Зачем нужен дроссель для люминесцентных ламп: устройство + схема подключения
Согласитесь: лишние приборы, без которых вполне может работать система освещения, покупать и устанавливать ни к чему. К таким устройствам, вызывающим сомнение, относится дроссель для люминесцентных ламп. Вы не знаете, нужен ли он в схеме подключения или без него можно обойтись?
Мы поможем вам разобраться с возникшим вопросом. В статье подробно рассмотрены особенности, назначение дросселя и выполняемые им функции. Приведены фото и схема подключения, которая поможет самостоятельно собрать люминесцентный светильник и выполнить его запуск, правильно подключив все компоненты в электроцепь.
В помощь домашнему мастеру мы подобрали ряд видеороликов, содержащих рекомендации по подключению люминесцентных лампочек, а также по выбору нужного дросселя в зависимости от типа лампы.
Содержание статьи:
Назначение и устройство дросселя
Разрядные лампы, представителем которых является люминесцентная разновидность, нельзя зажечь как обычные, обеспечив электроснабжение. Они попросту не будут работать. Чтобы получить свечение такого типа источника, потребуется дополнительно использовать пуско-регулирующий аппарат.
Назначение балласта в схеме включения
Выходит, что для функционирования люминесцентной лампочки необходимо не только обеспечить протекание тока, но и приложить к ней напряжение.
Поэтому в схеме включения задействуют балласт – сопротивление. Оно включается последовательно с лампой и предназначено для ограничения тока, протекающего через ее электроды.
Его роль могут выполнять различные электротехнические компоненты:
- в случае постоянного тока – это резисторы;
- при переменном – дроссель, конденсатор и резистор.
Среди этих приспособлений наиболее удачным вариантом является дроссель. Он обладает реактивным сопротивлением без выделения излишнего тепла. Способен ограничить ток, предотвратив его лавинообразное нарастание при включении в электросеть.
Галерея изображений
Фото из
Дроссель в импульсных схемах питания
Ограничитель в высокочастотных электрических схемах
Сердечник в виде кольца
Секционная намотка провода
Дроссель не только является неотъемлемым элементом в стартерной схеме включения, он выполняет такие функции:
- способствует созданию безопасного и достаточного для конкретной лампочки тока, который обеспечивает оперативный разогрев ее электродов при разжигании;
- импульс повышенного напряжения, образующийся в обмотке, способствует возникновению разряда в колбе люминесцента;
- обеспечивает стабилизацию разряда при номинальном значении электротока;
- способствует беспроблемной работе лампочки вопреки отклонениям напряжения, периодически возникающим в сети.
Важное значение для функционирования имеет индуктивность дросселя. Поэтому при покупке этого электромеханического компонента следует обращать внимание на технические параметры, которые должны соответствовать характеристикам лампочки.
При выборе электромеханического ПРА, который еще называют дросселем или ограничителем тока, имеют значение не только техпараметры, но и репутация производителя – неизвестные китайские фирмы могут предложить ограничитель, реальные характеристики которого значительно ниже заявленных
Из чего состоит пускорегулятор?
Дроссель, используемый в схемах включения лампочек люминесцентного типа, – это не что иное, как намотка провода на сердечнике – катушка индуктивности. Именно ее промышленное исполнение и носит название дросселя в электротехнике, что дословно переводится как «ограничитель».
Различные типы обмоток с разнообразными сердечниками, отличающиеся размерами, формой и внешним видом. Индуктивность конкретного изделия напрямую зависит толщины провода, плотности расположения витков в намотке и их количества, формы сердечника и прочих параметров
Дроссель с нужными техническими характеристиками производят в промышленных условиях, поэтому у потребителя не возникнет проблем при подборе нужного варианта, соответствующего параметрам подключаемой лампочки.
Более того, имея навыки сбора различных электротехнических приспособлений, соответствующие комплектующие и электроинструменты, можно попытаться самостоятельно соорудить катушку с нужной индуктивностью.
На схемах изображение дросселя может отличаться. В цепях подключения люминесцентных лампочек чаще всего можно встретить вариант L6 – обмотка с магнитопроводом ферритовым сердечником
Дроссель состоит из следующих элементов:
- проволока в изоляционном материале;
- сердечник – чаще всего ферритового типа или из прочего материала;
- заливочная масса, компаунд – в ее состав входят вещества, устойчивые к горению, что обеспечивает дополнительную изоляцию витков обмоточного провода;
- корпус, в который помещена намотка – его производят из термоустойчивых полимеров.
Наличие последнего элемента зависит от особенностей и характеристик конкретной модели ограничителя тока.
Участвуя в схеме розжига разрядной лампочки вместе со стартером, индуктивное сопротивление в виде дросселя ограничивает силу тока в момент подачи напряжения на лампу, а генерация ЭДС самоиндукции в размере 1000 В обеспечивает ее зажигание и стабилизирует горение дуги
Стартерная схема несовершенна, хотя и показывает отличный результат. Но мерцание лампочки, шумность дросселя и его большие размеры, а также фальшьстарт из-за ненадежного привели к изобретению более совершенной версии пускорегулятора – электронной.
ЭПРА в процессе функционирования способствуют снижению мощности потерь до 50%, избавляют от миганий лампочки. Их использование позволило уменьшить массу дросселей, а также существенно повысить отдачу осветительного прибора.
Правда стоимость электронного балласта существенно выше ЭМПРА, да и приобретать нужно у производителей с отличной репутацией – таких как Philips, Osram, Tridonic, прочие.
Схема + самостоятельное подключение
Люминесцентную лампочку просто так не включишь – ей требуется зажигатель и ограничитель тока. В миниатюрных моделях производитель все эти элементы предусмотрительно встроил в корпус и потребителю остается лишь вкрутить изделие в подходящий патрон светильника/люстры и щелкнуть выключателем.
А для более габаритных изделий потребуется , которая бывает как электромеханического, так и электронного типа. Чтобы ее правильно подсоединить, обеспечив беспроблемную работу прибора, предстоит знать порядок подключения отдельных элементов в электроцепь.
Схема подключения люминесцентной лампочки (EL) с использованием дросселирующего аппарата, где LL – это дроссель, SV – стартер, C1, C2 – конденсаторы
Правда имея схему, но не имея практического опыта по выполнению подобного рода работ, сложно будет справиться с задачей. Более того, если подключение требуется выполнить вне дома – в коридоре учебного учреждения или прочего общественного заведения – то самовольное вмешательство в работу электросети может обернуться проблемами.
Для этого в штате учреждений должен быть электрик, работающий на постоянной основе или же обслуживающий заведение по мере возникновения потребностей в его услугах.
На схеме реализовано подключение двух лампочек люминесцентного типа последовательно. Существенная проблема – если сломается/перегорит одна из них, то вторая тоже работать не будет
Рассмотрим пошаговое подключение двух трубчатых ЛЛ к электросети с использованием стартерной схемы. Для чего понадобится 2 стартера, дросселирующий компонент, тип которого должен обязательно соответствовать типу лампочек.
А также следует обратить внимание на суммарную мощность пускателей, которая не должна превышать этот параметр у дросселя.
Галерея изображений
Фото из
Установка держателей для лампочек
Установка ламп в держатели
Подсоединение короткого проводка к держателю стартера
Проверка работоспособности собранной схемы
Соединение длинным проводом держателя стартера с ЛЛ
Второй конец жилы от стартера крепят ко второму держателю лампы
Соединение первой лампы со второй в одну цепь
Подключение питающего кабеля
При подключении питающего кабеля к светильнику важно помнить, что за ограничение тока отвечает дроссель.
Значит, фазную жилу предстоит подсоединять через него, а на лампочку подключить нулевой провод.
Галерея изображений
Фото из
Вторую жилу от питающего кабеля следует вставить в разъем электромеханического ПРА, который еще называют дросселем. Правильное отверстие выбирают исходя из обозначений, нанесенных на его корпусе
Теперь предстоит заняться дальнейшим формированием цепи, соединив вторую ЛЛ со вторым стартером, а точнее, с его держателем. Для этого нужно взять еще одну короткую жилу и вставить один конец в разъем держателя лампочки, а второй – в отверстие крепления стартера
Аналогичную процедуру предстоит проделать с другой стороны трубчатого люминесцента, тоже используя короткий проводок. Особое внимание следует уделить надежности создаваемого контакта – чтобы ничего не болталось
Осталось завершить формирование цепи, используя еще одну длинную жилу, конец которой предстоит подключить в свободный разъем держателя второй лампочки, а второй – в отверстие дросселирующего компонента
Теперь нужно закрепить все элементы схемы, требуемые для работы собранной системы. Для этого нужно взять 2 стартера, приобретенные заранее. Важно чтобы их тип и мощность соответствовали параметрам ЛЛ
Каждый стартер, который еще называют пускатель, следует поставить в заранее подготовленные держатели, к которым уже успели подсоединить провода. Этот элемент представляет собой небольшую колбу с двумя электродами – жестким и гибким биметаллическим
Второй стартер аналогично крепится в полости держателя, расположенного с противоположной стороны рядом с дросселем. От одного балластного компонента на 36 Вт можно запитать 2 лампочки
Осталось самое интересное – проверить в действии собранную схему, включив питающий кабель в электрическую сеть. Если все выполнено правильно, то две ЛЛ запустятся и начнут светить. В противном случае они никак не отреагируют
Фазную жилу питающего кабеля подсоединяют в дроссель
Соединение второй лампы со вторым стартером
Подсоединение в цепь второй стороны лампы
Соединение второй лампы с дросселем
По одному стартеру для каждой лампочки
Установка пускателей в держатели
Дроссель один на две лампочки
Проверка работоспособности собранной схемы
Подобная схема подключения актуальна для больших осветительных приборов. Что же касается компактных моделей, то они оснащены встроенным механизмом запуска и регулировки – миниатюрным , вмонтированном внутри корпуса изделия.
В компактной люминесцентной лампочке между цоколем и трубками со смесью газов располагается пускорегулирующий аппарат маленьких размеров. Он отлично справляется с запуском прибора и по сроку службы может значительно выигрывать у других элементов ЛЛ
Перегрев дросселя и возможные последствия
Использование лампочек, у которых вышел срок службы и периодически возникают различные поломки, может обернуться пожаром. О том, как утилизировать отслужившие люминесцентные приборы, подробно .
Избежать возникновения пожароопасной ситуации поможет регулярное инспектирование состояния осветительных приборов – визуальный осмотр, проверка основных узлов.
К концу службы лампы можно заметить существенный перегрев ПРА – конечно, водой проверять температуру нельзя, для этого следует воспользоваться измерительными приборами. Нагрев способен достигать 135 градусов и выше, что чревато печальными последствиями
При неправильной эксплуатации может произойти взрыв колбы . Мельчайшие частицы в состоянии разлететься в радиусе трех метров. Причем они сохраняют свои зажигательные способности, даже упав с высоты потолка на пол.
Опасность представляет перегрев обмотки дросселя – аппарат состоит из различных типов материалов, каждый из которых имеет свои характеристики. Например, изоляционные прокладки производители пропитывают сложными составами, отдельные элементы которых имеют неодинаковую горючесть и способность к образованию дыма.
Даже семь витков дросселя, в которых случилось замыкание, способны стать пожароопасными. Хотя большую вероятность возгорания представляет замыкание не менее 78 витков – этот факт был установлен опытным путем
Помимо перегрева дросселирующего элемента, существуют и другие ситуации с люминесцентными светильниками, представляющие пожарную опасность.
Это могут быть:
- проблемы, обусловленные нарушением технологии изготовления ПРА, что повлияло на конечное качество аппарата;
- плохой материал рассеивателя осветительного прибора;
- схема зажигания – со стартером или без него пожарная опасность одинакова.
Следует помнить, что к проблемам может привести небрежность при выполнении подключения, плохое качество контактов или составляющих цепи, что чаще всего происходит при использовании совсем дешевых аппаратов, приобретенных у неизвестных производителей.
Добросовестные компании дают гарантию на свою продукцию, а технические параметры приборов, указанные на корпусе или упаковке, соответствуют действительности. Этот факт прямо влияет на срок службы как самого ПРА, так и , с особенностями устройства и работы которых ознакомит рекомендуемая нами статья.
Выводы и полезное видео по теме
Тонкости сборки схемы из двух ЛЛ с последовательным включением:
Видеоролик о том, что такое дроссель и зачем он нужен:
Видеоролик о том, что такое дроссель и зачем он нужен:
Проверка дросселя на предмет поломки:
О правилах выбора дросселя в зависимости от типа разрядной лампы:
Ознакомившись с назначением и устройством дросселей, используемых для запуска люминесцентных лампочек, можно вооружиться схемой подключения и попытаться реализовать ее самостоятельно. Правда, это актуально для дома.
В общественных учреждениях решение подобных вопросов следует доверить электрикам, имеющим спецдопуск к электромонтажным работам.
Пишите, пожалуйста, комментарии в находящемся ниже блоке, размещайте фото по теме статьи, задавайте вопросы. Расскажите о том, как подбирали и подключали дроссель. Делитесь полезной информацией по аспектам выбора и технологии установки устройства.
sovet-ingenera.com
схема подключения, принцип работы, замена,
Дроссель (балласт) является обязательным атрибутом практически любого люминесцентного светильника. В этой статье мы рассмотрим, что это за прибор, как он работает и для чего вообще нужен дроссель в люминесцентных лампах.
Для чего нужна пускорегулирующая аппаратура
Прежде чем мы начнем разговор о дросселе, разберемся, что такое пускорегулирующая аппаратура и для чего она нужна. Для того чтобы ответить на эти вопросы, необходимо понять, как работает люминесцентная лампа (ЛДС). Взглянем на ее схематическое изображение.
Схема, поясняющая устройство ЛДСПеред нами стеклянная колба в виде трубки, в концы которой впаяны две спирали из вольфрама – анод и катод. Сама трубка заполнена инертным газом с небольшим добавлением ртути. Если на анод и катод подать рабочее напряжение, то лампа не засветится – слишком велико сопротивление инертного газа, и тока между электродами не будет.
Для того чтобы прибор запустить, необходимо разогреть спирали. Как только они разогреются, начнется термоэлектронная эмиссия, такая же, как в обычной электронной вакуумной лампе для радиоприемников. Между электродами начнет течь ток, а пары ртути станут излучать ультрафиолет. Попадая на люминофор, ультрафиолет заставляет его ярко светиться. Само же УФ излучение практически полностью поглощается стеклом и люминофором.
Пуск ДЛС обеспечивает специальный прибор – стартер, который кратковременно подает на спирали напряжение (о схеме его включения поговорим позже). Он является пусковой частью пускорегулирующей аппаратуры.
Стартеры для запуска ДЛС
Заставить лампу работать (как говорят, «запустить») можно и другим способом, кратковременно подав на электроды повышенное напряжение. Именно так и работают электронные пускорегулирующие аппараты, о которых поговорим позже.
Но после пуска ЛДС начинаются новые проблемы: тлеющий разряд в колбе переходит в дуговой и мгновенно приводит к короткому замыканию. Чтобы этого не произошло, ток через лампу во время ее работы необходимо ограничивать. Эту роль исполняет еще один прибор – электромагнитный балласт. Он является регулирующей частью пускорегулирующей аппаратуры.
ЭмПРА для ЛДС мощностью 36 Вт
Таким образом, без стартера лампа не запустится, без балласта — сгорит. Комплекс этих двух устройств и называют пускорегулирующим. Теперь, я думаю, тебе понятно, для чего пускорегулирующая аппаратура нужна, и что без нее никак не обойтись.
к содержанию ↑Важно! Мощность дросселя должна соответствовать мощности лампы. В противном случае лампа либо тут же погаснет, либо не запустится вовсе, либо сгорит.
Схема подключения люминесцентной лампы
Теперь пора узнать, как подключить ЛДС к дросселю и стартеру.
Схема подключения одной люминесцентной лампыКак это работает? При подаче на светильник напряжения практически все оно, протекая через дроссель, прикладывается к стартеру, поскольку тока через саму лампу нет. За счет тлеющего разряда биметаллическая пластина в стартере разогревается и замыкает цепь, подавая на спирали полное напряжение сети. Тлеющий разряд в стартере гаснет, биметаллическая пластина остывает и размыкает цепь, но к этому времени спирали лампы уже разогреты. За счет обратной самоиндукции дроссель формирует короткий высоковольтный (около 1 кВ) разряд и зажигает лампу.
Важно! Если старта не произошло, то процесс пуска повторяется. Ты наверняка видел старые ЛДС, которые часами «моргают», не могут зажечься.
Теперь напряжение на стартере недостаточно для начала в нем тлеющего разряда, и в дальнейшей работе светильника он не участвует. В работу включается балласт, который ограничивает ток через газоразрядный прибор на заданном уровне. Величина его зависит от мощности дросселя. Именно поэтому я упоминал выше, что мощность дросселя должна соответствовать мощности ЛДС. В противном случае ток будет слишком мал или слишком велик.
Наглядная иллюстрация работы люминесцентного светильника со стартером и электромагнитным дросселемПару слов по поводу конденсатора, стоящего на входе схемы. Имея большую индуктивность, балласт потребляет не только активную, но и реактивную энергию, причем последняя расходуется впустую – на нагрев самого дросселя. Конденсатор, который называют компенсирующим, уменьшает расход реактивной энергии, увеличивая КПД конструкции и облегчая режим работы самого дросселя.
Можно ли подключить к одному дросселю две ЛДС? Тут все будет зависеть от рабочего напряжения самих ламп. Если они рассчитаны на напряжение 220 В, то придется собрать схему с двумя дросселями, точнее, собрать две схемы, которые я привел выше. Но если лампы рассчитаны на напряжение 110 В, то такое вполне возможно.
Схема подключения двух люминесцентных ламп к одному дросселю
Принцип работы этой схемы такой же, как и предыдущей, только каждый стартер отвечает за пуск своей ЛДС.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос экспертуСобирая такую схему, нужно взять стартеры на 110 В и выбрать дроссель, мощность которого равна суммарной мощности ламп. Кроме того, мощность используемых ламп должна быть одинаковой. Именно такая схема используется в растровых светильниках, которые применяются в офисах. В них установлено 4 лампы по 18 Ватт. Лампы запитаны попарно, установлено 2 дросселя.
Нередко на дросселе отечественного производства можно увидеть аббревиатуру ЭмПРА. Именно так правильно называется электромагнитный дроссель – Электромагнитный Пускорегулирующий Аппарат.
к содержанию ↑Зачем нужен дроссель в схеме
В принципе, зачем нужен дроссель для ламп, мы выяснили: чтобы ограничить через них ток на рабочем уровне. Как он включается, мы тоже знаем. Осталось узнать, как и за счет чего он ограничивает ток, поэтому пора поговорить об устройстве дросселя и принципе его работы.
Дросселем в радиотехнике называют обмотку, навитую на сердечник того или иного типа. Но такой дроссель при частоте 50 Гц имеет относительно низкую индуктивность. Чтобы повысить индуктивность дросселя для люминесцентных ламп без увеличения его габаритов, применяют разомкнутый магнитопровод, оставляя между секциями пластин небольшие зазоры.
Дроссель для ЛДС – та же катушка индуктивности, но с незамкнутым магнитопроводомПочему дроссель оказывает сопротивление току? Проходя через катушку дросселя, переменный ток намагничивает сердечник, запасая в нем магнитную энергию. Причем при одной полуволне она запасается с одним знаком, при другой – с другим. Но чтобы запасти энергию с другим знаком, нужно сначала «уничтожить» предыдущий: перемагнитить сердечник, который, конечно, «сопротивляется» и не дает это сделать быстро. Именно за счет такого постоянного перемагничивания ток ограничивается.
Вполне очевидно, что дроссель будет выполнять свои функции только в цепи переменного тока.
к содержанию ↑Преимущества и недостатки электромагнитного дросселя
Теперь поговорим о преимуществах и недостатках. К преимуществам электромагнитного дросселя можно отнести:
- Относительно невысокую стоимость.
- Простоту конструкции.
- Долговечность.
Недостатков у этого прибора, увы, немного больше. Это:
- Большие массогабаритные показатели.
- Мерцание лампы с удвоенной частотой питающей сети.
- Гудение.
- Низкий КПД из-за большого индуктивного сопротивления.
- При отрицательных напряжениях может не запустить лампу.
- Долгий запуск (от 1 до 3 сек.).
- При тяжелом пуске лампа может долго «моргать», из-за чего у нее перегорают спирали.
Можно ли обойтись без него
Выше я писал, что дроссель – неотъемлемая часть пускорегулирующей аппаратуры, а значит, обойтись без него нельзя. Но дроссель дросселю рознь. Существуют приборы, которые ограничивают ток другим, электронным методом. Их называют ЭПРА – Электронный Пускорегулирующий Аппарат.
ЭПРА для люминесцентных ламп
Как видно из схемы, нанесенной на корпус прибора, этот может обслуживать сразу 4 ЛДС, причем для их пуска стартеры не потребуются. Оправдана ли замена ЭмПРА на ЭПРА? Безусловно, поскольку ЭПРА:
- Имеет небольшие массогабариты.
- Не гудит.
- Не вызывает мерцания лампы с частотой сети.
- Имеет высокий КПД (на 30-50% выше, чем у ЭмПРА).
- Запускает ЛДС практически мгновенно.
к содержанию ↑Электронный дроссель сложнее и дороже электромагнитного, но цена вполне компенсируется достоинствами.
Типовые неисправности — замыкание, перегрев, обрыв
А теперь рассмотрим возможные неисправности электромагнитных дросселей и научимся их (дроссели) проверять. Самые распространенные неисправности ЭмПРА:
- Перегрев. Обычно вызывается неправильной эксплуатацией (светильник не имеет вентиляции или стоит в жарком помещении), напряжением сети выше нормального и производственным браком (межвитковое замыкание).
- Обрыв обмотки. Может быть вызван перегревом, механическим повреждением или просто производственным браком.
- Замыкание. Может быть как межвитковое, так и полное. Причины те же: брак, перегрев, механическое повреждение.
Как проверить электромагнитный дроссель
Сделать это несложно, причем никаких измерительных приборов не потребуется. Достаточно собрать простую схему прямо на коленках, подключив лампу накаливания параллельно стартеру и через дроссель запитанную от розетки:
Схема проверки дросселяВажно! Мощность лампы для проверки должна примерно равняться мощности проверяемого дросселя (балласта).
Итак, собираем схему, включаем. В результате видим:
- Лампа не горит. В балласте обрыв.
- Горит на полную яркость. Замыкание.
- Моргает или горит вполнакала. Балласт, возможно, исправен.
Пусть теперь схема поработает хотя бы с полчаса. Если балласт нагрелся выше 70 градусов Цельсия, то, скорее всего, он имеет межвитковое замыкание. Такой прибор просто не запустит ЛДС, а если и запустит, то из него в скором времени пойдет дым.
Мнение эксперта
Алексей Бартош
Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.
Задать вопрос экспертуВозможен еще один тип неисправности – пробой на корпус. Тут уже понадобится мультиметр, который поставлен в режим измерения максимально больших сопротивлений. Измеряем сопротивление между клеммами и корпусом дросселя, мультиметр должен показывать «бесконечность».
Вот и подошла к концу беседа об электромагнитных дросселях. Теперь ты знаешь, для чего они нужны, как устроены и даже сможешь самостоятельно проверить этот простой, но такой необходимый прибор.
lampaexpert.ru
Содержание:
На объектах производственного, общественного и бытового назначения широко используются лампы дневного света в качестве основного источника освещения. Они существенно отличаются от обычных ламп накаливания и не могут работать при простом подключении к сети. Для того чтобы осуществить запуск, используется специальный дроссель для люминесцентных ламп, входящий в схему электромагнитного пускорегулирующего устройства. Данные приборы постепенно выходят из употребления, поскольку им на смену пришла электронная пускорегулирующая аппаратура – более надежная и совершенная. Но до полного отказа от них еще далеко, поэтому для обеспечения нормальной работы ламп следует знать устройство и принцип действия этих дросселей. Общее устройство люминесцентных лампРаботу дросселя необходимо рассматривать только в совокупности с общей схемой люминесцентной лампы. Наибольшее распространение в системах освещения получили устройства линейного типа, изготовленные в цилиндрической форме. Конструкция представляет собой герметичную стеклянную колбу, внутрь которой вместо воздуха закачан аргон или другой инертный газ. В некоторых случаях используются газовые смеси. Внутреннее давление примерно в 250 раз ниже атмосферного, поэтому, когда лампа разбивается, этот процесс сопровождается хлопком. Кроме газа, в колбу помещается определенная порция ртути, находящейся в газообразном виде из-за сильного разрежения. Торцы трубок заканчиваются стеклянными ножками с электродами, впаянными внутрь. Они устанавливаются попарно с каждой стороны. Каждая пара соединена вольфрамовой спиралью, покрытой специальным составом, включающим в себя оксиды бария, стронция и кальция, а также тугоплавкую циркониевую присадку. После разогрева данного химического состава, начинается разгон свободных электронов, попадающих в свободное пространство из своей кристаллической решетки. За счет этого происходит термоэлектронная эмиссия, без которой невозможна работа люминесцентных ламп. Снаружи концы трубок оборудованы цоколями для контактных штырьков, используемых при подключении лампы, вставленной в светильник. Стеклянная поверхность лампы изнутри покрыта слоем люминофора, состоящего из галофосфатов кальция или ортофосфатов цинка-кальция. При попадании на него ультрафиолетового излучения, невидимого обычным зрением, начинается испускание видимого светового потока. Химический состав люминофора оказывает влияние на цветовую температуру, цветопередачу и спектр различных люминесцентных ламп. Преимущества светильников с люминофоромБлагодаря своим конструктивным особенностям, лампы дневного света обладают многими положительными качествами, что дает возможность применять их в различных областях. Среди плюсов, в первую очередь можно отметить следующие:
Главная особенность люминесцентных ламп заключается в невозможности их прямого подключения к обычной электрической сети. Это связано со следующими причинами:
Для преодоления имеющихся ограничений в конструкцию люминесцентных ламп включена пускорегулирующая аппаратура, обеспечивающая их нормальную работу. К важнейшим компонентам данной схемы относится дроссель для люминесцентной лампы, без которого светильники не будут функционировать. Роль дросселя в схемах пускорегулирующих устройствОсновная задача дросселя для люминесцентных ламп заключается в образовании импульса, способного пробить среду, наполненную газом. Кроме того, он должен поддерживать установленное значение тока и напряжения на контактах и во всей схеме работающего светильника. Принцип действия этого устройства связан с работой катушки индуктивности, извлекающей энергию из сети и превращающей ее в магнитное поле. Точно такая же катушка входит в устройство дросселя. При замыкании контактов происходит постепенный рост тока на катушке, а после размыкания он на короткое время многократно возрастает, а потом начинает плавно снижаться. Дроссель-трансформатор, применяемый в люминесцентных светильниках, по своей сути является такой же катушкой, внутри которой установлен ферромагнитный сердечник. Он подходит лишь для электрических цепей, где применяется электромагнитная пускорегулирующая аппаратура. Теперь рассмотрим не только, для чего нужен дроссель, но и как он работаетПри подаче напряжения ток вначале попадает на дроссель-трансформатор, затем он поступает к первой паре электродов лампы, далее – на стартер и на вторую пару электродов, после чего возвращается в сеть. Этого тока недостаточно для того чтобы зажечь лампу, однако, он способен разогреть электроды стартера и создать тлеющий разряд. Он обладает напряжением, более низким чем в сети, но превышающим это значение у работающего светильника. После разогрева в стартере биметаллического электрода, происходит его замыкание со вторым электродом, после чего в схеме происходит стремительный скачок тока и электроды в торцах лампы начинают разогреваться. Одновременно, под действием самоиндукции, в дросселе размыкается цепь, что приводит к скачку напряжения. К нему прибавляется входное напряжение, и в совокупности они создают условия, необходимые для запуска лампы. К этому времени электроды разогреваются до температуры, обеспечивающей начало эмиссии, а в самом дросселе образуется высоковольтный импульс. Тлеющий разряд вначале появляется в аргоне, а после перехода ртути в состояние пара он продолжается уже в ртутных парах, после чего схема начинает стабильно работать в обычном режиме. Напряжение на дросселе падает и соответственно уменьшается в самой лампе. Таким образом, обеспечивается защита от возникновения повторного разряда. Непосредственное включение света происходит при совпадении фаз напряжения и импульса дросселя. Чаще всего они не совпадают по времени, поэтому стартер срабатывает насколько раз перед входом лампы в рабочий режим. В этот момент она начинает мигать, а в стартере возникают радиопомехи, подавляемые конденсатором, установленным в общем корпусе. Таким образом, кроме зажигания люминесцентной лампы, дроссель-трансформатор ограничивает возрастающий ток до предела, после которого осветительный прибор может выйти из строя. Классификация и разновидности дросселейСхема люминесцентных ламп включает в себя дроссель, выполняющий ограничивающую функцию и поэтому относящийся к балласту или дополнительной нагрузке. Поскольку в этом устройстве имеют место определенные потери мощности, то все они разделяются на категории в соответствии с уровнем этих потерь. Обычный уровень соответствует классу D, пониженный – классу С, особо низкий – классу В. Одним из физических свойств дросселя в люминесцентных лампах, является сдвиг по фазам, образующийся между током и напряжением. Отставание тока от напряжения составляет величину, обозначаемую как cos φ. С ростом этого значения приборы становятся более экономичными и эффективными. К основным типам дросселей можно отнести следующие:
Люминесцентные лампы могут эксплуатироваться в разных электрических сетях. Соответственно и дроссели разделяются на однофазные, применяемые в бытовых сетях на 220 вольт, и трехфазные, устанавливаемые в светильники, освещающие промышленные предприятия, улицы и другие подобные объекты. Дроссели могут устанавливаться в разных местах и также условно делятся на две части. Приборы открытого типа встраиваются внутрь корпуса светильника, который защищает их от всех внешних воздействий. Закрытые дроссели помещаются в герметичный влагозащищенный короб. Они используются для установки на улицах и могут выдерживать любые погодные условия. Преимущества электронных дросселейПо сравнению с электромагнитными устройствами, электронные дроссели считаются более совершенными и эффективными. Они используются в электронной пускорегулирующей аппаратуре, обеспечивающей включение люминесцентных ламп. Массовое применение эти приборы получили сравнительно недавно и уже практически полностью заменили собой старый балласт. Популярность и широкое применение этих изделий объясняются многими преимуществами, выявленными в процессе эксплуатации:
|
electric-220.ru
Дроссель для ламп дневного света
Для пуска люминесцентных ламп применяются специальные автоматические устройства. Их задача – обеспечить источник света питанием. Важная часть пускового устройства – это электромагнитный дроссель (балласт, катушка, индуктивность).
В схеме он выполняет несколько функций:
- Играет роль балласта для контроля тока, проходящего через лампу. Это необходимо для нормальной и безопасной работы всего устройства;
- Служит пусковой индуктивностью, с помощью которой формируется запускающий импульс высокого напряжения;
- Сглаживает пульсации питающей сети.
Дроссель включается последовательно с люминесцентным источником света, после чего получившаяся цепь присоединяется к сетевым клеммам. При этом параллельно к лампе подключается пускатель.
После подачи сетевого напряжения схема работает так:
- На пускатель поступает 220 В из розетки. В нем возникает тлеющий разряд, который подогревает биметаллические электроды. Через некоторое время чувствительные контакты стартера реагируют на тепло и замыкают цепь.
- Ток, ограниченный катушкой, начинает подогревать спирали электродов лампы. Вокруг них формируются свободные носители заряда;
- Поскольку контакты стартера замкнуты, тлеющего разряда между ними нет – их температура начинает снижаться. Через некоторое время, они полностью остывают и размыкаются;
- При отключении контактов стартера накопленная в катушке энергия высвобождается в виде импульса, напряжением 600-1000 В. В результате возникает тлеющий разряд в колбе лампы;
- Внутреннее сопротивление люминесцентного источника света резко уменьшается. Лампа шунтирует стартер, и он исключается из работы схемы. Устройство переходит в устойчивый режим работы.
Для регулировки номинального тока люминесцентного источника света необходим балластный элемент: резистор, индуктивность или конденсатор. Преимущества использования дросселя заключаются в следующем:
- Индуктивность может ограничивать токи значительной величины;
- Дроссель создает необходимый для запуска люминесцентного источника света импульс напряжения.
Правила выбора
Чтобы правильно выбрать пусковую индуктивность, необходимо обратить внимание на корпус устройства. На нем указывается мощность нагрузки, которую он может запитать. Мощность балласта зависит от сечения обмоточного провода: чем оно больше, тем более значительный ток устройство может выдать.
Мощные катушки имеют значительные габариты и более высокую стоимость, поэтому необходимо оптимально подбирать пусковую индуктивность. Можно использовать одну катушку для питания нескольких ламп – так часто делается в сдвоенных светильниках, которые нередко можно встретить в офисных помещениях.
Дроссель СтартерПодключение ламп
Каждый светильник имеет посадочное место, снабженное двумя разъемами для подключения штырей цоколя. Всего для питания люминесцентного источника света необходимо четыре контакта, расположенных на обоих концах колбы.
Они выполняют следующие функции:
- Каждая пара контактов служит для питания спиралей, служащих для запуска люминесцентного источника света. Когда к ним подключается напряжение, они разогреваются, продуцируя свободные электроны;
- Облако электронов служит для облечения начала процесса ионизации насыщенного парами ртути инертного газа, которым наполнена колба. Также высокая температура катодов позволяет испарить ту часть ртути, которая конденсировалась;
- После поступления высоковольтного импульса из дросселя возникает тлеющий разряд, который потом поддерживается сетевым напряжением. В результате тлеющего разряда образуется ультрафиолетовое излучение, которое потом превращается в свет видимого спектра с помощью люминофора, нанесенного на стенки колбы.
Поскольку дроссель – это индуктивность, его подключение приводит к тому, что возникает сдвиг фаз между напряжением и током. Чтобы нивелировать негативное влияние катушки на питающую сеть, параллельно пускающему устройству включается конденсатор соответствующей емкости.
Как запустить лампу с использованием дросселя
Традиционная схема с катушкой широко используется уже более 40 лет. Она проста, но менее надежна, чем другие альтернативы (электронные пускатели).
Чтобы запустить люминесцентный источник с помощью дросселя необходимо собрать схему из стартера, лампы и корректирующего конденсатора:
- Параллельно лампе включается стартер: его подсоединяют к верхней или нижней паре отводов по обе стороны колбы;
- К одному из оставшихся отводов подключают дроссель питания;
- Одна клемма сетевого источника питания присоединяется ко второй клемме катушки, а вторая – подает напряжение на оставшийся свободный отвод лампы.
Как запустить лампу без использования дросселя
Для возникновения тлеющего разряда необходимо кратковременно подать на контакты люминесцентного источника света импульс высокого напряжения. Если нет возможности использовать дроссель, то собирают умножитель напряжения на диодах или стабилитронах.
Схема собирается так:
- Сама лампа питается от мостового выпрямителя;
- Для ограничения рабочего тока применяют вольфрамовую спираль. Для этих целей можно использовать лампочку накаливания;
- Для создания пускающего напряжения используется умножитель на диодах или стабилитронах;
- После возникновения тлеющего заряда умножитель отключается. Люминесцентный источник света продолжает светиться, получая питание из сети.
Проверка дросселей
В случае если лампа вдруг перестала работать. Сначала необходимо убедиться в исправности балласта. Для этого дроссель извлекается из корпуса устройства для проведения диагностики.
Неисправности дросселей
Наиболее часто возникают такие поломки:
- Обрыв обмотки. Нередко такое случается с низкокачественными катушками, выполненными из недостаточно очищенной меди или алюминия;
- Замыкание витков. Данная поломка возможна, если изоляция проводников выполнена с использованием некачественного лака;
- Повреждение контактных клемм. Если контакты неплотно прикручены к площадкам, на них может появиться нагар, который будет препятствовать прохождению тока.
Проверка дросселей
Обрыв легко определяется с помощью тестера. Для этого щупами измерительного прибора, включенного в режим теста целостности цепи, касаются клемм балласта в режиме. Звуковой сигнал сигнализирует о том, что катушка исправна.
Межвитковое замыкание диагностировать труднее. Необходимо знать индуктивность исправной катушки. Данную информацию можно получить, изучив надписи на балласте, посетив сайт изготовителя или измерив данную величину у заведомо исправного устройства.
Также следует проверить, не пробивает ли обмотка на корпус, что также будет сигнализировать о неисправности катушки. Для этого одним щупом тестера в режиме теста целостности цепи прикасаются к корпусу катушки, а другим – последовательно к обоим контактам катушки. Звуковая индикация должна отсутствовать.
Замена
Чтобы заменить вышедший из строя балласт, его демонтируют из светильника. Для демонтажа необходимо снять декоративную панель и отражатель. Для того чтобы не повредить лампы, их рекомендуется тоже извлечь. Делать это следует аккуратно, чтобы не повредить хрупкие колбы.
Сам балласт закреплен с помощью винтов в корпусе светильника. Работать под потолком не всегда удобно. Если позволяет конструкция светильника, его рекомендуется демонтировать целиком для последующей диагностики, а не извлекать отдельные неисправные элементы.
Блиц-советы
- Схема подключения без дросселя позволяет использовать неисправные лампы с выгоревшими цепями накала. Но такое подключение требует использования активного балласта, что негативно сказывается на экономичности работы светильника;
- Современные люминесцентные лампы используют электронную систему питания. Она позволяет значительно увеличить ресурс источника света;
- Люминесцентные источники света, питающиеся от сети с частотой 50 Гц, могут негативно влиять на зрение (мерцание). Все современные компактные модели используют работающие на высоких частотах электронные источники питания, что позволяет полностью избавиться от мерцания;
- В случае использования схемы без дросселя колбу люминесцентного источника света рекомендуется переворачивать 1-2 раза в месяц, чтобы избежать появления черного налета на внутренней поверхности стекла;
- В продаже можно найти люминесцентные лампы любого типа свечения: холодного, белого, теплого. Длина волны видимого излучения зависит от состава люминофора, нанесенного на внутреннюю поверхность колбы.
housetronic.ru
Схема подключения дросселя к люминесцентной лампе
Экономки или лампы дневного света встречаются сегодня практически в каждом доме. С их помощью можно хорошо экономить на электроэнергии. Но здесь экономия соседствует с достаточно сложной конструкцией такой продукции.
Дроссель для лампы люминесцентного типа
Достаточно важным компонентом устройства люминесцентных ламп является дроссель. Данная статья расскажет о том, что собой представляет этот элемент, а также какова схема его подключения к лампе дневного света.
Особенности экономки
Лампа дневного света представляет собой газоразрядное устройство, которое является более усовершенствованной лампочкой накаливания. В связи с этим в ее конструкции должен быть элемент, выполняющий роль ограничителя тока. Эту роль и выполняет дроссель (балласт). Без него сила тока в электроцепи будет нарастать лавинообразно, а это приведет к поломке лампы.
Обратите внимание! Дроссель, выступающий в роли ограничителя тока для люминесцентных ламп, может быть электромагнитным или электронным.
Строение экономки
Дроссель в лампе дневного света является балластом и поглощает лишнюю мощность, имеющуюся в электроцепи. В источнике свечения с мощностью в 36-40 Вт он забирается примерно 15 % или 6 Вт.
Дроссель в люминесцентных моделях выполняет следующие функции:
- осуществляет прогрев катодов. Благодаря этому они подготавливаются в эмиссии электродов;
- создает необходимо для стартового разряда напряжение;
- выступает в роли ограничителя тока, который течет через электрическую систему после запуска лампы.
Чтобы балласт (электронный или электромагнитный) мог выполнять свои прямые обязанности, нужна правильная схема подключения. Если в ней будет допущена хотя бы одна ошибка, то свечение люминесцентных ламп не произойдет.
Схема подключения лампы дневного света может иметь различный вид. Она зависит от следующих параметров:
- тип балласта (электронный или электромагнитный):
- количество ограничителей тока;
- тип и количество люминесцентных ламп (к одной, двум) и т. д.
Все эти параметры оказывают влияние на то, как будет выглядеть схема подключения балласта к электроцепи источника света. Каждая такая схема не очень сложная и ее можно использовать для подключения даже при отсутствии глубоких познаний в электротехнике.
Рассмотрим несколько наиболее востребованных вариантов подключения.
Балласт электронного вида
На сегодняшний день наиболее популярным и часто встречаемым видом балласта будет его электронный тип. Поэтому схема подключения электронного дросселя – самая востребованная.
Электронный балласт
Он имеет вид небольшого блока с выведенными клеммами. Внутри такого блока размещена печатная плата. На ней собрана вся система. По ней можно понять, сколько люминесцентных ламп к ней можно подключить.
Образец включения к одной лампе
Чтобы подсоединить электронный тип ограничителя тока необходимо:
- первый и второй коннекторы на выходе блока нужно подключить к одной паре контактов экономки;
- третий и четвертый ведутся к другой паре;
- на вход подается питание.
Как видим, данный вариант достаточно прост в реализации. С ее помощью можно подключить одну лампу дневного света. Несколько сложнее выглядит вариант, используемый для включения двух источников освещения.
Образец включения к двум экономкам
Система, применяемая для запуска двух устройств дневного света к электронному типу балласта, реализуется следующим образом:
- дроссель подсоединяют в разрыв цепи питания нитей, с помощью которых осуществляется накаливание экономки;
- стартеры необходимо вести параллельно к электродам.
Обратите внимание! Соединять электронный балласт, стартерные коннекторы и нити накала необходимо в последовательном порядке.
Некоторые специалисты вместо стартера предлагают применять обычную кнопку от любого электрического звонка. В данной ситуации подача напряжения на прибор будет осуществляться путем нажатия и дальнейшего удерживания кнопки звонка. После того, как экономка зажегся, кнопку можно отпустить.
Балласт электромагнитного вида
Для электромагнитного балласта схема его соединения выглядит следующим образом:
Соединение электромагнитного балласта
Здесь процесс включения предполагает проведение следующих действий:
- в момент поступления тока в дросселе происходит накопление энергии;
- далее она идет на стартерные коннекторы;
- ток направляется в стартер через нити нагрева электродов;
- электроны и сам стартер нагреваются;
- далее происходит размыкание биметаллических контактов на стартере;
- размыкание коннекторов сопровождается выбросом электроэнергии, накопившейся в балласте;
- в электродах напряжение изменяется, что приводит к свечению.
Таким образом будет происходить активация ламп при использовании вышеприведенного варианта соединения.
Включение пары светильников
Для подсоединения дросселя можно использовать вариант соединения как для одной, так и для двух экономок. Рассмотрим более детально, каким образом проделывается включение двух моделей 2х18.
Подсоединение к двум люминесцентным моделям 2х18
Чтобы включить два устройства с мощностью в 18 Вт, необходим индукционный тип устройства с мощностью не менее 36 Вт. Для этого можно использовать ПРА на 40 Вт, а также два стартера на 4-22 Вт. Как видим стартеры необходимо подсоединять параллельно к каждой экономке. Таким образом с каждой стороны будут использованы по одному контакту-штырю. Оставшиеся коннекторы следует присоединять к электрической сети только через индукционный дроссель.
Уменьшить помехи, а также компенсировать реактивную мощность в данной ситуации можно при помощи конденсатора. Его нужно подводить к питающим компонентам светильников параллельно. В ситуации, когда имеется встроенная защита, конденсатор может не использоваться.
Вариант включения с двумя балластами и двумя трубками
При наличии двух источников освещения, а также двух комплектов для их соединения, нужно использовать такой вариант.
Подключение с двумя комплектами
В данной ситуации соединение осуществляется следующим образом:
- на вход дросселя подается фазный провод;
- далее он с выхода дросселя направляется на один контакт экономки. При этом со второго коннектора он идет на первый стартер;
- с первого стартера он направляется на вторую пару коннекторов этого же источника света;
- свободный коннектор необходимо соединить с нулевым проводом питания, который на рисунке обозначен как N
Таким же образом происходит включение и второй трубки: вначале идет дроссель, далее с него один коннектор направляется на контакт лампочки, а второй – на стартер. Выход со стартера нужно соединить со второй парой контактов светильника, а свободный коннектор — вывести на нулевой провод.
Особенности соединения
Самым дорогостоящим элементом в электроцепи является дроссель. Поэтому многие люди, чтобы сэкономить, отдают предпочтение тем вариантам, где используется только один балласт.
При этом во время подсоединения всех элементов электрической схемы светильника необходимо помнить о технике безопасности, так как в данной ситуации, по незнанию, можно получить электротравму.
Заключение
Схема для подключения к люминесцентной лампе дросселя может иметь самый разнообразный вид. Она зависит от некоторых параметров. Поэтому, чтобы подобрать оптимальный вариант, нужно знать, какой тип балласта и устройства дневного света у вас имеется в наличии.
1posvetu.ru
Содержание:
Одним из наиболее экономичных вариантом считается дневное освещение. Люминесцентные лампы уже давно используются вместо традиционных лампочек накаливания во многих местах. Они получили широкое распространение, благодаря спектру освещения с разнообразными оттенками и яркостью светового излучения. Подобные свойства обусловлены особенностями конструкции, в состав которой входит и дроссель для ламп дневного света. Совместно с другими элементами, дроссель обеспечивает надежную и безопасную работу люминесцентных источников освещения. Принцип работы и функции дросселяЗнакомство с дросселем рекомендуется начинать с рассмотрения его основных функций. Всем известно, что в люминесцентных лампах имеется балласт, поглощающий излишки мощности в электрической цепи. В светильнике мощностью около 40 Вт на дроссель приходится примерно 6 Вт или 15%. Основными функциями данного устройства являются следующие:
В случае использования в качестве питания переменного тока, с помощью дросселя обеспечивается сдвиг фаз или отставание между напряжением и током. Данная величина обозначается в маркировке прибора в виде cos ϕ, называемая также, коэффициентом мощности. Мощность люминесцентной лампы и технические характеристики дросселя должны соответствовать друг другу, в противном случае светильник очень быстро выйдет из строя. Действие дросселя осуществляется совместно со стартером по следующей схеме:
Электронный дроссель для ламп дневного светаВ отличие от обычного дросселя, электронные приборы считаются более сложными. Их конструкция включает в себя следующие элементы:
Работа этих приборов происходит в определенном порядке. Электронный дроссель для ламп дневного света также называют электронной пускорегулирующей аппаратуры – ЭПРА. После включения светильника ток от выпрямителя поступает к буферу конденсатора, где сглаживается частота пульсации. Высокое напряжение после инвертора попадает в цепь, осуществляя зарядку микросхем и конденсаторов. Когда напряжение достигает 5,5 В, происходит сброс микросхемы. После зарядки компенсационного конденсатора обратной связи он регулируется с помощью транзисторов. При достижении напряжением значения 12 В наступает следующий этап работы системы – предварительный нагрев. Минимальное напряжение для поджига составляет 600 ватт, а сама процедура занимает всего 1,7 секунды. Использование ЭПРА исключает чрезмерный нагрев люминесцентной лампы, обеспечивая, таким образом, пожарную безопасность. Схема лампы дневного света с дросселемВ каждом люминесцентном светильнике существуют посадочные места. Каждое из них оборудовано двумя разъемами, к которым подключаются штыри цоколя. Всего имеется четыре контакта, размещенные на концах колбы. Через каждую пару контактов подается питание для спиралей, запускающих источник света. При подключении напряжения происходит их разогрев с образованием свободных электронов. Образующееся электронное облако существенно облегчает ионизацию инертного газа, насыщенного парами ртути. Благодаря высокой температуре катодов, испаряется ртутный конденсат. Высоковольтный импульс, поступающий из дросселя, приводит к образованию тлеющего разряда. В дальнейшем его будет поддерживать уже сетевое напряжение. Тлеющий разряд, в свою очередь, приводит к появлению ультрафиолетового излучения, превращающегося в свет с видимым спектром. Этому способствует люминофор, нанесенный на стенки стеклянной трубки. Иногда требуется подключить лампу дневного света без дросселя. Прежде всего, нужно создать тлеющий разряд. С этой целью на контакты кратковременно подается импульс высокого напряжения. Поэтому при отсутствии дросселя можно воспользоваться умножителем напряжения, собранного на диодах и стабилитронах. Данная схема функционирует следующим образом:
Как проверить дроссель лампы дневного света мультиметромВ случае неисправности люминесцентной лампы следует проверить не только дроссель, но и общее состояние светильника. В первую очередь проверяется вся электрическая схема на общее сопротивление. Для этого можно воспользоваться омметром, в котором выставляется сопротивление в измеряемом диапазоне. Часто применяются стрелочные тестеры или мультиметры с выставленной величиной замеров. Диагностические замеры выполняются без использования внешних источников напряжения. Светильник укладывается на ровную поверхность, после чего щупы измерительного устройства подключаются к местам выводов проводов. Но измерить сопротивление сразу не получится, поскольку электрическая схема в лампочке стартера будет разорвана. Поэтому стартер вынимается из патрона, после чего его контакты замыкаются накоротко и можно проводить измерения. Отдельная проверка дросселя происходит следующим образом. Вначале также снимается стартер и замыкается накоротко его электрический патрон. После этого на снятой люминесцентной лампе поочередно замыкаются контакты двух патронов. Далее выполняются непосредственные замеры сопротивления путем соединения двух щупов прибора с выводами проводов на светильнике. |
electric-220.ru
Дроссель для ламп дневного света
Дроссель для ламп дневного света – обязательный элемент, который используется с целью безопасности эксплуатации и нормализации функционирования осветительного прибора.Что такое дроссель и для чего он предназначен?
Вне зависимости от типовых особенностей осветительного электрического прибора, на стадии их запуска появляется очень большое сопротивление.
Розжиг искусственного источника дневного света сопровождается своеобразным электрическим пробоем внутри атмосферы инертных газов, которые насыщены ртутными и натриевыми парами.
В результате образуется разряд, так называемого, тлеющего или дугового типа, а уровень сопротивления снижается в несколько десятков раз, что вызывает рост протекающего электрического тока.Отсутствие ограничения тока может спровоцировать чрезмерное выделения тепла и резкий перегрев газовых паров, что и становится причиной взрыва лампы дневного света.
Именно по этой причине в цепь добавляется сопротивление, представленное дроссельным устройством.
Чтобы минимизировать расходы электрической энергии на активное сопротивление, используется дроссельное устройство, не потребляющее мощность, а накапливающее и отдающее энергию в цепь.
Как подключить дневную лампу без дросселя?
Достаточно простой вариант схемы подключения может использоваться даже на сгоревших искусственных источниках дневного света. В этом случае отсутствует применение нити накаливания, а питание высоким постоянным напряжением осуществляется посредством диодного моста.
В процессе питания током с постоянными показателями, трубка с течением времени начинает сильно темнеть с одной стороны.
Схема подключения люминесцентных ламп без дросселя и стартера
Самостоятельное подключение без дросселя вполне доступно и предполагает использование сборки GВU-408 в качестве диодного моста и конденсаторов с уровнем емкости в 2нФ и 3нФ. Показатели рабочего напряжения конденсатора не должны быть более 1000В.
Важно помнить, что мощные трубки дневного света нуждаются в конденсаторах высокой емкости, а диоды, используемые для подключения диодного моста, должны быть подобраны с достаточным запасом по показателям напряжения.
Рабочий механизм или дроссельная плата
Цилиндрическое по форме дроссельное устройство заключено в стандартный металлический корпус. Мощность такого устройства должна совпадать с предельно допустимыми показателями рабочей мощности источника света.
Дроссель функционирует совместно со стартером, при запуске которого осуществляется разогрев электродов и подача тока на действующий механизм осветительного прибора. В результате биметаллическая пластина стартера нагревается, а ток поступает и накапливается в дросселе.
Схема подключения лампы дневного света с дросселем
Наличие в осветительном приборе стартера и стабилизатора способствует максимально равномерному распределению всего напряжения, а подключение источника света без дросселя негативно сказывается на сроке эксплуатации.
Хотите заменить старые лампы на лампочки дневного света? Принцип работы ламп дневного освещения и критерии выбора рассмотрим подробно.
Виды и способы подключения диммеров для светодиодных ламп описаны тут.
Инструкция по замене светодиодных ламп вместо люминесцентных представлена в этой теме.
Разновидности дросселей для люминесцентного освещения
Ламповые дроссели отличаются основными характеристиками, а при подключении неправильно подобранного элемента становятся основной причиной выхода из строя источника света. В настоящее время существует несколько видов ламповых дросселей:
- мощность 9 Вт – для энергосберегающих источников света;
- мощность 11 w — для миниатюрных осветительных приборов и энергосберегающих источников света;
- мощность 15 w — для настольных и миниатюрных осветительных приборов;
- мощность 18 w — для настольных осветительных приборов;
- мощность 36 Вт – для маломощных люминесцентных осветительных приборов;
- мощность 58 Вт — для потолочных осветительных приборов;
- мощность 65 Вт — для потолочных многоламповых осветительных приборов;
- мощность 80 Вт — для мощных люминесцентных осветительных приборов.
Электронные ламповые дроссели могут быть рассчитаны по показателям мощности сразу на два источника света.
Правила выбора дросселя
Для правильного выбора пусковой индуктивности, требуется выполнить визуальный осмотр корпуса устройства, на котором указываются показатели мощности нагрузки, определяемые сечением обмоточных проводов.
Для устройства с высокими показателями мощности, очень характерными являются большие размеры и достаточно высокая стоимость.
С целью запуска собирается схема, представленная стартером, лампой и корректирующим конденсатором.
Стартер подключается в параллельном положении источнику света. Присоединение элемента осуществляется на верхнюю или нижнюю пару выводов, которые располагаются с двух сторон ламповой колбы. К оставшемуся проводу подключается дроссель. Клемма на сетевом источнике питания соединяется с катушечной клеммой, а вторая клемма используется для подачи напряжения.
При выборе важно обратить внимание на маркировку группы, которая может быть представлена буквами «В», «С» или «D», и позволяет подобрать дроссельное устройство, оптимальное по показателям поглощения мощности.
Проверка при помощи мультиметра
Как проверить дроссель лампы дневного света мультиметром?
Проверка дроссельного устройства, как правило, производится посредством контрольного исправного осветительного прибора.
В этом случае пара проводов, идущая от устройства, осторожно отсоединяется и присоединяется к цокольной части контрольной лампочки.
Если после подключения прибор освещения загорается в полную силу, значит, дроссельное устройство является исправным.
Основные неисправности дросселя представлены:
- обрывом обмотки, который чаще всего встречается на катушках низкого качества, выполненных с использованием плохо очищенного металла;
- витковым замыканием, которое наблюдается при наличии на проводниковой изоляции лакового покрытия низкого качества;
- повреждением клеммных контактов, которые прикручены недостаточно плотно, что вызывает скопление нагара, препятствующего перемещению тока.
Обрывы достаточно легко определяются посредством тестера, щупы которого нужно приложить к балластным клеммам. Появление звукового сигнала свидетельствует о исправности устройства. Кроме всего прочего, важно помнить, что «пробив» обмотки на корпусе устройства, всегда сигнализирует о выходе катушки из строя. Определить «пробив» можно, если один щуп такого измерительного прибора приложить поочередно к катушечным контактам. Звуковой сигнал должен отсутствовать.
Сложнее всего самостоятельно определить поломку, представленную межвитковым замыканием, так как в этом случае потребуется выяснить индуктивность рабочей катушки, которая в разных осветительных приборах значительно варьируется.
Выполнение замены неисправного устройства
Производить ремонтные работы по замене неисправного устройства вполне возможно самостоятельно. Важно помнить, что замена дросселя в обязательном порядке должна осуществляться после отключения осветительного прибора от сети электрического питания.
Выполняя ремонт, нужно ориентироваться на стандартную схему подключения, а произвести тестирование отремонтированного источника света можно посредством мультиметра.
Видео на тему
proprovoda.ru