нен­ная ор­би­таль рас­пре­де­ля­ет­ся вбли­зи со­сед­них ато­мов ре­шёт­ки, рас­по­ло­жен­ных от при­мес­но­го на рас­стоя­ни­ях, пре­вос­хо­дя­щих меж­атом­ное рас­стоя­ние. На­ли­чие до­но­ров или ак­цеп­то­ров при­во­дит со­от­вет­ст­вен­но к про­во­ди­мо­сти n- или р-ти­па.

П., в ко­то­рых мо­гут од­но­вре­мен­но су­ще­ст­во­вать ак­цеп­тор­ные и до­нор­ные при­ме­си, на­зы­ва­ют­ся ком­пен­си­ро­ван­ны­ми. Ком­пен­са­ция при­ме­сей при­во­дит к то­му, что часть элек­тро­нов от до­но­ров пе­ре­хо­дит к ак­цеп­то­рам, и в ре­зуль­та­те воз­ни­ка­ет зна­чит. кон­цен­тра­ция ио­нов, ко­то­рые эф­фек­тив­но влия­ют на про­во­ди­мость по­лу­про­вод­ни­ков.

Ам­пли­ту­да вол­но­вой функ­ции элек­тро­нов или ды­рок, ло­ка­ли­зо­ван­ных на при­мес­ных ато­мах, со­став­ля­ет 1–10 нм. Это оз­на­ча­ет, что при кон­цен­тра­ции при­мес­ных ато­мов ок. 1018 см–3 вол­но­вые функ­ции элек­тро­нов и ды­рок со­сед­них ато­мов на­чи­на­ют пе­ре­кры­вать­ся, но­си­те­ли за­ря­да мо­гут пе­ре­хо­дить от ио­на к ио­ну и П. ста­но­вит­ся вы­ро­ж­ден­ным (см. Вы­ро­ж­ден­ные по­лу­про­вод­ни­ки). Та­кие П. на­зы­ва­ют­ся силь­но­ле­ги­ро­ва­ны­ми. Из-за силь­но­го эк­ра­ни­ро­ва­ния ку­ло­нов­ско­го при­тя­же­ния но­си­те­ли за­ря­да в них ока­зы­ва­ют­ся сво­бод­ны­ми да­же при та­ких низ­ких темп-рах, при ко­то­рых бы­ла не­воз­мож­на тер­мич. ак­ти­ва­ция элек­тро­на или дыр­ки из изо­ли­ро­ван­но­го ато­ма.

В от­сут­ст­вие внеш­не­го элек­трич. по­ля или ос­ве­ще­ния кон­цен­тра­ция сво­бод­ных но­си­те­лей за­ря­да на­зы­ва­ет­ся рав­но­вес­ной и оп­ре­де­ля­ет­ся ши­ри­ной за­пре­щён­ной зо­ны П., эф­фек­тив­ны­ми мас­са­ми но­си­те­лей за­ря­да, кон­цен­тра­ци­ей при­ме­сей и энер­ги­ей свя­зи при­мес­ных но­си­те­лей за­ря­да.

На­ря­ду с при­ме­ся­ми, ис­точ­ни­ка­ми но­си­те­лей за­ря­да мо­гут быть и разл. де­фек­ты струк­ту­ры, напр. ва­кан­сии (от­сут­ствие од­но­го из ато­мов ре­шёт­ки), ме­ж­узель­ные ато­мы, а так­же не­дос­та­ток или из­бы­ток ато­мов од­но­го из ком­по­нен­тов в по­лу­про­вод­ни­ко­вых со­еди­не­ни­ях (от­кло­не­ния от сте­хио­мет­рич. со­ста­ва).

Электрические свойства полупроводников

Во внеш­нем элек­трич. по­ле на но­си­те­ли за­ря­да в твёр­дом те­ле дей­ст­ву­ет си­ла, ко­то­рая из­ме­ня­ет их ско­рость и при­во­дит к на­прав­лен­но­му дви­же­нию. Под дей­ст­ви­ем си­лы но­си­те­ли за­ря­да долж­ны ус­ко­рять­ся, од­на­ко в кри­стал­лах вслед­ст­вие взаи­мо­дей­ст­вия элек­тронов с де­фек­та­ми, ко­ле­ба­ния­ми ре­шёт­ки и т. д. воз­ни­ка­ет си­ла тре­ния, ко­то­рая урав­но­ве­ши­ва­ет си­лу, дей­ст­вую­щую со сто­ро­ны по­ля. В ре­зуль­та­те но­си­те­ли за­ря­да дви­жут­ся с по­сто­ян­ной сред­ней (дрей­фо­вой) ско­ро­стью $v_{др}$, за­ви­ся­щей от на­пря­жён­но­сти $E$ элек­трич. по­ля. Мож­но вве­сти по­ня­тие под­виж­но­сти но­си­те­лей за­ря­да $μ=v_{др}/E$. Дей­ст­вие си­лы тре­ния оз­на­ча­ет, что в элек­трич. по­ле но­си­тель за­ря­да ис­пы­ты­ва­ет сво­бод­ное ус­ко­ре­ние толь­ко в про­ме­жут­ке вре­ме­ни $Δt$ ме­ж­ду дву­мя ак­та­ми рас­сея­ния, так что $v_{др}=eEτ/m$ ($m$ – эф­фек­тив­ная мас­са но­си­те­ля, $e$ – его за­ряд, $τ$ – вре­мя ре­лак­са­ции, за ко­то­рое сво­бод­ный но­си­тель за­ря­да в от­сут­ст­вие по­ля те­ря­ет свой на­прав­лен­ный ква­зи­им­пульс). Обыч­но $τ$ не за­ви­сит от ве­ли­чи­ны внеш­не­го по­ля и оп­ре­де­ля­ет­ся теп­ло­вым хао­тич. дви­же­ни­ем но­си­те­лей за­ря­да в твёр­дом те­ле, так что ско­рость те­п­ло­во­го дви­же­ния на неск. по­ряд­ков пре­вос­хо­дит $v_{др}$. Так, напр., для ти­пич­ных П. при $T=300$ К в весь­ма силь­ном элек­трич. по­ле ($E$=3·104 В/м) ско­рость $v_{др}$ со­став­ля­ет 10–100 м/с, а ве­ли­чи­на ср. те­п­ло­вой ско­ро­сти – 105–106 м/с.

Ве­ли­чи­ны $τ$ и $μ$ за­ви­сят от ти­па про­во­ди­мо­сти, хи­мич. со­ста­ва П., темп-ры, кон­цен­тра­ции де­фек­тов и при­ме­сей. При темп-рах ни­же темп-ры ки­пе­ния жид­ко­го азо­та (77 К) под­виж­ность $μ$ воз­рас­та­ет с рос­том темп-ры, а при темп-рах вы­ше 77 К – умень­ша­ет­ся, про­хо­дя че­рез мак­си­мум вбли­зи 100 К. Та­кая за­ви­си­мость $μ(T)$ объ­яс­ня­ет­ся на­ли­чи­ем двух осн. при­чин рас­сея­ния но­си­те­лей за­ря­да – на за­ря­жен­ных при­ме­сях и фо­но­нах. При низ­ких темп-рах, ко­гда при­мес­ные ато­мы ио­ни­зо­ва­ны, рас­сея­ние на них пре­вос­хо­дит рас­сея­ние на фо­но­нах, по­сколь­ку рав­но­вес­ных фо­но­нов ма­ло. С уве­ли­че­ни­ем темп-ры ср. энер­гия но­си­те­лей воз­рас­та­ет, эф­фек­тив­ность рас­сея­ния умень­ша­ет­ся, вре­мя ме­ж­ду столк­но­ве­ния­ми и под­виж­ность воз­рас­та­ют. При темп-рах ок. 100 К рез­ко воз­рас­та­ет кон­цен­тра­ция рав­но­вес­ных фо­но­нов и взаи­мо­дей­ст­вие с ни­ми ог­ра­ни­чи­ва­ет под­виж­ность, вслед­ст­вие это­го с уве­ли­че­ни­ем темп-ры под­виж­ность умень­ша­ет­ся. При $T$=300 К ха­рак­тер­ные зна­че­ния $τ$ для П. ле­жат в ин­тер­ва­ле 10–13–10–12 с, а $μ$  – в ин­тер­ва­ле 102–10–2 м/с. При мень­ших зна­че­ни­ях под­виж­но­сти дли­на сво­бод­но­го про­бе­га (про­из­ве­де­ние ср. ско­ро­сти теп­ло­во­го дви­же­ния на вре­мя $τ$) ста­но­вит­ся мень­ше рас­стоя­ния ме­ж­ду ато­ма­ми и го­во­рить о сво­бод­ном дви­же­нии но­си­те­лей за­ря­да нель­зя. Воз­ни­ка­ет прыж­ко­вая про­во­ди­мость, ко­то­рая обу­слов­ле­на пе­ре­ско­ка­ми но­си­те­лей за­ря­да в про­стран­ст­ве от од­но­го ио­на к дру­го­му (реа­ли­зу­ет­ся в ор­га­ни­че­ских по­лу­про­вод­ни­ках).

На­прав­лен­но­му дви­же­нию но­си­те­лей за­ря­да во внеш­нем элек­трич. по­ле пре­пят­ст­ву­ет их те­п­ло­вое хао­тич. дви­же­ние. Ес­ли в ре­зуль­та­те при­ло­же­ния элек­т­рич. по­ля но­си­те­ли со­би­ра­ют­ся у гра­ни­цы об­раз­ца и их кон­цен­тра­ция за­ви­сит от ко­ор­ди­нат, то хао­тич. дви­же­ние при­во­дит к вы­рав­ни­ва­нию кон­цен­тра­ции и но­си­те­ли пе­ре­хо­дят из об­лас­ти про­ст­ран­ст­ва с боль­шей кон­цен­тра­ци­ей в об­ласть, где их кон­цен­тра­ция мень­ше. Та­кой про­цесс на­зы­ва­ет­ся диф­фу­зи­ей но­си­те­лей за­ря­да и оп­ре­де­ля­ет­ся ко­эф. диф­фу­зии $D$. В ус­ло­ви­ях рав­но­ве­сия пол­ный по­ток но­си­те­лей за­ря­да от­сут­ст­ву­ет, так что диф­фу­зи­он­ный по­ток пол­но­стью ком­пен­си­ру­ет по­ток час­тиц во внеш­нем по­ле. Это оз­на­ча­ет, что ко­эф. диф­фу­зии свя­зан с под­виж­но­стью. Для не­вы­ро­ж­ден­ных но­си­те­лей $D=kTμ/e$ (со­от­но­ше­ние Эйн­штей­на). Для ти­пич­ных П. при ком­нат­ной темп-ре ве­ли­чи­на $D$ со­став­ля­ет 10–3–10–2 м2/с. Для не­рав­но­вес­ных но­си­те­лей за­ря­да, напр. в слу­чае ин­жек­ции в элек­трон­но-ды­роч­ном пе­ре­хо­де (см. p–n-Пе­ре­ход), вво­дит­ся по­ня­тие диф­фу­зи­он­ной дли­ны $L_D$, ко­то­рая оп­ре­де­ля­ет умень­ше­ние чис­ла но­си­те­лей в про­цес­се диф­фу­зии за счёт их реком­би­на­ции: $L_D=\sqrt{D\tau_0}$, где $τ_0$ – вре­мя жиз­ни не­ос­нов­ных но­си­те­лей.

На­ло­же­ние внеш­не­го маг­нит­но­го по­ля из­ме­ня­ет ус­ло­вия про­те­ка­ния элек­трич. то­ка в П. и при­во­дит к галь­ва­но­маг­нит­ным яв­ле­ни­ям, ко­то­рые наи­бо­лее силь­но про­яв­ля­ют­ся в маг­нит­ных по­лу­про­вод­ни­ках и по­лу­маг­нит­ных по­лу­про­вод­ни­ках. В П. для ис­сле­до­ва­ний и прак­тич. при­ме­не­ний наи­бо­лее час­то маг­нит­ное по­ле при­кла­ды­ва­ют пер­пен­ди­ку­ляр­но элек­трич. по­лю, в этом слу­чае име­ют ме­сто Хол­ла эф­фект и Шуб­ни­ко­ва – де Хаа­за эф­фект, клас­сич. маг­ни­то­со­про­тив­ле­ние, сла­бая ло­ка­ли­за­ция но­си­те­лей за­ря­да, а в дву­мер­ных струк­ту­рах – кван­то­вый эф­фект Хол­ла и дроб­ный кван­то­вый эф­фект Хол­ла. В маг­нит­ном по­ле на за­ря­жен­ные час­ти­цы дей­ст­ву­ет си­ла Ло­рен­ца, они на­чи­на­ют вра­щать­ся в плос­ко­сти, пер­пен­ди­ку­ляр­ной на­прав­ле­нию маг­нит­но­го по­ля, с цик­ло­трон­ной час­то­той $ω_с$ и со­хра­ня­ют свою ско­рость вдоль маг­нит­но­го по­ля. В за­ви­си­мо­сти от ве­ли­чи­ны про­из­ве­де­ния $ω_сτ$ раз­ли­ча­ют клас­си­че­ские сла­бые ($ω_сτ≪1$), клас­си­че­ские ($ω_сτ>1$) и кван­тую­щие ($ωсτ≫1$ и $\hbar ω_с≫kT$) маг­нит­ные по­ля, где $\hbar$ – по­сто­ян­ная План­ка.

В маг­нит­ных по­лях, ко­гда $ω_сτ∼1$, дви­же­ние но­си­те­лей за­ря­да мож­но опи­сы­вать клас­сич. урав­не­ния­ми Нью­то­на, в этом слу­чае име­ет ме­сто эф­фект Хол­ла, со­стоя­щий в воз­ник­но­ве­нии до­пол­нит. элек­трич. по­ля, пер­пен­ди­ку­ляр­но­го внеш­ним элек­трич. и маг­нит­но­му по­лям. Это до­пол­нит. по­ле ком­пен­си­ру­ет по­ток час­тиц, вы­зван­ный со­вме­ст­ным дей­ст­ви­ем при­ло­жен­ных элек­трич. и маг­нит­но­го по­лей, и за­ви­сит от ве­ли­чи­ны маг­нит­но­го по­ля и кон­цен­тра­ции сво­бод­ных но­си­те­лей за­ря­да, а его на­прав­ле­ние оп­ре­де­ля­ет­ся зна­ком за­ря­да, по­это­му эф­фект Хол­ла ис­поль­зу­ет­ся для оп­ре­де­ле­ния зна­ка и кон­цен­тра­ции но­си­те­лей за­ря­да.

В бо­лее силь­ных по­лях, ко­гда $ω_сτ≫1$, но ха­рак­тер­ная энер­гия но­си­те­лей за­ря­да зна­чи­тель­но пре­вос­хо­дит $\hbar ω_с$, не­об­хо­ди­мо учи­ты­вать кван­то­ва­ние но­си­те­лей за­ря­да во внеш­нем маг­нит­ном по­ле, в ре­зуль­та­те плот­ность со­стоя­ний как функ­ция об­рат­но­го по­ля при­об­ре­та­ет вид ост­рых, пе­рио­ди­че­ски рас­по­ло­жен­ных пи­ков.2$. Зна­че­ние про­доль­но­го со­про­тив­ле­ния об­ра­ща­ет­ся в нуль в маг­нит­ных по­лях, от­ве­чаю­щих сту­пень­кам на за­ви­си­мо­сти по­пе­реч­но­го со­про­тив­ле­ния от маг­нит­но­го по­ля и пи­кам ме­ж­ду сту­пень­ка­ми. Та­кое по­ве­де­ние объ­яс­ня­ет­ся осо­бен­но­стя­ми дви­же­ния но­си­те­лей за­ря­да в силь­ном маг­нит­ном по­ле в ус­ло­ви­ях дей­ст­вия слу­чай­ных элек­трич. и де­фор­ма­ци­он­ных по­лей, имею­щих разл. про­стран­ст­вен­ный мас­штаб. При ещё боль­шем маг­нит­ном по­ле име­ет ме­сто дроб­ный кван­то­вый эф­фект Хол­ла, про­яв­ляю­щий­ся в до­пол­нит. рас­ще­п­ле­нии сту­пе­нек. Од­на­ко кван­то­вый ха­рак­тер но­си­те­лей за­ря­да мо­жет про­яв­лять­ся и в сла­бых маг­нит­ных по­лях. Ока­за­лось, что при низ­ких темп-рах в П. и ме­тал­лах на­блю­да­ет­ся не­боль­шое (ок. 1–5% от об­ще­го) из­ме­не­ние про­во­ди­мо­сти, про­пор­цио­наль­ное квад­ра­ту маг­нит­но­го по­ля. Этот эф­фект объ­яс­ня­ет­ся яв­ле­ни­ем сла­бой ло­ка­ли­за­ции, со­стоя­щим в уве­ли­че­нии со­про­тив­ле­ния про­во­дя­щих ма­те­риа­лов за счёт уси­ле­ния рас­сея­ния на­зад при диф­фу­зи­он­ном дви­же­нии час­тиц.

Оптические свойства полупроводников

Зон­ная струк­ту­ра кри­стал­лов про­яв­ля­ет­ся в свой­ст­вах про­пус­ка­ния, от­ра­же­ния и по­гло­ще­ния по­лу­про­вод­ни­ка­ми элек­тро­маг­нит­но­го из­лу­че­ния. Наи­бо­лее оче­вид­но су­ще­ст­во­ва­ние за­пре­щён­ной зо­ны сле­ду­ет из то­го, что из­лу­че­ние с энер­ги­ей кван­та, мень­шей ши­ри­ны за­пре­щён­ной зо­ны $ℰ_g$ чис­то­го П., не по­гло­ща­ет­ся. По­гло­ще­ние на­чи­на­ет­ся толь­ко то­гда, ко­гда энер­гия кван­та пре­вы­сит $ℰ_g$. Для П. ти­па GaAs при низ­ких темп-рах дли­на вол­ны, на ко­то­рой ин­тен­сив­ность па­даю­ще­го из­лу­че­ния умень­ша­ет­ся в $e$ раз, при­бли­зи­тель­но рав­на 0,1 мкм. При та­ком по­гло­ще­нии кван­та све­та в П. воз­ни­ка­ют элек­трон и дыр­ка и име­ет ме­сто за­кон со­хра­не­ния ква­зи­им­пуль­са. Обыч­но им­пульс све­та зна­чи­тель­но мень­ше квази­им­пуль­сов но­си­те­лей за­ря­да, и при оп­тич. пе­ре­хо­де элек­тро­на из ва­лент­ной зо­ны в зо­ну про­во­ди­мо­сти ква­зи­им­пульс не из­ме­ня­ет­ся, так что в мо­мент ро­ж­де­ния элек­трон и дыр­ка име­ют про­ти­во­по­лож­ные ква­зи­им­пуль­сы. Та­кие пе­ре­хо­ды на­зы­ва­ют­ся пря­мы­ми; они про­ис­хо­дят в т. н. пря­мо­зон­ных П. (GaAs, InSb, Te, SiC), в ко­то­рых по­то­лок ва­лент­ной зо­ны и дно зо­ны про­во­ди­мо­сти рас­по­ло­же­ны в од­ной точ­ке зо­ны Брил­лю­эна.

Элек­трон­ные пе­ре­хо­ды со зна­чит. из­ме­не­ни­ем ква­зи­им­пуль­са про­ис­хо­дят в т. н. не­пря­мо­зон­ных П. (Ge, Si, AlAs, GaP), у ко­то­рых вер­ши­на ва­лент­ной зо­ны и дно зо­ны про­во­ди­мо­сти раз­не­се­ны в про­стран­ст­ве ква­зи­им­пуль­сов на ве­ли­чи­ну по­ряд­ка $π/d$, где $d$ – меж­атом­ное рас­стоя­ние в кри­стал­лич. ре­шёт­ке. В этом слу­чае для вы­пол­не­ния за­ко­на со­хра­не­ния ква­зи­им­пуль­са не­об­хо­ди­мо уча­стие треть­ей час­ти­цы, в ка­че­ст­ве ко­то­рой мо­жет вы­сту­пать ли­бо при­мес­ный атом, ли­бо фо­нон. Ти­пич­ная дли­на по­гло­ще­ния для не­пря­мых пе­ре­хо­дов со­став­ля­ет 1–10 мкм.

В спек­тре по­гло­ще­ния П. при­сут­ст­ву­ют ши­ро­кие энер­ге­тич. по­ло­сы, что ука­зы­ва­ет на то, что элек­тро­ны в ва­лент­ных зо­нах свя­за­ны сла­бо и лег­ко по­ля­ри­зу­ют­ся под дей­ст­ви­ем элек­трич. по­ля. Это оз­на­ча­ет, что П. ха­рак­те­ри­зу­ют­ся от­но­си­тель­но боль­шой ди­элек­трич. про­ни­цае­мо­стью $ε$, напр. в Ge $ε=16$, в GaAs $ε=11$, в PbTe $ε=30$. Бла­го­да­ря боль­шим зна­че­ни­ям $ε$ ку­ло­нов­ское взаи­мо­дей­ст­вие элек­тро­нов и ды­рок друг с дру­гом или с за­ря­жен­ны­ми при­ме­ся­ми силь­но по­дав­ле­но, ес­ли они на­хо­дят­ся друг от дру­га на рас­стоя­нии, пре­вы­шаю­щем раз­ме­ры эле­мен­тар­ной ячей­ки. Это и по­зво­ля­ет во мно­гих слу­ча­ях рас­смат­ри­вать дви­же­ние ка­ж­до­го но­си­те­ля за­ря­да не­за­ви­си­мо от дру­гих. Ес­ли бы ку­ло­нов­ское взаи­мо­дей­ст­вие не ос­лаб­ля­лось, то при­мес­ные ио­ны мог­ли бы свя­зы­вать но­си­те­ли за­ря­да в ус­той­чи­вые, ло­ка­ли­зован­ные в про­стран­ст­ве об­ра­зо­ва­ния с энер­ги­ей ок. 10 эВ. В этом слу­чае при темп-рах ок. 300 К те­п­ло­вое дви­же­ние прак­ти­че­ски не мог­ло бы ра­зо­рвать эти свя­зи, соз­дать сво­бод­ные но­си­те­ли за­ря­да и при­вес­ти к за­мет­ной элек­тро­про­вод­но­сти. Та­кое свя­зы­ва­ние име­ет ме­сто в П. и ди­элек­три­ках, но из-за ос­лаб­ле­ния ку­ло­нов­ско­го взаи­мо­дей­ст­вия и от­но­си­тель­но ма­лых эф­фек­тив­ных масс элек­тро­нов и ды­рок (ок. 0,1–0,5 от мас­сы сво­бод­но­го элек­тро­на) энер­гия свя­зи та­ких об­ра­зо­ва­ний (эк­си­то­нов) со­став­ля­ет 1–50 мэВ, что мно­го мень­ше энер­гии ио­ни­за­ции ато­мов. Эк­си­то­ны лег­ко иони­зу­ют­ся при темп-рах вы­ше темп-ры жид­ко­го азо­та и, т. о., не пре­пят­ст­ву­ют об­ра­зо­ва­нию сво­бод­ных но­си­те­лей. Тем не ме­нее при низ­ких темп-рах об­ра­зо­ва­ние эк­си­то­нов при­во­дит к по­гло­ще­нию в чис­тых П. элек­тро­маг­нит­но­го из­лу­че­ния с энер­ги­ей кван­та, мень­шей $ℰ_g$ на ве­ли­чи­ну энер­гии свя­зи эк­си­то­на.

Про­зрач­ность П. в уз­кой об­лас­ти час­тот вбли­зи края собств. по­гло­ще­ния из­ме­ня­ет­ся под дей­ст­ви­ем внеш­них (элек­трич., маг­нит­но­го и др.) по­лей. Элек­трич. по­ле, ус­ко­ряя элек­трон, мо­жет в про­цес­се оп­тич. пе­ре­хо­да пе­ре­дать ему не­боль­шую до­пол­нит. энер­гию, в ре­зуль­та­те че­го пря­мые оп­тич. пе­ре­хо­ды из ва­лент­ной зо­ны в зо­ну про­во­ди­мо­сти про­ис­хо­дят под дей­ст­ви­ем кван­тов све­та с энер­ги­ей, мень­шей $ℰ_g$ (Кел­ды­ша – Фран­ца эф­фект).

В од­но­род­ном маг­нит­ном по­ле за­кон со­хра­не­ния ква­зи­им­пуль­са при­во­дит к со­хра­не­нию кру­го­во­го дви­же­ния элек­тро­нов и ды­рок по­сле по­гло­ще­ния из­лу­чения. В ре­зуль­та­те за­ви­си­мость ко­эф. по­гло­ще­ния от час­то­ты па­даю­ще­го из­лу­че­ния при­ни­ма­ет вид уз­ких пи­ков. Кро­ме собств. по­гло­ще­ния (за счёт пря­мых или не­пря­мых пе­ре­хо­дов), в П. име­ет ме­сто по­гло­ще­ние све­та сво­бод­ны­ми но­си­те­ля­ми, свя­зан­ное с их пе­ре­хо­да­ми в пре­де­лах од­ной раз­ре­шён­ной зо­ны. Их вклад в об­щее по­гло­ще­ние мал, по­сколь­ку чис­ло сво­бод­ных но­си­те­лей за­ря­да в П. ма­лó по срав­не­нию с пол­ным чис­лом ва­лент­ных элек­тро­нов, и для их реа­ли­за­ции тре­бу­ет­ся уча­стие треть­ей час­ти­цы – при­ме­си или фо­но­на. Кро­ме то­го, в не­ле­ги­ро­ван­ных П. со зна­чит. до­лей ион­ной свя­зи на­блю­да­ет­ся по­гло­ще­ние да­лё­ко­го ИК-из­лу­че­ния за счёт воз­бу­ж­де­ния ко­ле­ба­ний ре­шёт­ки – фо­но­нов.

Спектр фо­то­лю­ми­нес­цен­ции П. со­сре­до­то­чен в уз­кой об­лас­ти вбли­зи ши­ри­ны за­пре­щён­ной зо­ны. Вклад в фо­то­лю­ми­нес­цен­цию П. мо­гут вно­сить разл. ме­ха­низ­мы из­лу­ча­тель­ной ре­ком­би­на­ции: зо­на – зо­на, зо­на – при­месь, до­нор – ак­цеп­тор, с уча­сти­ем фо­но­на, из­лу­че­ние сво­бод­ных, свя­зан­ных или ло­ка­ли­зо­ван­ных эк­си­то­нов, эк­си­тон-по­ля­ри­тон­ная, би­эк­си­тон­ная ре­ком­би­на­ции. В не­ле­ги­ро­ван­ных струк­ту­рах с кван­то­вы­ми яма­ми низ­ко­тем­пе­ра­тур­ная фо­то­лю­ми­нес­цен­ция об­у­слов­ле­на из­лу­ча­тель­ной ре­ком­би­на­ци­ей эк­си­то­нов, ло­ка­ли­зо­ван­ных на ше­ро­хо­ва­то­стях по­верх­но­сти и флук­туа­ци­ях со­ста­ва.

Оп­тич. свой­ст­ва твёр­дых рас­тво­ров П. мож­но ме­нять в ши­ро­ких пре­де­лах, под­би­рая хи­мич. со­став рас­тво­ра, что об­услов­ли­ва­ет их ши­ро­кое при­ме­не­ние в при­бо­рах оп­то­элек­тро­ни­ки, в пер­вую оче­редь в ка­че­ст­ве ра­бо­чих ма­те­риа­лов ла­зе­ров, све­то- и фо­то­дио­дов, сол­неч­ных эле­мен­тов, де­тек­то­ров из­лу­че­ния.

Полупроводниковые гетеро- и наноструктуры

Совр. фи­зи­ка П. – это, пре­ж­де все­го, фи­зи­ка по­лу­про­вод­ни­ко­вых ге­те­ро­ст­рук­тур и на­но­ст­рук­тур. В по­след­них воз­ни­ка­ет ряд но­вых фи­зич. яв­ле­ний, ко­то­рые не­воз­мож­ны в объ­ём­ных П., напр. кван­то­вые це­ло­чис­лен­ный и дроб­ный эф­фек­ты Хол­ла. В на­но­ст­рук­ту­рах дви­же­ние сво­бод­ных но­си­те­лей за­ря­да ог­ра­ни­че­но в од­ном или не­сколь­ких на­прав­ле­ни­ях, что при­во­дит к раз­мер­ным эф­фек­там, кар­ди­наль­но из­ме­няю­щим энер­ге­тич. спек­тры но­си­те­лей за­ря­да, а так­же фо­но­нов и др. ква­зи­ча­стиц. Важ­ную роль в на­но­ст­рук­ту­рах иг­ра­ют ге­те­ро­гра­ни­цы, по­сколь­ку в сис­те­мах ма­ло­го раз­ме­ра от­но­ше­ние пло­ща­ди по­верх­но­сти к внутр. объ­ё­му струк­ту­ры яв­ля­ет­ся боль­шим. Наи­бо­лее со­вер­шен­ные по­лу­про­вод­ни­ко­вые на­но­ст­рук­ту­ры по­лу­ча­ют ме­то­да­ми мо­ле­ку­ляр­но-пуч­ко­вой эпи­так­сии и га­зо­фаз­ной эпи­так­сии из ме­тал­ло­ор­га­нич. со­еди­не­ний.

В нач. 21 в. сло­жи­лась ус­той­чи­вая тер­ми­но­ло­гия низ­ко­раз­мер­ной фи­зи­ки П. Сис­те­ма­ти­ка на­чи­на­ет­ся с оди­ноч­но­го ге­те­ро­пе­ре­хо­да ме­ж­ду дву­мя ком­по­зи­ци­он­ны­ми ма­те­риа­ла­ми – по­лу­про­вод­ни­ка­ми A и B. Один или оба ма­те­риа­ла мо­гут быть твёр­ды­ми рас­тво­ра­ми (при­ме­ры ге­те­ро­пар A/B: GaAs/Al1–xGaxAs, ZnSe/BeTe). По оп­ре­де­ле­нию, в ге­те­ро­пере­хо­дах пер­во­го ти­па за­пре­щён­ная зо­на $ℰ_g$ од­но­го из ком­по­зиц. ма­те­риа­лов ле­жит внут­ри за­пре­щён­ной зо­ны др. ма­те­риа­ла. В этом слу­чае по­тен­ци­аль­ные ямы для элек­тро­нов или ды­рок рас­по­ло­же­ны в од­ном и том же слое. В ге­те­ро­пе­ре­хо­дах вто­ро­го ти­па дно зо­ны про­во­ди­мо­сти ни­же в од­ном, а по­то­лок ва­лент­ной зо­ны вы­ше в дру­гом П. Для ука­зан­ных ге­те­ро­пар за­пре­щён­ные зо­ны пе­ре­кры­ва­ют­ся. Име­ют­ся так­же гете­ро­пе­ре­хо­ды вто­ро­го ти­па (напр., InAs/GaSb), у ко­то­рых за­пре­щён­ные зо­ны не пе­ре­кры­ва­ют­ся и дно зо­ны про­во­ди­мо­сти од­ного П.B_g$.

К по­лу­про­вод­ни­ко­вым на­но­ст­рук­ту­рам от­но­сят кван­то­вые ямы, кван­то­вые про­во­ло­ки, кван­то­вые точ­ки. В кван­то­вой яме дви­же­ние сво­бод­но­го но­си­те­ля за­ря­да (элек­тро­на или дыр­ки) ог­ра­ни­че­но в од­ном из на­прав­ле­ний. В ре­зуль­та­те воз­ни­ка­ет про­стран­ст­вен­ное кван­то­ва­ние и энер­ге­тич. спектр по од­но­му из кван­то­вых чи­сел из не­пре­рыв­но­го ста­но­вит­ся дис­крет­ным – ка­ж­дая трёх­мер­ная энер­ге­тич. элек­трон­ная зо­на пре­вра­ща­ет­ся в се­рию дву­мер­ных под­зон раз­мер­но­го кван­то­ва­ния. Ес­теств. раз­ви­ти­ем од­но­барь­ер­ной струк­ту­ры яв­ля­ют­ся двух- и муль­ти­барь­ер­ные струк­ту­ры, на ос­но­ве ко­то­рых соз­да­ют­ся ре­зо­нанс­но-барь­ер­ные при­бо­ры. От оди­ноч­ной кван­то­вой ямы пе­ре­хо­дят к струк­ту­ре с дву­мя или тре­мя кван­то­вы­ми яма­ми и струк­ту­рам с це­лым на­бо­ром изо­ли­ро­ван­ных кван­то­вых ям. По ме­ре то­го как барь­е­ры ста­но­вят­ся тонь­ше, тун­не­ли­ро­ва­ние но­си­те­лей за­ря­да из од­ной ямы в дру­гую ста­но­вит­ся за­мет­нее, и элек­трон­ные со­стоя­ния в под­зо­нах раз­мер­но­го кван­то­ва­ния изо­ли­ро­ван­ных ям транс­фор­ми­ру­ют­ся в трёх­мер­ные ми­ни­зон­ные со­стоя­ния. В ре­зуль­та­те пе­рио­дич. струк­ту­ра изо­ли­ро­ван­ных кван­то­вых ям, или тол­сто­барь­ер­ная сверх­ре­шёт­ка, пре­вра­ща­ет­ся в тон­ко­барь­ер­ную сверх­ре­шёт­ку, или про­сто сверх­ре­шёт­ку. По­лу­про­вод­ни­ко­вая сверх­ре­шёт­ка ис­поль­зу­ет­ся для со­зда­ния кван­то­вых кас­кад­ных ла­зе­ров, из­лу­че­ние ко­то­рых воз­ни­ка­ет при пе­ре­хо­де элек­тро­нов ме­ж­ду слоя­ми струк­ту­ры.

Кро­ме струк­тур с кван­то­вы­ми яма­ми, су­ще­ст­ву­ют и др. дву­мер­ные сис­те­мы, напр. гра­фен и струк­ту­ра ме­талл – ди­элек­трик – по­лу­про­вод­ник (МДП-струк­ту­ра), ко­то­рая ис­поль­зу­ет­ся в мик­ро­элек­тро­ни­ке в ви­де по­ле­во­го МДП-тран­зи­сто­ра.

В од­но­мер­ных сис­те­мах – кван­то­вых про­во­ло­ках – дви­же­ние но­си­те­лей за­ря­да сво­бод­но толь­ко в од­ном на­прав­ле­нии (напр., в уг­ле­род­ной на­нот­руб­ке, по­лу­чае­мой свёр­ты­ва­ни­ем гра­фе­но­вой по­лос­ки и за­кре­п­ле­ни­ем её про­ти­во­по­лож­ных сто­рон). Др. при­мер та­кой струк­ту­ры – кван­то­вая яма, вы­ра­щен­ная на ско­ле, со­дер­жа­щем пер­пен­ди­ку­ляр­ную ему кван­то­вую яму. Кван­то­вая ме­ха­ни­ка до­пус­ка­ет фор­ми­ро­ва­ние од­но­мер­ных элек­трон­ных со­стоя­ний на сты­ке двух та­ких ям.

В кван­то­вых точ­ках дви­же­ние но­си­те­лей за­ря­да ог­ра­ни­че­но во всех трёх на­прав­ле­ни­ях, напр. в на­нок­ри­стал­лах CdSe, вы­ра­щен­ных в стек­лян­ной мат­ри­це, и в эпи­так­си­аль­ных кван­то­вых точ­ках GaAs/InAs, вы­ра­щен­ных по ме­ха­низ­му Странс­ки – Кра­ста­но­ва.

Ши­ро­кое при­ме­не­ние по­лу­чи­ли по­лу­про­вод­ни­ко­вые ла­зе­ры на кван­то­вых ямах и мас­си­вах кван­то­вых то­чек. В струк­ту­ре с двой­ным ог­ра­ни­че­ни­ем сти­му­ли­ро­ван­ное из­лу­че­ние вы­хо­дит из тор­ца, пер­пен­ди­ку­ляр­но на­прав­ле­нию рос­та. Кван­то­вый мик­ро­ре­зо­на­тор, т. е. кван­то­вые ямы или кван­то­вые точ­ки, вы­ра­щен­ные в ак­тив­ной об­лас­ти оп­тич. мик­ро­ре­зо­на­то­ра, ис­поль­зу­ет­ся для соз­да­ния вер­ти­каль­но из­лу­чаю­щих ла­зе­ров.

Воз­мож­ность в ши­ро­ких пре­де­лах управ­лять фи­зич. свой­ст­ва­ми П. при­во­дит к их мно­го­чис­лен­ным и раз­но­об­раз­ным при­ме­не­ни­ям (см. По­лу­про­вод­ни­ко­вые ма­те­риа­лы).

Определение полупроводников

Что такое полупроводник?

Полупроводник — это материальный продукт, обычно состоящий из кремния, который проводит электричество больше, чем изолятор, такой как стекло, но меньше, чем чистый проводник, такой как медь или алюминий. Их проводимость и другие свойства могут быть изменены путем введения примесей, называемых легированием, для удовлетворения конкретных потребностей электронного компонента, в котором он находится. Полупроводники, также известные как полупроводники или чипы, можно найти в тысячах продуктов, таких как компьютеры, смартфоны, бытовая техника, игровое оборудование и медицинское оборудование.

ключевые выносы

  • Полупроводник, который содержится в тысячах электронных продуктов, — это материал, который проводит электричество больше, чем изолятор, но меньше, чем чистый проводник.
  • Есть четыре основных типа полупроводников.
  • Полупроводниковая промышленность живет и умирает по простому кредо: меньше, быстрее и дешевле.
  • Инвесторам следует иметь в виду, что полупроводниковая промышленность очень циклична и подвержена периодическим подъемам и спадам.

Понимание полупроводников

Полупроводниковые устройства могут демонстрировать ряд полезных свойств, таких как показывать переменное сопротивление, легче пропускать ток в одном направлении, чем в другом, и реагировать на свет и тепло. Их фактическая функция включает усиление сигналов, переключение и преобразование энергии. Таким образом, они находят широкое применение почти во всех отраслях промышленности, а компании, производящие и тестирующие их, считаются отличными индикаторами состояния экономики в целом.

Типы полупроводников

Вообще говоря, полупроводники делятся на четыре основные категории продукции:

  • Память: Микросхемы памяти служат в качестве временных хранилищ данных и передают информацию в мозг компьютерных устройств и из него. Консолидация рынка памяти продолжается, в результате чего цены на память настолько низки, что лишь несколько гигантов, таких как Toshiba, Samsung и NEC, могут позволить себе остаться в игре.
  • Микропроцессоры: Это центральные процессоры, которые содержат базовую логику для выполнения задач.Доминирование Intel в сегменте микропроцессоров вытеснило почти всех конкурентов, за исключением Advanced Micro Devices, с основного рынка в более мелкие ниши или разные сегменты в целом.
  • Товарные интегральные схемы: Иногда их называют «стандартными микросхемами», они производятся огромными партиями для повседневной обработки. Этот сегмент, в котором доминируют очень крупные азиатские производители микросхем, предлагает мизерную прибыль, с которой могут конкурировать только крупнейшие полупроводниковые компании.
  • Комплексный SOC: «Система на кристалле» — это, по сути, создание интегральной микросхемы с возможностями всей системы на ней. Рынок вращается вокруг растущего спроса на потребительские товары, сочетающие в себе новые функции и более низкие цены. Поскольку двери на рынки памяти, микропроцессоров и товарных интегральных схем плотно закрыты, сегмент SOC, возможно, остается единственным, у которого есть достаточно возможностей для привлечения широкого круга компаний.

Полупроводниковая промышленность

Успех в полупроводниковой промышленности зависит от создания более компактных, быстрых и дешевых продуктов.Преимущество крошечности заключается в том, что на один и тот же чип можно поместить больше энергии. Чем больше транзисторов на микросхеме, тем быстрее она выполняет свою работу. Это создает жесткую конкуренцию в отрасли, а новые технологии снижают стоимость производства одного чипа, так что в течение нескольких месяцев цена нового чипа может упасть на 50%.

Это привело к наблюдениям, названным законом Мура, который гласит, что количество транзисторов в плотной интегральной схеме удваивается примерно каждые два года.Это наблюдение названо в честь Гордона Мура, соучредителя Fairchild Semiconductor и Intel, который написал статью с описанием этого в 1965 году. В настоящее время период удвоения часто составляет 18 месяцев — цифру, которую приводит исполнительный директор Intel Дэвид Хаус.

В результате на производителей микросхем постоянно оказывается давление, чтобы они изобрели что-то лучше и даже дешевле, чем то, что определяло современное состояние всего несколько месяцев назад. Поэтому полупроводниковым компаниям необходимо поддерживать большие бюджеты на исследования и разработки.Ассоциация исследования рынка полупроводников IC Insights сообщила, что 10 крупнейших полупроводниковых компаний потратили в среднем 13,0% продаж на НИОКР в 2017 году, в диапазоне от 5,2% до 24,0% для отдельных компаний.

Традиционно полупроводниковые компании контролировали весь производственный процесс, от проектирования до производства. Тем не менее, многие производители микросхем теперь делегируют все больше и больше продукции другим представителям отрасли. Литейные компании, единственной сферой деятельности которых является производство, в последнее время вышли на первый план, предлагая привлекательные варианты аутсорсинга.Помимо литейных заводов, ряды дизайнеров и тестеров микросхем, которые становятся все более специализированными, начинают пополняться. Компании по производству микросхем становятся все более экономичными и эффективными. Производство чипсов теперь напоминает кухню ресторана изысканной кухни, где повара выстраиваются в очередь, чтобы добавить в смесь нужные специи.

В 80-е годы производители микросхем жили с доходностью (количество работающих устройств от всего произведенного) 10–30%. Однако, чтобы быть конкурентоспособными сегодня, производители микросхем должны поддерживать доходность 80-90%. Это требует очень дорогих производственных процессов.В результате многие компании, производящие полупроводники, занимаются проектированием и маркетингом, но предпочитают отдать часть или все производство на аутсорсинг. Известные как производители микросхем без фабрики, эти компании имеют высокий потенциал роста, поскольку они не обременены накладными расходами, связанными с производством или «изготовлением».

Инвестиции в полупроводниковую промышленность

Помимо инвестирования в отдельные компании, есть несколько способов контролировать инвестиционные показатели всего сектора.К ним относятся эталонный индекс PHLX Semiconductor Index, известный как SOX, а также его производные формы в биржевых фондах. Есть также индексы, которые делят сектор на производителей микросхем и производителей оборудования для микросхем. Последний разрабатывает и продает оборудование и другую продукцию, используемую для разработки и тестирования полупроводников.

Кроме того, некоторые зарубежные рынки, такие как Тайвань, Южная Корея и, в меньшей степени, Япония, сильно зависят от полупроводников, и поэтому их индексы также дают представление о состоянии мировой промышленности.

Особенности инвестирования в полупроводники

Если инвесторы в полупроводники могут помнить одну вещь, это должно быть то, что полупроводниковая промышленность очень циклична. Производители полупроводников часто сталкиваются с циклами «подъема и спада», основанными на базовом спросе на продукты на основе микросхем. В хорошие времена прибыль производителей микросхем может быть очень высокой; Однако когда спрос падает, цены на микросхемы могут резко упасть и оказать серьезное влияние на цепочки поставок многих отраслей.

Спрос обычно отслеживает спрос со стороны конечного рынка на персональные компьютеры, сотовые телефоны и другое электронное оборудование. В хорошие времена такие компании, как Intel и Toshiba, не могут производить микрочипы достаточно быстро, чтобы удовлетворить спрос. Когда наступают тяжелые времена, они могут быть совершенно жестокими. Например, низкие продажи ПК могут поставить отрасль — и цены на ее акции — в штопор.

В то же время нет смысла говорить о «цикле чипа», как если бы это было событием особого характера.В то время как полупроводники по-прежнему являются сырьевым бизнесом, их конечные рынки настолько многочисленны — ПК, коммуникационная инфраструктура, автомобили, потребительские товары и т. Д. — что маловероятно, что избыточная мощность в одной области приведет к падению всего дома.

Риски цикличности

Удивительно, но цикличность отрасли может в определенной степени утешить инвесторов. В некоторых других технологических секторах, таких как телекоммуникационное оборудование, никогда нельзя быть полностью уверенным в том, является ли состояние циклическим или светским.Напротив, инвесторы могут быть почти уверены, что рынок в какой-то момент в не столь отдаленном будущем развернется.
Хотя цикличность дает некоторое утешение, она также создает риск для инвесторов. Производители фишек должны регулярно участвовать в азартных играх с высокими ставками. Большой риск связан с тем, что после крупного проекта разработки компаниям может потребоваться много месяцев или даже лет, чтобы выяснить, сорвали ли они джекпот или все сорвали. Одной из причин задержки является переплетенная, но фрагментированная структура отрасли: различные секторы достигают пика и минимума в разное время.Например, нижняя точка для литейных производств часто наступает намного раньше, чем для разработчиков микросхем. Другой причиной является длительное время выполнения заказа в отрасли: на разработку микросхемы или создание литейного цеха уходят годы, и еще больше времени, прежде чем продукты приносят прибыль.

Компании, производящие полупроводники, сталкиваются с классической загадкой: движет ли рынок технология, или рынок движет технологией. Инвесторы должны признать, что оба они применимы для полупроводниковой промышленности.

Что такое полупроводник?

Полупроводник — это материал, который обладает определенными уникальными свойствами в том, как он реагирует на электрический ток. Это материал, который имеет гораздо меньшее сопротивление прохождению электрического тока в одном направлении, чем в другом. Электропроводность полупроводника находится между проводимостью хорошего проводника (например, меди) и изолятора (например, резины). Отсюда и название полупроводник. Полупроводник — это также материал, электрическая проводимость которого может быть изменена (так называемое легирование) путем изменения температуры, приложенных полей или добавления примесей.

Хотя полупроводник не является изобретением, и никто не изобрел полупроводник, есть много изобретений, которые относятся к полупроводниковым устройствам. Открытие полупроводниковых материалов позволило добиться огромных и важных успехов в области электроники. Нам были нужны полупроводники для миниатюризации компьютеров и компьютерных частей. Нам были нужны полупроводники для производства электронных компонентов, таких как диоды, транзисторы и многие фотоэлектрические элементы.

Полупроводниковые материалы включают элементы кремний и германий, а также соединения арсенид галлия, сульфид свинца или фосфид индия.Есть много других полупроводников. Даже некоторые пластмассы могут быть полупроводниками, что позволяет использовать гибкие пластмассовые светодиоды (СИД), которым можно придать любую желаемую форму.

Что такое электронный допинг?

По словам доктора Кена Меллендорфа из Newton’s Ask a Scientist:

«Легирование» — это процедура, которая делает полупроводники, такие как кремний и германий, готовыми к использованию в диодах и транзисторах. Полупроводники в их нелегированной форме на самом деле являются электрическими изоляторами, которые не очень хорошо изолируют.Они образуют кристаллический узор, в котором каждому электрону отведено определенное место. Большинство полупроводниковых материалов имеют четыре валентные электроны, четыре электрона во внешней оболочке. Если поместить один или два процента атомов с пятью валентными электронами, такими как мышьяк, вместе с четырехвалентным электронным полупроводником, таким как кремний, происходит кое-что интересное. Недостаточно атомов мышьяка, чтобы повлиять на общую кристаллическую структуру. Четыре из пяти электронов используются по той же схеме, что и для кремния. Пятый атом плохо вписывается в структуру.Он по-прежнему предпочитает висеть около атома мышьяка, но не держится крепко. Его очень легко отсоединить и отправить в путь сквозь материал. Легированный полупроводник больше похож на проводник, чем на нелегированный. Вы также можете добавить в полупроводник трехэлектронный атом, например алюминий. Алюминий вписывается в кристаллическую структуру, но теперь в структуре отсутствует электрон. Это называется дырой. Заставить соседний электрон переместиться в дырку — все равно что заставить дыру двигаться.Соединение полупроводника, легированного электронами (n-тип), с полупроводником, легированным дырочками (p-тип), создает диод. Другие комбинации создают такие устройства, как транзисторы.

История полупроводников

Термин «полупроводник» впервые использовал Алессандро Вольта в 1782 году.

Майкл Фарадей был первым человеком, который наблюдал эффект полупроводника в 1833 году. Фарадей заметил, что электрическое сопротивление сульфида серебра уменьшается с температурой. В 1874 году Карл Браун обнаружил и задокументировал первый эффект полупроводникового диода.Браун заметил, что ток свободно течет только в одном направлении в месте контакта металлической точки и кристалла галенита.

В 1901 году было запатентовано самое первое полупроводниковое устройство, названное «кошачьи усы». Устройство было изобретено Джагадисом Чандрой Бозом. Усы кошки — это точечный полупроводниковый выпрямитель, используемый для обнаружения радиоволн.

Транзистор — это устройство, состоящее из полупроводникового материала. Джон Бардин, Уолтер Браттейн и Уильям Шокли совместно изобрели транзистор в 1947 году в Bell Labs.

Источник

  • Аргоннская национальная лаборатория. «НЬЮТОН — Спросите ученого». Интернет-архив, 27 февраля 2015 г.

Что такое полупроводник | Примечания по электронике

Что такое полупроводники и способ протекания в них тока


Полупроводники Включает:
Что такое полупроводник Полупроводниковые материалы Дырки и электроны


Полупроводники и полупроводниковые технологии сегодня составляют основу большей части электронной промышленности.Транзисторы, диоды, интегральные схемы и многие другие устройства имеют общую полупроводниковую технологию. В результате огромной гибкости, которую обеспечивает полупроводниковая технология, она позволила электронике взять на себя многие области повседневной жизни, что пятьдесят лет назад невозможно было придумать.

Проводники и непроводники

Электрический ток возникает, когда электроны движутся в определенном направлении. Поскольку электроны имеют отрицательный заряд, их движение означает, что заряд перетекает из одной точки в другую, и это и есть электрический ток.

Для протекания тока электроны должны иметь возможность свободно перемещаться внутри материала. В некоторых материалах электроны свободно перемещаются по решетке, хотя количество электронов и доступное для них пространство уравновешиваются, поэтому сам материал не несет заряда. В этих материалах электроны движутся свободно, но беспорядочно. Помещая разность потенциалов поперек проводника, электроны могут дрейфовать в одном направлении, и это составляет электрический ток.Многие материалы способны проводить электричество, но металлы являются наиболее распространенными примерами.

В отличие от металлов, есть много других материалов, в которых все электроны прочно связаны со своими родительскими молекулами, и они не могут свободно двигаться. Соответственно, когда на вещество помещается потенциал, очень немногие электроны могут двигаться, и ток не будет протекать. Эти вещества называются непроводниками или изоляторами. Они включают в себя большинство пластмасс, керамики и многие природные вещества, такие как дерево.

Полупроводники

Полупроводники не относятся ни к категории проводников, ни к непроводникам. Вместо этого они оказываются посередине. В эту категорию попадают самые разные материалы, в том числе кремний, германий, арсенид галлия и множество других веществ.

В чистом виде кремний является изолятором без свободных электронов в кристаллической решетке. Однако, чтобы понять, как он действует как полупроводник, сначала посмотрите на атомную структуру кремния в чистом состоянии.Каждая молекула в кристаллической решетке состоит из ядра с тремя кольцами или орбитами, содержащими электроны, и каждый электрон имеет отрицательный заряд. Ядро состоит из нейтронов, которые нейтральны и не имеют заряда, и протонов, которые имеют положительный заряд. В атоме одинаковое количество протонов и электронов, поэтому весь атом не имеет общего заряда.

Электроны в кремнии, как и в любом другом элементе, расположены в кольцах со строгим числом электронов на каждой орбите.Первое кольцо может содержать только два, а второе — восемь. Третье и внешнее кольцо кремния их четыре. Электроны во внешней оболочке делятся с электронами соседних атомов, образуя кристаллическую решетку. Когда это происходит, в решетке не остается свободных электронов, что делает кремний хорошим изолятором. Аналогичная картина наблюдается и для германия. У него два электрона на самой внутренней орбите, восемь на следующей, 18 на третьей и четыре на внешней. И снова он делится своими электронами с электронами соседних атомов, образуя кристаллическую решетку без каких-либо свободных электронов.

Примеси

Чтобы превратить кремний или любой другой полупроводник в частично проводящий материал, необходимо добавить в материал очень небольшое количество примесей. Это значительно меняет свойства.

Если добавляются следы примесей материалов, имеющих пять электронов во внешнем кольце своих атомов, они попадают в кристаллическую решетку, разделяя электроны с кремнием. Однако, поскольку у них есть один дополнительный электрон во внешнем кольце, один электрон может свободно перемещаться по решетке.Это позволяет току течь, если к материалу приложен потенциал. Поскольку этот тип материала имеет избыток электронов в решетке, он известен как полупроводник N-типа. Типичные примеси, которые часто используются для создания полупроводников N-типа, — это фосфор и мышьяк.

Также возможно разместить в кристаллической решетке элементы с тремя электронами на внешней оболочке. Когда это происходит, кремний хочет разделить свои четыре электрона с другим атомом с четырьмя атомами.Однако, поскольку примесь их всего три, есть место или дыра для другого электрона. Поскольку в этом типе материала отсутствуют электроны, он известен как материал P-типа. Типичными примесями, используемыми для материала P-типа, являются бор и алюминий.

отверстия

Легко увидеть, как электроны могут перемещаться по решетке и переносить ток. Однако для дырок это не так очевидно. Это происходит, когда электрон с полной орбиты движется, чтобы заполнить дыру, оставляя дыру там, откуда он появился.Затем другой электрон с другой орбиты может двигаться внутрь, чтобы заполнить новую дыру и так далее. Движение дырок в одном направлении соответствует движению электронов в другом, следовательно, возникает электрический ток.

Отсюда видно, что электроны или дырки могут нести заряд или электрический ток. В результате они известны как носители заряда, дырки являются носителями заряда для полупроводника P-типа, а электроны — для полупроводника N-типа.

Сводка

Принцип, лежащий в основе полупроводников, может показаться довольно простым.Однако потребовалось много лет, прежде чем многие из его свойств можно было использовать, и еще много времени, прежде чем их можно было усовершенствовать. В настоящее время многие процессы, используемые с полупроводниками, были в значительной степени оптимизированы, а такие компоненты, как интегральные схемы, очень сложны. Однако они полагаются на тот факт, что различные области полупроводника могут быть легированы для получения полупроводников P-типа и N-типа.

Список общепринятых терминов для полупроводников

  • Носитель заряда — Носитель заряда — это свободная (подвижная, несвязанная) частица, несущая электрический заряд, т.е.грамм. электрон или дырка.
  • Проводник — материал, в котором электроны могут свободно перемещаться, а электричество течет.
  • Электрон — субатомная частица, несущая отрицательный заряд.
  • Отверстие — Отсутствие валентного электрона в кристалле полупроводника. Движение дырки эквивалентно движению положительного заряда, т.е. противоположно движению электрона.
  • Изолятор — Материал, в котором нет свободных электронов, переносящих электричество.
  • Основной носитель — Носители тока, либо свободные электроны, либо дырки, которые находятся в избытке, т.е. в большинстве случаев в определенной области полупроводникового материала. Электроны являются основными носителями в полупроводниках N-типа, а дырки — в области P-типа.
  • Неосновной носитель — Носители тока, свободные электроны или дырки, которые составляют меньшинство в определенной области полупроводникового материала
  • Тип N — Область полупроводника, в которой имеется избыток электронов.
  • P-type — Область полупроводника, в которой имеется избыток дырок.
  • Полупроводник — Материал, который не является ни изолятором, ни полным проводником, который имеет промежуточный уровень электропроводности и в котором проводимость осуществляется посредством дырок и электронов.

Другие основные концепции электроники:
Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность РЧ шум
Вернуться в меню «Основные понятия электроники».. .

Что такое полупроводники? Как они работают?

Полупроводник — это материал, который передает ток, но только частично. Его проводимость находится между проводником, который имеет полную проводимость, и изолятором, который имеет незначительную проводимость.

Ваш компьютер или любимый смартфон, на котором вы сейчас читаете это, на самом деле питается от слоя кремния, покрытого на миллиарды транзисторов тоньше волоса, состоящего из твердого вещества, называемого полупроводником.

Что такое полупроводник?

Энергетические зоны и поток электричества

Любой кристалл состоит из атомов, которые размещают электроны на большом количестве близко расположенных энергетических уровней. Однако согласно принципу исключения Паули, доказательство которого выходит за рамки данной статьи, требуется, чтобы только два электрона, вращающиеся в противоположных направлениях, могли поддерживать один энергетический уровень, что делает его действительно стабильным.

Эти уровни могут быть представлены линиями, разделенными небольшими расстояниями, на которых разрешено размещение электронов, только на этих конкретных уровнях.Затем несколько энергетических уровней группируются в «полосы», известные как энергетические полосы. Энергетическая зона внизу имеет наименьшее количество энергии и называется валентной зоной, а энергетическая зона над ней имеет более высокий энергетический уровень и является зоной проводимости. Энергия, необходимая электрону для «прыжка» на это расстояние, называется энергией запрещенной зоны.

Иллюстрация уровней энергии в атоме, сгруппированных в энергетические зоны. Точки обозначают электроны.

Первый кристалл на диаграмме имеет нечетное количество электронов в валентной зоне и не имеет электронов в следующей зоне, что составляет один свободный электрон на его самом высоком энергетическом уровне.Он легко перейдет в зону проводимости при небольшом толчке или подключении к батарее, обеспечивая сильный ток. Этот кристалл — проводник; примерами проводников являются металлы, такие как медь и железо.

Электроны второго кристалла не только очень стабильны и связаны друг с другом, но также есть пара электронов в его зоне проводимости, что делает поток электронов в зону проводимости почти невозможным. Это изолятор. Бумага, резина и стекло — одни из самых распространенных изоляторов.

Третий кристалл имеет свободный электрон, но не пустую зону проводимости. Однако он содержит наполовину заполненные энергетические уровни, которые могут вместить больше электронов. Этот свободный электрон может проецироваться в зону проводимости при достаточно сильном толчке, создавая небольшой ток. Этот кристалл — полупроводник; главными примерами являются кремний и германий.

Эту операцию можно резюмировать аналогией с подъемным мостом, когда мосты, представляющие собой проводники, либо перекрываются, либо соединяются, так что пассажиры могут легко перейти.

Полупроводники могут быть представлены плохо построенным мостом, который закрывается только наполовину и требует от пассажира преодолеть расстояние между ними. Наконец, изолятор — это мост, который совсем не закрывается, что делает невозможным перепрыгнуть и добраться до другой стороны ни одному пассажиру.

Иллюстрирование энергетических диапазонов различных материалов на примере подъемного моста.

Что делает полупроводник таким особенным?

Проводимость за счет потока положительных зарядов

Способность пропускать поток электронов через вещество — это его проводимость.Электропроводность проводников самая высокая, а у изолятора — самая низкая, так как протекающие через него электроны незначительны. Однако, как следует из названия, проводимость полупроводника умеренная.

Зачатие дыры в валентной зоне.

Еще одна интересная особенность полупроводников заключается в том, что ток переносится не только электронами, но и оставленными ими вакансиями, которые известны как дырки. Дырки, оставленные в валентной зоне, могут быть заняты электронами из нижних состояний и вносить свой вклад в протекание тока, тем самым оставляя дырку и в этих более глубоких состояниях, которые будут заняты электронами внизу, и так далее.

Таким образом, ток можно определить как скорость протекания этих «положительных» зарядов.

Допирование и контроль тока через устройство

Чтобы представить себе его полезность, нужно понимать, что ток, протекающий через полупроводник, в отличие от проводника, не является неконтролируемым выбросом электронов, а скорее тонкой комбинацией зарядов и их установившееся течение. Инновационная инженерия выдвинула идею загрязнения атома кремния или германия с целью вызвать новые уровни энергии.

Слева: атомы чистого кремния. В центре: кремний, легированный фосфором, что дает дополнительный электрон. Справа: кремний, легированный бором, что дает дополнительное отверстие.

Материалы загрязнены либо кристаллами, которые содержат больше валентных электронов, чем полупроводник (обычно фосфор), которые имеют тенденцию свободно перемещаться в структуре и вносят вклад в электрический ток, либо кристаллами, содержащими меньше электронов (алюминий), которые занимают электроны. из силикона и оставьте после себя лишние дырочки.Загрязненный кремний, образующийся в результате разбрызгивания фосфора, называется полупроводником n-типа, а кремний, образующийся в результате последнего процесса, называется полупроводником p-типа. Количество загрязнения или допинга позволяет контролировать ток.

Электронная веха: транзистор

Уникальные свойства полупроводников побудили инженеров создавать крошечные устройства, контролирующие прохождение тока через цепь. Это устройство, известное как транзистор, изменило ход человечества с момента его изобретения в 1947 году.

Возмущение, вызывающее колебание и скачок электронов, также может быть вызвано воздействием на полупроводники высоких температур. Таким образом, эти материалы обладают двойной природой: они ведут себя как проводники при таких высоких температурах и как изоляторы при более низких температурах (меньше покачивания). Транзисторы широко используются в качестве переключающих устройств и устройств усиления в технологиях беспроводной связи.

Слева: транзисторы разных типов. Справа: схема, представляющая биполярный транзистор n-p-n; напряжение базы или полупроводник p-типа контролирует величину тока, протекающего от эмиттера к коллектору.(Фото:
Transisto и Michael9422 / Wikimedia Commons)

Транзистор изготавливается путем размещения материала p-типа между двумя материалами n-типа или путем размещения материала n-типа между двумя материалами p-типа.

Подобно ручке на верхней части отвода, напряжение, приложенное к материалу p-типа, контролирует и регулирует ток, который течет от в значительной степени легированного материала n-типа к относительно менее легированному материалу n-типа на противоположной стороне. Ток, которому разрешено течь, интерпретируется как логическая «1», в то время как отсутствие тока называется логическим «0», таким образом преобразуя их в двоичные цифры, язык компьютеров.Транзисторы переключаются между этими единицами и нулями и подаются на другую схему в качестве входа, состоящего из аналогичных транзисторов, что приводит к последовательности выходов — снова единиц и нулей. Изысканное визуальное объяснение работы транзисторов можно найти здесь.

Слева: поток электронов из высоколегированной области в низколегированную. Справа: транзистор как ответвитель для трубы, генерирующий ноль и единицу соответственно.

Эти переключатели являются строительными блоками логических вентилей, которые, в свою очередь, являются строительными блоками микропроцессора, мозга вашего компьютера, а теперь и наших мобильных телефонов.Передовые технологии помогли уменьшить и уменьшить размер транзисторов до нанометров в соответствии с законом Мура, который позволяет втиснуть миллиард транзисторов на крошечный кремниевый чип. Клаустрофобия — меньшая из их проблем.

(Фото предоставлено Pixabay)

Статьи по теме

Статьи по теме

Это огромное преимущество, и не будет преувеличением то, что эти материалы произвели революцию в мире технологий.Транзистор — одно из самых важных изобретений прошлого века, поскольку современный мир зависит от полупроводниковых технологий. Это особенно верно, когда дело доходит до интеграции радио, телевидения, электронной почты и десятков других отдельных технологий в один пятидюймовый кубоид и объединения людей в глобальном масштабе!

Что такое полупроводник? — Новости о хранении энергии, батареях, изменении климата и окружающей среде

Полупроводник — это чисто кристаллический материал, который может демонстрировать свойства как изолятора (отсутствие проводимости), так и проводника (полная проводимость).Именно сочетание этих качеств делает его эффективной частью электронных схем. Среди популярных полупроводников — кремний, карбид кремния, селен, сульфид свинца, германий и арсенид галлия.

Чтобы понять, как работает полупроводник, вы должны знать, как электроны расположены в атоме и как они движутся.

Атомы имеют электроны, которые расположены слоями, называемыми оболочками. Оболочка валентности (самый внешний слой) — это тот, на котором мы сосредоточимся.Любой электрон в этой оболочке может образовывать связи (называемые ковалентными связями) с соседними атомами. В проводниках обычно есть атомы с одним электроном в валентной оболочке, который в конечном итоге оказывается свободным электроном.

Полупроводники имеют четыре электрона в валентной оболочке. Если соседний атом относится к тому же типу, электроны в их валентной оболочке будут связываться друг с другом. Только один электрон может связываться с другим атомом, а это означает, что 4 электрона в атоме полупроводника будут связываться с четырьмя другими атомами.В конечном итоге это выглядит как кристаллическая структура. Вот почему наиболее популярными полупроводниками являются кристаллы кремния.

Изображение предоставлено Dummies.com

Есть 5 интересных свойств полупроводников, которые делают их эффективной частью электрической цепи.

Гибкая проводимость. В кристаллоподобном состоянии полупроводник похож на изолятор или, по крайней мере, очень плохой проводник. Это потому, что у них достаточно электронов только для образования валентных связей.Но существуют такие методы, как легирование или стробирование, которые преобразуют полупроводники, освобождая электроны. Это может происходить либо за счет избыточных, либо недостаточных электронов. Непарный электрон становится свободным электроном, что превращает полупроводник в эффективный проводник.

Создание области истощения. Если легированный полупроводник соединен с другими металлами или другими полупроводниками (либо другого типа, либо того же самого, но с другим легированием), это приводит к отрыву свободных электронов.Эти неспаренные электроны выводятся из полупроводника и попадают в ближайший переход. Это создает область истощения, которая позволяет току течь в одном направлении (см. Также диод). Это позволяет формировать электрические токи в полупроводниковых устройствах.

Позволяет электронам далеко перемещаться, прежде чем рассеяться в тепло. Хотя это также возможно в металлических проводниках, полупроводники позволяют энергии перемещаться намного дальше, прежде чем рассеяться в тепло. Это позволяет ему быть лучшей альтернативой аналогичным транзисторам с биполярным переходом и т.п.

Способность излучать свет. Еще одним свойством полупроводников является их способность релаксировать возбужденные электроны за счет излучения света вместо тепла. Это полезно при создании светодиодов.

Преобразование тепловой энергии. Полупроводники имеют большой коэффициент термоэлектрической мощности, что полезно для термоэлектрических генераторов. Они также обладают высокими термоэлектрическими показателями, которые используются в термоэлектрических охладителях.

Все эти свойства означают, что полупроводники позволяют создавать устройства с усилением электрических сигналов и контролируемой энергией.

Статьи по теме:

Что такое электрический проводник

Что такое диоды?

неспаренных электронов

Различные типы проводников

Факты о полупроводниках для детей

Электронные компоненты на основе полупроводников

Полупроводник — это материал, который в некоторых случаях будет проводить электричество, но не в других. Хорошие электрические проводники, такие как медь или серебро, легко пропускают электричество через себя.Материалы, которые блокируют прохождение электричества, такие как резина или пластик, называются изоляторами. Изоляторы часто используются для защиты людей от поражения электрическим током. Как следует из названия, полупроводник не проводит так хорошо, как проводник. Полупроводники — основа современной электроники.

Добавляя различные атомы в кристаллическую решетку (сетку) полупроводника, он изменяет его проводимость, создавая полупроводники n-типа и p-типа. Кремний — самый важный коммерческий полупроводник, хотя используются многие другие.Их можно превратить в транзисторы, которые представляют собой небольшие усилители. Транзисторы используются в компьютерах, мобильных телефонах, цифровых аудиоплеерах и многих других электронных устройствах.

Подобно другим твердым телам, электроны в полупроводниках могут иметь энергии только в определенных диапазонах (т.е. диапазонах уровней энергии) между энергией основного состояния, соответствующей электронам, прочно связанным с атомными ядрами материала, и энергией свободных электронов, что является энергией, необходимой электрону, чтобы полностью покинуть материал.

История

Полупроводники изучались в лабораториях еще в 1830-х годах. В 1833 году Майкл Фарадей экспериментировал с сульфидом серебра. Он обнаружил, что по мере нагрева материал лучше проводит электричество. Это было противоположно тому, как действовала медь. Когда медь нагревается, она проводит меньше электричества. Ряд других ранних экспериментаторов открыли другие свойства полупроводников. В 1947 году в Bell Labs в Нью-Джерси был изобретен транзистор. Это привело к разработке интегральных схем, которыми сегодня питаются почти все электронные устройства.

Допинг

Легирование — это процесс добавления небольшой примеси к чистому полупроводнику для изменения его электрических свойств. Легированные и умеренно легированные полупроводники называются примесью . Полупроводник, легированный до такой степени, что он действует больше как проводник, чем полупроводник, называется вырожденным . Большинство полупроводников сделано из кристаллов кремния. Чистый кремний мало используется, но легированный кремний является основой большинства полупроводников.Силиконовая долина была названа в честь большого количества начинающих полупроводниковых компаний, которые располагались там.

Полупроводники сегодня

Кристаллы кремния — наиболее распространенные полупроводниковые материалы, используемые в микроэлектронике и фотовольтаике.

Сегодня полупроводники используются повсеместно. Полупроводники можно найти почти в каждом электронном устройстве. Настольные компьютеры, Интернет, планшеты, смартфоны — все это было бы невозможно без полупроводников. Полупроводники можно превратить в очень точные переключатели с небольшим напряжением.Напряжение, в котором полупроводник не нуждается, можно отправить на другие электрические компоненты устройства. Полупроводники также могут быть очень крошечными, и многие из них могут вписаться в небольшую схему. Поскольку они могут быть такими маленькими, современные электрические устройства могут быть тонкими и легкими без ущерба для вычислительной мощности. Некоторыми из доминирующих компаний в полупроводниковом бизнесе являются Intel Corporation, Samsung Electronics, TSMC, Qualcomm и Micron Technology.

Связанные страницы

Основы полупроводников — Что такое полупроводник, типы, материалы, физика

Основы полупроводников — Что такое полупроводник, типы, материалы, физика и многое другое.

Полупроводник можно определить как вещество, обладающее свойствами как проводника, так и изолятора.

Он может проводить электричество при определенных обстоятельствах, но не всегда. Эта физика и свойство полупроводника делают его хорошей средой для контролируемого использования электричества по мере необходимости. Электропроводность полупроводника зависит от нескольких факторов, таких как ток или напряжение, приложенные к управляющему электроду, или от интенсивности облучения инфракрасным ( IR ), видимым светом, ультрафиолетом ( UV ) или рентгеновскими лучами.

Итак, мы можем сказать, что полупроводник — это материал, который имеет электрическую проводимость больше, чем изолятор, но меньше, чем проводник.

Примеры : Диоды, транзисторы и многие фотоэлектрические элементы.

Полупроводники — факты и физика

Как я упоминал выше, полупроводник имеет двойное свойство — проводник и изолятор электричества. Это свойство зависит от примесей, добавленных к полупроводниковому материалу (чистый такой материал называется « внутренний »).Примеси, добавляемые к материалу для изменения его электрических свойств, называются «легирующими добавками » , а процесс добавления примесей к чистому полупроводниковому материалу называется легированием.

Типы полупроводников

Полупроводники бывают двух типов:

  1. Полупроводник N-типа — это тот, который переносит ток в виде отрицательно заряженных электронов. Это очень похоже на проводимость тока в проводе.
  2. A Полупроводник P-типа — это тот, который переносит ток преимущественно в виде электронных дефектов, называемых дырками.Дыра имеет положительный электрический заряд. Этот заряд равен заряду электрона и противоположен ему. Эти дырки текут в направлении, противоположном электронам.

Функция / применение

Полупроводник может помочь контролировать поток электричества. Основная функция такого устройства состоит в том, чтобы переключать ВКЛ, и ВЫКЛ, поток электроэнергии по мере необходимости. Полупроводниковый прибор может выполнять функцию вакуумной лампы, объем которой в сотни раз превышает его объем.Одна интегральная схема ( IC ), такая как микросхема микропроцессора, может выполнять работу набора электронных ламп.

Полупроводниковые материалы

Для изготовления полупроводников используется несколько материалов и элементов. Основное требование — материал не должен быть очень хорошим проводником электричества или очень плохим проводником. Его свойства можно изменить, добавляя или удаляя атомы / примеси.

Полупроводниковые материалы включают — кремний, сурьму, мышьяк, бор, углерод, германий, арсенид галлия, селен, карбид кремния, серу, теллур, оксиды большинства металлов.

Что такое сверхпроводник?

Сверхпроводник — это элемент, интерметаллический сплав или соединение, которое без сопротивления проводит электричество ниже определенной температуры.

Приведенный в движение электрический ток будет вечно течь по замкнутому контуру из сверхпроводящего материала.

Диод

Диод — это электронный компонент, который позволяет току течь только в одном направлении. Это устройство, состоящее из p-n перехода.Чаще всего они используются для преобразования переменного тока в постоянный, потому что они пропускают положительную часть волны и блокируют отрицательную часть сигнала переменного тока, или, если они перевернуты, они пропускают только отрицательную часть, а не положительную часть.

Диод — это простейшее из возможных полупроводниковых устройств и лучшее устройство для изучения и понимания того, как работает полупроводник.

Транзистор

Транзистор представляет собой устройство, изготовленное из цельного куска полупроводникового материала и используется для усиления и переключения электронных сигналов.Транзистор может быть активен только в одном направлении и может потреблять больший или меньший ток через свой нагрузочный резистор.

Производство полупроводников

Производство полупроводников требует знаний и опыта. Производство должно осуществляться в чистом помещении. Используемые химические вещества должны быть чистыми и не содержать каких-либо примесей. Процесс добавления контролируемых примесей в полупроводник известен как легирование.

Этапы производства полупроводников
  1. Дизайн / создание маски
  2. Узор
  3. Производство вафель
  4. Формирование устройства / Формирование изоляционного слоя устройства
  5. Формирование устройства / Формирование транзистора
  6. Металлизация
  7. Сборка и тестирование

Полупроводниковая промышленность

Объем производства полупроводников на сегодняшний день превышает 300 миллиардов долларов, и ожидается, что он будет расти на 13-15% ежегодно.США, Южная Корея, Япония и Европейский Союз доминируют в отрасли и бизнесе.

10 ведущих компаний-производителей полупроводников

  1. Корпорация Intel: мировой лидер в области кремниевых инноваций, разрабатывает процессорные технологии и поддерживает глобальные инициативы.
  2. Samsung Electronics: полупроводники, включая DRAM, Flash, SRAM, графическую память, MCP, Mask ROM, системные LSI, ЖК-модули TFT и многое другое.
  3. Toshiba: производитель и поставщик запоминающих устройств, логических микросхем общего назначения, транзисторов, диодов, оптических устройств, датчиков, радиочастотных устройств, микрокомпьютеров, ASIC, ASSP, универсальных линейных интегральных схем, микросхем питания, транзисторных массивов, Драйвер двигателя, ИС операционного усилителя, ИС компаратора, Операционный усилитель и другие электронные компоненты SMD.
  4. Texas Instruments: Разработчик и поставщик процессоров цифровых сигналов, дискретных и интегральных схем, вычислителей и цифровой обработки света ( DLP ).
  5. STMicroelectronics: предлагает систему на кристалле ( SoC ) и другие подобные решения.
  6. Qualcomm: ведущий поставщик передовых технологий производства полупроводников.
  7. Hynix (ранее Hyundai Electronics): производитель и поставщик микросхем динамической оперативной памяти (« DRAM», ) и микросхем флэш-памяти.
  8. Renesas Technology: микрокомпьютеры, логические и аналоговые устройства, дискретные устройства и продукты памяти.
  9. AMD: Advanced Micro Devices: американская транснациональная компания.
  10. Sony

Полупроводниковые вакансии

В связи с быстрым ростом отрасли появляется все больше и больше компаний, производящих полупроводники. В этой отрасли есть прекрасная работа и возможность трудоустройства для инженеров-электронщиков.

Вакансии доступны в следующих категориях:

  • Электротехника
  • Программная инженерия / DSP
  • Техническая поддержка
  • Продажи / маркетинг
  • Разработка приложений
  • Проект
  • Управление материальными потоками
  • Изготовление / Производство
  • Гарантия качества
  • Административный

Просто изучите разделы « карьера », « вакансии » или « работайте с нами » на веб-сайтах этих компаний и подайте заявку на наиболее подходящую работу.

0 comments on “Что представляет собой полупроводник: Полупроводник — это… Что такое Полупроводник?

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *