Источники энергии солнца – Солнечная энергетика — Википедия

Солнечная энергетика — Википедия

Карта солнечного излучения

Солнечная энергетика — направление альтернативной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии[1] и является «экологически чистой», то есть не производящей вредных отходов во время активной фазы использования[2]. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии. Гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой или солью для последующего использования нагретой воды для отопления, горячего водоснабжения или в паровых электрогенераторах). В качестве особого вида станций гелиотермальной энергетики принято выделять солнечные системы концентрирующего типа (CSP — Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч света. Этот луч используется как источник тепловой энергии для нагрева рабочей жидкости.

Карта солнечного излучения — Европа

Поток солнечного излучения, проходящий через площадку в 1 м², расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (на входе в атмосферу Земли), равен 1367 Вт/м² (солнечная постоянная). Из-за поглощения, при прохождении атмосферной массы Земли, максимальный поток солнечного излучения на уровне моря (на Экваторе) — 1020 Вт/м². Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную горизонтальную площадку как минимум в π раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раза меньше.

Возможная выработка энергии уменьшается из-за глобального затемнения — уменьшения потока солнечного излучения, доходящего до поверхности Земли.

Достоинства[править | править код]

  • Перспективность, доступность и неисчерпаемость источника энергии в условиях постоянного роста цен на традиционные виды энергоносителей.
  • Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки[править | править код]

  • Зависимость от погоды и времени суток[3].
  • Сезонность в средних широтах и несовпадение периодов выработки энергии и потребности в энергии. Нерентабельность в высоких широтах, необходимость аккумуляции энергии.
  • При промышленном производстве — необходимость дублирования солнечных энергетических установок традиционными сопоставимой мощности.
  • Высокая стоимость конструкции, связанная с применением редких элементов (к примеру, индий и теллур).
  • Необходимость периодической очистки отражающей/поглощающей поверхности от загрязнения.
  • Нагрев атмосферы над электростанцией.
  • Необходимость использования больших площадей[3].
  • Сложность производства и утилизации самих фотоэлементов в связи с содержанием в них ядовитых веществ, например, свинец, кадмий, галлий, мышьяк и т. д.[3].
Годовая выработка электроэнергии в мире на СЭС
ГодЭнергия ГВт·чГодовой приростДоля от всей
20042,60,01 %
20053,742 %0,02 %
20065,035 %0,03 %
20076,836 %0,03 %
200811,468 %0,06 %
200919,369 %0,10 %
201031,463 %0,15 %
201160,693 %0,27 %
201296,760 %0,43 %
2013134,539 %0,58 %
2014185,938 %0,79 %
2015253,036 %1,05 %
2016301,033 %1,3 %
Источник — BP Statistical Review of World Energy, 2015, 2017[4][5][6]

В 1985 году все установленные мощности мира составляли 0,021 ГВт.

В 2005 году производство фотоэлементов в мире составляло 1,656 ГВт.

На начало 2010 года общая мировая мощность фотоэлементной солнечной энергетики составляла лишь около 0,1 % общемировой генерации электроэнергии[7].

В 2012 году общая мощность мировых гелиоэнергетических установок выросла на 31 ГВт, превысив 100 ГВт.

Крупнейшие производители фотоэлементов в 2012 году[8]:

  1. Yingli — 2300 МВт
  2. First Solar — 1800 МВт
  3. Trina Solar — 1600 МВт
  4. Canadian Solar — 1550 МВт
  5. Suntech — 1500 МВт
  6. Sharp — 1050 МВт
  7. Jinko Solar — 900 МВт
  8. SunPower — 850 МВт
  9. REC Group — 750 МВт
  10. Hanwha SolarOne — 750 МВт

В 2013 году глобально было установлено 39 ГВт фотоэлектрических мощностей. В результате общая мощность фотоэлектрических установок на начало 2014 года оценивалась в 139 ГВт[9].

Лидером по установленной мощности является Евросоюз

[10], среди отдельных стран — Китай. По совокупной мощности на душу населения лидер — Германия.

В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии[11].

В 2011 году около 3 % электроэнергии Италии было получено из фотоэлектрических установок[12].

В декабре 2011 года на Украине завершено строительство последней, пятой, 20-мегаваттной очереди солнечного парка в Перово, в результате чего его суммарная установленная мощность возросла до 100 МВт[13]. Солнечный парк Перово в составе пяти очередей стал крупнейшим парком в мире по показателям установленной мощности. За ним следуют канадская электростанция Sarnia (97 МВт), итальянская Montalto di Castro (84,2 МВт) и немецкая Finsterwalde (80,7 МВт). Замыкает мировую пятерку крупнейших фотоэлектрических парков — 80-мегаваттная электростанция Охотниково в Сакском районе Крыма.

В 2018 г. Саудовская Аравия заявила о намерении построить крупнейшую в мире солнечную электростанцию мощностью 200 ГВт

[14].

Рабочие места[править | править код]

В середине 2011 года в фотоэлектрической промышленности Германии было занято более 100 тысяч человек. В солнечной энергетике США работали 93,5 тысяч человек[15].

Перспективы солнечной электроэнергетики[править | править код]

В мире ежегодный прирост энергетики за последние пять лет составлял в среднем около 50 %[16]. Полученная на основе солнечного излучения энергия гипотетически сможет к 2050 году обеспечить 20—25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов — или 20—25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно[7].

Перспективы использования солнца для получения электричества ухудшаются из-за высоких издержек. Так, СТЭС Айвонпа обходится вчетверо дороже, а генерирует гораздо меньше электроэнергии, по сравнению с газовыми электростанциями. По подсчётам экспертов, в будущем электроэнергия, вырабатываемая этой станцией, будет стоить вдвое дороже, чем получаемая от обычных источников энергии, а расходы, очевидно, будут переложены на потребителей

[17].

Тем не менее, по прогнозам, себестоимость генерации электроэнергии солнечными электростанциями к 2020 году снизится до себестоимости генерации с использованием ископаемого топлива и переход к использованию солнечных электростанций станет экономически выгодным[18].

Из-за своей низкой эффективности, которая в лучшем случае достигает 20 процентов, солнечные батареи сильно нагреваются. Остальные 80 процентов энергии солнечного света нагревают солнечные батареи до средней температуры порядка 55 °C. С увеличением температуры фотогальванического элемента на 1°, его эффективность падает на 0,5 %. Эта зависимость не линейна и повышение температуры элемента на 10° приводит к снижению эффективности почти в два раза. Активные элементы систем охлаждения (вентиляторы или насосы) перекачивающие хладагент, потребляют значительное количество энергии, требуют периодического обслуживания и снижают надёжность всей системы. Пассивные системы охлаждения обладают очень низкой производительностью и не могут справиться с задачей охлаждения солнечных батарей

[19].

С помощью солнечного света можно освещать помещения в дневное время суток. Для этого применяются световые колодцы. Простейший вариант светового колодца — отверстие в потолке юрты. Световые фонари применяются для освещения помещений, не имеющих окон: подземные гаражи, станции метро, промышленные здания, склады, тюрьмы, и т. д. Световой колодец диаметром 300 мм способен освещать площадь 8 м². Один колодец позволяет в европейских условиях предотвратить ежегодный выброс в атмосферу до 7,4 тонн СО

2. Световые колодцы с оптоволокном разработаны в 2004 году в США. В верхней части такого колодца применяются параболические коллекторы. Применение солнечных колодцев позволяет сократить потребление электроэнергии, в зимнее время — сократить дефицит солнечного света у людей, находящихся в здании[20].

Солнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы производятся из доступных материалов: сталь, медь, алюминий и т. д., то есть без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и произведенной на нём энергии. В настоящее время именно солнечный нагрев воды является самым эффективным способом преобразования солнечной энергии.

В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09—$0,12 за кВт·ч. Департамент Энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04—$0,05 к 2015—2020 г.

В 2007 году в Алжире началось строительство гибридных электростанций. В дневное время суток электроэнергия производится параболическими концентраторами, а ночью из природного газа.

На начало 2010 года общая мировая мощность солнечной термальной энергетики (концентраторных солнечных станций) достигла одного гигаватта[7]. К 2020 году страны Евросоюза планируют построить 26,3 ГВт солнечных термальных мощностей[21].

Солнечная жаровня

Солнечные коллекторы могут применяться для приготовления пищи. Температура в фокусе коллектора достигает 150 °С. Такие кухонные приборы могут широко применяться в развивающихся странах. Стоимость материалов необходимых для производства простейшей «солнечной кухни» составляет $3—$7.

Традиционные очаги для приготовления пищи имеют термическую эффективность около 10 %. В развивающихся странах для приготовления пищи активно используются дрова. Использование дров для приготовления пищи приводит к массированной вырубке лесов и вреду для здоровья. Например, в Индии от сжигания биомассы ежегодно поступает в атмосферу более 68 млн тонн СО2. В Уганде среднее домохозяйство ежемесячно потребляет 440 кг дров. Домохозяйки при приготовлении пищи вдыхают большое количество дыма, что приводит к увеличению заболеваемости дыхательных путей. По данным Всемирной организации здравоохранения в 2006 году в 19 странах южнее Сахары, Пакистане и Афганистане от заболеваний дыхательных путей умерло 800 тысяч детей и 500 тысяч женщин.

Существуют различные международные программы распространения солнечных кухонь. Например, в 2008 г. Финляндия и Китай заключили соглашение о поставках 19 000 солнечных кухонь в 31 деревню Китая. Это позволит сократить выбросы СО2 на 1,7 млн тонн в 2008—2012 гг. В будущем Финляндия сможет продавать квоты на эти выбросы.

Использование солнечной энергии в химическом производстве[править | править код]

Солнечная энергия может применяться в различных химических процессах. Например:

  • Израильский Weizmann Institute of Science в 2005 году испытал технологию получения неокисленного цинка в солнечной башне. Оксид цинка в присутствии древесного угля нагревался зеркалами до температуры 1200 °С на вершине солнечной башни. В результате процесса получался чистый цинк. Далее цинк можно герметично упаковать и транспортировать к местам производства электроэнергии. На месте цинк помещается в воду, в результате химической реакции получается водород и оксид цинка. Оксид цинка можно ещё раз поместить в солнечную башню и получить чистый цинк. Технология прошла испытания в солнечной башне канадского Institute for the Energies and Applied Research.
  • Швейцарская компания Clean Hydrogen Producers (CHP) разработала технологию производства водорода из воды при помощи параболических солнечных концентраторов. Площадь зеркал установки составляет 93 м². В фокусе концентратора температура достигает 2200°С. Вода начинает разделяться на водород и кислород при температуре более 1700 °С. За световой день 6,5 часов (6,5 кВт·ч/кв.м.) установка CHP может разделять на водород и кислород 94,9 литров воды. Производство водорода составит 3800 кг в год (около 10,4 кг в день).

Водород может использоваться для производства электроэнергии, или в качестве топлива на транспорте.

Беспилотный самолёт NASA Pathfinder Helios с фотоэлементами на крыльях

Фотоэлектрические элементы могут устанавливаться на различных транспортных средствах: лодках, электромобилях и гибридных автомобилях, самолётах, дирижаблях и т. д.

Фотоэлектрические элементы вырабатывают электроэнергию, которая используется для бортового питания транспортного средства или для электродвигателя электрического транспорта.

В Италии и Японии фотоэлектрические элементы устанавливают на крыши железнодорожных поездов. Они производят электричество для кондиционеров, освещения и аварийных систем.

Компания Solatec LLC продаёт тонкоплёночные фотоэлектрические элементы для установки на крышу гибридного автомобиля Toyota Prius. Тонкоплёночные фотоэлементы имеют толщину 0,6 мм, что никак не влияет на аэродинамику автомобиля. Фотоэлементы предназначены для зарядки аккумуляторов, что позволяет увеличить пробег автомобиля на 10 %.

В 1981 году летчик Paul Beattie MacCready совершил полет на самолёте Solar Challenger[en], питающемся только солнечной энергией, преодолев расстояние в 258 километров со скоростью 48 км/час[22]. В 2010 году солнечный пилотируемый самолет Solar Impulse продержался в воздухе 24 часа. Военные испытывают большой интерес к беспилотным летательным аппаратам (БПЛА) на солнечной энергии, способным держаться в воздухе чрезвычайно долго — месяцы и годы. Такие системы могли бы заменить или дополнить спутники.

  1. Калифорнийская электростанция «Million Solar Roofs» суммарной мощностью 3 ГВт 15.12.2005
  2. ↑ Геополитика солнца (неопр.). Частный Корреспондент. chaskor.ru (22 ноября 2008). Дата обращения 22 ноября 2008. Архивировано 22 августа 2011 года.
  3. 1 2 3 Лапаева Ольга Федоровна. Трансформация энергетического сектора экономики при переходе к энергосберегающим технологиям и возобновляемым источникам энергии (рус.) // Вестник Оренбургского государственного университета. — 2010. — Вып. 13 (119).
  4. ↑ BP Statistical Review of World Energy June 2015, Renewables section, BP (June 2015).
  5. ↑ BP Statistical Review of World Energy June 2015, Electricity section, BP (June 2015).
  6. ↑ Статистическое обозрение Всемирной энергетической организации 2017 года, BP (June 2017).
  7. 1 2 3 BFM.RU Солнечные технологии обеспечат четверть электричества.
  8. ↑ Graph of the Day: World’s top ten solar PV suppliers. 15 April 2013// RE neweconomy
  9. ↑ http://www.ren21.net/Portals/0/documents/Resources/GSR/2014/GSR2014_full%20report_low%20res.pdf
  10. Геро Рютер, Андрей Гурков. Мировая солнечная энергетика: переломный год (неопр.). Deutsche Welle (29 мая 2013). Дата обращения 15 июня 2013. Архивировано 19 июня 2013 года.
  11. Paul Gipe Spain Generated 3 % of its Electricity from Solar in 2010 28 Январь 2011 г
  12. Paul Gipe Italy Passes 7,000 MW of Total Installed Solar PV 22 Июль 2011 г.
  13. ↑ Activ Solar построила в Крыму крупнейшую солнечную электростанцию в мире (неопр.) (недоступная ссылка). Дата обращения 2 марта 2012. Архивировано 19 июня 2013 года.
  14. ↑ Deutsche Welle 30.03.2018 Саудовская Аравия заменит нефть солнечными батареями
  15. Stephen Lacey Green Jobs Are Real: German and American Solar Industry Both Employ More People Than U.S. Steel Production 17 Июнь 2011 г.
  16. Дмитрий Никитин. Трудный путь к солнцу: согреет ли Россию солнечная энергетика (неопр.). РБК (17 июня 2013). Дата обращения 15 июня 2013.
  17. Кассандра Суит (перевёл Алексей Невельский). Гигантская солнечная электростанция в Калифорнии убивает птиц.. Гелиотермальная станция стоимостью $2,2 млрд может стать последним таким проектом: она нагревает воздух до 540 градусов по Цельсию, регуляторы и биологи считают это причиной смерти десятков птиц (рус.). Ведомости, перевод из The Wall Street Journal (13 февраля 2014). Дата обращения 6 июня 2016.
  18. ↑ Органическое топливо — на свалку истории? // Наука и жизнь. — 2018. — № 3. — С. 65.
  19. David Szondy. Stanford researchers develop self-cooling solar cells. (англ.). gizmag.com (25 July 2014). Дата обращения 6 июня 2016.
  20. ↑ BBC News — Alfredo Moser: Bottle light inventor proud to be poor
  21. Tildy Bayar Solar Thermal Holds Steady in Europe 15 Октябрь 2012 г.
  22. ↑ Britannica Book of the Year 2008: «MacCready, Paul Beattie», page 140
  • Д. Мак-Вейг Применение солнечной энергии. — М.: Энергоиздат, 1981. — Тираж 5 600 экз. — 210 с.
  • Умаров Г. Я.; Ершов А. А. Солнечная энергетика. — М.: Знание, 1974. — 64 с.
  • Алексеев В. В.; Чекарев К. В. Солнечная энергетика. — М.: Знание, 1991. — 64 с.

ru.wikipedia.org

Солнце и солнечная энергия. Строение Солнца. Характеристики Солнца.



Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце – это не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

С момента появления на земле человек начал использовать энергию солнца. По археологическим данным известно, что для жилья предпочтение отдавали тихим, закрытым от холодных ветров и открытых солнечным лучам местам.

Пожалуй, первой известной гелиосистемой можно считать статую Аменхотепа III, относящуюся к XV веку до н.э. Внутри статуи располагалась система воздушных и водяных камер, которые под солнечными лучами приводили в движение спрятанный музыкальный инструмент. В Древней Греции поклонялись Гелиосу. Имя этого бога сегодня легло в основу многих терминов, связанных с солнечной энергетикой.

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей населения Земли становится сейчас все более насущной.

Общие сведения о Солнце

Солнце – центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса G2.

Характеристики Солнца

  • Масса MS~2*1023 кг
  • RS~629 тыс. км
  • V= 1,41*1027 м3, что почти в 1300 тыс. раз превосходит объем Земли,
  • средняя плотность 1,41*103 кг/м3,
  • светимость LS=3,86*1023 кВт,
  • эффективная температура поверхности (фотосфера) 5780 К,
  • период вращения (синодический) изменяется от 27 сут на экваторе до 32 сут. у полюсов,
  • ускорение свободного падения 274 м/с2 (при таком огромном ускорении силы тяжести человек массой 60 кг весил бы более 1,5 т.).

Строение Солнца

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та “печка”, которая нагревает его и не даёт ему остыть. Эта область называется ядром (см. рис.1). В ядре, где температура достигает 15 МК, происходит выделение энергии. Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порций света – квантов. Кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы печка внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя.

На своём пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передаётся уже не излучением, а конвекцией. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым.

Фотосфера – это излучающая поверхность Солнца, которая имеет зернистую структуру, называемую грануляцией. Каждое такое зерно размером почти с Германию и представляет собой поднявшийся на поверхность поток горячего вещества. На фотосфере часто можно увидеть относительно небольшие темные области — солнечные пятна. Они на 1500˚С холоднее окружающей их фотосферы, температура которой достигает 5800˚С. Из-за разницы температур с фотосферой эти пятна и кажутся при наблюдении в телескоп совершенно черными. Над фотосферой расположен следующий, более разряженный слой, называемый хромосферой, то есть окрашенной сферой. Такое название хромосфера получила благодаря своему красному цвету. И, наконец, над ней находится очень горячая, но и чрезвычайно разреженная часть солнечной атмосферы — корона.

Солнце – источник энергии

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество.

Солнце испаряет воду с океанов, морей, с земной поверхности. Оно превращает эту влагу в водяные капли, образуя облака и туманы, а затем заставляет её снова падать на Землю в виде дождя, снега, росы или инея, создавая, таким образом, гигантский круговорот влаги в атмосфере.

Солнечная энергия является источником общей циркуляции атмосферы и циркуляции воды в океанах. Она как бы создаёт гигантскую систему водяного и воздушного отопления нашей планеты, перераспределяя тепло по земной поверхности.

Солнечный свет, попадая на растения, вызывает у него процесс фотосинтеза, определяет рост и развитие растений; попадая на почву, он превращается в тепло, нагревает её, формирует почвенный климат, давая тем самым жизненную силу находящимся в почве семенам растений, микроорганизмам и населяющим её живым существам, которые без этого тепла пребывали бы в состоянии анабиоза (спячки).

Солнце излучает огромное количество энергии — приблизительно 1,1×1020 кВт·ч в секунду. Киловатт·час — это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 1018) кВт·ч ежегодно. Однако только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 1017) кВт·ч, достигает поверхности Земли. Остальные 30% солнечной энергии отражается обратно в космос, примерно 23% испаряют воду, 1% энергии приходится на волны и течения и 0,01% — на процесс образования фотосинтеза в природе.

Исследование солнечной энергии

Почему Солнце светит и не остывает уже миллиарды лет? Какое «топливо» дает ему энергию? Ответы на этот вопрос ученые искали веками, и только в начале XX века было найдено правильное решение. Теперь известно, что, как и другие звезды, светит благодаря протекающим в его недрах термоядерным реакциям.

Если ядра атомов лёгких элементов сольются в ядро атома более тяжелого элемента, то масса нового окажется меньше, чем суммарная масса тех, из которых оно образовалось. Остаток массы превращается в энергию, которую уносят частицы, освободившиеся в ходе реакции. Эта энергия почти полностью переходит в тепло. Такая реакция синтеза атомных ядер может происходить только при очень высоком давлении и температуре свыше 10 млн. градусов. Поэтому она и называется термоядерной.

Основное вещество, составляющее Солнце, — водород, на его долю приходится около 71% всей массы светила. Почти 27% принадлежит гелию, а остальные 2% — более тяжелым элементам, таким как углерод, азот, кислород и металлы. Главным «топливом» Солнца служит именно водород. Из четырех атомов водорода в результате цепочки превращений образуется один атом гелия. А из каждого грамма водорода, участвующего в реакции, выделяется 6×1011 Дж энергии! На Земле такого количества энергии хватило бы для того, чтобы нагреть от температуры 0ºC до точки кипения 1000 м3 воды.

Потенциал солнечной энергии

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 1013) кВт·ч энергии в год. Поскольку невозможно проследить за всем процессом в целом, нельзя с уверенностью сказать, сколько некоммерческой энергии потребляют люди (например, сколько древесины и удобрения собирается и сжигается, какое количество воды используется для производства механической или электрической энергии). Некоторые эксперты считают, что такая некоммерческая энергия составляет одну пятую часть всей используемой энергии. Но даже если это так, то общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот же период.

В развитых странах, например, в США, потребление энергии составляет примерно 25 триллионов (2.5 x 1013) кВт·ч в год, что соответствует более чем 260 кВт·ч на человека в день. Данный показатель является эквивалентом ежедневной работы более чем ста лампочек накаливания мощностью 100 Вт в течение целого дня. Среднестатистический гражданин США потребляет в 33 раза больше энергии, чем житель Индии, в 13 раз больше, чем китаец, в два с половиной раза больше, чем японец и вдвое больше, чем швед.



www.gigavat.com

Нетрадиционные возобновляемые источники эенергии | Солнечная энергия как альтернативынй источник энергии

Становились ли вы участником обсуждений альтернативной энергии? Практически каждый человек хоть что-то, но слышал об этом. И многим даже выпадало воочию наблюдать солнечные батареи или ветровые электростанции. Сейчас развитие данной сферы энергоснабжения очень важно для дальнейшего комфортного существования человечества.

Так как основную часть традиционных ресурсов, таких как полезные ископаемые, мы практически исчерпали, приходится искать более долговечные источники. Одним из таких нетрадиционных источников энергии является солнечная энергия. Этот ресурс один из наиболее распространенных и легкодоступных, поскольку солнечный свет в том или ином количестве есть в любом уголке нашей планеты. Поэтому разработки, связанные с аккумуляцией солнечной энергией, начались достаточно давно и активно проводятся и по сей день.

Как источник энергии солнечный свет отличная альтернатива традиционным ресурсам. И при грамотном использовании вполне может вытеснить все другие энергоресурсы в будущем.

Что является источником солнечной энергии?

Чтобы найти наиболее эффективные методы преобразования энергии Солнца, ученым нужно было понять, какое превращение является источником солнечной энергии. Для получения ответа на данный вопрос было проведено огромное количество опытов и исследований. Существуют разные гипотезы, призванные объяснить это явление. Но экспериментальным путем в процессе долгих исследований было доказано, что реакция, во время которой с помощью ядер углерода водород превращается в гелий, выступает тем самым  основным источником солнечной энергии.

Солнце как источник энергии Солнечной системы

Мы уже знаем, что источником солнечной энергии являются водород и гелий, но ведь и сама солнечная энергия – это источник для определенных процессов. Все земные природные процессы  осуществляются благодаря энергии, полученной от Солнца.

Без солнечных излучений был бы невозможным:

  • Круговорот воды в природе. Именно благодаря воздействию Солнца испаряется вода. Именно этот процесс запускает циркуляцию влаги на Земле. Повышение и понижение температуры влияет на образование облаков и выпадение осадков.
  • Фотосинтез. Процесс, благодаря которому поддерживается баланс углекислого газа и кислорода, образуются необходимые для развития и роста растений вещества также происходит с помощью солнечных лучей.
  • Циркуляция атмосферы. Солнце влияет на процессы перемещения воздушных масс и теплорегуляции.

Солнечная энергия – это основа существования жизни на Земле. Но на этом ее благотворное воздействие не заканчивается. Для человечества солнечная энергия может быть полезной как альтернативный источник энергии.

Гелиотермальная энергетика как вид автономного питания

В настоящее время активное развитие технологий сделало возможным преобразование энергии Солнца в другие применяющиеся человеком виды. Как возобновляемый источник энергии солнечная энергия получила широкое распространение и активно используется, как в промышленных масштабах, так и локально на небольших частных участках. И с каждым годом сфер, где применение гелиотермальной энергии является обыденным делом, становится все больше.

Сегодня солнечный свет как источник энергии используется:

  • В сельском хозяйстве для отопления и электроснабжения различных хозяйственных построек таких, как теплицы, ангары и прочие.
  • Для обеспечения электричества в медицинских центрах и зданий спортивного назначения.
  • Для снабжения электроэнергией населенных пунктов.
  • Для обеспечения более дешевого освещения на улицах городов.
  • Для поддержания налаженной работы всех коммуникационных систем в жилых домах.
  • Для ежедневных бытовых потребностей населения.

Исходя из этого, мы видим, что солнечная энергия в действительности может стать отличным источником питания практически в каждой сфере человеческой деятельности. Поэтому продолжение исследований в данной отрасли могут изменить привычное нынешнее существование в корни.

Активные и пассивные системы преобразования солнечной энергии

На сегодняшний день благодаря различным разработкам и методам солнечная энергия как альтернативный источник энергии может быть преобразована и аккумулирована разными способами. Сейчас существуют системы активного использования гелиоэнергии, и пассивные системы. В чем их суть?

  • Пассивные (подбор стройматериалов и проектировка помещений для максимального применения энергии солнечного света) по большей части направлены на использование прямой солнечной энергии. Пассивные системы – это здания, в которых проектирования происходило таким способом, чтобы как можно больше световой и тепловой энергии получать от Солнца.
  • Активные (фотоэлектрические системы, солнечные электростанции и коллекторы), в свою очередь, подразумевают действительно переработку полученной солнечной энергии в другие необходимые человеку виды.

Оба вида подобных систем применяются в тех или иных случаях в зависимости от потребностей, которые они должны удовлетворять. Будь то строительство экологически чистого солнечного дома или установка коллектора на участке – это в любом случае даст свой результат и будет выгодным вложением.

Солнечная электростанция как источник энергии

Что такое солнечная электростанция? Это специально организованное инженерное сооружение, благодаря которому происходят процессы преобразования солнечной радиации для дальнейшего получения электроэнергии. Конструкции подобных станций могут быть совершенно различными в зависимости от того, какой способ переработки будет применяться.

Разновидности солнечных электростанций:

  • СЭС, в основе сооружения которой находится башня.
  • Станция, сооружающаяся по тарельчатому типу.
  • Основанная на работе фотоэлектрических модулей.
  • Станции, работающие с применением параболоцилиндрических концентраторов.
  • С двигателем Стерлинга, взятым за основу работы.
  • Станции аэростатного типа.
  • Электростанции комбинированного типа.

Как мы видим, солнечная электростанция как источник энергии давно перестала быть частью утопических научно-фантастических романов и активно используется во всем мире для удовлетворения энергетических потребностей общества. В ее работе существуют как явные преимущества, так и недостатки. Но их правильный баланс дает возможность получать необходимый результат.

Плюсы и минусы солнечных электростанций

Достоинства:

  • Солнечная энергия является возобновляемым источником энергии. При этом сама по себе она общедоступная и бесплатная.
  • Солнечные установки достаточно безопасны в использовании.
  • Подобные электростанции являются полностью автономными.
  • Они отличаются экономностью и быстрой окупаемостью. Основные затраты происходят только лишь на необходимое оборудование и в дальнейшем требуют минимальных вложений.
  • Еще одна отличительная черта – это стабильность в работе. На подобных станциях практически не бывает скачков напряжения.
  • Они не прихотливы в обслуживании и достаточно просты в использовании.
  • Также для оборудования СЭС характерный долгий эксплуатационный период.

Недостатки:

  • Как источник энергии солнечной системы очень чувствительны к климату, погодным условиям и времени суток. Подобная электростанция не будет эффективно и продуктивно работать ночью или в пасмурный день.
  • Более низкая продуктивность в широтах с яркой сменой сезонов. Максимально эффективны в местности, где количество солнечных дней в году наиболее близко к 100%.
  • Очень высокая и малодоступная стоимость оборудования для солнечных установок.
  • Потребность в проведении периодических очисток от загрязнений панелей и поверхностей. Иначе меньшее количество радиации поглощается и падает продуктивность.
  • Значительное повышение температуры воздуха в пределах электростанции.
  • Потребность в использовании местности с огромной площадью.
  • Дальнейшие трудности в процессе утилизации составляющих станции, в особенности фотоэлементов, после окончания срока их эксплуатации.

Как и в любой производственной сфере, в переработке и преобразовании солнечной энергии есть свои сильные и слабые стороны. Очень важно, чтобы преимущества перекрывали недостатки, в таком случае работа будет оправдана.

Сейчас большинство разработок в данной отрасли направлены на оптимизацию и улучшение функционирования и использования уже существующих методов и на разработку новых, более безопасных и продуктивных.

Солнечная энергия – энергия будущего

Чем дальше шагает в своем техническом развитии наше общество, тем больше источников энергии может потребоваться с каждым новым этапом. Но традиционных ресурсов становится все меньше, а цена на них растет. Поэтому люди начали активнее задумываться об альтернативных вариантах энергоснабжения. И тут пришли на помощь возобновляемые источники. Энергия ветра, воды или Солнца – это новый виток, позволяющий и дальше развиваться обществу, снабжая его необходимыми ресурсами.

altenergiya.ru

Солнечная энергия — Википедия

Эта статья или раздел содержит незавершённый перевод с английского языка.

Вы можете помочь проекту, закончив перевод.

Карта солнечного излучения на поверхности Земли Карта солнечного излучения — Европа

Со́лнечная эне́ргия — энергия от Солнца в форме радиации и света. Эта энергия в значительной мере управляет климатом и погодой, и является основой жизни. Технология, контролирующая солнечную энергию, называется солнечной энергетикой.

В верхние слои атмосферы Земли постоянно поступает 174 ПВт солнечного излучения (инсоляции)[1]. Около 6 % инсоляции отражается от атмосферы, 16 % поглощается ею. Средние слои атмосферы в зависимости от погодных условий (облака, пыль, атмосферные загрязнения) отражают до 20 % инсоляции и поглощают 3 %.

Атмосфера не только уменьшает количество солнечной энергии, достигающей поверхности Земли, но и диффундирует около 20 % с того что поступает, и фильтрует часть его спектра. После прохождения атмосферы около половины инсоляции находится в видимой части спектр. Вторая половина находится преимущественно в инфракрасной части спектра. Только незначительная часть этой инсоляции приходится на ультрафиолетовое излучение[2][3].

Солнечное излучение поглощается поверхностью суши, океанами (покрывают около 71 % поверхности земного шара) и атмосферой. Абсорбция солнечной энергии через атмосферную конвекцию, испарение и конденсация водяного пара является движущей силой круговорота воды и управляет ветрами. Солнечные лучи абсорбоване океаном и сушей поддерживает среднюю температуру на поверхности Земли, что ныне составляет 14 °C[4]. Благодаря фотосинтезу растений солнечная энергия может превращаться в химическую, которая хранится в виде пищи, древесины и биомассы, которая в конце концов превращается в ископаемое топливо[5].

Солнечная энергия является источником энергии ветра, воды, тепла морей, биомассы, а также причиной образования на протяжении тысячелетий торфа, бурого и каменного угля, нефти и природного газа, однако эта опосредованная энергия и накопленная в течение тысяч и миллионов лет. Энергию Солнца можно использовать и непосредственно, как источник электроэнергии и тепла. Для этого нужно создать устройства, которые концентрируют энергию Солнца на малых площадях и в малых объемах.

Общее количество солнечной энергии, которую поглощает атмосфера, поверхность суши и океана составляет примерно 3 850 000 эксаджоулей (ЭДж) в год[6]. За один час, это дает больше энергии, чем весь мир использовал за целый 2002 год[7][8]. Фотосинтез забирает около 3 000 ЭДж в год на производство биомассы[9]. Количество солнечной энергии, которая достигает поверхность земли такая большая, что за год она примерно вдвое превзойдет всю энергию, которую потенциально можно выработать со всех невозобновляемых источников: угля, нефти, урановых руд[10].

«‘Годовое поступление солнечного излучения и потребления энергии человеком»‘1
Солнце3 850 000[6]
ветер2 250[11]
Потенциал биомассы~200[12]
Мировое потребление энергии2539[13]
Электроэнергия2~67[14]
1 Энергию подано в эксаджоулях 1 ЭДж = 1018Дж = 278 ТВт/ч 
2 Потребления по состоянию на 2010 год

Количество солнечной энергии, которую потенциально может использовать человек, отличается от количества энергии, которое находится вблизи земной поверхности. Такие факторы как смена дня и ночи, облачность и доступная поверхность суши уменьшают количество энергии, пригодной для использования.

Географическое положение влияет на энергетический потенциал, поскольку ближе к экватора области принимают большее количество солнечного излучения. Однако, использование устройств на фотовольтації, которые могут изменять свою ориентацию в соответствии с положением Солнца на небосклоне, может значительно повышать потенциал солнечной энергии в отдалённых от экватора областях.[15]

Доступность земель значительно влияет на возможную добычу энергии, поскольку солнечные панели можно устанавливать лишь на землях, которые для этого подходят и не используются для других целей. Например, подходящим местом для установки панелей стали крыши[15].

Солнечные системы делятся на активные и пассивные, в зависимости от способа впитать солнечную энергию, ее переработать и распределить.

Активные солнечные технологии используют фотовольтонику, концентрированную солнечную энергию (англ.), солнечные коллекторы, насосы и вентиляторы, чтобы превратить солнечное излучение в полезный выход энергии. Среди пассивных солнечных технологий: использование материалов с благоприятными тепловыми характеристиками, дизайн помещений с естественной циркуляцией воздуха и выгодное расположение зданий относительно положения Солнца. Активные солнечные технологии повышают энергоснабжения, тогда как пассивные уменьшают потребность в дополнительных источниках энергии[16].

2000 года Программа развития ООН, Департамент по экономическим и социальным вопросам ООН и Мировой энергетический совет опубликовали оценку потенциала солнечной энергии, которую человечество может добывать, приняв во внимание такие факторы, как инсоляция, облачность и доступна для использования поверхность суши. Оценка показала, что глобальный потенциал солнечной энергии составляет 1,575–49,837 ЭДж на год «(см. таблицу ниже)»[15].

Годовой потенциал солнечной энергии по регионам (ЭДж)[15]
РегионСеверная АмерикаЛатинская Америка и КарибыЗападная ЕвропаЦентральная и Восточная ЕвропаСтраны бывшего Советского СоюзаБлижний Восток и Северная АфрикаSub-Saharan АфрикаPacific AsiaЮжная АзияCentrally planned AsiaPacific OECD
Минимум181,1112,625,14,5199,3412,4371,941,038,8115,572,6
Максимум7 4103 3859141548 65511 0609 5289941 3394 1352 263

В это время работают нагревательные устройства, которые аккумулируют энергию Солнца, а также опытные образцы электродвигателей и автомобилей, которые используют энергию Солнца.

Солнечная энергия, как полагают, к концу века может составить не более 1 % от общего количества используемой энергии. Еще в 1870 году в Чили было построено солнечный опреснитель морской воды, который производил до 30 т пресной воды в сутки и работал более 40 лет. Благодаря применению гетеропереходов коэффициент полезного действия солнечных батарей уже достигает 25 %. Налажено производство солнечных батарей в виде длинной поликристаллической кремниевой ленты, которые имеют КПД более 10 %.

Технологии, которые используют тепловую энергию солнца, можно применять для нагрева воды, обогрева помещений, охлаждения помещений и генерации технологической теплоты[17].

В 1897 году Франк Шуман, американский изобретатель, инженер и пионер по использованию солнечной энергии, построил небольшой демонстрационный солнечный двигатель, принцип работы которого заключался в том, что солнечный свет отражалось на квадратные контейнеры, заполненные эфиром, температура кипения которого меньше, чем воды. Внутри до контейнеров были пригнаны черные трубы, которые приводили в движение паровой двигатель. В 1908 году Шуман основал компанию Sun Power Company, которая должна была строить большие установки на солнечной энергии. Вместе со своим техническим советником А. С. Э Аккерманом и британским физиком Чарльзом Верноном Бойзом[18] Шуман разработал улучшенную систему, использовав систему зеркал, которые отражали солнечные лучи на коробки солнечных коллекторов, повышая эффективность нагрева до уровня, когда можно было вместо эфира использовать воду. Затем Шуман построил полномасштабный паровой двигатель, который работал на воде под низким давлением. Это дало ему возможность 1912 года запатентовать целую систему с солнечным двигателем.

Между 1912 и 1913 годами Шуман построил первую в мире геотермальную электростанцию в городе Маади Египет. Шумановская электростанция использовала параболоцилиндрический концентратор, чтобы привести в движение двигатель мощностью 45 — 52 кВт, который перекачивал более 22 000 литров воды за минуту с реки Нил на близлежащие хлопковые поля. Хотя Первая мировая война, а также открытие дешевой нефти в 1930-х годах, и помешали дальнейшему продвижению солнечной энергии, но шумановское видение и базовый дизайн был возрожден в 1970-х годах на новой волне интереса к геотермальной энергии[19]. В 1916 году в прессе часто Цитировали слова Шумана, в которых он защищал использования солнечной энергии:

Мы доказали, что использование солнечной энергии может быть коммерчески выгодным в тропиках, и даже более того, доказали, что после исчерпания запасов нефти и угля, человечество получит неисчерпаемый источник энергии в виде солнечных лучей.

Оригинальный текст (англ.)

We have proved the commercial profit of sun power in the tropics and have more particularly proved that after our stores of oil and coal are exhausted the human race can receive unlimited power from the rays of the sun.


40
Франк шуман
New York Times, 2 июля 1916[20]

Нагревание воды[править | править код]

Солнечные водонагреватели направлены к Солнцу, чтобы повысить эффективность.

В низких географических широтах (ниже 40 градусов) от 60 до 70 % всей бытовой горячей воды температурой до 60 °C могут обеспечить солнечные системы для нагрева воды[21]. Наиболее распространенными типами солнечных водонагревателей являются: вакуумные трубные коллекторы (44 %) и плоские коллекторы (34 %), которые обычно используют для нагрева бытовой горячей воды; а также прозрачные пластиковые коллекторы (21 %), которые главным образом используют, чтобы подогревать плавательные бассейны[22].

По состоянию на 2007 год общая установленная мощность солнечных систем для нагрева воды составляла примерно 154 тепловых ГВт.[23] Китай является мировым лидером в этой области, установив по состоянию на 2006 год 70 ГВт тепловых и планируя к 2020 году достичь 210 ГВт тепловых[24]. Израиль и Кипр являются мировыми лидерами по использованию солнечных систем для подогрева воды на душу населения с 90 % домохозяйств, которые их установили[25]. В США, Канаде и Австралии солнечные водоподогреватели служат преимущественно для подогрева плавательных бассейнов, с установленной мощностью состоянию на 2005 год около 18 ГВт тепловых[16].

Обогрев, охлаждение и вентиляция[править | править код]

В США на HVAC приходится 30 % (4.65 EJ/yr) энергии, которая используется в коммерческих зданиях и почти 50 % (10.1 EJ/yr) энергии, которая используется в жилых домах[26][27]. Системы солнечного обогрева, охлаждения и вентиляции можно использовать, чтобы компенсировать часть этой энергии.

Тепловая масса — это любой материал, который можно применять, чтобы сохранять тепло, в частности солнечное. Среди материалов, которые могут выполнять функцию тепловой массы, камень, цемент и вода. На протяжении истории их применяли в засушливом или теплом климате, чтобы сохранить помещение прохладным, поскольку они впитывают солнечную энергию в течение дня и выпускают накопленное тепло ночью. Однако их можно применять и в прохладных регионах, чтобы сохранять тепло. Размер и расположение тепловой массы зависит от нескольких факторов, таких как климат, соотношение времени солнечной освещенности и пребывание в тени. Если тепловую массу правильно разместить, то она сохраняет температуру в помещении в комфортном диапазоне и уменьшает потребность в устройствах для дополнительного обогрева и охлаждения[28].

Солнечный дымоход (англ.) (или тепловой дымоход, в этом контексте) — это пассивная система солнечной вентиляции, состоящей из вертикального ствола, который соединяет внутреннюю и внешнюю стороны здания. Если дымоход нагревается, то воздух внутри также нагревается, вызывая вертикальный сквозняк (англ.) который протягивает воздух через дом. Его работу можно улучшить, если использовать непрозрачные материалы и тепловую массу[29] таким образом, который напоминает теплицу.

Листопадные растения предложено как способ контролировать солнечное нагревание и охлаждение. Если они растут на южной стороне здания в северном полушарии или северной стороне здания в южном полушарии, то их листья обеспечивает тень в течение лета, тогда как голые стволы без препятствий пропускают солнечные лучи зимой[30].

Приготовление еды[править | править код]

Параболическая тарелка вырабатывает пар для приготовления пищи, Ауровіль (Индия)

Солнечные печи используют солнечный свет для приготовления пищи, сушки и пастеризации. Их можно разделить на три широких категории: коробчасті печи (англ. box cookers), панельные печи (англ. panel cookers) и отражательные печи (англ. reflector cookers)[31]. Простейшая солнечная печь — коробчаста, которую впервые построил Орас Бенедикт де Соссюр 1767 года[32]. Простая коробчаста печь состоит из изолированного контейнера с прозрачной крышкой. Она может эффективно применяться при частично закрытом облаками небе и обычно достигает температуры 90-150 °C[33]. Панельная печь использует отражающую панель, чтобы направить солнечные лучи на изолированный контейнер и достичь температуры, сравнимой с коробчастою печью. Отражательные печи используют различную геометрию отражателя (тарелку, корыто, зеркала Френеля), чтобы сфокусировать лучи на контейнер. Эти печи достигают температуры 315 °C, но требуют прямого луча и их нужно переставлять вместе с изменением положения Солнца[34].

Технологическое тепло[править | править код]

Системы концентрации солнечной энергии, такие как параболические тарелки, корыта и отражатели Шеффлера могут обеспечивать технологическое тепло для коммерческих и индустриальных нужд. Первой коммерческой системой был Total Solar Energy Project (англ.) (STEP) в Шенандоа, (Джорджия, США), где поле со 114 параболических тарелок обеспечило 50 % технологического тепла, вентиляции воздуха и потребностей в электроэнергии для швейной фабрики. Эта подключена к сети когенерационная установка обеспечила 400 Квт электроэнергии а также тепловую энергию в виде 401 Вт пара и 468 КВт охлажденной воды и обеспечивала хранение тепла с одногодинним пиковой нагрузкой[35]. Пруды-испарители — это мелкие бассейны, которые сконцентровують растворенные в воде твердые вещества с помощью испарение. Использование прудов-испарителей, чтобы добыть соль из морской воды, является одним из старейших применений солнечной энергии. Среди современных применений: повышение концентрации солей при добыче металлов методом выщелачивания, а также удаления твердых веществ из сточных вод[36]. При использовании шнуров (англ.), сушилки (англ.) и вешалок белье высыхает в процессе испарения под действием ветра и солнечных лучей без потребления электроэнергии и газа. В законах некоторых штатов даже специально прописан защита «права сушить» одежду[37]. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for ventilation air preheating. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of Шаблон:Convert/Dual/LoffAoffDbSoffT.[38] Короткий период возврата вложенных денег (от 3 до 12 лет) делает transpired collectors финансово выгоднее, чем glazed collection systems[38]. По состоянию на 2003 год более 80 систем с суммарной коллекторной площадью 35 000 м2 были установлены во всем мире, включая коллектор площадью 860 м2 в Коста-Рике для сушки кофейных бобов и коллектор площадью 1300 м2 в Коїмбатори (Индия) для высушивания marigolds[39].

Обработка воды[править | править код]

Солнечное опреснение можно использовать, чтобы превратить соленую или солоноватую воду на питьевую. Впервые пример такого преобразования зафиксировали арабские алхимики XVI века[40]. Впервые масштабный проект из солнечного опреснения построили в 1872 году в чилийском шахтерском городке Лас-Салинас[41]. Завод, который имел площадь солнечного коллектора 4700 м2 мог производить до 22 700 л питьевой воды и оставался в работе на протяжении 40 лет[41]. Individual still designs include single-slope, double-slope (greenhouse or type), vertical, conical, inverted absorber, multi-wick, and multiple effect.[40]. Эти опреснители могут работать в пассивном, активном и гибридном режимах. Double-slope казани наиболее экономически выгодные для децентрализованных бытовых нужд, тогда как active multiple effect units более подходят для широкомасштабных проектов[40].

Для солнечной дезинфекции воду наливают в прозрачные бутылки с ПЭТ и помещают их на несколько часов под солнечные лучи[42]. Время дезинфекции зависит от климата и погодных условий, по крайней мере от 6 часов до 2 дней, если небо полностью покрыто облаками[43]. Этот способ рекомендовала Всемирная организация здравоохранения как доступный метод обработки бытовой воды и безопасного хранения[44]. Более 2 миллионов людей в странах, что развиваются, ежедневно применяют этот метод для обработки своей питьевой воды[43].

Солнечную энергию можно использовать в ставках-усереднювачах для обработки сточных вод без применения химикатов и затраты электроэнергии. Еще одним преимуществом для окружающей среды является то, что водоросли живут в таких прудах и потребляют диоксид углерода в процессе фотосинтеза, хотя они могут вырабатывать токсичные вещества, которые делают воду непригодной для употребления[45][46].


Солнечная энергетика работает за счет преобразования солнечного света в электроэнергию. Это может происходить или непосредственно, с использованием фотовольтаики, или косвенно, с использованием систем концентрированной солнечной энергии (англ.), в которых линзы и зеркала собирают солнечный свет с большой площади в тонкий луч, а механизм слежения отслеживает положение Солнца. Фотовольтаика превращает свет в электрический ток с помощью фотоэффект.

Предполагают, что солнечная энергетика станет крупнейшим источником электроэнергии к 2050 году, в которой на долю фотовольтаики и концентрированной солнечной энергии будет приходиться 16 и 11 % мирового производства электроэнергии соответственно[47].

Коммерческие электростанции на концентрированной солнечной энергии впервые появились в 1980-х годах. После 1985 года установка этого типа SEGS (англ.) в пустыне Мохаве (Калифорния) 354 МВт стала крупнейшей солнечной электростанцией в мире. Среди других солнечных электростанций этого типа СЭС Солнова (англ.) (150 МВт) и СЭС Андасол (англ.) (100 МВт), обе в Испании. Среди крупнейших электростанций на фотовольтаїці (англ.): Agua Caliente Solar Project (250 МВт) в США, и Charanka Solar Park (221 МВТ) в Индии. Проекты мощностью более 1 ГВт находятся на стадии разработки, но большинство установок на фотовольтаїці, мощностью до 5 КВт, имеют небольшой размер и расположены на крышах.По состоянию на 2013 год на солнечную энергию приходилось менее 1 % от электроэнергии в мировой сети[48].

Архитектура и городское планирование[править | править код]

Наличие солнечного света влияла на дизайн зданий от самого начала истории архитектуры[50]. Впервые продвинутые методы солнечной архитектуры и городского планирования ввели древние греки и китайцы, которые ориентировали свои дома на юг, чтобы обеспечить их освещением и теплом[51].

Среди общих характеристик пассивной солнечной архитектуры (англ.): благоприятная ориентация зданий относительно Солнца, компактные пропорции (малое отношение площади поверхности к объему), выборочное затемнение (навесы) и тепловая масса (англ.)[50]. Когда эти свойства удачно подобраны с учетом местного климата, то это обеспечивает хорошее освещение помещений и позволяет оставаться в комфортном диапазоне температур. Дом мегаронного типа Сократа — является классическим примером пассивной солнечной архитектуры[50]. На нынешнем этапе солнечного дизайна применяют компьютерное моделирование с помощью которой связывают между собой дневное освещение (англ.), а также системы солнечного обогрева и вентиляции в an integrated solar design package[52]. Активное солнечное оборудование, такое как насосы, вентиляторы и switchable windows может дополнить пассивный дизайн и улучшить показатели работы системы.

Городской тепловой остров (МТО) — это городской район, где температура выше, чем в окружающих сельских местностях. Выше температуры является следствием применения таких материалов как асфальт и бетон, которые лучше впитывают солнечное излучение, поскольку имеют ниже альбедо и выше теплоемкость, чем в окружающей среде. Чтобы непосредственно противодействовать эффекту, здания красят в белое и насаживают на улицах деревья. Согласно проекту гипотетической программы «cool communities» в Лос-Анджелеси, используя эти методы городскую температуру можно снизить примерно на 3 °C. Стоимость проекта оценивается в US$1 млрд, а общая годовая выгода может составлять US$530 млн благодаря уменьшению затрат на вентиляцию и охрану здоровья[53].

Сельское хозяйство и растениеводство[править | править код]

Эта статья или раздел содержит незавершённый перевод с английского языка.

Вы можете помочь проекту, закончив перевод.

(Скрытый викитекст)

Сельское хозяйство и растениеводство ищут способы оптимизировать впитывание солнечной энергии для того, чтобы повысить продуктивность растений.

Оранжерея превращают солнечный свет в тепло, обеспечивая круглогодичное выращивание растений, которые в природе не приспособлены для этого климата. Простейшие оранжереи использовали в римские времена, чтобы круглый год выращивать огурцы для императора Тиберия[54]. Современные В Европе в XVI веке появились оранжереи для выращивания растений, привезённых из исследовательских путешествий[55].

  1. ↑ Smil (1991), p. 240
  2. ↑ Радиационный и световой режим (неопр.) (недоступная ссылка). Дата обращения 6 апреля 2018. Архивировано 12 октября 2013 года.
  3. ↑ Natural Forcing of the Climate System (неопр.) (недоступная ссылка). Intergovernmental Panel on Climate Change. Дата обращения 29 сентября 2007. Архивировано 29 сентября 2007 года.
  4. Сомервилл, Richard. Historical Overview of Climate Change Science (неопр.) (PDF). Intergovernmental Panel on Climate Change. Дата обращения 29 сентября 2007.
  5. Vermass, Wim. An Introduction to Photosynthesis and Its Applications (неопр.) (недоступная ссылка). Arizona State University. Дата обращения 29 сентября 2007. Архивировано 3 декабря 1998 года.
  6. 1 2 Smil (2006), p. 12
  7. ↑ http://www.nature.com/nature/journal/v443/n7107/full/443019a.html
  8. ↑ Powering the Planet: Chemical challenges in solar energy utilization (неопр.) (PDF). Дата обращения 7 августа 2008.
  9. ↑ Energy conversion by organisms photosynthetic (неопр.). Food and Agriculture Organization of the United Nations. Дата обращения 25 мая 2008.
  10. ↑ Exergy Flow Charts — GCEP (неопр.). stanford.edu.
  11. Archer, Cristina. Evaluation of Global Wind Power (неопр.). Stanford. Дата обращения 3 июня 2008.
  12. ↑ fa.upc.es/personals/fluids/oriol/ale/eolss.pdf Renewable Energy Sources (неопр.). Renewable and Appropriate Energy Laboratory. Дата обращения 6 декабря 2012.
  13. ↑ Total Primary Energy Consumption (неопр.). Energy Information Administration. Дата обращения 30 июня 2013.
  14. ↑ Total Electricity Consumption Net (неопр.). Energy Information Administration. Дата обращения 30 июня 2013.
  15. 1 2 3 4 Energy and the challenge of sustainability (неопр.) (PDF). UN Development Programme and World Energy Council (сентябрь 2000). Дата обращения 17 января 2017.
  16. 1 2 Philibert, Cédric The Present and Future use of Solar Thermal Energy as a Primary Source of Energy (неопр.). IEA (2005). Дата обращения 6 апреля 2018. Архивировано 12 декабря 2011 года.
  17. ↑ Solar Energy Technologies and Applications (неопр.) (недоступная ссылка). Canadian Renewable Energy Network. Дата обращения 22 октября 2007. Архивировано 15 ноября 2007 года.
  18. ↑ V.+Boys/famous/4c880e9645e2ca90f61156a9efa6d16a C. V. Boys — Scientist (неопр.). yatedo.com.
  19. Smith, Zachary Alden. Renewable And Alternative Energy Resources: A Reference Handbook. — ABC-CLIO, 2008. — P. 174. — ISBN 978-1-59884-089-6..
  20. ↑ American Inventor Uses egypt’s Sun for Power — Appliance Concentrates the Heat Rays and Produces Steam, Which Can Be Used to Drive Irrigation Pumps in Hot Climates — View Article — NYTimes.com/date=2 July 1916 (неопр.). nytimes.com.
  21. ↑ Renewables for Heating and Cooling (неопр.) (PDF). International Energy Agency. Дата обращения 13 августа 2015.
  22. Weiss, Werner. Solar Heat Worldwide (Markets and Contributions to the Energy Supply 2005) (неопр.) (PDF). International Energy Agency. Дата обращения 30 мая 2008. Архивировано 10 сентября 2008 года.
  23. Weiss, Werner. Solar Heat Worldwide – Markets and Contribution to the Energy Supply 2006 (неопр.) (PDF). International Energy Agency. Дата обращения 9 июня 2008.
  24. ↑ Renewables 2007 Global Status Report (неопр.) (PDF). Worldwatch Institute. Дата обращения 30 апреля 2008. Архивировано 29 мая 2008 года.
  25. Del Chiaro, Bernadette. Solar Water Heating (California How Can Reduce Its Dependence on Natural Gas) (неопр.) (PDF). Environment California Research and Policy Center. Дата обращения 29 сентября 2007. Архивировано 27 сентября 2007 года.
  26. Apte, J. Future Advanced for Windows Zero-Energy Homes (неопр.) (PDF) (недоступная ссылка). American Society of Heating, Refrigerating and Air-Conditioning Engineers. Дата обращения 9 апреля 2008. Архивировано 10 апреля 2008 года.
  27. ↑ Energy Consumption Characteristics of Commercial Building HVAC Systems Volume III: Energy Savings Potential (неопр.) (PDF) 2-2. United States Department of Energy. Дата обращения 24 июня 2008.
  28. ↑ Mazria(1979), p. 29-35
  29. Bright, David Passive solar heating simpler for the average owner. (неопр.). Bangor Daily News (18 февраля 1977). Дата обращения 3 июля 2011.
  30. ↑ Mazria(1979), p. 255
  31. ↑ Anderson and Palkovic (1994), p. xi
  32. ↑ Butti and Perlin (1981), p. 54-59
  33. ↑ Anderson and Palkovic (1994), p. xii
  34. ↑ Anderson and Palkovic (1994), p. xiii
  35. Stine, W B and Harrigan, R W. Shenandoah Total Solar Energy Project (неопр.). John Wiley. Дата обращения 20 июля 2008.
  36. ↑ Bartlett (1998), p.393-394
  37. Thomson-Philbrook, Julia. Right to Dry Legislation in New England States and Other (неопр.). Connecticut General Assembly. Дата обращения 27 мая 2008.
  38. 1 2 Solar Buildings (Transpired Air Collectors — Ventilation Preheating) (неопр.) (PDF). National Renewable Energy Laboratory. Дата обращения 29 сентября 2007.
  39. ↑ Ошибка в сносках?: Неверный тег <ref>; для сносок Leon 2006 не указан текст
  40. 1 2 3 Tiwari (2003), p. 368-371
  41. 1 2 Daniels (1964), p. 6
  42. ↑ SODIS solar water disinfection (неопр.). EAWAG (The Swiss Federal Institute for Environmental Science and Technology). Дата обращения 2 мая 2008.
  43. 1 2 Household Water Treatment Options in Developing Countries: Solar Disinfection (SODIS) (неопр.) (PDF) (недоступная ссылка). Centers for Disease Control and Prevention. Дата обращения 13 мая 2008. Архивировано 29 мая 2008 года.
  44. ↑ Household Water Treatment and Safe Storage (неопр.). World Health Organization. Дата обращения 2 мая 2008.
  45. Shilton A. N., Powell N., Mara D. D., Craggs R. Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO(2) scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds (англ.) // Water Sci. Technol. (англ.)

ru.wikipedia.org

Солнечная энергия

В мире всё меньше традиционных источников энергии. Запасы нефти, газа, угля истощаются и всё идёт к тому, что рано или поздно они закончатся. Если к этому времени не найти альтернативных источников энергии, то человечество ждёт катастрофа. Поэтому во всех развитых странах ведутся исследования по открытию и разработке новых источников энергии. В первую очередь – это солнечная энергия. С древних времён эта энергию использовалась людьми для освещения жилища, сушки продуктов, одежды и т. п. Солнечная энергетика сегодня является одним из наиболее перспективных источников альтернативной энергии. В настоящее время уже есть достаточно много конструкций, позволяющих преобразовывать энергию солнца в электрическую или тепловую. Отрасль постепенно растёт и развивается, но, как и везде, есть свои проблемы. Обо всём этом речь пойдёт в настоящем материале.

 

Содержание статьи

Солнце как альтернативный источник энергии

Энергия солнца является одним из самых доступных возобновляемых источников на Земле. Использование солнечной энергии в народном хозяйстве положительно сказывается на состоянии окружающей среды, поскольку для её получения не требуется бурить скважины или разрабатывать шахты. К тому же, этот вид энергии свободный и не стоит ничего. Естественно, что требуются затраты на покупку и монтаж оборудования.

Проблема в том, что солнце – это прерывистый источник энергии. Так, что требуется накопление энергии и использование её в связке с другими энергетическими источниками. Основная проблема на сегодняшний день заключается в том, что современное оборудование имеет низкую эффективность преобразования энергии солнца в электрическую и тепловую. Поэтому все разработки направлены на то, чтобы увеличить КПД таких систем и снизить их стоимость.

Вот он – возобновляемый источник энергии



Кстати, очень много ресурсов на планете представляют собой производные от солнечной энергии. К примеру, ветер, который является ещё одним возобновляемым источников, не дул бы без солнца. Испарение воды и накопление её в реках также происходит под действием солнца. А вода, как известно, используется гидроэнергетике. Биотоплива также не было бы без солнца. Поэтому, помимо прямого источника энергии, солнце влияет на другие сферы энергетики.

Солнце отправляет к поверхности нашей планеты радиацию. Из широкого спектра излучения поверхности Земли достигают 3 типа волн:

  • Световые. В спектре излучения их примерно 49 процентов;
  • Инфракрасные. Их доля также 49 процентов. Благодаря этим волнам наша планета нагревается;
  • Ультрафиолетовые. В спектре солнечного излучения их примерно 2 процента. Они невидимы для нашего глаза.

Вернуться к содержанию
 

Экскурс в историю

Как развивалась солнечная энергетика до наших дней? Об использовании солнца в своей деятельности человек думал с древних времён. Всем известна легенда, согласно которой Архимед сжёг флот неприятеля у своего города Сиракузы. Он использовал для этого зажигательные зеркала. Несколько тысяч лет назад на Ближнем востоке дворцы правителей отапливали водой, которая нагревалась солнцем. В некоторых странах выпариваем морской воды на солнце получали соль. Учёные часто проводили опыты с нагревательными аппаратами, работающими от солнечной энергии.

Первые модели таких нагревателей были выпущены в XVII─XVII веках. В частности, исследователь Н. Соссюр представил свою версию водонагревателя. Он представляет собой ящик из дерева, накрытый стеклянной крышкой. Вода в этом устройстве подогревалась до 88 градусов Цельсия. В 1774 году А. Лавуазье использовал линзы для концентрации тепла от солнца. И также появились линзы, позволяющие локально расплавить чугун за несколько секунд.

Батареи, преобразующие энергию солнца в механическую, создали французские учёные. В конце XIX века исследователь О. Мушо разработал инсолятор, фокусирующий лучи с помощью линзы на паровом котле. Этот котёл использовался для работы печатной машины. В США в то время удалось создать агрегат, работающий от солнца, мощностью в 15 «лошадей».

Инсолятор О. Мушо



Долгое время инсоляторы выпускались по схеме, использующей энергию солнца для превращения воды в пар. И преобразованная энергия использовалась для совершения какой-либо работы. Первое устройство, преобразующее солнечную энергию в электрическую, было создано в 1953 году в США. Оно стало прообразом современных солнечных батарей. Фотоэлектрический эффект, на котором основана их работа, был открыт ещё в 70-е годы XIX столетия.

В тридцатые годы прошлого столетия академик СССР А. Ф. Иоффе предложил использовать полупроводниковые фотоэлементы для преобразования энергии солнца. КПД батарей в то время был менее 1%. Прошло много лет до того, как были разработаны фотоэлементы, имеющие КПД на уровне 10─15 процентов. Затем американцы построили солнечные батареи современного типа.

Для получения большей мощности солнечных систем низкий КПД компенсируется увеличенной площадью фотоэлементов. Но это не выход, поскольку кремниевые полупроводники в фотоэлементах довольно дорогие. При увеличении КПД возрастает стоимость материалов. Это является главным препятствием для массового использования солнечных батарей. Но по мере истощения ресурсов их использование будет всё более выгодным. Кроме того, исследования по увеличению КПД фотоэлементов не прекращаются.

Фотоэлемент для солнечной батареи

Стоит сказать, что батареи на основе полупроводников достаточно долговечны и не требуют квалификации для ухода за ними. Поэтому их чаще всего используют в быту. Есть также целые солнечные электростанции. Как правило, они создаются в странах с большим числом солнечных дней в году. Это Израиль, Саудовская Аравия, юг США, Индия, Испания. Сейчас есть и совсем фантастические проекты. Например, солнечные электростанции вне атмосферы. Там солнечный свет ещё не потерял энергию. То есть, излучение предлагается улавливать на орбите и затем переводить в микроволны. Затем в таком виде энергия будет отправляться на Землю.

Вернуться к содержанию
 

Преобразование солнечной энергии

Прежде всего, стоит сказать о том, в чём можно выразить и оценить солнечную энергию.

 

Как можно оценить величину солнечной энергии?

Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.

Распределение солнечного излучения на карте планеты



Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов h3 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма h3 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов.
Вернуться к содержанию
 

Способы преобразования

Поскольку наука на сегодняшний день не имеет устройств, работающих на энергии солнца в чистом виде, её требуется преобразовать в другой тип. Для этого были созданы такие устройства, как солнечные батареи и коллектор. Батареи преобразуют солнечную энергию в электрическую. А коллектор вырабатывает тепловую энергию. Есть также модели, совмещающие эти два вида. Они называются гибридными.

Солнечная батарея


Солнечный коллектор


Гибридная солнечная панель


Основные способы преобразования энергии солнца представлены ниже:
  • фотоэлектрический;
  • гелиотермальный;
  • термовоздушный;
  • солнечные аэростатные электростанции.

Первый способ самый распространённый. Здесь используются фотоэлектрические панели, которые под воздействием солнца вырабатывают электрическую энергию. В большинстве случаев их делают из кремния. Толщина таких панелей составляет десятые доли миллиметра. Такие панели объединяются в фотоэлектрические модули (батареи) и устанавливаются на солнце. Чаще всего их ставят на крышах домов. В принципе, ничто не мешает разместить их на земле. Нужно, только чтобы вокруг них не было крупных предметов, других зданий и деревьев, которые могут отбрасывать тень.

Кроме фотоэлементов, для получения электрической энергии применяются тонкопленочные или гибкие солнечные панели. Их преимуществом является малая толщина, а недостатком – сниженный КПД. Такие модели часто используются в портативных зарядках для различных гаджетов.

Гибкая солнечная панель



Термовоздушный способ преобразования подразумевает получение энергию потока воздуха. Этот поток направляется на турбогенератор. В аэростатных электростанциях под действием солнечной энергии в аэростатном баллоне генерируется водяной пар. Поверхность аэростата покрывается специальным покрытием, поглощающим солнечные лучи. Такие электростанции способны работать в пасмурную погоду и в тёмное время суток благодаря запасу пара в аэростате.

Гелиотремальная энергетика основана на нагреве поверхности энергоносителя в специальном коллекторе. Например, это может быть нагрев воды для системы отопления дома. В качестве теплоносителя может использоваться не только вода, но и воздух. Он может нагреваться в коллекторе и подаваться в систему вентиляции дома.

Все эти системы стоят достаточно дорого, но их освоение и совершенствование постепенно продолжается.

Вернуться к содержанию
 

Преимущества и недостатки солнечной энергии

Преимущества

  • Бесплатно. Одно из главных преимуществ энергии солнца – это отсутствие платы за неё. Солнечные панели делаются с использованием кремния, запасов которого достаточно много;
  • Нет побочного действия. Процесс преобразования энергии происходит без шума, вредных выбросов и отходов, воздействия на окружающую среду. Этого нельзя сказать о тепловой, гидро и атомной энергетике. Все традиционные источники в той или иной мере наносят вред ОС;
  • Безопасность и надёжность. Оборудование долговечное (служит до 30 лет). После 20─25 лет использования фотоэлементы выдают до 80 процентов от своего номинала;
  • Рециркуляция. Солнечные панели полностью перерабатываются и могут быть снова использованы в производстве;
  • Простота обслуживания. Оборудование довольно просто разворачивается и работает в автономном режиме;
  • Хорошо адаптированы для использования в частных домах;
  • Эстетика. Можно установить на крыше или фасаде здания не в ущерб внешнему виду;
  • Хорошо интегрируются в качестве вспомогательных систем энергоснабжения.

Вернуться к содержанию
 

Недостатки

  • Эффективность зависит от времени суток и погоды. Нерентабельно использовать в высоких широтах;
  • Требуется аккумулировать преобразованную энергию;
  • Первоначальные вложения высокие. Особенно это ощутимо для обычных людей при покупке оборудования для частного дома;
  • Периодически нужно делать очистку панелей от загрязнения;
  • Для размещения требуется большая площадь;
  • Некоторые фотоэлементы имеют в своём составе Pb, Cd, мышьяк, что усложняет и переработку.

Вернуться к содержанию
 

Сферы применения солнечной энергии

Направлений использования довольно много. Ниже рассматриваются самые востребованные и распространённые.

 

Энергоснабжение частного дома

Совсем недавно такие системы были чем-то из фантастических фильмов. Но сейчас у многие можно встретить комплекты солнечных модулей на крыше или фасаде дома. КПД таких систем пока не превышает 10─15 процентов. Напряжение 12 или 24 вольта. Но для частного дома или дачи этого вполне достаточно.

Здесь стоит сказать, что современные панели вырабатывают электричество даже в сумерках и пасмурную погоду. Заряда аккумуляторных батарей хватает на тёмное время суток. Кроме того, солнечные панели подключаются как вспомогательные, и при необходимости их подменяет основная энергетическая система.
Вернуться к содержанию
 

Солнечный коллектор для отопления и горячего водоснабжения

Здесь энергия солнца преобразуется в тепловую. Наверное, у многих на дачном участке есть душ с металлическим баком наверху. Он нагревается от солнца и можно мытья нагретой водой. Это простейший вариант такого коллектора.

Но современные системы работают значительно эффективнее. В них есть поглощающий элемент, который передаёт тепловую энергию теплоносителю. Есть варианты с водой и воздухом в качестве теплоносителя.



Коллекторы чаще всего работают в составе систем горячего водоснабжения частных домов. Нагретый в них теплоноситель попадает в накопитель (бойлер), где нагревает воду. Схема практически такая же, как у электрического бойлера. Только электричество в этом случае не расходуется.

Компактные системы с коллектором могут обеспечить бесплатный нагрев воды в доме для семьи на 3─5 человек. Речь идёт об осенне-зимнем периоде. Зимой эффективность подобных систем значительно снижается. Параллельно с установкой таких систем проводятся работы по улучшению изоляции. Если зимы в вашем регионе не суровые, то коллектор вполне может использоваться и зимой.

Вернуться к содержанию
 

Портативные источники энергии

Этот вид устройств предназначен для получения электрической энергии при отсутствии электрических сетей. Такие переносные аккумуляторы с возможностью зарядки от солнечной панели популярны среди туристов, дачников и т. п. Об этих устройствах можно прочитать в статьях:

Вернуться к содержанию
 

Концентраторы

Этот вид устройств можно назвать экзотикой. Их можно встретить у туристов в составе походных кухонь. Они концентрируют свет параболическим зеркалом на ёмкости с теплоносителем.
Вернуться к содержанию
 

Транспорт

Это пока также экзотическая сфера применения. Но уже сейчас проводятся гоночные соревнования в Австралии на солнечных карах. Однако в последнее время конструкторам удалось нарастить скорость таких транспортных средств до 80 км/час. И также проводятся испытания самолёта на солнечных батареях с облётом планеты.
Вернуться к содержанию
 

Развитие солнечной энергетики в разных странах и её перспективы

Альтернативные виды энергетики, к которым относится солнечная, быстрее всего развивается в технологически развитых странах. Это США, Испания, Саудовская Аравия, Израиль и другие страны, где большое количество солнечных дней в году. Солнечная энергетика также развивается в России и странах СНГ. Правда, темпы у нас значительно медленнее из-за климатических условий и меньших доходов населения.


На территории бывшего СССР климат для солнечных установок больше всего подходит климат на Украине и республиках Средней Азии. Однако здесь пока больше разговоров о развитии, чем реальных дел. То есть, раскрыть потенциал использования солнечной энергии здесь пока не удалось. Если говорить о доле солнечной энергии на рынке России и стран СНГ, то она не превышает 1 процента. В планах значится строительство нескольких солнечных электростанций. Поэтому ситуация ещё может исправиться.

В России наблюдается постепенное развитие и уклон делается на развитие солнечной энергетики в регионах Дальнего Востока. Солнечные электростанции строятся в удалённых населённых пунктах Якутии. Это позволяет экономить на завозимом топливе. Строятся электростанции и в южной части страны. Например, в Липецкой области.

Все эти данные позволяют сделать вывод о том, что многие страны мира пытаются максимально внедрить у себя использование солнечной энергии. Это актуально потому, что энергопотребление постоянно растёт, а ресурсы ограничены. К тому же, традиционная сфера энергетики сильно загрязняет окружающую среду. Поэтому альтернативная энергетика – это будущее. И энергия солнца является одним из ключевых её направлений.


Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.
Вернуться к содержанию

akbinfo.ru

Источники солнечной энергии

Первые гипотезы. Геология подтверждает, что Солнце освещало и обогревало Землю сотни миллионов лет назад примерно также как сегодня. Значит, температура Солнца на протяжении чрезвычайно долгого времени остается относительно постоянной.

Между тем, при огромном расходе тепла, которое идет непрерывно от Солнца, оно непременно должно охлаждаться ежегодно на несколько градусов, как показывают вычисления. Но так как этого не происходит, то потеря тепла от испускания лучей, очевидно, постоянно восполняется из какого-то источника.

Источники солнечной энергии являются одним из наиболее важных вопросов в науке. В поисках его решения физики XIX в. испробовали все известные возможные источники энергии: падение метеоритов, химические реакции (горение, прежде всего), они все оказались недостаточными, неспособными возместить расход тепла в течение даже нескольких десятков миллионов лет.

Теория сжатия (контракционная теория). Охлаждение Солнца начинается с поверхности, значит, оно должно сжиматься; при сжатии образуется тепло, которое может являться источником солнечной энергии, т.е. возмещать потери. При определенных условиях температура сжимающегося газового шара может становиться выше, несмотря на потерю тепла. Данная теория доступна математической разработке. Применительно к Солнцу она дала результаты. Достаточно, чтобы ежегодно диаметр Солнца уменьшался лишь на 100 м, чтобы тепло, выделяющееся при таком сжатии, покрыло всю потерю энергии от лучеиспускания. Сжатие это составляет 1″ в 14000 лет, поэтому проверить верность контракционной теории прямыми наблюдениями в ближайшем будущем невозможно. Но расчеты говорят, что если когда-нибудь диаметр газового солнечного шара равнялся, например, диаметру орбиты самой далекой планеты и после этого сжался до своих сегодняшних размеров, то количество тепла, полученное в результате такого сжатия, может возместить расход тепла в течение максимум 25 млн. лет. На самом же деле возраст Солнца намного больше, он измеряется миллиардами лет.

Радиоактивность также оказалась недостаточным источником солнечной энергии. Здесь говорится о распаде атомов, превращении сложных элементов в простые (радия в свинец).

Превращение элементов. Исследования в области ядерной физики способствовали открытию превращений химических элементов. Определено, что ядра тяжелых химических элементов возникают из ядер более легких, т.е. более простых.

Процессы преобразования ядер – ядерные реакции, которые ведут не только к превращению ядер легких элементов в более тяжелые, но и к образованию изотопов основных элементов.

Например, если в ядро атома химического элемента ворвется нейтрон (элементарная частица, которая по массе равна протону, но не имеет электрического заряда), то образуется изотоп этого элемента, так как атомный вес его повышается на единицу (вес протона), а число электрических зарядов ядра не меняется; значит, химические свойства атома не меняются.

Поскольку нейтрон не имеет заряда, то он может относительно свободно входить в ядра атомов, так как электрическое поле ядра (положительное) на него не действует. Именно этим объясняется широкое распространение в природе изотопов.

Ядерный процесс будет протекать совсем по-другому, если в ядро атома влетит протон. У протона положительный заряд, и проникновению протона в ядро будет препятствовать электрическое поле атома. Для проникновения в ядро протону необходимо иметь большую кинетическую энергию, которой хватит для преодоления отталкивающих сил электрического поля.

Проникнув в ядро, протон осуществляет перестройку ядра с образованием большого количества энергии, называемой атомной или ядерной. В данном случае влетевший протон не просто увеличивает атомный вес ядра, но и передает ему дополнительный электрический заряд, что приводит к переменам в химических свойствах атома; образуется новый химический элемент.

При наличии большого количества ядер разных химических элементов, протонной бомбардировке и перестройке подвергаются ядра более легких элементов (бериллий, литий), в первую очередь, так как в сравнении с ядрами тяжелых элементов, их электрическое поле слабее. Превращение ядер легких элементов начинается уже при температуре 2-3 млн. градусов, т.е. именно при той температуре, которая имеется (по некоторым гипотезам) в недрах холодных, красных звезд.

При температуре в 20 млн. градусов энергия протонов так увеличивается, что они могут проникать в ядра более тяжелых элементов (азота, углерода, кислорода) и осуществлять перестройку с образованием атомной энергии.

Академик В.Г. Фесенков утверждает, что в настоящее время в недрах Солнца ядерные процессы протекают именно за счет протонов, а не нейтронов, так как солнце существует миллиарды лет и за такое долгое время свободные нейтроны, с легкостью входящие в ядра атомов, должны были практически все оказаться в составе ядер. Нейтроны в свободном виде в недрах Солнца должны остаться лишь в незначительном значении, протонов же на Солнце достаточно, так как они – суть ядра водорода, а Солнце по массе своей содержит 38% данного химического элемента.

Температура в глубинах Солнца около 20 млн. градусов, что и объясняет энергию протонов, которой достаточно для прорыва в ядра химических элементов.

При вхождении протона в ядро изменение ядра может происходить в трех направлениях, зависящих от степени прочности ядерных связей:

1)         Протон останется в ядре; атомный вес ядра увеличится на единицу и ядро приобретет новый положительный заряд; возникает ядро другого химического элемента.

2)         Протон будет находиться в ядре, но ядро излучит один позитрон, т.е. элементарную частицу с единичным положительным зарядом е+ и массой, которая равна массе электрона; образуется изотоп исходного химического элемента, так как атомный вес увеличится на единицу, а заряд не изменится.

3)         Ядро может распасться в силу неустойчивости и породить ядра новых элементов, при этом одним из них будет ядро гелия.

Такие ядерные реакции с образованием атомной энергии происходят в недрах Солнца непрерывно. Согласно теории астрофизика Бете, на Солнце происходят ядерные процессы с участием углерода (С12), который играет роль своеобразного катализатора в этом случае.

Ядерные реакции проходят в следующем порядке:

1.         Протон (Hj) врывается в ядро углерода, имеющего атомный вес 12, и возникает ядро нового, радиоактивного неустойчивого элемента, излучающее позитрон (е+) и превращающееся в ядро изотопа углерода, имеющее атомный вес 13.

2.         Когда в ядро изотопа С13 проникает следующий протон (Hj), возникает ядро азота с атомным весом 14.

3.         В процессе проникновения протона в ядро азота (N14) возникает ядро изотопа кислорода, которое неустойчиво и имеет атомный вес 15 (015), излучающее позитрон (е+) и переходящее в ядро изотопа азота с атомным весом 15.

4.         Новый протон (Hj), который влетает в ядро N5, дает ядро кислорода О16, распадающееся при высоких температурах на ядро углерода (С12) и ядро гелия (Не4). В результате полного цикла Бете образуется гелий (Не) из водорода (Н), количество углерода при этом не меняется; иными словами, углерод является катализатором, хотя в данном случае сам участвует непосредственно в ядерных реакциях.

На Солнце постоянно происходит увеличение количества гелия и сокращение количества водорода. За счет данных ядерных превращений образуется огромное количество атомной (ядерной) энергии, которая излучается обильно Солнцем в мировое пространство.

В результате такого масштабного излучения масса Солнца уменьшается ежесекундно на 4.10° тонн, и все-таки масса Солнца так велика (2*1027 тонн), что даже если оно и дальше будет так растрачивать свою энергию, оно будет светить ярко на протяжении 2*1013 лет.

Итак, источником колоссальной солнечной энергии являются ядерные процессы, происходящие в недрах Солнца.

zeleneet.com

Источники энергии – Солнце. Использование энергии, излучаемой Солнцем

01 06 2016      greenman       Пока нет комментариев  

Возможна ли жизнь на Земле без Солнца?

Чтобы ответить на этот вопрос, представим себе то, чего на самом деле быть не может. Вообразим, что Солнце вдруг исчезло, или что какая-то огромная заслонка преградила путь его лучам к нашей планете. Тогда Земля внезапно погрузится во мрак. Луна и планеты, отражающие солнечные лучи, также перестанут светить. Лишь тусклый свет далеких звезд будет освещать Землю. Зеленые растения погибнут, так как они могут усваивать углерод из воздуха только под воздействием солнечных лучей.

Животным нечем будет питаться, и они начнут вымирать от голода. Помимо этого, все живое станет замерзать от страшного холода, который быстро распространится по Земле. Воздух, океаны и суша очень скоро отдадут мировому пространству ту энергию, которую они постоянно получают от Солнца. Перестанут дуть ветры, и замерзнут все водоемы. Начнет сжижаться воздух, и на Землю польется дождь из жидкого кислорода и азота. В результате наша планета покроется слоем льда из твердого воздуха. Сможет ли в таких условиях существовать жизнь? Конечно, нет.

К счастью, ничего этого быть не может и каждый день Солнце посылает на Землю свои животворные лучи, нагревая сушу, воды и воздух, заставляя испаряться водоемы, приводя к образованию облаков и ветров, способствуя выпадению осадков, давая тепло и свет животным и растениям.

Энергия, излучаемая Солнцем

Энергия Солнца огромна. Даже та ничтожная ее доля, которая попадает на Землю, оказывается очень большой. Если предположить полное использование энергии солнечных лучей, падающих на квадратный метр земной поверхности, можно заставить работать двигатель мощностью около двух лошадиных сил. Вся Земля в целом получает от Солнца в десятки тысяч раз больше энергии, чем могли бы выработать все источники электроэнергии мира, если бы они работали на полную мощность.

С Земли Солнце кажется нам сравнительно небольшим. Его легко заслонить горошиной на расстоянии вытянутой руки. Если подобный опыт выполнить с большой точностью, то можно рассчитать, что расстояние до Солнца в 107 раз превышает его диаметр. А поперечник у Солнца очень велик, он в 109 раз больше диаметра Земли, который, как известно, составляет около 13 тыс. км. Теперь легко высчитать размеры Солнца и величину расстояния до него в километрах.

Зная расстояние до Солнца и количество энергии, которое доходит от него к нам, можно определить количество энергии, излучаемое его поверхностью. Чем ближе мы подходим к источнику света, тем более концентрированным оказывается его излучение. Если бы Земля была к Солнцу вдвое ближе, то она получала бы от него в 4 раза больше энергии, чем сейчас. Таким же путем, если подойти вплотную к поверхности Солнца, можно найти, что мощность излучения возрастет в 46 тыс. раз.

Откуда берет энергию Солнце

Представьте себе, что каждая площадка на Солнце величиной с клеточку в школьной тетради подогревается двумя обычными электроплитками, и вы получите примерное представление о мощности излучения поверхности Солнца. Из физики известно, что такую мощность излучения имеет тело, нагретое до температуры около 6000°. Следовательно, такова температура поверхности Солнца. Поэтому 1 кв. см. поверхности Солнца излучает больше 6 кВт энергии.

По массе Солнце в 333 тыс. раз больше Земли, а по объему оно больше в 1 млн. 301 тыс. раз. Поэтому плотность Солнца меньше плотности Земли. В среднем Солнце раза в полтора плотнее воды. Но это только в среднем. Внутри Солнца вещество сильно сжато давлением вышележащих слоев и раз в десять плотнее свинца. Зато наружные слои Солнца в сотни раз разреженнее воздуха у поверхности Земли.

Давление — это вес всех слоев, расположенных над площадкой в один квадратный сантиметр. Если из Солнца вырезать вдоль диаметра столбик вещества сечением в 1 кв. см и взвесить его с помощью воображаемых весов, то потребуется гиря с массой в двести тысяч тонн! На Солнце, где сила тяжести во много раз больше, чем на Земле, такая гиря будет в тысячи раз тяжелее. Поэтому давление в недрах Солнца превышает 100 млрд. атмосфер.

При таком огромном давлении температура возрастает до значения, превышающего 10 млн. градусов! Оказывается, что в этих условиях вещество находится в газообразном состоянии. Однако по своим свойствам этот газ сильно отличается от обычных знакомых нам газов, например воздуха. Дело в том, что в нем почти все атомы полностью теряют свои электроны и превращаются в голые атомные ядра. Свободные электроны, оторвавшиеся от атомов, становятся составной частью газа, называемого в этих условиях плазмой.

Термоядерная энергия Солнца

Частицы плазмы, нагретой до 10 млн. градусов, движутся с огромными скоростями в сотни и тысячи километров в секунду! При этом вследствие чрезмерного давления частицы сильно сближаются, а отдельные ядра атомов иногда даже проникают друг в друга. В моменты такого проникновения происходят термоядерные реакции.

Атом гелия имеет чуть меньшую массу, чем четыре атома водорода, которые пошли на его образование. Этот дефект массы и выделяется в недрах Солнца в виде энергии, являющиеся источником неиссякаемой энергии Солнца.

В основном Солнце состоит из тех же самых химических элементов, что и Земля. Однако водорода на Солнце несравненно больше, чем на Земле. Можно сказать, что Солнце почти целиком состоит из водорода, в то время как всех остальных элементов значительно меньше. Поэтому водород является основным источником энергии, излучаемой Солнцем за счет термоядерных реакций.

За все время своего существования, которое, по-видимому, составляет не менее 6 млрд. лет, Солнце не израсходовало еще и половины своих запасов водородного ядерного топлива. В течение почти всего этого времени излучение Солнца примерно такое же, как и теперь. Так оно будет светить еще много миллиардов лет — до тех пор, пока в недрах Солнца весь водород не превратится в гелий.

Как же выделяется ядерная энергия внутри Солнца?

Когда ядра одного элемента (например, водорода), соединяясь, образуют ядра другого (например, гелия), возникают особые гамма-лучи, обладающие огромной энергией.

Всякие лучи испускаются атомами в виде отдельных порций, называемых квантами. Энергия квантов гамма-лучей очень велика. Атомы вещества в недрах Солнца обладают свойством жадно поглощать всякое излучение. При этом, как правило, поглощая квант с очень большой энергией, атом излучает два или несколько квантов с меньшей энергией. Пока порожденные термоядерными реакциями гамма-лучи дойдут до поверхности Солнца, произойдет очень много таких дроблений квантов первоначальных гамма-лучей. В результате с поверхности Солнца уже будут испускаться преимущественно лучи со значительно меньшей энергией: ультрафиолетовые, видимые и инфракрасные.

Ядерные реакции происходят в ядре Солнца, и здесь же выделяется энергия. Диаметр ядра составляет примерно 1/3 диаметра самого Солнца. В ядре сосредоточена наибольшая часть солнечного вещества.

К ядру примыкает самый протяженный слой Солнца, в котором в результате поглощения квантов, их дробления и переизлучения, энергия изнутри переносится наружу. Выше находится слой протяженностью около 1/10 солнечного радиуса, называемый конвективной зоной. Эта зона уже заметно холоднее. Она переходит в самые внешние слои Солнца — его атмосферу. Вследствие своей более низкой температуры конвективная зона не может обеспечить перенос всей энергии, поступающей снизу, только путем поглощения и переизлучения.

Поэтому в конвективной зоне в переносе излучения принимает участие само вещество: из глубины поднимаются вверх отдельные потоки более горячих газов, передающих свою энергию непосредственно внешним слоям. Солнечная атмосфера также состоит из нескольких весьма различных слоев. Самый глубокий и тонкий из них называется фотосферой, что по-русски означает «сфера света». Здесь возникает подавляющее количество световых и тепловых лучей, посылаемых Солнцем в мировое пространство.

Фотосфера — это та самая поверхность Солнца, которую можно наблюдать в телескоп, предварительно снабженный специальным темным светофильтром. Если этого не сделать, то наблюдатель неминуемо ослепнет.

Толщина фотосферы всего лишь 200—300 км, а более глубоких слоев Солнца мы уже совсем не видим. Это происходит потому, что вещество фотосферы непрозрачно, подобно густому туману.

Чем глубже слон фотосферы, тем они горячее. Когда мы смотрим на центр солнечного диска, то видим наиболее глубокие слои фотосферы. Это происходит по той же причине, по какой земная атмосфера в зените всегда заметно прозрачнее, чем у горизонта. Когда мы смотрим на край Солнца, мы видим не такие глубокие слои, как в центре. Поскольку эти слои холоднее и дают меньше света, на краю диск Солнца кажется темнее, а сам край его очень резким.

С помощью большого телескопа можно изучить характерную структуру фотосферы

Чередование маленьких (на самом деле размером около 1000 км) светлых пятнышек, окруженных темными промежутками, создает впечатление, что на поверхности Солнца рассыпаны рисовые зерна. Эти пятнышки называются гранулами. Они представляют собой отдельные элементы конвекции, поднявшиеся из конвективной зоны. Они горячее, а следовательно, и ярче окружающей фотосферы. Темные промежутки между ними — потоки опускающихся более холодных газов.

От движения гранул в солнечной атмосфере возникают волны, очень похожие на те, которые появляются в земной атмосфере при полете реактивного самолета. Распространяясь вверх в солнечной атмосфере, эти волны поглощаются, а их энергия переходит в теплоту. Поэтому в солнечной атмосфере над фотосферой температура начинает повышаться, и чем дальше от фотосферы, тем больше. В сравнительно тонком слое, называемом хромосферой, она поднимается до нескольких десятков тысяч градусов. А в наиболее разреженной, самой внешней оболочке Солнца, в короне, температура достигает миллиона градусов!

Хромосферу и корону можно видеть в редкие моменты полных солнечных затмений. Когда Луна целиком закрывает ослепительно яркую фотосферу, вокруг ее диска, который кажется черным, внезапно вспыхивает серебристо-жемчужное сияние в виде венца, часто имеющего длинные лучи. Это и есть солнечная корона — чрезвычайно разреженная газовая оболочка. Она простирается от Солнца на расстояние многих его радиусов. Форма короны сильно меняется со временем, о чем можно судить, сравнивая различные ее фотографии. Непосредственно вокруг черного диска Луны во время затмения видна блестящая тонкая розовая кайма. Это и есть хромосфера Солнца, слой раскаленных газов толщиной 10—15 тыс. км.

Хромосфера значительно прозрачнее фотосферы. Она имеет линейчатый спектр, испускаемый раскаленными парами водорода, гелия, кальция и других элементов. Поэтому хромосферу можно наблюдать, если с помощью специальных приборов выделить излучаемые этими элементами лучи.

 

В фотосфере много нейтральных атомов. В хромосфере вследствие высокой температуры атомы водорода и гелия начинают переходить в ионизованное состояние. Это значит, что они теряют свои электроны и становятся электрически заряженными, а их электроны начинают двигаться как свободные частицы. В короне, где температура несравненно больше, ионизация вещества настолько сильна, что все легкие химические элементы полностью лишаются своих электронов, а у тяжелых атомов их недостает более десятка. Это происходит потому, что при температуре в миллион градусов отдельные частицы движутся так быстро и с такой силой сталкиваются, что, образно говоря, от них «щепки летят». Таким образом, атмосфера Солнца, как и его недра, состоит из плазмы.

В короне плазма очень сильно разрежена. В каждом ее кубическом сантиметре содержится не более 100 млн. «ободранных» атомов и оторванных от них свободных электронов. Это в 100 млрд. раз меньше, чем молекул в воздухе. Если бы всю корону, простирающуюся на много солнечных радиусов, сжать до плотности воздуха на Земле, то получился бы ничтожный слой толщиной в несколько сантиметров, окружающий Солнце.

Вследствие столь большой разреженности корона еще прозрачнее для видимого света, чем хромосфера. По той же причине и количество излучаемого ею света ничтожно: яркость короны в миллион раз меньше яркости фотосферы. Именно поэтому в обычное время она незаметна на ярком фоне дневного неба и видна только во время полных солнечных затмений. Таким образом, хотя самые внешние слои солнечной атмосферы имеют температуру миллион градусов, их излучение составляет ничтожную долю от общей энергии, испускаемой Солнцем.

Почти всю эту энергию излучает фотосфера, имеющая температуру около 6000°. Поэтому такую температуру приписывают Солнцу в целом. Значение температуры миллион градусов, установленное в короне, говорит только о том, что ее частицы движутся с огромными скоростями, доходящими до сотен и тысяч километров в секунду.

Однако как же узнали, что температура солнечной короны так велика, если она излучает так мало? Дело в том, что наряду с другими лучами Солнце испускает относительно много радиоволн, во всяком случае, гораздо больше, чем должно давать тело, нагретое до 6000°. Солнечная корона очень сильно поглощает радиоволны. Поэтому доходящее до нас радиоизлучение Солнца в основном возникает не в фотосфере, а в короне. Измерения при помощи специальных радиотелескопов мощности этого радиоизлучения позволили определить температуру короны.

Солнечная активность

Время от времени в солнечной атмосфере появляются так называемые активные области, количество которых регулярно повторяется с периодом в среднем около 11 лет.

Наиболее существенным проявлением активной области являются наблюдаемые в фотосфере солнечные пятна. Они возникают в виде маленьких черных точек (пор). За несколько, дней поры развиваются в крупные темные образования. Обычно пятно окружено менее темной полутенью, состоящей из радиально, вытянутых прожилок. Оно кажется как бы «дыркой» на поверхности Солнца, такой большой, что в нее свободно можно закинуть «мячик», размером с Землю.

Если наблюдать Солнце изо дня в день, то, по перемещению пятен можно убедиться, что оно вращается вокруг своей оси и примерно, через 27 дней то или иное пятно снова проходит через центральный меридиан. Интересно, что на разных широтах скорость вращения Солнца различна: вблизи экватора вращение быстрее, а у полюсов оно медленнее.

За некоторое время до возникновения пятен на небольшом участке фотосферы появляется яркая область. По форме она напоминает сильно размазанную лужу причудливых очертаний с бесчисленными прожилками и яркими точками. Эти яркие области называются факелами. Они на несколько сотен градусов горячее фотосферы. Атмосфера над факелами также горячее и несколько плотнее. Факелы всегда окружают пятна.

По мере разрастания факела в активной области постепенно усиливается магнитное поле, особенно на некотором малом участке, где в дальнейшем может образоваться пятно. Такие пятна обладают сильным магнитным полем, останавливающим всякие движения и течения ионизованного газа, от чего в области пятна под фотосферой останавливаются конвективные движения и тем самым прекращается дополнительный перенос энергии из более глубоких слоев наружу.

Поэтому температура пятна оказывается примерно на 1000° ниже, чем в окружающей фотосфере, на фоне которой оно кажется темным. Появление факела также объясняется магнитным полем. Когда оно еще слабое и неспособно остановить конвекцию, тормозится только беспорядочный характер движений поднимающихся струй газа в конвективной зоне. Поэтому в факеле горячим газам легче подняться из глубины, вследствие чего он кажется ярче окружающей его фотосферы.

В хромосфере и короне над активной областью наблюдается много интереснейших явлений. К ним относятся хромосферные вспышки и протуберанцы.

Вспышки — один из самых быстрых процессов на Солнце. Обычно вспышка начинается с того, что за несколько минут яркость некоторой точки активной области сильно возрастает. Бывали даже такие сильные вспышки, которые по яркости превышали ослепительную фотосферу. После возгорания несколько десятков минут длится постепенное ослабление свечения, вплоть до исходного состояния. Вспышки возникают вследствие особых изменений магнитных полей, приводящих к внезапному сжатию вещества хромосферы.

Происходит нечто подобное взрыву, в результате которого образуется направленный поток очень быстрых заряженных частиц и космических лучей. Этот поток, проходя через корону, увлекает с собой частицы плазмы. Как струны скрипки, колеблемые гигантским смычком, эти частицы приходят в колебание и испускают при этом радиоволны.

Небольшая область, занятая вспышкой (всего лишь несколько сотен тысяч квадратных километров), создает очень мощное излучение. Оно состоит из рентгеновских, ультрафиолетовых и видимых лучей, радиоволн, быстро движущихся частиц (корпускул) и космических лучей. Все виды этого излучения оказывают сильное воздействие на явления, происходящие в земной атмосфере.

Лучистая энергия Солнца

Ультрафиолетовые и рентгеновские лучи быстрее всего достигают Земли, прежде всего ее ионосферы — верхних, ионизированных слоев атмосферы. От состояния земной ионосферы зависит распространение радиоволн и слышимость радиопередач. Под воздействием солнечных ультрафиолетовых и рентгеновских лучей увеличивается ионизация ионосферы. Вследствие этого в нижних ее слоях начинают сильно поглощаться короткие радиоволны. Из-за этого происходит замирание слышимости радиопередач на коротких волнах.

Ионосферные слои отражают короткие радиоволны и частично поглощают их.

Одновременно ионосфера приобретает способность лучше отражать длинные радиоволны. Поэтому во время вспышки на Солнце можно обнаружить внезапное усиление слышимости далекой радиостанции, работающей на длинной волне.

Поток частиц (корпускул) достигает Земли примерно только через сутки после того, как на Солнце произошла вспышка. «Продираясь» через солнечную корону, корпускулярный поток вытягивает ее вещество в длинные, характерные для ее структуры лучи.

Вблизи Земли поток корпускул встречается с магнитным полем Земли, которое не пропускает заряженных частиц. Однако трудно остановить частицы, мчащиеся со скоростью, всего лишь в несколько сот раз меньшей скорости света. Они прорывают преграду и как бы вдавливают магнитные силовые линии, окружающие земной шар. От этого на Земле происходит так называемая магнитная буря, заключающаяся в быстрых и неправильных изменениях магнитного поля. Во время магнитных бурь стрелка компаса совершает беспорядочные колебания и пользоваться этим прибором становится совершенно невозможно.

Подходя к Земле, поток солнечных частиц врывается в окружающие Землю слои очень быстрых заряженных частиц, образующих так называемые радиационные пояса. Пройдя эти пояса, некоторые частицы прорываются глубже в верхние слои атмосферы и вызывают очень красивые свечения воздуха, наблюдаемые большей частью в полярных широтах Земли. Эти переливающиеся различными цветами радуги свечения, то принимающие вид лучей, то как бы висящие подобно занавесям, называются полярными сияниями. Таким образом, вспышки на Солнце приводят к важным последствиям и тесно связаны с различными явлениями, происходящими на Земле.

В короне над активной областью также происходят грандиозные явления. Порой вещество короны начинает ярко светиться и можно видеть, как его потоки устремляются в хромосферу. Эти облака раскаленных газов, выбрасываемые из хромосферы и вверх, в десятки раз превышающие земной шар, называются протуберанцами. Протуберанцы поражают разнообразием своих форм, богатой структурой, сложными движениями отдельных узлов и внезапными изменениями, которые сменяются длительными пе-риодами спокойного состояния.

Протуберанцы холоднее и плотнее окружающей их короны и обладают примерно такой же температурой, как и хромосфера.

На движение и возникновение протуберанцев, как и на другие активные образования в солнечной атмосфере, сильное влияние оказывают магнитные поля. По-видимому, эти поля являются основной причиной всех активных явлений, происходящих в солнечной атмосфере. С магнитными полями связана также периодичность солнечной активности — пожалуй, наиболее интересная из всех особенностей солнечных явлений. Эту периодичность можно проследить по всем явлениям, но особенно легко ее заметить, если день за днем подсчитывать количество имеющихся на Солнце пятен.

Период, когда пятен совсем нет, называется минимумом. Вскоре после минимума пятна начинают появляться на большом расстоянии от солнечного экватора. Потом постепенно их число увеличивается и они возникают все ближе и ближе к экватору. Через 3—4 года наступает максимум солнечных пятен, отличающийся наибольшим количеством активных образований на Солнце. Затем солнечная активность постепенно спадает, и примерно через 11 лет снова наступает минимум.

Возможно, «секрет» солнечной активности связан с удивительным характером вращения Солнца: на экваторе вращение быстрее, чем у полюсов. Через 1 оборот Солнца (около 27 дней) детали, располагавшиеся на одном меридиане, снова пройдут через него одновременно.

Периодичность солнечной активности пока еще остается увлекательной загадкой Солнца. Только в последние годы удалось приблизиться к ее решению. По-видимому, причина солнечной активности связана со сложным взаимодействием между ионизованным веществом Солнца и его общим магнитным полем. Результат этого взаимодействия — периодическое усиление магнитных полей.

Использование альтернативной энергии Солнца

Некоторые люди ошибаются, говоря о тепловой энергии Солнца. До нашей планеты солнечная энергия доходит в виде лучей, излучения. Поэтому разумно говорить о лучистой энергии Солнца. Сегодня модно упоминать об альтернативных источниках. Но Солнце, пожалуй, самый безальтернативный источник энергии. Понятно, что радетели за зеленую планету призывают отказаться от бензина и заправлять машины Солнцем.

Но не будь Солнца, не было бы ни бензина, ни нефти, ни газа, ни самих радетелей за зеленую планету. Не стоит жонглировать словами и подменять понятия. Обман и самообман никогда не дает лучшего результата и, кроме того, имеет свойство быть раскрытым. Солнечные батареи и биологические концентраторы, как и водород – не альтернативные, а более эффективные (в перспективе) источники энергии. А поскольку альтернатив Солнцу нет, давайте будем и дальше радоваться безальтернативной энергии, которую нам дает наше светило и стараться использовать ее, с максимально возможным к.п.д. Даешь повышение КПД!


Просто о сложном – Источники энергии – Солнце

  • Галерея изображений, картинки, фотографии.
  • Солнце как источник энергии – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Солнце как источник энергии.
  • Ссылки на материалы и источники – Источники энергии – Солнце.

greensource.ru

0 comments on “Источники энергии солнца – Солнечная энергетика — Википедия

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *