Электрическая энергия и мощность в чем разница – Мощность против энергии: принципиальные различия схожих понятий

Мощность против энергии: принципиальные различия схожих понятий

23 Марта 2018


Алексей Телегин, ведущий блога по источникам питания Keysight Technologies

Мы продолжаем знакомить читателей с материалами, посвященными базовым понятиям и подходам в использовании источников питания (ИП), современным решениям в данной области и уникальным функциям, помогающим решить самые сложные задачи, возникающие при тестировании. В этом номере менеджер по развитию бизнеса и ведущий раздела по системам электропитания объединенного блога Keysight Technologies в России Алексей Телегин обсуждает такие фундаментальные понятия, как мощность и энергия.

Энергия становится все более ценным товаром, ведь человечество гораздо быстрее находит способы ее потребления, чем способы воспроизводства. Даже если бы мы были способны добывать или преобразовывать энергию в неограниченных количествах, процессы ее производства и потребления все равно оказывали бы огромное влияние на жизнь всей планеты. Для решения проблемы растущих потребностей необходимы более разумные и эффективные способы использования энергии. Нельзя не отметить, что в ряде отраслей происходит постоянное развитие технологий для решения данной задачи, и компания Keysight Technologies является активным участником этого, безусловно, положительного процесса.

Несмотря на то, что мощность и энергия — фундаментальные понятия, и большинство профессионалов прекрасно понимают различие между ними, я иногда встречаю сотрудников, ошибочно использующих одно из этих слов вместо другого. Действительно, эти понятия тесно связаны, но все же являются принципиально разными по смыслу.

Итак, начнем с энергии. Вероятно, лучше всего рассматривать ее с точки зрения классической механики движения заряженных частиц. Уравнение кинетической энергии выглядит следующим образом:

Ek = &frac12 × m × v2,

где Ek — энергия частицы, m — масса, а v — скорость. До тех пор, пока эта движущаяся частица не испытывает воздействия, ее энергия остается неизменной. Но что произойдет с частицей под действием внешней силы? Этот вопрос приводит нас к понятию работы. Механическая работа — это мера силы, зависящая от численной величины, направления силы и от перемещения точки. Если эта сила действует в том же направлении, что и перемещение, работа определяется как положительная. Частица получает энергию. Если сила действует в направлении, противоположном перемещению, тогда работа является отрицательной. Энергия частицы уменьшается. Работа выражается следующим образом:

W = Ek2–Ek1,

где Ek1 — энергия частицы до воздействия на нее силы, а Ek2 — энергия частицы после воздействия.

Работа — это количественная мера изменения энергии этой частицы.

Мы подошли к вопросу определения потенциальной энергии. В механике потенциальную энергию можно описать как нечто, что я буду называть возобновляемой силой, приложенной в направлении, противоположном перемещению. В самом типичном случае это будет масса объекта, поднятого на некоторую высоту, на который действует сила тяжести. Это также может быть сила, использованная для растягивания пружины на некоторое расстояние. В случае силы тяжести потенциальную энергию описывает следующая формула:

Ep = m × g × y,

где Ep — потенциальная энергия частицы, m — масса, g — сила тяжести, а y — высота частицы над заданной точкой отсчета. Обратите внимание, что вес — это произведение массы на силу тяжести. Работа, складываемая или вычитаемая (соответственно), — это подъем или опускание частицы на вертикальное расстояние под действием силы тяжести.

Для электричества понятия работы и энергии точно такие же, как и в контексте механики. Известно, что энергию нельзя создать или уничтожить, ее можно только преобразовать из одной формы в другую. Энергию света можно преобразовать в электрическую при помощи фотоэлемента. Электрическую энергию можно преобразовать в механическую при помощи электродвигателя и т. д. Эти процессы не являются эффективными на все 100%, потому что значительная доля исходной энергии преобразуется также в тепловую. Общепринятой мерой энергии являются джоули, которые равны одной ватт-секунде. Чаще всего мы сталкиваемся с этим понятием, когда оплачиваем счета за электроэнергию: сумма в них рассчитывается на основании количества киловатт-часов электроэнергии, которая израсходована с момента выставления предыдущего счета.

Как и в механике, энергию в электрических системах можно сохранять — в частности, в реактивных компонентах (катушках индуктивности и конденсаторах). Энергия в катушке вычисляется по формуле:

E = &frac12× L × I2,

где E — энергия в джоулях, L — индуктивность в генри, а I — сила тока в амперах. Катушка индуктивности хранит свою энергию в магнитном поле. Соответственно, энергия конденсатора определяется по формуле:

E = &frac12× C × V2,

где E — энергия в джоулях, C — емкость в фарадах, а V — электрический потенциал в вольтах. Конденсатор хранит свою энергию в электрическом поле.

Надеюсь, что теперь вы имеете более четкое представление о том, что представляет собой энергия (и работа). Далее необходимо связать эти понятия с мощностью.

Мы знаем, как можно увеличить энергию или, наоборот, уменьшить ее в системе под воздействием совершаемой работы, и установили, что совершенная работа приводит к изменению количества энергии. Но необходимо также знать, в течение какого периода выполнялась работа. Ведь она могла совершаться в течение минуты, дня или года. Мощность является мерой скорости, с которой выполняется работа, и энергии, добавляемой в систему или удаляемой из системы.

Средняя мощность = совершаемая работа/интервал времени.

Когда мы слышим слово «мощность», чаще всего нам в голову приходит мощность в лошадиных силах, которой обладает какой-нибудь автомобиль (по крайней мере, это утверждение справедливо для большинства автолюбителей). Несмотря на то, что чаще всего это понятие используется в отношении механических систем, лошадиная сила все же остается мерой мощности, точно так же, как и электрическая мощность, которую мы потребляем из розеток у себя дома.

Когда-то, еще во времена тепловых двигателей, Джеймс Ватт придумал термин «лошадиная сила» в качестве средства для сравнения своих паровых двигателей с интенсивностью работы, которую может производить лошадь. Механическая работа — это мера силы (фунты), затраченной на перемещение на расстояние (футы). В результате расчета было принято, что лошадь может переместить 550 футо-фунтов за одну секунду, или производить 550 футо-фунтов мощности в секунду.

Электрическая мощность также является мерой работы, выполняемой за единицу времени. Однако в этом случае она перемещает заряд в 1 Кл (кулон) при потенциале в 1 В (вольт) за 1 с (секунду). Обратите внимание, что 1 А (ампер) равен 1 Кл/с. Одна единица электрической мощности равна одному ватту. Подведем итог:

P (ватты) = Q (кулоны) × V (вольты) / t (секунды) = I (амперы) × V (вольты).

Мы говорили о том, что энергия измеряется в ватт-секундах и киловатт-часах. Разделите количество энергии на интервал времени, за который она была использована, и вы получите мощность в ваттах и киловаттах! Какова взаимосвязь между механической и электрической мощностью? Когда появились первые электродвигатели, необходимо было соотнести работу, которую они могли выполнить, с работой тепловых двигателей, которая измерялась в лошадиных силах, где одна лошадиная сила равна 550 футо-фунтов/с. Было определено, что электромотору с КПД, равным 100%, требуется 746 Вт электрической мощности, чтобы произвести одну лошадиную силу механической мощности. Обратите внимание, что оценка работы в лошадиных силах основана на британских единицах измерения физических величин. Мера лошадиной силы на основании метрической системы немного отличается и составляет около 735 Вт.

Итак, теперь вы умеете рассчитывать количество потребляемой мощности электрическими приборами и в лошадиных силах, и в ваттах. В то же время, вы также можете рассчитать мощность двигателя своего автомобиля в ваттах (или киловаттах) вместо лошадиных сил: в наши дни это довольно полезный навык, поскольку мощность в ваттах признается во всем мире, а в лошадиных силах — не везде.

www.dipaul.ru

Электрическая энергия и мощность

Основные понятия и определения электротехники

Электрическая энергия — это способность электромаг­нитного поля производить работу, преобразовываясь в другие виды энергии.

Электроэнергия — наиболее совершенный и универсальный вид, сравнительно легко преобразующийся в другие виды энергии: механическую, тепловую, световую, химическую и др.

Совершение работы связано с перемещением зарядов через элементы, обладающие сопротивлением. Единица измерения электроэнергии (работы) — джоуль (Дж). Она соответствует работе по перемещению заряда в один кулон между точками цепи с напряжением в один вольт: 1 Дж = 1 В • 1 Кл.

Электрическая мощность — это работа по перемещению электрических зарядов в единицу времени.

Различают активную, реактивную и полную мощности.

Активная мощность

— это мощность, связанная с преобразованием электроэнергии в тепловую или меха­ническую энергию.

В цепях постоянного тока активная мощность, Вт,

Р ш UI = Р г, в цепях переменного синусоидального тока

(/

где U — действующее значение напряжения, В, U » -~;

л/2

I — действующее значение тока, А, I = ~.

Ф — угол сдвига между векторами напряжения и тока, град.

Реактивная (индуктивная) мощность в цепях перемен­ного синусоидального тока в установившихся режимах связана с созданием магнитных полей в элементах цепи и покрытием потерь на так называемые магнитные поля рассеяния этих элементов.

QL = UI sinq> * I2 xL .

Реактивная (емкостная) мощность

в цепях переменного синусоидального тока в установившихся режимах направлена на создание электрических полей в диэлектрических средах элементов цепи.

Qc = UI sincp I2xc .

Единица измерения реактивной мощности — вар.

 

В цепях постоянного тока в установившихся режимах реак­тивные мощности равны нулю.

Полная мощность элемента в цепи переменного синусои­дального тока определяется как геометрическая сумма актив­ной и реактивной мощностей:  •

где z = /Jr2 + (xLxc)z  — полное сопротивление цепи, Ом. Единица измерения полной мощности — В>А



proelectro2.ru

Работа, энергия и мощность — вспоминаем физику

В текстах, публикуемых на этом сайте, часто встречаются различные термины, которые являются названиями физических величин. Многое мы изучали еще в школьном курсе физике, но знания имеют свойство забываться без постоянного употребления. В серии заметок, объединенных под общим заголовком «Вспоминаем физику» (можно было бы назвать «Снова в школу») мы постараемся напомнить вам, что означают основные термины, какие физические величины за этими терминами скрываются, как они связаны между собой, в каких величинах они измеряются. В общем, дать те основы, которые нужны для понимания публикуемых материалов.

Сайт нас в целом посвящен методам и технологиям получения энергии (конкретно, из возобновляемых источников). Энергия нужна людям для отопления и освещения собственных жилищ, для того, чтобы приводить в движение различные механизмы, которые совершают полезную для людей работу. То есть нам нужно получить в конечном итоге один из трех видов энергии — тепловую, механическую и энергию света. Как будет сказано ниже, в физике различают еще несколько видов энергии, но для нас важны в первую очередь эти три вида. Закончу с предисловиями и приведу те определения энергии, которые приняты в физике.

Работа и энергия

Еще из школьного курса физики (а школу я окончил 50 лет назад) я помню утверждение «Энергия является мерой способности физической системы совершить работу». Википедия дает менее понятное определение, утверждая, что

«Эне́ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии.»

Энергия является скалярной величиной, для измерения которой применяются несколько разных единиц. Нам наиболее интересны джоуль и киловатт-час.

Джо́уль (русское обозначение: Дж; международное: J) — единица измерения работы, энергии и количества теплоты в Международной системе единиц (СИ). Джоуль равен работе, совершаемой при перемещении точки приложения силы, равной одному ньютону, на расстояние одного метра в направлении действия силы. В электричестве джоуль означает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт для поддержания силы тока в 1 ампер.

Впрочем, мы не будем углубляться в основы физики, выясняя, что такое сила и что такое один ньютон, просто примем понятие «энергия» за основу и запомним, что некое количество джоулей характеризует энергию, работу и количество теплоты. Еще одной величиной, с помощью которой измеряют количество энергии, является киловатт-час.

Килова́тт-час (кВт⋅ч) — внесистемная единица измерения количества произведенной или потреблённой энергии, а также выполненной работы. Используется преимущественно для измерения потребления электроэнергии в быту, народном хозяйстве и для измерения выработки электроэнергии в электроэнергетике.

Следует заметить, что правильно писать именно «кВт⋅ч» (мощность, умноженная на время). Написание «кВт/ч» (киловатт в час), часто употребляемое во многих СМИ и даже иногда в официальных документах, неправильно. Такое обозначение соответствует изменению мощности в единицу времени (что обычно никого не интересует), но никак не количеству энергии. Столь же распространённая ошибка — использовать «киловатт» (единицу мощности) вместо «киловатт-час».

В последующих статьях мы будем использовать джоуль и киловатт-час как единицы для оценки количества энергии или работы, имея в виду, что один киловатт-час равен 3,6·106 джоулей.

С точки зрения интересующих нас тем именно свойство энергии совершать работу является основополагающим. Мы не будем выяснять, как физика трактует понятие «работа», будем считать, что это понятие является первоначальным и не определяемым. Только еще раз подчеркнем, что количественно энергия и работа выражаются в одних единицах.

В зависимости от вида энергии или работы величина энергии рассчитывается разными способами:

В механике: сила, умноженная на длинуE ~ F·l
В термодинамике: давление, умноженное на объёмE ~ P·V
Импульс, умноженный на скоростьE ~ p·v
Масса, умноженная на квадрат скоростиE ~ m·v²
В электростатике: заряд, умноженный на напряжениеE ~ q·U
Мощность, умноженная на времяE ~ N·t

Формы и виды энергии

Поскольку энергия, как сказано выше, является только мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие, различные формы энергии выделяются в соответствии с различными формами движения материи. Таким образом, в зависимости от уровня проявления, мож­но выделить следующие формы энергии:

  • энергия макромира — гравитационная или энергия притяжения тел,
  • энергия взаимодействия тел — механическая,
  • энергия молекулярных взаимодействий — тепловая,
  • энергия атомных взаимодей­ствий — химическая,
  • энергия излучения — электромагнит­ная,
  • энергия, заключенную в ядрах атомов, — ядерная.

Гравитационная энергия — энергия системы тел (частиц), обусловленная их взаимным гравитационным тяготением. В земных условиях, это, например, энергия, «запасенная» телом, поднятым на опреде­ленную высоту над поверхностью Земли — энергия силы тя­жести. Таким образом, энергию, запасенную в водохранилищах гидроэлектростанций, можно отнести к гравитационной энергии.

Механическая энергия — проявляется при взаимодей­ствии, движении отдельных тел или частиц. К ней относят энергию движения или вращения тела, энер­гию деформации при сгибании, растяжении, закручивании, сжатии упругих тел (пружин). Эта энергия наиболее широко используется в различных машинах — транспортных и техно­логических.

Тепловая энергия — энергия неупорядоченного (хаотичес­кого) движения и взаимодействия молекул веществ. Тепловая энергия, получаемая чаще всего при сжигании различных видов топлива, широко применяется для отопле­ния, проведения многочисленных технологических процес­сов (нагревания, плавления, сушки, выпаривания, перегон­ки и т. д.).

Химическая энергия — это энергия, «запасенная» в атомах веществ, которая высвобождается или поглощается при хими­ческих реакциях между веществами. Химическая энергия либо выделяется в виде тепловой при проведении экзотермических реакций (например, горении топлива), либо преобразуется в электрическую в гальваничес­ких элементах и аккумуляторах. Эти источники энергии ха­рактеризуются высоким КПД (до 98 %), но низкой емкостью.

Электромагнитная энергия — это энергия, порождаемая взаимодействием электрического и магнитного по­лей. Ее подразделяют на электрическую и магнитную энергии. Электрическая энергия — энергия движущихся по элек­трической цепи электронов (электрического тока).

Электромагнитная энергия проявляется также в виде электромагнит­ных волн, то есть в виде излучения, включающего видимый свет, инфракрасные, ультрафио­летовые, рентгеновские лучи и радиоволны. Таким образом, один из видов электромагнитной энергии — это энергия излучения. Излучение переносит энергию в форме энергии электромагнитной волны. Когда излучение поглощается, его энергия преобразуется в другие формы, чаще всего в теплоту.

Ядерная энергия — энергия, локализованная в ядрах ато­мов так называемых радиоактивных веществ. Она высвобож­дается при делении тяжелых ядер (ядерная реакция) или син­тезе легких ядер (термоядерная реакция).

В эту классификацию несколько не укладываются известные нам со школы понятия потенциальной и кинетической энергии. Современная физика считает, что понятия кинетической и потенциальной энергий (а также энергии диссипации) это не формы, а виды энергии:

Кинетическая энергия — энергия, которой обладают тела вследствие своего движения. Более строго, кинетическая энергия есть разность между полной энергией системы и её энергией покоя; таким образом, кинетическая энергия — часть полной энергии, обусловленная движением. Когда тело не движется, кинетическая энергия равна нулю.

Потенциальная энергия — энергия, обусловленная взаимодействием различных тел или частей одного и того же тела. Потенциальная энергия всегда определяется положением тела относительно некоторого источника силы (силового поля).

Энергия диссипации (то есть рассеяния) — переход части энергии упорядоченных процессов в энергию неупорядоченных процессов, в конечном счёте — в теплоту.

Дело в том, что каждая из перечисленных выше форм энергии может проявляться в виде потенциальной и кинетической энергии. То есть виды энергии должны трактоваться в обобщенном смысле, ибо они относятся к любой форме движения и, следовательно, к любой форме энергии. Например, имеется кинетическая электрическая энергия, и это не то же самое, что кинетическая механическая энергия. Это кинетическая энергия движения электронов, а не кинетическая энергия механического движения тела. Точно так же потенциальная электрическая энергия это не то же самое, что потенциальная механическая энергия. А химическая энергия складывается из кинетической энергии движения электронов и электрической энергии их взаимодействия друг с другом и с атомными ядрами.

Вообще, насколько я понял при подготовке этого материала, пока не существует общепринятой классификации форм и видов энергии. Впрочем, возможно нам и не нужно до конца разбираться в этих физических понятиях. Важно только помнить, что энергия — это не какая-то реальная материальная субстанция, а только мера, предназначенная для оценки перемещения некоторых форм материи или преобразования одной формы материи в другую.

С понятием энергии и работы неразрывно связано понятие мощности.

Мощность

Мо́щность — физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

В Международной системе единиц (СИ) единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Мощность характеризует способность того или иного устройства совершать работу или производить энергию в течение определенного промежутка времени. Связь между мощностью, энергией и временем выражается следующим соотношением:

Киловатт-час (напомним, что это единица измерения энергии) равен количеству энергии, потребляемой (производимой) устройством мощностью один киловатт (единица мощности) в течение одного часа (единица времени).

Отсюда и уже упомянутое выше равенство 1 кВт⋅ч = 1000 Вт ⋅ 3600 с = 3,6·106 Дж = 3,6 МДж.

Из трех рассмотренных на этой странице единиц именно мощность представляет для нас наибольший интерес, поскольку эта величина будет нам встречаться при рассмотрении и сравнении различных ветро- или гидро-генераторов и солнечных панелей. В этих случаях мощность характеризует способность этих устройств производить энергию. И наоборот, указание мощности на многих бытовых электроприборах характеризует потребление энергии этими приборами. Если мы хотим обеспечить некоторую совокупность бытовых приборов энергией, мы должны сопоставить суммарную потребляемую этими приборами мощность с суммарной мощностью, которую можем получить от производителей энергии.

Но подробнее о мощности мы поговорим в следующих статьях, посвященных конкретным видам энергии.  И начнем с электрической энергии, рассмотрим, какими величинами характеризуется электричество и в каких единицах оно измеряется.

altenergiya.ru

кВт, кВт*ч и кВт/ч / Habr


Увидел (опять/снова/в очередной раз) в одной из недавних статей выражение «5 МВт энергии» и решил, что пора кратко повторить чем отличается кВт от кВт*ч.

Энергия

С точки зрения банальной энергетики энергия — это материя, которая производится электростанцией, хранится в аккумуляторе и тратится лампочками.
Мощность

Мощность — скорость перемещения или преобразования энергии. Это количество энергии, перемещаемое или преобразуемое в единицу времени.

кВт
Единица мощности.

кВт*ч
Единица энергии — не системная, но основная в быту. Как видно из записи, получается умножением единицы мощности (кВт) на единицу времени (ч).

Пример 1.
У вас есть 2 обогревателя, мощностью 1 кВт каждый. Вы греетесь об них 1 час. Электричество по 4 рубля за кВт*ч.

2 * 1 кВт * 1 ч * 4 руб/[кВт*ч] = 2 [кВт*ч] * 4 руб/[кВт*ч] = 8 руб

Пример 2.
У вас есть 1 обогреватель мощностью 1 кВт. Вы греетесь об него 2 часа. Электричество по 4 рубля за кВт*ч.

1 * 1 кВт * 2 ч * 4 руб/[кВт*ч] = 2 [кВт*ч] * 4 руб/[кВт*ч] = 8 руб

Обратите внимание на арифметику единиц измерения. Именно в ней кроется физический смысл вычислений.

кВт * ч = [кВт*ч]
[кВт*ч] / [кВт*ч] = 1
[кВт*ч] * руб / [кВт*ч] = руб * 1 = руб

[кВт*ч] + [кВт*ч] = [кВт*ч]

кВт/ч
кВт в час — единица скорости строительства электростанций. Основная характеристика электростанции — её установленная мощность (кВт). Суммарное количество электростанций построенное за некоторое время делённое на это время (ч) — скорость строительства (кВт/ч). На практике используется кратная ей — МВт/год.

Если Ваш текст не посвящён макроэкономическим показателям, то кВт/ч (как и кВт в час) в нём встречаться не должен.

Капитализация

Ещё раз посмотрим на единицу энергии: кВт*ч.

к — десятичная приставка «кило» (маленькая «к»). Десятичные приставки чувствительны к регистру и нажатие на SHIFT в неподходящий момент может привести к ошибке в миллиард раз и больше. К счастью, на данный момент не существует десятичной приставки «К» (если не считать двоичную K=1024).
Вт — сокращение от фамилии Ватт. Пишется с большой буквы, как и все имена.
ч — обычная единица. Пишется с маленькой буквы.

Тема, конечно, выглядит по-детски на фоне «Мифов современной популярной физики», но нужно иногда разбираться и с основами.

habr.com

Энергия и мощность 2019

Кажется, что люди всегда считают Энергию и Силу одинаковыми. Они даже ошибаются, думая «Энергия и сила» как синонимы. Ну, нельзя даже обвинять в том, что можно найти сходство между Энергией и Силой, поскольку они взаимосвязаны.

Не так сложно различать Энергию и Силу. Хотя энергия — это способность выполнять работу, Power — это ее измерение, которое вычисляет время, в течение которого энергия была использована. Ну, энергия — это то, что поставляет, а мощность — это скорость ее доставки.

Энергия — это возможность что-то сделать. Например, энергия используется для перемещения автомобиля или отопления дома или освещения ночью или даже полета самолета. Основной единицей Энергии является Джоуль, но обычно она называется ваттным часом или киловатт-часом. Энергия появляется во многих формах и часто выражается в нескольких единицах.

Приходя к власти, это скорость Энергии за единицу времени. Мощность — это энергия энергии, которая используется. В более простых терминах власть определяется как скорость выполнения работы. Power считает, что он используется в механических приложениях, применении тепла, электрических приложениях и некоторых других областях.

Давайте посмотрим пример весового подъемника, чтобы лучше понять Энергию и Силу. Сила — это сила тяжелоатлета, а энергия — это мера того, как долго он сможет выдержать мощность. В то время как энергия «джоулей», мощность равна «джоулям в секунду». Ну, другими словами, Power — это «ватт», а Energy — «ватт-час».

Другое отличие состоит в том, что энергия может быть сохранена, тогда как мощность не может быть сохранена. В то время как энергия поставляется с компонентом времени, Power — это мгновенное количество. Мощность не может меняться, но остается постоянной. Между тем энергия накапливается предсказуемо.

Изменения энергии меняются, но сила не меняется. Если что-то должно произойти, энергия должна измениться. Но Сила только измеряет, насколько быстро произошло изменение; Мощность — это скорость, с которой энергия преобразуется каждую секунду.

Найдите дополнительную информацию о энергии и мощности.

ru.esdifferent.com

Электрическая мощность. Мощность электрического тока.

 

 

 

Тема: что такое электрическая мощность, её определение и вычисление.

 

В этой теме хотелось бы раскрыть понятие электрической мощности в простой и понятной форме. И, пожалуй, прежде чем говорить об электрической мощности, сперва следует определиться с понятием мощности в общем смысле. Обычно, когда люди говорят о мощности, они подразумевают некую «силу», которой обладает тот или иной предмет (мощный электродвигатель) либо действие (мощный взрыв). Но как мы знаем из школьной физики, сила и мощность — это разные понятия, но зависимость у них есть.

 

Первоначально мощность (N), это характеристика, относящаяся к определённому событию (действию), а если оно привязано к некоторому предмету, то с ним также условно соотносят понятие мощности. Любое физическое действие подразумевает воздействие силы. Сила (F), с помощью которой был пройден определённый путь (S) будет равняться совершенной работе (А). Ну, а работа, проделанная за определённое время (t) и будет приравниваться к мощности.

 

Мощность — это физическая величина, которая равна отношению совершенной работы, что выполняется за некоторый промежуток времени, к этому же промежутку времени. Поскольку работа является мерой изменения энергии, то ещё можно сказать так: мощность — это скорость преобразования энергии системы.

 

Разобравшись с понятием механической мощности, перейдём к рассмотрению электрической мощности (мощность электрического тока). Как Вы должны знать  U — это работа, выполняемая при перемещении одного кулона, а ток I — количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

 

 

 

 

Анализируя приведённую формулу, можно сделать очень простой вывод: поскольку электрическая мощность «P» в одинаковой степени зависит от тока «I» и от напряжения «U», то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе (Это используется при передачи электроэнергии на удалённые расстояния от электростанций к местам потребления, путём трансформаторного преобразования на повышающих и понижающих электроподстанциях).

 

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии — тепловую, световую, механическую и т.д.) имеет свою единицу измерения — Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы — мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

 

Реактивная электрическая мощность — это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними: Q = U*I*sin(угла). Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой «Q».

 

Простым языком активную и реактивную электрическую мощность на примере можно выразить так: у нас имеется электротехническое устройство, которое имеет нагревательные тэны и электродвигатель. Тэны, как правило, сделаны из материала с высоким сопротивлением. При прохождении электрического тока по спирали тэна, электрическая энергия полностью преобразуется в тепло. Такой пример характерен активной электрической мощности.

 

 

Электродвигатель этого устройства внутри имеет медную обмотку. Она представляет собой индуктивность. А как мы знаем, индуктивность обладает эффектом самоиндукции, а это способствует частичному возврату электроэнергии обратно в сеть. Эта энергия имеет некоторое смещение в значениях тока и напряжения, что вызывает негативное влияние на электросеть (дополнительно перегружая её).

 

Похожими способностями обладает и ёмкость (конденсаторы). Она способна накапливать заряд и отдавать его обратно. Разница ёмкости от индуктивности заключается в противоположном смещении значений тока и напряжения относительно друг друга. Такая энергия ёмкости и индуктивности (смещённая по фазе относительно значения питающей электросети) и будет, по сути, являться реактивной электрической мощностью.

 

Более подробно о свойствах реактивной мощности мы поговорим в соответствующей статье, а в завершении этой темы хотелось сказать о взаимном влиянии индуктивности и ёмкости. Поскольку и индуктивность, и ёмкость обладают способностью к сдвигу фазы, но при этом каждая из них делает это с противоположным эффектом, то такое свойство используют для компенсации реактивной мощности (повышение эффективности электроснабжения). На этом и завершу тему, электрическая мощность, мощность электрического тока.

 

P.S. Говоря об электрической мощности электротехнических устройств мы должны помнить, что она в них ограничивается номинальными и максимальными значениями тока и напряжения, а эти ограничения уже зависят от материала, рабочих частот, технологии изготовления и прочих факторов.

electrohobby.ru

В чем разница между тепловой и электрической энергией (если можно подробый ответ) Спасибо!

Электрическая энергия — это мощность, переданная потребителю или потребленная им в единицу времени. Пример: киловатт в час (кВтч). Тепловая энергия — это количество теплоты переданное потребителю или израсходованное им на свои нужды, опять таки в единицу времени. Пример: гигакалория в час (Гкал/ч). Если нужно подробнее — смотри справочную литературу по электро- и энергоснабжению, курс тепловых электрических станций. Как вариант. могу написать краткую выписку из литературы и прислать на ящик.

Принципиальеая разница состоит в том, что любые виды энергии в конечном счете превращаются в тепловую. И без подробностей. Просто.

Принципиальная разница — в способах передачи.<br>Тепловая энергия передается через термодинамическое взаимодействие.<br>Электрическая энергия передается через электромагнитное взаимодействие. И хотя Ваш вопрос скорее всего касается того, к чему относить тепловое излучение. С одной стороны, когда одно нагретое тело <br>передает свое тепло на нагрев другого тела — это тепловая энергия.<br>С другой стороны тепловое излучение — это распространение электромагнитных волн микрометрового диапазона, подчиняющееся уравнениям МАКСВЕЛЛА. Поэтому тепловую энергию можно считать частным случаем электрической энергии. Исторически получилось так: о тепловой энергии знали с первобытных времен, об электрической энергии и ее преобразовании в тепловую знали в 18 веке, а измерили длину волны<br>теплового излучения и обнаружили, что это также электромагнитное <br>излучение только в 20 веке. Но учебники по физике уже были написаны, где <br>отдельно изучалась тепловая, отдельно электрическая энергия. Их переписывать не стали.

тепловая энергия это грубо говоря изменение температуры чего-либо (нагрев или охлаждение). например в химической реакции выделяется тепловая энергия. в результате мы чувствуем как нагреваются реагенты — а вслед за ними колба. электрический ток при прохождении через проводник нагревает его — также выделяется тепловая энергия. <br>электроэнергия в том смысле, каком ее понимает ЖКХ — это (как говорилось выше) «мощность, переданная потребителю или потребленная им в единицу времени».<br>с т. зр. физики это энергия электрического поля, созданного током, бегущим по твоим проводам. эта энергия может быть преобразована либо в тепловую (утюг, электроплита, нагреватели), либо в механическую (что кстати тоже сопутствуется небольшим выделением тепловой энергии) — например вращение компрессоров холодильника, вращение мотора стиральной машинки и т.п.<br>кроме того эл. эн-я может быть использована в качестве источника света (что по сути также является преобразованием ее в тепловую энергию) — лампы накаливания, лампы дневного света и т.п.

touch.otvet.mail.ru

0 comments on “Электрическая энергия и мощность в чем разница – Мощность против энергии: принципиальные различия схожих понятий

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *