Использование ветра человеком сообщение 6 класс: сообщение на тему <<использование ветра человеком>>

Новое рождение ветроэнергетики — Возобновляемые источники энергии

Ветроэнергия — технология применения потов воздуха для производства электрической энергии — представляет собой самый быстрорастущий во всем мире источник электрической энергии. [1] Ветроэнергия производится массивными многолопастными ветротурбинами, монтируемых на самом верху высоких башен и работающими подобно вентиляторам, но в обратном порядке. Вместо того чтобы использовать электроэнергию для получения воздушного потока, турбины используют ветер для получения электричества.

Автономная ветроэнергетика в современных условиях российской действительности – это направление развития нетрадиционных и возобновляемых источников энергии, в развитии которых так нуждается Россия. Огромная территория Российской федерации с численностью населения более 9 млн. человек не имеет централизованного электроснабжения. Использование предлагаемых технологий позволит снизить не менее чем 50 % потребление органического топлива на дизельных электростанциях. Внедрение таких технологий могло бы значительно снизить энергонапряженность, наблюдаемую в таких районах, как Приморский край, Сахалинская область, Камчатский край, Чукотский автономный округ. [13]

В общих чертах, устройство ветроэлектростанции выглядит следующим образом. Поток воздуха вращает лопасти, а лопасти крутят вал, который соединен с набором зубчатых колес, приводящих в действие электрогенератор. Крупные турбины для электроснабжения могут вырабатывать от 750 киловатт (киловатт = 1 000 ватт) до 1,5 мегаватт (мегаватт 1 миллиону ватт) электроэнергии. Для электроснабжения жилых комплексов, телекоммуникационных станций и в водяных насосов в качестве источника энергии применяются компактные одиночные ветряные турбины мощностью менее 100 киловатт. Это, прежде всего, характерно для отдаленных и труднодоступных районов, в которых отсутствует связь с энергосистемой общего пользования. [2]

В ветровых установках группы турбин связаны вместе, с целью выработки электроэнергии для энергосистем общего пользования. Электричество подается потребителям посредством ЛЭП и распределительных линий. 

Так и в нашем обсуждаемом вопросе о ветре. Если бы он дул постоянно с определённой силой и направлением, без порывов и остановок, — была бы идеальная ветроэлектростанция. Рассмотрим светлые и тёмные стороны характеристики этих сооружений.

Несомненные достоинства:

Такие электростанции по своей конструкции просты и понятны;

Получаем почти бесплатную электроэнергию;

Ветроэлектростанция экологически чистая и бесшумная;

Не требуется много проводов для доставки электроэнергии к месту потребления;

Совершенно безвредная установка для сохранения природного баланса;

Незаменимы в тех районах, где нельзя обеспечить доставку энергии обычным способом.

И досадные недостатки:

Ветер непостоянен и генератор работает неравномерно;

В любой момент, обычно самый неподходящий, может быть прекращена подача энергии;

Мощность ветряной электростанции используется не полностью;

Часто простаивает из-за отсутствия движения воздуха;

Ветроэлектростанции России не могут стать основой для энергопромышленности.

Для размещения ВЭС требуются большие, открытые всем ветрам, территории.

При всём кажущемся балансе плюсов и минусов, перевес всё же заметен в сторону ветряков. Их в России никак нельзя игнорировать.

Современные энергетические и коммунальные компании с целью стабильной работы систем энергообеспечения предпочитают в качестве основного источника выработки тока применять большие ветрогенераторные установки. По этой причине разработчики таких устройств, приложили много усилий, благодаря которым ветряки стали соответствовать не только техническим, но эстетическим и экономическим требованиям заказчиков. [5]

Отметим безопасность мегаватного ВЭУ. Ветрогенератор 1.5 МВатт на 690 Вольт с тремя лопастями и диаметром ветроколеса 70-87 метров относится к устройствам мегаваттного класса. Он был создан с учётом:

·                     применения всех существующих в настоящее время европейских норм и стандартов проектирования;

·                     использования строго контроля за качеством в процессе производства;

·                     норм, ограничивающих возможный шумовой уровень, который в процессе работы такого ВЭУ составляет в пределах 70db.

Полный вес турбины равен 61.500 килограммам. В случае приобретения этой ветряной электростанции в России, она способна будет вырабатывать электрический ток при условии полной безопасности для жизни и здоровью животных и людей. При помощи применения системы обеспечения безопасности возможна автоматическая молния и бурезащита. Такой ветряк не будет создавать помех вредных для работы бытовых устройств и электроприборов. В связи с этим нет необходимости в получении разрешения на его установку и эксплуатацию.

Работа ветряного генератора заключается в следующем. Он функционирует при средней скорости ветра, равной 13.5 м/сек. Если скорость увеличивается более 25 метров в секунду, то в этом случае срабатывают тормозящие лопасти. При скорости ветра меньшей 3,5 м/сек, такая ветровая установка электроэнергию не вырабатывает, потому что её лопасти крутиться не могут. Энергообеспечение строений электричеством в этом случае будет осуществляться при помощи накопленной во время работы мощных аккумуляторов энергии. [11]

Кроме того, такие мега ВЭУ оснащены:

·                     необходимыми датчиками, при помощи которых осуществляется регулировка скорости и направления движения ветра;

·                     системой, позволяющей изменить углы установленных лопастей;

·                     системой управления, которая способна работать при помощи микропроцессоров через сеть компьютеров;

·                     системой, при помощи которой осуществляется принудительный поворот лопастей в сторону ветра.

Применение в процессе производства таких ВЭУ высококачественных материалов позволяет таким ветряным электростанциям в России проработать по гарантии не менее 5-ти лет и минимум двадцать пять лет в любых условиях.

После установки мега ветрогенератор на 1.5 МВатт на 690 Вольт сможет ежегодно вырабатывать в пределах восьми миллионов кВт-часов электроэнергии при средней скорости ветра более девяти метров в секунду.

За последнее время объемы отрасли по производству электрической энергии из ветра возросли, благодаря проведению правительством политики поддержки этой индустрии и работе, проводимой исследователями в рамках программы МЭ по энергии ветра, в сотрудничестве с партнерами в этой отрасли с целью создания инновационных и менее дорогостоящих технологий, создания внутренней конкуренции и выявлению новых сфер применения энергии ветра. [9]

Рассмотрим различия между ветровой фермой или ветровой электростанцией и тепловыми электростанциями:

Вид используемого топлива. Тепловые электростанции работают на ископаемом топливе типа угля, также в качестве горючего применяется нефть. На атомных электростанциях применяют ядерное топливо, например, уран и торий. Все эти виды горючего очень дорогостоящие, и расходуются в огромных количествах каждый день. Ветровым электростанциям не требуется какого-либо горючего. Они используют доступный в большом количестве и бесплатный атмосферный ветер.

Способ выработки электроэнергии. На тепловых и атомных электростанциях в больших бойлерах топливо превращает воду в пар. Пар в турбинах расширяется, заставляя их вырабатывать электричество. На ветровых фермах устанавливаются ветровые турбины, содержащие вентиляторы. Ветер приводит в движение лопасти вентиляторов, что приводит к вращению вала. Вал направляет свой импульс к другому валу посредством редуктора. Выходной вал редуктора с большой скоростью вращается в генераторе, который производит электричество. На ветровых электростанциях нет нужды в дорогих бойлерах и топливе. Энергия производится за счет ветра. [3]

Ветер — это возобновляемая энергия. На тепловых электростанциях постоянно требуется свежее ископаемое топливо для производства пара. Использованное ископаемое топливо превращается в пепел и гарь, которые нельзя применить повторно. Ветер в ветровых электростанциях — возобновляемый источник энергии. Ветер, который приводит в движение лопасти вентиляторов, возвращается обратно в атмосферу и может быть использован для производства энергии повторно.

Размер электростанции. Тепловые электростанции оправдывают себя только при больших размерах. Ветроэлектростанции подходят как для производства малого, так и большого количества энергии. Чтобы увеличить мощность ветроэлектростанции, достаточно лишь добавить больше ветровых турбин. Увеличение мощности тепловой электростанции — очень недешевое предприятие. По сути, отдельные ветровые турбины можно установить в доме или офисе для выполнения ими своих задач. Но сложно себе представить тепловую электростанцию для бытовых нужд. Можно установить у себя дома ветровую турбину, но никак не тепловую или атомную электростанцию.

Стоимость произведенной энергии. В настоящее время стоимость электричества, произведенного ветряными фермами, составляет 5-10 центов на единицу электричества (один киловатт-час), что немного выше, чем стоимость энергии, вырабатываемой на обычных заводах. Постоянный рост цен на традиционное топливо для ТЭС и снижение себестоимости производства ветрогенераторов привет к тому, что процент электроэнергии полученной при помощи потоков воздуха резко увеличится. [12]

Загрязнение окружающей среды. Одной из главных причин загрязнения атмосферы в наши дни является выброс частиц и гари в результате сжигания ископаемого топлива на тепловых электростанциях. Ежедневно на них сжигаются тонны топлива, что способствует загрязнению окружающей среды в крупных масштабах. Ветер, используемый ветровыми турбинами, — природное топливо, которое не оказывает никакого влияния на окружающую среду, поэтому ветровые электростанции являются безвредным источником энергии. [8]

Хотелось бы вспомнить о конструкции ветрогенератора. Ротор (лопасти ветряной электростанции) — преобразует энергию ветра в энергию вращения. Большинство современных роторов ветровых турбин состоит из трех лопастей.

·                     Современные лопасти ветряных электростанций в диапазоне 30 метров в длину, как правило, изготовлены из армированного стекловолокном полиэстера или древесно-эпоксидной смолы. Скорость вращения лопастей от 12 до 24 оборотов в минуту на низкой скорости.

·                     Редуктор повышает скорость вращения вала с низкой скорости (приблизительно от 12 до 24 оборотов в минуту) до высокой скорости вращения (примерно 1000 — 3000 оборотов в минуту), и приводит в движение генератор. Некоторые современные ветряки имеют генератор, подключенный напрямую к лопастям.

·                     Генератор использует магнитные поля, чтобы преобразовать результирующую вращательную энергию в электрическую энергию.

·                     Анемометр и флюгер расположены на задней стороне корпуса ветровой турбины и измеряют скорость ветра. Собранная информация используется системой управления для того, чтобы вырабатывать максимальное количество энергии. Данные скорости ветра также используются для контроля работы и позволяют операционной системе начинать и останавливать турбину. Современная ветряная электростанция начинает вырабатывать энергию при скорости ветра от 4 м / с, и, выключается при скорости около 25 м / с. Механизм рыскания поворачивает ротор в преобладающее направление ветра.

·                     Башня ветрогенератора изготавливается из стальных труб, хотя решетчатые башни до сих пор используются в некоторых странах. Башни для современных ветровых электростанций бывают высотой от 60 метров до 100 метров.

·                     Трансформатор преобразует напряжение, которое требуется для электрической сети. Трансформатор может быть встроен в башню или расположен у основания башни.

Строительство ветряной электростанции производится следующим путем. Строительство ветряной электростанции может занять от 4 месяцев постройки одной башни ветрогенератора, до 2 лет — большой электростанции, состоящей из 20 и более турбин.

Расчётный срок работы ветрогенератора определен как 20-25 лет. Затем ветрогенераторы или меняются на новые или демонтируются полностью вся установка. Причем в прогрессивных странах демонтаж происходит самым тщательным образом — устраняются все следы человеческого вмешательства в природу, место установки через несколько лет полностью сливается с ландшафтом. [6]

Строительство ветряной электростанции включает следующие этапы:

·                     Временная строительная площадка — размером примерно 50 х 50 м.

·                     Из железобетона заливается фундамент ветряной башни. Бетонированная площадка (в том числе для стоянки автотранспорта), прилегающая к турбине — обеспечивает стабильную основу, на которой держится сама башня генератора.

·                     Здание контроля и управления — площадь примерно 6м х 6м, здание строится для размещения электрических распределительных устройств, приборов учета и т.д.

Нетрадиционные и возобновляемые источники энергии пользуются огромной популярностью во всем мире. Стоит отметить, что крупнейшая интернет компания Google, также использует для своего оборудования энергию ветровых электростанций. В Австралии, США, Канаде, Европе энергия воздушных потоков используется на благо цивилизации. Страны, имеющие возможность устанавливать ветрогенераторы, наращивают потенциал ветровой энергии, возможно, что в Европе и Северной Америке в ближайшем будущем основным источником энергии станет сила ветра (сейчас этот показатель составляет от 20 до 40 %). [10]

Ветроэнергетика сохраняет лидирующие позиции в отрасли, по итогам 2009 года ее доля в секторе альтернативной энергетики составила 44%. В 2011 году были введены в эксплуатацию около 41 ГВт новых мощностей, в результате чего совокупная мощность ветряных электростанций в мире увеличилась на 21% и составила 238 ГВт. В настоящее время ветровые энергетические установки инсталлированы в 75 странах мира. Страны — лидеры по развитию ветроэнергетики: Китай (в 2011 году введено в эксплуатацию 62 ГВт мощностей), США, Индия, страны ЕС, Канада. В России за прошлый год было установлено около 6 ГВт генерирующих мощностей. На территории нашей страны в основном используются промышленные ветряные установки. С развитием отрасли появились новые интересные модели ветряных электростанций для дома, а также для группы частных домов. [4]

В каких случаях покупка ветрогенератора в России является экономически выгодным решением?

Рассматривать вопрос о приобретении ветроэнергетической установки целесообразно только тогда, когда средняя скорость ветра в вашем регионе составляет не менее 4 м/c.

Покупка ветряной электростанции для дома — оптимальное решение, если на объекте отсутствует централизованная подача электроэнергии, а стоимость проведения линий электропередач к жилому дому является неоправданно высокой.

Для коттеджных поселков, удаленных от центрального электроснабжения, возможен вариант использования ветроэнергетической установки повышенной мощности, которая сможет удовлетворять энергетические потребности сразу для группы домов.

Также приобретение ветрогенератора оправданно для дачных участков при отсутствии центральных источников энергоснабжения

На основании выше изложенного можно сделать вывод, что сегодня ветроэнергетика переживает новое рождение, т.к. наука не стоит на месте. Ограниченный запас традиционного топлива и возрастающие потребности в энергии создают почву для поиска альтернативных (возобновляемых) источников энергии. Как один из вариантов решения этой задачи является энергия ветра.

Благодаря тому, что Россия имеет огромную территорию и разные климатические зоны, развитию ветроэнергетики способствует большой технический потенциал. Из — за большого расстояния между населенными пунктами больше половины территории в России не имеют централизованного электроснабжения. Как вариант решения этой задачи можно рассматривать ветроэнергетику, перспективы развития которой большие. Возможно, в будущем Россия займет лидирующее положение по переработке энергии ветра.

 

Список литературы:

1.      http://1gw.blogspot.com/2008/07/blog-post_1989.html

2.      http://www.wetroenergetika.ru/index.php

3.      Global Wind Installations Boom, Up 31 % in 2009

4.      World Wind Energy Report 2010 (PDF).

5.      «Wind Energy Update» (PDF). Wind Engineering: 191–200.

6.      Impact of Wind Power Generation in Ireland on the Operation of Conventional Plant and the Economic Implications. eirgrid.com (February 2004).

7.      Design and Operation of Power Systems with Large Amounts of Wind Power», IEA Wind Summary Paper (PDF).

8.      Claverton-Energy.com (2009-08-28)

9.      Алексеев Б.А. Международная конференция по ветроэнергетике / Электрические станции. 1996. №2.

10. Безруких П.П. Экономические проблемы нетрадиционной энергетики / Энергия: Экон., техн., экол. 1995. №8.

11. Богуславский Э.И., Виссарионов В.И., Елистратов В.В., Кузнецов М.В. Условия эффективности и комплексного использования геотермальной солнечной и ветровой энергии // Международный симпозиум “Топливно-энергетические ресурсы России и др. стран СНГ». Санкт-Петербург, 1995.

12. Соболь Я.Г. «Ветроэнергетика» в условиях рынка (1992-1995 гг.) / Энергия: Экон., техн. экол. 1995. №11.

13. Перспективы развития ветроэнергетики в России. Салопихин Д.А., Омельченко Д.П., Чебанов К.А. Деловой журнал Neftegaz.RU. 2016. № 11-12. С. 50-54.

 

4.1. Использование энергии ветра в период с древних времен до нового времени

4.1. Использование энергии ветра в период с древнего по новое время

Одним из первых стабильных источников энергии, освоенных человеком, был ветер.

Благодаря ветру произошли великие географические открытия, человечество получило возможность путешествовать, орошать поля, молоть зерно и, наконец, оно научилось превращать ветер в чистую энергию в виде электричества.

Если существовал Ноев ковчег, то он, вероятно, плыл под парусами.

Энергия «от уст Эола» (рис. 4.1) впервые была использована на парусных судах, служивших главным транспортным средством для перевозки товаров по Нилу в древнем Египте.

Древние греки относили изобретение паруса к тем же далёким временам, когда был освоен огонь и приручены дикие животные. В длинном ряду благодеяний, которыми Прометей осчастливил род человеческий, Эсхил упоминает и парус:

«льняными крыльями суда снабдил, и смело по морям погнал».

Рис. 4.1. Изображение мифологического повелителя ветров Эола

Из старых документов доподлинно известно, что уже четыре тысячи лет тому назад отважные финикийцы, жившие на восточном берегу Средиземного моря, интенсивно пользовались парусом. Он был примитивным и несовершенным, но с его помощью финикийцы доплыли до устья Нила, где организовали бойкую торговлю с египтянами, а две с половиной тысячи лет назад даже совершили первое описанное в истории плавание вокруг Африки. Перед людьми, овладевшими энергией ветра, открылись океаны. С парусом связано начало освоения новых земель, новых рынков. Энергия ветра способствовала развитию цивилизации.

Силу ветра ценили и умели использовать с древних времён во многих странах. И хотя на суше энергию ветра никогда не использовали так широко, как на море, тем не менее достоверно известно о существовании ветряных колёс за тысячи лет до нашей эры. Например, в районе Александрии сохранились остатки ветряных мельниц, которым не меньше трёх тысяч лет. Вавилоняне использовали их для осушения болот, в Египте, на Ближнем Востоке, в Персии строили ветряные водоподъёмники и мельницы.

За 200 лет до нашей эры в Персии для размола зерна применялись простые ветряные мельницы с вертикальной осью вращения, а ещё раньше их использовали в Китае.

Мельницы такого вида вращались вокруг вертикальной оси подобно вращающейся юле или игрушечному гироскопу. Старинные персидские ветромельницы изготавливались креплением пучков камыша к деревянной раме, которая вращалась, когда дул ветер. Стена, окружавшая мельницу, направляла ветер на раму (рис. 4.2).

Зафиксировано упоминание о ветряной мельнице в Иране в 644 году, когда в обвинительном акте против некоего Абу Лулуа, убившего халифа Умара ибн ал-Каттаба, он назван «строителем ветряных мельниц». Немногим более чем через 200 лет ветряные мельницы появляются в городке Сиетеке на границе между Ираном и Афганистаном.

Использование мельниц с вертикальной осью вращения получило впоследствии повсеместное распространение в странах Ближнего Востока. Позже была разработана мельница с горизонтальной осью вращения, состоящая из десяти деревянных стоек, оснащённых поперечными парусами. Подобный примитивный тип ветряной мельницы находит применение до настоящего времени во многих странах бассейна Средиземного моря.

В XI веке ветряные мельницы широко использовались на Ближнем Востоке и при возвращении крестоносцев попали в Европу. Первое упоминание о ветряной мельнице в Европе, вначале во Франции, относится к 1105 году: в архивах сохранилось разрешение, выданное некоему монастырю на постройку мельницы. Французские хроники 1180 года и английские 1190 года уже прямо говорят о работающих ветряных мельницах, но ещё совсем не о тех, с которыми впоследствии сражался хитроумный идальго Дон Кихот Ламанчский! Это были неуклюжие сооружения с вращающимися в горизонтальной плоскости лопастями, укреплёнными на деревянном корпусе. По принципу действия английские и французские мельницы были однотипными. В Германии первая мельница была построена в 1393 г. Из Германии они распространились в другие страны.

Ветряная мельница трудом многих поколений совершенствовалась и приобретала более знакомый нам облик. Она оказалась существенно проще водяной, значительно дешевле. Основной её недостаток заключался в непостоянстве энергоносителя – ветра.

Ветер – помощник капризный, так как быстро и постоянно меняет своё направление. Эта проблема долгое время мешала использовать силу ветра. Наконец, в ХIII столетии было найдено решение – ветря

ное колесо, которое с помощью примитивного рычага поворачивалось и таким образом крылья всегда были подставлены ветру. В рукописи 1270 года, именуемой «Водномельничный Псалтырь», имеется изображение одной из первых ветряных мельниц.

Представительницей усовершенствованной конструкции этого направления является ветряная мельница типа «Bock» (рис. 4.3). На деревянной нижней раме, так называемой «Bock», располагался вращающийся на вертикальной цапфе корпус мельницы. С помощью наклоненной наружу балки корпус мельницы поворачивался, и крылья устанавливались в направлении ветра. На этих мельницах в течение сотен лет мололи зерно. Они были надёжны, просты и долговечны. В случае необходимости мельники могли вручную собственными силами отремонтировать их. С экономической точки зрения использовать ветряную мельницу типа «Bock» было настолько выгодно, что власти не могли остаться в стороне и начали выдвигать свои требования. В середине века мельнику приходилось платить своему феодалу десятую часть выручки, которую давала мельница. Епископ Утрехтский даже публично объявил о том, что все ветры и ветерки провинции являются его личной собственностью. Правда, до наших дней не дошло, дул ли ветер также и тогда, когда его владелец ему приказывал. Но мельницы типа «Bock» использовались повсеместно.

Рис. 4.2. Старинная персидская ветромельница с направляющей ветер стеной

а

б

Рис. 4.3. Общий вид (а) и разрез (б) ветряной мельницы типа «Bock»

В XIV веке ведущими в усовершенствовании конструкций ветряных мельниц стали голландцы, так как в Голландии (Нидерландах) эти мельницы послужили основой энергетической базы. Можно сказать, что страна самим своим существованием обязана им: ведь большая часть территории Нидерландов («низменной страны» в буквальном переводе) лежит ниже уровня моря. Именно ветряные двигатели дали возможность провести грандиозные работы по осушению болот и откачке воды. Сила ветра была противопоставлена силе другой стихии – морской, постоянно угрожавшей затопить землю маленькой страны.

Рис. 4.4. Ветряные мельницы датской фирмы «Poul la Cour», 1897 г.

Голландцы внесли много усовершенствований в конструкцию ветряных мельниц. Мельницы имели, как правило, четыре деревянных крыла решетчатой конструкции с натянутой на них грубой парусиной. Сворачивая или разворачивая эти «паруса», люди соответственно уменьшали или увеличивали площадь крыльев и таким образом преобразовывали изменчивую силу ветра в относительно равномерный ход ветродвигателя. У некоторых мельниц было до восьми крыльев (рис. 4.4, 4.5).

Рис. 4.5. Украинская ветряная мельница (млын). Фото А. Кремко

Крылья некоторых ветряных мельниц, выполненные целиком из дерева, имели вид жалюзи. В них для регулирования напора ветра вместо парусины использовали подвижные пластины. В XVI веке примитивные поперечные паруса на деревянных полках уступили место парусам, закреплённым на деревянных брусках с двух сторон маха (рис. 4.6).

Рис. 4.6. Типы парусных крыльев: а – наиболее старинный тип с двусторонним расположением крыла (около 1600 г.): 1 – клинья; 2 – срезанный конец; 3 – мах; б – традиционная форма старинного датского типа (одна опорная полка вынесена вперёд): 1 – убирающееся полотнище паруса; 2 – опорная полка; 3 – передняя кромка; 4 – концевая планка; 5 – продольные связи; 6 – рейка; в – крыло с жалюзи и воздушным тормозом: 1 – жалюзи; 2 – тормозные жалюзи; г – крыло с жалюзи и щитком: 1 – жалюзи; 2 – щиток

Позже для улучшения аэродинамической формы крыльев бруски были присоединены к задней кромке. В более современных конструкциях паруса заменили тонким листовым металлом, использовались стальные махи и различные типы жалюзи и щитков для регулирования частоты вращения ветроколеса при больших скоростях ветра.

Ветряные колёса работали по тому же принципу, что и водяные, и поэтому имели очень большие размеры: размах крыльев до 28 м, ширину крыльев 2 м, а высота всей башенной конструкции мельницы достигала 30 м. Крупные ветряные мельницы при больших скоростях ветра могли развивать мощность до 66 кВт.

Ветряные мельницы, так же как и водяные, недолго оставались просто приспособлениями для перемалывания зерна. В 1582 году в Голландии была построена первая маслобойня, использующая энергию ветра, в 1586 году – первая бумажная фабрика, которая удовлетворяла повышенные требования к бумаге, обусловленные изобретением печатной машины, а в 1592 году появились лесопильные заводы для производства лесоматериалов с использованием энергии ветра. Мельницы также мололи нюхательный табак и пряности, ткали полотно.

Экономический расцвет Голландии, куда Петр I (1672–1725) ездил учиться уму-разуму, в XVI веке был вызван именно развитием ветроэнергетики в этой стране. Голландцы успешно перешли от первоначального использования ветряков для осушения низких приморских земель к их приспособлению в качестве привода различных производств. В результате Голландия стала самой энерговооруженной страной в тогдашней Европе.

Наиболее удачную конструкцию ветряной мельницы еще в XVII веке предложил голландец Ян Андриаанезоон (впоследствии во всём мире её стали называть «голландской»). С помощью этой мельницы он осушил 27 озёр, заслужив у соотечественников почётное прозвище «Леегватер» – «опустошитель вод».

Максимальное распространение ветряных мельниц в доиндустриальной Европе наблюдалось в 1700-е годы, когда на равнинах Германии, Италии, России, Украины, Испании и, конечно же, Голландии – классической страны ветряных мельниц – мерно вращали свои крылья деревянные великаны. В 30-х годах XVIII столетия в Голландии работали 1200 ветроустановок, которые предохраняли 2/3 страны от обратного превращения в болота. А к концу XIX века в Голландии их насчитывалось свыше 10 000 (в 1923 г. – только 2500, а в наше время – едва тысяча), а в маленькой Дании – 30 тысяч для бытовых целей и 3 тысячи ветродвигателей, которые использовались в промышленности.

Ветряная мельница в Голландии

Россети Урал — ОАО “МРСК Урала”

Согласие на обработку персональных данных

В соответствии с требованиями Федерального Закона от 27.07.2006 №152-ФЗ «О персональных данных» принимаю решение о предоставлении моих персональных данных и даю согласие на их обработку свободно, своей волей и в своем интересе.

Наименование и адрес оператора, получающего согласие субъекта на обработку его персональных данных:

ОАО «МРСК Урала», 620026, г. Екатеринбург, ул. Мамина-Сибиряка, 140 Телефон: 8-800-2200-220.

Цель обработки персональных данных:

Обеспечение выполнения уставной деятельности «МРСК Урала».

Перечень персональных данных, на обработку которых дается согласие субъекта персональных данных:

  • — фамилия, имя, отчество;
  • — место работы и должность;
  • — электронная почта;
  • — адрес;
  • — номер контактного телефона.

Перечень действий с персональными данными, на совершение которых дается согласие:

Любое действие (операция) или совокупность действий (операций) с персональными данными, включая сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу, обезличивание, блокирование, удаление, уничтожение.

Персональные данные в ОАО «МРСК Урала» могут обрабатываться как на бумажных носителях, так и в электронном виде только в информационной системе персональных данных ОАО «МРСК Урала» согласно требованиям Положения о порядке обработки персональных данных контрагентов в ОАО «МРСК Урала», с которым я ознакомлен(а).

Согласие на обработку персональных данных вступает в силу со дня передачи мною в ОАО «МРСК Урала» моих персональных данных.

Согласие на обработку персональных данных может быть отозвано мной в письменной форме. В случае отзыва согласия на обработку персональных данных.

ОАО «МРСК Урала» вправе продолжить обработку персональных данных при наличии оснований, предусмотренных в п. 2-11 ч. 1 ст. 6 Федерального Закона от 27.07.2006 №152-ФЗ «О персональных данных».

Срок хранения моих персональных данных – 5 лет.

В случае отсутствия согласия субъекта персональных данных на обработку и хранение своих персональных данных ОАО «МРСК Урала» не имеет возможности принятия к рассмотрению заявлений (заявок).

Аварийно химические опасные вещества

Аварийно химические опасные вещества (аммиак, хлор). Их воздействие на организм человека. Предельно допустимые и поражающие концентрации

Растет ассортимент применяемых в промышленности, сельском хозяйстве и быту химических веществ. Некоторые из них токсичны и вредны. При проливе или выбросе в окружающую среду способны вызвать массовые поражения лю­дей, животных, приводят к заражению воздуха, почвы, воды, растений. Их на­зывают аварийно химические опасные вещества(АХОВ). Определенные виды АХОВ находятся в больших количествах на предприятиях, их производя­щих или использующих в производстве. В случае аварии может произойти по­ражение людей не только непосредственно на объекте, но и за его пределами, в ближайших населенных пунктах.

Крупными запасами опасных веществ располагают предприятия химической, целлюлозно-бумажной, оборонной, нефтеперерабатывающей и не­фтехимической промышленности, черной и цветной металлургии, промыш­ленности минудобрений.

Значительные их количества сосредоточены на объектах пищевой, мясо-мо­лочной промышленности, холодильниках, торговых базах, различных АО, в жилищно-коммунальном хозяйстве.

Наиболее распространенными из них являются хлор, аммиак, сероводород, двуокись серы (сернистый газ), нитрил акриловой кислоты, синильная кислота, фосген, метилмеркаптан, бензол, бромистый водород, фтор, фтористый водо­род.

Хлор

При нормальных условиях газ желто-зеленого цвета с резким раздражающим специфическим запахом. При обычном давлении затвердевает при -101 °С и сжи­жается при -34° С. Тяжелее воздуха примерно в 2,5 раза. Вследствие этого сте­лется по земле, скапливается в низинах, подвалах, колодцах, тоннелях.

Ежегодное потребление хлора в мире достигает 40 млн. т.

Используется он в производстве хлорорганических соединений (винил хло­рида, хлоропренового каучука, дихлорэтана, хлорбензола и др.). В большинстве случаев применяется для отбеливания тканей и бумажной массы, обеззаражи­вания питьевой воды, как дезинфицирующее средство и в различных других отраслях промышленности.

Хранят и перевозят его в стальных баллонах и железнодорожных цистернах под давлением. При выходе в атмосферу дымит, заражает водоемы.

В первую мировую войну применялся в качестве отравляющего вещества уду­шающего действия. Поражает легкие, раздражает слизистые и кожу.

Первые признаки отравления — резкая загрудинная боль, резь в глазах, сле­зоотделение, сухой кашель, рвота, нарушение координации, одышка. Сопри­косновение с парами хлора вызывает ожоги слизистой оболочки дыхательных путей, глаз, кожи.

Воздействие в течение 30 — 60 мин при концентрации 100 — 200 мг/м3 опас­но для жизни.

Если все-таки произошло поражение хлором, пострадавшего немедленно вы­носят на свежий воздух, тепло укрывают и дают дышать парами спирта или воды.

При интенсивной утечке хлора используют распыленный раствор каль­цинированной соды или воду, чтобы осадить газ. Место разлива заливают ам­миачной водой, известковым молоком, раствором кальцинированной соды или каустика с концентрацией 60 —80% и более (примерный расход — 2л раствора на 1 кг хлора).

Аммиак

При нормальных условиях бесцветный газ с характерным резким запахом («нашатырного спирта»), почти в два раза легче воздуха. При выходе в атмос­феру дымит. При обычном давлении затвердевает при температуре -78°С и сжижается при -34°С. С воздухом образует взрывоопасные смеси в пределах 15 — 28 объемных процентов.

Растворимость его в воде больше, чем у всех других газов: один объем воды поглощает при 20°С около 700 объемов аммиака, 10%-й раствор аммиака посту­пает в продажу под названием «нашатырный спирт». Он находит применение в медицине и в домашнем хозяйстве (при стирке белья, выведении пятен и т.д.). 18-20%-й раствор называется аммиачной водой и используется как удобрение.

Жидкий аммиак — хороший растворитель большинства органических и не­органических соединений.

Мировое производство аммиака ежегодно составляет около 90 млн.т. Его используют при получении азотной кислоты, азотосодержащих солей, соды, мочевины, синильной кислоты, удобрений, диазотипных светокопировальных материалов. Жидкий аммиак широко применяется в качестве рабочего веще­ства (хладагента) в холодильных машинах и установках.

Перевозится в сжиженном состоянии под давлением. Предельно допустимые концентрации (ПДК) в воздухе населенных мест: среднесуточная и максималь­но разовая — 0,2 мг/м3, в рабочем помещении промышленного предприятия — 20 мг/м3. Если же его содержание в воздухе достигает 500 мг/м3, он опасен для вдыхания (возможен смертельный исход).

Вызывает поражение дыхательных путей. Признаки: насморк, кашель, зат­рудненное дыхание, удушье, учащается сердцебиение, нарастает частота пуль­са. Пары сильно раздражают слизистые оболочки и кожные покровы, вызыва­ют жжение, покраснение и зуд кожи, резь в глазах, слезотечение. При сопри­косновении жидкого аммиака и его растворов с кожей возникает обмороже­ние, жжение, возможен ожог с пузырями, изъязвления.

Если поражение аммиаком все же произошло, следует немедленно вынести пострадавшего на свежий воздух. Транспортировать надо в лежачем положе­нии. Необходимо обеспечить тепло и покой, дать увлажненный кислород. При отеке легких искусственное дыхание делать нельзя.

В случае аварии необходимо опасную зону изолировать, удалить людей и не допускать никого без средств защиты органов дыхания и кожи. Около зоны следует находиться с наветренной стороны. Место разлива нейтрализуют сла­бым раствором кислоты, промывают большим количеством воды. Если про­изошла утечка газообразного аммиака, то с помощью поливомоечных машин, авторазливочных станций, пожарных машин распыляют воду, чтобы погло­тить пары.

Зоны заражения АХОВ

В большинстве случаев при аварии и разрушении емкости давление над жид­кими веществами падает до атмосферного, АХОВ вскипает и выделяется в атмосферу в виде газа, пара или аэрозоля. Облако газа (пара, аэрозоля) АХОВ, образовавшееся в момент разрушения емкости в пределах первых 3 минут, называется первичным облаком зараженного воздуха. Оно распространяется на большие расстояния. Оставшаяся часть жидкости (особенно с температу­рой кипения выше 20°С) растекается по поверхности и также постепенно ис­паряется. Пары (газы) поступают в атмосферу, образуя вторичное облако зараженного воздуха, которое распространяется на меньшее расстояние.

Таким образом, зона заражения АХОВ — это территория, зараженная ядо­витыми веществами в опасных для жизни людей пределах (концентрациях).

Глубина зоны распространения зараженного воздуха зависит от концентрации АХОВ и скорости ветра. Например, при ветре 1 м/с за один час облако от места аварии удалится на 5 — 7 км, при 2 м/с — на 10 — 14, а при З м/с — на 16 — 21 км. Значительное увеличение скорости ветра (6-7 м/с и более) способствует его быстрому рассеиванию. Повышение температуры почвы и воздуха ускоряет ис­парение АХОВ, а следовательно, увеличивает концентрацию его над заражен­ной территорией. На глубину распространения АХОВ и величину его концент­рации в значительной степени влияют вертикальные перемещения воздуха, как мы говорим, погодные условия.

Форма (вид) зоны заражения АХОВ в значительной мере зависит от скорости ветра. Так, например, при скорости менее 0,5 м/с она принимается за окружность, при скорости от 0,6 до 1 м/с — за полуокружность, при скорости от 1,1 м/с до 2 м/ с — за сектор с углом в 90°, при скорости более 2м/с — за сектор с углом в 45°.

Надо иметь в виду, что здания и сооружения городской застройки нагреваются солнечными лучами быстрее, чем расположенные в сельской местности. По­этому в городе наблюдается интенсивное движение воздуха, связанное обычно с его притоком от периферии к центру по магистральным улицам. Это способ­ствует проникновению АХОВ во дворы, тупики, подвальные помещения и со­здает повышенную опасность поражения населения. В целом можно считать, что стойкость АХОВ в городе выше, чем на открытой местности.

Вот почему все население, проживающее вблизи химически опасного объекта, должно знать, какие АХОВ используются на этом предприятии, какие ПДК уста­новлены для рабочей зоны производственных помещений и для населенных пун­ктов, какие меры безопасности требуют неукоснительного соблюдения, какие средства и способы защиты надо использовать в различных аварийных ситуаци­ях.

Защита от АХОВ


Защитой от АХОВ служат фильтрующие промышленные и гражданские проти­вогазы, промышленные респираторы, изолирующие противогазы, убежища ГО.

Промышленные противогазы надежно предохраняют органы дыхания, глаза и лицо от поражения. Однако их используют только там, где в воздухе содер­жится не менее 18% кислорода, а суммарная объемная доля паро- и газообразных вредных примесей не превышает 0,5%.

Недопустимо применять промышленные противогазы для защиты от ни­зкокипящих, плохо сорбирующихся органических веществ (метан, ацетилен, эти­лен и др.)

Если состав газов и паров неизвестен или их концентрация выше максимально допустимой, применяется только изолирующие противогазы ИП-4 и ИП-5.

    

Коробки промышленных противогазов строго специализированы по на­значению (по составу поглотителей) и отличаются окраской и маркировкой. Некоторые из них изготавливаются с аэрозольными фильтрами, другие без них. Белая вертикальная полоса на коробке означает, что она оснащена филь­тром.

Рассмотрим несколько примеров по основным АХОВ. Для защиты от хлора можно использовать промышленные противогазы марок А (коробка ко­ричневого цвета), БКФ (защитного), В (желтого), Г (половина черная, пол­овина желтая), а также гражданские противогазы ГП-5, ГП-7 и детские.

          

А если их нет? Тогда ватно-марлевую повязку, смоченную водой, а лучше 2%-м раствором питьевой соды.

От аммиака защищает противогаз с другой коробкой, марки КД (серого цве­та) и промышленные респираторы РПГ-67КД, РУ-60МКД.

      

У них две сменных коробки (слева и справа). Они имеют ту же маркировку, что и противогазы. Надо помнить, что гражданские противогазы от аммиака не защищают. В крайнем случае надо воспользоваться ватно-марлевой повязкой, смоченной водой или 5%-м раствором лимонной кислоты.

Для защиты от АХОВ в очаге аварии используются в основном средства ин­дивидуальной защиты кожи (СИЗК) изолирующего типа, общевой­сковой защитный комплект ОЗК.

Для населения рекомендуются подручные средства защиты кожи в комплекте с противогазами. Это могут быть обычные непромокаемые накидки и плащи, а также пальто из плотного толстого материала, ватные куртки. Для ног — рези­новые сапоги, боты, калоши. Для рук — все виды резиновых и кожаных перча­ток и рукавицы.

В случае аварии с выбросом АХОВ убежища обеспечивают надежную за­щиту. Во-первых, если неизвестен вид вещества или его концентрация слиш­ком велика, можно перейти на полную изоляцию (третий режим), можно также какое-то время находиться в помещении с постоянным объемом воздуха. Во-вторых, фильтропоглотители защитных сооружений препятствуют проникно­вению хлора, фосгена, сероводорода и многих других ядовитых веществ, обес­печивая безопасное пребывание людей.

В крайнем случае при распространении газов, которые тяжелее воздуха и сте­лются по земле, как хлор и сероводород, можно спасаться на верхних этажах зда­ний, плотно закрыв все щели в дверях, окнах, задраив вентиляционные отверстия.

Выходить из зоны заражения нужно в одну из сторон, перпендикулярную на­правлению ветра, ориентируясь на показания флюгера, развевание флага или любого другого куска материи, наклон деревьев на открытой местности.

Первая помощь пораженным АХОВ

Она складывается из двух частей. Первая — обязательная для всех случаев поражения, вторая — специфическая, зависящая от характера воздействия вред­ных веществ на организм человека.

Итак, общие требования. Надо как можно скорее прекратить воздействия АХОВ. Для этого необходимо надеть на пострадавшего противогаз и вынести его на свежий воздух, обеспечить полный покой и создать тепло. Расстегнуть ворот, осла­бить поясной ремень. При возможности снять верхнюю одежду, которая может быть заражена парами хлора, сероводорода, фосгена или другого вещества.

Специфические. Например, при поражении хлором, чтобы смягчить раздра­жение дыхательных путей, следует дать вдыхать аэрозоль 0,5%-го раствора пи­тьевой соды. Полезно также вдыхать кислород. Кожу и слизистые промывать 2%-м содовым раствором не менее 15 мин. Из-за удушающего действия хлора пострадавшему передвигаться самостоятельно нельзя. Транспортируют его толь­ко в лежачем положении. Если человек перестал дышать, надо немедленно сде­лать искусственное дыхание методом «изо рта в рот».

При поражении аммиаком пострадавшему следует дышать теплыми водяными парами 10%-го раствора ментола в хлороформе, дать теплое молоко с боржоми или содой. При удушье необходим кислород, при спазме голосовой щели — тепло на область шеи, теплые водяные ингаляции. Если произошел отек легких, искусственное дыхание делать нельзя. Слизистые и глаза промывать не менее 15 мин водой или 2%-м раствором борной кислоты. В глаза закапать 2-3 капли 30%-го раствора альбуцида, в нос — теплое оливковое, персиковое или вазели­новое масло. При поражении кожи обливают чистой водой, накладывают при­мочки из 5%-го раствора уксусной, лимонной или соляной кислоты.


Альтернативные источники энергии: почему они нужны всем

МОСКВА, 19 дек — ПРАЙМ. Использовать возобновляемые источники энергии (ВИЭ) человечество стало раньше, чем научилось добывать уголь, нефть и газ. Однако со временем потребление энергии росло — человеку индустриального общества требовалось уже в 100 раз больше энергии, чем в первобытную эпоху. И тогда обеспечить стабильную поставку таких мощностей стало возможным благодаря сжиганию ископаемого топлива. 

Сейчас человечество снова задумалось об использовании альтернативных источников энергии, так как запасы нефти и газа исчерпаемы, а их использование наносит большой вред окружающей среде, но уже на совершенно другом уровне. Ведь перемолоть муку на ветряной мельнице или обеспечить электроэнергией целый город с помощью ветрогенераторов — задачи разного масштаба. 

К основным видам ВИЭ сегодня относят гидроэнергетику, ветроэнергетику, гелиоэнергетику. В некоторых местах можно развивать волновую и геотермальную энергетику.

САМЫЕ РАСПРОСТРАНЕННЫЕ ВИЭ

Гидроэнергетика — самый распространенный способ добычи энергии из неисчерпаемого источника, теоретический потенциал которого оценивается в 30-40 ТВт·ч в год. Для ее работы необходимо построить плотину, разместить турбины, которые будет крутить вода. Явным преимуществом является стабильность выработки энергии и возможность ее контролировать, изменяя скорость потока воды. Среди недостатков — резкое изменение уровня воды в искусственных водохранилищах, нарушение нерестового цикла рыб и снижение количества кислорода в воде, что вредит флоре и фауне водоема.

Хитрости бизнеса. Как офшоры помогают компаниям экономить на налогах
 

Еще один перспективный источник — ветроэнергетика. Для добычи энергии таким способом необходимо установить специальные турбины, которые будет вращать ветер, за счет чего будет вырабатываться электричество. Ветряные турбины легко и дешево обслуживать, они не занимают много места, вращаются на высоте от 100 м, то есть, под ними можно, например, вести сельскохозяйственную деятельность. 

Иногда ветроэлектростанции (ВЭС) строят прямо в море. Такой проект в 2017 году разработали Дания, Нидерланды и Германия. Они собираются к 2050 году соорудить в море остров площадью 6 кв. км и разместить на нем турбины. Планируется, что такая станция сможет вырабатывать до 30 ГВт·ч в год энергии, а в перспективе — до 100 ГВт·ч в год. 

Однако у этого источника дешевой и чистой энергии есть несколько существенных недостатков — нестабильность и зависимость от места размещения. Ветер дует не везде и не всегда. А в местах, где ветер дует часто и с большой силой, как правило, не располагаются населенные пункты. Это повышает расходы на строительство линий электропередач и транспортировку энергии. Поэтому ветроэнергетика хороша именно как дополнительный источник энергии.

Альтернатива ВЭС — солнечные электростанции (СЭС), которые могут работать по нескольким принципам. В одном случае с помощью сфокусированных солнечных лучей нагревают резервуар с водой (температура пара в нем может доходить до 7000С), в другом — используются фотобатареи. Второй тип гораздо проще соорудить, устанавливать фотоэлементы можно практически везде, а стоимость их продолжает снижаться с развитием технологии производства. 

Что такое валютные войны и зачем их ведут

Главными недостатками СЭС является большая зависимость от места расположения, времени суток и сезона. Например, станция не будет вырабатывать энергию ночью, значительно меньше — в зимнее время года. Полностью обеспечить себя электричеством с помощью СЭС могут даже не все африканские страны. Поэтому солнечная энергетика на данном этапе тоже может служить только в качестве вспомогательного источника. 

КАК ИСПОЛЬЗУЮТ ДРУГИЕ ИСТОЧНИКИ ЭНЕРГИИ

В волновой энергетике используются специальные модули, которые качаются на волнах и таким образом приводят в действие специальные поршни. Потенциал этого вида ВИЭ оценивают более чем в 2 ТВт·ч в год. Волновые электростанции защищают берега и набережные от разрушения, уменьшают воздействие на опоры и мосты. При правильной установке они не вредят окружающей среде, к тому же практически незаметны в море.

Среди недостатков — нестабильность (то есть станция вырабатывает меньше энергии во время штиля), шум, незаметность для водного транспорта, из-за чего необходимо дополнительно устанавливать сигнальные элементы. 

В некоторых местах устанавливают геотермальные станции (ГеоТЭС). Общий потенциал геотермальной энергии оценивается в 47 ТВт·ч в год, что соответствует выработке примерно 50 тысяч АЭС, но сейчас технологии позволяют получить доступ только к 2% от него — 840 ГВт·ч в год. Чтобы это сделать, роют две скважины, по одной из них подается вода, которая, нагреваясь от тепла земли, превращается в пар. Затем пар по трубе направляется в турбины. На разных этапах происходит его очистка от примесей. 

Главное преимущество геотермальной энергетики — стабильность, которую не могут обеспечить многие ВИЭ, и компактность, что удобно для районов со сложным рельефом. С другой стороны, вода, которая проходит через скважины, несет большое количество тяжелых металлов и других вредных веществ. При неправильной эксплуатации станции или при возникновении чрезвычайной ситуации, попадание в атмосферу и в почву этих веществ, может привести к экологической катастрофе локального масштаба. 

Кроме того, стоимость энергии ГеоТЭС выше, чем у ВЭС и СЭС, а мощность довольно невысокая.

Основная проблема практически всех перечисленных выше источников заключается в их нестабильности. Современные аккумуляторы не позволяют накапливать такое количество энергии, чтобы без потерь мощности использовать ее в ночное время или во время штиля. Один из вариантов — во время пиковых нагрузок поднимать воду в верхнюю часть водохранилища и потом во время затишья использовать ее для выработки энергии на ГЭС. 

Зарабатываем и делимся: популярно о дивидендах

АЛЬТЕРНАТИВНАЯ ЭНЕРГИЯ В РОССИИ И В МИРЕ

На данный момент использование ВИЭ активно развивается в Европе, где страны вынуждены закупать топливо для работы традиционных электростанций. Но, по мнению некоторых экспертов, в развитии альтернативной энергетики заинтересованы и государства, чья экономика зависит от экспорта нефти и газа. Ведь если в некоторых регионах использовать ВИЭ вместо газа, это топливное сырье можно будет отправить на экспорт. 

Тем не менее, в России этот сектор энергетики развивается очень медленно. По данным аналитической компании Enerdata, в Норвегии около 97% электроэнергии добывается из альтернативных источников с учетом гидроэнергетики, около 80% — в Новой Зеландии и Бразилии. В Европе 30-40% энергии ВИЭ вырабатывается в Германии, Италии, Испании и Великобритании. В России этот показатель составляет всего 17,2%, из них доля СЭС и ВЭС — менее 1%.

Терминология, применяемая в прогнозах погоды и штормовых предупреждениях

Терминология, применяемая в краткосрочных прогнозах погоды общего назначения и штормовых предупреждениях
(в соответствии с Руководящим документом РД 52.27.724-2009 «Наставление по краткосрочным прогнозам погоды общего назначения»)

 

В краткосрочных прогнозах погоды общего назначения указывается следующие метеорологические величины (элементы): облачность, осадки, направление и скорость ветра, минимальная температура воздуха ночью и максимальная температура днем (в ˚С), а также явления погоды. В табл. 1–5 приведены термины, используемые в прогнозах для различных метеорологических величин (элементов), явлений погоды и соответствующие им количественные характеристики.

 

Для учета специфики ожидаемого синоптического процесса и/или влияния региональных особенностей территории, по которой составляется прогноз, в случае если прогнозируемые метеорологические величины и явления погоды в отдельных частях территории будут значительно различаться, выполняют посредством детализации прогноза, применяя дополнительные градации. Для выделения отдельных частей территории используют характеристики географического положения (запад, юг, северная половина, центральные районы, правобережье, прибрежные районы, пригороды и др.), а также особенности рельефа местности (пониженные места, низины, долины, предгорья, перевалы, горы и т.д.).

 

Детализация прогноза по территории или пункту с использованием дополнительной градации и терминов «в отдельных районах» или «местами» допускается, как правило, при наличии влияния (воздействия) атмосферных процессов (явлений) мезометеорологического масштаба:

— ливневых осадков, гроз, града, шквала, связанных с развитием интенсивной конвекции;

— туманов и температуры воздуха (включая заморозки в воздухе и на почве), обусловленных влиянием особенностей рельефа местности или радиационными факторами (притоком солнечной радиации в атмосферу и на земную поверхность, ее поглощением, рассеянием, отражением, собственным излучением земной поверхности и атмосферы).

 

С целью учета влияния радиационных факторов допускается детализация прогноза температуры воздуха с использованием дополнительной градации и терминов «при прояснениях», «при натекании облаков».

 

Использование в прогнозе погоды терминов «местами» или «в отдельных районах (пунктах)» подразумевает, что ожидаемое явление погоды или значение метеорологической величины будет подтверждено данными наблюдений не более чем 50% метеорологических наблюдательных подразделений, находящихся на территории, по которой составлен прогноз.

 

Термины, применяемые в прогнозах облачности

Таблица 1

Термин

Количество облаков в баллах

Ясно, ясная погода, малооблачно, малооблачная погода, небольшая облачность, солнечная погода

До 3 баллов облачности среднего и/или нижнего яруса или любое количество облачности верхнего яруса

Переменная (меняющаяся) облачность

От 1-3 до 4-7 баллов нижнего и/или среднего яруса

Облачно с прояснениями, облачная погода с прояснениями

4-7 баллов облачности нижнего и/или среднего яруса или сочетание облачности среднего и нижнего яруса общим количеством до 7 баллов

Облачно, облачная погода, значительная облачность, пасмурно, пасмурная погода

8-10 баллов облачности нижнего яруса или плотных, непросвечивающих форм облаков среднего яруса

 

Если в течение полусуток ожидается значительное изменение количества облачности, то разрешается использовать две характеристики из терминологии, приведенной в таблице 1, а также применять слова «уменьшение» или «увеличение». Например:  Утром малооблачно, днем увеличение облачности до значительной.

 

Термины, применяемые в прогнозах осадков

 

В прогнозах погоды и штормовых предупреждениях используются термины, характеризующие факт отсутствия или наличия осадков, при наличии осадков – их вид (фазовое состояние), количество,  продолжительность (рекомендуется, но не обязательно). Термины и соответствующие им количественные величины для жидких и смешанных осадков приведены в табл. 2а, для твердых осадков – в табл. 2б.

 

Таблица 2а

 

Термин

Кол-во осадков, мм/12 час

Без осадков, сухая погода

Небольшой дождь, слабый дождь, морось, моросящие осадки, небольшие осадки

0,0-2

Дождь, дождливая погода, осадки, мокрый снег, дождь со снегом; снег, переходящий в дождь; дождь, переходящий в снег

3-14

Сильный дождь, ливневый дождь (ливень), сильные осадки, сильный мокрый снег, сильный дождь со снегом, сильный снег с дождем

 

То же для селеопасных районов

 

То же для Черноморского побережья Кавказа

15-49

 

15-29

30-79

Очень сильный дождь, очень сильные осадки (очень сильный мокрый снег, очень сильный дождь со снегом, очень сильный снег с дождем)

 

То же для селеопасных районов

 

То же для Черноморского побережья Кавказа

 

Сильный ливень (сильные ливни)

 

То же для Черноморского побережья Кавказа

≥ 50

 

 

≥30

≥80

 

≥30 мм за период ≤ 1 ч

 

≥50 мм за период ≤ 1 ч

 

Таблица 2б

Термин

Кол-во осадков, мм/12 час

Без осадков, сухая погода

Небольшой снег, слабый снег

0,0-1

Снег, снегопад

2-5

Сильный снег, сильный снегопад

6-19

Очень сильный снег, очень сильный снегопад

≥ 20

 

Для более детальной характеристики ожидаемого распределения количества осадков по территории в прогнозе рекомендуется использовать дополнительные (как правило, соседние) градации количества осадков, допускается также применение терминов «в отдельных районах» и «местами».
Например: Во второй половине дня по области ожидаются грозовые дожди, местами сильные ливни.

 

Для характеристики вида осадков (жидкие, твердые, смешанные) применяются термины: «дождь», «снег», «осадки». Термин «осадки» можно применять только с обязательным дополнением одного из терминов, приведенных в табл. 3.

Таблица 3

Термин

Характеристика смешанных осадков

Дождь со снегом

Дождь и снег одновременно, но преобладает дождь

Мокрый снег

Снег и дождь одновременно, но преобладает снег; тающий снег

Снег, переходящий в дождь

Сначала ожидается снег, а затем дождь

Дождь, переходящий в снег

Сначала ожидается дождь, а затем снег

Снег с дождем (дождь со снегом)

Чередование снега и дождя с преобладанием снега (дождя)

 

 

Для качественной характеристики продолжительности осадков рекомендуется применять термины, приведенные в табл. 4.

Таблица 4

Термин

Общая продолжительность осадков, час

Кратковременный дождь (снег, дождь со снегом, снег с дождем, мокрый снег), снег (мокрый снег) зарядами

<3

Дождь (снег, мокрый снег, дождь со снегом, снег с дождем), продолжительный дождь (снег, мокрый снег, дождь со снегом, снег с дождем), временами снег, мокрый снег, дождь со снегом, снег с дождем)

>3

 

Если в прогнозах указывается «небольшая облачность» или «малооблачная погода», то термин «без осадков» разрешается не использовать.

 

Термины, применяемые в прогнозах ветра

 

В прогнозах погоды и штормовых предупреждениях указывают направление и скорость ветра. Разрешается  использовать детализацию прогноза характеристик ветра (направления, скорости) по частям территории. Направление ветра указывают в четвертях горизонта (откуда дует ветер): северо-восточный, южный, юго-западный и т.д.). Если в течение полусуток ожидается изменение направления ветра в пределах двух соседних четвертей горизонта, то указывается две соседние четверти; если ожидается изменение направление ветра более чем на две четверти горизонта, то используется термин «с переходом». Например: 1. Ветер юго-восточный, южный.

 

                   2. Ветер южный с переходом на северо-западный.

 

В прогнозах погоды и штормовых предупреждениях указывают максимальную скорость ветра при порывах в метрах в секунду (далее – максимальная скорость ветра) или максимальную среднюю скорость ветра, если порывы не ожидаются.

 

Примечание: максимальная средняя скорость ветра – это наибольшая средняя скорость ветра, которая ожидается в любой 10-минутный интервал времени в течение времени периода действия прогноза или штормового предупреждения.

 

В прогнозах погоды и штормовых предупреждениях скорость ветра указывают градациями с интервалом не более 5 м/с. При слабом ветре (скоростью ≤5 м/с) разрешается не указывать направление или использовать термин «слабый, переменных направлений».

 

Если ожидается, что в течение полусуток скорость ветра будет значительно меняться, то указание на эти изменения формулируется с помощью терминов «ослабление» или «усиление» с добавлением характеристики времени суток.

 

Например: Ветер южный 3-8 м/с с усилением во второй половине дня до 20 м/с (т.е. максимальная скорость ветра при порывах достигнет 15-20 м/с).

 

При прогнозировании шквала направление ветра не указывается. Рекомендуется применять термины «шквалистое усиление ветра до …. м/с» или «шквал до … м/с» с указанием максимальной скорости ветра.
Например: при грозе шквалистое усиление ветра до 20-25 м/с (или шквал до 25 м/с).

 

В прогнозах погоды помимо количественного значения скорости ветра может применяться качественная ее характеристика в соответствии с таблицей 5.

 

Таблица 5

Качественная характеристика скорости ветра

Диапазон скорости ветра, м/с

Слабый

0-5

Умеренный

6-14

Сильный

15-24

Очень сильный

25-32

Ураганный

33 и более

Если прогнозируемый интервал скорости ветра может характеризоваться двумя качественными характеристиками, то используется характеристика для верхней границы интервала.

 

Например: ветер с прогнозируемой скоростью 12-17 м/с имеет качественную характеристику «сильный», т.к. 17 м/с входит в диапазон скорости 15-24 м/с.

 

 

 

 

Термины, применяемые в прогнозах явлений погоды

 

 

 

В прогнозы погоды необходимо включать следующие из ожидаемых явлений погоды: осадки (дождь, снег), грозу, град, шквал, туман, гололед, изморозь, налипание (отложение) мокрого снега на провода (проводах) и деревья (деревьях), поземок, метель, пыльная (песчаная) буря, а также гололедица на дорогах и снежные заносы на дорогах.

 

В прогнозах погоды термин «сильный» , а для осадков «очень сильный» применяют в том случае, если ожидают, что явление по интенсивности достигнет критериев ОЯ. В остальных случаях характеристики интенсивности явлений («слабое» или «умеренное»), за исключением интенсивности осадков, разрешается не указывать.

 

При прогнозе шквала указывают максимальную скорость ветра.

 

В прогнозах явлений погоды при необходимости применяют термины «усиление», «ослабление», «прекращение» с указанием времени суток.

 

 

 

Термины, применяемые в прогнозах температуры воздуха

 

 

 

В прогнозах погоды указывают минимальную температуру воздуха ночью и максимальную температуру воздуха днем, или изменение температуры воздуха при аномальном ходе, составляющем 5˚ и более за полусутки.
Ожидаемую минимальную и максимальную температуру воздуха указывают градациями в интервале для пункта 2˚, а для территории – 5˚. В прогнозах температуры воздуха по пункту или для отдельной части территории разрешается температуру воздуха указывать одним числом (для пункта – с использованием предлога «около», а для части территории – с использованием предлога «до»). В первом случае имеется в виду середина прогнозируемого интервала температуры для пункта, во втором случае – предельное ее значение для указанной части территории.

 

Например: 1. По западу территории прогнозировалась температура до 20˚. Это означает, что ожидается температура 15…20˚.

 

                   2. В городе прогнозируется температура воздуха около 20°. Это означает, что в городе ожидается температура 19…21° 

 

 

Если ожидаемое распределение температуры по территории не укладывается в интервал, равный 5˚, то рекомендуется применять дополнительные градации температуры, с использованием детализации прогноза температуры по частям территории. При этом в прогнозе следует указать районы, где ожидаются эти отклонения температуры воздуха (или условия, при которых они будут отмечаться, например, «при прояснениях»).
Например: Температура ночью 1…6˚, при прояснениях (или в северных районах) до -2˚.

 

Если ожидается аномальный ход температуры воздуха, то указывается наиболее высокое (низкое) ее значение с указанием периода времени суток, когда оно прогнозируется.

 

Например: Температура вечером -10…-12°, к утру повышение температуры до -2°.

 

При использовании терминов «повышение» («потепление») или «понижение» («похолодание»), «усиление («ослабление») морозов (жары)» прогнозируемое значение температуры можно указывать одним числом с предлогом «до».

 

Если в период активной вегетации сельскохозяйственных культур или уборки урожая в прогнозируемый интервал температуры воздуха попадают значения ниже 0˚, то в прогнозе погоды отрицательные значения температуры воздуха указываются с добавлением термина «заморозки». Термин «заморозки» также применяется, если температура ниже 0˚ ожидается на поверхности почвы.

 

Например: 1. При ожидаемой температуре воздуха ночью от -2 до +3˚, прогноз температуры формулируется следующим образом: температура 0…3°, местами (на востоке, на севере, в пониженных местах) заморозки до -2°.

 

                     2. При ожидаемой температуре воздуха от 0 до 5° и температуре почвы ниже 0°, прогноз формулируется следующим образом: температура 0…5°, местами (на востоке, на севере, в пониженных местах) на почве заморозки до -2°.

 

Если ожидается значение максимальной (минимальной) температуры в градациях ОЯ, то в прогнозе применяется термин «сильная жара» («сильный мороз»).

 

 

 Определения

 


Опасные метеорологические явления (ОЯ): природные процессы и явления, возникающие в атмосфере и/или у поверхности Земли, которые по своей интенсивности (силе), масштабу распространения и продолжительности оказывают или могут оказать поражающее воздействие на людей, сельскохозяйственных животных и растения, объекты экономики и окружающую среду.

Почему горы важны | Истории ФАО | Продовольственная и сельскохозяйственная организация Объединенных Наций

11/12/2020

В одних странах к горам относятся как к божествам, в других – просто как к вершинам, куда можно взобраться. А где-то горы, как и вулканы, считаются местом обитания духов, которые могут прогневаться. Как бы то ни было, во всех странах мира горы дают необходимые для жизни воду, энергию и пищу, снабжая ими более половины населения планеты.

Из-за расположения на большой высоте, под уклоном и с ориентацией на солнце горные экосистемы легко разрушаются под воздействием изменения климата: аборигенные растения и животные лишаются привычного ареала и пытаются выжить на неуклонно сокращающихся площадях, а таяние горных ледников идет беспрецедентными темпами. Изменения, происходящие в горных ледниках, оказывают влияние на состояние водных ресурсов во многих частях земного шара.  

Кроме того, горам угрожают деградация почв, чрезмерная эксплуатация природных ресурсов и стихийные бедствия, которые могут иметь далеко идущие и разрушительные последствия как для общин горных народов, так и для остального населения. Но все не так плохо. Общины горных народов обладают огромным богатством традиционных знаний и опытом рачительного использования хрупких горных экосистем и повышения их устойчивости к внешним факторам. 

Так, например, живущие в горах крестьяне из числа коренных народов используют системы земледелия, позволяющие защитить почву от эрозии, сохранить водные ресурсы и снизить риски, связанные с последствиями стихийных бедствий. Они используют свои навыки и знания для защиты горных экосистем, потому что для них горы – это их дом. Но горы важны для всех нас.

Вот лишь некоторые факты:

1. Горы не только непосредственно обеспечивают средства к существованию и благополучие 1.1 млд человек из числа горных народов мира, но и косвенно приносят пользу миллиардам людей, живущим ниже.

2. В горах живет 15 процентов населения планеты. Более 90 процентов жителей горных районов являются жителями развивающихся стран, при этом каждый третий житель горных районов из развивающихся стран неблагополучен в плане продовольственной безопасности.

3. Горы обеспечивают 60-80 процентов всей пресной воды в мире. Для некоторых крупнейших мегаполисов, включая Мельбурн, Найроби, Нью-Йорк, Рио-де-Жанейро и Токио, горы являются источниками пресной воды.

4. Горные общины производят огромный объем ценного и высококачественного продовольствия и таких продуктов, как кофе, какао, мед, травы, специи и изделия народных промыслов, которые укрепляют источники средств к существованию людей и способствуют развитию местной экономики.

5. На горный туризм приходится 15-20 процентов мировой туристической индустрии. Горы привлекают туристов благодаря широкому спектру возможных видов отдыха, включая катание на лыжах, альпинизм, пеший туризм и познавательные путешествия.

6. Горы играют ключевую роль в качестве возобновляемых источников энергии, включая гидроэнергию, солнечную энергию, энергию ветра и биогаз, для городов, расположенных ниже, и для горных общин, живущих в удаленных районах. Гидроэнергия обеспечивает порядка одной пятой всей электроэнергии в мире, и в некоторых странах производство гидроэнергии осуществляется почти исключительно в горных районах.

7. Родиной шести из двадцати видов растений, обеспечивающих большую часть мирового продовольствия, являются горные районы. Вот эти растения: кукуруза, картофель, ячмень, сорго, помидоры и яблоки. Трудно представить себе рацион, в который не входит хотя бы один из этих продуктов.

8. Горы имеют культурное и естественно-научное значение. Признавая это, ЮНЕСКО включила многие из них в категорию объектов всемирного наследия и биосферных заповедников (районов, где необходимо найти решение, позволяющее обеспечить устойчивое развитие, сохранив местное биоразнообразие). Почти 60 процентов всех биосферных заповедников содержат горные экосистемы.

Слава горам!

Каждый год 11 декабря в мире отмечают Международный день гор. Отметьте этот день с нами и вы: организуйте пеший поход в горы, расположенные неподалеку, или выберите темой следующего заседания своего книжного клуба книгу об Эвересте. Поделитесь своими фотографиями в социальных сетях и расскажите всем, почему для вас важны горы #MountainsMatter!

Подробнее:

*Это новая редакция истории, опубликованной 11/12/2017 года.

Энергия ветра в Новой Англии: выгода для местных сообществ

Энергия ветра может принести большие экономические выгоды принимающим общинам, а также помочь улучшить окружающую среду. Новые рабочие места, больше денег для городов и школ, более чистый воздух и вода, более надежное электроснабжение и стабильные цены на энергию — вот лишь некоторые из многих потенциальных преимуществ. Однако новые проекты ветроэнергетики иногда сталкиваются с проблемами на местном уровне, потому что общины часто не знают о многих преимуществах, которые может принести проект.

На сегодняшний день в Новой Англии установлено лишь несколько ветряных турбин. Основываясь на сильных положительных отзывах, поступающих от трех сообществ Новой Англии, в которых установлены ветряные турбины — Халла и Принстона, Массачусетс, и Сирсбурга, Вирджиния, пора более внимательно изучить преимущества.

Более безопасная и надежная энергия

Более 60 процентов электроэнергии Новой Англии вырабатывается с использованием ископаемых видов топлива — природного газа, угля и нефти, а еще 25 процентов вырабатывается за счет ядерного топлива.Только в Массачусетсе это топливо составляет почти 95 процентов от общего объема производства электроэнергии. Однако у Новой Англии нет собственных запасов угля, нефти, природного газа или ядерного топлива, поэтому большинство электростанций региона полагаются на импортное топливо, что увеличивает риск нехватки топлива или отключений. Операторы электросетей особенно обеспокоены потенциальной нехваткой природного газа, особенно в период зимних похолоданий, когда газ также необходим для отопления. Из-за этой озабоченности регион становится все более зависимым от импорта сжиженного природного газа (СПГ) из других стран.[1]

Использование энергии ветра, произведенной в пределах штата и региона, сохраняет доллары за электроэнергию в местной экономике, вместо того, чтобы отправлять их за пределы штата или страны. Это также снижает риск отключения или перебоев в поставках и позволяет нам стать более энергонезависимыми.

Более стабильные затраты на электроэнергию

Цены на топливо часто меняются, и их трудно предсказать. Низкая стоимость природного газа в 1990-х годах побудила энергетические компании Новой Англии построить множество новых электростанций, работающих на природном газе.Однако с тех пор пиковые цены на газ выросли более чем на 400 процентов и, как ожидается, останутся очень высокими, по крайней мере, до 2012 года.

Большая часть затрат на производство электроэнергии из ветра приходится на покупку и установку турбин. После этого «топливо» бесплатное, а эксплуатационные расходы очень низкие. Сообщества, которым принадлежат их турбины, такие как Халл и Принстон, могут снизить и стабилизировать счета за электроэнергию для своих жителей. Частные застройщики обычно предлагают долгосрочные контракты на поставку энергии с фиксированной ценой сообществам, группам потребителей или коммунальным предприятиям.[2] Независимо от того, находится ли ветровой проект в муниципальной или частной собственности, конечный результат — более стабильные цены для потребителей.

Стимул для местной экономики

Помимо стабилизации затрат на топливо для коммунальных предприятий, жителей и предприятий, проекты в области ветроэнергетики могут принести значительные экономические выгоды для местной экономики.
Эти преимущества включают:

Выручка. Местные органы власти получают доходы от налога на имущество и подоходного налога или ежегодные платежи вместо налогов от владельцев ветроэнергетических проектов.Поскольку городские услуги, такие как водоснабжение или канализация, не требуются для работы ветряной электростанции, выплаты от ветровых проектов могут помочь городам улучшить или расширить свои общественные услуги.

Доход. Владельцы собственности часто получают арендные платежи и / или роялти за использование части своей земли, а также потому, что ветряные турбины занимают очень мало места (два процента или меньше площади земли, необходимой для ветряной электростанции, занято ветряными турбинами. , подъездные дороги и другое оборудование), [3] окружающие земли все еще могут использоваться для других целей, таких как сельское хозяйство или отдых.В зависимости от размера ветряной турбины и условий проекта годовые арендные платежи землевладельцам могут варьироваться от 2000 до 5000 долларов за мегаватт (МВт) [4] с дополнительными роялти, зависящими от процента от годового дохода проекта.

Вакансий. Ветроэнергетика создает от 40 до 160 рабочих мест в строительстве на 100 МВт генерирующей мощности [5] или примерно 1-2 рабочих места на турбину мощностью 1,5 МВт. Подготовка площадки, изготовление компонентов и установка линий электропередачи иногда поручаются местным предприятиям, в то время как строительные рабочие внутри и за пределами региона тратят свои заработки на жилье, рестораны и торговые точки в пределах общины.После строительства создается примерно от 10 до 25 постоянных рабочих мест для эксплуатации и обслуживания каждых 100 МВт генерирующих мощностей. [6]

Стоимость недвижимости. Национальное исследование более 25 000 продаж недвижимости возле ветряных электростанций по всей стране не обнаружило никаких доказательств отрицательного воздействия на стоимость собственности, а в некоторых случаях оно даже показало положительный эффект. [7] По словам местных риэлторов, в прибрежном районе Халл, Массачусетс, продажи недвижимости возле Hull Wind One с момента его начала работы в январе 2002 года показывают рост стоимости недвижимости, соответствующий остальной части города.[8]

Давняя компания по недвижимости, обслуживающая Халл и соседние города Кохассет и Хингем, выделяет Hull Wind One в своих рекламных материалах, рекламируя дальновидное мышление, которое представляет использование энергии ветра, стабильные тарифы на электроэнергию, которые она обеспечивает, и подавляющая городская опора для второй турбины, которая была построена в 2006 году. [9]

Туризм. Опыт существующих ветряных проектов в Новой Англии и других местах показывает, что они увеличивают туристическую активность.Летние туры по проекту ветра Searsburg, VT, регулярно заполняются, и Hull Wind One также привлекает много посетителей круглый год. [10] Как и туристы к другим достопримечательностям, посетители турбины, вероятно, будут приносить дополнительный доход сообществу, покровительствуя местным магазинам и ресторанам во время своей поездки.

Очиститель воздуха и воды

Электростанции являются основным источником загрязняющих веществ в окружающей среде, включая диоксид серы (SO2), который вызывает кислотные дожди; оксиды азота (NOX), которые способствуют образованию смога и кислотных дождей; углекислый газ (CO2), основной газ, удерживающий тепло, вызывающий глобальное потепление; а также ртуть и другие токсичные химические вещества, загрязняющие озера и реки.Эти загрязнители также вызывают беспокойство у населения; сажа и смог могут вызвать или усугубить астму и другие респираторные проблемы, а ртуть — мощный нейротоксин, который может вызывать врожденные дефекты. Кроме того,
добыча и транспортировка ископаемого топлива, а также удаление отходов горнодобывающей промышленности и электростанций вызывают загрязнение и уничтожают среду обитания животных и растений.

С другой стороны, ветряные турбины вырабатывают электроэнергию без загрязнения воздуха и воды и не образуют вредных отходов. А когда в электрическую сеть добавляется энергия ветра, от других электростанций требуется меньше электроэнергии, поэтому они сжигают меньше топлива.

Государственная поддержка

В двух городах Массачусетса, где есть ветряные турбины, жители Халла и Принстона проголосовали с перевесом 2–1 и 3–1 соответственно за строительство большего количества турбин в своих городах. В Сирсбурге, штат Вирджиния, где находится один из крупнейших ветроэнергетических проектов Новой Англии, поддержка проекта увеличилась с 65 процентов до того, как он был построен, до 83 процентов после этого [11]. Более поздние опросы показывают, что 81 процент жителей Вермонтера сочли бы ветряные турбины на горных хребтах приемлемыми или даже красивыми.[12] Эти положительные отзывы четко отражают положительный вклад и пользу ветряных проектов, которые стали предметом гордости местных жителей.

Артикул:

[1] Конавей, К. 2006. Проблема энергетической политики в Новой Англии. Бостон, Массачусетс: Федеральный резервный банк Бостона. Апреля.
[2] В Массачусетсе общины могут выбрать «отказаться» от базовых услуг местного электроэнергетического предприятия и заключить договор с самими производителями. Двадцать одно сообщество в Кейп-Код, например, сформировало Cape Light Compact
[3] Американскую ассоциацию ветроэнергетики (AWEA).Наиболее часто задаваемые вопросы о ветроэнергетике.
[4] Средний размер турбины составляет 1,5 МВт для крупных ветроэнергетических проектов, поэтому арендная плата за турбину может быть выше. Ежегодные арендные платежи землевладельцам в штате Нью-Йорк (проект Fenner Wind и проект Maple Ridge Wind), например, составляют более 6000 долларов на турбину. Интервью Терри Тис, Мартинсбург, городской инспектор штата Нью-Йорк, 24 февраля 2006 г.
[5] Национальная лаборатория возобновляемых источников энергии. 2005. Энергия ветра для экономического развития сельских районов.Представлено на Windpower 2005, 18 мая.
[6] Там же.
[7] Проект политики в области возобновляемых источников энергии. 2003. Влияние развития ветра на стоимость местной собственности. Может.
[8] Бек, Д. 2004. Как корпусной ветер «I» повлиял на стоимость недвижимости в Пембертоне. 28 июля. Памятка Крису МакКейбу, управляющему города Халла. Дэвид Бек — помощник асессора города Халл.
[9] Джек Конвей и компания, риэлтор. 2005. Conway on the Coast, Volume 4.
[10] Hull Municipal Light Plant, телефонная переписка с Ферн Койл, июль 2006 года.
[11] Clinton Solutions. 1997. Исследование общественного признания проекта ветроэнергетики Сирсбург: первый год строительства. Декабрь.
[12] Макрос ORC. 2006. Опрос общественного мнения по ветроэнергетике. Январь.

Урок ветра для детей: факты и причины — видео и стенограмма урока

Что вызывает ветер?

Знаете ли вы, что теплый воздух поднимается вверх? Вот почему в небо взлетают воздушные шары. Когда светит солнце, оно нагревает воздух и поднимается в небо, точно так же, как поднимается теплый воздух внутри воздушного шара.

Ветер дует, потому что солнце нагревает землю быстрее, чем воду, что вызывает изменения давления воздуха. Давление воздуха — это мера того, насколько тяжелый участок воздуха и насколько сильно он давит на землю. Когда горячий воздух поднимается от земли, он оказывает меньшее давление на землю — это воздух низкого давления. Холодный воздух тяжелее, поэтому он давит на землю с большей силой, и это воздух высокого давления. По мере того, как поднимается (теплый) воздух под низким давлением, воздух под высоким давлением (более холодный) перемещается, занимая место, где находился теплый воздух.

Возьмем для примера пляж. Вы когда-нибудь замечали, что на пляже всегда дует ветер? Днем дует океанский бриз, потому что солнце нагревает песок быстрее, чем вода. Воздух над теплой землей поднимается вверх, позволяя более прохладному воздуху над океаном ворваться и занять его место. Результатом движения воздуха является ветер, дующий в сторону берега. Вечером процесс меняется на противоположный, и ветер дует в море.

Вращение Земли также играет роль в том, как дует ветер.Когда теплый воздух поднимается над экватором, холодный воздух врывается с северного и южного полюсов. Ветер будет дуть по прямой линии, но из-за того, что Земля вращается, ветер будет подпрыгивать, заставляя его двигаться по земному шару по-разному.

Обуздание ветра

Люди научились использовать ветер в работе. Моряки используют ветер, чтобы перемещать свои лодки по воде. Ранние американские поселенцы использовали ветряные мельницы для перекачивания воды и измельчения зерна. И сегодня мы используем энергию ветра для производства электроэнергии.

Большие ветряные турбины улавливают ветер и вращаются, как гигантские вертушки. Это вращение приводит в движение генератор (своего рода машину) внутри турбины, который производит электричество, которое мы можем использовать для питания наших домов, школ и предприятий.

Итоги урока

Хорошо, давайте рассмотрим то, что мы узнали!

Ветер — это движение воздуха, вызванное разницей в давлении воздуха. Ветер дует, потому что солнце нагревает землю быстрее, чем воду, что вызывает изменения в давлении воздуха , которое является мерой того, насколько тяжелый участок воздуха и насколько он давит на землю.Метеорологи используют такие инструменты, как анемометр , для измерения скорости ветра.

Мы также узнали о том, как люди улавливают энергию ветра с помощью ветряных турбин , которые улавливают движение воздуха и вращаются, как гигантские вертушки. Итак, в следующий раз, когда вы увидите один из этих больших ветряных генераторов, надеюсь, вы вспомните, почему он работает именно так.

Сообщение для родителей в наставнических модулях


По всей стране многие родители объединяются, чтобы нанять частных репетиторов (которые часто являются школьными учителями) для проведения репетиторства или домашнего обучения для небольших групп детей.Хотя систематического отслеживания этих частных усилий не существует, очевидно, что в округе Фэрфакс создается ряд «пандемических групп» или учебных групп.

Нам известно об этих обучающих модулях, а также о некоторых сопутствующих проблемах сообщества. Чтобы было ясно, эти учебные усилия не поддерживаются и никоим образом не контролируются FCPS — по нескольким причинам:

• Это чисто частные инициативы со стороны родителей и семей. Семьи имеют абсолютное право работать вместе и объединять ресурсы для обучения или репетиторства — точно так же, как они это делают для объединения ресурсов и предоставления частных детских садов, уроков музыки или развлекательных мероприятий для своих детей, — но обучающие модули не являются частью системы государственных школ .

• По условиям контрактов учителям FCPS разрешается предоставлять репетиторские услуги за возмещение, но только при соблюдении следующих условий:

  • Учителя должны дать понять, что услуги предоставляются в качестве независимого подрядчика, а не в качестве сотрудника FCPS.
  • Они не могут обучать детей за частную компенсацию, если те же дети обучаются у них в школах FCPS (т.е. дети не могут посещать свои классы).Это верно для частных или групповых занятий в любом месте.
  • Они не могут заниматься посторонним обучением или какой-либо подготовкой к нему в рабочее время FCPS.

Хотя FCPS не контролирует и не может контролировать эти частные группы репетиторства, у нас есть опасения, что они могут увеличить разрыв в доступе к образованию и равенстве для всех учащихся. Многие родители не могут позволить себе частное обучение. Многие рабочие семьи не могут предоставить транспорт до и от репетитора, даже если они могут позволить себе оплатить эту услугу.

Мы получили несколько запросов от родителей, которые хотели бы объединить группы или группы учеников вместе с конкретным учителем. Как с точки зрения логистики, так и в интересах равенства в образовании FCPS не может удовлетворить такие запросы.

Составление расписания занятий сложно и требует много времени. Школы прилагают большие усилия для разработки расписаний, которые учитывают вклад учителей и родителей и уравновешивают классы по полу, расе, домашнему языку, академическим достоинствам, целям обучения и особым потребностям обучения, таким как специальное образование, развитие английского языка и обогащение.

Перед лицом многих проблем, связанных с пандемией Covid-19, наши школы не имеют возможности удовлетворить конкретные запросы классов / учителей от семей с целью создания учебных модулей. Наша энергия и внимание должны оставаться на том, чтобы обеспечить наилучший образовательный опыт и влияние на всех наших студентов.

смесей | Разделительные смеси | Siyavula

Вещества в растворе смешиваются на уровне отдельных частиц.В растворе сахара и воды частицы сахара и воды смешаны так хорошо, что мы не можем различить их невооруженным глазом. Вы можете подумать, что такие «хорошо перемешанные» смеси невозможно разделить! Но, как мы скоро увидим, это неправда.

Разделение выпариванием

Продемонстрируйте это на уроке, растворив немного соли в воде перед классом в начале урока. Убедитесь, что они приняли к сведению прозрачное решение.Затем вылейте немного в неглубокую алюминиевую сковороду, похожую на те, что используются для выпечки. Поместите это в солнечное место на время урока и дайте воде испариться. Скорость испарения будет зависеть от того, насколько жарко и влажно в день, когда вы это делаете. В конце урока соберите кастрюлю и покажите оставшуюся засохшую соль, как в кастрюле для соли. Возможно, вам придется оставить его до конца дня, в зависимости от того, насколько он горячий.

Знаете ли вы, откуда поступает большая часть соли, которую мы используем в Южной Африке? Южная Африка получает соль из внутренних, прибрежных соляных бассейнов и морской воды.Соляной поддон — это неглубокая плотина в земле, где соленая вода испаряется , оставляя слой сухой соли.

Вид с воздуха на солончаки. http://commons.wikimedia.org/wiki/File:Salt_pans.jpg Соль в Индии. Мужчина занимается сбором сушеной соли для упаковки и продажи.

Когда морская вода находится в неглубоких поддонах, вода нагревается солнечным светом и медленно превращается в водяной пар в результате испарения. Как только вода полностью испарится, остается твердая соль.

Как вы думаете, это хороший метод отделения соли от воды? Как вы думаете, подойдет ли раствор сахара и воды?


Если у вас есть время сделать это в классе, вы можете продемонстрировать это практически. Предложите учащимся попробовать соленую воду перед кипячением, а затем предложите им попробовать конденсат. Так они поймут, что испарилась только вода, а в чайнике осталась соль.Вы можете положить лед в небольшой пластиковый пакет, чтобы лед не соскользнул с пластины, но пластина все еще достаточно холодная для конденсации водяного пара. Хранение льда в пластиковом пакете также гарантирует, что тающий лед не капает в стакан, в котором собирается конденсированная вода. Вы также можете использовать химический стакан или стакан с солевым раствором над горелкой Бунзена и использовать холодный кусок стекла или зеркало, чтобы конденсировать воду и собирать ее в другой стакан.

ВОПРОСЫ:

Считаете ли вы, что разделение путем испарения будет хорошим методом разделения водно-солевого раствора, если вы хотите сохранить и соль, и воду? Почему ты так говоришь?



Испарение само по себе не является хорошим методом разделения, если вы хотите сохранить и соль, и воду.Как только вода испаряется, она теряется.

Можете ли вы придумать способ изменить метод, чтобы испаряющаяся вода не терялась? Возможно, следующая диаграмма поможет вам составить план. Напишите объяснение ниже.



На рисунке раствор соленой воды нагревается в чайнике, а металлическая пластина (с небольшим количеством льда внутри, чтобы держать ее внешнюю поверхность холодной) удерживается в водяном паре, выходящем из носика чайника.Водяной пар охлаждается при соприкосновении с холодной металлической пластиной и конденсируется. Затем он стекает с планшета в стакан для сбора. Когда вся вода испарится, соль остается в чайнике. Но в стакане еще есть вода.

Что происходит в чайнике?


Можете ли вы сказать, какое изменение состояния происходит внутри чайника? Как называется процесс?



Жидкая вода превращается в водяной пар.Процесс испарения.

Какое изменение состояния происходит на холодной поверхности металлической пластины? Как называется процесс? (Подсказка: изменение состояния с газа на жидкость было рассмотрено в предыдущей главе, в разделе Физические свойства материалов .)



Водяной пар превращается в жидкую воду.Процесс называется конденсацией.

Соль испаряется вместе с водой? Как бы вы узнали?




Нет. Вы можете почувствовать, что вода соленая до испарения, а не соленая после конденсации. Если кипятить воду до полного испарения, можно увидеть, как образуются кристаллы соли.

Что вы можете сказать о чистоте воды после испарения и конденсации?



Он не имеет соленого вкуса после испарения / конденсации, поэтому мы предполагаем, что он чистый, но в нем могут быть другие вещи, которые мы не можем попробовать.

Некоторые вещи, которые мы не можем обнаружить или попробовать, например, если бы мы использовали морскую воду.

Вода, теряемая при испарении, может быть конденсирована на холодной поверхности. Холодная металлическая пластина справится с этой задачей, но будет трудно восстановить всю конденсированную воду, потому что она будет стекать с поверхности пластины в самых разных местах. У ученых есть решение этой проблемы: они используют особую технику для разделения подобных смесей без потери каких-либо компонентов.Методика перегонки называется .

Дистилляция

Если у вас есть оборудование для настройки процесса дистилляции, вы можете продемонстрировать его в классе. В противном случае вы можете использовать альтернативные материалы и оборудование. Например, если у вас нет конденсатора Либиха, вы можете использовать кусок медной трубы. Вот две ссылки, которые объясняют, как построить собственное оборудование для дистилляции: http: // www.Instructables.com/id/Build-a-Lab-Quality-Distillation-Apparatus/ и http://nukegingrich.files.wordpress.com/2009/06/diy-still.pdf. Еще одно предложение — попросить учащихся также провести исследование, чтобы увидеть, как сделать свой собственный дистилляционный аппарат, в особенности обращая внимание на материалы, которые легче и дешевле найти. Вам не обязательно иметь лабораторное оборудование, чтобы продемонстрировать множество научных экспериментов — многие из них можно просто это делается путем обдумывания материалов, которые вы используете в повседневной жизни, и составления плана! Это также делает науку более доступной для всех.

Дистилляция — это отделение одного вещества от другого путем испарения с последующей конденсацией. Аппарат, используемый в этой технике, называется « Still ».

Экспериментальная установка для перегонки

Предположим, мы хотим разделить воду и соль в морской воде. Мы бы поместили морскую воду в круглую колбу слева на картинке (в колбу для перегонки).Затем мы кипятили морскую воду для получения водяного пара или пара. Соль не испаряется с водой, потому что испаряется только вода. Водяной пар поднимается через верхнюю часть колбы и попадает в конденсатор Либиха.

Два конденсатора Либиха, которые используются в процессе дистилляции http://commons.wikimedia.org/wiki/File:Liebig_condensers-two_2.jpg

Конденсатор Либиха состоит из стеклянной трубки внутри большой стеклянной трубки. Конденсатор устроен таким образом, что холодная вода может течь через пространство между трубками.Это охлаждает поверхность внутренней трубки. Водяной пар конденсируется на этой холодной поверхности и течет в приемную колбу. Поскольку соль не испарилась, она остается в перегонной колбе.

Видео, описывающее, как солнечная энергия еще может опреснять (убирать соль) воду.

Видео о солнечном кадре короткое, но дает интересную тему для обсуждения: применение методов разделения; изобретения; преимущества и недостатки; вы даже можете обсуждать проекты с открытым исходным кодом и делиться информацией.Итальянский изобретатель солнечной батареи Eliodomestico по-прежнему разрабатывал ее для развивающихся стран. Он относительно дешев, прост в сборке и не требует электричества. Он описывается как экодистиллятор, работающий от солнечной энергии. Все, что вам нужно сделать, это налить 5 литров соленой или нечистой воды, закрутить крышку и оставить на солнце. К концу дня из него может быть получена очищенная от бактерий и соленая вода, пригодная для питья. Это также проект с открытым исходным кодом, что означает, что любой может использовать дизайн и воспроизводить, изменять или обновлять его, но не продавать его с целью получения прибыли.

Дистилляция — также лучший способ разделить две жидкости с разными точками кипения, например воду и этанол. Давайте посмотрим.

Это дополнительное задание, или оно может быть выполнено как домашнее задание. Это продолжение того, что учащиеся узнали бы об использовании дистилляции.

ВОПРОСЫ:

Вы можете вспомнить температуру, при которой закипает вода? Запишите это ниже.


Как называется эта температура?


Температура кипения воды.

Этанол кипит при температуре ниже точки кипения воды, а именно 78 ° C.Предположим, вы смешали немного воды и этанола. Смесь для начала находится при комнатной температуре. Теперь предположим, что вы начали нагревать смесь. Какая температура будет достигнута первой: 78 ° C или 100 ° C?


Как вы думаете, что произойдет, когда смесь достигнет температуры 78 ° C? Как вы думаете, этанол закипит?


Учащимся можно напомнить, что этанол по-прежнему остается этанолом, его не меняли в процессе смешивания, поэтому он наверняка закипит при 78 ° C.

Будет ли при этом закипать вода?


Нет. Вода закипает только при 100 ° C. Пока температура ниже 100 ° C, вода не закипает.

Эти вопросы идентичны вопросам, заданным в исходном задании.Они были включены в первоначальную деятельность, чтобы служить введением в концепцию дистилляции.

Мы можем использовать тот же метод дистилляции, который мы использовали для разделения морской воды, чтобы разделить две жидкости. Принцип точно такой же, за исключением того, что мы будем перегонять смесь более одного раза. Вот как это работает:

Смесь двух жидкостей помещают в перегонную колбу и нагревают до самой низкой точки кипения.В случае смеси этанол / вода эта температура будет точкой кипения этанола, а именно 78 ° C. Вся жидкость с этой точкой кипения испарится, конденсируется в конденсаторе Либиха и перейдет в приемную колбу. Жидкость с более высокой точкой кипения останется в перегонной колбе. Предположим, он содержит третье вещество, которое мы хотим отделить. Как бы ты это сделал?



Заменяем приемную колбу на чистую и снова нагреваем перегонную колбу, но на этот раз до точки кипения второй жидкости.Вторая жидкость испарится, конденсируется в холодильнике и перетекает в чистую приемную колбу, оставляя последний компонент смеси в перегонной колбе.

Сырая нефть разделяется на различные компоненты с помощью дистилляции. Компоненты испаряются, начиная с более легкого топлива (которое имеет самую низкую точку кипения), затем реактивного топлива, затем нефти, затем автомобильного масла, пока не останется только смола. Мы называем разделенные компоненты фракциями, а процесс фракционной перегонкой.

Узнайте больше о перегонке сырой нефти в этом видео

Видео о перегонке сырой нефти может быть слишком продвинутым, но в нем достаточно хорошо резюмируется процесс фракционной перегонки и упоминаются актуальные, реальные примеры производимых продуктов. Обратите внимание, что в видео неоднократно упоминаются «углеводороды».Вы можете успокоить учащихся и сказать им, что им пока не важно знать, что это означает. Периодическая таблица рассматривается только в главе 4, но вы можете помочь учащимся «расшифровать», что сырая нефть содержит много частиц водорода gen и частиц углерода , взятых вместе в различных комбинациях (соотношениях). Каждая из фракций, которые в конечном итоге собираются, содержит одну комбинацию углеводородов.

Нам предстоит изучить еще одну технику разделения.Вы замечали, как чернила на бумаге иногда «растекаются» при намокании?

Вы видите, как чернила на этом знаке потекли после намокания, вероятно, из-за дождя? http://www.flickr.com/photos/daquellamanera/4304246279/

Большинство красок представляют собой смесь различных пигментов, смешанных для придания им нужного цвета. Пигмент — это химическое вещество, придающее цвет материалам. Когда смесь содержит цветные соединения, часто можно разделить различные компоненты с помощью метода разделения, называемого хроматографией.Давайте посмотрим на это дальше.

Хроматография

«Хроматография» происходит от греческих слов chroma (что означает «цвет») и graph (что означает «писать»).

Хроматография — это метод разделения окрашенных веществ на отдельные пигменты. Мы собираемся изучить это в следующем расследовании.

Ручка для науки о цвете.

AIM: Для разделения пигментных компонентов в чернилах с использованием различных жидкостей.

Это веселое занятие, которое можно выполнить быстро. Если класс разделен на небольшие группы и каждая группа получает свой черный маркер для экспериментов, хроматограммы могут быть впоследствии повешены на стену, чтобы все могли увидеть и сравнить.Путем поиска совпадающих хроматограмм учащиеся могут сказать, в какой группе использовался маркер одинаковой марки или какие маркеры были заполнены одними и теми же чернилами. Если чернила от определенного маркера не разделяются в одной жидкости, попробуйте использовать другую жидкость в стакане.

Вы можете даже построить историю вокруг расследования: инсценировать тайну убийства, в которой убийца может быть идентифицирован его (или ее) черной ручкой. Используйте три или четыре черных или синих ручки разных марок и создавайте уникальные хроматограммы, связанные с каждой маркой.Чернила могут выглядеть одинаково при использовании для письма, но они будут вести себя по-другому, когда они будут проанализированы с помощью хроматографии.

ГИПОТЕЗА:

Какой вы предлагаете ответ на наш следственный вопрос? Это ваша гипотеза.


Ответ, зависящий от учащегося. Гипотеза может быть такой: «Черные чернила состоят из пигментов разного цвета.’

МАТЕРИАЛЫ И АППАРАТ:

  • впитывающая бумага, нарезанная на полоски шириной примерно 3 см и длиной 12 см

Лабораторная фильтровальная бумага Whatman No. 1 идеально подходит для хроматографии. Как вариант, вы можете использовать кофейные фильтры, акварельную бумагу или полоски бумажного полотенца. Даже обычная копировальная бумага работает, но медленнее и часто из-за этого цвета лучше разделяются.Для более мягкой бумаги вам могут понадобиться более длинные полоски бумаги и более высокие емкости, поскольку жидкость поднимается по бумаге намного быстрее.

  • прозрачный стакан для питья или химический стакан
  • черные ручки и фломастеры в ассортименте
  • водопроводная вода
  • карандаш
  • канцелярская скрепка или прищепка
  • фильтровальная бумага
  • капельница
  • различные жидкие растворители (аммиак, хирургический спирт, метилированный спирт и жидкость для снятия лака)

Растворитель — это вещество, которое растворяет растворенное вещество с образованием раствора.Растворитель обычно представляет собой жидкость, но также может быть твердым или газообразным.

Возможные опасности:

  • Аммиак — это растворенный газ и слабое основание. Маловероятно, что это вызовет ожоги, но пары аммиака могут раздражать слизистые оболочки носа.
  • Хирургический спирт и метанол содержат спирт. Жидкость для снятия лака содержит ацетон. Спирт и ацетон легко воспламеняются, и их следует хранить вдали от источников тепла и огня.Не вдыхайте пары этих растворителей.

Безопасная лабораторная практика чрезвычайно важна. Найдите минутку, чтобы обсудить с учащимися риски, меры предосторожности и безопасность. Обсудите тот факт, что ученым часто приходится иметь дело с опасными веществами и / или оборудованием, чтобы иметь возможность проводить наблюдения.

При работе с аммиаком старайтесь работать в вытяжном шкафу или в хорошо вентилируемом помещении.Оставьте дверь и окна открытыми, чтобы дым не задерживался. Точно так же спиртосодержащие вещества следует использовать в хорошо проветриваемом помещении, но они также легковоспламеняемы, поэтому не используйте их в присутствии открытого огня.

Всегда рекомендуется носить латексные / нитриловые перчатки (можно купить в аптеке), чтобы предотвратить всасывание опасных веществ через кожу. Надевайте защитные очки, чтобы защитить глаза от вредных химикатов.Всегда держите под рукой чистую воду, чтобы промыть глаза или мыть руки, если химические вещества разбрызгиваются или проливаются.

Тщательная лабораторная практика не только обеспечит вашу безопасность, но и станет хорошим примером для учащихся.

МЕТОД:

Сделать стрип-хроматограмму

  1. С помощью черной ручки или маркера нарисуйте линию на одном конце бумажной полоски на расстоянии 2 см от конца.
  2. Налейте в стакан водопроводную воду на глубину примерно 1 см.
  3. Оберните немаркированный конец бумажной полоски вокруг карандаша и закрепите его скрепкой.
  4. Перед тем, как положить ее в стакан, отрегулируйте полоску бумаги так, чтобы линия с чернилами была примерно на 1 см над поверхностью жидкости, прижимая ее к внешней стороне стакана.
  5. Опустите полоску в стакан и положите карандаш на верхнюю часть стекла, как показано на схеме.Конец полоски должен быть в воде, но нарисованная линия должна быть над поверхностью воды.
  6. Дайте жидкости впитаться в бумагу, поднимаясь по линии с чернилами.

  7. Когда мигрирующие пигменты приблизятся к верху полоски, рядом со скрепкой, удалите полоску бумаги и дайте ей высохнуть на плоской непористой поверхности.
  8. Сделайте аналогичную стрип-хроматограмму для каждой из собранных черных ручек.
  9. Сравните хроматограммы. Они такие же или разные?
  10. Когда вы закончите сравнивать свою хроматограмму с хроматограммой остального класса, вы можете либо прикрепить свою хроматограмму в поле ниже, либо нарисовать ее изображение в этой области.

Вы также можете использовать прищепку, чтобы удерживать полоску на месте во время сушки.

Сделать круговую хроматограмму

  1. Положите большой круглый кусок фильтровальной бумаги на гладкую неабсорбирующую поверхность, например, на поверхность стола.
  2. Используйте одну из цветных ручек, чтобы нарисовать чернильное пятно размером 0,5–1 см в центре диска.
  3. Положите бумажный диск на верхнюю часть стакана.
  4. Поместите каплю воды в центр чернильного пятна.
  5. Добавляйте по капле воды примерно каждую минуту, чтобы хроматограмма растекалась по краям бумажного диска.

  6. Повторите эксперимент с одним из других растворителей (нашатырный спирт, спирт или жидкость для снятия лака).

НАБЛЮДЕНИЯ:

Две хроматограммы выглядят одинаково или по-разному? Если они выглядят по-разному, и вы использовали одну и ту же ручку, как вы думаете, почему?



Какие цветные пигменты вы наблюдали?



Нарисуйте изображения ваших хроматограмм в поле ниже.

ВЫВОД:

Что вы можете сделать о пигментах, входящих в состав черных чернил?



Учащимся следует учесть, что черные чернила на самом деле состоят из ряда пигментов разного цвета.

Подробнее о том, как это работает:

В бумажной хроматографии жидкость проходит через бумажные волокна. Но почему пигменты в чернилах разделяются на полосы разного цвета?

Пигменты чернил уносятся жидкостью, но, поскольку это разные соединения, они уносятся вверх с разной скоростью.Это приводит к тому, что они появляются на хроматограмме в виде полос разного цвета.

Посмотрите на изображение хроматограммы ниже.

Пример стрип-хроматограммы http://commons.wikimedia.org/wiki/File:TLC_black_ink.jpg

Какой цветной пигмент движется вверх по бумаге с максимальной скоростью? Почему ты так говоришь?



Желтый пигмент движется быстрее всего, потому что он прошел самое большое расстояние.

Какой цветной пигмент движется вверх по бумаге с наименьшей скоростью?



Зеленый пигмент движется медленнее всего, потому что он прошел кратчайшее расстояние.

Почему разные пигменты переносятся с разной скоростью?

Пигменты перемещаются с разной скоростью из-за различий в их свойствах: большие частицы пигмента имеют тенденцию двигаться медленнее.Кроме того, частицы, которые хорошо растворяются в жидкости, будут стремиться оставаться в жидкости и быстро уноситься наверх, в то время как частицы, которые хорошо связываются с бумагой, будут двигаться медленнее.

Черный действительно черный? (видео)

Теперь, когда мы узнали о некоторых различных способах разделения смесей, мы собираемся применить то, что мы знаем, для разделения смеси, состоящей из многих компонентов.

Некоторые школы также используют комбо-тарелки для различных практических заданий по Материи и Материалам. Это приветствуется, и упражнения в этих рабочих тетрадях можно немного скорректировать для работы с любым оборудованием и приборами, доступными вам в вашей школе.

Кроме того, если учащиеся сочтут блок-схему слишком сложной на этом этапе, вы можете в качестве альтернативы попросить их записать шаги, которые они будут выполнять, чтобы разделить все материалы в смеси, и почему они выбрали каждый метод разделения.

Представьте, что вы член группы ученых, работающих вместе в лаборатории. Ваша команда получила важную работу. Вам дали стакан со смесью веществ для разделения.

Смесь содержит следующие компоненты:

  • песок
  • опилки железные
  • соль
  • этанол
  • вода

Ваша задача — разработать процедуру разделения смеси на отдельные компоненты.Как бы Вы это сделали? Ваша процедура должна быть представлена ​​в виде блок-схемы.

Перед тем, как начать, представьте, как будет выглядеть смесь. Нарисуйте изображение прозрачного контейнера и различного содержимого смеси в пространстве.

Это может быть трудной задачей для учащихся, но для учащихся очень важно иметь возможность визуализировать смесь, прежде чем они начнут планировать эксперимент.В противном случае идеи останутся абстрактными, и у учащихся могут возникнуть трудности с правильной последовательностью различных этапов разделения. Вы можете направить их, задав следующие вопросы. В качестве альтернативы вы можете приготовить смесь, чтобы они посмотрели на нее, прежде чем рисовать:

  • Как выглядит контейнер? Нарисуйте это на своей странице.
  • Какие жидкости находятся в контейнере? (Этанол и вода). Теперь нарисуйте емкость со смесью этанола и воды.Сможете ли вы увидеть этанол И воду, когда они будут смешаны? (Нет, в контейнере они будут выглядеть как жидкость.)
  • Теперь добавьте песок. Смешается ли он с водой или опустится на дно? (Большая часть опустится на дно.)
  • Теперь добавьте железные опилки. Смешается ли он с водой или опустится на дно? (Он опустится на дно.)
  • Теперь добавьте соль. Соль опустится на дно или растворится в воде? (Он растворился бы в воде.) Сможем ли мы увидеть его, если бы он растворился в воде? (№)

Чтобы помочь вам разработать процедуру, вот несколько наводящих вопросов и шаблон для вашей блок-схемы:

Каково физическое состояние (твердое, жидкое или газообразное) каждого из компонентов смеси? Заполните их в таблице.

Компонент (вещество)

Состояние (твердое, жидкое или газообразное)

Растворенные или нерастворенные?

Компонент (субстанция)

Состояние (твердое, жидкое или газообразное)

Растворенные или нерастворенные?

Утюг

твердый

нерастворенный

Песок

твердый

нерастворенный

Соль

твердый

растворено

Этанол

жидкость

растворяется (в растворе с водой и солью)

Вода

жидкость

растворенный (в растворе этанола и соли)

Назовите твердые вещества, которые не растворяются в смеси.Это нерастворенные твердые вещества.


Песок и железная стружка не растворяются.

Назовите растворенные твердые вещества в смеси.

Соль — единственное растворенное твердое вещество.

Какой метод является наилучшим для отделения нерастворенных твердых частиц от жидкостей в смеси? Напишите название этого метода в блоке под номером 1 на блок-схеме ниже.

Учащиеся должны записать ФИЛЬТРАЦИЮ в блоке 1.

Напишите названия нерастворенных твердых веществ в блоке 2 блок-схемы.

Учащиеся должны написать ПЕСКУ и ЖЕЛЕЗА в блоке 2.

Что остается после удаления нерастворенных твердых частиц из смеси? Напишите названия этих соединений в блоке 3.

Учащиеся должны написать СОЛЬ, ЭТАНОЛ и ВОДА в блоке 3.

Как мы могли отделить нерастворенные твердые частицы? (Подсказка: посмотрите на блок-схему для некоторых идей.) Напишите название этого процесса в блоке 4.

Учащиеся должны написать МАГНИТНОЕ РАЗДЕЛЕНИЕ в блоке 4.

Напишите названия двух нерастворенных твердых веществ в блоках 6 и 7.

Учащиеся должны записать ЖЕЛЕЗНЫЕ ПЕЧАТИ в блоке 6 и ПЕСОК в блоке 7.

Как мы могли отделить жидкости от растворенного твердого вещества? Мы могли бы испарить их, но тогда они были бы потеряны.Какой еще вариант доступен, если мы хотим разделить компоненты в решении? Напишите название этого процесса в блоке 5.

Учащиеся должны написать ДИСТИЛЛЯЦИЯ в блоке 5.

Какую жидкость следует перегонять в первую очередь? (Подсказка: какая жидкость имеет самую низкую точку кипения?) Напишите название этой жидкости в блоке 8.

Учащиеся должны написать ЭТАНОЛ в блоке 8.

Что остается в растворе после удаления первой жидкости? Напишите названия этих компонентов в блоке 9.

Учащиеся должны написать ВОДА и СОЛЬ в блоке 9.

Как отделить жидкость от растворенного твердого вещества? (Подсказка: этот процесс такой же, как и в блоке 7.) Напишите название процесса в блоке 10.

Учащиеся должны написать ДИСТИЛЛЯЦИЯ в блоке 10.

Запишите названия двух последних компонентов в блоках 11 и 12.

Учащиеся должны написать ВОДА в блоке 11 и СОЛЬ в блоке 12.

Заполненная блок-схема должна выглядеть следующим образом:

До сих пор мы обсуждали материалы, их свойства, способы их смешивания и способы их разделения, если они смешаны. Последний раздел этой главы посвящен отходам и тому, что мы можем сделать, чтобы уменьшить их воздействие на окружающую среду.

Определение мрачности по Merriam-Webster

\ ˈBlēk \

1 : открытые и бесплодные, часто продуваемые ветрами мрачный пейзаж мрачные почвы

2 : холодное, сырое мрачный ноябрьский вечер 3а : недостаток тепла, жизни или доброты : мрачный мрачный документальный фильм о тюрьме б : не обнадеживает и не обнадеживает : удручает мрачный прогноз мрачный прогноз будущее выглядит мрачным

c : строго простой или строгий мрачный гостиничный номер

лучших детских фильмов на зеленую тему | Наука

«Они не только мчатся по всему миру — они мчатся, чтобы спасти мир», — говорится в трейлере нового фильма « Тачки 2 ».Анимационный фильм — это последний детский фильм с экологической составляющей: герои, пропагандирующие альтернативные виды топлива, будут встречаться с крупными нефтяными злодеями, когда фильм появится сегодня в кинотеатрах. Мы составили список десяти лучших детских фильмов, которые рассказывают о защите окружающей среды.

1) FernGully: Последний тропический лес — Этот анимационный фильм 1992 года изображает волшебный тропический лес, населенный феями, но которому угрожают разрушительные лесорубы.Когда лесорубы срубят дерево и освободят злого духа Хексуса, Криста, главный герой феи, и ее друзья (включая лесоруба Зака, которого Криста уменьшила до миниатюрных размеров, чтобы спасти ему жизнь) должны найти способ победить любящих загрязнение демона и спасти свой дом. Послание фильма является откровенным защитником природы, злодеем разрушающих людей и побуждающим зрителей делать все возможное, чтобы сохранить пустынные районы, все еще оставшиеся на Земле.

2) WALL-E — Действие этого популярного фильма 2008 года происходит через 700 лет в будущем, когда Земля превратилась в заброшенный, заваленный мусором город-призрак.Робот ВАЛЛ-И кажется последним разумным существом на планете, поскольку все люди сбежали на гигантские космические корабли, которые парят в открытом космосе. Однажды на Землю приходит один из этих кораблей, привозящий с собой продвинутого робота EVE, в которого влюбляется ВАЛЛ-И. Он следует за ней обратно в космос, и его приключения там в конечном итоге убеждают людей, что они должны вернуться на Землю. Состояние Земли в фильме побуждает зрителей обратить внимание на то, как их действия влияют на окружающую среду, и предупреждает о том, что может случиться, если они этого не сделают.

3) Bambi — Классический анимационный фильм 1942 года рассказывает историю молодого оленя и его друзей, которые живут в лесу, которому угрожают охотники. Когда Бэмби еще олененок, его мать убита одним из тех охотников, и он должен расти без нее. Бэмби и его друзья становятся старше, и он влюбляется в другого оленя, Фалину. Все выглядит радужно до следующего дня, когда лес загорается и на Фалину нападают охотничьи собаки.Бэмби может спасти ее, и пара в конце концов сбегает на остров в озере, где они живут (по крайней мере, мы ожидаем) долго и счастливо. Сцена гибели мамы Бэмби заставила бы даже самого закаленного охотника задуматься о том, чтобы положить свое ружье.

4) Over the Hedge Когда лесные животные, главные герои в Over the Hedge (2006) , просыпаются от спячки, они понимают, что половина их леса была уничтожена и заменена пригородом район, скрытый за гигантской живой изгородью.Животные, особенно енот RJ, выплачивающий долг разъяренному черному медведю, пытаются выжить, воруя еду у людей, живущих по ту сторону живой изгороди. Сюжет вращается больше вокруг взаимодействий между животными, чем сообщения об окружающей среде, но некоторые острые комментарии безошибочно значимы: «Это внедорожник», — говорит Р.Дж. в трейлере. «Такое большое!» отвечают животные. «Сколько людей там поместилось?» Ответ RJ бесценен: «Обычно… один».

5) Hoot — Этот фильм 2006 года, основанный на романе Карла Хайасена, рассказывает о приключениях трех учеников средней школы, которые пытаются защитить редкую породу сов, находящихся под угрозой исчезновения.Главный герой, Рой, только что переехал во Флориду из Монтаны и быстро подружился с Беатрис и ее прогуливавшимся сводным братом «Пальцы кефали». Эти трое намеревались сорвать жадного генерального директора в его строительстве блинного ресторана на пустыре, где живут редкие совы. Не совсем фильм, отмеченный наградами, но определенно тот, который побуждает детей задуматься о взаимосвязи между людьми, развитием и дикой природой.

6) Star Trek IV: The Voyage Home — Можно ли считать этот фильм 1986 года фильмом для детей — вопрос спорный, но его экологический подтекст очевиден.Сейчас 2286 год, и к Земле приближается странный зонд, посылающий сигналы, которые, по мнению Спока, совпадают с криками вымершего горбатого кита. Зонд сеет хаос на Земле, поэтому экипаж USS Enterprise решает вернуться в 1986 год, где они находят двух китов в аквариуме Сан-Франциско. Куратор объясняет членам экипажа, почему киты находятся под угрозой исчезновения. Они уносят китов с собой в будущее и выпускают их в залив Сан-Франциско, где гигантские млекопитающие отвечают на сигнал зонда и останавливают разрушение.Логично? Возможно, нет. Но с экологическим посланием? Вероятнее всего.

7) Free Willy — Еще один фильм с китами и экологическим посланием, Free Willy стал хитом 1993 года. В нем рассказывается о мальчике, который дружит с недавно пойманным китом-косаткой в ​​местном аквариуме / парке развлечений. Мальчик, Джесси, и кит, Вилли, связаны друг с другом, но Вилли в опасности, потому что он плохо выполняет трюки и поэтому не зарабатывает много денег для парка.Владелец парка и его друзья угрожают убить Вилли, поэтому Джесси решает выпустить кита в дикую природу. Нет никаких сомнений в том, что злодеи в этом фильме — владелец парка, который эксплуатирует животных, и китобои, которые ловят Вилли, — или сообщение о том, что диких животных лучше оставить в покое.

8) Disneynature’s Oceans — Хотя и немного более тонкие, чем некоторые другие фильмы в этом списке, «Океаны» все же оказывают влияние. Документальный фильм, выпущенный в День Земли в 2010 году, посвящен подводному миру, который покрывает три четверти нашей планеты.Хотя документальный фильм посвящает большую часть своего времени изображению странных, прекрасных и красивых форм жизни, которые могут предложить океаны, документальный фильм не упускает своего шанса показать негативные последствия, которые человеческие действия могут иметь для дикой природы, и призвать зрителей уважать природу.

9) Аватар Опять же, спорный вопрос, детский ли это фильм, но это явно фильм с экологической тематикой. Солдат с параличом нижних конечностей путешествует на планету Пандора, где он в форме своего аватара интегрируется с коренным народом нави.Предполагается, что он поможет завоевать чужую землю, но вскоре оказывается на стороне нави. В этом фильме 2009 года много тем, но среди них — уважение к окружающей среде (продемонстрированное грациозной Нави), наша абсолютная зависимость от природы и разрушительной природы людей и того, как она влияет на планету.

10) Happy Feet — Главный посыл этого диснеевского фильма 2006 года заключается в том, что отличаться — это нормально, но экологические темы тоже не обходятся без внимания.Фильм фокусируется на молодом пингвине, Мамбле, который умеет танцевать чечетку, чего не может сделать ни один из других пингвинов. Он следует за его приключениями и поисками признания на протяжении всего сюжета, но экологический аспект проявляется, когда Мамбла обвиняют в нехватке рыбы в океане, что является намеком на чрезмерный вылов рыбы. Вдобавок один из друзей Мамбла носит набор пластиковых колец из шести упаковок на шее, как украшения, только для того, чтобы позже задохнуться от мусора. «Счастливые ноги» — это пример того, как окружающая среда проявляется в фильмах, которые не имеют прямого отношения к окружающей среде.

Зеленая тема в фильмах — явная тенденция в последнее время. Какие еще детские фильмы об окружающей среде мы пропустили?

Сделайте анемометр для измерения скорости ветра

Убедитесь, что в вашем браузере включен JavaScript. Если вы оставите отключенным JavaScript, вы получите доступ только к части предоставляемого нами контента. Вот как.

3-я

2-3 студента

40 минут

40 минут

Погода и атмосфера

Ветер, скорость, измерения

  • Что такое анемометр и что он измеряет
  • Понять взаимосвязь между скоростью ветра и скоростью вращения анемометра

Бен Финио, доктор философии, приятели науки

Обзор

Помогите начинающим метеорологам в вашем классе научиться измерять скорость ветра, построив собственные анемометры (измерители скорости ветра) из бумажных стаканчиков и соломинок.Затем проведите простой эксперимент, в котором учащиеся изменяют «скорость ветра» с помощью вентилятора и измеряют, как быстро вращается их анемометр.

Выравнивание NGSS

Этот урок помогает студентам подготовиться к выполнению следующих требований в отношении научных стандартов нового поколения:
  • 3-ESS2-1. Представляйте данные в таблицах и графических дисплеях для описания типичных погодных условий, ожидаемых в течение определенного сезона.
Этот урок посвящен следующим аспектам трехмерного обучения NGSS:
Наука и инженерные практики Основные дисциплинарные идеи Сквозные концепции
Планирование и проведение расследований.Сделайте прогнозы относительно того, что произойдет, если переменная изменится.

Анализ и интерпретация данных. Представляйте данные в таблицах и на различных графических дисплеях (гистограммы и пиктограммы), чтобы выявить закономерности, указывающие на взаимосвязи.

ESS2.D: Погода и климат. Ученые записывают модели погоды в разное время и в разных регионах, чтобы они могли делать прогнозы о том, какая погода может произойти дальше.
Узоры.Шаблоны изменений можно использовать для прогнозов.

Материалы


На весь класс:

  • Вентилятор с регулируемой скоростью
  • Пуансоны на одно отверстие для лап
  • Секундомер
  • Маркеры

Для каждой группы студентов:

  • бумажные стаканчики на 3 унции (5)
  • Соломка (2)
  • Канцелярская кнопка
  • Заостренный карандаш с ластиком

Обзоры

Будьте первым, кто пересмотрит этот план урока.

3-я

2-3 студента

40 минут

40 минут

Погода и атмосфера

Ветер, скорость, измерения

Бен Финио, доктор философии, приятели науки

  • Что такое анемометр и что он измеряет
  • Понять взаимосвязь между скоростью ветра и скоростью вращения анемометра

Ознакомьтесь с нашими научными видео

Разноцветные паттерны тающих ледяных шариков — STEM Activity

Скользкие склоны — STEM-деятельность

Как приготовить зубную пасту для слона

.

0 comments on “Использование ветра человеком сообщение 6 класс: сообщение на тему <<использование ветра человеком>>

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *