Как перемотать трансформатор из блока питания ПК
Перед тем как начать перемотку трансформатора, его нужно разобрать. О простом методе разборки импульсного трансформатора из блока питания ПК можно прочитать тут.
Итак, разобрали трансформатор. Далее нужно нам разобраться для чего или подо что мы будем перематывать импульсный трансформатор.
Можно перемотать трансформатор для самого блока питания ПК, делается это для того, чтобы повысить выходное напряжение, при переделке БП ПК в регулируемый. В данном случае можно первичную обмотку оставить родной. Чаще всего, первичная обмотка импульсных трансформаторов из БП ПК разделена на две части. То есть, сначала мотается половина первичной обмотки, потом мотаются вторичные обмотки и сверху мотается вторая половина первичной обмотки. Так же, первичные полуобмотки могут иметь экран, в виде медной фольги.
Так вот, разматывая родные вторичные обмотки, можно посчитать количество витков, далее перемотать вторичную обмотку уже на несколько витков больше и восстановить верхнюю половину первичной обмотки. Тем самым мы сэкономим лакированный провод.
Лично я при переделке блоков питания ПК в регулируемый перематываю первичную и вторичную обмотки с нуля, пересчитывая их в программе Lite-CalcIT. При новом расчете следует учесть тот факт, что частота ШИМ у блоков питания ПК 30-36 кГц.
Приведу пример расчета и намотки импульсного трансформатора на сердечнике от БП ПК.
Скачиваем и запускаем программу Lite-CalcIT. Вбиваем нужные нам напряжения и диаметры обмоточных проводов. Также указываем схему преобразования и схему выпрямления. Частота преобразования в моем случае 50 кГц, если трансформатор рассчитывается для переделки БП ПК в регулируемый, то следует указать частоту преобразования 30 кГц, иначе из-за малого количества витков, сердечник войдет в насыщение и по первичной обмотке начнет протекать очень большой ток холостого хода.
Вторичных обмотки будет две, с отводом от середины. Номинальное напряжение указывается для одной обмотки. В моем расчете номинальное напряжение стоит 32 Вольта, это значит, что после выпрямления, относительно среднего вывода мы получим +32 Вольта и -32 Вольта. Так как я рассчитываю трансформатор под импульсный источник питания УНЧ, то мне нужно двухполярное питание +-32 Вольта, соответственно схема выпрямления указана двухполярной, со средней точкой.
Если рассчитывать трансформатор под переделку БП ПК, то ничего в программе менять не нужно, за исключением частоты (30 кГц), то есть будем иметь также две вторичных обмотки. Единственное, что изменится, это схема выпрямления, она будет однополярная со средней точкой.
Далее указываем габариты и другие параметры сердечника, добытого из БП ПК.
Ничего в расчете сложного нет. В ходе него я получил следующие параметры:
— Число витков первичной обмотки 38;
-Число витков вторичной обмотки 10+10 двумя жилами указанного провода.
Начинаем мотать транс.
38 Витков первичной обмотки в один слой не влезут на мой каркас, поэтому мотать буду в два слоя по 18 витков.
Подпаиваем к контакту провод и мотаем 18 витков, один к другому. Если смотреть на каркас сверху, то мотаю по часовой стрелке все обмотки.
Далее кладу слой изоляции. Изоляцию использую, какая есть, либо лавсановая пленка из ненужных обрезков витой пары, либо скотч.
После чего, не меняя направления, мотаем к основанию каркаса еще 18 витков, один к другому. Припаиваем контакт.
Кладем изоляцию. Все, первичка готова.
Пример намотки первичной обмотки на частоту 30 кГц.
По расчетам я получил количество витков первичной обмотки, равное 48. В первый слой я положил 35 витков.
Далее слой изоляции и остальные 13 витков, равномерно расположенных по всей длине каркаса.
Изолируем первичную обмотку от вторичной.
P.S. Если в один слой не влезает расчетное количество витков, то можно разделить на две равные половины, или мотать в один слой такое количество витков, которое влезет на всю длину каркаса. Остальное количество витков, которое не влезло, распределяем равномерно по всей длине каркаса сердечника.
Мотаем вторичную обмотку импульсного трансформатора.
Подпаиваем два провода к выводу нашего транса от БП ПК.
Мотаем в ту же сторону, что и первичную обмотку (в моем случае по часовой стрелке), 10 витков.
Оставляем хвост и изолируем.
Далее подпаиваем еще два провода к другим контактам.
Мотаем еще 10 витков, но уже в противоположную сторону предыдущей обмотки.
Оставляем хвост.
Теперь давайте разберемся, если нам отвод от середины не был бы нужен, то мы мотали бы от основания до верха по часовой стрелке 10 витков, потом слой изоляции, и далее в том же направлении еще 10 витков до основания каркаса.
В принципе можно и с отводом от середины так мотать, кому как удобней короче.
P.S. Обмотки должны быть намотаны, как можно симметрично и равномерно распределены по каркасу. Если полуобмотки получаться несимметричными, то будет разное напряжение в плечах.
Едем дальше. Опять изолируем вторичку, хотя крайнюю обмотку можно не изолировать, так лучше проходит охлаждение трансформатора.
Косу, которая получилась, перед скручиванием необходимо зачистить от лака. Далее скрутить и залудить. При желании можно надеть термоусадку.
Похожие статьи
audio-cxem.ru
Как устроен блок питания, часть 4
Как я уже сказал, речь сегодня пойдет о силовом трансформаторе, а также об узле, именуемом Снаббер.И если трансформатор наверное знает большинство, то снаббер в основном те, кто занимается блоками питания более плотно.
Весь узел на фото выделен красным, а снаббер я обвел зеленым.

Также его можно увидеть в народном блоке питания. На фото я вычеркнул диод, не имеющий отношения к снабберу.
И в моем самодельном блоке питания. Здесь его схема отличается и об этом я расскажу немного позже.
Схема типового обратноходового блока питания думаю знакома многим, подобные схемы часто встречаются в моих обзорах.
Выделим из нее ту часть, о которой я и буду рассказывать.
В нее входит снаббер, трансформатор, входной конденсатор и высоковольтный транзистор.
Отсечем ту часть, которая не имеет отношения к теме разговора, останется совсем мало деталей, думаю что так будет проще для понимания процессов.
Что же происходит в импульсном блоке питания во время работы.
Сначала открывается силовой ключ, через цепь выделенную красным, течет ток, энергия в это время запасается в магнитопроводе трансформатора.
После закрытия ключа полярность на обмотках трансформатора меняется на противоположную и ток начинает течь в нагрузку.
Но так как трансформатор и выходные цепи неидеальны, то на первичной обмотке возникает выброс напряжения, который начинает течь через снаббер.
Если вы посмотрите внимательно, то увидите, что начала обмоток помеченные точками, одинаково сориентированы по отношению к диодам D1 и D2, потому во время открытого состояния силового ключа эти цепи не работают.
Функция снаббера поглотить паразитный выброс, который возникает в первичной обмотке и тем самым защитить высоковольтный транзистор. У некоторых совсем дешевых блоках питания снаббера нет вообще, и это весьма вредно, так как снижает надежность.
В типовом блоке питания данный участок схемы выглядит так. Номиналы подбираются в зависимости от индуктивности обмотки трансформатора, частоты работы и мощности блока питания. Я не буду рассказывать о методике расчета, это довольно долго, но скажу лишь что здесь не работает принцип — чем больше, тем лучше, цепь должна быть оптимальная для определенных условий.

Некоторые наверное увидели диод в схеме снаббера и подумали — что-то знакомое.
Да, так и есть, ближайший аналог, это цепь защиты транзистора, который коммутирует питание обмотки реле. В данном случае он выполняет похожую функцию, не допускает выброса напряжения на транзисторе при выключении. Кстати если диод в этой схеме заменить стабилитроном, то работать должно лучше.
Так как вариант с диодом неприменим в варианте с трансформатором, то последовательно с ним ставят либо резистор с конденсатором, либо супрессор, как на этой схеме.
Еще одно новое слово — супрессор. Не пугайтесь, супрессор это по сути просто стабилитрон, но если у стабилитрона функция обеспечить стабильное напряжение, то у супрессора акцент сделан на импульсный ток и рассеиваемую мощность, стабильность напряжения в данном случае не так важна.

Я немного переверну схему так, чтобы было более понятно как работает эта схема. В подобных схемах чаще применяют супрессоры на напряжение в 200 Вольт, например P6KE200A.
Благодаря этому напряжение на обмотке трансформатора не может быть больше чем 200 Вольт. Напряжение на входном конденсаторе около 310 Вольт.
Получается что на транзисторе напряжение около 510 Вольт. На самом деле напряжение будет немного выше, так как детали неидеальны, а кроме того в сети может быть и более высокое напряжение.

В даташитах к микросхемам серии ТОР часто была показана именно такая схема включения супрессора.
Такая схема имеет более жесткую характеристику ограничения, так как до 200 Вольт не ограничивает совсем, а потом старается обрезать все что выше 200 Вольт. Схема с конденсатором имеет немного другую характеристику ограничения, но на самом деле это не критично.
Для уменьшения мощности, рассеиваемой на супрессоре, параллельно ему можно подключить конденсатор.
Или вообще сделать гибрид из двух схем, где есть все элементы обоих вариантов, такое часто применяется в мощных обратноходовых блоках питания.

Иногда применяется альтернативный вариант защиты транзистора, супрессор включенный параллельно ему. Такой вариант применяется довольно редко, чаще в блоках питания имеющих низкое входное напряжение.
Например такое включение супрессора можно увидеть в РоЕ блоке питания, входное напряжение здесь не 310 Вольт постоянного тока, а всего до 70 Вольт.
Теперь можно перейти к трансформатору.
Трансформатор состоит из магнитопровода и каркаса, иногда конструкция дополняется специальным скобами, которые фиксируют магнитопровод на каркасе.
Чаще всего для них используются Ш-образные магнитопроводы. Если блок питания обратноходовый, каким является подавляющее большинство недорогих маломощных блоков питания, то между половинками магнитопровода должен быть зазор. Зазор делается либо между половинками, либо используется специальный магнитопровод, где центральный керн уже имеет зазор, а этом случае ширина зазора должна быть в два раза больше.

Обычно в качестве материала магнитопровода используется феррит, у фирменных магнитопроводов может быть нанесена маркировка и по даташиту можно узнать его характеристики, у более дешевых магнитопроводом чаще маркировки нет.
Вначале мотаются обмотки трансформатора, а затем на этот магнитопровод устанавливается каркас.
Процесс намотки мелких трансформаторов довольно прост.

Затем вторичную, иногда в два и более проводов.
Если есть третья обмотка, чаще всего это обмотка питания ШИМ контроллера, то мотаем и ее.
В целях безопасности изолируем всю конструкцию.
После этого берем подобранный магнитопровод, в данном случае здесь у одной половинки средний керн укорочен.
Собираем всю конструкцию вместе. Магнитопровод чаще всего склеивается, но я обычно дополнительно фиксирую скотчем.
В итоге получаем небольшой аккуратный трансформатор. На фото трансформатор мощностью около 25-30 Ватт.
Этот трансформатор уже имеет мощность до 80-100 Ватт. Мотаются они подобным образом, но с некоторыми отличиями.
У трансформаторов рассчитанных на низкое выходное напряжение и большой ток выходная обмотка может мотаться либо литцендратом, либо шиной.
Величина выбора с первичной обмотке напрямую зависит от правильности намотки трансформатора и если для маломощных трансформаторов это не очень критично, то неправильная намотка мощного трансформатора может привести к печальным последствиям.
Обычно наматывают обмотки в три слоя (если используется три обмотки), первичная, вторичная и вспомогательная.

Кроме того рекомендуется мотать провод не внавал, а виток к витку, равномерно заполняя всю площадь каркаса. Обмотки рассчитанные на большой ток мотать лучше несколькими тонкими проводами, а не одним толстым.
Проблемы, которые могут возникнуть в этом узле:
1. Межвитковое КЗ в случае выхода из строя высоковольтного транзистора.
2. Перегрев трансформатора, последующее резкое уменьшение его индуктивности и выход из строя транзистора инвертора
3. Пробой диода снаббера, крайне редко.
4. Частичный пробой супрессора, например супрессор на 200 Вольт превращается в супрессор на 100 Вольт, ничего не выгорает, но БП не работает.
www.kirich.blog
ПРОСТОЙ БЛОК ПИТАНИЯ ИЗ ATX
С чего начинается Родина… То есть я хотел сказать с чего начинается любое радиоэлектронное устройство, будь то сигнализация или ламповый усилитель — конечно с источника питания. И чем значительнее ток потребления девайса, тем мощнее требуется трансформатор в его БП. Но если приборы изготавливаем часто, то никаких запасов трансформаторов нам не хватит. А если ходить покупать на радиобазаре то учтите, что в последнее время стоимость такого трансформатора превысила все разумные пределы — за средний стоваттник требуют около 10уе!А тут как раз на счастье, сгорел старый системник на работе. Но блок питания ATX ещё рабочий. Вот и приткнём его для магнитолы. Хотя по паспорту автомагнитолы и ихние усилители питаются напряжением 12В, но мы то знаем, что гораздо мощнее она будет звучать если подать на неё 15-17В. По крайней мере за всю мою историю ещё ни один ресивер не сгорел от лишних 5-ти вольт.
Так как в имеющемся БП ATX напряжение 12-ти вольтовой шины было всего чуть больше 10В (может потому и не работал системник? Поздно.), будем поднимать его изменением управляющего напряжения на 2-м выводе TL494. Принципиальную схему компьютерного блока питания смотрите тут.
Проще говоря поменяем резистор или вообще впаяем его на дорожки другого номинала. Ставлю два килоома и вот 10,5В превращаются в 17. Надо меньше? — Увеличиваем сопротивление. Стартуется компьютерный блок питания замыканием зелёного провода на любой чёрный.
Так как места в корпусе будущего музыкального центра не много — вытаскиваем плату импульсного блока питания ATX из родного корпуса (коробочка пригодится для моего будущего проекта), и тем самым уменьшаем габариты БП в два раза. И не забываем перепаять конденсатор фильтра в БП на более высокое напряжение, а то мало ли что…
А кулер? — Спросит внимательный и сообразительный радиолюбитель. Он нам не нужен. Эксперименты показали, что при токе 5А 17В в течении часа работы магнитолы на максимальной громкости (за соседей не беспокойтесь — два резистора 4 Ома 25 ватт), радиатор диодов был немного тёплый, а транзисторов — почти холодный. Так что нагрузку до 100 ватт такой БП ATX будет держать без проблем.
Форум по блокам питания
Обсудить статью ПРОСТОЙ БЛОК ПИТАНИЯ ИЗ ATX
radioskot.ru
БП ATX мощный лабораторный БП и зарядник АКБ. — ИСТОЧНИКИ ПИТАНИЯ — radio-bes
Конструкция выходного дня.
Неожиданно наступила зима и за окном похолодало. А тут ещё бензин какой-то не тот залил. В общем король немецкого автопрома встал, где-то под Москвой как и 67 лет назад его старшие «проотцы». Аккумулятор сел, дальше пешком…. Для зарядки аккумулятора дома нашлась только пара сгоревших блоков ATX. Сразу добавлю, что эта «зарядка» не предназначена для восстановления, десульфатации и протчих не перспективных шаманских методов, чем занимались наши отцы (и я в том числе) в прошлой жизни из-за крайней убогости быта.
Это просто блок, позволяющий надёжно и наименьшими затратами зарядить «севший», но исправный аккумулятор. Суть его проста и внятна. Он выдаёт на выходе зарядный ток около 5-6 Ампер, при любой активной нагрузке, вплоть до короткого замыкания. При этом напряжение на выходе ни при каких обстоятельствах не превысит заданного значения. Я установил 14,6 вольт.
Сначала надо бы добиться работоспособности блока
По порядку для «чайников» о восстановлении блоков, общие правила:
- Если предохранитель в порядке, переходим к пункту 4.
- Если предохранитель сгорел, то сначала проверяем отсутствие «короткого» на разъёме ~220.
- Если «короткое», устраняем, это могут быть силовые транзисторы, диоды, конденсаторы. Заодно советую проверить диоды во вторичной цепи.
- После устранения «короткого» выпаиваем
предохранитель и вместо него запаиваем «кроватку», если её не установили
при изготовлении.
- Вместо предохранителя вставляем в «кроватку» заранее подготовленный резистор изготовленный из сгоревшего предохранителя и лампочки на 220 Вольт мощностью 100-200 Ватт.
- Лучше, если у Вас найдётся разделительный трансформатор, но если нет, не очень страшно. Достаточно просто не совать пальцы в силовую половину блока. Включаем блок в 220. Замыкаем «зелёный» и «чёрный» провода на большом разъёме. При отсутствии нагрузки исправный АТХ закрутит лопастями пытаясь взлететь. Лампочка (предохранитель) гореть не должна. Если так, можно вместо лампочки вставить предохранитель и приступить к переделке блока, но лучше пока оставить лампочку.
- Если лампочка не загорелась но АТХ не «поднимается», проверяем наличие питания микросхемы TL-494 (или её аналога). Если в блоке применена другая микросхема, дальше можно не читать, или читать из любопытства. Итак, на 12 ноге микросхемы (относительно 7-ой) проверяем наличие дежурного питания от 5, до 25 вольт. Если питания нет, значит не работает источник дежурного питания, именуемый в разных источниках как +USB, «дежурка» и т.п. Если +USB нет, тут есть 3 пути, искать неисправность дежурки, запитать TL494 от любого другого БП (адаптера), или пойти в ближайшую мастерскую и купить (попросить) другой АТХ. Дело в том, что «дежурка» сравнительно тяжело поддаётся ремонту. Обычно после замены транзистора или Viper-a, или ещё чего-то вскоре неисправность повторяется. Проблема не столько в сложности поиска неисправности, сколько в самих неисправностях. Это может быть межвитковое в импульсном трансформаторе, не достаточно «быстрый» электролитический конденсатор во вторичной цепи, потеря индуктивности дросселя во вторичной цепи (из-за перегрева феррита), обрыв резистора стартового тока «дежурки» и многое другое, что довольно трудно установить имея под руками только тестер. Но тем, кто потерпеливее пожелаю удачи.
- Несколько слов про АТ блок. Дело в том, что АТ
поднимаются без «дежурки». И вообще без всякой помощи. В этом смысле они
более живучие и, позволю себе вольность, более совершенные. Благодаря
некоторым хитростям в схемотехнике силового «полумоста» блок начинает
«всхлипывать » совершенно самостоятельно, без всяких «дежурок» и
микросхем. В этот момент с 12-и вольтовой обмотки через отдельный диод
заряжается конденсатор питания TL-494 (зелёная стрелка на схеме). Обычно
1-2 «всхлипа» и АТ поднимается, продолжая по той же как и в АТХ цепи
питать TL-494. В АТХ питание TL-494 после включения осуществляется от
«дежурки» затем питание поднимается и как и в АТ производится от +12
вольт. В обоих случаях конденсатор питания заряжается до амплитудного
значения напряжения приблизительно +24 вольта.
Итак, АТХ поднялся.
Тут не плохо проверить свой тестер подключив его + на 14 вывод TL-494. Микросхема TL494 имеет встроенный источник опорного напряжения на 5,0В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 1% в диапазоне рабочих температур от 0 до 70°С.
- Теперь приступаем к вырезанию всего, что мешает нам наслаждаться пейзажем дырчатого гетинакса.
Вырезаем лишние диодные сборки, дроссели конденсаторы фильтров, все транзисторы обвязки TL-494. Что бы не по-нарезать чего попало, придётся немного углубится в принцип работы АТ-АТХ. Для начала пройдёмся по ногам микросхемы.
Частота внутреннего генератора определяется по формуле:
где R и С это резистор и конденсатор на выводах 6 и 5 соответственно, то есть это не вырезать.
Вывод 14 это выход внутреннего источника опорного напряжения +5 вольт.
Выводы 1,2,15 и 16 это входы 2-х встроенных компараторов, которые пользователь может использовать по своему усмотрению, т.е. управлять шириной выходных импульсов ШИМ. Оба компаратора совершенно одинаковы с той лишь разницей, что компаратор с выводами 15-16 срабатывает с «задержкой» 80 мВольт. В попавших мне АТХ этот компаратор не использовался, 16 вывод заземлён, а 15 соединён на Uref, т.е. 14 вывод.
Вывод 13 предназначен для перевода TL-494 в режим управления обратноходовыми однотактными преобразователями. При этом «мёртвое время» может быть увеличено до 96%. В нашем, «двухтактном» случае этот вывод так же соединяется на Uref.
Компаратор на выводах 1-2 мы будем использовать для установки выходного напряжения, для этого на вывод 2 подаём часть Uref, что и сделано в большинстве АТ и АТХ. Обычно это напряжение примерно 2,5 вольт, т.е. с Uref (+5Вольт) через резистивный делитель.
RC цепочка с вывода 2 на вывод 3 (FB или ОС) предназначена для ограничения скорости ШИМ при стабилизации напряжения и имеется во всех схемах АТ-АТХ. Её тоже вырезать нельзя.
Рисую упрощённую схему управления выходным напряжением.
Напряжение на выходе БП будет равно Uвых=Uref1(1+Roc/Rm). Теперь Вы должны сами с калькулятором в руках решить из каких резисторов составить делитель. Я это сделал как показано на схеме. Проверьте обязательно, если эта формула у Вас не заработала, значит Вы не всё урезали. Важно учесть, что без перемотки трансформатора более 18-20 вольт на 12-и вольтовом выходе получить не получится. В принципе БП может дать до 24 вольт, но это при отсутствии нагрузки и полностью «открытой» ШИМ, то есть, когда «мёртвое» время не более 4% от периода. Без дросселя БП будет чувствовать себя не очень комфортно. Ему будет трудно удержать выходное напряжение. Его будет «плющить и колбасить» как автомобиль с заклинившим амортизатором. Наша задача получить ограничение на уровне 14,6-14,8 Вольта. Для «убитых» аккумуляторов надо напряжение до 16 (и более) вольт. Для фанатов восстановления можно накрутить и столько.
На сладкое немного о выводе 4.
Это тоже вход компаратора, но с задержкой 120 мВольт. И тут дело даже не в задержке, а в том, что конструктор микросхемы предусмотрел использовать его для регулировки «мёртвого времени». Обычно в схемах АТХ-АТ его используют как «мягкий пуск» и для целей всяких защит. Вот эти защиты Вам и предстоит вырезать.
Работает ОНО так. При включении БП
конденсатор с выв.4 на Uref разряжен и на выводе 4 сразу появляется +5
вольт, что наглухо закрывает выходные ключи микросхемы. Затем
конденсатор заряжается через резистор (выв4-земля) и на выводе 4
напряжение падает до нуля. Это приводит к медленному нарастанию
выходного напряжения до момента когда оно стабилизируется ОС по
напряжению. В нашем случае вывод 4 целесообразно попутно задействовать
для ограничения выходного тока. По схеме видно, что при увеличении тока в
нагрузку увеличивается падение напряжения на измерительных резисторах
(4 резистора 0,22 ом), открывается транзистор 733 (такой p-n-p у меня был из выпаянных), что приводит к подъёму напряжения на выводе 4
и так до режима стабилизации тока. На полной схеме цепь стабилизации
тока обведена красным фломастером. Вот так простенько удалось добиться и
стабильного тока зарядки и защиты от короткого замыкания на выходе.
Кстати, на выходе советую ни каких электролитических конденсаторов не ставить, тогда при «коротком» не будет ни каких брызг и взрывов, вызывающих неприятные ощущения.
О выходном дросселе.
Можно применить другой сердечник, например Ш-образный с зазором 0,3 мм. А можно оставить оригинальное кольцо, намотав на нём 20-30 витков тем, что мы размотали или тем, что будет под рукой, диаметром не менее 0,75мм. Я намотал 35 витков в два провода диаметром 0,75мм. Обмотка вложилась в два слоя.
…спустя год…
Просматривая даташит на микросхему KA7500 (аналог TL-494) я обнаружил другое, более простое решение стабилизации тока БП. Авторы предлагают использовать второй компаратор (выв.15,16). С учётом того, что изначально этот компаратор смещён на 80 мВ, получается очень удобное решение. Мною оно повторено дважды. В приводимой схеме выходное напряжение 18 вольт, ток 5 ампер для питания схемы подогрева собачей будки. Для зарядки аккумуляторов естественно, можно использовать блок без перемотки, но всё-таки лучше перемотать. И провод желательно взять по толще, и виточков добавить.
При расчёте количества витков вторичной обмотки желательно, что бы на ХХ напряжение на выходе моста было больше стабилизированного примерно в 2 раза. Это обеспечит оптимальный ШИМ и, соответственно, надёжную стабилизацию.
Странно, но оно работает. А вообще-то не должно.
Не должно потому, что смещение 80 мВольт в каком-то даташите указано, а в
каком-то нет. И вообще это смещение маловато для стабильной работы.
Поэтому я промакетировал подобную ОС на «спицах» и вот что получилось.
Для удобства макетирования я выбрал компаратор
LM311. На 16-ую ногу (по TL-494) подал опорное напряжение 1 вольт. Вот
теперь всё красиво. Компаратор срабатывает на 6,1 Ампера.
Красный
луч-выход компаратора, а зелёный-ток через нагрузку (R3). Да и резистор
0,15 Ом сделать легче и греться будет меньше, чем 0,3.
Тогда схема чуток меняется.
Перемотка трансформаторов (перемотал 5 штук) ни разу не вызвала у меня проблемм. Просто нагреваю в шкафу до 150 — 200 градусов и в перчатках аккуратненько расшатываю.
radio-bes.do.am