Формулы по электричеству – Основные формулы по физике — ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Электричество — Основные формулы

1. Электростатика
1.1 Закон Кулона

q1, q2 — величины точечных зарядов,
r — расстояние между зарядами.

1.2 Напряженность поля уединенного точечного заряда

q — величина уединенного точечного заряда,
r — расстояние от заряда.

1.3 Потенциал точки в поле точечного заряда

q — величина уединенного точечного заряда,
r — расстояние от заряда.

1.4 Потенциальная энергия заряда в электростатическом поле

φ — потенциал,
q1 — величина заряда.

1.5 Потенциальная энергия заряда q1 в поле точечного заряда

q — величина уединенного точечного заряда, который создает поле,

r — расстояние между зарядами.

1.6 Теорема Гаусса

N — поток вектора напряженности электрического поля через замкнутую поверхность,
q — полный заряд, находящийся внутри замкнутой поверхности.

1.7 Напряженность электрического поля вблизи от поверхности проводника

σ — поверхностная плотность заряда.

1.8 Емкость плоского кондесатора

q — заряд конденсатора,
U — модуль разности потенциалов между обкладками.

1.9 Энергия плоского кондесатора

q — заряд конденсатора,
U — модуль разности потенциалов между обкладками.

2. Постоянный электрический ток
2.1 Закон Ома для участка однородной цепи

U — напряжение на концах участка,

R — сопротивление участка цепи.

2.2 Закон Ома для замкнутой цепи с источником тока

 — ЭДС (электродвижущая сила),
r — внутреннее сопротивление источника ЭДС.

2.3 Работа постоянного тока

U — напряжение на концах участка цепи,
t — время, за которое совершается работа.

2.4 Закон Джоуля-Ленца

Q — теплота,
R — сопротивление проводника,
t — время, за которое выделяется теплота.

2.5 Полная мощность, развиваемая источником тока

 — ЭДС источника тока,
R — сопротивление цепи,
r — внутреннее сопротивление источника тока.

2.6 Полезная мощность

 — ЭДС источника тока,
R — сопротивление цепи,
r

 — внутреннее сопротивление источника тока.

2.7 Коэффициент полезного действия источника тока

R — сопротивление цепи,
r — внутреннее сопротивление источника тока.

2.8 Первое правило Кирхгофа

n — число проводников, сходящихся в узле;
Ik — сила тока в k-м проводнике.

2.9 Второе правило Кирхгофа

n — число неразветвленных участков в контуре;
m — число ЭДС в контуре.

fizikazadachi.ru

Таблица большая основных формул электричества и магнетизма





Адрес этой страницы (вложенность) в справочнике dpva.ru:
  главная страница  / / Техническая информация / / Физический справочник / / Электрические и магнитные величины / / Понятия и формулы для электричества и магнетизма.  / / Таблица большая основных формул электричества и магнетизма

Поделиться:   

Таблица большая основных формул электричества и магнетизма

 Физические законы, формулы, переменные  Формулы электричество и магнетизм

Закон Кулона:

  • где q1 и q2 — величины точечных зарядов, 
  • ε1  — электрическая постоянная;
  • ε — диэлектрическая проницаемость изотропной среды (для вакуума ε = 1),
  • r — расстояние между зарядами.

Напряженность электрического поля, где:

 F — сила, действующая на заряд q0 , находящийся в данной точке поля.

Напряженность поля на расстоянии r от источника поля:
1) точечного заряда
2) бесконечно длинной заряженной нити с линейной плотностью заряда τ:
3) плоскости с поверхностной плотностью заряда σ (не зависит от расстояния):
4) между двумя разноименно заряженными плоскостями с поверхностной плотностью заряда σ
(во вне такого «суперконденсатора» поле равно нулю по принцину суперпозиции):
Потенциал электрического поля: где W — потенциальная энергия заряда q
0
 .
Потенциал поля точечного заряда на расстоянии r от заряда:
По принципу суперпозиции полей,
  • Напряженность, принцип суперпозиции: 
  • Εi — напряженность и в данной точке поля, создаваемая

dpva.ru

Основные электрические законы. Базовые формулы и расчеты

В предыдущей статье мы познакомились с основными электрическими понятиями, такими как электрический ток, напряжение, сопротивление и мощность. Настал черед основных электрических законов, так сказать, базиса, без знания и понимания которых невозможно изучение и понимание электронных схем и устройств.

Закон Ома

Электрический ток, напряжение, сопротивление и мощность, безусловно, между собой связаны. А взаимосвязь между ними описывается, без сомнения, самым главным электрическим законом – законом Ома. В упрощенном виде этот закон называется: закон Ома для участка цепи. И звучит этот закон следующем образом:

«Сила тока в участке цепи прямо пропорциональна напряжению и обратно пропорциональна электрическому сопротивлению данного участка цепи».

Для практического применения формулу закона Ома можно представить в виде вот такого треугольника, который помимо основного представления формулы, поможет определить и остальные величины.

Работает треугольник следующим образом. Чтобы вычислить одну из величин, достаточно закрыть ее пальцем. Например:

В предыдущей статье мы проводили аналогию между электричеством и водой, и выявили взаимосвязь между напряжением, током и сопротивлением. Также хорошей интерпретацией закона Ома может послужить следующий рисунок, наглядно отображающий сущность закона:

На нем мы видим, что человечек «Вольт» (напряжение) проталкивает человечка «Ампера» (ток) через проводник, который стягивает человечек «Ом» (сопротивление). Вот и получается, что чем сильнее сопротивление сжимает проводник, тем тяжелее току через него проходить («сила тока обратно пропорциональна сопротивлению участка цепи» – или чем больше сопротивление, тем хуже приходится току и тем он меньше). Но напряжение не спит и толкает ток изо всех сил (чем выше напряжение, тем больше ток или – «сила тока в участке цепи прямо пропорциональна напряжению»).

Когда фонарик начинает слабо светить, мы говорим – «разрядилась батарейка». Что с ней произошло, что значит разрядилась? А значит это, что напряжение батарейки снизилось и оно больше не в состоянии «помогать» току преодолевать сопротивление цепей фонарика и лампочки. Вот и получается, что чем больше напряжение – тем больше ток.

Последовательное подключение – последовательная цепь

При последовательном подключении потребителей, например обычных лампочек, сила тока в каждом потребителе одинаковая, а вот напряжение будет отличаться. На каждом из потребителей напряжение будет падать (снижаться).

А закон Ома в последовательной цепи будет иметь вид:

При последовательном соединении сопротивления потребителей складываются. Формула для расчета общего сопротивления:

Параллельное подключение – параллельная цепь

При параллельном подключении, к каждому потребителю прикладывается одинаковое напряжение, а вот ток через каждый из потребителей, в случае, если их сопротивление отличается – будет отличаться.

Закон Ома для параллельной цепи, состоящей из трех потребителей, будет иметь вид:

При параллельном соединении общее сопротивление цепи всегда будет меньше значения самого маленького отдельного сопротивления. Или еще говорят, что «сопротивление будет меньше наименьшего».

Общее сопротивление цепи, состоящей из двух потребителей, при параллельном соединении:

Общее сопротивление цепи, состоящей из трех потребителей, при параллельном соединении:


Для большего числа потребителей расчет производится исходя из того, что при параллельном соединении проводимость (величина обратная сопротивлению) рассчитывается как сумма проводимостей каждого потребителя.

Электрическая мощность

Мощность – это физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Рассчитывается мощность по следующей формуле:

Таким образом зная, напряжение источника и измерив потребляемый ток, мы можем определить мощность потребляемую электроприбором. И наоборот, зная мощность электроприбора и напряжение сети, можем определить величину потребляемого тока. Такие вычисления порой необходимы. Например, для защиты электроприборов используются предохранители или автоматические выключатели. Чтобы правильно подобрать средство защиты нужно знать потребляемый ток. Предохранители, применяемые в бытовой технике, как правило подлежат ремонту и для их восстановления достаточно подобрать и заменить проволоку.

Применив закон Ома, можно рассчитать мощность и по другой формуле:

При расчетах надо учитывать, что часть потребляемой электроэнергии расходуется на нагрев и преобразуется в тепло. При работе греются не только электрообогреватели, но и телевизоры, и компьютеры и другая бытовая техника.

И в завершение, в качестве бонуса, вот такая шпаргалка, которая поможет определить любой из основных электрических параметров, по уже известным.

imolodec.com

Формулы — Электричество и магнетизм

Электростатическое поле в вакууме

Закон Кулона: ,

где

Напряженность электрического поля:

Напряженность поля точечного заряда:

Напряженность поля заряженного шара:

где R — радиус шара.

Принцип суперпозиции электрических полей:

Поток вектора напряженности через поверхность S:

Теорема Гаусса: ,

где ФЕ – поток вектора напряженности через замкнутую поверхность S, q – заряд, заключенный внутри поверхности S.

Линейная плотность заряда:

Поверхностная плотность заряда:

Объемная плотность заряда:

Напряженность поля, создаваемого бесконечной равномерно заряженной плоскостью, нитью:

Электрическое смещение:

Потенциал электрического поля:

Потенциал поля точечного заряда:

Потенциал поля заряженного шара:

Работа по перемещению заряда в электрическом поле: А = q (

где ( — разность потенциалов.

Энергия заряженного конденсатора

Энергия системы точечных зарядов:

Электрический момент диполя:

Механический момент, действующий на диполь в электрическом поле:

Поляризованность диэлектрика:

Связь поляризованности и напряженности электрического поля:, где χ – диэлектрическая восприимчивость.

Постоянный ток

Сила тока: .

Плотность тока: , где j=qnV.

Закон Ома для однородного участка цепи:

Сопротивление проводника:

Зависимость удельного сопротивления от температуры:

Закон Ома для неоднородного участка цепи:

Сила тока короткого замыкания:

.

Закон Ома для замкнутой цепи: .

Работа электрического поля на участке цепи:

Закон Джоуля-Ленца:

Мощность тока: P=I . U .

Полная мощность, выделяемая в цепи: P=I .  .

Первый закон Кирхгофа: .

Второй закон Кирхгофа:

Магнитное поле в вакууме и веществе

Закон Био-Савара-Лапласа:

,

где о=410-7Гн/м.

Магнитная индукция в центре кругового тока:

.

Магнитная индукция поля, создаваемого бесконечно длинным прямым проводником с током:

Магнитная индукция поля,

создаваемого отрезком проводника:

Связь магнитной индукции с напряженностью магнитного поля:

Магнитная индукция поля, создаваемого соленоидом в средней его части (или тороида на его оси):

Принцип суперпозиции магнитных полей:

Закон Ампера:

Сила взаимодействия двух прямых бесконечно длинных параллельных проводников с токами:

Магнитный момент контура с током:

Pm=I . S .

Механический момент, действующий на контур с током, помещенный в однородное магнитное поле:

M = pm . B sin 

Сила, действующая на заряд, движущийся в магнитном поле (сила Лоренца):

F = q V B sin 

Закон полного тока:

Магнитный поток через плоский контур:

Ф = B S cos  .

Потокосцепление, то есть полный магнитный поток, сцепленный со всеми витками соленоида или тороида:

.

Магнитный поток сквозь тороид, сердечник которого составлен из двух частей, изготовленных из веществ с различными магнитными проницаемостями:

Made in Russia Made by Miha

studfile.net

Формулы «Электричество. Магнетизм» — Репетитор физики, математики

15. Электростатика

Значение вектора напряженности [В/м]        

Напряженность точечного заряда                 

Напряженность равномерно заряженной сферы:

1) внутри сферы                                          ;

2) снаружи сферы                                        

Закон Кулона                                               

Для однородного электрического поля:

1) Электрическая сила,
действующая на заряд                                 

2) Потенциальная энергия заряда                

3) Потенциал электрического поля              

4) Напряжение (разность потенциалов)        

5) Напряжение через напряженность            

6) Работа электрического поля                      

                                                                   

                                                                   

                                                                   

Потенциал поля точечного заряда [В]            

Потенциал поля заряженной сферы :

1) внутри сферы равен
потенциалу на поверхности:                         

2) снаружи сферы                                         

Электрическая емкость конденсатора [Ф]      

Электрическая емкость плоского
конденсатора                                                

Энергия конденсатора [Дж]                           

                                                                   

                                                                   

При последовательном соединении конденсаторов:

1) Напряжение батареи конденсаторов         

2) Заряд на всех конденсаторах                    

3) Емкость батареи конденсаторов                

При параллельном соединении конденсаторов:

1) Напряжение на всех конденсаторах          

2) Заряд батареи конденсаторов                   

3) Емкость батареи конденсаторов                

16. Законы постоянного тока

Сила тока [А]                                               

Закон Ома для участка цепи                         

Закон Ома для полной цепи                          

Сопротивление проводника [Ом]                   

При последовательном соединении резисторов:

1) Напряжение между входом
и выходом цепи                                           

2) Сила тока  во всех резисторах                

3) Эквивалентное сопротивление цепи         

При параллельном соединении резисторов:

1) Напряжение на всех резисторах               

2) Сила тока через вход и выход цепи          

3) Эквивалентное сопротивление цепи         

для двух параллельно соединенных резисторов   

Работа тока на однородном
участке цепи [Дж]                                        

                                                                   

                                                                   

Количество теплоты, выделяющееся
на резисторе [Дж]                                        

Мощность тока [Вт]                                      

                                                                   

                                                                   

Первое правило Кирхгофа                            

Второе правило Кирхгофа                            

17. Магнитное поле

Сила Лоренца                                               

Сила Ампера                                               

Магнитный поток [Вб]                                  

ЭДС индукции в замкнутом контуре              

ЭДС индукции в катушке                              

ЭДС индукции в движущемся проводнике      

Индукционный ток                                        

Магнитный поток катушки                             

Индуктивность соленоида                             

ЭДС самоиндукции в катушке                       

Энергия магнитного поля
катушки с током                                          

mileta.su

Тут физики!: Электричество. Формулы.


Электри́чество — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гилбертом в его сочинении «О магните, магнитных телах и о большом магните — Земле» (1600 год), в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся прежде всего в способности создавать вокруг себяэлектрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела[7]. Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплен вполне определенный знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и имеют, таким образом, место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон имеет отрицательный заряд, а протон и позитрон — положительный. Наиболее общая фундаментальная наука, имеющая предметом электрические заряды, их взаимодействие и поля, ими порождаемые и действующие на них (то есть практически полностью покрывающая тему электричества, за исключением таких деталей, как электрические свойства конкретных веществ, как то электропроводность итп) — это электродинамика. Квантовые свойства электромагнитных полей, заряженных частиц итп изучаются наиболее глубоко квантовой электродинамикой, хотя часть из них может быть объяснена более простыми квантовыми теориями.

Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Цепь постоянного тока (или, строго говоря, цепь без комплексного сопротивления)

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока.

P = мощность (Ватт)

U = напряжение (Вольт)

I = ток (Ампер)

R = сопротивление (Ом)

r = внутреннее сопротивление источнка ЭДС

ε = ЭДС источника

Тогда для всей цепи:

  • I=ε/(R +r) — закон Ома для всей цепи.

И еще ниже куча формулировок закона Ома для участка цепи :

Электрическое напряжение:

  • U = R* I — Закон Ома для участка цепи
  • U = P / I
  • U = (P*R)1/2

Электрическая мощность:

  • P= U* I
  • P= R* I2
  • P = U 2/ R

Электрический ток:

  • I = U / R
  • I = P/ E
  • I = (P / R)1/2

Электрическое сопротивление:

  • R = U / I
  • R = U 2/ P
  • R = P / I2

НЕ ЗАБЫВАЕМ: Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.

Цепь переменного синусоидального тока c частотой ω.

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока и частоты.

Напомним, что любой сигнал, может быть с любой точностью разложен в ряд Фурье, т.е. в предположении, что параметры сети частотнонезависимы — данная формулировка применима ко всем гармоникам любого сигнала.

Закон Ома для цепей переменного тока:

где:

  • U = U0eiωt  напряжение или разность потенциалов,
  • I  сила тока,
  • Z = Reiφ  комплексное сопротивление (импеданс)
  • R = (Ra2+Rr2)1/2  полное сопротивление,
  • Rr = ωL — 1/ωC  реактивное сопротивление (разность индуктивного и емкостного),
  • Rа  активное (омическое) сопротивление, не зависящее от частоты,
  • φ = arctg Rr/Ra — сдвиг фаз между напряжением и током.
  • Естественно, применительно к цепям переменного тока можно говорить и об активной/реактивной мощности.

tytphysiki.blogspot.com

Формулы по электричечтву

Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.

Цепь постоянного тока (или, строго говоря, цепь без комплексного сопротивления)

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока.

P = мощность (Ватт)

U = напряжение (Вольт)

I = ток (Ампер)

R = сопротивление (Ом)

r = внутреннее сопротивление источнка ЭДС

ε = ЭДС источника

Тогда для всей цепи:

  • I=ε/(R +r) — закон Ома для всей цепи.

И еще ниже куча формулировок закона Ома для участка цепи :

Электрическое напряжение:

  • U = R* I — Закон Ома для участка цепи
  • U = P / I
  • U = (P*R)1/2

Электрическая мощность:

  • P= U* I
  • P= R* I2
  • P = U 2/ R

Электрический ток:

  • I = U / R
  • I = P/ E
  • I = (P / R)1/2

Электрическое сопротивление:

  • R = U / I
  • R = U 2/ P
  • R = P / I2

НЕ ЗАБЫВАЕМ: Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения.

Цепь переменного синусоидального тока c частотой ω.

Применимость формул: пренебрегаем зависимостью сопротивлений от силы тока и частоты.

Напомним, что любой сигнал, может быть с любой точностью разложен в ряд Фурье, т.е. в предположении, что параметры сети частотнонезависимы — данная формулировка применима ко всем гармоникам любого сигнала.

Закон Ома для цепей переменного тока:

где:

    • U = U0eiωt  напряжение или разность потенциалов,
    • I  сила тока,
    • Z = Reiφ  комплексное сопротивление (импеданс)
    • R = (Ra2+Rr2)1/2  полное сопротивление,
    • Rr = ωL — 1/ωC  реактивное сопротивление (разность индуктивного и емкостного),
    • Rа  активное (омическое) сопротивление, не зависящее от частоты,
    • φ = arctg Rr/Ra — сдвиг фаз между напряжением и током.

Естественно, применительно к цепям переменного тока можно говорить и об активной/реактивной мощности.

www.pomoshelektrikam.ru

0 comments on “Формулы по электричеству – Основные формулы по физике — ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *