Цветовая и кодовая маркировка индуктивностей
Цветовая и кодовая маркировка индуктивностей
В соответствии с Публикацией IEC 62 для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри (мкГн), третья метка — множитель, четвертая — допуск. В случае кодирования 3 метками подразумевается допуск 20%. Цветное кольцо, обозначающее первую цифру номинала, может быть шире, чем все остальные.
Рис. 2
Таблица 1
Серебряный | 0,01 | 10% | ||
Золотой | 0,1 | 5% | ||
Черный | 0 | 1 | 20% | |
Коричневый | 1 | 1 | 10 | Допуск |
Красный | 2 | 2 | 100 | |
Оранжевый | 3 | 1000 | ||
Желтый | 4 | 4 | Множитель | |
Зеленый | 5 | 5 | ||
Голубой | ||||
Фиолетовый | 7 | 7 | ||
Серый | 8 | 8 | ||
Белый | 9 | 9 |
Рис. 2
Кодовая маркировка
Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования.
А. Кодированная маркировка
Первые две цифры указывают значение в микрогенри (мкГн), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается —допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.
Допуск:D=±0,3 нГн; J=±5%; К=±10%; M=±20%
Примеры обозначений:Код | Обозначение |
22N | 22 нГн ±20% |
R10M | 0,10 мкГн±20% |
R15M | 0,15 мкГн±20% |
R22M | 0,22 мкГн ±20% |
R33M | 0,33мкГн+20% |
R47M | 0,47мкГн±20% |
R68M | 0,68 мкГн +20% |
1R0M | 1,2мкГн ±20% |
Таблица 3
Код | Обозначение |
2R2K | 2,2 мкГн±10% |
3R3K | 3,3 мкГн ±10% |
4R7K | 4,7 мкГн±10% |
6R8K | 6,8 мкГн±10% |
100К | 10 мкГн±10% |
150К | 15 мкГн±10% |
220К | 22 мкГн±10% |
33ОК | 33 мкГн±10% |
Таблица 4
Код | Обозначение |
680К | 68 мкГн ± 10% |
101К | 100мкГн±10% |
151К | 150 мкГн ± 10% |
221K | 220 мкГн ±10% |
331К | 33ОмкГн ±10% |
471J | 470 мкГн ±5% |
681J | 680 мкГн ±5% |
102 | 1000 мкГн±20% |
Рис. 3
В. Непосредственная маркировка
Индуктивности маркируются непосредственно в микрогенри (мкГн). В таких случаях маркировка 680К будет означать не 68 мкГн ±10%, как в случае А, а 680 мкГн ±10%.
Индуктивность | Страница 3 из 3 | Electronov.net
Основные параметры индуктивностей:
- Номинальная индуктивность:
Заводское значение индуктивности конкретного прибора, измеряется это значение в Генри (производные наноГенри (нГн), микроГенри (мкГн) и т.д). Номинальные значения индуктивностей выбираются из специальных номинальных рядов Е6, Е12, Е24 и т.д.
- Допуск (точность):
Допустимое отклонение величины реальной индуктивности от номинальной. Указывается в процентах от номинального значения индуктивности. Допуск может достигать 20%.
- Ток насыщения:
Величина тока, при достижении которой, происходит интенсивное рассеяние магнитного потока вне сердечника, что вызывает наведение токов индукции в близко расположенных проводниках. При периодическом насыщении возникают всплески помех, частоты которых распространяются и на звуковых частотах, и в радиочастотном диапазоне. Также насыщение сердечника приводит к его перегреву, вплоть до физического разрушения.
- Температурный коэффициент индуктивности:
Параметр, характеризующий зависимость индуктивности катушки от температуры. Температурная нестабильность индуктивности обусловлена целым рядом факторов: при нагреве увеличивается длина и диаметр провода обмотки, увеличивается длина и диаметр каркаса, в результате чего изменяются шаг и диаметр витков; кроме того при изменении температуры изменяются диэлектрическая проницаемость материала каркаса, что ведёт к изменению собственной ёмкости катушки. Очень существенно влияние температуры на магнитную проницаемость ферромагнетика сердечника.
Маркировка индуктивностей:
Кодовая маркировка:
Применяется 2 варианта кодовой маркировки:
1 Вариант: XYZ обозначает XY•10Z мкГн, причем для индуктивностей менее 10 мкГн десятичным разделителем является буква «R», менее 1 мкГн – буква «N», и в этом случае значение индуктивности в нГн.
Иначе говоря, первые 2 цифры определяют число (мантиссу), а последняя цифра определяет количество нулей (десятичная степень).
2 Вариант: значение номинальной индуктивности непосредственно указано числом в мкГн.
После цифрового кода указывается буквенный код допуска, в случае его отсутствия – допуск 20%.
Например: 102 — это 10•10² мкГн = 1000 мкГн = 1 мГн, допуск — 20%; 6R8J – 6.8 мкГн, допуск — 5%; R68K – 0.68 мкГн, допуск — 10%; 22N – 22 нГн, допуск — 20%; 2N2D – 2.2 нГн, допуск — ±0,3 нГн.

Цветовая маркировка:
Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками.
Первые две метки указывают на значение номинальной индуктивности (мантисса) в микрогенри (мкГн, uН), третья метка — множитель (десятичная степень), четвертая — допуск. В случае кодирования 3 метками подразумевается допуск 20%. Цветное кольцо, обозначающее первую цифру номинала, может быть шире, чем все остальные.

Условное обозначение индуктивностей на схемах:

- – бескаркасная индуктивность;
- – индуктивность с ферритовым сердечником;
- – индуктивность с сердечником из магнитодиэлектрика, т.е. диэлектрического магнитного материала;
- – индуктивность с ферритовым сердечником с зазором;
- – индуктивность с возможностью регулировки положения ферритового сердечника;
- – переменная индуктивность (вариометр).
Рядом с условным обозначением указывается тип элемента (L) и порядковый номер, также рядом с условным обозначением может указываться (не является обязательным требованием) номинал элемента.
На электрических принципиальных схемах номинальная индуктивность обычно указывается в микрогенри (1 мкГн = 1·103 нГн = 1·10−6 Гн).
Внешний вид катушек индуктивности:

Кодовая и цветовая маркировка популярных индуктивностей
Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Примеры обозначения индуктивностей буквенно-цифровым кодом представлен на рис. 6.
Применяются два вида кодирования.
1. Первые две цифры указывают значение в микрогенри (мкГн, иН), последняя — количество нулей. Следующая за цифрами буква указывает на допуск.
Например, код 101J обозначает 100мкГн± 5%. Если последняя буква не указывается — допуск 20%.
Исключения: для индуктивностей меньше ЮмкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N. Например:
Допуск: D = ±0,3 нГн; J = ±5%; К = ±10%; М = ±20%.
Примеры обозначений:
2. Индуктивности маркируются непосредственно в микрогенри (мкГн, иН). В таких случаях маркировка 680 К будет означать не 68 мкГн ±10%, как в случае 1, а 680 мкГн ± 10%.
2N2D-2,2 нГн ±0,3 нГн
22N —22 нГн R10M —0,10 мкГн±20% R15M — 0,15 мкГн±20% R22M — 0,22 мкГн±20% R33M – 0,33 мкГн±20% R47M — 0,47 мкГн ± 20% R68M — 0,68 мкГн + 20% 1R0K-U мкГн±20%
ШОК-1,2 мкГн ± 10% 2R2K — 2,2 мкГн ± 10% 3R3K —3,3 мкГн ± 10% 4R7K —4,7 мкГн ± 10% 6R8K—6,8 мкГн± 10% 100К — ЮмкГн ±10% 150К- 15 мкГн ± 10% 220К- 22 мкГн± 10% 330К- 33 мкГн ± 10% 470К- 47 мкГн± 10% 680К- 68 мкГн± 10% 101К-100 мкГн ± 10% 151К — 150 мкГн ± 10% 221К —220 мкГн± 10% 331К-330 мкГн ± 10% 471J —470 мкГн ± 5% 681J —680 мкГн± 5% 102-1000 мкГн
Рис. 7. Внешний вид индуктивностей
Рис. 8. Внешний вид индуктивностей, рассмотренных в п. 2
На рис. 8 представлен внешний вид индуктивностей, рассмотренных по 2 признаку.
Цветовая маркировка индуктивностей
В соответствии со стандартами IEC 82 для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри (мкГн, иН), третья метка — множитель, четвертая — допуск. В случае кодирования 3 метками подразумевается допуск 20%.
Цветное кольцо, обозначающее первую цифру номинала, может быть шире, чем все остальные. Рис. 9 иллюстрирует кодовую маркировку индуктивностей.
Цветовая маркировка контурных катушек радиоприемников зарубежного производства. Радиолюбителям все чаще приходится сталкиваться с необходимостью ремонта импортных радиоприемников. Одной из причин частого выхода их из строя является неисправность контурных катушек. Как показывает статистика, она занимает второе место после поломки всевозможных переключателей. Хотя маркировка современных импортных контурных катушек, похоже, унифицирована, в популярной литературе найти сведения о ней весьма затруднительно.
Думается, что предлагаемый мною материал, полученный на основе ремонта недорогих радиоприемников и магнитол фирм Aiwa, Panasonic, Sharp, а также некоторых немаркированных моделей китайского производства, будет полезен радиолюбителям.
Чаще всего в радиоприемниках применяются контурные катушки размерами 10x10x14 мм и 8x8x11 мм (рис. 10). Все обмотки обычно намотаны внавал эмалированным проводом диаметром 0,05—0,12 мм на фер- ритовом магнитопроводе, приклеенном к пластмассовому основанию. Контурные катушки намотаны поверх катушек связи и залиты парафином. Подстроечником служит ферритовый горшок, имеющий резьбу на наружной поверхности и шлиц под отвертку. Весь контур
Рис. 9. Цветовая маркировка индуктивностей
Рис. 10. Внешний вид популярных контурных катушек радиоприемников
заключен в латунный экран. В контурах, применяемых в трактах ПЧ, имеются встроенные конденсаторы.
Цветовая маркировка популярных катушек индуктивности, Цветовая маркировка катушек представляет собой пятна или полосы краски, нанесенные соответственно на дно магнитопровода или на экран.
Схемы контурных катушек приведены на рис. 11.
В табл. 14 указаны намоточные данные, назначение, емкость встроенного конденсатора и цветовая маркировка катушек размерами 10 х 10 х 14 мм.
Контурные катушки размерами 8x8x11 мм имеют то же назначение и емкость встроенного конденсатора,
Рис. И. Схемы контурных катушек
Таблица 14
Цвет маркировки | Назначение контурных катушек | Схема включения обмоток по рис. 11 | Номера выводов обмоток | Число витков | Емкость встроенного конденсатора, пФ |
Желтый | Фильтр ПЧ-АМ 455…460 кГц | а | 1-2-3 4-6 | 100 + 50 9 | 190 |
Белый | Детектор ПЧ-АМ 455…460 кГц | б | 1-2-3 | 50+50 | 410 |
Оранжевый | Фильтр ПЧ-ЧМ 10,7МГц* | в | 1-3 4-6 | 12 2 | 75 |
Сиреневый | Фильтр ПЧ-ЧМ 10,7 МГц | в | 1-3 4-6 | 11 2 | 90 |
Розовый | Дискриминатор ПЧ-ЧМ 10,7 МГц** | г | 1-3 | 7 | 190 |
Зеленый или синий | Дискриминатор ПЧ-ЧМ 10,7 МГц** | г | 1-3 | и | 90 |
Красный | Контур гетеродина AM СВ-ДВ | д, е, ж | 1- 3 4-6, 2- 3 | 80…100*** 8…12 | — |
Примечания. * Может использоваться вместо синего и зеленого. ** Применяются с различными микросхемами. *** Число витков зависит от емкости КПЕ. Соотношение числа витков обмоток контурной катушки и катушки связи выбрано в пределах 10:1-8:1.
но их обмотки могут быть намотаны более тонким проводом, и содержать большее число витков. Эти катушки менее ремонтопригодны, чем катушки размерами 10x10x14 мм.
Постоянные индуктивности серии ЕС24
Катушки индуктивности размерами 10x10x14 мм
Малогабаритные постоянные индуктивности серии ЕС24 представляют собой миниатюрную катушку с фер- ритовым сердечникам, размещенную в изолирующем корпусе с двумя выводами (рис. 12). Диапазон номинальных значений индуктивности — ОД… 1000 мкГн; точность — 5, 10, 20%; температурный диапазон — от -20 до +100 °С. Основные геометрические размеры индуктивностей приведены на рис. 7, 8. Номинал индуктивности и его допустимые отклонения обозначаются цветными полосками (рис. 9). Полоски / и 2 определяют две цифры номинала (в микрогенри), между которыми стоит десятичная запятая, полоска 3 — десятичный множитель, полоска 4 — точность.
Назначение цветов полосок приведено в табл. 15. Так, например, индуктивность, на которую нанесены красная, желтая, коричневая и черная полоски, имеет номинал 2,4×10 = 24 мкГн и точность 20%.
Полный список всех типономиналов индуктивностей серии ЕС24 и их параметры приведены в табл. 16.
Таблица 15 Назначение цветовых полос индуктивностей
Цвет | 1 -я и 2-я цифры номинала | Множитель | Точность |
Черный | 0 | 1 | ±20% |
Коричневый | 1 | 10 | — |
Красный | 2 | 100 | — |
Оранжевый | 3 | 1000 | — |
Желтый | 4 | — | — |
Зеленый | 5 | — | — |
Голубой | 6 | — | — |
Фиолетовый | 7 | — | — |
Окончание табл. 15
Цвет | 1-я и 2-я цифры номинала | Множитель | Точность |
Серый | 8 | — | — |
Белый | 9 | — | — |
Золотой | — | од | ±5% |
Серебряный | — | 0,01 | ±10% |
Таблица 16 Цветовая маркировка индуктивностей типа ЕС24
Наименование | Индуктивность, мкГн | Точность, % | Добротность, (mill) | Тестовая частота, МГц | Активное сопротивление (max), Ом | Постоянный ток (max), мА |
EC24-R10M | 0,10 | ±20 | 30 | 25,2 | 0,08 | 700 |
EC24-R12M | 0,12 | ±20 | 30 | 25,2 | 0,085 | 700 |
EC24-R15M | 0,15 | ±20 | 30 | 25,2 | 0,095 | 700 |
EC24-R18M | 0,18 | ±20 | 30 | 25,2 | 0,12 | 700 |
EC24-R22M | 0,22 | ±20 | 40 | 25,2 | 0,15 | 700 |
EG24-R27M | 0,27 | ±20 | 40 | 25,2 | 0,15 | 700 |
EC24-R33M | 0,33 | ±20 | 40 | 25,2 | 0,15 | 700 |
EC24-R39M | 0,39 | ±20 | 40 | 25,2 | 0,17 | 700 |
EC24-R47M | 0,47 | ±20 | 40 | 25,2 | 0,17 | 700 |
EC24-R56M | 0,56 | ±20 | 40 | 25,2 | 0,17 | 700 |
EC24-R68M | 0,68 | ±20 | 40 | 25,2 | 0,18 | 700 |
EC24-R82M | 0,82 | ±20 | 40 | 25,2 | 0,18 | 700 |
EC24-1ROK | 1,00 | ±10 | 40 | 25,2 | 0,18 | 700 |
EC24-1R2K | J ,20 | ±10 | 40 | 7,96 | 0,18 | 700 |
EC24-1R5K | 1,50 | ±10 | 40 | 7,96 | 0,20 | 700 |
EC24-1R8K | 1,80 | ±10 | 40 | 7,96 | 0,23 | 655 |
EC24-2R2K | 2,20 | ±10 | 40 | 7,96 | 0,25 | 630 |
EC24-2R7K | 2,70 | ±10 | 40 | 7,96 | 0,28 | 595 |
EC24-3R3K | 3,30 | ±10 | 40 | 7,96 | 0,30 | 575 |
EC24-3R9K | 3,90 | ±10 | 40 | 7,96 | 0,32 | 555 |
Окончание табл. 16
Наименование | Индуктивность, мкГн | Точность, % | Добротность, (min) | Тестовая частота, МГц | Активное сопротивление (max), Ом | Постоянный ток (max), мА |
EC24-4R7K | 4,70 | ±10 | 40 | 7,96 | 0,35 | 530 |
EC24-5R6K | 5,60 | ±10 | 40 | 7,96 | 0,40 | 500 |
EC24-6R8K | 6,80 | ±10 | 40 | 7,96 | 0,45 | 470 |
EC24-8R2K | 8,20 | ±10 | 40 | 7,96 | 0,56 | 425 |
EC24-J00K | 10 | ±10 | 40 | 7,96 | 0,72 | 370 |
ЕС24-120К | 12 | ±10 | 40 | 2,52 | 0,80 | 350 |
ЕС24-150К | 15 | ±10 | 40 | 2,52 | 0,88 | 335 |
ЕС24-180К | 18 | ±10 | 40 | 2,52 | 1,00 | 315 |
ЕС24-220К | 22 | ±10 | 40 | 2,52 | 1,20 | 285 |
ЕС24-270К | 27 | ±10 | 40 | 2,52 | 1,35 | 270 |
ЕС24-330К | 33 | ±10 | 40 | 2,52 | 1,50 | 255 |
ЕС24-390К | 39 | ±10 | 40 | 2,52 | 1,70 | 240 |
ЕС24-470К | 47 | ±10 | 50 | 2,52 | 2,30 | 205 |
ЕС24-560К | 56 | ±10 | 50 | 2,52 | 2,60 | 195 |
ЕС24-680К | 68 | ±10 | 50 | 2,52 | 2,90 | 185 |
ЕС24-820К | 82 | ±10 | 50 | 2,52 | 3,20 | 175 |
ЕС24-101К | 100 | ±10 | 50 | 2,52 | 3,50 | 165 |
ЕС24-121К | 120 | ±10 | 60 | 0,796 | 3,80 | 160 |
ЕС24-151К | 150 | ±10 | 60 | 0,796 | 4,40 | 150 |
ЕС24-181К | 180 | ±10 | 60 | 0,796 | 5,00 | 140 |
EC24-221K | 220 | ±10 | 60 | 0,796 | 5,70 | 130 |
ЕС24-271К | 270 | ±10 | 60 | 0,796 | 7,50 | 120 |
ЕС24-331К | 330 | ±10 | 60 | 0,796 | 9,50 | 100 |
ЕС24-391К | 390 | ±10 | 60 | 0,796 | 10,50 | 95 |
ЕС24-471К | 470 | ±10 | 60 | 0,796 | 11,60 | 90 |
ЕС24-561К | 560 | ±10 | 60 | 0,796 | 13,00 | 85 |
ЕС24-681К | 680 | ±10 | 60 | 0,796 | 18,00 | 75 |
ЕС24-821К | 820 | ±10 | 60 | 0,796 | 23,70 | 65 |
EC24-102K | 1000 | ±10 | 50 | 0,796 | 30,00 | 60 |
Радио для всех — Характеристики и маркировка индуктивностей
Основные характеристики катушек.
Индуктивность L
Катушки индуктивности в основном работают на высоких частотах. В зависимости от назначения их можно разделить на четыре группы:
1. Катушки контуров, не определяющих частоту
2. Катушки контуров, определяющих частоту (гетеродинов, задающих генераторов).
3. Катушки связи.
4. Дроссели высокой частоты.
По конструктивному признаку катушки могут быть разделены на однослойные и многослойные, экранированные и неэкранированные, катушки без сердечников и катушки с магнитными или немагнитными сердечниками, цилиндрические плоские и печатные. В зависимости от назначения индуквность катушек может быть от нескольких наногенри до нескольких десятков миллигенри. Допускаемое отклонение (точность) индуктивности также определяется назначением катушки. Точность катушек, предназначенных для контуров с сопряженной настройкой должна быть около 0,2—0,5% и выше: точность катушек связи, дросселей высокой частоты и др., работающих на частотах, далеких от резонансных, может составлять 10-15%. Точный расчет индуктивности приводит к громоздким, неудобным для практики выражениям. Поэтому для простоты в расчетные формулы вводят поправочные коэффициенты, величина которых зависит от отношения l/D. Наиболее удобной для радиолюбителя является следующая формула:
Формула верна для сплошной однослойной катушки намотанной проводом прямоугольного сечения с бесконечно тонкой изоляцией. Однако и при сплошной намотке из тонкого круглого провода и при намотке из плоского провода (ленты), намотанного по широкой стороне, погрешность расчета не превышает 2—3%.
Собственная емкость С0
В катушке, между отдельными витками и между витками и ближайшими металлическими
телами — экранами, шасси прибора и т. п., всегда существует разность потенциалов, которая создает электрическое поле. Влияние этого поля подобно влиянию некоторой емкости, включенной параллельно катушке: эту емкость называют собственной (или распределенной) емкостью катушки. Ее величина зависит от размеров катушки, конструкции обмотки, близости расположения витков со значительной разностью потенциалов, удаленности их от экранов, диэлектрической проницаемости изоляции провода и каркаса, а также ряда других конструктивных факторов. Чем больше диаметр катушки, чем ближе друг к другу расположены витки со значительной разностью потенциалов, чем выше диэлектрическая проницаемость изоляции провода, тем больше собственная емкость катушки индуктивности.
Расчет собственной емкости однослойных катушек удобнее производить по формуле:
коэффициент, величина которого зависит
от соотношений между шагом намотки
и диаметром провода (значения в первой табличке).
коэффициент, величина которого зависит от соотношений
между длиной и диаметром катушки (значения во второй табличке).
диаметр катушки.
Формула дает достаточно точные результаты для катушек с гладким каркасом из диэлектрика со средним значением диэлектрической проницаемости 4-6.
Для катушек с нарезным каркасом собственная емкость больше на 20—25% в зависимости от глубины нарезки.
Добротность Q
Добротность катушки при заданных частоте и индуктивности определяется ее активным сопротивлением. Активное сопротивление катушки складывается из сопротивления провода току высокой частоты; сопротивления, вносимого диэлектрическими потерями в каркасе; сопротивления, вносимого собственной емкостью, и сопротивлений, вносимых потерями в экранах, сердечниках и т. п. Значение того или иного слагаемого определяется частотой. На частотах сопротивление катушки в основном определяется активным сопротивлением провода току высокой частоты; на болеевысоких значительное влияние могут оказывать диэлектрические потери. Следуя рассуждениям, формула будет такой:
Добротность катушки во многих случаях определяет резонансные свойства и к.п.д. контура.
Современные катушки средних размеров имеют добротность около 50 — 300.
Стабильность и надежность
Стабильность катушки характеризуется изменением ее параметров под воздействием температуры, влажности и во времени. Изменения индуктивности под влиянием температуры характеризуют температурным коэффициентом индуктивности (ТКИ) –αL, коэффициентом температурной нестабильности индуктивности βL (КТНИ). ТКИ намотки, определяется и качеством диэлектрика каркаса. КТНИ зависит от прочности сцепления витков катушки с поверхностью каркаса и от старения диэлектрика каркаса. Влияние температуры на добротность обусловлено изменением сопротивления провода. Добротность катушки из медного провода в среднем падает примерно на 10% на каждые 30°С повышения температуры. При высоких температурах возникает дополнительное понижение добротности, связанное с ростом диэлектрических потерь в каркасе. Под действием ударов и вибрации могут возникать перемещения отдельных витков обмотки, сопровождающиеся изменением индуктивности. Несколько слов о надежности. Для катушек индуктивности наиболее характерны медленные отказы, вызываемые старением диэлектриков и магнитных материалов, окислением проводов и ухудшением изоляции. Менее надежны катушки с большим числом витков тонкого провода.
Маркировка индуктивностей
Цифробуквенная
Обычно для индуктивностей кодируется номинальное значение и допуск. Номинальное значение цифрами, допуск % и буквами. Значение величины индуктивности, мы рассматривали ранее.
Кодированная маркировка.
Первые две цифры указывают значение в микрогенри (мкГн). последняя — количество нулей Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается — допуск 20% Исключения для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.
Таблица примеров обозначений индуктивностей
Допуски
Определим номинал индуктивности
271J = 270мкГн…. +5..-5%
0,4 = не менее 0,4Гн
R47M = 0,47мкГн…. +20..-20%
33К = 33 мкГн…. +10..-10%
473= 47мГн…. +20..-20%
3,3 = 3,3мкГн…. +20..-20%
470J = 470мкГн…. +5..-5%
330K = 330мкГн…. +10..-10%
Цветовая
В соответствии со стандартом IEC 62 для индуктивностей кодируется номинальное значение и допуск. Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри (мкГн), третья метка — множитель, четвертая — допуск. В случае кодирования 3 метками подразумевается допуск 20%. Цветное кольцо, обозначающее первую цифру номинала, может быть шире, чем все остальные. Таблица аналогична тем, которые мы разбирали раньше (конденсаторы, резисторы).
Определим номинал индуктивности
оранж. оранж.черн. сереб. = 33мкГн…. +10..-10%
зелен. голуб.золот. черн. = 5,6мкГн…. +20..-20%
голуб.серый. черн. золот= 68мкГн…. +5..-5%
красн.фиолет. оранж = 2,7мГн…. +20..-20%
желт.фиолет. черн = 47мкГн…. +20..-20%
Coil32 — Цветная маркировка катушек индуктивности
- Информация о материале
- Просмотров: 7714
В соответствии с Публикациями IЕС 62 для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри (мкГн, uН), третья метка — множитель, четвертая — допуск. В случае кодирования 3 метками подразумевается допуск 20%. Цветное кольцо, обозначающее первую цифру номинала, может быть шире, чем все остальные.
Можно воспользоваться online калькулятором для определения индуктивности по цветовой маркировке.
Постоянные индуктивности серии ЕС24
Малогабаритные постоянные индуктивности серии ЕС24 представляют собой миниатюрную катушку с ферритовым сердечникам, размещенную в изолирующем корпусе с двумя выводами. Диапазон номинальных значений индуктивности — 0,1…1000 мкГн, точность — 5%, 10%, 20%, температурный диапазон — от -20°С до +100°С. Основные геометрические размеры индуктивностей приведены на рисунке. Номинал индуктивности и ее точность обозначаются цветными полосками. Полоски 1 и 2 определяют две цифры номинала (в микрогенри), между которыми стоит десятичная запятая, полоска 3 — десятичный множитель, полоска 4 — точность. Назначение цветов полосок приведено в таблице1. Так, например, индуктивность, на которую нанесены красная, желтая, коричневая и черная полоски, имеет номинал 2,4 o 10 = 24 мкГн и точность 20%. Полный список всех типономиналов индуктивностей серии ЕС24 и их параметры приведены в таблице2.
Цвет | 1-ая и 2-ая цифры номинала |
Множитель | Точность |
Черный | 0 | 1 | ±20% |
Коричневый | 1 | 10 | — |
Красный | 2 | 100 | — |
Оранжевый | 3 | 1000 | — |
Желтый | 4 | — | — |
Зеленый | 5 | — | — |
Голубой | 6 | — | — |
Фиолетовый | 7 | — | — |
Серый | 8 | — | — |
Белый | 9 | — | — |
Золотой | — | 0,1 | ±5% |
Серебряный | — | 0,01 | ±10% |
Наименование | Индуктив ность, мкГн |
Точность, % |
Доброт ность, (min) |
Тестовая частота, МГц |
Активное сопротивление (max),Ом |
Постоян. ток(max),мА |
EC24-R10M | 0,10 | ±20 | 30 | 25,2 | 0,08 | 700 |
EC24-R12M | 0,12 | ±20 | 30 | 25,2 | 0,085 | 700 |
EC24-R15M | 0,15 | ±20 | 30 | 25,2 | 0,095 | 700 |
EC24-R18M | 0,18 | ±20 | 30 | 25,2 | 0,12 | 700 |
EC24-R22M | 0,22 | ±20 | 40 | 25,2 | 0,15 | 700 |
EG24-R27M | 0,27 | ±20 | 40 | 25,2 | 0,15 | 700 |
EC24-R33M | 0,33 | ±20 | 40 | 25,2 | 0,15 | 700 |
EC24-R39M | 0,39 | ±20 | 40 | 25,2 | 0,17 | 700 |
EC24-R47M | 0,47 | ±20 | 40 | 25,2 | 0,17 | 700 |
EC24-R56M | 0,56 | ±20 | 40 | 25,2 | 0,17 | 700 |
EC24-R68M | 0,68 | ±20 | 40 | 25,2 | 0,18 | 700 |
EC24-R82M | 0,82 | ±20 | 40 | 25,2 | 0,18 | 700 |
EC24-1ROK | 1,00 | ±10 | 40 | 25,2 | 0,18 | 700 |
EC24-1R2K | 1,20 | ±10 | 40 | 7,96 | 0,18 | 700 |
EC24-1R5K | 1,50 | ±10 | 40 | 7,96 | 0,20 | 700 |
EC24-1R8K | 1,80 | ±10 | 40 | 7,96 | 0,23 | 655 |
EC24-2R2K | 2,20 | ±10 | 40 | 7,96 | 0,25 | 630 |
EC24-2R7K | 2,70 | ±10 | 40 | 7,96 | 0,28 | 595 |
EC24-3R3K | 3,30 | ±10 | 40 | 7,96 | 0,30 | 575 |
EC24-3R9K | 3,90 | ±10 | 40 | 7,96 | 0,32 | 555 |
EC24-4R7K | 4,70 | ±10 | 40 | 7,96 | 0,35 | 530 |
EC24-5R6K | 5,60 | ±10 | 40 | 7,96 | 0,40 | 500 |
EC24-6R8K | 6,80 | ±10 | 40 | 7,96 | 0,45 | 470 |
EC24-8R2K | 8,20 | ±10 | 40 | 7,96 | 0,56 | 425 |
EC24 — 100K | 10 | ±10 | 40 | 7,96 | 0,72 | 370 |
EC24-120K | 12 | ±10 | 40 | 2,52 | 0,80 | 350 |
EC24-150K | 15 | ±10 | 40 | 2,52 | 0,88 | 335 |
EC24-180K | 18 | ±10 | 40 | 2,52 | 1,00 | 315 |
EC24-220K | 22 | ±10 | 40 | 2,52 | 1,20 | 285 |
EC24-270K | 27 | ±10 | 40 | 2,52 | 1,35 | 270 |
EC24-330K | 33 | ±10 | 40 | 2,52 | 1,50 | 255 |
EC24-390K | 39 | ±10 | 40 | 2,52 | 1,70 | 240 |
EC24-470K | 47 | ±10 | 50 | 2,52 | 2,30 | 205 |
EC24-560K | 56 | ±10 | 50 | 2,52 | 2,60 | 195 |
EC24-680K | 68 | ±10 | 50 | 2,52 | 2,90 | 185 |
EC24-820K | 82 | ±10 | 50 | 2,52 | 3,20 | 175 |
EC24-101K | 100 | ±10 | 50 | 2,52 | 3,50 | 165 |
EC24-121K | 120 | ±10 | 60 | 0,796 | 3,80 | 160 |
EC24-151K | 150 | ±10 | 60 | 0,796 | 4,40 | 150 |
EC24-181K | 180 | ±10 | 60 | 0,796 | 5,00 | 140 |
EC24-221K | 220 | ±10 | 60 | 0,796 | 5,70 | 130 |
EC24-271K | 270 | ±10 | 60 | 0,796 | 7,50 | 120 |
EC24-331K | 330 | ±10 | 60 | 0,796 | 9,50 | 100 |
EC24-391K | 390 | ±10 | 60 | 0,796 | 10,50 | 95 |
EC24-471K | 470 | ±10 | 60 | 0,796 | 11,60 | 90 |
EC24-561K | 560 | ±10 | 60 | 0,796 | 13,00 | 85 |
EC24-681K | 680 | ±10 | 60 | 0,796 | 18,00 | 75 |
EC24-821K | 820 | ±10 | 60 | 0,796 | 23,70 | 65 |
EC24-102K | 1000 | ±10 | 50 | 0,796 | 30,00 | 60 |
Цветовая и кодовая маркировка индуктивностей
Справочник
В соответствии с Публикацией IEC 62 для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Наиболее часто применяется кодировка 4 или 3 цветными кольцами или точками. Первые две метки указывают на значение номинальной индуктивности в микрогенри (мкГн), третья метка — множитель, четвертая — допуск. В случае кодирования 3 метками подразумевается допуск 20%. Цветное кольцо, обозначающее первую цифру номинала, может быть шире, чем все остальные.
Рис. 2
Таблица 1
Серебряный | 0,01 | 10% | ||
Золотой | 0,1 | 5% | ||
Черный | 0 | 1 | 20% | |
Коричневый | 1 | 1 | 10 | Допуск |
Красный | 2 | 2 | 100 | |
Оранжевый | 3 | 1000 | ||
Желтый | 4 | 4 | Множитель | |
Зеленый | 5 | 5 | ||
Голубой | ||||
Фиолетовый | 7 | 7 | ||
Серый | 8 | 8 | ||
Белый | 9 | 9 |
Рис. 2
Кодовая маркировка
Обычно для индуктивностей кодируется номинальное значение индуктивности и допуск, т.е. допускаемое отклонение от указанного номинала. Номинальное значение кодируется цифрами, а допуск — буквами. Применяется два вида кодирования.
А. Кодированная маркировкаПервые две цифры указывают значение в микрогенри (мкГн), последняя — количество нулей. Следующая за цифрами буква указывает на допуск. Например, код 101J обозначает 100 мкГн ±5%. Если последняя буква не указывается —допуск 20%. Исключения: для индуктивностей меньше 10 мкГн роль десятичной запятой выполняет буква R, а для индуктивностей меньше 1 мкГн — буква N.
Допуск:D=±0,3 нГн; J=±5%; К=±10%; M=±20%
Примеры обозначений:Таблица 2
Код | Обозначение |
22N | 22 нГн ±20% |
R10M | 0,10 мкГн±20% |
R15M | 0,15 мкГн±20% |
R22M | 0,22 мкГн ±20% |
R33M | 0,33мкГн+20% |
R47M | 0,47мкГн±20% |
R68M | 0,68 мкГн +20% |
1R0M | 1,2мкГн ±20% |
Таблица 3
Код | Обозначение |
2R2K | 2,2 мкГн±10% |
3R3K | 3,3 мкГн ±10% |
4R7K | 4,7 мкГн±10% |
6R8K | 6,8 мкГн±10% |
100К | 10 мкГн±10% |
150К | 15 мкГн±10% |
220К | 22 мкГн±10% |
33ОК | 33 мкГн±10% |
Таблица 4
Код | Обозначение |
680К | 68 мкГн ± 10% |
101К | 100мкГн±10% |
151К | 150 мкГн ± 10% |
221K | 220 мкГн ±10% |
331К | 33ОмкГн ±10% |
471J | 470 мкГн ±5% |
681J | 680 мкГн ±5% |
102 | 1000 мкГн±20% |
Рис. 3
В. Непосредственная маркировкаИндуктивности маркируются непосредственно в микрогенри (мкГн). В таких случаях маркировка 680К будет означать не 68 мкГн ±10%, как в случае А, а 680 мкГн ±10%.
Рис. 4
Мнения читателей
- Алексей/30.03.2011 — 18:34
Для катушек важным является не только величина индуктивности(её и измерить можно), но и максимально допустимый ток, больше которого индуктивность «сваливается». Значение максимального токаособенно важно для силовых дросселей. Так,что зная все про цветныекольца, но не зная тип или марку дросселя, применить его зачастуюочень проблематично!
- минька/28.05.2010 — 17:21
непомогло. у меня другая.
- Олег/03.02.2010 — 15:55
Хорошая вещь!
- Виталий/17.02.2009 — 05:27
Автор готовит новую версию программы Color. Обсуждение новой версии 6.8 на форуме.Програмка класс — все в одном. Спасибо.
- Гумер/08.02.2009 — 17:33
Программа Color 6.7http://www.colorandcode.ru/color_files/Color_6_7.rarЗагрузить обновление с версии Color 6.7.x до версии Color 6.7.3http://www.colorandcode.ru/color_files/Upd…_before_673.rarГостевая книгаhttp://www.colorandcode.ru/e107_plugins/gu…k/guestbook.php
- Рамзия/27.11.2008 — 08:30
В прошлом году наткнулась на данную программу. Помогла выполнить дипломную (не пришлось искать в книгах габаритные размеры корпусов — очень на мой взгляд большая база).
- Сергей/18.11.2008 — 13:00
По поводу программы Color — давно пользуюсь и другим рекомендую. Кроме определения цвета и кода, много справочной информации.
- Гумер/18.05.2008 — 17:14
Загляните http://colorandcode.ru/page.php?6Программа Color — позволяет определить номинал или тип радиоэлементов по цветовой или кодовой маркировке.
- Anatoli/16.01.2007 — 21:11
Отлично,я давно ждал эти справочные. Спасибо.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:
Поля, обязательные для заполнения
Добавить
Очистить
Цветовая маркировка индуктивностей и характеристики контуров радиоприемных устройств
В данной статье речь пойдет о цветовой маркировке индуктивностей, а также будут рассмотрены характеристики контуров радиоприемных устройств.
В соответствии с публикациями IEC 62 для индуктивностей кодируется:
- номинальное значение индуктивности;
- допуск, т.е. допускаемое отклонение от указанного номинала;
В соответствии с таблицей «Цветовая маркировка индуктивностей» определяются основные параметры катушек индуктивности.
Рассмотрим на примере как определяются основные параметры катушек индуктивности в соответствии с представленной таблицей.
Пример
Определим параметры катушки индуктивности с четырьмя точками: оранжевый, красный, черный, золотистый, используя таблицу «Цветовая маркировка индуктивностей», номиналы элементов указаны в мкГн – 10-6.
- первая цифра (1 — элемент) – 3;
- вторая цифра (2 — элемент) – 2;
- множитель – 1;
- допуск,% – ±5.
Соответственно получается: 32*10-6*1= 32*10-6 Гн или 32 мкГн±5%.
Определим параметры для катушки индуктивности с тремя полосами: оранжевый, фиолетовый и оранжевый.
- первая цифра (1 — элемент) – 3;
- вторая цифра (2 — элемент) – 7;
- множитель – 103;
Соответственно получается: 37*10-6*103= 37*10-3 Гн или 37 мГн±20%. В случае кодирования тремя полосами (метками) подразумевается по умолчанию допуск 20%.
Цветовая маркировка и характеристики контуров радиоприемных устройств представлены в таблице.
Поделиться в социальных сетях
Благодарность:
Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».
Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.
Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.
Страница не найдена | MIT
Перейти к содержанию ↓- Образование
- Исследовательская работа
- Инновации
- Прием + помощь
- Студенческая жизнь
- Новости
- Выпускников
- О MIT
- Подробнее ↓
- Прием + помощь
- Студенческая жизнь
- Новости
- Выпускников
- О MIT
Попробуйте поискать что-нибудь еще! Что вы ищете? Увидеть больше результатов
Предложения или отзывы?
.Микроволны101 | Катушки индуктивности
Щелкните здесь, чтобы перейти на страницу с сосредоточенными элементами
Вот введение в различные типы индукторов, используемых на микроволновых частотах. Это дополнительная страница к нашим страницам, посвященным СВЧ конденсаторам и СВЧ резисторам.
Предпосылки и определения индукторов
СВЧ индуктор модели
Индукторная математика (отдельная страница)
Индуктивное сопротивление
Электромагнитные индукторы
Дроссели спиральные (проволочные)
Тороиды
Эмпирическое правило индуктивности Wirebond
Индуктивность через отверстие
Резонансы индуктивности
Дроссели с проволочной обмоткой
Скоро: как сделать свой
Спиральные индукторы
Программное обеспечение для моделирования индукторов (если кто-то выступит спонсором этой темы!)
Продавцы индукторов
Описание индукторов и их определения
Что такое индуктивность? Индуктивность противоположна емкости, это свойство, которое препятствует мгновенному сдвигу тока.Индуктивность не влияет на постоянный ток (катушка индуктивности пропускает постоянный ток), но с увеличением частоты идеальная катушка индуктивности начинает выглядеть как разомкнутая цепь.
Единицы индуктивности — это Генри, названный в честь члена Зала славы микроволновых печей Джозефа Генри, который, среди прочих достижений, был первым куратором Смитсоновского института. Для микроволновых частот индукторы обычно указываются в нано-Генри (10 -9 Генри).
Катушки индуктивности — это непростые пасынки в микроволновых схемах.Их сложнее смоделировать, чем конденсаторы, и они раньше отключаются по частоте. Они также имеют ограниченную пропускную способность по току, низкий коэффициент качества (и имеют потери) и могут излучать. Но они вам все равно понадобятся, так что узнайте о них больше здесь.
Дроссели с проволочной обмоткой
два типа: воздушный сердечник и другой сердечник
Ферритовые бусины
Спиральные индукторы
См. Формулу для спиральных индукторов здесь:
Микрополосковые спиральные микрополосковые индукторы являются обычным явлением для MMIC, а также предлагаются как дискретные компоненты.Когда-нибудь они получат свою собственную страницу Microwaves101 (как только появится спонсор!)
Чаще всего спиральные катушки индуктивности имеют прямоугольную форму, потому что их легче создавать и анализировать с помощью программного обеспечения САПР. Катушки индуктивности с круглой спиралью лучше работают на высоких частотах.
Спиральные индукторы, как известно, несут потери, особенно для больших значений. Это потому, что индуктор представляет собой очень тонкую линию, состоящую из множества квадратов, каждый из которых добавляет сопротивление. Добротность спиральных индукторов может быть довольно низкой.
Вычислить сопротивление спирального индуктора постоянному току просто, и разработчики часто не обращают на него внимания, пока не построят схему усилителя, и деталь не смещается правильно на первой итерации. Сначала вам нужно узнать сопротивление листа вашей металлизации в омах на квадрат, затем легко приблизительно определить количество квадратов, чтобы получить сопротивление. При вычислении радиочастотного сопротивления вам, возможно, придется учитывать эффект глубины скин-слоя.
Одно слово предостережения, спиральные индукторы могут излучать.Контрольный признак — это когда вы измеряете их в обоих направлениях с помощью анализатора цепей, а величина S11 и S22 сильно различается.
Распределенная индуктивность (Т-линия)
Еще впереди!
Продавцы индукторов
Глупый кролик, рекомендации предназначены только для спонсоров … А пока вам придется искать собственных продавцов индукторов!
Вниманию производителей индукторов … рассмотрите возможность спонсирования этой страницы, скоро она будет получать больше посещений в месяц, чем веб-сайт вашей компании!
.Общие сведения об индуктивности »Электроника
Понимание основ индуктивности позволяет более эффективно использовать катушки индуктивности и трансформаторы.
Inductance and Transformer Tutorial:
Inductance.
Символы
Закон Ленца
Собственная индуктивность
Расчет индуктивного реактивного сопротивления
Теория индуктивного реактивного сопротивления
Индуктивность проволоки и катушек
Трансформеры
Индуктивность — ключевой параметр в электрических и электронных схемах.Подобно сопротивлению и емкости, это базовое электрическое измерение, которое в той или иной степени влияет на все цепи.
Индуктивность используется во многих областях электрических и электронных систем и схем. Компоненты могут быть разных форм и называться разными именами: катушки, индукторы, дроссели, трансформаторы,. . . Каждый из них также может иметь множество различных вариантов: с сердечником и без сердечника, а материалы сердечника могут быть разных типов.
Понимание индуктивности, различных форм и форматов катушек индуктивности и трансформаторов помогает понять, что происходит в электрических и электронных цепях.

Термин индуктивность был введен Оливером Хевисайдом в 1886 году. Принято использовать символ L для обозначений индукторов, показанных на принципиальных схемах, и индуктивности в уравнениях в честь физика Генриха Ленца.
Основы индуктивности
Индуктивность — это способность катушки индуктивности накапливать энергию в магнитном поле, которое создается потоком электрического тока.
Энергия требуется для создания магнитного поля, и эта энергия должна высвобождаться, когда поле падает.
В результате магнитного поля, связанного с протеканием тока, индукторы генерируют противоположное напряжение, пропорциональное скорости изменения тока в цепи.
Индуктивность возникает из-за магнитного поля, создаваемого электрическими токами, протекающими в электрической цепи. Обычно катушки с проволокой используются, поскольку катушка увеличивает связь магнитного поля и усиливает эффект.
Существует два способа использования индуктивности:
- Самоиндукция: Самоиндукция — это свойство цепи, часто катушки, при которой изменение тока вызывает изменение напряжения в этой цепи из-за магнитного эффекта, вызванного протеканием тока.Можно видеть, что самоиндукция применяется к одной цепи — другими словами, это индуктивность, обычно в пределах одной катушки. Этот эффект используется в одиночных катушках или дросселях.
- Взаимная индуктивность: Взаимная индуктивность — это индуктивный эффект, когда изменение тока в одной цепи вызывает изменение напряжения во второй цепи в результате магнитного поля, которое связывает обе цепи. Этот эффект используется в трансформаторах.
Определение единицы индуктивности
При обозначении катушки индуктивности на принципиальной схеме или в уравнении обычно используется символ «L».На принципиальных схемах индукторы обычно пронумерованы, L1, L2 и т. Д.
Единицей индуктивности в системе СИ является генри, H, который можно определить как скорость изменения тока и напряжения.
Определение генри:
Индуктивность цепи равна одному генри, если скорость изменения тока в цепи составляет один ампер в секунду, и это приводит к электродвижущей силе в один вольт.
Один генри равен 1 Вб / А.
Индуктивность — что происходит
Когда ток течет внутри проводника, будь то прямой или в форме катушки, вокруг него создается магнитное поле, и это влияет на то, как нарастает ток после замыкания цепи.
С точки зрения того, как индуктивность влияет на электрическую цепь, это помогает взглянуть на то, как цепь работает, сначала для постоянного тока, а затем для переменного тока. Хотя они следуют одним и тем же законам и имеют одинаковые результаты, это помогает объяснению, пример постоянного тока проще, и тогда это объяснение можно использовать в качестве основы для случая переменного тока.
- Постоянный ток: По мере создания цепи ток начинает течь.По мере того, как ток увеличивается до постоянного значения, создаваемое магнитное поле приобретает окончательную форму. Когда это происходит, магнитное поле изменяется, поэтому это индуцирует напряжение обратно в саму катушку, как и следовало ожидать в соответствии с законом Ленца.
Индуктор в цепи с батареей и резистором Постоянная времени T в секундах цепи, которая будет включать значение индуктивности L Henries и соответствующее сопротивление цепи R Ом, может быть рассчитана как L / R.T — это время, за которое ток I amps повысится до 0,63 от его окончательного установившегося значения V / R. Энергия, запасенная в магнитном поле, составляет 1/2 L I 2 .
Рост тока при приложении постоянного напряжения к катушке индуктивности Когда ток отключается, это означает, что фактически сопротивление цепи внезапно возрастает до бесконечности. Это означает, что отношение L / R становится очень малым и магнитное поле очень быстро падает. Это представляет собой большое изменение магнитного поля, и, соответственно, индуктивность пытается поддерживать ток, и устанавливается противо-ЭДС, чтобы противодействовать этому, возникающему из-за энергии, накопленной в магнитном поле.Наличие напряжения означает, что на контакте переключателя могут появиться искры, особенно при разрыве контакта. Это приводит к появлению ямок на контактах и износу любых механических переключателей. В электронных схемах эта обратная ЭДС может разрушить полупроводниковые устройства, поэтому часто используются способы уменьшения этой обратной ЭДС.
- Переменный ток: Для случая, когда переменный ток проходит через катушку индуктивности, используются те же основные принципы, но, поскольку форма волны повторяется, мы склонны смотреть на то, как реагирует катушка индуктивности, несколько иначе: так удобнее.
По самой своей природе форма переменного сигнала постоянно меняется. Это означает, что результирующее магнитное поле всегда будет изменяться, и всегда будет создаваться наведенная обратная ЭДС. Результатом этого является то, что индуктор препятствует прохождению через него переменного тока из-за индуктивности. Это в дополнение к вызванному сопротивлением омическому сопротивлению провода.
Это означает, что если омическое сопротивление катушки индуктивности низкое, она будет пропускать постоянный ток, постоянный ток с небольшими потерями, но может иметь высокое сопротивление для любого высокочастотного сигнала.Эта характеристика катушки индуктивности может использоваться для обеспечения того, чтобы любые высокочастотные сигналы не проходили через катушку индуктивности.
Еще одним аспектом индуктивности является то, что реактивное сопротивление катушки индуктивности и реактивное сопротивление конденсатора могут действовать вместе в цепи, подавляя друг друга. Это называется резонансом и широко используется в полосовых фильтрах.
Индуктивность проводов и катушек
Прямые провода и катушки имеют индуктивность. Обычно катушки используются для индукторов, потому что соединение магнитного поля между разными витками катушки увеличивает индуктивность и позволяет удерживать провод в меньшем объеме.
Для большинства низкочастотных приложений индуктивностью прямого провода можно пренебречь, но по мере увеличения частоты в диапазоне УКВ и за его пределы индуктивность самого провода может стать значительной, и соединения должны быть короткими, чтобы минимизировать влияние .
Доступнорасчетов, позволяющих достаточно точно рассчитать индуктивность проводов, но индуктивность катушек немного сложнее и зависит от множества факторов, включая форму катушки и постоянную материала внутри и вокруг катушки. .
Индуктивность — ключевой аспект проводов и катушек. Индуктивность — незаменимая характеристика, которая может быть очень полезна во многих схемах.
Дополнительные основные понятия:
Напряжение
Текущий
Сопротивление
Емкость
Мощность
Трансформеры
RF шум
Децибел, дБ
Q, добротность
Вернуться в меню основных концепций. . .
Как использовать измерительные приборы для измерения индуктивности
Любое проводящее тело имеет определенную конечную индуктивность. Эта индуктивность является внутренним свойством проводящего тела и всегда одинакова, независимо от того, находится ли этот проводник или устройство под напряжением в электрической цепи или находится на полке на складе.
Индуктивность сегмента прямого провода можно значительно увеличить, намотав его в виде спиральной катушки, после чего магнитные поля, установленные вокруг соседних витков, объединяются, чтобы создать единое более сильное магнитное поле.Индуктивность катушки зависит от квадрата количества витков.
Индуктивность катушки также значительно увеличивается, если катушка построена вокруг сердечника, который состоит из материала, имеющего высокую проницаемость для магнитного потока. (Поток — это произведение среднего магнитного поля на перпендикулярную площадь, которую оно пересекает. Поток в магнитной цепи аналогичен току в электрической цепи.) Это ситуация с силовыми трансформаторами, принадлежащими коммунальным предприятиям, и другими катушками, предназначенными для работы при 50 или 60 Гц.Индуктивные эффекты более выражены на более высоких частотах, поэтому для ВЧ-индуктора обычно достаточно воздушного сердечника.
Одним из определяющих качеств катушки является то, что при снятии приложенного напряжения, прерывая ток, магнитное поле схлопывается, и электрическая энергия, ранее использовавшаяся для создания магнитного поля, внезапно возвращается в цепь. Это просто проявление того факта, что магнитное поле и проводник, движущиеся относительно друг друга, вызывают в проводнике ток.
Скорость изменения тока в катушке индуктивности пропорциональна приложенному к ней напряжению, как определено известным уравнением:
В = L dI / dt
Где L — индуктивность в генри, V — напряжение, I — ток, а t — время. Подобно конденсатору и в отличие от резистора, сопротивление катушки индуктивности зависит от частоты. Импеданс — это векторная сумма сопротивления (когда и если в цепи есть резистор или эквивалент) и индуктивного или емкостного реактивного сопротивления. В конденсаторе более высокая частота означает меньшее емкостное реактивное сопротивление.В катушке индуктивности более высокая частота соответствует более высокому индуктивному сопротивлению. Катушка не препятствует прохождению постоянного тока, за исключением следующих случаев:
• Небольшое сопротивление из-за допустимой нагрузки провода
• Мгновенное индуктивное реактивное сопротивление при первом включении катушки из-за работы, необходимой для установления магнитного поля . (Во время нарастания постоянный ток по существу является переменным.)
Уравнение емкостного реактивного сопротивления:
X С = 1 / 2πfC
Где X C = емкостное реактивное сопротивление в Ом; f = частота в герцах; C = емкость
Уравнение индуктивного сопротивления:
X L = 2πfL
Где X L = индуктивное реактивное сопротивление в Ом; f = частота в герцах; L = индуктивность
Эти уравнения обладают поразительной симметрией.Одно является зеркальным отображением другого, разница заключается в роли частоты. В емкостном реактивном сопротивлении f находится в знаменателе, а в индуктивном реактивном сопротивлении — в числителе. Емкостное и индуктивное реактивное сопротивление, а также общее сопротивление выражаются в омах, как и в сопротивлении постоянному току, и полностью соответствуют закону Ома, при том понимании, что эти свойства меняются в зависимости от частоты.
Мультиметры высшего класса часто имеют емкостной режим. Чтобы провести это измерение, просто исследуйте провода исследуемого устройства.В интересах безопасности и точности может потребоваться разрядка устройства с высокой емкостью, такого как электролитический конденсатор, с использованием разумного сопротивления в течение соответствующего периода времени. Шунтирование его отверткой не является хорошей практикой, потому что электролит может быть проколот из-за сильного тока, не говоря уже о вспышке дуги в больших единицах. После разряда проверьте, проверив напряжение.
Конденсаторы, измеренные с помощью мультиметра в режиме измерения емкости, могут показывать низкие значения на целых 10%.Этой точности достаточно для многих приложений, таких как пусковая цепь для электродвигателя или для фильтрации источника питания. Более высокая точность достигается при динамическом испытании. Одна из стратегий прецизионных измерений — создать схему, которая преобразует емкость в частоту, которую затем можно определить с помощью счетчика.
Для измерения индуктивности устройства, внутренней индуктивности цепи или более распространенной распределенной индуктивности лучше всего подходит измеритель LCR.Он подвергает тестируемое устройство (надлежащим образом разряженное и изолированное от любых внешних цепей, которые могли бы возбудить его или создать несущественный параллельный импеданс) переменным напряжением известной частоты, обычно равным среднеквадратичному напряжению в один вольт на частоте одного килогерца. Измеритель одновременно измеряет напряжение на устройстве и ток через него. Из отношения этих величин алгебраически вычисляется импеданс.
Затем усовершенствованные измерители измеряют фазовый угол между приложенным напряжением и результирующим током.Они используют эту информацию для отображения эквивалентной емкости, индуктивности и сопротивления рассматриваемого устройства. Измеритель работает в предположении, что обнаруживаемые им емкость и индуктивность существуют в параллельной или последовательной конфигурации.
Конденсаторыимеют некоторую непредусмотренную индуктивность и сопротивление из-за их выводов и пластин. Точно так же у катушек индуктивности есть некоторое сопротивление из-за их выводов, и у них есть определенная емкость, потому что их выводы приравниваются к пластинам.Точно так же резисторы, как и полупроводники на высоких частотах, приобретают емкостные и индуктивные свойства.
Как правило, измеритель предполагает, что подразумеваемые устройства подключены последовательно, когда он выполняет измерения LR. Точно так же предполагается, что они параллельны, когда проводятся измерения CR, из-за последовательной геометрии катушки и параллельной геометрии конденсатора.

Многие измерители LCR подают выходной сигнал источника сигнала через резистор истока на неизвестное устройство Z X и резистор диапазона R r .Усилитель заставляет тот же ток, который течет через неизвестное устройство, течет через R r , приводя соединение неизвестного устройства и R r к 0 В. Напряжения V 1 и V 2 через неизвестное устройство и R r соответственно подключены к селекторному переключателю. Выход коммутатора подключен к дифференциальному усилителю. Действительная и мнимая составляющие сигналов напряжения и тока получаются путем умножения этих напряжений на прямоугольную волну, когерентную со стимулом (в фазовом детекторе).Это дает выходной сигнал, пропорциональный синфазной или квадратурной составляющей напряжения. Выходной сигнал поступает на аналого-цифровой преобразователь с двумя характеристиками, который считывает MCU. Комплексное отношение напряжения к току равно комплексному сопротивлению. Другие параметры, такие как L и C, вычисляются математически из скорректированного значения импеданса.
Как портативные, так и настольные измерители LCR в более продвинутых моделях позволяют пользователю выбирать частоту подаваемого переменного напряжения. Обоснование заключается в том, что тестируемый индуктор или конденсатор будет реагировать более характерным образом в пределах дискретной полосы частот.
Настольные измерители LCRтакже обычно имеют четырехпроводную схему (Кельвина), которая значительно повышает стабильность и точность измерений с низким импедансом, когда контакт наконечника зонда может ухудшить показания.
Индуктивность, емкость или сопротивление можно измерить с помощью мостовой схемы. Для этого измерения переменные калиброванные элементы обнуляются в детекторе, в отличие от измерения фазового угла, как в обычном измерителе LCR.
Когда измеритель LCR недоступен, существуют различные методы измерения индуктивности с помощью осциллографа.Один из методов измерения индуктивности в зависимости от наклона вольт-амперной характеристики включает подключение катушки индуктивности к импульсному источнику напряжения с рабочим циклом менее 50%. С помощью токового пробника осциллографа считайте пиковый ток в амперах и время между импульсами в микросекундах. Умножьте эти суммы и разделите произведение на пиковый ток. Это величина индуктивности тестируемого устройства.
Другой метод измерения индуктивности с помощью осциллографа заключается в последовательном подключении резистора известного номинала к проверяемой катушке индуктивности и подаче сигнала.Частота регулируется таким образом, чтобы на обоих устройствах было одинаковое напряжение.
Третий метод определения индуктивности устройства состоит в размещении катушки индуктивности параллельно с известной емкостью. Результирующий контур резервуара затем включается последовательно с резистором, и резонансная частота определяется с помощью осциллографа. Исходя из этого, можно рассчитать индуктивность.
Эти методы, хотя и являются жизнеспособными, требуют некоторых схемотехнических работ и обширных вычислений, в то время как измеритель LCR обеспечивает прямые показания с достаточной точностью для большинства приложений.
.