Искусственная средняя точка в блоке питания часов – Псевдо-средняя точка в питании | Микросхема

Двухполярное питание из однополярного, или создание средней точки

Для работы многих схем с использованием операционных усилителей часто требуется двухполярное питание, или однополярное со средней точкой, что почти одно и то же. Источники двухполярного питания распространены гораздо меньше, чем однополярные. Для питания схем с незначительным потреблением (порядка нескольких миллиампер) можно использовать однополярный источник с созданием средней точки с помощью простого резистивного делителя и фильтрующих конденсаторов, рисунок 1.

Рисунок 1. Создание средней точки резистивным делителем.

Такой вариант создания двуполярного питания из однополярного характеризуется ощутимыми потерями в схеме и низкой стабильностью, поскольку при неравномерной нагрузке плеч, бОльшая нагрузка будет подтягивать среднюю точку к своему плечу. Подобные схемы могут пригодиться при опытах с операционными усилителями. В схеме варианта б) подстроечным резистором R3 можно корректировать уровень напряжения средней точки. Имеет смысл использовать для быстрой сборки тестовых схем и только в том случае, если напряжение выхода однополярного источника будет достаточным, для создания двухполярного питания.

Рисунок 2. Формирование средней точки с помощью операционного усилителя.

Более адаптивную схему к малой, но динамичной нагрузке можно собрать с применением операционного усилителя. Схема получается довольно простой, рисунок 2.

Потенциометром R1 задаётся уровень напряжения средней точки. Это напряжение подаётся на не инвертирующий вход «3». При включении питания схемы конденсаторы C1 и C2 заряжаются приблизительно равномерно, в точке их соединения возникает напряжение, приближённо равное половине напряжения питания относительно нижней шинки питания (0 слева, -Uп/2 справа по схеме). Так формируется

средняя точка источника питания («корпус», «земля»). Напряжение средней точки через резистор R2 подаётся на «следящий» инвертирующий вход усилителя «2».

Если напряжение средней точки подаваемое на инвертирующий вход превышает заданное напряжение на не инвертирующем входе, усилитель будет тянуть напряжение выхода «6» к минусовой шинке питания, открывая транзистор VT2 до тех пор, пока напряжение средней точки не поравняется с заданным.

Когда напряжение средней точки проседает к минусу питания, то усилитель наоборот подтягивает выход «6» к плюсу питания, открывая транзистор VT1, который будет поднимать напряжение средней точки до тех пор, пока оно не поравняется с заданным.

При дрейфе средней точки около заданного напряжения часто происходит переключение между транзисторами, а поскольку коэффициент усиления ОУ без обратной связи имеет величину порядка нескольких тысяч единиц, то стабилизирующий эффект получается достаточно точным, и в большей степени зависит от величины асимметрии нагрузки, коэффициента усиления по току транзисторов VT1 и VT2 и их мощности.

При использовании такой схемы следует учесть, что при необходимости привязать среднюю точку к корпусу устройства, первичный источник питания не должен иметь контакта с корпусом.

При переключении транзисторов могут возникнуть коммутационные помехи из-за значительной собственной индуктивности фильтрующих конденсаторов. Для устранения помех конденсаторы C1 и C2 необходимо зашунтировать керамическими конденсаторами ёмкостью 0,1…0,22 мкФ.

Достоинством схемы является то, что напряжение средней точки можно задать практически на любом уровне от минуса до плюса питания, хотя в большинстве устройств это не требуется.

Для получения стабильных выходных напряжений относительно средней точки не требуется применения двухполярного стабилизатора, для этого достаточно использовать стабилизированный первичный (однополярный) источник питания.

Ниже приведены изображения и фото готового проекта такого делителя питания. В проект добавлен резистор (R3, рисунок 3) в цепь выхода для смягчения условий перегрузки усилителя при замыкании одного плеча или значительной асимметрии нагрузки.

  

Рисунок 3. Схема делителя напряжения для преобразования однополярного источника питания в двухполярный.
Рисунок 4. Изображение для изготовления печатной платы методом ЛУТ (зеркалить не требуется).Рисунок 5. Печатная плата делителя питания.

 

исунок 6. Монтажная схема делителя напряжения питания.

Рисунок 7. 3D-модель устройства.Рисунок 8. Внешний вид делителя питания.

Печатная плата выполнена на одностороннем фольгированном текстолите. Изображение на странице масштабировано, использовать его в процессе проблематично. Отпечаток платы в масштабе 1:1 находится в PDF файле проекта, который можно скачать в конце статьи, с него и печатайте.

В этом устройстве рекомендую применять многооборотный потенциометр (подстроечный резистор), с ним легче поймать половинку напряжения при настройке с желаемой точностью. Транзисторы можно взять и другие, всё зависит от мощности нагрузки и наличия. Мне требовалось запитать операционный усилитель с нагрузкой по выходу 1,5 мВт, поэтому особо подбором не заморачивался, взял то, чего было больше из старого распая. Правда, при случайном замыкании питания по крайним точкам у меня сгорел транзистор верхнего плеча и микросхема операционного усилителя схемы делителя. Возможно, тут требуются доработки в сторону защиты и усложнения схемы, но я предпочёл быть более осторожным, и просто заменил убитые детали.

Файл проекта можно скачать тут.

volt-info.ru

О трансформаторных блоках питания для самых маленьких

Делал тут намедни презентацию на тему «Однополярные и двуполярные трансформаторные блоки питания», решил заодно и здесь продублировать. Наверное, будет полезно для начинающих.

Блок питания радиоэлектронной аппаратуры является вторичным источником питания, то есть он служит для преобразования электроэнергии (первичные — для ее производства). Как правило, происходит преобразование переменного тока напряжением 220 В в постоянный с напряжением, необходимым для нормальной работы устройства. Из этих функций вытекает структурная схема трансформаторного блока питания: трансформатор, выпрямитель, сглаживающий фильтр и стабилизатор.


Последние две части могут отсутствовать, как, например, в трансформаторных зарядных устройствах ACP-7E телефонов Nokia.

В последнее время трансформаторные блоки активно вытесняются импульсными (легкими, компактными, способными переварить любую дрянь из розетки: 110-240 вольт, 50-60 Гц — трансформатор такого не потерпит), однако все еще есть ниши, где они актуальны: например, устройства высококачественного воспроизведения звука или радиоприемники, которые подвержены действию помех, излучаемых импульсными БП (да-да, некоторые экземпляры можно использовать как маленькие глушилки длинных, средних и коротких волн).


Рассмотрим наиболее простой и наиболее часто встречающийся подвид: однополярный трансформаторный блок питания

Сразу оговорюсь, что однополупериодная схема выпрямителя (один диод, как в детекторном приемнике) в трансформаторной схемотехнике не снискала популярности ввиду низкого КПД и высокого уровня пульсаций.

В разрывы первичной и вторичной обмотки включены предохранители (у современных трансформаторов по первичной обмотке включен термопредохранитель, срабатывающий при перегреве магнитопровода). По «вторичке» предохранителя может и не быть, но по «первичке» он обязателен — это электро- и пожаробезопасность.

Вторичных обмоток может быть несколько (на разные напряжения), у одной обмотки могут быть несколько отводов от разных витков… Все это можно узнать из паспорта на трансформатор.

Диодный мост выпрямляет напряжение, а конденсаторный фильтр сглаживает его пульсации (минимально рекомендуемая емкость — 100 мкФ, максимальная ограничивается экономическими соображениями, размерами корпуса устройства, максимально возможным током через диоды и здравым смыслом). Не стоит забывать о физике: на диодном мосту неизбежно потеряется 1 — 2 вольта, но после конденсатора то, что останется, увеличится в корень из двух (1,41) раз (конденсатор заряжается до амплитудного значения напряжения). Например, с трансформатора идут 12 вольт «переменки» (действующее значение). 1,4 вольта отдадим диодам — итого уже 10,6. А на конденсаторе будет 14,94 вольта (амплитудное значение). Поэтому рабочее напряжение конденсатора должно быть с запасом — 25 вольт вполне хватит, а вот 16 — это уже пороховая бочка. Может, и не долбанет, но ресурс быстрее выработается.

 Выходное напряжение снимается с конденсатора и может питать устройство как напрямую, так и через стабилизатор: в этом случае рекомендуется, чтобы выходное напряжение БП было на 3 — 5 вольт выше номинального выходного напряжения стабилизатора. Используя интегральные стабилизаторы серии L78XX и компоненты из примера выше, можно сделать шикарный блок питания на девять вольт. Или на двенадцать, если падение напряжения на самом стабилизаторе 2-3 вольта (эта информация находится в даташите микросхемы). Или на пять, но 14,94 — 5 = 9,94 вольта, которые надо куда-то девать. А куда? Только в тепло. Поэтому стабилизаторы на малое напряжение, подключенные к большому входному, очень сильно греются.

Это слайд-шоу требует JavaScript.

Примеры устройств с таким БП: радиоприемник VEF 216 (встроенный), радиотелефоны (внешний), магнитофон «Весна 306» (встроенный).

Это слайд-шоу требует JavaScript.

Принцип работы мостового выпрямителя незатейлив: в течение каждого полупериода ток идет через два диода, включенные в прямом направлении (на одном кремниевом диоде в среднем падает 0,7 вольт — отсюда и берется число потерь 1,4). Таким образом, на конденсатор будет приходить напряжение, пульсирующее с удвоенной частотой питающей сети. Если за эти полпериода конденсатор не будет успевать разрядиться, то можно рассчитывать на то, что уровень пульсаций выходного напряжения будет низок (здесь, например, это хорошо показано: красное напряжение — с конденсатора, серое — с моста).

Следующие схемотехнические решения можно заметить в звуковоспроизводящей аппаратуре высокого класса: это пленочные конденсаторы, шунтирующие первичную и вторичную обмотки трансформатора (высоковольтный C1, C2), керамические конденсаторы, шунтирующие диоды моста (C3C6), и керамический или пленочный конденсатор емкостью 10 — 100 нФ, шунтирующий выходной электролитический (C7).

Конденсаторы на обмотках трансформатора предназначены для гашения высокочастотных помех от близких грозовых разрядов, щеточно-коллекторных узлов работающих электродвигателей и пр.

Шунтирование диодов помогает бороться с мультипликативной помехой радиоприему: она проявляется как фон в приемнике с частотой 100 Гц при настройке на мощную станцию в АМ-диапазоне.

Шунтирование выходного электролитического конденсатора помогает продлить срок его службы, так как «электролиты» склонны быстрее деградировать под действием высокочастотных помех. При наличии керамического или пленочного шунта малой емкости эти помехи через него закорачиваются на «землю».

Преимущества однополярных трансформаторных БП:

-Просты в изготовлении.
-Относительно легкие и маленькие.
-Легко обеспечить батарейное питание, что актуально для переносной техники (нужно всего лишь напыжевать достаточно батареек «в послед»).

К недостаткам можно отнести:

-Повышенное падение напряжение на выпрямителе (полтора вольта теряются, и при выпрямлении малого напряжения, например, трех вольт, это уже будет ощутимо — после конденсатора останется только 2,1 В).
-Мощные диоды в металлическом корпусе должны устанавливаться на радиатор через электроизолирующие прокладки, что в ряде случаев может быть затруднительно.


Следующий на очереди — двуполярный трансформаторный блок питания

Здесь используется трансформатор с двумя одинаковыми вторичными обмотками, соединенными последовательно (или это может быть одна обмотка со средней точкой). В этом случае средняя точка объявляется «землей», а с фильтров снимается напряжение как положительной, так и отрицательной полярности (измерения, разумеется, относительно «земли». И логично, что между «плюсом» и «минусом» 2Uвых).

Это слайд-шоу требует JavaScript.

Примеры устройств с таким БП: магнитофон «Вильма М-212С», усилитель «Радиотехника У-101», осциллограф «С1-94».

Это слайд-шоу требует JavaScript.

Диодный мост работает точно так же, как и в случае однополярного блока питания. Попеременно открываясь, то одна, то другая пара диодов пропускает переменное напряжение к конденсаторам фильтра.

К достоинствам двуполярного БП можно отнести:

-Значительное упрощение схем с операционными усилителями (исключаются цепочки, создающие «искусственный ноль» на входе — достаточно сравнить первую и вторую схемы отсюда).
-Уменьшение количества межкаскадных емкостей, так как в большинстве случаев постоянная составляющая сигнала отсутствует. А все мы знаем, что «электролиты» имеют свойство пересыхать.
-Акустика, подключенная к выходу исправного и настроенного усилителя с двуполярным питанием, не будет хлопать при включении, так как на выходе нет постоянной составляющей и конденсатора, блокирующего ее.

Однако есть и определенные недостатки:

-Снова повышенное падение напряжение на выпрямителе.
-Трансформатор со средней точкой сложен в изготовлении; он большой, тяжелый и совсем не портативный.
-Устройство чувствительно к перекосу плеч питания — например, если в звуковоспроизводящей технике при номинальных +/-14 вольт де-факто будут +12 и -16, форма выходного сигнала может сильно исказиться относительно нуля.
-«Исправный и настроенный усилитель», став вдруг неисправным, может выжечь акустику постоянным напряжением на выходе: нужна схема ее защиты при аварии.

Как следствие, такие блоки питания прижились в стационарной аппаратуре, где нет нужды в батарейном питании.


Необычная схема: однополярный БП с выпрямителем Миткевича

Этот блок питания также основывается на трансформаторе со средней точкой, но в качестве выпрямителя применяются два четвертьмоста, соединенные параллельно (выпрямитель Миткевича). Это двухполупериодный выпрямитель, и ток на фильтрующий конденсатор течет то с одной половины обмотки, то с другой через диод, находящийся в этот момент в прямом включении. Это было достаточно типичное решение для тех времен, когда диоды стоили дороже меди.

Пример устройства с таким БП: радиоприемник «Ишим».

Это слайд-шоу требует JavaScript.

Первым делом в глаза бросается то, что выпрямитель и фильтр включены по схеме с общим «плюсом», и с конденсатора снимается напряжение отрицательной полярности. Это обычная схемотехника 60-70-х гг.: тогда применялись германиевые транзисторы в основном p-n-p-структуры (ограничение технологии), у которых эмиттер подключается к «плюсу», а база и коллектор — к «минусу» питания.

В течение каждого полупериода ток протекает через один диод.

Положительными сторонами таких блоков питания можно считать:

-Экономию на диодах.
-Потери в выпрямители в два раза меньше, чем в мостовой схеме (ток в каждом полупериоде течет только через один диод).

Однако недостатки загнали этот вид блока питания в «Красную книгу РЭА»:

-Трансформатор со средней точкой сложен в изготовлении; он большой, тяжелый и совсем не портативный.
-В каждом полупериоде одна половина обмотки простаивает. Меди много, но работает она не вся.


Как быстро отличить импульсный блок питания от трансформаторного (имеются в виду те, что вставляются в розетку)?

Ипульсный: компактный, почти невесомый, часто бывает вытянут в осевом направлении. Жрет что угодно: чудовищный разброс по напряжению 110-240 вольт и частоте сети его не пугает (обычно эти параметры написаны на наклейке). Выходной ток при высоких напряжениях как правило, тоже достаточно большой — до 2 ампер. На секундочку: 2 А * 12 В = 24 Вт!

Трансформаторный: тяжелый, сбитый «кубик«. На наклейке обычно указано входное напряжение 230 вольт, иногда с маленькими зазорами (плюс-минус десять вольт). Частота — строго 50 Гц для постсоветского пространства. Ток обычно скромный: тот, что на картинке — девятивольтовый с полуамперным выходом (0,5 А * 9 В = 4,5 Вт). А ведь уже и такой блок достаточно громоздкий.

Для питания радиоприемников и другой старой техники, конечно, лучше выбрать трансформаторный.

Понравилось это:

Нравится Загрузка…

Похожее

huxfluxdeluxe.wordpress.com

Индикатор межвиткового замыкания своими руками

Людям, которые часто занимаются ремонтом двигателей и трансформаторов, а также других устройств, где используются обмотки или катушки индуктивности, постоянно сталкиваются с необходимостью проверки их состояния и целостности. Если обрыв можно определить с помощью даже самого примитивного тестера, то выявить межвитковое замыкание обмотки становится куда сложнее. Итак, сегодня у нас индикатор межвиткового замыкания своими руками и его реальные тесты, поехали!

Прибор для проверки межвиткового замыкания – схема

Для определения межвиткового замыкания существуют специальные тестеры-пробники, в основе которых лежат различные физические явления. Схему одного из таких приборов мы уже рассматривали ранее. Но сегодня у нас более экзотическая схема, которая описывалась в журнале “Радиоконструктор 03/2007 стр. 17″. Такой прибор способен автоматически определить, есть ли в обмотке обрыв, или выявить межвитковое замыкание.

В основе этого индикатора лежит принцип самоиндукции. На тестируемую катушку подаются импульсы звуковой частоты. Генератор импульсов собран на VT1-VT2, а частота его зависит от C1-C2 (должна быть в звуковом диапазоне). Транзисторы VT3-VT4 развязывают генератор от тестируемой катушки и обеспечивают необходимое значение импульсов тока, которые подаются на катушку.





Если катушка исправна, на ее выводах появятся импульсы обратной полярности. Диод D1 выделяет эти импульсы самоиндукции тестируемой катушки и подает их к базе VT5. Транзисторы VT5-VT6 усиливают импульсы самоиндукции и подают усиленный сигнал на динамик Гр.1.

Если в катушке есть межвитковое замыкание – ее индуктивность сильно падает, ЭДС самоиндукции будет иметь незначительную величину, недостаточную для открытия VT5 и звучания динамик Гр.1.

Транзисторы VT7-VT8 отвечают за работу светодиодов HL1 и HL2. Когда в катушке есть обрыв – горит HL2, если же обрыва нет – открываются транзисторы VT7VT8 и загорается HL1, а HL2 шунтируется и тухнет.

Как получить двуполярное питание из однополярного – искусственная средняя точка

Одним из самых больших недостатков данной схемы является двухполярное питание. Более практично и удобно питать тестер межвиткового замыкания от батареи типа “Крона” (9 В) и сформировать искусственную среднюю точку. Используя простую схему, работа которой описана в книге “Стабилизаторы напряжения и тока на ИМС (СИ)” Успенский Б. можно получить искусственную среднюю точку.

Из применяемых деталей в схеме:

  • операционный усилитель: mc34072 (или любой другой аналог типа LM393)
  • транзисторы SS8050 и SS8550 (можно и более слабую пару, с рабочим током коллектора не менее 200-300 мА)
  • электролитические конденсаторы 22 мкФ с рабочим напряжением 16 В.

Внимание! При наладке схемы ни в коем случае не стоит устраивать КЗ со средней точкой, моментально выходит из строя один из транзисторов, а также выходит из строя ОУ.

Индикатор межвиткового замыкания своими руками

Мы набросали эскиз платы, в которой уже учтено питание от кроны, размеры платы 45х70 мм.

  • pnp транзисторы – КТ209
  • npn транзисторы – BC239
  • диод D1 – германиевый AA119
  • C3 – пленочный конденсатор, 4.7 мкФ, 100 В
  • Гр.1 – динамическая головка 0,5 Вт, 8 Ом.

Данный тестер поместился в старый корпус от советского домофона. Ток, потребляемый при разомкнутых клеммах – 11 мА, при замкнутых клеммах – 38 мА, при тесте исправной катушки 65 мА. Частота генератора – 1 кГц.

При изготовлении платы, когда она была готова, заметили, что ее забыли отзеркалить, но оставили как есть, на функционал это не влияет.

На выход клемм подключена дополнительная кнопка с небольшой индуктивностью для проверки исправности прибора.

Тесты прибора для проверки межвиткового замыкания

Тестер включен, клеммы разомкнуты, горит HL2 «Обрыв ЕСТЬ».

Подключена обмотка импульсного трансформатора, горит HL1 «Обрыва НЕТ», звучит Гр.1 на частоте 1 кГц.

Минимальную индуктивность, которую определяет прибор – 100 мкГн. При подключении такой катушки звук на Гр.1 не громкий, на индуктивность значением менее 100 мкГн прибор реагирует только диодом HL1 «Обрыва НЕТ».

Если индикатор межвиткового замыкания не работает

Правильно собранная схема начинает работать сразу и не требует дополнительной наладки.

Если HL1 и HL2 работают корректно, но нет звучания Гр.1 при подключении исправной катушки – необходимо проверить работу генератора и его усилителя. Для этого необходимо подключить любой динамик к выводным клеммам. При работающем генераторе сразу можно услышать громкий и четкий звук на динамику, который подключен к клеммам.

Если HL1 и HL2 не работают корректно. При включении прибора загораются сразу оба, нет звучания Гр.1 при подключении исправной катушки – необходимо проверить полярность включения диода D1.

Индикатор межвиткового замыкания – демонстрация работы


Плату тестера межвиткового замыкания в формате lay, можно скачать по ссылке ниже.

VK

Facebook

Twitter

Odnoklassniki

comments powered by HyperComments

diodnik.com

Методика тестирования блоков питания стандарта ATX

Современные блоки питания, в общем, и для компьютера в частности, представляют собой довольно сложные устройства. Основных только электрических характеристик больше десятка, а есть еще шумовые, тепловые, массогабаритные. Все блоки питания стандарта АТХ являются импульсными преобразователями с различными вариациями схемных решений, но с единым принципом работы. Без специального оборудования, в виде управляемых нагрузок, осциллографа и некоторых других устройств невозможно протестировать соответствие стандарту характеристик, указанных на наклейке и в паспорте блока питания. Самый простой вопрос «Хватит ли блока питания ХХХ для работы компьютера УУУ?» на самом деле вовсе не так прост. Для ответа на поставленный вопрос необходимо ознакомиться с разнообразными характеристиками существующих блоков питания и типичным потреблением компьютерного железа.

Все основные характеристики и требования в той или иной степени описаны в документах, известных как ATX12V Power Supply Design Guide Version 2.2, SSI EPS12V Power Supply Design Guide Version 2.91 и аналогичных. Эта документация предназначается производителям блоков питания для обеспечения совместимости их аппаратуры с общепринятым стандартом ATX. Сюда входят геометрические, механические и, конечно же, электрические характеристики устройств. Вся документация доступна в открытом виде в сети Internet (ATX12V PSDG/SSI EPS PSDG). Приведем основные темы, описанные в этой документации. Начать стоит с наиболее важной величины, которая указывается на каждом блоке питания доступном в розничной продаже.

  • Допустимая мощность нагрузки

Каждый блок питания имеет несколько выходных каналов с различным напряжением и рассчитан на определенную долговременную мощность по каждому из них. Современный стандарт предписывает наличие каналов с напряжением +5В, +12В, +3.3В, -12В и дежурное напряжение +5В. Общая мощность обычно обозначена в ваттах на наклейке (по-английски звучит как Total Power). Эта величина представляет собой сумму всех мощностей по каждому из каналов и легко подсчитывается суммированием произведения токов на соответствующие напряжения. К примеру, у нас имеется блок питания с мощностью 500 ватт, с указанными допустимыми токами: +3.3В 30А, +5В 30А, +12В 40А, -12В 0.8А, +5Вд 2.5А. Перемножив и просуммировав, получаем итоговую цифру (250+480+9.6+12.5) = 752.1 Вт. Почему же на наклейке указано 500Вт? Дело в том, что существует взаимная зависимость каналов их совместной максимальной мощности. На наклейке указано, что максимальная мощность по каналам +3.3В и +5В не может превышать 152 Вт в любом случае, а общая суммарная мощность каналов +12В и +3.3 & 5В не должна превысить 480 Вт. То есть, мы можем нагрузить блок на полную мощность по +12В, оставив без нагрузки низковольтные каналы, либо при полной мощности каналов +3.3 и +5В (152 Вт в нашем случае), можем использовать только 328 Вт по +12В. Поэтому при подсчетах нужно быть внимательным и всегда обращать внимание на допустимую комбинацию нагрузки по каждой линии. Обычно это указано на наклейке, в виде общей ячейки с единой величиной мощности для нескольких каналов.

С учетом этого фактора новый пересчет мощности будет выглядеть так: 152+328+9.6+12.5=502.1 Вт, либо 0+480+9.6+12.5=502.1 Вт, либо любая из допустимых вариаций между этими двумя крайними значениями распределения мощностей по каналам. Исходя из этого, возникает вопрос – а как же тестировать блок: на полной нагрузке по низковольтным каналам, либо на максимальной мощности канала +12В? А может на каком-то промежуточном значении? Рассмотрим этот момент в дальнейшем подробнее.

Также не стоит путать параметры максимальной долговременной мощности и пиковой мощности (Total Peak Power), допустимой на небольшой период времени (17 секунд согласно ATX 2.2 и 12 секунд по EPS 2.91). К примеру, блок питания с номинальной мощностью 500Вт может выдать в пике до 530 Вт, но для блока питания постоянно работать с превышением номинальной мощности нежелательно, ведь запас прочности компонентов может оказаться не очень большим, и жарким летом случится неприятный фейерверк.

  • Допустимый уровень отклонения напряжений

Эта характеристика является одним из основных и определяет допустимое отклонение каждого из напряжений. Удобнее и нагляднее будет представить эти величины как две таблицы, взятые из стандарта EPS 2.91:

Таблица 20 отражает максимально допустимый уровень отклонений, а таблица 21 – опциональный, с более жесткими рамками, актуальными для графических станций и серверов. Если отклонение по напряжению будет ниже 5-10% порога, вероятно появление сбоев в работе компьютера, либо спонтанные перезагрузки во время большой нагрузки на процессор или видеокарту. Слишком же высокое напряжение негативно сказывается на тепловом режиме работы преобразователей на материнской плате и платах расширения, а также способно вывести из строя чувствительные схемы винчестеров, либо вызвать их повышенный износ. В более лояльном ATX Power Supply Design Guide дополнительно для каналов с напряжением +12В регламентируется допустимое 10%-ное отклонение при пиковой нагрузке на эти каналы. При этом напряжение канала +12V2 (обычно используемого для питания процессора) не должно снизиться менее +11 В.

  • Уровень пульсаций

Не менее важным является и минимально возможные выбросы (пульсации) напряжения на каждой из линий. Допустимые рамки описаны в стандарте как обязательные и выглядят так:

Источниками пульсаций обычно являются схемы преобразователей внутри самого блока питания, а также мощные потребители с импульсным характером потребления, такие как процессоры, видеокарты. Винчестеры и имеющийся в них блок магнитных головок во время частого перемещения также может создавать всплески помех, однако их величина мощности значительно меньше.

  • Входное напряжение, эффективность и PFC

Блок питания обязан работать во всех допустимых режимах при следующих входных напряжениях:

Наличие напряжений, указанных в таблице ниже, не должно приводить к повреждению схем блока питания. Пропадание сетевого напряжения на любой период времени, в любой момент работы также не должно приводить к неисправности блока. При включении, ток зарядки высоковольтных конденсаторов не должен превышать номинальные значения входных цепей (предохранитель, выпрямительные диоды и схемы ограничения тока).

Существует миф, что более мощный блок питания потребляет больше мощности из розетки, по сравнению с маломощным дешевым собратом. На самом деле, часто в реальности имеет место обратная ситуация. Каждый блок имеет потери энергии при преобразовании сетевого напряжения в низковольтное постоянное, идущее к компонентам компьютера. КПД (эффективность) современного дешевого блока обычно колеблется около величины 65-70%, в то время как более дорогие модели могут обеспечивать эффективность работы до 85%. Например, подключив оба блока к нагрузке 200 Вт (примерно столько потребляет большинство компьютеров), мы получим потери 70 Вт в первом случае и лишь 30 Вт во втором. 40 ватт экономии при ежедневной работе компьютера по 5 часов в сутки и 30-дневном месяце помогут сэкономить 6 кВт на счете за электроэнергию. Конечно, это мизерная цифра для одного ПК, но если взять уже офис на 100 компьютеров, то цифра может оказаться заметной. Также стоит учесть, что эффективность преобразования различна при разной мощности нагрузки. А поскольку пик КПД приходится на 50-70% диапазон нагрузок, практического смысла в приобретении БП с двукратным и более запасом мощности нет.

Эффективность работы должна превышать 70% для полной нагрузки, и 65% для 20%-нагрузки. При этом рекомендуемая эффективность как минимум 75% или лучше. Существует добровольная система сертификации для производителей, известная как Plus 80. Все источники питания, участвующие в этой программе, имеют эффективность преобразования свыше 80%. На текущий момент список участников-производителей в инициативе Plus 80 включает более 60 наименований.

Также нельзя путать КПД блока питания с такой характеристикой как коэффициент мощности (Power Factor). Существует реактивная мощность и активная, и коэффициент мощности отражает отношение реактивной мощности к общей суммарной мощности потребления. Большинство блоков питания без каких-либо схем коррекции обладают 0.6-0.65 фактором мощности. Поэтому импульсные блоки питания в значительной степени создают реактивную мощность, и их потребление выглядит как мощные импульсы во время пиков синусоиды сетевого напряжения. Это создает помехи в электросети, которые могут повлиять на другие устройства, питаемые от той же электросети. Для устранения этой особенности применяются схемы с пассивной коррекцией фактора мощности (Passive PFC) и активной (Active PFC). Активный PFC эффективно справляется с этой задачей, по сути, являясь преобразователем между самим блоком питания и электросетью. Фактор мощности в блоках с использованием APFC легко достигает величины 0.97-0.99, что значит практически полное отсутствие реактивной составляющей в потреблении БП. Пассивная схема коррекции Power Factor представляет собой массивный дроссель, включенный последовательно сетевым проводам блока питания. Однако он значительно менее эффективен и на практике повышает фактор до 0.7-0.75. С точки зрения компьютера и потребителя разницы между блоком с APFC и блоком вообще без коррекции практически нет, использование первых выгодно компаниям электроснабжения.

  • Сигнальные линии PSON и PWOK

PSON (Power Supply ON) – специальная сигнальная линия для включения\выключения блока питания логикой материнской платы. Когда этот сигнал не подключен к земле, блок питания должен оставаться в выключенном состоянии, за исключением канала +5В (дежурное). При логическом нуле (напряжение ниже 1 В) – логика включает блок питания. PWOK (Power OK) – сигнальная линия, по которой блок питания сообщает материнской плате, что все выходные линии находятся в нормальном состоянии и стабилизация осуществляется в заданных стандартом пределах. Время задержки появления сигнала при нормальной работе блока питания с момента подачи логического нуля по PSON – 900 мс.

Блок питания должен иметь схемы защиты, которые отключат основные выходы при нештатных ситуациях. Защита должна блокировать повторный запуск до повторного появления сигнала включения на проводе PSON. Защита от перегрузки по току (Over Current Protection, OCP) обязательна для линий +3.3, +5, +12, -12, +5 (дежурное), минимальный порог срабатывания – 110%, максимальный 150%. При перегрузке блок должен выключится и не включаться до появления сигнала включения, или до полного обесточивания сетевого напряжения. Защита от перенапряжения (Over Voltage Protection, OVP) также обязательна и должна отслеживаться внутри самого источника питания. Напряжение никогда не должно превышать указанные в таблице 29 в любой момент времени.

Защита от перегрева (Over Temperature Protection, OTP) блоков питания не является обязательной функцией, поэтому весьма важно соблюдать условия эксплуатаций источников питания в тесных корпусах, либо в местах с ухудшенной вентиляцией. Максимальная температура воздуха во время работы не должна превышать +50°С. Некоторые производители рассчитывают и указывают мощность блока питания при пониженной температуре +25, или даже +15°С, и попытка нагрузить указанной мощностью подобное изделие в жаркую погоду может привести к неприятному финалу. Это именно тот случай, когда примечание шестым пунктом снизу имеет значение. Если удается найти допустимый температурный диапазон для конкретной модели блока на тестах, мы указываем это явно в таблице с характеристиками.

Защита от короткого замыкания (Short Curcuit Protection, SCP) – является обязательной для всех блоков питания, проверяется кратковременным подключением силовой шины между каналами и землей блока питания.

  • Немного о разделении +12В канала на несколько «виртуальных»

Набившее оскомину разделение каналов вызвано требованием стандарта безопасности EN60950, который предписывает ограничить ток на доступных пользователю контактах на уровне 240 ВА. Так как общая суммарная мощность канала +12В в мощных блоках питания может превышать эту величину, было принято решение ввести разделение на несколько отдельных каналов с индивидуальной защитой по току менее чем 20А. Эти раздельные каналы вовсе не обязаны иметь индивидуальную стабилизацию внутри БП. Поэтому на самом деле, почти все блоки питания имеют один сильноточный канал +12В, вне зависимости от количества виртуальных каналов. Хотя на рынке имеется несколько моделей с действительно раздельными стабилизаторами и несколькими независимыми линиями +12В, однако это лишь исключение из общего правила. Для компьютерных комплектующих виртуальное, как и реальное разделение по каналам никоим образом не сказывается, а те из компонент, которые могут потребовать ток более чем 18-20А, имеют возможность подключения двух разделенных каналов. Так 8-контактный разъем питания процессора на материнских платах имеет по два контакта на каждый из двух каналов, а топовые видеокарты NVIDIA и AMD имеют два 6-контактных (либо комбинацию из 6-контактного и 8-контактного, как у Radeon 2900 XT, Radeon HD 3870 X2, GeForce 9800 GX2) разъема.

Кроме электрических характеристик имеются и физические. Каждый блок, претендующий на соответствие форм-фактору ATX должен иметь ширину 150мм, при высоте 86мм. Глубина блока может варьироваться от 140мм до 230мм и более.

  • Кабельное оснащение блока

Существующие блоки питания оснащаются массой кабелей с разными типами разъемов. Информация об их длинах и количестве позволит еще до покупки определить, подойдет ли конкретная модель под нужный корпус, либо придется докупать переходники и удлинители. Все эти параметры отображаются в виде таблицы для каждого из протестированных блоков. Верхняя часть – несъемные кабели, а ниже, в случае наличия отстегиваемых проводов, с отступом указаны количество и длины всех кабелей с разъемами.

Если на одном проводе имеется несколько разъемов – длины до каждого записываются в ряд. К примеру, общая длина кабеля в примере выше для последнего разъема SATA – 45+15+15 = 75см. Нестандартные разъемы, к примеру, 3-контактный кабель мониторинга оборотов вентилятора, или переходники указываются в нижних строках таблицы. Кроме перечисления кабелей и их видов, определяется толщина проводов, использованных в кабелях, наличие дополнительных проводов для мониторинга и компенсации сопротивления проводов к разъему (так называемые Vsense-провода).

  • Шумность системы охлаждения

Почти все блоки питания оснащаются вентилятором для активного охлаждения компонентов внутри корпуса. Кроме этого, вентилятор также выбрасывает подогретый воздух внутри корпуса компьютера наружу в окружающую среду. Большинство современных источников питания имеют вентилятор типоразмера 120 мм, расположенный на нижней стенке. Все чаще встречаются модели с вентилятором 135 или даже 140 мм, благодаря чему можно добиться снижения уровня шума при сохранении эффективности охлаждения. Однако в старших мощных моделях по-прежнему применяется 80 мм вентилятор в задней торцевой стенке, который выбрасывает воздух из БП наружу. Возможны также вариации с использованием разного расположения вентилятора, либо применением нескольких вентиляторов. Почти все блоки оснащены схемой динамического управления оборотами вентиляторов, в зависимости от температуры внутри БП (чаще всего температуры радиатора с диодами стабилизатора).

Наибольшая доля потребляемой мощности приходится на центральный процессор и видеокарты. В Internet имеется масса различных калькуляторов потребления компьютера. Довольно достоверные результаты выдает eXtreme Power Supply Calculator Pro. Наша тестовая система на базе процессора Intel Xeon 3050, мат.платы Intel DP35DP, четырех модулей памяти DDR2, видеокарты NVIDIA GeForce 6600GT и трех винчестеров Seagate ST3320620AS, согласно расчетам калькулятора, требует блока питания с мощностью 244 Вт. Замеренное реальное потребление системы под нагрузкой достигло величины 205 Вт. Цифры схожие, да и наличие некоторого запаса по мощности не помешает, ведь конфигурация ПК со временем может меняться, например, добавится еще один винчестер, или видеокарта будет заменена на более производительную. Будет неприятно менять и блок питания при каждой такой замене. Современные 4-ядерные процессоры на базе 65-нм ядер Intel и AMD требуют до 100-140Вт мощности (без разгона), а 45-нм Intel Core 2 Extreme QX9650 довольствуется 75-80Вт при полной нагрузке. Куда более прожорливы старшие видеокарты NVIDIA и ATI, а тандем из двух видеокарт GeForce 8800 Ultra либо ATI Radeon HD 3870 X2 может потребовать до 350-450 Вт на одну только графическую подсистему. В таких конфигурациях логично и необходимо использовать соответствующие блоки питания, с мощностью 500-600Вт. Остальные компоненты потребляют немного, один винчестер едва дотягивает до отметки 15-25Вт во время старта и позиционирования головок, модуль памяти в среднем требует 4-10Вт, периферийные платы – 5-25Вт. Системы охлаждения за исключением комплексов с использованием термоэлектрических элементов также потребляют немного: 10-40Вт.

Теперь немного понятно, что для полноценного тестирования блока питания недостаточно просто измерить вольтметром напряжение на выходах. Это лишь может показать отсутствие явных и серьезных проблем в работе блока питания, но не более того. Основная проблема обеспечения качественного питания обычно заключается в неспособности блока питания выдавать нужный ток для каждой компоненты компьютера, либо чрезмерном отклонении напряжений от номинала. Всевозможные вариации тестирования «методом вольтметра» могут лишь показать, что компьютер способен работать на конкретно взятой нагрузке, в конкретный момент времени, но абсолютно не показывает, насколько большую мощность в реальности может выдать блок питания, и не показывает, что случится с блоком питания, если нагрузка превысит допустимую мощность.

Для проведения тестирования и выяснения технических характеристик каждой блок питания подключается к специальному стенду, который позволяет одновременно измерять уровни напряжения и тока на всех выходных каналах в автоматическом режиме. Перед тестированием на стенде все блоки питания разбираются, фотографируются, проверяется качество пайки и монтажа, осматриваются компоненты на платах на предмет дефектов. В случае наличия, оные описываются в статье, со ссылкой на тот факт, что один конкретно взятый блок может оказаться бракованным, как и любое другое сложное электронное оборудование. Также всегда приводится фотография наклейки блока питания, с допустимыми величинами мощности по всем каналам. Если плотность монтажа позволяет, проводится обзор примененной элементной базы и особенности схематических решений. Часто встречается ситуация, когда компании сами не разрабатывают, а только продают блоки питания сторонней разработки OEM-компаний. Это обычно можно определить по коду сертификата UL, он редко скрывается и наносится на наклейке с основными параметрами, и выглядит как “E123456”. Примером использования данного принципа является OCZ, Tagan, ThermalTake и другие. Определить принадлежность кода к названию производителя можно на сайте UL Online Certifications Directory, задав поиск по коду с наклейки в графе UL File Number.

Для коробочных изделий обозревается комплектация и дополнительные аксессуары. На этом же этапе данные о мощности блока и каналов с наклейки блока питания заносятся в программу управления стендом, и подключаются все необходимые разъемы, в соответствии с распределением каналов. Проверяется работа схем защиты от короткого замыкания (каждая линия последовательно подключается на земляную шину), а также защита от перегрузки по каналам. Блок измерения входных параметров сети на данный момент находится в разработке, поэтому замеры КПД, коэффициента мощности и работа БП при различном диапазоне входных напряжений временно не проводятся. После проведения базовой проверки функционирования блока питания проводится снятие графиков кросс-нагрузочной характеристики (КНХ). Обычно для стабилизации напряжений +12В и +5В в блоках питания используется групповая схема включения, которая выравнивает среднеарифметическую величину между этими двумя напряжениями. Такое устройство легко видно при обзоре внутреннего строения блока питания, для группового стабилизатора используется один дроссель большего и один меньшего диаметра для канала +3.3В, который стабилизируется отдельно. Эти дроссели обычно расположены возле места подключения проводов выходных каналов блока питания.

Недостаток такой схемы включения – напряжения +12В и +5В сильно зависят друг от друга. При сильной нагрузке на +12В напряжение на ненагруженном канале +5В начинает завышаться. Равнозначна и обратная ситуация, действует своеобразный принцип «качелей». В современных же компьютерах вся мощная нагрузка приходится именно на +12В, четырехъядерный CPU и несколько видеокарт могут легко создать нагрузку около 30А, при почти нулевой нагрузке по +5 и +3.3В.

Более предпочтителен подход с использованием раздельных дросселей для стабилизации каждого из напряжений независимо. Однако это требует дополнительного места на печатной плате, да и сами дроссели денег стоят, поэтому подобное решение используется только в довольно дорогих блоках питания. Кроме этого, в блоках могут применяться дополнительные цепи для стабилизации напряжений, а эффективность их работы и призвано наглядным образом показать на графике КНХ.

В качестве нагрузки, а также для упрощения и автоматизации тестирования был разработан и изготовлен стенд на базе RISC-микроконтроллера ATMEL AT91SAM7A3. Для нагрузки используется шесть независимых идентичных каналов. Характеристики каждого из них приведены ниже в таблице.

Физически электроника и платы стенда с помощью стоек смонтированы на алюминиевом радиаторе с размерами 750х122х38 мм. Непосредственно сами силовые ключи установлены на стенку радиатора. Для охлаждения радиатора используются мощные вентиляторы Nidec Beta V и Delta DFB1212SHE типоразмера 120х38, а крыльчатка каждого вращается со скоростью свыше 4000 оборотов\минуту.

Возможности стенда довольно широки и включают на данный момент:

  • Включение\отключение БП при помощи управления сигналом PSON
  • Непрерывное слежение за состоянием сигнала PWOK
  • Измерение токов и напряжений по каждому из основных каналов
  • Установка заданной нагрузки по любому из каналов
  • Калибровка стенда для получения точных измерений

Сам стенд имеет индикацию состояния всех линий блока питания, а именно: PWON, PSON, +3.3V, +5V, +12V1, +12V2, +12V3, +12V4, +5standy (дежурное), -12, -5 (для старых БП). Также имеется несколько других контрольных светодиодов. Для подключения тестируемого блока питания к стенду имеется один 24-контактный разъем ATX, четыре 8-контактных разъема питания PCI-Express, один 8-контактный разъем для процессорного кабеля и восемь 4-контактных периферийных разъемов.

Для управления работой стенда, его настройки и контроля используется специальное программное обеспечение, работающее под управлением ОС Windows, которое постоянно обменивается данными с микроконтроллером стенда. Связь осуществляется при помощи интерфейса USB, который имеется на любом современном ПК.

В ручном режиме каждый канал стенда может независимо настраиваться, а контроль напряжений и токов проводится непрерывно, что позволяет быстро выяснить пороги стабильной работы блока. Программа позволяет также генерировать импульсы с различной величиной тока, для проверки устойчивости блока к импульсным нагрузкам (например, одновременный старт нескольких винчестеров, либо работа видеокарт в SLI/CF).

В автоматическом режиме программа строит 6 графиков (для каждого канала отдельный график). По оси Х суммарная величина потребляемой стендом мощности по каналу +12В, а по Y – суммарная мощность от каналов +3.3 и +5В. Может быть задан любой предел по мощности нагрузки, в рамках допустимой мощности стенда. Каждая точка графика на пересечении осей обозначает величину напряжения по каналу при суммарной нагрузке на каналы +3.3, +5 и +12В. То есть, на графике напряжения +3.3В все поле графика – это величина напряжения при всех возможных комбинациях нагрузок. Зная заявленные в стандарте и описанные нами ранее в статье допустимые отклонения по каждому напряжению – мы можем достоверно утверждать, на сколько процентов блок питания снизил, либо превысил напряжение относительно идеальных 3.300В, 5.000В и 12.000В. Но приводить в статье этот огромный массив цифр не имеет практического смысла, и все величины отклонений удобнее отобразить на графике цветовыми маркерами. Легенда с отклонениями прилагается на каждом графике и позволяет легко определять, где вложился блок питания в требования стандарта, а где нет. Пониженное напряжение отображается оттенками синего, повышенное относительно номинала – красными. Уровни за пределами стандарта (+\-5%) отображены темно-синим и темно-красными цветами. Шаг между каждой из точек составляет 0.2-0.5 А в зависимости от заданных условий тестирования. Типичный блок питания с мощностью 500Вт в автоматическом режиме тестируется около часа, при этом производится около 10000 измерений, и такое же количество ступеней управления нагрузкой. Провести вручную аналогичный тест заняло бы массу времени. Для блоков с типичной мощностью КНХ может сниматься в соответствии с нагрузочными моделями, описанными для типичных нагрузок в стандартах ATX PSDG 2.2 и EPS PSDG 2.91.

После проведения замеров, графики компонуются в один анимированный GIF-файл и публикуются в статье. Итоговый вид приблизительно таков:

Грубо говоря – чем больше зеленого цвета на графике – тем меньше отклонение напряжений от идеала. Напомним, что основное потребление современных ПК приходится на +12В канал, поэтому важно минимально возможное отклонение именно в горизонтальной плоскости графика.

Кроме КНХ замеряются уровни пульсаций на каждом из основных каналов. Для этого используется 4-канальный осциллограф Tektronix 2246-1Y, с максимальной частотой 100 МГц, чего с большим запасом достаточно для обнаружения и измерения всех возможных пульсаций блока питания. Пульсации замеряются при 100% нагрузке на блок питания, именно в этих условиях их величины максимальны. Чем ниже пульсации – тем меньше наводок и помех создает блок питания в питаемых им устройствах. Это особенно важно для чувствительных звуковых карт, тюнеров и подобных устройств. В дальнейшем замер пульсаций также будет автоматизирован.

На текущий момент использованная методика и стенд позволяют с хорошей точностью определить основные нагрузочные возможности, уровень пульсаций и соответствие допускам стандарта по всем основным питающим каналам блока питания. Однако всегда есть возможность внести улучшения, поэтому в скором времени планируется реализация блока для автоматического замера эффективности преобразования (КПД) блока питания, замеры фактора мощности, оптические датчики для замеров скорости вращения вентиляторов блока и температурные измерения в условиях, приближенных к реальным средам использования. Данная статья будет периодически обновляться, с учетом вносимых изменений. Также все пожелания и дополнения читателей будут внимательно рассмотрены и приняты во внимание.

Версия 1.01b от 2.02.2008. Начальная версия.

Использованные материалы и ссылки:

Выражаю благодарности за помощь в создании стенда

J-34, izerg, MAXakaWIZARD, cyclone.

overclockers.ru

Регулируемый двуполярный блок питания с искусственной «средней точкой»

Регулируемый двуполярный блок питания с искусственной «средней точкой»

Категория

Схемы источников питания

материалы в категории

А.С. Уваров
Радиоконструктор, 2000 год, № 10, стр 23

Не секрет что практически все операционные усилители требуют двуполярного питания. В процессе сборки или настройки таких устройств у многих радиолюбителей возникают трудности, в первую очередь связанные с необходимостью применения трансформаторов со средней точкой.

Схему блока питания, показанную здесь, можно применять и как лабораторный источник питания и как узел при сборке какого-либо устройства- на позволяет получить двуполярное питание до 15-ти Вольт из обыкновенного трансформатора с одинарной «вторичкой». Причем она способна обеспечить ток в нагрузке до 1,5 Ампер
Это удалось получить благодаря так называемой «искусственной средней точке»- то есть выходное напряжение делится ровно пополам и тогда что относительно данной точки получится два одинаковых разнополярных напряжения.

Схема двуполярного блока питания с искусственной средней точкой

Разделить ровно пополам выходное напряжение удалось благодаря применению микросхемы- усилителя на выходе. Как и всякий усилитель она обеспечивает на выходе напряжение равное половине питающего.

В роли стабилизатора здесь применена микросхема-стабилизатор серии К142ЕН5, благодаря чему удалось получить достаточно высокий коэффициент стабилизации всего устройства.
Довольно приличная мощность достигнута благодаря введению в схему мощного транзистора КТ837.

Еще одна особенность устройства заключается в том что выпрямитель здесь выполнен на двух диодах VD1, VD2 включенных по схеме удвоения напряжения. Это позволило использовать трансформатор с выходным напряжением всего до 15 Вольт.

По деталям:
В схеме можно использовать и другие операционные усилители, например К140УД7 или К544УД1, включив их по типовой схеме.
Транзистор необходимо установить на радиатор. Трансформатор должен обеспечивать ток в нагрузке не менее 3 Ампер

Похожий материал Двуполярное стабилизированное напряжение 5V из однополярного 12V

radio-uchebnik.ru

РадиоКот :: Выпрямители. Как и почему.

РадиоКот >Обучалка >Аналоговая техника >Основы — слишком просто? Вам сюда. Продолжаем. >

Выпрямители. Как и почему.

Итак, дорогие мои, мы собрали нашу схемку и пришло время ее проверить, испытать и нарадоваться сему щастью. На очереди у нас — подключение схемы к источнику питания. Приступим. На батарейках, аккумуляторах и прочих прибамбасах питания мы останавливаться не будем, перейдем сразу к сетевым источникам питания. Здесь рассмотрим существующие схемы выпрямления, как они работают и что умеют. Для опытов нам потребуется однофазное (дома из розетки) напряжение и соответствующие детальки. Трехфазные выпрямители используются в промышленности, мы их рассматривать также не будем. Вот электриками вырастете — тогда пжалста.

Источник питания состоит из нескольких самых важных деталей: Сетевой трансформатор — на схеме обозначается похожим как на рисунке,

Выпрямитель — его обозначение может быть различным. Выпрямитель состоит из одного, двух или четырех диодов, смотря какой выпрямитель. Сейчас будем разбираться.

а) — простой диод.
б) — диодный мост. Состоит из четырех диодов, включенных как на рисунке.
в) — тот же диодный мост, только для краткости нарисован попроще. Назначения контактов такие же, как у моста под буквой б).

Конденсатор фильтра. Эта штука неизменна и во времени, и в пространстве, обозначается так:

Обозначений у конденсатора много, столько же, сколько в мире систем обозначений. Но в общем они все похожи. Не запутаемся. И для понятности нарисуем нагрузку, обозначим ее как Rl — сопротивление нагрузки. Это и есть наша схема. Также будем обрисовывать контакты источника питания, к которым эту нагрузку мы будем подключать.

Далее — пара-тройка постулатов.
— Выходное напряжение определяется как Uпост = U*1.41. То есть если на обмотке мы имеем 10вольт переменного напряжения, то на конденсаторе и на нагрузке мы получим 14,1В. Примерно так.
— Под нагрузкой напряжение немного проседает, а насколько — зависит от конструкции трансформатора, его мощности и емкости конденсатора.
— Выпрямительные диоды должны быть на ток в 1,5-2 раза больше необходимого. Для запаса. Если диод предназначен для установки на радиатор (с гайкой или отверстие под болт), то на токе более 2-3А его нужно ставить на радиатор.

Так же напомню, что же такое двуполярное напряжение. Если кто-то подзабыл. Берем две батарейки и соединяем их последовательно. Среднюю точку, то есть точку соединения батареек, назовем общей точкой. В народе она известна так же как масса, земля, корпус, общий провод. Буржуи ее называют GND (ground — земля), часто ее обозначают как 0V (ноль вольт). К этому проводу подключаются вольтметры и осциллографы, относительно нее на схемы подаются входные сигналы и снимаются выходные. Потому и название ее — общий провод. Так вот, если подключим тестер черным проводом в эту точку и будем мерить напряжение на батарейках, то на одной батарейке тестер покажет плюс1,5вольта, а на другой — минус1,5вольта. Вот это напряжение +/-1,5В и называется двуполярным. Обе полярности, то есть и плюс, и минус, обязательно должны быть равными. То есть +/-12, +/-36В, +/-50 и т.д. Признак двуполярного напряжения — если от схемы к блоку питания идут три провода (плюс, общий, минус). Но не всегда так — если мы видим, что схема питается напряжением +12 и -5, то такое питание называется двухуровневым, но проводов к блоку питания будет все равно три. Ну и если на схему идут целых четыре напряжения, например +/-15 и +/-36, то это питание назовем просто — двуполярным двухуровневым.

Ну а теперь к делу.

1. Мостовая схема выпрямления.
Самая распространенная схема. Позволяет получить однополярное напряжение с одной обмотки трансформатора. Схема обладает минимальными пульсациями напряжения и несложная в конструкции.

2. Однополупериодная схема.
Так же, как и мостовая, готовит нам однополярное напряжение с одной обмотки трансформатора. Разница лишь в том, что у этой схемы удвоенные пульсации по сравнению с мостовой, но один диод вместо четырех сильно упрощает схему. Используется при небольших токах нагрузки, и только с трансформатором, много большим мощности нагрузки, т.к. такой выпрямитель вызывает одностороннее перемагничивание трансформатора.

3. Двухполупериодная со средней точкой.
Два диода и две обмотки (или одна обмотка со средней точкой) будут питать нас малопульсирующим напряжением, плюс ко всему мы получим меньшие потери в сравнении с мостовой схемой, потому что у нас 2 диода вместо четырех.

4. Мостовая схема двуполярного выпрямителя.
Для многих — наболевшая тема. У нас есть две обмотки (или одна со средней точкой), мы с них снимаем два одинаковых напряжения. Они будут равны, пульсации будут малыми, так как схема мостовая, напряжения на каждом конденсаторе считается как напряжение на каждой обмотке помножить на корень из двух — всё, как обычно. Провод от средней точки обмоток выравнивает напряжения на конденсаторах, если нагрузки по плюсу и по минусу будут разными.

5. Схема с удвоением напряжения.
Это две однополупериодные схемы, но с диодами, включенными по разному. Применяется, если нам надо получить удвоенное напряжение. Напряжение на каждом конденсаторе будет определяться по нашей формуле, а суммарное напряжение на них будет удвоенным. Как и у однополупериодной схемы, у этой так же большие пульсации. В ней можно усмотреть двуполярный выход — если среднюю точку конденсаторов назвать землей, то получается как в случае с батарейками, присмотритесь. Но много мощности с такой схемы не снять.

6. Получение разнополярного напряжения из двух выпрямителей.
Совсем не обязательно, чтобы это были одинаковые блоки питания — они могут быть как разными по напряжению, так и разными по мощности. Например, если наша схема по +12вольтам потребляет 1А, а по -5вольтам — 0,5А, то нам и нужны два блока питания — +12В 1А и -5В 0,5А. Так же можно соединить два одинаковых выпрямителя, чтобы получить двуполярное напряжение, например, для питания усилителя.

7. Параллельное соединение одинаковых выпрямителей.
Оно нам дает то же самое напряжение, только с удвоенным током. Если мы соединим два выпрямителя, то у нас будет двойное увеличение тока, три — тройное и т.д.

Ну а если вам, дорогие мои, всё понятно, то задам, пожалуй, домашнее задание. Формула для расчета емкости конденсатора фильтра для двухполупериодного выпрямителя:

Для однополупериодного выпрямителя формула несколько отличается:

Двойка в знаменателе — число «тактов» выпрямления. Для трехфазного выпрямителя в знаменателе будет стоять тройка.

Во всех формулах переменные обзываются так:
Cф — емкость конденсатора фильтра, мкФ
Ро — выходная мощность, Вт
U — выходное выпрямленное напряжение, В
f — частота переменного напряжения, Гц
dU — размах пульсаций, В

Для справки — допустимые пульсации:
Микрофонные усилители — 0,001…0,01%
Цифровая техника — пульсации 0,1…1%
Усилители мощности — пульсации нагруженного блока питания 1…10% в зависимости от качества усилителя.

Эти две формулы справедливы для выпрямителей напряжения частотой до 30кГц. На бОльших частотах электролитические конденсаторы теряют свою эффективность, и выпрямитель рассчитывается немного не так. Но это уже другая тема.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Блок питания для настенных часов – как сделать своими руками

Делать блок питания для простых настенных электромеханических кварцевых часов, чтобы не тратиться на батарейки, наверное, не имеет смысла, так как оного элемента хватает для работы часов до полутора лет.

В случае наличия в часах устройства боя и маятника, например в модели настенных часов «RHYTHM Westminsrter Chime», изображенной на фотографии, приходиться устанавливать четыре элемента АА. При этом после замены батареек в часовом механизме или устройстве боя приходиться синхронизировать бой с часами, настраивая количество ударов курантов в соответствии с положением стрелок. После нескольких лет эксплуатации решил избавить себя от этого занятия – запитать часы от электрической сети с помощью блока питания.

Разработка схемы блока питания

Перед собой поставил следующую задачу: часы должны работать от сети, продолжать работать, включая бой и ход маятника при отключении подачи электроэнергии и работать как обычно без блока питания. Исходя из этих требований, и разрабатывалась схема блока питания.

Изучение конструкции и схемы часов показало, что электрическая часть состоит из трех гальванически не связанных между собой блоков, каждый из которых питается от своей батарейки. Часовой механизм и схема раскачивания маятника питались от напряжения 1,5 В, а схема боя – 3,0 В. Бой запускается механическим замыканием двух проводов в часовом механизме при прохождении минутной стрелки через отметку 12 часов.

Измерение тока потребления блоков с помощью осциллографа по падению напряжения на последовательно включенном резисторе 10 Ом показало, что часовой механизм и маятник в среднем потребляют по 1,5 мА, а устройство боя 2,2 мА.

Схема блока питания и принцип ее работы

Опубликованное в Интернете схемы блоков питания для настенных часов в основном выполнены без гальванической развязки, что недопустимо с точки зрения техники безопасности. Изготавливать своими руками блок питания в настоящее время не имеет смысла, так как несложно подобрать готовый от сгоревшего или морально устаревшего электронного устройства. Поэтому для часов был взят заводской импульсный блок питания на напряжение 3,3 В, и дополнен несколькими элементами для зарядки аккумулятора и снижения напряжения до 1,5 В.

Разработанная схема питания часов работает следующим образом. Если разъем S1 разомкнут, то часы работают как обычно, их узлы питаются от установленных батареек. При этом достаточно установить батарейки только в блок боя и блок часового механизма или маятника, так как одноименные полюса выводов батареек последних подключены параллельно.

При соединении разъема S1, но без подключения БП к сети, для работы часов достаточно будет установить батарейки только в блок боя. Питающее напряжение будет поступать с него через цепочку диодов VD2-VD4 на часовой механизм и схему маятника. На каждом из диодов VD2-VD4 в режиме малых токов происходит падение напряжения 0,4-0,6 В, таким образом с 3 В напряжение снизиться до 1,2-1,5 В. Исследования показали, что часовой механизм и маятник стабильно работают при напряжении питания от 1,2 до 3 В. Диоды VD1-VD4 подойдут любые маломощные импульсные или выпрямительные.

Перед подключением блока питания к сети нужно извлечь из часов все батарейки. Питающее напряжение на узлы часов будет подаваться с блока питания. Для бесперебойной работы часов при отключении электроснабжения необходимо в отсек батареек боя установить два аккумулятора, отработавших свой срок, например в фотоаппарате. Блок питания будет не только питать часы, но и подзаряжать аккумулятор током в несколько миллиампер, что вполне достаточно для компенсации токов утечек. Ток зарядки задается величиной резистора R1.

Часовой механизм потребляет ток в импульсном режиме, раз в секунду. Для компенсации падения напряжения в этот момент установлен электролитический конденсатор C1, хотя проверено, часы стабильно работают и без него. Но с помощью осциллографа была подобрана емкость конденсатора, при которой просадка напряжения не наблюдалось. Диод VD1 служит не только для понижения напряжения, но и предотвращает разряд аккумулятора через блок питания и светодиод подсветки, когда пропадает напряжение в сети.

Как уменьшить количество батареек в настенных часах

Если нет желания устанавливать в часы блок питания, то можно уменьшить количество батареек с четырех до двух. Для этого достаточно соединить параллельно все отрицательные выводы в батарейных отсеках узлов и положительные выводы часового механизма и боя между собой. От положительного вывода батарейного отсека боя через три включенных последовательно диода подать напряжение на один из положительных выводов часового механизма и боя.

Благодаря такой доработке снизится частота обслуживания и уменьшатся затраты на замену батареек, так как они больше теряют емкость от токов внутренней утечки и старения, чем от потребления узлами часов.

ydoma.info

0 comments on “Искусственная средняя точка в блоке питания часов – Псевдо-средняя точка в питании | Микросхема

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *