импульсный генератор эдс самоиндукции — патент РФ 2524387
Изобретение относится к электротехнике, в частности к конструкциям индукционных генераторов тока, и может быть использовано в электромагнитных установках и электрических машинах, таких как двигатели, генераторы, трансформаторы, в частности, в качестве повышающего трансформатора. Технический результат состоит в повышении эдс на выходе за счет использования импульсных напряжений на вторичной обмотке и осуществления конструкции вторичной обмотки, которая бы позволяла производить непосредственный съем с генератора возникающего импульсного напряжения, и одновременно суммарной мощности первичной и вторичной обмоток. 6 з.п. ф-лы, 2 ил.
Рисунки к патенту РФ 2524387
Изобретение относится к электротехнике, в частности к конструкциям импульсных индукционных генераторов тока.
Назначением данного изобретения является использование импульсного генератора ЭДС самоиндукции для обеспечения импульсного энергопитания различных электромагнитных установок и электрических машин, что позволяет существенно расширить арсенал импульсных источников энергии. Из уровня техники известен «Индукционный синхронный генератор», Заявка RU 98119347, опубл. 10.09.2000, МПК H02K 21/14, использующий токи обмотки статора, на якоре которого токи пульсируют, и индуктор (ротор), выполненный защищенным от магнитного поля токов обмотки якоря статора. Позволяет расширить режимы работы генератора. Однако в генераторе присутствуют вращающиеся части, а следовательно, он обладает всеми недостатками таких генераторов, т.е. не решены проблемы, связанные с коммутацией электроэнергии. В предложенной конструкции невозможно получение требуемого высокого напряжения.
Известен «Генератор электрической энергии», заявка RU 94025335, опубл. 10.06.1996, МПК H02K 19/16, содержащий составные кольцевые обмотки с сердечником, индукционную катушку и обмотку возбуждения. Позволяет увеличить производительность генератора электрической энергии, уменьшить индуктивное сопротивление статорной обмотки, уменьшить затраты на механическую работу при преобразовании механической энергии в электрическую и повысить КПД. Однако генератор в силу особенностей конструкции не позволяет использовать ЭДС самоиндукции. В генераторе присутствуют вращающиеся части, а, следовательно, он обладает всеми недостатками таких генераторов, т.е. не решены проблемы, связанные с коммутацией электроэнергии.
Известна полезная модель «Комбинированная электромагнитная обмотка», патент RU 96443, опубл. 27.07.2010, МПК H01F 5/00, в которой имеется два или более проводника с выводами, и проводники разделены диэлектриком. Позволяет расширить режимы работы. Однако оба проводника применяются в качестве первичной обмотки, отсутствует вторичная обмотка высокого напряжения, что не позволяет обмотку использовать в трансформаторах высокого напряжения, а также не обеспечивает съем и использование ЭДС индукции от вторичной обмотки.
Наиболее близкой заявкой на изобретение является «Индуктивно-статический способ генерации электрической энергии и устройство для его осуществления», RU 2004124018, опубл. 27.01.2006, МПК H01F 1/00, в соответствии с которым имеется первичная и вторичная обмотки, образующие катушку индуктивности с переходом свободной магнитной энергии в индуктивно-зависимое состояние, и происходит наведение ЭДС индукции и получение уплотнения магнитных потоков, пропорциональное увеличению электрической мощности. Позволяет использовать вторичную обмотку с меньшей на величину уплотнения магнитных потоков индуктивностью, чем достигается пропорциональное уплотнение и увеличение электрической мощности генератора. В способе используют индукционный и, одновременно, статический способы генерации. Однако не предложена конструкция вторичной обмотки генератора, которая позволяет производить непосредственный съем с генератора возникающее импульсное напряжение и ток ЭДС самоиндукции.
Также наиболее близким решением является классическая электрическая схема для проведения опытов по демонстрации электромагнитной индукции при размыкании цепи. Эта схема (устройство) функционально является импульсным генератором ЭДС самоиндукции. В связи с вышесказанным, в качестве прототипа принимаем установку, показанную на чертеже — рис.424 стр.231, учебник: Курс физики, часть вторая, изд. «Наука», Москва 1970 г. Авторы: Л.С. Жданов, В.А. Маранджан.
Однако в классической схеме сердечник из электротехнической стали конструктивно не способен выполнять в устройстве одновременно две функции: электропроводящей обмотки и классического, как на рис.424 прототипа, магнитопровода, т.е сердечника (М) индукционной катушки. Прототип не позволяет производить непосредственный съем и использование ЭДС самоиндукции, возникающей в сердечнике классической индукционной катушки.
Техническим результатом, который обеспечивает предложенное техническое решение, является существенное расширение арсенала средств для импульсного генерирования и преобразования электроэнергии. Заявленный технический результат обеспечен за счет того, что импульсный генератор ЭДС самоиндукции конструктивно исполнен в виде первичной и вторичной обмоток однофазного повышающего трансформатора в стандартном техническом исполнении (с учетом того, что вторичная обмотка является одновременно функционально электропроводником и магнитопроводом, то предлагается рассматривать представленную конструкцию как простейшую индукционную катушку с сердечником, конструктивно исполненным в виде спиральной катушки с возможностью съема с него ЭДС самоиндукции) и они снабжены двумя или более проводниками, которые разделены диэлектриком и каждый проводник имеет выводы. Генератор отличается тем, что первичная обмотка (проводник) низкого напряжения выполнена спирально-ленточной и имеет по меньшей мере 2 витка, намотанных плотно или с небольшим зазором, виток к витку, лента обмотки выполнена шириной от 120 до 200 мм и толщиной от 1 до 2 мм; вторичная обмотка (проводник) высокого напряжения также выполнена спирально-ленточной, лента обмотки выполнена из электротехнической стали, покрытой электроизоляцией, и имеет по меньшей мере 100 витков, намотанных плотно или с небольшим зазором, виток к витку, лента выполнена шириной от 120 до 200 мм и толщиной не более 0,1 мм. Первичная обмотка электрически соединена с аккумуляторной батареей низкого напряжения через ключ-прерыватель с образованием замкнутой электрической цепи, где вторичная обмотка является одновременно электропроводящей обмоткой и магнитопроводом. При этом витки первичной обмотки расположены снаружи витков вторичной обмотки таким образом, что обе обмотки образуют повышающий трансформатор, в котором вторичная обмотка является индукционной катушкой трансформатора высокого напряжения, обеспечивая электропроводность за счет ленты из электротехнической стали, изолированной внешним слоем изоляции и, одновременно, выполняет функцию сердечника для первичной обмотки, ЭДС снимают посредством проводников, электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя, причем обеспечивают за счет частоты срабатывания ключа-прерывателя расчетные импульсное напряжение и ток, возникающие во вторичной обмотке, по формуле
где — где L — индуктивность цепи или коэффициент пропорциональности между скоростью изменения силы тока в контуре и возникающей вследствие этого ЭДС самоиндукции,
— скорость изменения силы тока в электрической цепи
В частных случаях первичная обмотка может быть выполнена из медного или алюминиевого проводника, может иметь 3 витка и более, количество витков ограничено трансформаторным отношением: отношение количества витков вторичной обмотки к количеству витков первичной обмотки, что определяет коэффициент трансформации, т.е. насколько напряжение во вторичной обмотке больше, чем в первичной. Например, аккумуляторная батарея низкого напряжения может быть рассчитана на 12-24 вольт и она является источником постоянного тока. В частности, периодическое срабатывание ключа-прерывателя осуществляют с промышленной частотой переменного тока 50 Гц. При этом частоты могут быть любые технически возможные для осуществления, но лучше 50 Гц, так как ее проще преобразовать либо потреблять с помощью имеющихся стандартных преобразователей или электроприборов. Расчетная ЭДС самоиндукции во вторичной обмотке обеспечивается, в частности, геометрией контура и магнитными свойствами сердечника для первичной обмотки. Так она может быть выполнена с формой контура, который выполнен круглым с диаметром 150 мм и более, что зависит от коэффициента трансформации, который и определит диаметр вторичной обмотки в зависимости от применяемой толщины электротехнической стали, или круглой спиральной формой. Поскольку вторичная обмотка является обмоткой высокого напряжения и выполнена из электротехнической стали, то это значит, что ее магнитные свойства определены самим материалом (т.е собственно магнитными свойствами электротехнической стали).
Изобретение в наиболее обобщенном виде иллюстрируется чертежами. Конкретное конструктивное исполнение не ограничивается показанными на чертежах вариантами исполнения.
На Фиг.1 показана схема расположения первичной и вторичной обмоток и аккумуляторная батарея с ключом-прерывателем.
На Фиг.2 — показано сечение А-А по соединенным вторичной и первичной обмоткам.
Данное техническое решение иллюстрируется чертежом, который не охватывает всех возможных конструктивных вариантов исполнения представленной схемы подключения.
Устройство Импульсного генератора ЭДС самоиндукции показано на фиг.1 и фиг.2 (в разрезе), и это устройство конструктивно исполнено в виде однофазного повышающего трансформатора (а также конструктивно является простейшей индукционной катушкой), который состоит из первичной (1) спирально-ленточной обмотки (медный или алюминиевый проводник), 2-3 витка толщиной 1-2 мм, шириной 120 мм, подключенной к аккумуляторной батарее (2) низкого напряжения 12-24 в — источник постоянного тока через ключ-прерыватель (3), образующих замкнутую электрическую цепь.
Вторичная спирально-ленточная обмотка высокого напряжения (4) из электротехнической стали, покрытой электроизоляцией, имеет количество витков от 100 и более, толщина ленты 0,1 мм, ширина 120 мм.
Вторичная обмотка (4) из электротехнической стали выполняет в конструкции две функции одновременно: электропроводящей обмотки и магнитопровода.
В качестве электропроводника вторичная обмотка (4) является индукционной катушкой высокого напряжения повышающего трансформатора.
В качестве магнитопровода вторичная обмотка (4) является сердечником для первичной обмотки (2) классической индукционной катушки.
Первичная (1) и вторичной (4) обмотки однофазного повышающего трансформатора и снабжены двумя или более проводниками (5), проводники вторичной обмотки имеют вывод (6) — т.е. ЭДС снимают посредством проводников (5, 6), электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя (3). Причем токи, возникающие во вторичной обмотке, рассчитывают по формуле
где L — индуктивность цепи или коэффициент пропорциональности между скоростью изменения силы тока в контуре первичной обмотки (1) и возникающей вследствие этого ЭДС самоиндукции во вторичной обмотке (2),
— скорость изменения силы тока в электрической цепи первичной обмотки (1) за счет ключа-прерывателя (3).
Периодическое срабатывание ключа-прерывателя (3) осуществляют с промышленной частотой переменного тока 50 Гц. Расчетную ЭДС самоиндукции во вторичной обмотке (4) обеспечивают геометрией контура вторичной обмотки (4) и магнитными свойствами сердечника (4) для первичной обмотки (1).
Форма контура, полученного первичной (1) и вторичной (4) обмотками, в представленном варианте выполнена круглой диаметром 150 мм и более.
Устройство работает следующим образом.
При замыкании ключом (3) электрической цепи первичной обмотки (1) возникает магнитное поле, энергия которого запасается в магнитном поле вторичной обмотки (4).
Размыкание ключа (3) цепи первичной обмотки (1) образует убывающий ток, который по правилу Ленца стремится поддержать ЭДС наведенной индукции вторичной обмотки (4).
В результате запасенная в магнитном поле вторичной обмотки (4) энергия преобразуется в дополнительную энергию тока самоиндукции первичной обмотки (1), запитавшей электрическую цепь вторичной обмотки (4).
В зависимости от количества запасенной в цепи вторичной обмотки (4) магнитной энергии мощность тока самоиндукции может быть различной и определяется по известной формуле:
Таким образом, данным изобретением достигается технический результат, состоящий в том, что конструкция, материал и двойное функциональное назначение вторичной обмотки устройства позволяет снимать и эффективно использовать возникающую ЭДС самоиндукции.
Промышленная применимость предложенного технического решения подтверждается общими правилами физики. Так, эффект самоиндукции описан в учебнике (Л.С. Жданов, В.А. Маранджян, курс физики для средних специальных заведений, ч. 2 электричество, изд. Третье, стереотипное, главная редакция физико-математической литературы, М., 1970 г., стр.231,232,233). Самоиндукция возникает при размыкании цепи, она прямо пропорциональна скорости изменения силы тока в электрической цепи. В традиционных схемах явление самоиндукции всегда сопровождается возникновением искры, возникающей в месте разрыва цепи. Поскольку в предложенной конструкции нет разрыва электрической цепи во вторичной обмотке (4) благодаря ее конструкции, в зависимости от количества запасенной в этой цепи магнитной энергии, ток размыкания не осуществляет искрение, а переходит в генерированную мощность. Таким образом, в конструкции вторичной обмотки (4) при размыкании цепи постоянного тока в первичной обмотке (1) запасенная в магнитном поле этой цепи энергия превращается в энергию тока самоиндукции в цепи вторичной обмотки (4).
Поскольку электродвижущей силой (ЭДС) называют величину, равную работе сторонних сил, в нашем случае — это изменяющееся магнитное поле первичной катушки (1), отнесенной к единице положительного заряда, это и есть ЭДС, действующая в цепи или на ее участке, в нашем случае — это вторичная обмотка (4). Сторонние силы можно охарактеризовать работой, которую они совершают над перемещающимися по цепи зарядами, и размерность ЭДС совпадает с размерностью потенциала и измеряется в тех же единицах. Поэтому векторную величину Е еще называют напряженностью поля сторонних сил. Поле сторонних сил в нашем случае возникает за счет переменного магнитного поля в первичной обмотке (1). Таким образом, ЭДС, действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил, т.е. сторонних сил, возникающих в первичной обмотке (1) за счет прерывания электрического поля ключом-прерывателем (3). Данное правило обеспечивает возникновение ЭДС индукции во вторичной обмотке (4). Это физическое явление описано в в учебнике (И.В. Савельев, Курс физики, том 2, электричество, стр.84,85, изд. Второе стереотипное, изд. Наука, главная редакция физико-математической литературы, М., 1966 г.).
Кроме сторонних сил, на заряд действуют силы электростатического поля, которые возникают непосредственно во вторичной катушке (4).
Устройство также использует явление электромагнитной индукции, описанной в (Р.А. Мустафаев, В.Г. Кривцов, учебник, физика, в помощь поступающим в ВУЗы, изд. М., Высшая школа, 1989 г.).
Таким образом, используемая в предложенном изобретении конструкция генератора как устройство позволяет эффективно генерировать, снимать и использовать ЭДС самоиндукции. Таким образом, устройство может быть изготовлено промышленным способом и внедряться в качестве перспективного эффективного импульсного генератора ЭДС самоиндукции, который позволяет расширить арсенал технических средств для импульсного генерирования и преобразования электроэнергии.
ФОРМУЛА ИЗОБРЕТЕНИЯ
1. Импульсный генератор эдс самоиндукции, конструктивно исполненный в виде однофазного повышающего трансформатора, состоящего из первичной и вторичной обмоток и снабжен двумя или более проводниками, которые разделены диэлектриком, а проводник имеет выводы, отличающийся тем, что первичная обмотка низкого напряжения выполнена спирально-ленточной и имеет по меньшей мере два витка, намотанных плотно или на небольшом расстоянии друг от друга, лента обмотки выполнена шириной 120-200 мм и толщиной 1-2 мм; вторичная обмотка высокого напряжения также выполнена спирально-ленточной, лента обмотки выполнена из электротехнической стали, покрытой электроизоляцией, имеет по меньшей мере 100 витков, намотанных плотно или на небольшом расстоянии друг от друга, лента выполнена шириной 120-200 мм и толщиной не более 0,1 мм, первичная обмотка электрически соединена с аккумуляторной батареей низкого напряжения через ключ-прерыватель с образованием замкнутой электрической цепи, а вторичная обмотка является одновременно электропроводящей обмоткой и магнитопроводом, при этом витки первичной обмотки расположены снаружи витков вторичной обмотки таким образом, что обе обмотки образуют повышающий трансформатор, в котором вторичная обмотка является индукционной катушкой повышающего трансформатора, обеспечивая электропроводность за счет ленты из электротехнической стали, изолированной внешним слоем изоляции, и одновременно выполняет функцию сердечника для первичной обмотки, эдс снимают посредством проводников, электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя.
2. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что первичная обмотка выполнена из медного или алюминиевого проводника.
3. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что первичная обмотка имеет три витка.
4. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что аккумуляторная батарея низкого напряжения рассчитана на 12-24 вольт и является источником постоянного тока.
5. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что периодическое срабатывание ключа-прерывателя осуществляют с промышленной частотой переменного тока 50 Гц.
6. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что расчетную эдс самоиндукции обеспечивают геометрией контура и магнитными свойствами сердечника для первичной обмотки.
7. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что форма контура выполнена круглой диаметром 150 мм и более.
www.freepatent.ru
Фантазии на тему Генератора Свободной Энергии — Идеи по Энергии — Каталог статей
А возможно ли это — ГЕНЕРАТОР СВОБОДНОЙ ЭНЕРГИИ! В данном случае бес топливный генератор электрической энергии и знали ли Мы об этом раньше!
Наверно знали, но навязанное мнение о невозможности подобного устройства….
Ну наверно у части есть и свое мнение, кое я Вам и представлю.
Производство электроэнергии
Вся электроэнергия на земле производится электрогенераторами, и только мизерная ее часть солнечными панелями. Такое устройство как генератор, нам известно еще со школы и есть два их типа, где МАГНИТНОЕ ПОЛЕ [МП] формируется от постоянных магнитов [ПМ] или создается электромагнитное поле [ЭМП] путем возбуждения соленоида с сердечником.
Суть сводится к следующему: магнитное поле разной полярности пересекает поочередно обмотку, в которой наводится ЭДС (Электродвижущая Сила), а просто электрический ток, который течет по замкнутой цепи. Для этого необходимо создать переменное магнитное поле для проводника. Как правило, генератор состоит из двух частей РОТОРА (вращающейся части) и СТАТОРА (часть в которой вращается ротор). Ротор может быть наружный и внутренний. В 99% из ста, ротор это внутренняя часть. Так же в ротор может быть магнитом или катушкой. И так с начала века электричества.
Источником же механического вращения является турбина, причиной ее вращения является внешняя механическая сила: или падающей воды (гидростанции), или пара (тепловые, ядерные), так же есть и газотурбинные установки, лопасти ветряков и т.д.
Так, что мы точно знаем — Источником электрической энергии является магнитное поле (среда), а приемником провода катушки (проводник), которые соединены в замкнутую цепь с потребителем энергии (нагрузкой).
Самый известный простому обывателю, который все видели, это автогенератор с возбуждением от электромагнита. как для примера. Чтобы этот генератор вырабатывал ток для бортовой системы автомобиля, требуется до 20% топлива затраченного на работу вашего двигателя. Это затраты на производство электроэнергии в вашем автомобиле.
Далее, я опять как школьник прочитал всем известные физические свойства интересующего нас предмета – получение электроэнергии:Электромагнитная индукция и Энергия магнитного поля; Взаимоиндукция иСамоиндукция; Магнитное поле. ; Про магнитное поле, соленоиды и электромагниты; и Эффект Мейснера для общего типа развития.
Система Джона Бедини
Самой яркой по простоте, из СЕ технологий, на сегодняшний день, является система зарядки АКБ, импульсами Самоиндукции, предложенной Джоном Бедини.
Однополярный двигатель Бедини или немного теории получение радиантной энергии
Тесла говорил, нет импульсов, нет энергии. Энергия в проводнике появляется, когда в проводник поступают высоковольтные импульсы. Проводник можно представить как катушку. При поступлении импульсов катушка становится электромагнитом. А у магнитов есть нулевая зона — стенка Блóха, через которую идёт захват из окружающей среды радиантной энергии.
Схема Однополярного двигателя Бедини проста:
Состоит из колеса, на котором размещены магниты северными полюсами наружу и катушек намотанных бифилярно на одном стержне. Проходя мимо катушки, магниты наводят, в ней напряжение, которое открывает ключ (транзистор). От батареи, через другую катушку и открытый транзистор начинает течь ток, появляется магнитное поле вокруг катушки, которое в момент прохождения мнимого южного полюса толкает колесо и так цикл повторяется. Коммутации транзистора вызывают в импульсах высоковольтные импульсы, которые мы захватываем через диод и подаём в заражаемую батарею, которых может быть большее количество.
Что меня привлекло в данной конструкции, это то, что обмотка возбуждения является и обмоткой съема энергии. Снимаемой энергией является энергия Самоиндукции, природу которой мы не знаем до сих пор. Джон Бедини назвал Радиантом.
Что мы знаем о самоиндукции
Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока.
При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС.
Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).
Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции.
Самоиндукция и скачок тока
За счёт явления самоиндукции в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время. Аналогичные процессы происходят и при размыкании цепи, при этом (при резком размыкании) величина ЭДС самоиндукции может в этот момент значительно превышать ЭДС источника.
Чаще всего в обычной жизни это используется в катушках зажигания автомобилей. Типичное напряжение зажигания при напряжении питающей батареи 12В составляет 7-25 кВ. Впрочем, превышение ЭДС в выходной цепи над ЭДС батареи здесь обусловлено не только резким прерыванием тока, но и коэффициентом трансформации, поскольку чаще всего используется не простая катушка индуктивности, а катушка-трансформатор, вторичная обмотка, которой, как правило имеет во много раз большее количество витков (то есть, в большинстве случаев схема несколько более сложна, чем та, работа которой полностью объяснялось бы через самоиндукцию; однако физика ее работы и в таком варианте отчасти совпадает с физикой работы схемы с простой катушкой).
Это явление применяется и для поджига люминесцентных ламп в стандартной традиционной схеме (здесь речь идет именно о схеме с простой катушкой индуктивности — дросселем).
Кроме того, его надо учитывать всегда при размыкании контактов, если ток течет по нагрузке с заметной индуктивностью: возникающий скачок ЭДС может приводить к пробою межконтактного промежутка и/или другим нежелательным эффектам, для подавления которых в этом случае, как правило, необходимо принимать разнообразные специальные меры.
не такое уж новое, вопрос только применения данного физического эффекта для производства энергии.
Фантазии на тему Импульса и Магнитного поля
Вернемся к двигателю Бедини, и рассмотрим повнимательнее, какие же процессы там происходят. Первое это возбуждение ЭДС обмотки управления, за счет наведения магнитного поля в сердечнике южным полюсом магнита на роторе, и в этот же момент происходит холостое возбуждение основной обмотки. Открывается ключ, происходит возбуждение основной обмотки, которое формирует (вернее уже производит перемагничивание сердечника), кроме этого в данный момент идет наведение ЭДС в обмотке управления, обратное по направлению, от базы транзистора, которое просто шунтируется, для этого там и стоит диод. После закрытия ключа, уже по цепи съема ЭДС самоиндукции высоковольтный импульс (в N раз больше) импульса возбуждения, направляется в заряжаемую батарею.
Есть еще варианты подобного устройства и без роторном варианте, кои, так же хорошо себя, зарекомендовали. На схеме самое яркое по простоте.
В данном варианте управление это разновидность качера, то есть как бы ротор с магнитами заменен на импульсный генератор качерного типа и отсутствуют любые постоянные магниты. Еще присутствует эффект трансформации, в обмотках L1 и L2, направление токов противоположное, в L1 от источника заряжаемой батареи в L2 наводимое от L1 ЭДС по законам электромагнитной индукции. А вот, когда возбуждение L1 от АКБ прекращается в L1 и L2 возникает ЭДС самоиндукции, который протекая каждый в своей обмотке, усиливает соседний (взаимное усиление). Можно в этом и сомневаться, но проверка только на практике. Но данный эффект мы берем на заметку. Это еще не генератор, зарядное устройство да, более эффективное с самонастройкой на частоту работы и работающее на чистом импульсе, без внешнего на него воздействия магнитных полей.
Зададим вопрос, что будет, если добавить постоянное магнитное поле, ведь мы знаем, источником ЭДС есть переменное магнитное поле.
По краям нашего соленоида поставим по две магнитные сборки с магнитной проницаемостью больше середины сердечника, чтобы магнитные поля сборок сомкнулись.
И запустим нашу систему, и что мы увидим, она работает. Что удивительного скажете Вы, в ответ, а я бы просто порекомендовал сделать замеры и рассмотреть карту магнитных полей.
1. Магнитное поле находится в состоянии покоя, магнитное поле ПМ замкнуто через сердечник. Ток через проводник не течет, ЭДС в проводнике не наводится. Магнитный поток влияет на проводимость проводника.
2. Возбуждение катушки, происходит, дополнительное однонаправленное, намагничивание сердечника. МП нашего дросселя усиливается, плюс внутри добавляется вихревые магнитные процессы. ЭМП катушки вытесняет МП постоянных магнитов, хоть оно и однонаправленное но имеет разную структуру. Будем считать, что магнитное поле ПМ прямолинейное, а магнитное поле возбужденной катушки — вихревое. Дроссель является элементом электрической цепи.
3. Выключение возбуждения, магнитное поле ПМ на полюсах восстанавливают свое поле, замыкаясь через сердечник (типа включился МП постоянных магнитов). Т.к по обмотке не течет электрический ток в ней возникает ЭДС самоиндукции от импульса возбуждения и наводится ЭДС от импульсного движения магнитного поля постоянных магнитов (1/2 действия наведения ЭДС в обмотке генератора). И самое интересное что и ЭДС он наведения и ЭДС самоиндукции совпадают по направлению. Дроссель является источником тока для цепи.
В итоге еще имеем импульсное магнитное поле постоянных магнитов, и направленное в одну сторону ЭДС и ЭДС самоиндукции, при этом, ни какого механического движения.
Таким образом, на заряжаемую АКБ мы сбросим еще энергию, от наведения ЭДС магнитного поля постоянных магнитов. Вы справедливо спросите — сколько??? Попробуйте и увидите.
Теперь мы убрали вторую обмотку, а жаба использовать все по максимуму давит. Но как она впишется в карту наших магнитных полей, пока мы только складываем. Можете попробовать или оставить как есть. Все же эксперимент рождает истину.
Она будет работать как классическая генераторная обмотка, только в первом цикле будет возбуждаться от соседней обмотки и направление ЭДС в ней будет противоположное соседней, а во втором в ней будет наводится ЭДС от МП постоянных магнитов и ЭДС будет совпадать с ЭДС первой обмотки.
Вот есть такой рисунок
Если внимательно рассмотреть, способы намотки, то можно увидеть,что во втором варианте они имеют разное направление, при этом формируют общее направление магнитного потока сердечника.
И это было использовано, обмотка нашого устройства, была выполнена из двух полу обмоток с разным направленим намотки(левосторонняя и правосторонняя).
Естественно конец первой намотки, коммутировался к началу второй, и расположение их на сердечнике: управляющая или у сердечника или с наружи, из возбуждающих первая снаружи вторая ближе к сердечнику. Таким образом, при подаче тока на нашу новую катушку в ней ток течет в двух полу обмотках, на встречу друг другу, не нарушая направления магнитного потока сердечника. Как следствие имеем эффект усиления. Можно это опровергать, приводить всякие расчеты, самое главное это работает. Далее вторую полу обмотку мы выполним проводом сечением, больше чем первая, не буду вдаваться в Закон Ома, но и это работает.
Теперь на схеме нашу катушку изобразим так:
Выходной импульс, будет достаточно мощный, правда и упадет его напряжение от уровня высоковольтного импульса (ВВ) Системы Бедини. В результате получим высокоамперный импульс (ВА). Как мы знаем амперы это уже мощность.
Джон Бедини пиковые напряжения шунтировал через неоновую лампочку, в более продвинутых схемах используется защитный диод. Во первых защищается ключ от пробоя, и во вторых АКБ не очень любит перепады напряжения. Для того чтобы принять емкость, АКБ нужно время, соответствующие амперы и вольтаж.
И так вернемся к нашему импульсу — например: затратили 1А и 12В на возбуждение и получили 2А и 72В в на выходе в импульсе. Это уже больше единицы, но мы же не будем генератор стоить по схеме постоянно подзаряжая и меняя питающую АКБ, хочется, чтобы АКБ вообще не участвовала в процессе, или хотя бы она была одна как в автомобиле.
Сейчас наверно оппоненты радуются вот и уперлись в стеночку батенька. Не могу понять этих оппонентов, ведь самое главное эффект прироста уже есть и объяснимый с учебником школьной физики, теперь займемся утилизацией. Останавливаемся на конденсаторах, во первых они принимают импульс быстрее и за короткий промежуток времени и отдают так же. Разные конструкции были перепробованы более и менее успешно, но простой конструкция не получалось. Вскоре вариант был найден Конденсаторный делитель напряжения – Усилитель тока. Конструкция проста как и конструкция умножителя напряжения:
Особенность данного устройства, что большим напряжением конденсаторы заряжаются (принимают импульс) последовательно, а разряжаются каждый отдельно или в параллельной коммутации. То есть данная конструкция позволяет по напряжению стабилизировать устройство, плюс еще выступает и усилителем тока, по тому же принципу что и умножитель напряжения только в обратном порядке. Тоесть берем 72 вольта делим на 12В источника тока и получаем шесть единиц. Берем шесть электролитических конденсаторов с необходимой емкостью, не меньше 25В и соединяем их последовательно с диодами между ними по направлению зарядки. В таком варианте конденсатор зарядится, может, а вот разрядится — нет. Ваяем другую схему по разрядке конденсаторов в одну цепь (см. рисунок выше) и для ее включение ставим ключ S1.
Теперь надо учесть что конденсатор одновременно заряжаться и разряжаться не может нам нужны периоды. У нас все вышло смотрим схему.
Ключи открыты: идет возбуждение нашей катушки, идет разрядка нашего конденсаторного делителя напряжения.
Ключи закрыты, идет импульс с катушки и заряжает наш делитель напряжения. Если все правильно рассчитано и собрано то, часть разрядного импульса делителя используется на возбуждение катушки, а часть идет на зарядку АКБ, или направляется потребителю.
Если еще вспомнить Мельниченко и добавить схему конденсатором соединенным последовательно с катушкой (см.схему ниже). Вариантов очень много.
Вот и нафантазировали.
Верна фантазия или нет решать Вам, я направление изложил. Плохой из меня рассказчик, но еще замечу, что в роторных генераторах магнитное поле надвигается на катушку и по середине имеет наибольший всплеск напряжения и мощности в середине отрезка. Потом убывание, от сюда кривая и синусоида, в нашем же случае оно работает прямолинейно и осциллограмма ЭДС наведения, будет очень похожа на осциллограмму ЭДС самоиндукции.
По данному принципу лучше использовать две системы катушка – делитель напряжения, которые коммутированные на одну АКБ, и работают поочередно. Если одной возбуждение, то у другой сброс как «КАЧЕЛИ» или «Маятник».
Так же можно и с бифилярной намоткой собрать без магнитов , в данном случае лучше на сердечнике в виде кольца. Вариантов много.
Если Вы заметили, нет, не единого элемента схемы, про который вы не знали, и ни один процесс, не известный школьной физике. Все во лишь, удачная комбинация схемы и ни какой механической работы.
Так же есть вариант использовать подобие однополюсного ротора Адамса-Бедини.
Удачи Вам Искатели СЕ в Ваших Поисках СЕ.
Единомышленники Аматорской Группы — Systems Free Energy
14.06.2013
Материал подготовил Серж Ракарский
ua-hho.do.am
Принцип работы генератора.
После отключения двигателя, работавшего в моторном режиме, магнитный поток вокруг обмоток главных полюсов исчезает, но в стальных сердечниках полюсов сохраняется остаточный магнитный поток. Так как якорь двигателя продолжает вращение по инерции, то его обмотки пересекают магнитные силовые линии главных полюсов. Если обмотки якоря включить в замкнутую электрическую цепь, то в них начнёт наводиться ЭДС, величмна которой будет зависеть от скорости вращения якоря и величины магнитного потока: E=cФn, где с — постоянная электрической машины (указана в паспорте двигателя), Ф — магнитный поток, а n — число оборотов якоря. Направление этой ЭДС будет определяться по правилу Правой руки, то есть, направление тока в якоре изменится на противоположное моторному режиму, при этом изменится направление выталкивающей силы. В результате возникнет тормозной момент на валу якоря, стремясь его остановить.
С уменьшением числа оборотов якоря будет пропорционально уменьшаться и выталкивающая сила (тормозной момент). Именно по этой причине при малых скоростях движения вагона электротормоз малоэффективен и для полной его остановки необходимо включить электропневматический вентиль замещения электротормоза.
Выработанная генераторами вагона электроэнергия должна гаситься в пуско-тормозных и невыводимых (реостатным контроллером) резисторах, в противном случае возникнет аварийный режим (резко увеличится сила тока в цепи), что приведёт к выходу генераторов из строя.
Как известно, электрические машины обладают свойством обратимости, то есть, они могут работать, как в моторном, так и в генераторном режимах. Чтобы проиллюстрировать изменения, происходящие в электродвигателе при его переводе в генераторный режим, рассмотрим рисунок справа.
Зная, что в моторном и генераторном режимах направление магнитного потока в полюсах остаётся неизменным, располагаем обе руки ладонями вверх.
Учитывая, что направление вращения колёсных пар (а значит и якорей) в моторном и генераторном режимах не изменяется, соединяем оба больших пальца. В результате четыре пальца обеих рук оказались направлеными в противоположные стороны. Это значит, что направление тока якоря в генераторном режиме изменилось на противоположное.
Запомните: ЭДС генератора прямо пропорциональна скорости вращения якоря и величине магнитного потока! E=cФn.
Самоиндукция.
Изменяющийся по величине ток всегда создаёт изменяющееся магнитное поле, которое, в свою очередь, всегда индуктирует ЭДС. При всяком изменении тока в катушке (или вообще в проводнике) в ней самой индуктируется ЭДС самоиндукции, она зависит от скорости изменения тока. Чем больше скорость изменения тока, тем больше ЭДС самоиндукции.
Величина ЭДС самоиндукции зависит также от числа витков катушки и её размеров.. Чем больше диаметр катушки и число её витков, тем больше ЭДС самоиндукции. Эта зависимость имеет большое значение в электротехнике. . Направление ЭДС самоиндукции определяет Закон Ленца, который позволяет сделать вывод, что ЭДС самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего её тока.
Иначе говоря, убывание тока в катушке влечёт за собой появление ЭДС самоиндукции, направленной по направлению тока, т. е., препятствующей его убыванию. И, наоборот, — при возрастании тока в катушке возникает ЭДС самоиндукции, направленная против тока, т. е. препятствующая его возрастанию. Если ток в катушке не изменяется, то никакой ЭДС самоиндукции не возникает. Явление самоиндукции особенно резко проявляется в цепи, содержащей в себе катушку со стальным сердечником, так как сталь значительно увеличивает магнитный поток катушки, а следовательно, и величину ЭДС самоиндукции.
Продемонстрировать явление самоиндукции можно, проведя следующий эксперимент. Соберём электрическую цепь, состоящую из аккумулятора, разъединителя и двух параллельных цепей: в первой — лампочка и резистор, а во второй — лампочка и катушка, причём сопротивление обеих лампочек одинаковое, и сопротивление резистора и катушки также одинаково.
1. При включении разъединителя лампа Л1 загорится с задержкой, так как ЭДС самоиндукции катушки препятствует быстрому нарастанию тока в цепи лампы Л1 (рис. 1а и 1б).
2. При отключении разъединителя обе лампы кратковременно вспыхнут, так как ЭДС самоиндукции катушки выше ЭДС батареи. Когда ЭДС самоиндукции иссякает, то обе лампы одновременно гаснут (рис. 2а и 2б).
Явление самоиндукции имеет как положительные, так и отрицательные свойства, причём и те и другие проявляются при работе аппаратов и электрических цепей подвижного состава метрополитена:
ü Индуктивный шунт, подключённый параллельно обмоткам возбуждения тяговых электродвигателей, сглаживает колебания высокого напряжения на контактном рельсе (либо при кратковременном отрыве токоприёмников). Индуктивность этого шунта сравнима с индуктивностью обмоток возбуждения , а его ЭДС направлена всегда против ЭДС ОВ ТЭД. Таким образом, при снижении или снятии высокого напряжения с контактного рельса ЭДС индуктивного шунта препятствует резкому снижению тока, а при повышении напряжения – препятствует нарастанию тока, что препятствует возникновению аварийного режима в силовой цепи и образованию кругового огня по коллектору электродвигателей.
ü Если разомкнуть цепь, содержащую катушку с большой индуктивностью, то при размыкании контактов будет образовываться электрическая дуга, способная привести к разрушению коммутационного аппарата, поэтому в подобных случаях необходимо применять устройство дугогашения или (для низковольтных цепей) подключать параллельно контактам конденсатор.
Вихревые токи.
При колебаниях напряжения в контактной сети изменяется магнитный поток в катушках подключённых электроаппаратов. Но изменяющийся магнитный поток способен индуктировать ЭДС самоиндукции не только в витках катушки, но и в массивных металлических проводниках. Пронизывая толщу массивного проводника, магнитный поток индуктирует в нем ЭДС, создающую индукционные токи. Эти, так называемые вихревые токи, распространяются по массивному проводнику и накоротко замыкаются в нем, вызывая перегрев и разрушение изоляции, что может привести к выходу аппарата из строя.
Сердечники катушек, якорей электродвигателей, трансформаторов, магнитопроводы различных электрических машин и аппаратов представляют собой как раз те массивные проводники, которые нагреваются возникающими в них индукционными токами. Явление это крайне нежелательно, поэтому для
уменьшения величины индукционных токов части электрических машин и сердечники якорей и обмоток возбуждения электродвигателей делают не цельнолитыми, а состоящими из тонких пластин, изолированных друг от друга бумагой или слоем изоляционного лака. Благодаря этому преграждается путь для распространения вихревых токов по телу проводника. Вихревые токи также приводят к размагничиванию обмоток двигателя и способны вызвать электрическую коррозию, то есть, разрушение структуры металла .
Похожие статьи:
poznayka.org
Импульсный генератор эдс самоиндукции
Изобретение относится к электротехнике, в частности к конструкциям индукционных генераторов тока, и может быть использовано в электромагнитных установках и электрических машинах, таких как двигатели, генераторы, трансформаторы, в частности, в качестве повышающего трансформатора. Технический результат состоит в повышении эдс на выходе за счет использования импульсных напряжений на вторичной обмотке и осуществления конструкции вторичной обмотки, которая бы позволяла производить непосредственный съем с генератора возникающего импульсного напряжения, и одновременно суммарной мощности первичной и вторичной обмоток. 6 з.п. ф-лы, 2 ил.
Изобретение относится к электротехнике, в частности к конструкциям импульсных индукционных генераторов тока.
Назначением данного изобретения является использование импульсного генератора ЭДС самоиндукции для обеспечения импульсного энергопитания различных электромагнитных установок и электрических машин, что позволяет существенно расширить арсенал импульсных источников энергии. Из уровня техники известен «Индукционный синхронный генератор», Заявка RU 98119347, опубл. 10.09.2000, МПК H02K 21/14, использующий токи обмотки статора, на якоре которого токи пульсируют, и индуктор (ротор), выполненный защищенным от магнитного поля токов обмотки якоря статора. Позволяет расширить режимы работы генератора. Однако в генераторе присутствуют вращающиеся части, а следовательно, он обладает всеми недостатками таких генераторов, т.е. не решены проблемы, связанные с коммутацией электроэнергии. В предложенной конструкции невозможно получение требуемого высокого напряжения.
Известен «Генератор электрической энергии», заявка RU 94025335, опубл. 10.06.1996, МПК H02K 19/16, содержащий составные кольцевые обмотки с сердечником, индукционную катушку и обмотку возбуждения. Позволяет увеличить производительность генератора электрической энергии, уменьшить индуктивное сопротивление статорной обмотки, уменьшить затраты на механическую работу при преобразовании механической энергии в электрическую и повысить КПД. Однако генератор в силу особенностей конструкции не позволяет использовать ЭДС самоиндукции. В генераторе присутствуют вращающиеся части, а, следовательно, он обладает всеми недостатками таких генераторов, т.е. не решены проблемы, связанные с коммутацией электроэнергии.
Известна полезная модель «Комбинированная электромагнитная обмотка», патент RU 96443, опубл. 27.07.2010, МПК H01F 5/00, в которой имеется два или более проводника с выводами, и проводники разделены диэлектриком. Позволяет расширить режимы работы. Однако оба проводника применяются в качестве первичной обмотки, отсутствует вторичная обмотка высокого напряжения, что не позволяет обмотку использовать в трансформаторах высокого напряжения, а также не обеспечивает съем и использование ЭДС индукции от вторичной обмотки.
Наиболее близкой заявкой на изобретение является «Индуктивно-статический способ генерации электрической энергии и устройство для его осуществления», RU 2004124018, опубл. 27.01.2006, МПК H01F 1/00, в соответствии с которым имеется первичная и вторичная обмотки, образующие катушку индуктивности с переходом свободной магнитной энергии в индуктивно-зависимое состояние, и происходит наведение ЭДС индукции и получение уплотнения магнитных потоков, пропорциональное увеличению электрической мощности. Позволяет использовать вторичную обмотку с меньшей на величину уплотнения магнитных потоков индуктивностью, чем достигается пропорциональное уплотнение и увеличение электрической мощности генератора. В способе используют индукционный и, одновременно, статический способы генерации. Однако не предложена конструкция вторичной обмотки генератора, которая позволяет производить непосредственный съем с генератора возникающее импульсное напряжение и ток ЭДС самоиндукции.
Также наиболее близким решением является классическая электрическая схема для проведения опытов по демонстрации электромагнитной индукции при размыкании цепи. Эта схема (устройство) функционально является импульсным генератором ЭДС самоиндукции. В связи с вышесказанным, в качестве прототипа принимаем установку, показанную на чертеже — рис.424 стр.231, учебник: Курс физики, часть вторая, изд. «Наука», Москва 1970 г. Авторы: Л.С. Жданов, В.А. Маранджан.
Однако в классической схеме сердечник из электротехнической стали конструктивно не способен выполнять в устройстве одновременно две функции: электропроводящей обмотки и классического, как на рис.424 прототипа, магнитопровода, т.е сердечника (М) индукционной катушки. Прототип не позволяет производить непосредственный съем и использование ЭДС самоиндукции, возникающей в сердечнике классической индукционной катушки.
Задачей предложенного изобретения является использование импульсных напряжений и осуществление конструкции вторичной обмотки генератора, которая бы позволяла производить непосредственный съем с генератора возникающего импульсного напряжения.
Техническим результатом, который обеспечивает предложенное техническое решение, является существенное расширение арсенала средств для импульсного генерирования и преобразования электроэнергии. Заявленный технический результат обеспечен за счет того, что импульсный генератор ЭДС самоиндукции конструктивно исполнен в виде первичной и вторичной обмоток однофазного повышающего трансформатора в стандартном техническом исполнении (с учетом того, что вторичная обмотка является одновременно функционально электропроводником и магнитопроводом, то предлагается рассматривать представленную конструкцию как простейшую индукционную катушку с сердечником, конструктивно исполненным в виде спиральной катушки с возможностью съема с него ЭДС самоиндукции) и они снабжены двумя или более проводниками, которые разделены диэлектриком и каждый проводник имеет выводы. Генератор отличается тем, что первичная обмотка (проводник) низкого напряжения выполнена спирально-ленточной и имеет по меньшей мере 2 витка, намотанных плотно или с небольшим зазором, виток к витку, лента обмотки выполнена шириной от 120 до 200 мм и толщиной от 1 до 2 мм; вторичная обмотка (проводник) высокого напряжения также выполнена спирально-ленточной, лента обмотки выполнена из электротехнической стали, покрытой электроизоляцией, и имеет по меньшей мере 100 витков, намотанных плотно или с небольшим зазором, виток к витку, лента выполнена шириной от 120 до 200 мм и толщиной не более 0,1 мм. Первичная обмотка электрически соединена с аккумуляторной батареей низкого напряжения через ключ-прерыватель с образованием замкнутой электрической цепи, где вторичная обмотка является одновременно электропроводящей обмоткой и магнитопроводом. При этом витки первичной обмотки расположены снаружи витков вторичной обмотки таким образом, что обе обмотки образуют повышающий трансформатор, в котором вторичная обмотка является индукционной катушкой трансформатора высокого напряжения, обеспечивая электропроводность за счет ленты из электротехнической стали, изолированной внешним слоем изоляции и, одновременно, выполняет функцию сердечника для первичной обмотки, ЭДС снимают посредством проводников, электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя, причем обеспечивают за счет частоты срабатывания ключа-прерывателя расчетные импульсное напряжение и ток, возникающие во вторичной обмотке, по формуле
где — где L — индуктивность цепи или коэффициент пропорциональности между скоростью изменения силы тока в контуре и возникающей вследствие этого ЭДС самоиндукции,
— скорость изменения силы тока в электрической цепи
В частных случаях первичная обмотка может быть выполнена из медного или алюминиевого проводника, может иметь 3 витка и более, количество витков ограничено трансформаторным отношением: отношение количества витков вторичной обмотки к количеству витков первичной обмотки, что определяет коэффициент трансформации, т.е. насколько напряжение во вторичной обмотке больше, чем в первичной. Например, аккумуляторная батарея низкого напряжения может быть рассчитана на 12-24 вольт и она является источником постоянного тока. В частности, периодическое срабатывание ключа-прерывателя осуществляют с промышленной частотой переменного тока 50 Гц. При этом частоты могут быть любые технически возможные для осуществления, но лучше 50 Гц, так как ее проще преобразовать либо потреблять с помощью имеющихся стандартных преобразователей или электроприборов. Расчетная ЭДС самоиндукции во вторичной обмотке обеспечивается, в частности, геометрией контура и магнитными свойствами сердечника для первичной обмотки. Так она может быть выполнена с формой контура, который выполнен круглым с диаметром 150 мм и более, что зависит от коэффициента трансформации, который и определит диаметр вторичной обмотки в зависимости от применяемой толщины электротехнической стали, или круглой спиральной формой. Поскольку вторичная обмотка является обмоткой высокого напряжения и выполнена из электротехнической стали, то это значит, что ее магнитные свойства определены самим материалом (т.е собственно магнитными свойствами электротехнической стали).
Изобретение в наиболее обобщенном виде иллюстрируется чертежами. Конкретное конструктивное исполнение не ограничивается показанными на чертежах вариантами исполнения.
На Фиг.1 показана схема расположения первичной и вторичной обмоток и аккумуляторная батарея с ключом-прерывателем.
На Фиг.2 — показано сечение А-А по соединенным вторичной и первичной обмоткам.
Данное техническое решение иллюстрируется чертежом, который не охватывает всех возможных конструктивных вариантов исполнения представленной схемы подключения.
Устройство Импульсного генератора ЭДС самоиндукции показано на фиг.1 и фиг.2 (в разрезе), и это устройство конструктивно исполнено в виде однофазного повышающего трансформатора (а также конструктивно является простейшей индукционной катушкой), который состоит из первичной (1) спирально-ленточной обмотки (медный или алюминиевый проводник), 2-3 витка толщиной 1-2 мм, шириной 120 мм, подключенной к аккумуляторной батарее (2) низкого напряжения 12-24 в — источник постоянного тока через ключ-прерыватель (3), образующих замкнутую электрическую цепь.
Вторичная спирально-ленточная обмотка высокого напряжения (4) из электротехнической стали, покрытой электроизоляцией, имеет количество витков от 100 и более, толщина ленты 0,1 мм, ширина 120 мм.
Вторичная обмотка (4) из электротехнической стали выполняет в конструкции две функции одновременно: электропроводящей обмотки и магнитопровода.
В качестве электропроводника вторичная обмотка (4) является индукционной катушкой высокого напряжения повышающего трансформатора.
В качестве магнитопровода вторичная обмотка (4) является сердечником для первичной обмотки (2) классической индукционной катушки.
Первичная (1) и вторичной (4) обмотки однофазного повышающего трансформатора и снабжены двумя или более проводниками (5), проводники вторичной обмотки имеют вывод (6) — т.е. ЭДС снимают посредством проводников (5, 6), электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя (3). Причем токи, возникающие во вторичной обмотке, рассчитывают по формуле
где L — индуктивность цепи или коэффициент пропорциональности между скоростью изменения силы тока в контуре первичной обмотки (1) и возникающей вследствие этого ЭДС самоиндукции во вторичной обмотке (2),
— скорость изменения силы тока в электрической цепи первичной обмотки (1) за счет ключа-прерывателя (3).
Периодическое срабатывание ключа-прерывателя (3) осуществляют с промышленной частотой переменного тока 50 Гц. Расчетную ЭДС самоиндукции во вторичной обмотке (4) обеспечивают геометрией контура вторичной обмотки (4) и магнитными свойствами сердечника (4) для первичной обмотки (1).
Форма контура, полученного первичной (1) и вторичной (4) обмотками, в представленном варианте выполнена круглой диаметром 150 мм и более.
Устройство работает следующим образом.
При замыкании ключом (3) электрической цепи первичной обмотки (1) возникает магнитное поле, энергия которого запасается в магнитном поле вторичной обмотки (4).
Размыкание ключа (3) цепи первичной обмотки (1) образует убывающий ток, который по правилу Ленца стремится поддержать ЭДС наведенной индукции вторичной обмотки (4).
В результате запасенная в магнитном поле вторичной обмотки (4) энергия преобразуется в дополнительную энергию тока самоиндукции первичной обмотки (1), запитавшей электрическую цепь вторичной обмотки (4).
В зависимости от количества запасенной в цепи вторичной обмотки (4) магнитной энергии мощность тока самоиндукции может быть различной и определяется по известной формуле:
Таким образом, данным изобретением достигается технический результат, состоящий в том, что конструкция, материал и двойное функциональное назначение вторичной обмотки устройства позволяет снимать и эффективно использовать возникающую ЭДС самоиндукции.
Промышленная применимость предложенного технического решения подтверждается общими правилами физики. Так, эффект самоиндукции описан в учебнике (Л.С. Жданов, В.А. Маранджян, курс физики для средних специальных заведений, ч. 2 электричество, изд. Третье, стереотипное, главная редакция физико-математической литературы, М., 1970 г., стр.231,232,233). Самоиндукция возникает при размыкании цепи, она прямо пропорциональна скорости изменения силы тока в электрической цепи. В традиционных схемах явление самоиндукции всегда сопровождается возникновением искры, возникающей в месте разрыва цепи. Поскольку в предложенной конструкции нет разрыва электрической цепи во вторичной обмотке (4) благодаря ее конструкции, в зависимости от количества запасенной в этой цепи магнитной энергии, ток размыкания не осуществляет искрение, а переходит в генерированную мощность. Таким образом, в конструкции вторичной обмотки (4) при размыкании цепи постоянного тока в первичной обмотке (1) запасенная в магнитном поле этой цепи энергия превращается в энергию тока самоиндукции в цепи вторичной обмотки (4).
Поскольку электродвижущей силой (ЭДС) называют величину, равную работе сторонних сил, в нашем случае — это изменяющееся магнитное поле первичной катушки (1), отнесенной к единице положительного заряда, это и есть ЭДС, действующая в цепи или на ее участке, в нашем случае — это вторичная обмотка (4). Сторонние силы можно охарактеризовать работой, которую они совершают над перемещающимися по цепи зарядами, и размерность ЭДС совпадает с размерностью потенциала и измеряется в тех же единицах. Поэтому векторную величину Е еще называют напряженностью поля сторонних сил. Поле сторонних сил в нашем случае возникает за счет переменного магнитного поля в первичной обмотке (1). Таким образом, ЭДС, действующая в замкнутой цепи, может быть определена как циркуляция вектора напряженности поля сторонних сил, т.е. сторонних сил, возникающих в первичной обмотке (1) за счет прерывания электрического поля ключом-прерывателем (3). Данное правило обеспечивает возникновение ЭДС индукции во вторичной обмотке (4). Это физическое явление описано в в учебнике (И.В. Савельев, Курс физики, том 2, электричество, стр.84,85, изд. Второе стереотипное, изд. Наука, главная редакция физико-математической литературы, М., 1966 г.).
Кроме сторонних сил, на заряд действуют силы электростатического поля, которые возникают непосредственно во вторичной катушке (4).
Устройство также использует явление электромагнитной индукции, описанной в (Р.А. Мустафаев, В.Г. Кривцов, учебник, физика, в помощь поступающим в ВУЗы, изд. М., Высшая школа, 1989 г.).
Таким образом, используемая в предложенном изобретении конструкция генератора как устройство позволяет эффективно генерировать, снимать и использовать ЭДС самоиндукции. Таким образом, устройство может быть изготовлено промышленным способом и внедряться в качестве перспективного эффективного импульсного генератора ЭДС самоиндукции, который позволяет расширить арсенал технических средств для импульсного генерирования и преобразования электроэнергии.
1. Импульсный генератор эдс самоиндукции, конструктивно исполненный в виде однофазного повышающего трансформатора, состоящего из первичной и вторичной обмоток и снабжен двумя или более проводниками, которые разделены диэлектриком, а проводник имеет выводы, отличающийся тем, что первичная обмотка низкого напряжения выполнена спирально-ленточной и имеет по меньшей мере два витка, намотанных плотно или на небольшом расстоянии друг от друга, лента обмотки выполнена шириной 120-200 мм и толщиной 1-2 мм; вторичная обмотка высокого напряжения также выполнена спирально-ленточной, лента обмотки выполнена из электротехнической стали, покрытой электроизоляцией, имеет по меньшей мере 100 витков, намотанных плотно или на небольшом расстоянии друг от друга, лента выполнена шириной 120-200 мм и толщиной не более 0,1 мм, первичная обмотка электрически соединена с аккумуляторной батареей низкого напряжения через ключ-прерыватель с образованием замкнутой электрической цепи, а вторичная обмотка является одновременно электропроводящей обмоткой и магнитопроводом, при этом витки первичной обмотки расположены снаружи витков вторичной обмотки таким образом, что обе обмотки образуют повышающий трансформатор, в котором вторичная обмотка является индукционной катушкой повышающего трансформатора, обеспечивая электропроводность за счет ленты из электротехнической стали, изолированной внешним слоем изоляции, и одновременно выполняет функцию сердечника для первичной обмотки, эдс снимают посредством проводников, электрически подсоединенных к концам ленты вторичной обмотки, и получают за счет периодического срабатывания ключа-прерывателя.
2. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что первичная обмотка выполнена из медного или алюминиевого проводника.
3. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что первичная обмотка имеет три витка.
4. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что аккумуляторная батарея низкого напряжения рассчитана на 12-24 вольт и является источником постоянного тока.
5. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что периодическое срабатывание ключа-прерывателя осуществляют с промышленной частотой переменного тока 50 Гц.
6. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что расчетную эдс самоиндукции обеспечивают геометрией контура и магнитными свойствами сердечника для первичной обмотки.
7. Импульсный генератор эдс самоиндукции по п.1, отличающийся тем, что форма контура выполнена круглой диаметром 150 мм и более.
findpatent.ru
Индукционные генераторы — Электромеханический индукционный генератор — Росиндуктор
ИНДУКЦИОННЫЙ ГЕНЕРАТОР — это преобразователь механической энергии в электрическую. Нужен электромеханический индукционный генератор? Росиндуктор — генератор от профессионалов с нашего склада. Индукционные генераторы работают при возникновении переменного магнитного поля в катушке. Катушка создаёт переменное магнитное поле, вектор которого меняется с заданной генератором частотой. Созданные вихревые токи, индуцированные магнитным полем, производят нагрев металлического элемента, который передаёт энергию теплоносителю.
Принцип действия индукционного генератора
Принцип действия индукционного генератора основан на законе электромагнитной индукции — индуцирование электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле, или наоборот, прямоугольный контур вращается в однородном неподвижном магнитном поле. Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нем индуктируется синусоидальная электродвижущая сила.
Индукционный генератор переменного тока
Это электрическая машина, преобразующая механическую энергию в электрическую энергию переменного тока, например, за счет вращения проволочной катушки в магнитном поле, или, наоборот, за счет вращения магнита. До тех пор, пока силовые линии магнитного поля пересекают проводящую катушку, в ней индуцируется электрический ток. Индуцированный электрический ток течет таким образом, что его поле отталкивает магнит, когда рамка приближается к нему, и притягивает, когда рамка удаляется. Каждый раз, когда рамка изменяет ориентацию относительно полюсов магнита, электрический ток также изменяет свое направление на противоположное. Все то время, пока источник механической энергии вращает проводник (или магнитное поле), генератор будет вырабатывать переменный электрический ток.
Устройство индукционного генератора
По конструкции выделяют генераторы:
- с неподвижными магнитными полюсами и вращающимся якорем,
- с вращающимися магнитными полюсами и неподвижным статором.
Генераторы с неподвижными магнитными полюсами используются чаще, поскольку при неподвижной статорной обмотке нет необходимости снимать с помощью скользящих контактов (щеток) и контактных колец с ротора большой ток высокого напряжения. Статор (неподвижная часть) собирается из отдельных железных листов, изолированных друг от друга, а на внутренней поверхности статора имеются пазы, куда вкладываются провода статорной обмотки генератора. Ротор (подвижная часть) обычно изготавливают из сплошного железа, а полюсные наконечники магнитных полюсов ротора собирают из листового железа. Для создания максимально возможной магнитной индукции при вращении между статором и полюсными наконечниками ротора желателен минимальный зазор, а геометрическую форму полюсных наконечников подбирают такой, чтобы вырабатываемый генератором ток был наиболее близок к синусоидальному. На сердечники полюсов садят катушки возбуждения, питаемые постоянным током, который подводится с помощью щеток к контактным кольцам, расположенным на валу генератора.
Электромеханический индукционный генератор
Магнитное поле в электромеханическом генераторе создается с помощью постоянного или электромагнита, переменная электродвижущая сила индуцируется в обмотке. В промышленных генераторах поле создается вращающимся магнитом, обмотки остаются неподвижными.
Генератор индукционного тока
Генераторы индукционного тока имеют широкую область применения: чаще всего их используют в местах, в которых требуется непрерывная подача электроэнергии, таких как медицинские учреждения, морозильные склады и т.п. также такие генераторы могут быть востребованы на строительных площадках и для электрификации загородных домов.
Генератор индукционного нагрева
Индукционный нагрев — это нагревание электропроводящих материалов электрическими токами, которые индуцируются переменным магнитным полем. Генераторы индукционного нагрева применяются для:
- нагрева заготовок из магнитных материалов, в том числе для гибки и термообработки деталей,
- термической обработки мелких и хрупких деталей,
- поверхностной закалки изделий,
- плавки, сварки и пайки металлов,
- обеззараживания медицинского инструмента.
zavodrr.ru
Индукционный генератор определение. Генераторы: устройство,технологии, особенности применения
Развитие автомобилестроения сопровождалось ростом требований к безотказности и увеличению срока службы автомобилей, комфорту их эксплуатации, снижению эксплуатационных затрат на техническое обслуживание и ремонт, а также соответствие все возрастающим требованиям безопасности движения.
В связи с этим появилась необходимость существенного увеличения мощности и срока службы автомобильных генераторов, как основных источников электрического тока, улучшения их эксплуатационных характеристик и снижения эксплуатационных затрат. Появилась необходимость уменьшения габаритных размеров и массы генераторов, как, впрочем, и многих других агрегатов и устройств, что позволяло гибко проектировать компоновку и внешний дизайн автомобилей, а также получать экономию дорогостоящих металлов.
Удовлетворение перечисленных требований путем совершенствования конструкции и технологии производства генераторов постоянного тока, учитывая низкую надежность и малый срок службы щеточно-коллекторного узла, а также габаритные размеры и массу генераторов постоянного тока, стало неосуществимо. Поэтому было выбрано новое направление в развитии автомобильных генераторов – создание генераторов переменного тока.
Название «генератор переменного тока» несколько условно, и касается в основном особенностей конструкции генератора, поскольку они оснащены встроенными полупроводниковыми выпрямителями и питают потребители постоянным (выпрямленным) током.
В генераторах постоянного тока таким выпрямителем является щеточно-коллекторный узел, осуществляющий выпрямление переменного тока, полученного в обмотках якоря.
Развитие полупроводниковой техники позволило применить в генераторах переменного тока более совершенный и надежный выпрямитель на полупроводниковых диодах, в котором отсутствовали механические детали и узлы, подверженные износу и отказам.
Преимущества и недостатки генераторов переменного тока
К основным преимуществам генераторов переменного тока по сравнению с генераторами постоянного тока можно отнести следующие свойства:
- при одинаковой мощности их масса в 1,8…2,5 раза меньше, причем примерно в три раза меньше расходуется ценного цветного металла – меди;
- при одинаковых габаритах генераторы переменного тока выдают большую мощность;
- ток начинает вырабатываться при меньшей частоте вращения ротора;
- проще схема и конструкция регулирующего устройства вследствие отсутствия элемента ограничения силы тока и реле обратного тока;
- проще и надежнее конструкция токосъемного устройства, особенно, в бесконтактных генераторах переменного тока;
- меньше эксплуатационные затраты из-за высокой надежности работы и увеличения срока службы.
С практической точки зрения преимущества генератора переменного тока проявляются в том, что вырабатываемый им ток снимается с неподвижных обмоток, закрепленных на корпусе-статоре. Обмотка возбуждения, выполненная на вращающемся роторе, существенно легче неподвижных обмоток статора, поэтому ротор можно вращать с большей скоростью, не опасаясь явлений дисбаланса вращающихся масс. Да и ток возбуждения в этом случае подвести проще, поскольку он небольшой. В результате щетки и контактные кольца служат дольше.
Кроме того, генератор постоянного тока, в отличие от генератора переменного тока, начинает вырабатывать ток при относительно большой частоте вращение якоря. По этой причине для его полноценного функционирования, например, на холостых оборотах двигателя, необходимо значительное передаточное число привода, что в дальнейшем (на рабочей частоте коленчатого вала) может привести к дисбалансу (из-за значительной массы якоря), износу подшипников и элементов привода генератора.
Определенное преимущество генераторов переменного тока проявляется, также, в том, что при необходимости получения высокого напряжения (например, для питания высоковольтных потребителей), достаточно использовать небольшой трансформатор. Увеличить напряжение постоянного тока таким способом не удастся. Несмотря на то, что в автомобильных бортовых сетях необходимость получения высокого напряжения возникает крайне редко, такую возможность нельзя сбрасывать со счетов.
Основные недостатки генератора переменного тока — необходимость выпрямления вырабатываемого им тока, а также некоторое рассеивание мощности в окружающих ротор и статор металлических деталях из-за возникновения вихревых и реактивных токов в переменном электромагнитном поле. Тем не менее, достоинства генераторов переменного тока с лихвой окупают отмеченные недостатки.
Первые автомобильные генераторы переменного тока были спроектированы для работы с отдельными селеновыми выпрямителями и вибрационными регуляторами напряжения. Селеновые выпрямители имели значительные размеры, и их приходилось размещать отдельно от генератора, в местах, где обеспечивалось хорошее охлаждение. Для присоединения такого выпрямителя к генератору требовалась дополнительная проводка.
Кроме того, селеновые выпрямители были недостаточно теплостойки, и допускали максимальную рабочую температуру не выше +80 ˚С.
По этим причинам в дальнейшем от селеновых выпрямителей отказались, и стали применять кремниевые диоды, которые были менее габаритны, обладали хорошей теплостойкостью, что позволяло размещать их непосредственно в генераторе.
На смену вибрационным регуляторам напряжения пришли сначала контактно-транзисторные, а затем бесконтактные на дискретных элементах и бесконтактные интегральные регуляторы.
Габаритные размеры интегральных регуляторов позволяют встраивать их в генератор, который совместно со встроенными регулятором и выпрямительным блоком называется генераторной установкой.
Принципиальное устройство генератора переменного тока
На рис. 1 представлена упрощенная схема генератора переменного тока, который состоит из двух основных частей: статора с неподвижной обмоткой, в которой индуцируется переменный ток, и ротора, создающего магнитное поле.
Полюсы ротора поочередно проходят мимо неподвижных катушек статора, размещенных на пазах с внутренней стороны корпуса генератора. При этом изменяется направление магнитного потока, а, следовательно, и направление индуцируемой в катушке ЭДС.
Обычно число полюсов магнита на роторе и число катушек в корпусе позволяет получить трехфазный ток. У трехфазных генераторов обмотки имеют одну общую точку, где соединяются их концы, поэтому такая схема соединения называется «звездой», а общая точка обмотки – нулевой точкой.
Вторые концы обмоток присоединяют к двухполупериодному выпрямителю. Магнитное поле ротора может создаваться постоянным магнитом или электромагнитом. В последнем случае к обмотке возбуждения электромагнита подводится постоянное напряжение.
Применение
advsk.ru
32. Явление самоиндукции. Индуктивность.
Как было показано ранее, любое переменное магнитное создает вихревое электрическое поле. Если в некоторой цепи (Рис. 119) изменяется электрический ток, то этот ток создает изменяющееся магнитное поле B⃗ , которое приводит к появлению вихревого электрического поля E⃗ . Причем это поле появляется во всех точках пространства, где изменяется поле магнитное, в том числе и проводниках, образующих электрическую цепь. Таким образом, изменяющийся ток посредством переменного магнитного поля оказывает воздействие на себя самого. Явление возникновения ЭДС в цепи вследствие изменения силы тока в этой же цепи называется самоиндукцией. Это явление является частным случаем электромагнитной индукции, поэтому формула для ЭДС самоиндукции εsi остается прежней
εsi=−ΔΦΔt ,
где Φ — магнитный поток поля, создаваемого током в контуре. В соответствии с правилом Ленца возможный индукционный ток препятствует изменению магнитного потока через контур. Поэтому ЭДС самоиндукции препятствует изменению тока в цепи. Так если ток в цепи возрастает, то возрастает и магнитный поток, поэтому направление индукционного тока противоположно исходному току. При уменьшении силы тока в цепи, ЭДС индукции поддерживает затухающий ток.
31. Генератор переменного тока
Принцип действия.
В
основе работы генератора лежит эффект
электромагнитной индукции. Если катушку
например, из медного провода, пронизывает
магнитный поток, то при его изменении
на выводах катушки появляется переменное
электрическое напряжение. И наоборот,
для образования магнитного потока
достаточно пропустить через катушку
электрический ток. Таким образом, для
получения переменного электрического
тока требуются катушка, по которой
протекает постоянный электрический
ток, образуя магнитный поток, называемая
обмоткой возбуждения и стальная полюсная
система, назначение которой — подвести
магнитный поток к катушкам, называемым
обмоткой статора, в которых наводится
переменное напряжение. Эти катушки
помещены в пазы стальной конструкции,
магнитопровода (пакета железа) статора.
Обмотка статора с его магнитопроводом
образует собственно статор генератора,
его важнейшую неподвижную часть, в
которой образуется электрический ток,
а обмотка возбуждения с полюсной системой
и некоторыми другими деталями (валом,
контактными кольцами) — ротор, его
важнейшую вращающуюся часть. Питание
обмотки возбуждения может осуществляться
от самого генератора. В этом случае
генератор работает на самовозбуждении.
При этом остаточный магнитный поток в
генераторе, т. е. поток, который образуют
стальные части магнитопровода при
отсутствии тока в обмотке возбуждения,
невелик и обеспечивает самовозбуждение
генератора только на слишком высоких
частотах вращения. Поэтому в схему
генераторной установки, там где обмотки
возбуждения не соединены с аккумуляторной
батареей, вводят такое внешнее соединение,
обычно через лампу контроля работоспособного
состояния генераторной установки. Ток,
поступающий через эту лампу в обмотку
возбуждения после включения выключателя
зажигания и обеспечивает первоначальное
возбуждение генератора. Сила этого тока
не должна быть слишком большой, чтобы
не разряжать аккумуляторную батарею,
но и не слишком малой, т. к. в этом случае
генератор возбуждается при слишком
высоких частотах вращения, поэтому
фирмы-изготовители оговаривают
необходимую мощность контрольной лампы
— обычно 2…3 Вт.
При вращении ротора напротив катушек обмотки статора появляются попеременно «северный», и «южный» полюсы ротора, т. е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения. Частота этого напряжения f зависит от частоты вращения ротора генератора N и числа его пар полюсов р:
f=p*N/60
За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть «южных» и шесть «северных» полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения я ротора генератора. Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя. Для этого у генератора делается вывод обмотки статора, к которому и подключается тахометр. При этом напряжение на входе тахометра имеет пульсирующий характер, т. к. он оказывается включенным паралельно диоду силового выпрямителя генератора. С учетом передаточного числа i ременной передачи от двигателя к генератору частота сигнала на входе тахометра fт связана с частотой вращения коленчатого вала двигателя Nдв соотношением:
f=p*Nдв(i)/60
Конечно,
в случае проскальзывания приводного
ремня это соотношение немного нарушается
и поэтому следует следить, чтобы ремень
всегда был достаточно натянут. При р=6
, (в большинстве случаев) приведенное
выше соотношение упрощается fт = Nдв (i)/10. Бортовая сеть требует подведения
к ней постоянного напряжения. Поэтому
обмотка статора питает бортовую сеть
автомобиля через выпрямитель, встроенный
в генератор.
Обмотка статора генераторов зарубежных фирм, как и отечественных — трехфазная. Она состоит из трех частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т. е. на 120 электрических градусов, как это показано на рис. I. Фазы могут соединяться в «звезду» или «треугольник». При этом различают фазные и линейные напряжения и токи. Фазные напряжения Uф действуют между концами обмоток фаз.я токи Iф протекают в этих обмотках, линейные же напряжения Uл действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи Jл. Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные.
При соединении в «треугольник» фазные токи в корень из 3 раза меньше линейных, в то время как у «звезды» линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз, при соединении в «треугольник», значительно меньше, чем у «звезды». Поэтому в генераторах большой мощности довольно часто применяют соединение в «треугольник», т. к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Однако линейные напряжения у «звезды» в корень из 3 больше фазного, в то время как у «треугольника» они равны и для получения такого же выходного напряжения, при тех же частотах вращения «треугольник» требует соответствующего увеличения числа витков его фаз по сравнению со «звездой».
Более тонкий провод можно применять и при соединении типа «звезда». В этом случае обмотку выполняют из двух параллельнных обмоток, каждая из которых соединена в «звезду», т. е. получается «двойная звезда».
Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых: VD1, VD3 и VD5 соединены с выводом «+» генератора, а другие три: VD2, VD4 и VD6 с выводом «-» («массой»). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя на диодах VD7, VD8, показанное на рис.1, пунктиром. Такая схема выпрямителя может иметь место только при соединении обмоток статора в «звезду», т. к. дополнительное плечо запитывается от «нулевой» точки «звезды».
У
значительного количества типов
генераторов зарубежных фирм обмотка
возбуждения подключается к собственному
выпрямителю, собранному на диодах VD9—VD
11.Такое подключение обмотки возбуждения
препятствует протеканию через нее тока
разряда аккумуляторной батареи при
неработающем двигателе автомобиля.
Полупроводниковые диоды находятся в
открытом состоянии и не оказывают
существенного сопротивления прохождению
тока при приложении к ним напряжения в
прямом направлении и практически не
пропускают ток при обратном напряжении.
По графику фазных напряжений (см. рис.1)
можно определить, какие диоды открыты,
а какие закрыты в данный момент. Фазные
напряжения Uф1 действует в обмотке первой фазы, Uф2 — второй, Uф3 — третьей. Эти напряжения изменяются по
кривым, близким к синусоиде и в одни
моменты времени они положительны, в
другие отрицательны. Если положительное
направление напряжения в фазе принять
по стрелке, направленной к нулевой точке
обмотки статора, а отрицательное от нее
то, например, для момента времени t1,
когда напряжение второй фазы отсутствует,
первой фазы — положительно, а третьей —
отрицательно. Направление напряжений
фаз соответствует стрелкам показанным
на рис. 1. Ток через обмотки, диоды и
нагрузку будет протекать в направлении
этих стрелок. При этом открыты диоды
VD1 и VD4. Рассмотрев любые другие моменты
времени легко убедиться, что в трехфазной
системе напряжения, возникающего в
обмотках фаз генератора, диоды силового
выпрямителя переходят из открытого
состояния в закрытое и обратно таким
образом, что ток в нагрузке имеет только
одно направление — от вывода «+»
генераторной установки к ее выводу «—»
(«массе»), т. е. в нагрузке протекает
постоянный (выпрямленный) ток. Диоды
выпрямителя обмотки возбуждения работают
аналогично, питая выпрямленным током
эту обмотку. Причем в выпрямитель обмотки
возбуждения тоже входят 6 диодов, но три
из них VD2, VD4, VD6 общие с силовым выпрямителем.
Так в момент времени t1 открыты диоды VD4 и VD9, через которые
выпрямленный ток и поступает в обмотку
возбуждения. Этот ток значительно
меньше, чем ток, отдаваемый генератором
в нагрузку. Поэтому в качестве диодов
VD9—VD11 применяются малогабаритные
слаботочные диоды на ток не более 2 А
(для сравнения, диоды силового выпрямителя
допускают протекание токов силой до
25…35 А).
Остается рассмотреть принцип работы плеча выпрямителя, содержащего диоды VD7 и VD8. Если бы фазные напряжения изменялись чисто по синусоиде, эти диоды вообще не участвовали бы в процессе преобразования переменного тока в постоянный. Однако в реальных генераторах форма фазных напряжений отличается от синусоиды. Она представляет собой сумму синусоид, которые называются гармоническими составляющими или гармониками — первой, частота которой совпадает с частотой фазного напряжения, и высшими, главным образом, третьей, частота которой в три раза выше, чем первой. Представление реальной формы фазного напряжения в виде суммы двух гармоник (первой и третьей) показано на рис.2. Из электротехники известно, что в линейном напряжении, т. е. в том напряжении, которое подводится к выпрямителю и выпрямляется, третья гармоника отсутствует. Это объясняется тем, что третьи гармоники всех фазных напряжений совпадают по фазе, т. е. одновременно достигают одинаковых значений и при этом взаимно уравновешивают и взаимоуничтожают друг друга в линейном напряжении. Таким образом, третья гармоника в фазном напряжении присутствует, а в линейном — нет. Следовательно мощность, развиваемая третьей гармоникой фазного напряжения не может быть использована потребителями. Чтобы использовать эту мощность добавлены диоды VD7 и VD8, подсоединенные к нулевой точке обмоток фаз, т. е. к точке где сказывается действие фазного напряжения. Таким образом, эти диоды выпрямляют только напряжение третьей гармоники фазного напряжения. Применение этих диодов увеличивает мощность генератора на 5…15% при частоте вращения более 3000 мин-1.
Выпрямленное напряжение, как это показано на рис.1, носит пульсирующий характер. Эти пульсации можно использовать для диагностики выпрямителя. Если пульсации идентичны — выпрямитель работает нормально, если же картинка на экране осциллографа имеет нарушение симметрии — возможен отказ диода. Проверку эту следует производить при отключенной аккумуляторной батарее. Следует обратить внимание на то, что под термином «выпрямительный диод», не всегда скрывается привычная конструкция, имеющая корпус, выводы и т. д. иногда это просто полупроводниковый кремниевый переход, загерметизированный на теплоотводе.
Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т. е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генераторную установку элементов защиты ее от всплесков высокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении он не пропускает ток лишь до определенной величины этого напряжения, называемого напряжением стабилизации. Обычно в силовых стабилитронах напряжение стабилизации составляет 25… 30 В. При достижении этого напряжения стабилитроны «пробиваются «, т. е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе «+ » генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после «пробоя «используется и в регуляторах напряжения.
studfile.net