их преимущества и недостатки, разновидности, классификация
Электростанцией называется комплекс зданий, сооружений и оборудования, предназначенный для выработки электрической энергии. То есть, электростанции преобразуют различные виды энергий в электрическую. Наиболее распространенными типами электростанций являются:
— гидроэлектростанции;
— тепловые;
— атомные.
Гидроэлектростанция (ГЭС) — это электростанция, преобразующая энергию движущейся воды в электрическую энергию. Устанавливаются ГЭС на реках. При помощи плотины создается перепад высот воды (до и после плотины). Возникающий напор воды приводит в движение лопасти турбины. Турбина приводит в действие генераторы, которые вырабатывают электроэнергию.
В зависимости от мощности вырабатываемой электроэнергии, гидроэлектростанции подразделяются на: малые (до 5 МВт), средние (5-25 МВт) и мощные (свыше 25 МВт). По максимально используемому напору они делятся на: низконапорные (максимальный напор — от 3 до 25 м), средненапорные (25-60 м) и высоконапорные (свыше 60 м). Также ГЭС классифицируют по принципу использования природных ресурсов: плотинные, приплотинные, деривационные и гидроаккумулирующие.
Преимуществами гидроэлектростанций являются: выработка дешевой электроэнергии, использование возобновляемой энергии, простота управления, быстрый выход на рабочий режим. Кроме того, ГЭС не загрязняют атмосферу. Недостатки: привязанность к водоемам, возможное затопление пахотных земель, пагубное влияние на экосистему рек. ГЭС можно строить только на равнинных реках (из-за сейсмической опасности гор).
Тепловая электростанция (ТЭС) вырабатывает электроэнергию за счет преобразования тепловой энергии, полученной в результате горения топлива. Топливом на ТЭС является: природный газ, уголь, мазут, торф или горячие сланцы.
В результате горения топлива в топках паровых котлов, происходит преобразование питательной воды в перегретый пар. Этот пар с определенной температурой и давлением по паропроводу подается в турбогенератор, где и происходит получение электрической энергии.
Тепловые электростанции подразделяются на:
— газотурбинные;
— котлотурбинные;
— комбинированного цикла;
— на базе парогазовых установок;
— на основе поршневых двигателей.
Котлотурбинные ТЭС, в свою очередь делятся на конденсационные (КЭС или ГРЭС) и теплоэлектроцентрали (ТЭЦ).
Преимущества теплоэлектростанций
— малые финансовые затраты;
— высокая скорость строительства;
— возможность стабильной работы вне зависимости от сезона.
Недостатки ТЭС
— работа на невозобновляемых ресурсах;
— медленный выход на рабочий режим;
— получение отходов.
Атомная электростанция (АЭС) — станция, в которой получение электроэнергии (или тепловой энергии) происходит за счет работы ядерного реактора. За 2015 год все АЭС мира выработали почти 11% электроэнергии.
Ядерный реактор при работе передает энергию теплоносителю первого контура. Этот теплоноситель поступает в парогенератор, где нагревает воду второго контура. В парогенераторе происходит преобразование воды в пар, который поступает в турбину и приводит в движение электрогенераторы. Пар после турбины поступает в конденсатор, где охлаждается водой из водохранилища. В качестве теплоносителя первого контура используется, в основном, вода. Однако, для этой цели можно использовать еще свинец, натрий и другие жидкометаллические теплоносители. Количество контуров АЭС может быть разным.
АЭС классифицируются по типу используемого реактора. В атомных электростанциях используются два вида реакторов: на тепловых и на быстрых нейтронах. Реакторы первого типа подразделяются на: кипящие, водоводяные, тяжеловодные, газоохлаждаемые, графито-водные.
В зависимости от вида получаемой энергии, атомные электростанции бывают двух типов:
Станции, предназначенные для выработки электроэнергии.
Станции, предназначенные для получения электрической и тепловой энергии (АТЭЦ).
Преимущества атомных электростанций:
— независимость от источников топлива;
— экологическая чистота;
Главный недостаток станций этого типа — тяжелые последствия в случае аварийных ситуаций.
Кроме перечисленных электростанций еще бывают: дизельные, солнечные, приливные, ветровые, геотермальные.
pue8.ru
Виды электростанций ℹ️ характеристика основных типов устройств, классификация, принцип работы и назначение, плюсы и минусы энергетических объектов, таблица, примеры
Характеристики электростанций
Все электрические станции объединены и образуют Единую энергетическую группу, которую создали с целью более эффективного использования их мощностей, чтобы непрерывно снабжать потребителей электроэнергией. Основным элементом в устройстве считается электрогенератор, который выполняет определенные функции:
- Гарантирует непрерывную работу одновременно с другими энергосистемами и обеспечивает энергией собственные автономные нагрузки.
- Обеспечивает быстрое реагирование на наличие или отсутствие нагрузки, которая соответствует его номинальному значению. Производит запуск электродвигателя, обеспечивающего функционирование всей станции.
- Совместно со специальным оборудованием выполняет защитные функции.
Каждый генератор отличается формами, размерами и источником энергии, который вращает вал. Кроме него, в станцию входят: турбины, котлы, трансформаторы, распределительное оборудование, технические средства коммутации, автоматика, релейная защита. Сейчас большое внимание уделяется выпуску более компактных установок.
Они вырабатывают электроэнергию, которая питает не только различные объекты, но и целые поселения, находящиеся на удаленном расстоянии от электрических линий. В основном они используются на полярных станциях и предприятиях, добывающих полезные ископаемые.
Основные виды
Классификация электростанций в первую очередь проводится по типу энергоносителей. К ним относятся уголь, природный газ, вода рек, ядерное топливо, дизельное горючее, бензин и т. д. Список основных станций:
- ТЭС — расшифровка аббревиатуры: тепловая электрическая станция. Для ее работы используется природное топливо, а она может быть конденсационной (КЭС) или теплофикационной (ТЭЦ).
- ГЭС — гидравлическая электростанция, которая работает за счет воды рек, падающей с высоты. Существует ее разновидность — ГАЭС (гидроаккумулирующая).
- АЭС — атомные станции, энергоносителем которых является ядерное топливо.
- ДЭС — стационарные или передвижные электростанции, работающие на дизельном топливе. Обычно это станции малой мощности, которые используются в строительстве и частном секторе, где нет линий электропередач.
Существуют еще солнечные, ветровые, приливные и геотермальные источники электропитания, которые слабо применяются в нашей стране. У них есть ряд недостатков природного характера, и они представляют собой альтернативные виды выработки электроэнергии.
Тепловые и гидравлические
Тепловые электростанции России создают около 70% от всей электроэнергии. Для их функционирования используется мазут, уголь, газ, а в некоторых регионах — торф и сланцы. На теплоэлектроцентралях кроме электрической производится тепловая энергия.
Одним из основных элементов станции является турбина, которая вращается за счет вырабатываемого пара. Преимуществом ТЭС считается то, что ее оборудование можно разместить практически везде, где есть природные энергоносители. Кроме того, на их работу практически не влияют природные факторы.
Но при этом применяемое топливо не возобновляется, то есть его ресурсы могут закончиться, а само оборудование засоряет окружающую среду. В России тепловые станции не оборудованы эффективными системами для очистки от вредных и токсичных веществ.
Газовое оборудование считается более экологичным, но идущие к нему трубы также наносят вред природе. Станции, которые находятся в центральном регионе страны работают на природном газе и мазуте, а в восточных районах — на угле. Поэтому их размещение осуществляется ближе к месторождениям природного топлива.
По своей значимости гидравлические станции расположились на втором месте после ТЭС. Их основное отличие — это использование энергии воды, которая относится к возобновляемым ресурсам. Если смотреть по карте России, то можно заметить, что самые мощные ГЭС находятся в Сибири на Енисее и Ангаре. Список крупных электростанций:
- Саяно-Шушенская — обладает мощностью 6,4 тыс. мВт.
- Красноярская — 6 тыс. мВт.
- Братская — 4,5 тыс. мВт.
- Усть-Илимская — 3,84 тыс. мВт.
Схема принципа действия установок довольно проста. Падающая вода приводит в движение турбины, которые вращают генераторы, и начинает вырабатываться электроэнергия. Стоимость электричества, производимого ГЭС, считается самой дешевой, и она в 5—6 раз меньше, чем на ТЭС. Кроме того, чтобы управлять гидравлической станцией, требуется меньшее количество сотрудников.
Большую разницу составляет время запуска установки. Если для ГЭС этот параметр составляет 3—5 минут, то у ТЭС он будет длиться несколько часов. С другой стороны, гидравлическая установка функционирует на полную мощность только при большом подъеме уровня воды.
Сейчас большое внимание уделяется строительству гидроаккумулирующих станций, которые отличаются от традиционных установок возможностью перемещения одинакового количества воды между нижним и верхним бассейнами. В ночное время, когда есть излишки электроэнергии, вода подается снизу вверх, а в дневное — наоборот.
Атомные и дизельные
По количеству выпускаемой энергии атомные электростанции располагаются на третьем месте. Их доля в энергетике России составляет всего 10%. В Соединенных Штатах это значение равно 20%, а самый высокий показатель во Франции — более 75%.
После катастрофы на АЭС в Чернобыле была сокращена программа по строительству и развитию ядерных электростанций. Наиболее известные объекты в России:
- Ленинградский;
- Курский;
- Смоленский;
- Белоярский и др.
Сейчас наиболее популярны атомные теплоэлектроцентрали, назначение которых — производство электрической энергии и тепла. Станция такого типа функционирует в поселке Билибино на Чукотке. Кроме того, одним из последних направлений считается создание АСТ — атомных станций теплоснабжения, в которых происходит превращение ядерного энергоносителя в тепловую энергию.
Такое оборудование успешно работает в Нижнем Новгороде и Воронеже. При правильной эксплуатации АЭС является самой экологичной установкой, а именно:
- несущественные выбросы в атмосферу;
- кислород практически не поглощается;
- не создается парниковый эффект.
Если рассматривать принцип работы атомной электростанции, то следует учитывать катастрофические последствия после аварий. Отработанный энергоноситель также требует специального захоронения в ядерных могильниках.
Мобильные дизельные электростанции стали неотъемлемой частью для снабжения электроэнергией отдаленных районов и объектов строительства. Помимо этого, их зачастую используют как аварийные или резервные источники.
Основным элементом оборудования считается генератор, который вращается от двигателя внутреннего сгорания. Стационарные установки могут обладать мощностью до 5 тыс. кВт, а передвижные — не более 1 тыс. кВт.
Одним из их достоинств считаются компактные размеры, поэтому их можно размещать в небольших помещениях. К минусам можно отнести зависимость от наличия топлива, способов его доставки и хранения.
Преимущества и недостатки
Любая электрическая станция обладает как определенными достоинствами, так и некоторыми недостатками. Причины такой ситуации могут зависеть от технологических процессов, человеческого фактора и природных явлений.
Таблица. Плюсы и минусы ТЭС, ГЭС, АЭС.
Вид электростанции | Достоинства | Недостатки |
Тепловая | 1. Небольшая цена на энергоноситель. 2. Малые капитальные вложения. 3. Не имеют конкретной привязки к какому-нибудь району. 4. Низкая себестоимость электроэнергии. 5. Все оборудование занимает небольшую площадь. | 1. Сильное загрязнение окружающей среды. 2. Большие эксплуатационные расходы. |
Гидравлическая | 1. Отсутствует необходимость добычи и доставки энергоносителя. 2. Не загрязняет близлежащие районы. 3. Управление водяными потоками. 4. Высокая надежность функционирования. 5. Легкое техническое обслуживание и небольшая себестоимость электроэнергии. 6. Возможность дополнительно использовать природные ресурсы. | 1. Подтопление плодородных земель. 2. Большая занимаемая площадь. |
Атомная | 1. Малое количество вредных выбросов. 2. Небольшой объем энергоносителя. 3. Высокая мощность на выходе. 4. Низкие издержки для получения электроэнергии. | 1. Вероятность опасного облучения. 2. Выходная мощность не регулируется. 3. Катастрофические последствия при аварии. 4. Высокие капитальные вложения. |
Нетрадиционные электростанции (солнечные, геотермальные, приливные, ветровые и др.) в России используются в небольшом количестве.
Несмотря на недостатки, которые в основном связаны с непостоянством природных явлений, высокой стоимостью и малой выходной мощностью, за альтернативными установками — интересное и перспективное будущее.
nauka.club
Тепловая электростанция — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 декабря 2016; проверки требуют 53 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 декабря 2016; проверки требуют 53 правки.Теплова́я электроста́нция (или теплова́я электри́ческая ста́нция) — электростанция, вырабатывающая электрическую энергию за счёт преобразования химической энергии топлива в процессе сжигания в тепловую, а затем в механическую энергию вращения вала электрогенератора. В качестве топлива широко используются различные горючие ископаемые топлива: уголь, природный газ, реже — мазут, ранее — торф и горючие сланцы. Многие крупные тепловые станции вырабатывают лишь электричество — традиционно ГРЭС, в настоящее время КЭС; средние станции могут также использоваться для выработки тепла в схемах теплоснабжения (ТЭЦ).
Первая теплоэлектростанция «Pearl Street Station (англ.)русск.» появилась в Нью-Йорке на Перл-стрит в 1882 году[1][2].
В традиционных теплоэлектростанциях топливо сжигается в топке парового котла (ранее также назывались парогенераторами), нагревая и превращая в пар питательную воду, прокачиваемую внутри котла в специальных трубках (водотрубный котёл). Полученный перегретый пар с высокой температурой (до 400—650 градусов Цельсия) и давлением (от единиц до десятков МПа) подается через паропровод в турбогенератор — совмещенные паровую турбину и электрогенератор. В многоступенчатой паровой турбине тепловая энергия пара частично превращается в механическую энергию вращения вала, на котором установлен Электрический генератор. В ТЭЦ часть тепловой энергии пара также используется в сетевых подогревателях.
В ряде теплоэлектростанций получила распространение газотурбинная схема, в которой полученная при сжигании газообразного или жидкого топлива смесь горячих газов непосредственно вращает турбину газотурбинной установки, ось которой соединяется с электрогенератором. После турбины газы остаются достаточно горячими для полезного использования в котле-утилизаторе для питания паросилового двигателя (парогазовая установка) или для целей теплоснабжения (Газотурбинная ТЭЦ).
- Котлотурбинные электростанции
- Газотурбинные электростанции
- Электростанции на базе парогазовых установок
- Электростанции на основе поршневых двигателей
- С воспламенением от сжатия (дизель)
- C воспламенением от искры
- Комбинированного цикла
Математические модели и методы, используемые в задачах управления ТЭС[править | править код]
Как известно, технологический процесс на ТС заключается в поэтапном преобразовании различных видов энергии. Технологический процесс имеет особенность — конечный продукт — электроэнергия — не подлежит складированию. Косвенным показателем соответствия между паропроизводительностью кола мощностью турбины служит давление перегретого пара.
Современные ТЭС делятся на два типа:
- С поперечными связями. Основной агрегат по пару и воде связаны между собой
- С блочной компоновкой. При таком типе основное оборудование описывается отдельным технологическим процессом в пределах каждого энергоблока.
Для описания технологических процессов и формирования критериев управления составляются математические модели. Их изображают в форме уравнений.
В качестве объекта управления, характеризующего технологический процесс на ТЭС в целом, обычно выбирают типичный энергоблок. Технологический процесс, протекающий в таком блоке, можно представить в виде двух последовательных процессов: в паровом котле и турбогенераторе. [3]
Реализация и концепции построения АСУ ТП ТЭС[править | править код]
Одна из основных задач управления технологическим процессом на ТЭС состоит в поддержании непрерывною соответствия между количествами вырабатываемой и потребляемой энергии. Решение этой задачи может осуществляться по частям с помощью автономных АСР парового котла, турбины и электрического генератора.
Состав функций АСУ ТП[править | править код]
- Информационные функции АСУ ТП по энергоблокам:
- Оперативный контроль
- Технологическая сигнализация
- Расчет технико-экономических показателей
- Определение достоверности информации
- Диагностика состояния оборудования
- Регистрация аварийных положений
- Формирование банков данных
- Функции управления АСУ ТП по энергоблоку
- Статическая оптимизация режимов работы энергооборудования
- Исследование объекта управления
- Имитация экстремальных условий
- Информационные функции АСУ ТП по ТЭС
- Общестанционный контроль
- Расчет общестанционных ТЭП
- Контроль достоверности информации
- Регистрация общестанционных аварий
- Обмен оперативно-диспетчерской информацией с АСУ вышестоящих и нижестоящих уровней
- Формирование развитых баз данных
- Функции управления АСУ ТП по ТЭС
- Оптимальное распределение электрических нагрузок между энергоблоками
- Оптимальное распределение экологических нагрузок между энергоблоками
- Выбор состава работающего оборудования энергоблоков
- Дискретное и непрерывно-дискретное управление вспомогательным оборудованием
- Выполнение логических операций по переключениям в главной электрической схеме станции
- Групповое управление автоматическими системами регулирования возбуждения электрических генераторов[4]
Организация управления технологическим процессом ТЭС[править | править код]
Для осуществления управления технологического процесса ТЭЦ необходимо учитывать изменение производительности первоисточников энергии и их состоянием в зависимости от электрической нагрузки.
Основными факторами, влияющими на организацию управления ТП ТЭС являются:
- организационная структура оперативно-диспетчерского управления;
- комплекс технических средств автоматизации;
- эргономика рабочего места оператора;
- композиционное решение оперативно-диспетчерских постов управления;
- существующий уровень автоматизации.
Функционально-групповое управление (ФГУ).[править | править код]
Осуществляется путем декомпозиции и агрегирования, для разделения энергоблока на отдельные элементы или участки для децентрализованного управления ими. В результате ФГУ повышается надежность и точность автоматизированной системы управления энергоблока в целом. Деление на функциональные группы условное, однако оно облегчает работу оперативно-обслуживающего персонала.
Примеры перечня ФГ для мощного моноблока с прямоточным котлом и конденсационной турбины:
по котлу:
- питания водой,
- полами твердого пылевидного топлива,
- подачи жидкого (газообразного) топлива,
- подачи и подогрева воздуха,
- розжига растопочных горелок,
- удаления и очистки дымовых газов,
- подавления вредных выбросов,
- пароперегреватели;
по генератору:
- система охлаждения,
- система возбуждения,
- система синхронизации;
по турбине и вспомогательному оборудованию:
- система снабжения смазочным маслом
- система снабжения регулирующей жидкостью (аккумуляторный бак, центральный насос, устройства распределения и т.п.)
- система снабжения паром для прогрева соединительных трубопроводов в пределах турбины,
- система снабжении турбины перегретым паром (ГПЗ, паровые байпасы, стопорный и регулирующий клапаны, АСР частоты вращения и т.п.),
- вакуумно-уплотнительные устройства (пусковой и рабочий -эжекторы, система лабиринтовых уплотнений и т.п.),
- охладительная установка (конденсатор, циркуляционные насосы и т.п.),
- конденсатные насосы,
- блочная обессоливающая установка,
- питательно- деаэраторная установка,
- подогреватели среднего давления,
- подогреватели высокого давления.[4]
Экологические аспекты использования[править | править код]
Энергетика является одним из тех секторов мировой экономики, изменения в которых необходимы, чтобы избежать неприемлемых последствий глобального потепления. Оценки энергоинфраструктуры на основе глобального эмиссионного бюджета CO2 показывают, что после 2017 года в мире не должны вводиться в строй новые электростанции, работающие на ископаемом топливе.[5]
Тепловые электростанции зачастую становятся «мишенями» для радикально настроенных климатических активистов.[6][7]
- ↑ Global Edison — History
- ↑ Тепловые электростанции
- ↑ Плетнев Г. П Автоматизированное управление объектами тепловых электростанций: Учебн. пособие для вузов.—М.: Энергоиздат, 1981. —368 е., ил.
- ↑ 1 2 ISBN 9785903072859 Автоматизация технологических процессов и производств в теплоэнергетике: учебник для студентов вузов / Г.П. Плетнев. — 4-е изд., стереот. — М.: Издательский дом МЭИ, 2007. —с. 87-90
- ↑ Pfeiffer et al, The ‘2°C capital stock’ for electricity generation: Committed cumulative carbon emissions from the electricity generation sector and the transition to a green economy [1] Архивировано 20 октября 2007 года. (англ.)
- ↑ Drax coal train hijackers sentenced [2] (англ.) The Guardian, Friday 4 September 2009
- ↑ Ten years since Climate Camp: return to Drax [3] (англ.) Corporate Watch. Tue, 11/10/2016
- Аракелян Э. К., Старшинов В. А. Повышение экономичности и маневренности оборудования тепловых электростанций. — М.: МЭИ, 1993. — 328 с. — ISBN 5-7046-0042-5.
ru.wikipedia.org
Энергетика — Википедия
Доли в % различных источников в мировом производстве электроэнергии в 2015 году (IEA, 2017) [1]
Уголь/Торф (39,3 %)
Природный газ (22,9 %)
Гидро (16,0 %)
Ядерная (10,6 %)
Нефть (4,1 %)
Прочие (Возобн.) (7,1 %)
Энерге́тика — область хозяйственно-экономической деятельности человека, совокупность больших естественных и искусственных подсистем, служащих для преобразования, распределения и использования энергетических ресурсов всех видов. Её целью является обеспечение производства энергии путём преобразования первичной, природной энергии во вторичную, например в электрическую или тепловую энергию. При этом производство энергии чаще всего происходит в несколько стадий:
Электроэнергетика — это подсистема энергетики, охватывающая производство электроэнергии на электростанциях и её доставку потребителям по линии электропередачи. Центральными её элементами являются электростанции, которые принято классифицировать по виду используемой первичной энергии и виду применяемых для этого преобразователей. Необходимо отметить, что преобладание того или иного вида электростанций в определённом государстве зависит в первую очередь от наличия соответствующих ресурсов. Электроэнергетику принято делить на традиционную и нетрадиционную.
Доля различных источников в мировом производстве электроэнергии[1] | Уголь | Природный газ | ГЭС | АЭС | Нефть | Прочие | Всего |
---|---|---|---|---|---|---|---|
1973 год | 38,3 % | 12,1 % | 20,9 % | 3,3 % | 24,8 % | 0,6 % | 6 131 ТВт*ч |
2015 год | 39,3 % | 22,9 % | 16,0 % | 10,6 % | 4,1 % | 7,1 % | 24 255 ТВт*ч |
Традиционная электроэнергетика[править | править код]
Характерной чертой традиционной электроэнергетики является её давняя и хорошая освоенность, она прошла длительную проверку в разнообразных условиях эксплуатации. Основную долю электроэнергии во всём мире получают именно на традиционных электростанциях, их единичная[3]электрическая мощность очень часто превышает 1000 Мвт. Традиционная электроэнергетика делится на несколько направлений[4].
Тепловая энергетика[править | править код]
В этой отрасли производство электроэнергии производится на тепловых электростанциях (ТЭС), использующих для этого химическую энергию органического топлива. Они делятся на:
Теплоэнергетика в мировом масштабе преобладает среди традиционных видов, на базе угля вырабатывается 46 % всей электроэнергии мира, на базе газа — 18 %, ещё около 3 % — за счет сжигания биомасс, нефть используется для 0,2 %. Суммарно тепловые станции обеспечивают около 2/3 от общей выработки всех электростанций мира[6][7]
На 2013 год, средний КПД тепловых электростанций был равен 34 %, при этом наиболее эффективные угольные электростанции имели КПД в 46 %, а наиболее эффективные газовые электростанции — 61 %[8].
Энергетика таких стран мира, как Польша и ЮАР практически полностью основана на использовании угля, а Нидерландов — газа. Очень велика доля теплоэнергетики в Китае, Австралии, Мексике.
Гидроэнергетика[править | править код]
В этой отрасли электроэнергия производится на гидроэлектростанциях (ГЭС), использующих для этого энергию водного потока.
ГЭС преобладает в ряде стран — в Норвегии и Бразилии вся выработка электроэнергии происходит на них. Список стран, в которых доля выработки ГЭС превышает 70 %, включает несколько десятков.
Ядерная энергетика[править | править код]
Отрасль, в которой электроэнергия производится на атомных электростанциях (АЭС), использующих для этого энергию управляемой цепной ядерной реакции, чаще всего урана и плутония.
По доле АЭС в выработке электроэнергии первенствует Франция[9], около 70 %. Преобладает она также в Бельгии, Республике Корея и некоторых других странах. Мировыми лидерами по производству электроэнергии на АЭС являются США, Франция и Япония[10][11].
Нетрадиционная электроэнергетика[править | править код]
Большинство направлений нетрадиционной электроэнергетики основаны на вполне традиционных принципах, но первичной энергией в них служат либо источники локального значения, например ветряные, геотермальные, либо источники находящиеся в стадии освоения, например топливные элементы или источники, которые могут найти применение в перспективе, например термоядерная энергетика. Характерными чертами нетрадиционной энергетики являются их экологическая чистота, чрезвычайно большие затраты на капитальное строительство (например для солнечной электростанции мощностью 1000 Мвт требуется покрыть весьма дорогостоящими зеркалами площадь около 4-х км²) и малая единичная мощность[2]. Направления нетрадиционной энергетики[4]:
Также можно выделить важное из-за своей массовости понятие — малая энергетика, этот термин не является в настоящее время общепринятым, наряду с ним употребляются термины локальная энергетика, распределённая энергетика, автономная энергетика и др[12]. Чаще всего так называют электростанции мощностью до 30 МВт с агрегатами единичной мощностью до 10 МВт. К ним можно отнести как экологичные виды энергетики, перечисленные выше, так и малые электростанции на органическом топливе, такие как дизельные электростанции (среди малых электростанций их подавляющее большинство, например в России — примерно 96 %[13]), газопоршневые электростанции, газотурбинные установки малой мощности на дизельном и газовом топливе[14].
Электрические сети[править | править код]
Электрическая сеть — совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии[15]. Электрическая сеть обеспечивает возможность выдачи мощности электростанций, её передачи на расстояние, преобразование параметров электроэнергии (напряжения, тока) на подстанциях и её распределение по территории вплоть до непосредственных электроприёмников.
Электрические сети современных энергосистем являются многоступенчатыми, то есть электроэнергия претерпевает большое количество трансформаций на пути от источников электроэнергии к её потребителям. Также для современных электрических сетей характерна многорежимность, под чем понимается разнообразие загрузки элементов сети в суточном и годовом разрезе, а также обилие режимов, возникающих при выводе различных элементов сети в плановый ремонт и при их аварийных отключениях. Эти и другие характерные черты современных электросетей делают их структуры и конфигурации весьма сложными и разнообразными[16].
Жизнь современного человека связана с широким использованием не только электрической, но и тепловой энергии. Для того, чтобы человек чувствовал себя комфортно дома, на работе, в любом общественном месте, все помещения должны отапливаться и снабжаться горячей водой для бытовых целей. Так как это напрямую связано со здоровьем человека, в развитых государствах пригодные температурные условия в различного рода помещениях регламентируются санитарными правилами и стандартами[17]. Такие условия могут быть реализованы в большинстве стран мира[18] только при постоянном подводе к объекту отопления (теплоприёмнику) определённого количества тепла, которое зависит от температуры наружного воздуха, для чего чаще всего используется горячая вода с конечной температурой у потребителей около 80—90 °C. Также для различных технологических процессов промышленных предприятий может требоваться так называемый производственный пар с давлением 1—3 МПа. В общем случае снабжение любого объекта теплом обеспечивается системой, состоящей из:
Централизованное теплоснабжение[править | править код]
Характерной чертой централизованного теплоснабжения является наличие разветвлённой тепловой сети, от которой питаются многочисленные потребители (заводы, здания, жилые помещения и пр.). Для централизованного теплоснабжения используются два вида источников:
Децентрализованное теплоснабжение[править | править код]
Систему теплоснабжения называют децентрализованной, если источник теплоты и теплоприёмник практически совмещены, то есть тепловая сеть или очень маленькая, или отсутствует. Такое теплоснабжение может быть индивидуальным, когда в каждом помещении используются отдельные отопительные приборы, например электрические, или местным, например обогрев здания с помощью собственной малой котельной. Обычно теплопроизводительность таких котельных не превышает 1 Гкал/ч (1,163 МВт). Мощность тепловых источников индивидуального теплоснабжения обычно совсем невелика и определяется потребностями их владельцев. Виды децентрализованного отопления:
- Малые котельные;
- Электрическое, которое делится на:
- Печное.
Тепловые сети[править | править код]
Тепловая сеть — это сложное инженерно-строительное сооружение, служащее для транспорта тепла с помощью теплоносителя, воды или пара, от источника, ТЭЦ или котельной, к тепловым потребителям.
От коллекторов прямой сетевой воды с помощью магистральных теплопроводов горячая вода подаётся в населённые пункты. Магистральные теплопроводы имеют ответвления, к которым присоединяется разводка к тепловым пунктам, в которых находится теплообменное оборудование с регуляторами, обеспечивающими снабжение потребителей тепла и горячей воды. Тепловые магистрали соседних ТЭЦ и котельных для повышения надёжности теплоснабжения соединяют перемычками с запорной арматурой, которые позволяют обеспечить бесперебойное теплоснабжение даже при авариях и ремонтах отдельных участков тепловых сетей и источников теплоснабжения. Таким образом, тепловая сеть любого города является сложнейшим комплексом теплопроводов, источников тепла и его потребителей[2].
Так как большинство из традиционных электростанций и источников теплоснабжения выделяют энергию из невозобновляемых ресурсов, вопросы добычи, переработки и доставки топлива чрезвычайно важны в энергетике. В традиционной энергетике используются два принципиально отличных друг от друга видов топлива.
Органическое топливо[править | править код]
В зависимости от агрегатного состояния органическое топливо делится на газообразное, жидкое и твёрдое, каждое из них в свою очередь делится на естественное и искусственное. Доля такового топлива в мировом энергобалансе составляла в 2000 году около 65 %, из которых 39 % приходились на уголь, 16 % на природный газ, 9 % на жидкое топливо(2000 г.). В 2010 году по данным BP доля ископаемого органического топлива 87 %, в том числе: нефть 33,6 %, уголь 29,6 % газ 23,8 %[19].Tо же по данным «Renewable21» 80,6 %, не считая традиционной биомассы 8,5 %[20].
Газообразное[править | править код]
Естественным топливом является природный газ, искусственным:
Жидкое[править | править код]
Естественным топливом является нефть, искусственным называют продукты его перегонки:
Твёрдое[править | править код]
Естественным топливом являются:
Искусственным твёрдым топливом являются:
Ядерное топливо[править | править код]
В использовании ядерного топлива вместо органического состоит главное и принципиальное отличие АЭС от ТЭС. Ядерное топливо получают из природного урана, который добывают:
Для использования на АЭС требуется обогащение урана, поэтому его после добычи отправляют на обогатительный завод, после переработки на котором 90 % побочного обеднённого урана направляется на хранение, а 10 % обогащается до нескольких процентов (3—5 % для энергетических реакторов). Обогащённый диоксид урана направляется на специальный завод, где из него изготавливают цилиндрические таблетки[21], которые помещают в герметичные циркониевые трубки длиной почти 4 м, ТВЭЛы (тепловыделяющие элементы). По нескольку сотен ТВЭЛов для удобства использования объединяют в ТВС, тепловыделяющие сборки[2][22].
Энергетическая система (энергосистема) — в общем смысле совокупность энергетических ресурсов всех видов, а также методов и средств для их получения, преобразования, распределения и использования, которые обеспечивают снабжение потребителей всеми видами энергии. В энергосистему входят системы электроэнергетическая, нефте- и газоснабжения, угольной промышленности, ядерной энергетики и другие. Обычно все эти системы объединяются в масштабах страны в единую энергетическую систему, в масштабах нескольких районов — в объединённые энергосистемы. Объединение отдельных энергоснабжающих систем в единую систему также называют межотраслевым топливно-энергетическим комплексом, оно обусловлено прежде всего взаимозаменяемостью различных видов энергии и энергоресурсов[23].
Часто под энергосистемой в более узком смысле понимают совокупность электростанций, электрических и тепловых сетей, которые соединёны между собой и связаны общими режимами непрерывных производственных процессов преобразования, передачи и распределения электрической и тепловой энергии, что позволяет осуществлять централизованное управление такой системой[24]. В современном мире снабжение потребителей электроэнергией производится от электростанций, которые могут находиться вблизи потребителей или могут быть удалены от них на значительные расстояния. В обоих случаях передача электроэнергии осуществляется по линиям электропередачи. Однако в случае удалённости потребителей от электростанции передачу приходится осуществлять на повышенном напряжении, а между ними сооружать повышающие и понижающие подстанции. Через эти подстанции с помощью электрических линий электростанции связывают друг с другом для параллельной работы на общую нагрузку, также через тепловые пункты с помощью теплопроводов, только на гораздо меньших расстояниях[25] связывают между собой ТЭЦ и котельные. Совокупность всех этих элементов называют энергосистемой, при таком объединении возникают существенные технико—экономические преимущества:
- существенное снижение стоимости электро- и теплоэнергии;
- значительное повышение надёжности электро- и теплоснабжения потребителей;
- повышение экономичности работы различных типов электростанций;
- снижение необходимой резервной мощности электростанций.
Такие огромные преимущества в использовании энергосистем привели к тому, что уже к 1974 году лишь менее 3 % всего количества электроэнергии мира было выработано отдельно работавшими электростанциями. С тех пор мощность энергетических систем непрерывно возрастала, а из более мелких создавались мощные объединённые системы[16][26].
- ↑ 1 2 2017 Key World Energy Statistics (неопр.) (PDF). http://www.iea.org/publications/freepublications/ 30. IEA (2017).
- ↑ 1 2 3 4 5 Под общей редакцией чл.-корр. РАН Е. В. Аметистова. том 1 под редакцией проф. А. Д. Трухния // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00162 2.
- ↑ То есть мощность одной установки (или энергоблока).
- ↑ 1 2 Классификация Российской Академии Наук, которая ей всё же считается достаточно условной
- ↑ Это самое молодое направление традиционной электроэнергетики, возраст которого немногим более 20 лет.
- ↑ Данные за 2011 год.
- ↑ World Energy Perspective Cost of Energy Technologies (англ.). ISBN 978 0 94612 130 4 11. WORLD ENERGY COUNCIL, Bloomberg (2013). Дата обращения 29 июля 2015.
- ↑ World Energy Perspective (англ.) 5. Мировой энергетический совет (2013). Дата обращения 20 октября 2019.
- ↑ До недавнего закрытия своей единственной Игналинской АЭС, наряду с Францией по этому показателю также лидировала Литва.
- ↑ В.А.Веников, Е.В.Путятин. Введение в специальность: Электроэнергетика. — Москва: Высшая школа, 1988.
- ↑ 1 2 Энергетика в России и в мире: проблемы и перспективы. М.:МАИК «Наука/Интерпереодика», 2001.
- ↑ Эти понятия могут различно трактоваться.
- ↑ Данные за 2005 год
- ↑ А.Михайлов, д.т.н., проф., А.Агафонов, д.т.н., проф., В.Сайданов, к.т.н., доц. Малая энергетика России. Классификация, задачи, применение // Новости Электротехники : Информационно-справочное издание. — Санкт-Петербург, 2005. — № 5.
- ↑ ГОСТ 24291-90 Электрическая часть электростанции и электрической сети. Термины и определения
- ↑ 1 2 Под общей редакцией чл.-корр. РАН Е.В. Аметистова. том 2 по редакцией проф.А.П.Бурмана и проф.В.А.Строева // Основы современной энергетики. В 2-х томах. — Москва: Издательский дом МЭИ, 2008. — ISBN 978 5 383 00163 9.
- ↑ Например СНИП 2.08.01-89: Жилые здания или ГОСТ Р 51617-2000: Жилищно-коммунальные услуги. Общие технические условия. в России
- ↑ В зависимости от климата в некоторых странах нет такой необходимости.
- ↑ https://web.archive.org/web/20110626032546/http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/reports_and_publications/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_world_energy_full_report_2011.pdf
- ↑ Архивированная копия (неопр.). Дата обращения 4 декабря 2014. Архивировано 15 декабря 2012 года.
- ↑ Диаметром около 9 мм и высотой 15—30 мм.
- ↑ Т. Х. Маргулова. Атомные электрические станции. — Москва: ИздАТ, 1994.
- ↑ Энергосистема — статья из Большой советской энциклопедии.
- ↑ ГОСТ 21027-75 Системы энергетические. Термины и определения
- ↑ Не более нескольких километров.
- ↑ Под редакцией С.С.Рокотяна и И.М.Шапиро. Справочник по проектированию энергетических систем. — Москва: Энергоатомиздат, 1985.
ru.wikipedia.org
Электростанции бывают различных типов
В современном мире для выработки большого количества энергии используются электростанции. Область эксплуатации электрических станций достаточно широкая, в частности, они могут применяться для снабжения энергий удаленных зданий и сооружений во множестве отраслей промышленности.
Типы электростанций
Электростанции бывают различных типов, наиболее распространенными из которых являются:
- Тепловые
- Гидравлические
- Атомные
Тепловые станции, осуществляющие выработку энергии, отличаются быстротой возведения и дешевизной, по сравнению с иными разновидностями. Данный тип электростанции способен функционировать надлежащим образом без сезонных колебаний. Несмотря на неоспоримые достоинства, различные типы электростанций имеют несколько собственных недостатков. К примеру, ТЭС работают на невозобновимых ресурсах, создают отходы и режим их работы изменяется медленно, поскольку для разогрева котельной установки требуется несколько суток.
Гидравлические электростанции более экономичны и просты в управлении. Для обслуживания данных станций не требуется многочисленного персонала. Помимо всего прочего, ГЭС обладают продолжительным сроком полезного использования, превышающим 100 лет, а также маневренностью при изменении нагрузки. Невысокая себестоимость производимой энергии является одной из причин большого распространения гидравлических станций на сегодняшний день. Проблема гидроэлектростанций состоит в том, что на их возведение уходит от 15 до 20 лет и процесс строительства осложняется затопление больших площадей плодородных земель. В отдельных случаях могут возникнуть дополнительные проблемы с выбором места для возведения объекта.
Атомные станции функционируют на ядерном топливе и чаще всего размещаются в тех местах, где требуется электрическая энергия, но отсутствуют прочие источники сырья. Около 25 тонн топлива позволяют станции работать на протяжении нескольких лет. Действие АЭС не становится причиной увеличения парникового эффекта, а процесс выработки энергии осуществляется без загрязнения окружающей среды.
Основы функционирования электростанций
Вне зависимости от того, какие бывают электростанции, они по большей части используют энергию вращения вала генератора. Назначение генератора заключается в том, что он:
- Должен обеспечивать продолжительную стабильную параллельную работу с энергосистемами различной мощности, а также функционирование на автономную нагрузку
- Претерпевает моментальный сброс и наброс нагрузки, сопоставимой с его номинальной мощностью
- Выполняет защитную функцию благодаря наличию специальных устройств
- Запускает двигатель, обеспечивающий функционирование станции
Электростанции являются наиболее оптимальным способом выработки энергии по ряду факторов. На сегодняшний день не существует аналогичных методов, которые смогут обеспечить производство электроэнергии в настолько больших масштабах.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
madenergy.ru
Какие бывают виды электростанций
Электрическая энергия, которую активно стали использовать, по историческим меркам, не так давно, существенным образом изменила жизнь всего человечества. В настоящее время разные виды электростанций вырабатывают огромное количество энергии. Конечно, для более точного представления можно было найти конкретные числовые значения. Но для качественного анализа это не так важно. Важно отметить тот факт, что электрическая энергия используется во всех сферах человеческой жизни и деятельности. Современному человеку даже трудно себе представить, как можно было обходиться без электричества еще каких-то сто лет тому назад.
Высокая потребность в электрической энергии требует и соответствующих генерирующих мощностей. Для выработки электричества, как иногда выражаются люди в обиходе, используются тепловые, гидравлические, атомные и другие виды электростанций. Как не трудно заметить, конкретный вид генерации определяется тем видом энергии, который требуется для выработки электрического тока. На гидроэлектростанциях энергия падающего с высоты водного потока превращается в электрический ток. Точно так же электростанции на газу превращают в электричество тепловую энергию сгорающего газа.Всем известно, что в природе действует закон сохранения энергии. Все перечисленные виды электростанций по своей сути превращают один вид энергии в другой. В атомных реакторах происходит цепная реакция распада определенных элементов с выделением тепла. Это тепло с помощью определенных механизмов превращается в электричество. Точно по такому же принципу действуют и тепловые электростанции. Только в этом случае источником тепла служит органическое топливо – уголь, мазут, газ, торф и другие вещества. Практика последних десятилетий показала, что такой способ выработки электроэнергии весьма затратен наносит существенный ущерб окружающей среде.
Проблема заключается в том, что запасы органического топлива на планете ограничены. Расходовать их следует экономно. Передовые умы человечества давно поняли это и ведут активный поиск выхода из создавшегося положения. Одним из возможных вариантов выхода считаются альтернативные электростанции, которые работают на других принципах. В частности для выработки энергии используется солнечный свет и ветер. Солнце будет светить всегда и ветер дуть никогда не устанет. Как выражаются специалисты, это неиссякаемые или возобновляемые источники энергии, которые нужно рационально использовать.Совсем недавно перечень, в который входят виды электростанций, был коротким. Всего три позиции – тепловые, гидравлические и атомные. В настоящее несколько известных в мире компаний ведут серьезные исследования и опытно-конструкторские разработки в области применения солнечной энергии. В результате их деятельности на рынке появились преобразователи солнечного света в электричество. Следует отметить, что КПД их еще оставляет желать лучшего, но эта проблема рано или поздно будет решена. Точно так же обстоят дела с утилизацией энергии ветра. Ветряные генераторы получают все большее распространение.fb.ru
Атомная электростанция — Википедия
Страны с атомными электростанциями. Эксплуатируются АЭС, строятся новые энергоблоки. Эксплуатируются АЭС, планируется строительство новых энергоблоков. Нет АЭС, станции строятся. Нет АЭС, планируется строительство новых энергоблоков. Эксплуатируются АЭС, строительство новых энергоблоков пока не планируется. Эксплуатируются АЭС, рассматривается сокращение их количества. Гражданская ядерная энергетика запрещена законом. Нет АЭС.А́томная электроста́нция (АЭС) — ядерная установка для производства энергии в заданных режимах и условиях применения, располагающаяся в пределах определённой проектом территории, на которой для осуществления этой цели используется ядерный реактор (реакторы) и комплекс необходимых систем, устройств, оборудования и сооружений с необходимыми работниками (персоналом) (НП-001)[1].
Попытки использовать управляемую ядерную реакцию для производства электричества начались в 1940-х годах в нескольких странах. В СССР во второй половине 40-х гг., ещё до окончания работ по созданию первой советской атомной бомбы (её испытание состоялось 29 августа 1949 года), советские учёные приступили к разработке первых проектов мирного использования атомной энергии, генеральным направлением которого стала электроэнергетика. В 1948 году по предложению И. В. Курчатова и в соответствии с заданием ВКП(б) и правительства начались первые работы по практическому применению энергии атома для получения электроэнергии[2].
3 сентября 1948 года впервые удалось запитать электроприборы с помощью электричества, полученного на графитовом реакторе X-10[3][4][5] (США). В мае 1950 года в городе Обнинске, расположенном в Калужской области, началось строительство Обнинской АЭС. В том же 1950 году в США был создан реактор EBR-I[en] недалеко от города Арко, штат Айдахо. Данный реактор 20 декабря 1951 года в ходе эксперимента выработал пригодное для использования электричество мощностью 800 Вт. После этого мощность реактора была повышена для обеспечения электроэнергией станции, на которой находился реактор. Это даёт право называть данную станцию первой экспериментальной АЭС, но при этом она не была подключена к энергетической сети.
Обнинская АЭС мощностью 5 МВт была запущена 27 июня 1954 года в СССР. Она стала первой в мире атомной электростанцией, подключённой к общей электрической сети, хотя и производила электричество не в промышленных масштабах. В 1958 году была введена в эксплуатацию 1-я очередь Сибирской АЭС мощностью 100 МВт, впоследствии полная проектная мощность была доведена до 600 МВт. В том же году развернулось строительство Белоярской промышленной АЭС, а 26 апреля 1964 года генератор 1-й очереди дал ток потребителям. В сентябре 1964 года был пущен 1-й блок Нововоронежской АЭС мощностью 210 МВт. Второй блок мощностью 365 МВт запущен в декабре 1969 года. В 1973 году запущен первый блок Ленинградской АЭС[значимость факта?].
За пределами СССР первая АЭС промышленного назначения мощностью 46 МВт была введена в эксплуатацию в 1956 году в Колдер-Холле (Великобритания). Через год в США вступила в строй АЭС Шиппингпорт мощностью 60 МВт. В 1959 году свою первую АЭС запустила Франция, 1961 — Германия, 1962 — Канада, 1964 — Швеция, 1966 — Япония. В 1976 году начались строительные работы на рекордном за всю историю атомной энергетики числе новых реакторов, 44 единицы. Годом ранее Международное агентство по атомной энергии (МАГАТЭ) выпустило прогноз, согласно которому к 2000 году суммарная мощность АЭС во всем мире достигнет 4000 ГВт или даже 7000 ГВт. Оценка оказалась завышенной в 10 раз.
В 1979 году произошла серьёзная авария на АЭС Три-Майл-Айленд, после чего США постепенно прекратили строительство атомных реакторов. К идее введения новых ядерных мощностей вернулась администрация Джорджа Буша младшего в начале 2000-х годов. Существовали планы серийного строительства реакторов третьего поколения, получившие неофициальное название «атомного ренессанса». На 2016 год четыре таких реактора строятся.
В 1984 и 1985 годах рекордное число реакторов было введено в эксплуатацию, 33 единицы в каждом году. В 1986 году — масштабная катастрофа на Чернобыльской АЭС, которая, помимо непосредственных последствий, серьёзно отразилась на всей ядерной энергетике в целом. Она вынудила специалистов всего мира пересмотреть проблему безопасности АЭС и задуматься о необходимости международного сотрудничества в целях повышения безопасности АЭС. Под влиянием чернобыльской катастрофы Италия провела референдум, на котором большинство высказалось за закрытие АЭС страны. В результате, в 1990-х Италия прекратила эксплуатировать атомные станции.
15 мая 1989 года на учредительной ассамблее в Москве, было объявлено об официальном образовании Всемирной ассоциации операторов атомных электростанций (англ. WANO), международной профессиональной ассоциации, объединяющей организации, эксплуатирующие АЭС, во всём мире. Ассоциация поставила перед собой амбициозные задачи по повышению ядерной безопасности во всём мире, реализуя свои международные программы[6].
К концу 80-х годов темпы строительства атомных станций существенно замедлились. Тем не менее, в 1996 году доля атомной энергетики во всемирной генерации электричества достигла своего пика — 17,6 %.
Большое влияние на атомную энергетику оказала катастрофа на АЭС Фукусима-1, произошедшая в марте 2011 года в Японии. Она возникла в результате воздействия на АЭС сильного землетрясения и последовавшего за ним цунами.
В 2018 году суммарно АЭС мира выработали 2560 ТВт⋅ч электроэнергии[7], что составило 10,7 % всемирной генерации электричества. На середину 2019 года количество действующих ядерных энергоблоков (без учёта временно остановленных) в мире составляет 453[7].
Мировыми лидерами в производстве ядерной электроэнергии на 2018 год являлись[7][8]:
- США (805,3 млрд Вт·ч/год), работает 99 атомных реакторов (19,3 % от вырабатываемой электроэнергии).
- Франция (395,9 млрд Вт·ч/год), 58 реакторов (71,7 % от вырабатываемой электроэнергии).
- Китай (277,1 млрд Вт·ч/год), 46 реакторов (4,2 % от вырабатываемой электроэнергии).
- Россия (191,3 млрд Вт·ч/год), 37 реакторов (17,9 % от вырабатываемой электроэнергии).
- Республика Корея (127,1 млрд Вт·ч/год), 24 реактора (23,7 % от вырабатываемой электроэнергии).
- Канада (94,4 млрд Вт·ч/год), 19 реакторов (14,9 % от вырабатываемой электроэнергии).
- Украина (79,5 млрд Вт·ч/год), 15 реакторов (53,0 % от вырабатываемой электроэнергии).
- Германия (71,9 млрд Вт·ч/год), 7 реакторов (11,7 % от вырабатываемой электроэнергии).
- Великобритания (59,1 млрд Вт·ч/год), 15 реакторов (17,7 % от вырабатываемой электроэнергии).
- Швеция (65,9 млрд Вт·ч/год), 8 реакторов (40,3 % от вырабатываемой электроэнергии).
Половина всемирной выработки электроэнергии на АЭС приходится на США и Францию.
Крупнейшая АЭС в Европе — Запорожская АЭС[9] в г. Энергодаре (Запорожская область, Украина), строительство которой началось в 1980 году. С 1996 года работают 6 энергоблоков с реакторами ВВЭР-1000 суммарной мощностью 6,0 ГВт (эл.).
Крупнейшая АЭС в мире (по установленной мощности) — АЭС Касивадзаки-Карива (с 1997 года) находится в японском городе Касивадзаки префектуры Ниигата. Она имеет пять кипящих ядерных реакторов (BWR) и два улучшенных кипящих ядерных реактора (ABWR), суммарная установленная мощность которых составляет 8,212 ГВт (эл.). Однако станция не генерирует электричество с 2011 года. Поэтому крупнейшей в мире действующей является канадская АЭС Брюс c восемью тяжеловодными ядерными реакторами (PHWR) типа CANDU установленной мощностью 6,797 ГВт (эл.). Далее следует южнокорейская АЭС Кори с семью действующими энергоблоками (PWR) установленной мощностью 6,254 ГВт (эл.).
Современное состояние и перспективы[править | править код]
Атомные электростанции использует 31 страна. Подавляющее большинство АЭС находится в странах Европы, Северной Америки, Дальневосточной Азии и на территории бывшего СССР, в то время как в Африке их почти нет, а в Австралии и Океании их нет вообще. В мире действует 451 энергетический ядерный реактор общей мощностью 394 ГВт[10][11]. Еще 41 реактор не производил электричества от 1,5 до 20 лет, причём 40 из них находятся в Японии.
Согласно докладу о состоянии индустрии ядерной энергетики[10], на 2016 год в отрасли наблюдается спад. Пик производства ядерной энергии был зафиксирован в 2006 году (2660 ТВт⋅ч). Доля ядерной энергетики в глобальном производстве электричества снизилась с 17,6 % в 1996 году до 10,7 % в 2015 году. 158 реакторов были окончательно остановлены. Средний возраст закрытого реактора составляет 25 лет. Кроме того, строительство 6 реакторов формально продолжается более 15 лет.
За последние 10 лет в мире в эксплуатацию было введено 47 энергоблоков, почти все из них находятся либо в Азии (26 — в Китае), либо в Восточной Европе. Две трети строящихся на данный момент реакторов приходятся на Китай, Индию и Россию. КНР осуществляет самую масштабную программу строительства новых АЭС, ещё около полутора десятка стран мира строят АЭС или развивают проекты их строительства.
В то же время в мире существуют противоположные тенденции стагнации и даже отказа от ядерной энергетики. Как некоторые лидеры атомной энергетики (США, Франция, Япония), так и некоторые другие страны закрыли ряд АЭС. Италия стала единственной страной, закрывшей все имевшиеся АЭС и полностью отказавшейся от ядерной энергетики. Бельгия, Германия, Испания, Швейцария осуществляют долгосрочную политику по отказу от ядерной энергетики. Литва, Казахстан временно не имеют ядерной энергетики, хотя планируют вместо закрытых АЭС построить новые. Австрия, Куба, Ливия, КНДР, Польша по политическим, экономическим или техническим причинам остановили свои ядерные программы перед пуском своих первых АЭС, начатых строительством, хотя две последние страны планируют строительство АЭС вновь. Ранее отказывалась от атомной энергетики Армения, однако затем её единственная АЭС была пущена в эксплуатацию вновь. Имеющие АЭС Нидерланды, Тайвань, Швеция планировали отказаться от атомной энергетики, хотя пока приостановили такие мероприятия. Также имели ранее, но отказались от программ атомной энергетики не имевшие АЭС Австралия, Азербайджан, Гана, Греция, Грузия, Дания, Ирландия, Латвия, Лихтенштейн, Люксембург, Малайзия, Мальта, Новая Зеландия, Норвегия, Португалия, Филиппины. Перспективы заявленного строительства новых АЭС в случаях некоторых стран также вызывают сомнения.
Прослеживается тенденция к старению ядерных реакторов. Средний возраст действующих реакторов составляет 29 лет. Самый старый действующий реактор находится в Швейцарии, работает в течение 50 лет.
В настоящее время разрабатываются международные проекты ядерных реакторов нового поколения, например ГТ-МГР, которые обещают повысить безопасность и увеличить КПД АЭС.
В 2007 году Россия приступила к строительству первой в мире плавучей АЭС, позволяющей решить проблему нехватки энергии в отдалённых прибрежных районах страны[12]. Строительство столкнулось с задержками. Первая плавающая АЭС заработала в 2019 году, задержка составила 12 лет.
Несколько стран, включая США, Японию, Южную Корею, Россию, Аргентину, ведут разработки мини-АЭС с мощностью порядка 10—20 МВт для целей тепло- и электроснабжения отдельных производств, жилых комплексов, а в перспективе — и индивидуальных домов. Предполагается, что малогабаритные реакторы (см., например, Hyperion АЭС) могут создаваться с использованием безопасных технологий, многократно уменьшающих возможность утечки ядерного вещества[13]. Строительство одного малогабаритного реактора CAREM25 ведётся в Аргентине. Первый опыт использования мини-АЭС получил СССР (Билибинская АЭС).
В 2019 году также стало известно, что Китайская государственная ядерная корпорация (CNNC) предполагает начать строительство первой в КНР плавучей АЭС[14].
По типу реакторов[править | править код]
Атомные электростанции классифицируются в соответствии с типом используемых реакторов:
По виду отпускаемой энергии[править | править код]
Атомные станции по виду отпускаемой энергии можно разделить на:
- Атомные электростанции (АЭС), предназначенные для выработки электрической энергии. При этом на многих АЭС есть теплофикационные установки, предназначенные для подогрева сетевой воды, используя тепловые потери станции.
- Атомные теплоэлектроцентрали (АТЭЦ), вырабатывающие как электроэнергию, так и тепловую энергию.
На рисунке показана схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура. Далее теплоноситель поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.
Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (ВВЭР-1000).
Помимо воды, в различных реакторах в качестве теплоносителя и охладителя могут применяться также расплавы металлов: натрий, свинец, эвтектический сплав свинца с висмутом и др. Использование жидкометаллических теплоносителей позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в жидкометаллическом контуре не превышает атмосферного), избавиться от компенсатора давления.
Общее количество контуров может меняться для различных реакторов, схема на рисунке приведена для реакторов типа ВВЭР (Водо-водяной энергетический реактор). Реакторы типа РБМК (Реактор большой мощности канального типа) использует один водяной контур, реакторы на быстрых нейтронах — два натриевых и один водяной контуры, перспективные проекты реакторных установок СВБР-100 и БРЕСТ предполагают двухконтурную схему, с тяжелым теплоносителем в первом контуре и водой во втором.
В случае невозможности использования большого количества воды для конденсации пара вместо использования водохранилища вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.
Россия — одна из немногих стран, где серьёзно рассматриваются варианты строительства атомных станций теплоснабжения. Объясняется это тем, что в России существует централизованная система водяного отопления зданий, при наличии которой целесообразно применять атомные станции для получения не только электрической, но и тепловой энергии (аналогично ТЭЦ). Первые проекты таких станций были разработаны ещё в 70-е годы XX века, однако, из-за наступивших в конце 1980-х гг. экономических потрясений и жёсткого противодействия общественности до конца ни один из них реализован не был. Исключение составляют Билибинская АЭС небольшой мощности, снабжающая теплом и электричеством город Билибино в Заполярье (5319[15] чел.), и местные горнодобывающие предприятия, а также оборонные реакторы (главной задачей которых является производство плутония):
Было также начато строительство следующих АСТ на базе реакторов, в принципе аналогичных ВВЭР-1000:
Строительство всех трёх АСТ было остановлено во второй половине 1980-х или начале 1990-х годов.
В настоящий момент (2006) концерн «Росэнергоатом» планирует построить плавучую АСТ для Архангельска, Певека и других заполярных городов на базе реакторной установки КЛТ-40, используемой на атомных ледоколах. Есть вариант малой необслуживаемой АСТ на базе реактора «Елена», и передвижной (железнодорожным транспортом) реакторной установки «Ангстрем».
На Украине от АЭС отапливается ряд городов, в том числе Энергодар, отапливаемый самой большой АЭС в Европе.
Главное преимущество — практическая независимость от источников топлива из-за небольшого объёма используемого топлива. Например 54 тепловыделяющие сборки общей массой 41 тонна на один энергоблок с реактором ВВЭР-1000 в 1—1,5 года (для сравнения, Троицкая ГРЭС мощностью 2000 МВт сжигает за сутки два железнодорожных состава угля). Расходы на перевозку ядерного топлива, в отличие от традиционного, минимальны. В России это особенно важно в Европейской части, так как доставка угля из Сибири слишком дорога.
Огромным преимуществом АЭС является её относительная экологическая чистота. На ТЭС суммарные годовые выбросы вредных веществ, в которые входят сернистый газ, оксиды азота, оксиды углерода, углеводороды, альдегиды и золовая пыль, на 1000 МВт установленной мощности составляют от примерно 13 000 тонн в год на газовых и до 165 000 тонн на пылеугольных ТЭС. Подобные выбросы на АЭС возникают в редких случаях задействования резервных дизельных генераторов. ТЭС мощностью 1000 МВт потребляет 8 миллионов тонн кислорода в год для окисления топлива, АЭС же не потребляют кислорода[17].
Кроме того, больший удельный (на единицу произведённой электроэнергии) выброс радиоактивных веществ даёт угольная станция. В угле всегда содержатся природные радиоактивные вещества, при сжигании угля они практически полностью попадают во внешнюю среду. При этом удельная активность выбросов ТЭС в несколько раз выше, чем для АЭС[18][19].
Единственный фактор, в котором АЭС уступают в экологическом плане традиционным КЭС — тепловое загрязнение, вызванное большими расходами технической воды для охлаждения конденсаторов турбин, которое у АЭС несколько выше из-за более низкого КПД (не более 35 %). Однако этот фактор важен для водных экосистем, а современные АЭС в основном имеют собственные искусственно созданные водохранилища-охладители или вовсе охлаждаются градирнями. Также некоторые АЭС отводят часть тепла на нужды отопления и горячего водоснабжения городов, что снижает непродуктивные тепловые потери.
Существуют действующие и перспективные проекты по использованию «лишнего» тепла в энергобиологических комплексах (рыбоводство, выращивание устриц, обогрев теплиц и пр.). Кроме того, в перспективе возможно осуществление проектов комбинирования АЭС с ГТУ, в том числе в качестве «надстроек» на существующих АЭС, которые могут позволить добиться аналогичного с тепловыми станциями КПД[20][21][22][23].
Для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на пылеугольных и тем более газомазутных ТЭС. Особенно заметно преимущество АЭС в стоимости производимой электроэнергии во время так называемых энергетических кризисов, начавшихся с начала 70-х годов. Падение цен на нефть автоматически снижает конкурентоспособность АЭС.
Затраты на строительство АЭС разнятся в зависимости от проекта. По оценкам 2007 года, составленным на основе реализованных в 2000-х годах проектов, ориентировочно равны 2300 $ за кВт электрической мощности, эта цифра может снижаться при массовости строительства (для ТЭС на угле 1200 $, на газе — 950 $)[24]. Прогнозы 2012 года на стоимость проектов, осуществляемых в настоящее время, сходятся на цифре 2000 $ за кВт (на 35 % выше, чем для угольных, на 45 % — газовых ТЭС)[25]. По состоянию на 2018 год российские проекты на основе российских ВВЭР-1000/1200 обходятся примерно в 140 000 руб ($2200) за кВт установленной мощности, зарубежные проекты на основе российских ВВЭР-1000/1200 в 2 раза дороже.
Главный недостаток АЭС — тяжёлые последствия аварий, для исключения которых АЭС оборудуются сложнейшими системами безопасности с многократными запасами и резервированием, обеспечивающими исключение расплавления активной зоны даже в случае максимальной проектной аварии[17]. В то же время в мире эксплуатируются реакторы, не имеющие важных систем безопасности, требовавшихся стандартами безопасности 1970-х годов.
Серьёзной проблемой для АЭС является их ликвидация после выработки ресурса, по оценкам она может составить до 20 % от стоимости их строительства[17].
По ряду технических причин для АЭС крайне нежелательна работа в манёвренных режимах, то есть покрытие переменной части графика электрической нагрузки[17].
Также недостатком АЭС являются трудности переработки отработавшего ядерного топлива.
Любая работающая АЭС оказывает влияние на окружающую среду по трём направлениям:
- газообразные (в том числе радиоактивные) выбросы в атмосферу;
- выбросы большого количества тепла;
- распространение вокруг АЭС жидких радиоактивных отходов.
В процессе работы реактора АЭС суммарная активность делящихся материалов возрастает в миллионы раз. Количество и состав газоаэрозольных выбросов радионуклидов в атмосферу зависит от типа реактора, продолжительности эксплуатации, мощности реактора, эффективности газо- и водоочистки. Газоаэрозольные выбросы проходят сложную систему очистки, необходимую для снижения их активности, а затем выбрасываются в атмосферу через вентиляционную трубу.
Основные компоненты газоаэрозольных выбросов — радиоактивные инертные газы, аэрозоли радиоактивных продуктов деления и активированных продуктов коррозии, летучие соединения радиоактивного иода[26]. В общей сложности в реакторе АЭС из уранового топлива образуются посредством деления атомов около 300 различных радионуклидов, из которых более 30 могут попасть в атмосферу[27]. Среди них:
Возникшие газы через микротрещины ТВЭЛов (в реакторе ВВЭР-1000 находится 48 тыс. ТВЭЛов), а также в процессе извлечения ТВЭЛов в ходе их периодической замены, попадают в теплоноситель. Согласно статистике один из 5000 ТВЭЛов имеет какие-то серьёзные повреждения оболочки, облегчающие попадание продуктов деления в теплоноситель. Эксплуатационным регламентом российских АЭС допускается наличие до 1 % ТВЭЛов с повреждённой защитной оболочкой.
Реактор типа ВВЭР образует в год около 40 000 Ки газообразных радиоактивных выбросов. Большинство из них удерживается фильтрами или быстро распадаются, теряя радиоактивность. При этом реакторы типа РБМК дают на порядок больше газообразных выбросов, чем реакторы типа ВВЭР. Среднесуточный выброс радиоактивных газов и аэрозолей на Курской АЭС в 1981—1990 и Смоленской в 1991—1992 годах достигал 600—750 Ки/сут. В среднем в сутки на территории России газообразные выбросы АЭС составляли до 1993 года около 800 Ки (за год — около 300 тыс. Ки).
Большая часть радиоактивности газоаэрозольных выбросов генерируется короткоживущими радионуклидами и без ущерба для окружающей среды распадается за несколько часов или дней. Кроме обычных газообразных выбросов время от времени АЭС выбрасывает в атмосферу небольшое количество радионуклидов — продуктов коррозии реактора и первого контура, а также осколков деления ядер урана. Они прослеживаются на несколько десятков километров вокруг любой АЭС[28].
Безопасность атомных электростанций[править | править код]
Надзор за безопасностью российских АЭС осуществляет Ростехнадзор.
Охрана труда регламентируется следующими документами:
- Правила охраны труда при эксплуатации тепломеханического оборудования и тепловых сетей атомных станций ОАО «Концерн Энергоатом». СТО 1.1.1.02.001.0673-2006
Ядерная безопасность регламентируется следующими документами:
- Общие положения обеспечения безопасности атомных станций. ОПБ-88/97 (ПНАЭ Г-01-011-97)
- Правила ядерной безопасности реакторных установок атомных станций. ПБЯ РУ АС-89 (ПНАЭ Г — 1 — 024 — 90)
Радиационная безопасность регламентируется следующими документами:
- Санитарные правила проектирования и эксплуатации атомных станций (СП АС-03)
- Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ 99/2010)
- Правила радиационной безопасности при эксплуатации атомных станций (ПРБ АС-99)
- Нормы радиационной безопасности (НРБ-99/2009)
- Федеральный закон «О санитарно-эпидемиологическом благополучии населения».
Срок эксплуатации и износ оборудования[править | править код]
Срок эксплуатации АЭС ограничивается, в частности, изменением механических свойств, однородности материала и нарушением геометрической формы конструкционных элементов реактора под действием радиационного излучения[29]. При строительстве первой АЭС в США специалисты считали, что вклад этого эффекта настолько велик, что не позволит эксплуатировать реактор более 100 дней, сейчас же срок эксплуатации реакторов АЭС оценивается в некоторых случаях до 60 лет[30], а для АЭС Сарри в США в 2015 году запрошено разрешение на продление эксплуатации до 80 лет и планируется запросить такое же разрешение для АЭС Пич-Боттом[31][32].
Основным лимитирующим параметром ресурса для корпусов реакторов ВВЭР оказывается сдвиг критической температуры вязко-хрупкого перехода основного металла и металла сварных швов. Сдвиг температуры растёт с ростом флюенса быстрых нейтронов F, хотя обычно медленнее, чем флюенс (пропорционально F0,33…1,0). Восстановление облучённых корпусов реакторов и продление срока эксплуатации в некоторых случаях возможно при специальном отжиге корпуса, однако этот метод применим не для всех материалов корпусов и швов. Второй серьёзной материаловедческой проблемой реакторо
ru.wikipedia.org